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Abstract— Ethernet is the most widely used LAN technology. 
The performance of a single large LAN can be enhanced by 
dividing it into different segments using Ethernet bridging. 
We implement a scalable Ethernet bridge over IXP1200 
network processor. We demonstrate the data plane 
forwarding functionality of the bridge. The auto-discovery 
functionality for addition of new nodes and the update 
functionality have also been implemented. We have exploited 
the multiprocessing and multithreading capabilities of 
IXP1200 to obtain an optimized implementation which gives a 
high throughput at every port. 

 
Index Terms — Ethernet bridging, IXP 1200, network 

processor, auto-discovery. 

I. INTRODUCTION 
THERNET is the most widely used local-area 
networking technology today. It has proven to be a 

flexible, durable and scalable technology. Ethernet has seen 
a ten-fold rise in bandwidth every few years since 1993 as 
Ethernet (10Mbps) to, Fast Ethernet in 1995 (100Mbps), 
Gigabit Ethernet in 1997 and finally 10-Gigabit Ethernet in 
2002 [1].  
 
 Ethernet is cheaper than other options available for 
setting up a local area network (LAN). It is easier to setup, 
requires no configuration and is robust to noise. Ethernet 
uses Carrier Sense Multiple Access with Collision Detect 
(CSMA/CD) for sharing access for multiple users over the 
common transmission medium. It is efficient in utilizing the 
available bandwidth among multiple users in a fair manner. 
Ethernet has proved to be very efficient at low loads but as 
the load increases, the performance level of Ethernet 
decreases [2]. This is because, as the number of stations on 
a LAN increase, the chances of collision increase. Under 
the CSMA/CD scheme, when collisions increase, the 
stations go into contention mode more often. This increases 
the latency in transmission of data and reduces throughput. 
Ethernet also has a limitation on the maximum allowable 
distance for the LAN network based on the round trip 
propagation time. 
 

To overcome these problems, the network can be divided 
into multiple segments, using an Ethernet bridge. The 
bridge forms a star type network by connecting different 
LAN segments on each of its ports. The bridge passes only 
those packets destined to segments other than the ones on 
which they originated. Thus, if the destination and source 

nodes are on the same segment, the traffic is restricted to 
that segment only. This helps reduce collisions and 
improves efficiency of the network. The bridge keeps track 
of which devices are connected to which port by 
maintaining a MAC-addresses-to-port mapping table.  

 
Consider the conversion of a single LAN network into a 

bridged network with four segments. 
 

 
 

4n Nodes  

FIG 1(a). Single LAN network of 4n nodes 

 
 

FIG 1(b). Bridged LAN network 

For the original LAN topology, consider fP as the 

partial usage of the available bandwidth by each node. For 
4n nodes the total usage of the network is 4n fP . The total 

number of collisions will be proportional to 
24 (4 1) fn n P× − × , 

where cubic and higher terms are neglected. After dividing 
the topology into 4 segments of n nodes each, the 
bandwidth usage of each segment will be n fP . We assume 

here that the traffic generated in each segment gets equally 
distributed to all the segments. Hence one particular 
segment gets fnP /4 traffic from every other segment. The 

traffic from other three segments crossing over the bridge 
to one segment is 3 fnP /4. Thus the total traffic on one 

segment can be given as  
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So the number of collisions that can take place on a single 
segment is proportional to . This analysis can be further 
extended if we divide the 4n nodes into 4 groups in a 
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logical manner such as departments or subgroups. In that 
case, we consider the probability of data generated for a 
source-destination pair within a segment, , to be higher 

than that for a pair across two segments, . With reference 
to the topology given in fig[1.b], and considering above 
probabilities, the total usage on each segment is: 
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The probability of collision on the segment is proportional 
to  . Now, if /  is substantially lower than 1, then 
the overall performance of the network will improve.  
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 The above concept can be further stressed by taking 
example of an organization like IIT with four departments 
namely, mechanical, electrical, civil and metallurgy. If all 
these departments are in a single LAN, then all the intra-
department traffic would travel to all departments. Instead, 
if this network is divided into different departments using a 
bridge, with n nodes in each department, the intra-
department traffic could be very well restricted to the 
department. At the same time, data transfer could be 
initiated in other departments simultaneously. The inter-
department traffic could be smoothly passed over by the 
bridge to the required department. The ratio /  will be 
lower than 1, as departments are logical partitions of the 
LAN and the crossover of data required, will be less than 
the intra-department data transfer. 
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The StrongARM core is a full 32 bit RISC based 
Processor with integrated caches. It is used for 
implementing the control plane functionality and high level 
packet processing. It communicates with the host system 
through the PCI interface. The host system is used to boot 
up the StrongARM to run Real-Time Operating System 
(RTOS) and load programs to be run on microengines. 
There are six 32-bit, RISC based processors or 
microengines, optimized for performing packet processing 
tasks in the IXP. Each microengine has four hardware 
context-switched threads with four independent program 
counters.  Each microengine has fast internal scratchpad 
memory and high-speed internal bus to the external, shared 
SRAM and SDRAM memory units. The memory units and 
microengines are connected to the IX Bus Interface unit 
that provides access to the external MAC ports through a 
high speed IX Bus. The interface unit also provides buffers 
for transmit and receive operations. 

The IXP1200 network processor from Intel provides a 
very good platform for implementing a network system, as 
it is optimized for packet processing. It introduces great 
flexibility in programming the implementation because of 
its multiprocessing environment. The processor internally 
has six processors known as microengines, each capable of 
running four threads. The internal architecture of IXP1200 
facilitates reception, processing and transmission of data at 
fast line rates. 

 
The implementation of an Ethernet bridge over a 

network processor is dealt with in [ref]. However it is based 
on a statically built forwarding table. This implementation 
is not scalable as it does not provide any scheme for adding 
or deleting any nodes. When such changes take place, this 
implementation requires updating the MAC address table 
statically for not just the bridge but for every node in the 
network. We introduce a fully scalable solution that 
supports auto-discovery and auto-updates. Our solution 
also supports variable data rates on any input port of the 
bridge and uses the hardware resources optimally to give 
maximum throughput. Making use of the various resources 
provided by IXP1200, we implement a highly scalable 
version of the Ethernet Bridge. 

II. IXP 1200 NETWORK PROCESSOR 
IXP1200 is an integrated Network Processor, consisting 

of a StrongARM Core Processor, six programmable 
Microengines, standard memory interfaces and high speed 
bus interfaces. IXP1200 is designed to provide high level of 
programming flexibility for data packet processing 
applications. Each Microengine has 4 hardware threads, 
which are effectively used for multiprocessing and for 
efficiently hiding the memory access latencies. Following is 
simplified block diagram of IXP1200, depicting its various 
functional units. 
    

 
FIG 2 : Architecture of IXP1200 Network Processor  

 

 
The micro-code for the each microengine is developed 

using IXP1200 Developer Workbench and assembled using 
assembler before linking. Developer Workbench closely 
depicts the IXP1200 hardware and provides a suitable 
platform for debugging and simulation. The simulation 
environment provides access to all memory locations, 
thread statistics, data rates and packet counts etc. Various 
data streams can be simulated using the workbench and 
thorough testing of the microcode can be done. 
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III.  ETHERNET BRIDGING IMPLEMENTATION 
An experimental LAN network with eight nodes is 

considered. This network is divided into four segments 
using the Ethernet Bridge. Port0 to port3 of IXP1200 
correspond to the four segments. This implementation 
covers the data plane functionality as well as the control 
plane functionality 

 

 
FIG .3: Bridged network 

 
The data plane functionality can be separated into three 

distinct operations viz. packet reception, Ethernet bridging 
and packet transmission. The pseudo code for Packet 
reception is as follows: 

 
Pseudo Code for Packet Reception: 
Start 
If data available at port 

Transfer to RFIFO 
Receive_packet (port num, RFIFO num) 

Else keep sensing for data 
End if 
If for the mpacket, SOP=1, 
 Allocate new buffer in SDRAM and transfer packet. 
 transfer_mpacket_to_buffer (bufffer_data_ptr, 
rfifo_num) 
Else  If EOP=0 transfer mpacket in buffer 
 Else transfer mpacket in buffer  
                 And buffer free. 
End If 
End 

 
One microengine is dedicated to each of the four ports. It 

scans the port for availability of data and as soon as 64 
bytes of data arrives, it transports this blocks of data to the 
receive buffer in the IX Bus interface unit known as RFIFO 
for the respective port. This chunk of data is known as 

mpacket. Each packet has a reference flag to mark the ‘start 
of packet’ (SOP) or ‘end of packet’ (EOP). For an 
intermediate mpacket both these flags are zero. Further, the 
packet is transferred to SDRAM memory and reassembled, 
based on SOP and EOP flags. 

 
Pseudo Code for Data Plane Functionality of Bridging 
Start 
Extract header from the packet 
If Control Packet 
 Send to Control packet block 
Else if Data packet 
 Send source Mac address for hashing hash_48( ) 
 Check hashing table 
 If not found, Add_MAC_Address_to_table( ) 
 Else  hash destination address hash_48( ) 
  If found, check output interface 
   If output interface = input interface 
    Discard the packet 
   Else send output interface to transmit module  
   End if 
  Else Set a flag for broadcasting the packet 
  End if 
 End if 
End if  
End 

 
We extract the header of the packet in ‘ethernet_header’ 

structure by typecasting the packet. The source and 
destination MAC addresses can be directly accessed 
through this structure. The IXP1200 provides a hashing 
unit in the IX Bus interface unit. This hash unit can take 48-
bit or 64-bit of data, and produce 48-bit or 64-bit hash 
index respectively. The microengine initiates the hash 
operation by writing a continuous set of SRAM transfer 
registers with the Source MAC address used to generate 
hash index and then executes the hashing function 
hash_48( ). The hash unit uses a hard-wired polynomial 
algorithm and a programmable hash multiplier to create 
hash indexes. This saves many instruction cycles which 
would have been required for software hashing. The 
hashing table is accessed at the [hash index] location and 
the output interface is extracted from this table entry. This 
interface is passed on to the transmit block. If the MAC 
address is not there, then the add_MAC_address_to_table 
routine adds the entry. 

 
Pseudo Code for Transmit Module: 
Start 
If flag for broadcast = 0 

get mpacket from SDRAM.  
get_mpacket (pointer to buffer) 

Else  get_mpacket_broadcast (pointer to buffer) 
End If 
If TFIFO Element not validated 
 Fill the element with current mpacket 
Else Check next TFIFO element 
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End If 
While transmit_pointer  TFIFO number ≠
 Wait 
End while 
While Transmit_ready_bit 1 ≠
 Wait 
End while 
Validate TFIFO element. validate_fifo(fifo_entry) 
If last mpacket, 
 Buffer free. buffer_free(pointer to buffer) 
Else work on new mpacket get_mpacket 
End If  
End 

 
The transmit module takes the pointer to the SDRAM 

location of the packet as an argument along with the port 
number where the packet has to be forwarded. It transfers 
the packet to transmit buffers known as TFIFO s. There are 
16 such TFIFO elements in the IX Bus interface unit. A 
transmit_pointer polls these elements in a round robin 
fashion. When it encounters a TFIFO element which is 
filled with data, it checks for the availability of buffer space 
in the forwarding port. When buffer space is available, it 
validates this TFIFO element. The IX Bus then takes over 
the control and transfers the packet out through the output 
port. 

 
We replicate the packet to be broadcasted by 

manipulating the pointer to the packet in the SDRAM. We 
restrict the pointer to move until the packet is forwarded to 
all the output ports. A proper synchronization is maintained 
between the TFIFO elements and the transmit pointer. If the 
transmit pointer gets stuck at an unfilled TFIFO element 
then the code would come to a halt. To avoid this, three out 
of four threads of a microengine fill the TFIFO elements 
while the fourth one looks after sending the packet out 
through the proper port. 
 
Psuedo Code for Control Plane Functionality 
Start 
Hash source MAC address 
If source MAC already present at hashed location, 
 Reset keep alive timer 
Else Store input interface and source MAC address  

 at hashing index location  
 Add_MAC_Address_to_table( ) 

Set the broadcasting flag 
End 

 
The control plane functionality consists of auto-

discovery and auto-updates. If a new node attaches to one 
of the branch, then it sends a control packet to intimate its 
arrival to other nodes. When the bridge receives this packet, 
it updates its table and at the same time floods this packet to 
all ports. This helps all the nodes across the bridge to know 
that a new node is being added. All nodes send a periodic 
keep_alive control message. If this message is not received 
by the bridge after fix time from a certain node, the bridge 

deletes that node from the table. Thus addition and deletion 
of the nodes is handled. 

 
The implemented code was further optimized for best 

performance. The microengines were assigned to a specific 
port of IXP. One microengine was assigned to assist these 
four microengines in a round robin fashion whenever data 
is available. The throughput results for this are as follows: 

 
Port Packets Received Packet receive rate 

0 
1 
2 
3 

51 
25 
25 
25 

596.21 
292.57 
292.57 
292.57 

 
As can be seen from above result, the spare microengine 

is assisting the port 0 to have a higher data rate. We have 
achieved the flexibility to assign variable data rate to any 
port and the code has been optimized. 
 

The instruction cycles required for each data packet 
processing were studied. The details are as follows: 

 
Operation Instruction 

Cycles 
 
Receiving single Packet: 
 
Initialization of free list 
Wait for data at port 
IX Bus to RFIFO transfer * 
Get packet info (rcv_cntl CSR) 
Buffer allocation 
Transfer to SDRAM from RFIFO * 
Update Mpacket Count 
Increment counters 
Buffer free 
 
 
Bridge Packet 
 
48 bit hashing of source 
checking of hashtable in SRAM * 
Decision making 
 
Transmit Packet 
 
SDRAM to TFIFO transfer * 
Polling transmit pointer 
Checking buffer space at output port 
Validating the TFIFO element 
Increment TFIFO entry 
 

 
 
 

16 
17 
73 
20 
28 
51 
04 
38 
15 

 
 
 
 

30 
130 
05 

 
 
 

75 
30 
15 
05 
03 

 
 

Total cycles 555 
 

The above table gives the cycles required for bridging 
operation for data plane functionality. The clock of a single 
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microengine is 200Mhz. So for 555 cycles the time required 
is 2.775 μ s. The entries marked with an asterisk (*) give 
higher latencies. These latencies were hidden using 
multithreading. One clock cycle is required for making a 
context switch. So the effective cycles required for 
processing of a single packet are calculated as follows: 555-
325+5 = 235. This gives processing time of 1.175 μ s per 
packet and a throughput in excess of 500Mbps. The control 
plane functionality was found to incur a usage of about 30 
more instruction cycles. These were required to add the 
new MAC address to the table. The other functions 
involved did not access external memory and hence took 
less instruction cycles. Thus our implementation adds an 
important functionality to the bridging code, with optimum 
performance. 

 
 The throughput with current parallelism is over 

500Mbps.The speed of packet processing can be enhanced 
by pipelining the operations by assigning the receive 
functions on one microengine and bridging and transmit 
functions on another one. One such pair of microengines 
could be dedicated to each port. Since IXP1200 has only 
six microengines, currently only 3 ports can be supported. 
However, IXP2400 has 8 microengines with clock 
frequency of 600 MHz, which would raise the throughput 
over 1Gbps on all four ports. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. CONCLUSION 
We have implemented a scalable model of Ethernet Bridge 
over IXP1200. The data plane forwarding functionality was 
demonstrated successfully. The auto discovery and update 
functionality was implemented over IXP1200 with minimal 
overhead. The implementation was tested by adding and 
deleting nodes from the experimental network. The code 
was optimized for high-sped performance using the 
multithreading and multiprocessing capabilities of 
IXP1200. A high throughput was obtained at every port. 
The code could be further implemented on IXP2400. 
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