
 1

Implementation of Scalable Ethernet-bridge with
auto-discovery and auto-updates using network processor

H. P. Shringarpure, G.P. Saraph, and D. Mujumdar

Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

Abstract— Ethernet is the most widely used LAN technology.
The performance of a single large LAN can be enhanced by
dividing it into different segments using Ethernet bridging.
We implement a scalable Ethernet bridge over IXP1200
network processor. We demonstrate the data plane
forwarding functionality of the bridge. The auto-discovery
functionality for addition of new nodes and the update
functionality have also been implemented. We have exploited
the multiprocessing and multithreading capabilities of
IXP1200 to obtain an optimized implementation which gives a
high throughput at every port.

Index Terms — Ethernet bridging, IXP 1200, network

processor, auto-discovery.

I. INTRODUCTION
THERNET is the most widely used local-area
networking technology today. It has proven to be a

flexible, durable and scalable technology. Ethernet has seen
a ten-fold rise in bandwidth every few years since 1993 as
Ethernet (10Mbps) to, Fast Ethernet in 1995 (100Mbps),
Gigabit Ethernet in 1997 and finally 10-Gigabit Ethernet in
2002 [1].

 Ethernet is cheaper than other options available for
setting up a local area network (LAN). It is easier to setup,
requires no configuration and is robust to noise. Ethernet
uses Carrier Sense Multiple Access with Collision Detect
(CSMA/CD) for sharing access for multiple users over the
common transmission medium. It is efficient in utilizing the
available bandwidth among multiple users in a fair manner.
Ethernet has proved to be very efficient at low loads but as
the load increases, the performance level of Ethernet
decreases [2]. This is because, as the number of stations on
a LAN increase, the chances of collision increase. Under
the CSMA/CD scheme, when collisions increase, the
stations go into contention mode more often. This increases
the latency in transmission of data and reduces throughput.
Ethernet also has a limitation on the maximum allowable
distance for the LAN network based on the round trip
propagation time.

To overcome these problems, the network can be divided
into multiple segments, using an Ethernet bridge. The
bridge forms a star type network by connecting different
LAN segments on each of its ports. The bridge passes only
those packets destined to segments other than the ones on
which they originated. Thus, if the destination and source

nodes are on the same segment, the traffic is restricted to
that segment only. This helps reduce collisions and
improves efficiency of the network. The bridge keeps track
of which devices are connected to which port by
maintaining a MAC-addresses-to-port mapping table.

Consider the conversion of a single LAN network into a

bridged network with four segments.

4n Nodes

FIG 1(a). Single LAN network of 4n nodes

FIG 1(b). Bridged LAN network

For the original LAN topology, consider fP as the

partial usage of the available bandwidth by each node. For
4n nodes the total usage of the network is 4n fP . The total

number of collisions will be proportional to
24 (4 1) fn n P× − × ,

where cubic and higher terms are neglected. After dividing
the topology into 4 segments of n nodes each, the
bandwidth usage of each segment will be n fP . We assume

here that the traffic generated in each segment gets equally
distributed to all the segments. Hence one particular
segment gets fnP /4 traffic from every other segment. The

traffic from other three segments crossing over the bridge
to one segment is 3 fnP /4. Thus the total traffic on one

segment can be given as
3 7

4 4
f f

f

nP nP
nP + = .

So the number of collisions that can take place on a single
segment is proportional to . This analysis can be further
extended if we divide the 4n nodes into 4 groups in a

2P

E

 2

logical manner such as departments or subgroups. In that
case, we consider the probability of data generated for a
source-destination pair within a segment, , to be higher

than that for a pair across two segments, . With reference
to the topology given in fig[1.b], and considering above
probabilities, the total usage on each segment is:

1P

2P

1 2

1 2 1 2

3
3 3u f f

P PP nP nP
P P P P

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

The probability of collision on the segment is proportional
to . Now, if / is substantially lower than 1, then
the overall performance of the network will improve.

2
uP 2P 1P

 The above concept can be further stressed by taking
example of an organization like IIT with four departments
namely, mechanical, electrical, civil and metallurgy. If all
these departments are in a single LAN, then all the intra-
department traffic would travel to all departments. Instead,
if this network is divided into different departments using a
bridge, with n nodes in each department, the intra-
department traffic could be very well restricted to the
department. At the same time, data transfer could be
initiated in other departments simultaneously. The inter-
department traffic could be smoothly passed over by the
bridge to the required department. The ratio / will be
lower than 1, as departments are logical partitions of the
LAN and the crossover of data required, will be less than
the intra-department data transfer.

2P 1P

The StrongARM core is a full 32 bit RISC based
Processor with integrated caches. It is used for
implementing the control plane functionality and high level
packet processing. It communicates with the host system
through the PCI interface. The host system is used to boot
up the StrongARM to run Real-Time Operating System
(RTOS) and load programs to be run on microengines.
There are six 32-bit, RISC based processors or
microengines, optimized for performing packet processing
tasks in the IXP. Each microengine has four hardware
context-switched threads with four independent program
counters. Each microengine has fast internal scratchpad
memory and high-speed internal bus to the external, shared
SRAM and SDRAM memory units. The memory units and
microengines are connected to the IX Bus Interface unit
that provides access to the external MAC ports through a
high speed IX Bus. The interface unit also provides buffers
for transmit and receive operations.

The IXP1200 network processor from Intel provides a
very good platform for implementing a network system, as
it is optimized for packet processing. It introduces great
flexibility in programming the implementation because of
its multiprocessing environment. The processor internally
has six processors known as microengines, each capable of
running four threads. The internal architecture of IXP1200
facilitates reception, processing and transmission of data at
fast line rates.

The implementation of an Ethernet bridge over a

network processor is dealt with in [ref]. However it is based
on a statically built forwarding table. This implementation
is not scalable as it does not provide any scheme for adding
or deleting any nodes. When such changes take place, this
implementation requires updating the MAC address table
statically for not just the bridge but for every node in the
network. We introduce a fully scalable solution that
supports auto-discovery and auto-updates. Our solution
also supports variable data rates on any input port of the
bridge and uses the hardware resources optimally to give
maximum throughput. Making use of the various resources
provided by IXP1200, we implement a highly scalable
version of the Ethernet Bridge.

II. IXP 1200 NETWORK PROCESSOR
IXP1200 is an integrated Network Processor, consisting

of a StrongARM Core Processor, six programmable
Microengines, standard memory interfaces and high speed
bus interfaces. IXP1200 is designed to provide high level of
programming flexibility for data packet processing
applications. Each Microengine has 4 hardware threads,
which are effectively used for multiprocessing and for
efficiently hiding the memory access latencies. Following is
simplified block diagram of IXP1200, depicting its various
functional units.

FIG 2 : Architecture of IXP1200 Network Processor

The micro-code for the each microengine is developed

using IXP1200 Developer Workbench and assembled using
assembler before linking. Developer Workbench closely
depicts the IXP1200 hardware and provides a suitable
platform for debugging and simulation. The simulation
environment provides access to all memory locations,
thread statistics, data rates and packet counts etc. Various
data streams can be simulated using the workbench and
thorough testing of the microcode can be done.

 3

III. ETHERNET BRIDGING IMPLEMENTATION
An experimental LAN network with eight nodes is

considered. This network is divided into four segments
using the Ethernet Bridge. Port0 to port3 of IXP1200
correspond to the four segments. This implementation
covers the data plane functionality as well as the control
plane functionality

FIG .3: Bridged network

The data plane functionality can be separated into three

distinct operations viz. packet reception, Ethernet bridging
and packet transmission. The pseudo code for Packet
reception is as follows:

Pseudo Code for Packet Reception:
Start
If data available at port

Transfer to RFIFO
Receive_packet (port num, RFIFO num)

Else keep sensing for data
End if
If for the mpacket, SOP=1,
 Allocate new buffer in SDRAM and transfer packet.
 transfer_mpacket_to_buffer (bufffer_data_ptr,
rfifo_num)
Else If EOP=0 transfer mpacket in buffer
 Else transfer mpacket in buffer
 And buffer free.
End If
End

One microengine is dedicated to each of the four ports. It

scans the port for availability of data and as soon as 64
bytes of data arrives, it transports this blocks of data to the
receive buffer in the IX Bus interface unit known as RFIFO
for the respective port. This chunk of data is known as

mpacket. Each packet has a reference flag to mark the ‘start
of packet’ (SOP) or ‘end of packet’ (EOP). For an
intermediate mpacket both these flags are zero. Further, the
packet is transferred to SDRAM memory and reassembled,
based on SOP and EOP flags.

Pseudo Code for Data Plane Functionality of Bridging
Start
Extract header from the packet
If Control Packet
 Send to Control packet block
Else if Data packet
 Send source Mac address for hashing hash_48()
 Check hashing table
 If not found, Add_MAC_Address_to_table()
 Else hash destination address hash_48()
 If found, check output interface
 If output interface = input interface
 Discard the packet
 Else send output interface to transmit module
 End if
 Else Set a flag for broadcasting the packet
 End if
 End if
End if
End

We extract the header of the packet in ‘ethernet_header’

structure by typecasting the packet. The source and
destination MAC addresses can be directly accessed
through this structure. The IXP1200 provides a hashing
unit in the IX Bus interface unit. This hash unit can take 48-
bit or 64-bit of data, and produce 48-bit or 64-bit hash
index respectively. The microengine initiates the hash
operation by writing a continuous set of SRAM transfer
registers with the Source MAC address used to generate
hash index and then executes the hashing function
hash_48(). The hash unit uses a hard-wired polynomial
algorithm and a programmable hash multiplier to create
hash indexes. This saves many instruction cycles which
would have been required for software hashing. The
hashing table is accessed at the [hash index] location and
the output interface is extracted from this table entry. This
interface is passed on to the transmit block. If the MAC
address is not there, then the add_MAC_address_to_table
routine adds the entry.

Pseudo Code for Transmit Module:
Start
If flag for broadcast = 0

get mpacket from SDRAM.
get_mpacket (pointer to buffer)

Else get_mpacket_broadcast (pointer to buffer)
End If
If TFIFO Element not validated
 Fill the element with current mpacket
Else Check next TFIFO element

 4

End If
While transmit_pointer TFIFO number ≠
 Wait
End while
While Transmit_ready_bit 1 ≠
 Wait
End while
Validate TFIFO element. validate_fifo(fifo_entry)
If last mpacket,
 Buffer free. buffer_free(pointer to buffer)
Else work on new mpacket get_mpacket
End If
End

The transmit module takes the pointer to the SDRAM

location of the packet as an argument along with the port
number where the packet has to be forwarded. It transfers
the packet to transmit buffers known as TFIFO s. There are
16 such TFIFO elements in the IX Bus interface unit. A
transmit_pointer polls these elements in a round robin
fashion. When it encounters a TFIFO element which is
filled with data, it checks for the availability of buffer space
in the forwarding port. When buffer space is available, it
validates this TFIFO element. The IX Bus then takes over
the control and transfers the packet out through the output
port.

We replicate the packet to be broadcasted by

manipulating the pointer to the packet in the SDRAM. We
restrict the pointer to move until the packet is forwarded to
all the output ports. A proper synchronization is maintained
between the TFIFO elements and the transmit pointer. If the
transmit pointer gets stuck at an unfilled TFIFO element
then the code would come to a halt. To avoid this, three out
of four threads of a microengine fill the TFIFO elements
while the fourth one looks after sending the packet out
through the proper port.

Psuedo Code for Control Plane Functionality
Start
Hash source MAC address
If source MAC already present at hashed location,
 Reset keep alive timer
Else Store input interface and source MAC address

 at hashing index location
 Add_MAC_Address_to_table()

Set the broadcasting flag
End

The control plane functionality consists of auto-

discovery and auto-updates. If a new node attaches to one
of the branch, then it sends a control packet to intimate its
arrival to other nodes. When the bridge receives this packet,
it updates its table and at the same time floods this packet to
all ports. This helps all the nodes across the bridge to know
that a new node is being added. All nodes send a periodic
keep_alive control message. If this message is not received
by the bridge after fix time from a certain node, the bridge

deletes that node from the table. Thus addition and deletion
of the nodes is handled.

The implemented code was further optimized for best

performance. The microengines were assigned to a specific
port of IXP. One microengine was assigned to assist these
four microengines in a round robin fashion whenever data
is available. The throughput results for this are as follows:

Port Packets Received Packet receive rate

0
1
2
3

51
25
25
25

596.21
292.57
292.57
292.57

As can be seen from above result, the spare microengine

is assisting the port 0 to have a higher data rate. We have
achieved the flexibility to assign variable data rate to any
port and the code has been optimized.

The instruction cycles required for each data packet
processing were studied. The details are as follows:

Operation Instruction

Cycles

Receiving single Packet:

Initialization of free list
Wait for data at port
IX Bus to RFIFO transfer *
Get packet info (rcv_cntl CSR)
Buffer allocation
Transfer to SDRAM from RFIFO *
Update Mpacket Count
Increment counters
Buffer free

Bridge Packet

48 bit hashing of source
checking of hashtable in SRAM *
Decision making

Transmit Packet

SDRAM to TFIFO transfer *
Polling transmit pointer
Checking buffer space at output port
Validating the TFIFO element
Increment TFIFO entry

16
17
73
20
28
51
04
38
15

30
130
05

75
30
15
05
03

Total cycles 555

The above table gives the cycles required for bridging
operation for data plane functionality. The clock of a single

 5

microengine is 200Mhz. So for 555 cycles the time required
is 2.775 μ s. The entries marked with an asterisk (*) give
higher latencies. These latencies were hidden using
multithreading. One clock cycle is required for making a
context switch. So the effective cycles required for
processing of a single packet are calculated as follows: 555-
325+5 = 235. This gives processing time of 1.175 μ s per
packet and a throughput in excess of 500Mbps. The control
plane functionality was found to incur a usage of about 30
more instruction cycles. These were required to add the
new MAC address to the table. The other functions
involved did not access external memory and hence took
less instruction cycles. Thus our implementation adds an
important functionality to the bridging code, with optimum
performance.

 The throughput with current parallelism is over

500Mbps.The speed of packet processing can be enhanced
by pipelining the operations by assigning the receive
functions on one microengine and bridging and transmit
functions on another one. One such pair of microengines
could be dedicated to each port. Since IXP1200 has only
six microengines, currently only 3 ports can be supported.
However, IXP2400 has 8 microengines with clock
frequency of 600 MHz, which would raise the throughput
over 1Gbps on all four ports.

IV. CONCLUSION
We have implemented a scalable model of Ethernet Bridge
over IXP1200. The data plane forwarding functionality was
demonstrated successfully. The auto discovery and update
functionality was implemented over IXP1200 with minimal
overhead. The implementation was tested by adding and
deleting nodes from the experimental network. The code
was optimized for high-sped performance using the
multithreading and multiprocessing capabilities of
IXP1200. A high throughput was obtained at every port.
The code could be further implemented on IXP2400.

REFERENCES
[1] Do-Yeon Kim, Sang-Min Lee, Chang-Ho Choi, Hae-Won Jung, and

Yeong-Seon Kim, “Trends of 10 Gigabit Ethernet Switch
Development in Korea”.

[2] Andrew Rindos, Steven Woollet, Larry Nicholson and Mladen Vouk,
“A performance evaluation of emerging ethernet technologies:
switched/high-speed/full-duplex ethernet and ethernet LAN
emulation over ATM”.

[3] Johnson T. Kuruvila, S.R. Muthangi, A. Paulraj, “Comparison of
Collision Avoidance techniques for efficient voice transmission on
Ethernet”

[4] “An Engineering approach to computer networks” , S. Keshav,
Addison-Wesley ,1997.

[5] “Computer Networks”, Andrew S. Tanenbaum, PHI, second edition,
1990

[6] “IXP1200 Programming” , Erik Johnson, Aaron Kunze, INTEL
PRESS.

	I. INTRODUCTION
	II. IXP 1200 NETWORK PROCESSOR
	III. ETHERNET BRIDGING IMPLEMENTATION

