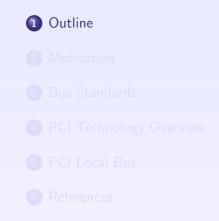
Introduction to the PCI Interface

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay


May 18, 2005

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

IIT Bombay

イロト イヨト イヨト イヨト 三日

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

3 Bus Standards

4 PCI Technology Overview

6 PCI Local Bus

6 References

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

IIT Bombay

3 Bus Standards

PCI Technology Overvie
PCI Local Bus

6 References

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

▲ロ▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへで

3 Bus Standards

6 PCI Local Bus

6 References

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

・ロ・・聞・・叫・・山・ しょうくの

IIT Bombay

3 Bus Standards

- PCI Technology Overview
- 5 PCI Local Bus

6 References

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

Introduction to the PCI Interface

3 Bus Standards

4 PCI Technology Overview

5 PCI Local Bus

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

Introduction to the PCI Interface

Outline

- 2 Motivation
- 3 Bus Standards
- 4 PCI Technology Overview
- 5 PCI Local Bus

6 References

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

≣ ৩৭ IIT Bombay

▲ロ → ▲圖 → ▲ 画 → ▲ 画 →

Outline

- Motivation
- BUS standards
- PCI Technology Overview
- PCI Local Bus
- PCI protocol
- Special Cases
- Electrical and Mechanical Specifications
- Other Topics
- References

3

ヘロト 人間 とくほと くほとう

Motivation

Outline

3 Bus Standards

4 PCI Technology Overview

5 PCI Local Bus

6 References

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

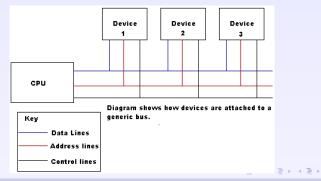
◆ロ → ◆母 → ◆ 目 → ◆ 目 → ◆ の へ ()

IIT Bombay

Motivation

Inside a Computer

- What is a BUS?
 - Components Processor, Memory etc
 - Peripherals
 - Interconnection
- Motivation
 - Data flow
 - Speed


Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

Motivation

Local Bus

- A set of parallel conductors, which allow devices attached to it to communicate with the CPU.
- The bus consists of three main parts:
 - Control lines, Address lines , Data lines

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

Introduction to the PCI Interface

-Bus Standards

Outline

3 Bus Standards

4 PCI Technology Overview

5 PCI Local Bus

6 References

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

・ロト ・母・・ヨト ・ヨー うへで

- Bus Standards

Bus Protocols

- Requirements of a BUS standard
 - Electrical, Mechanical requirements
 - Protocol requirements
- Common BUS standards
 - ISA and EISA
 - MCA (Micro Channel Bus)
 - VESA Local BUS (Video Electronic Standard Associations) : 1-2 devices can be connected.
 - PCI Local BUS

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

・ロト ・聞ト ・ヨト ・ヨト

-Bus Standards

SA (Industry Std Arch.)

- Has a clock speed limit of 8 MHz
- Has a word length of 8 or 16 bits (8 or 16 data lines)
- Requires two clock ticks to transfer data (16 bit-transfers)
- Very slow for high performance disk accesses and high performance video cards

・ロト ・部ト ・ヨト ・ヨト

-Bus Standards

EISA (Enhanced Std Arch)

- Has a clock speed of 8.33 MHz
- Maximum of a 32-bit wide word length(32 data lines)
- Can support lots of devices
- Supports older devices which have Slower or Smaller word lengths(ISA)
- Transfers data every clock tick.

ヘロト 人間 とくほと くほとう

Introduction to the PCI Interface

-Bus Standards

MCA (Micro-channel Bus)

- Has a clock speed of 10 MHz
- Has a 32 bit word length (32 data lines)
- Transfers data every clock tick.

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

・ロト ・四ト ・ヨト ・ヨト

- Bus Standards

VESA (Video Electronic Std Arch.)

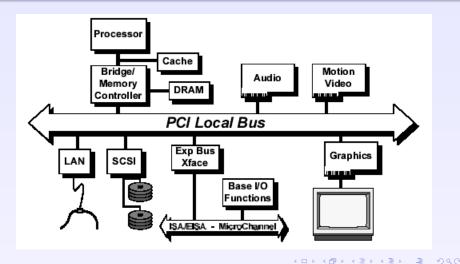
- Has a clock speed limit of 33 MHz.
- Limited to a 32-Bit wide word length (32 data lines).
- Cannot take advantage of the Pentium's 64 bit architecture.
- Limited support for Burst Transfers, thereby limiting the achievable throughput
- Restricted on the number of devices which can be connected (1 or 2 devices).

Outline

- 2 Motivation
- 3 Bus Standards
- PCI Technology Overview

5 PCI Local Bus

6 References


Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

▶ ৰ≣ ► ≣ ৩৭৫ IIT Bombay

・ロト ・雪 ・ ・ ヨ ・ ・

PCI General Block Diagram

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

ntroduction to the PCI Interface

PCI - technology Information

- PCI: Peripheral Component Interconnect
- Conventional PCI
- PCI-X
 - 1.0
 - 2.0
- PCI Express
- Other

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

PCI-SIG

- PCI Special Interest Group
- Industry organization formed in 1992
- Over 900 members
- Promotes PCI as an industry-wide standard
- Full ownership and management of the PCI specifications
- Maintains the PCI specifications and forward-compatibility of all PCI revisions

PCI Technology

Conventional PCI

- Initial PCI 1.0 proposal by Intel in 1991
- Introduced by PCI-SIG as PCI 2.0 in 1993
- Version 2.1 approved in 1995
- Recent version 2.3 approved in March 2002
- PCI-X
 - Version 1.0 approved in September 1999
 - Version 2.0 approved in July 2002
- PCI Express
 - Formerly known as 3GIO
 - Version 1.0 approved in July 2002

IIT Bombay

・ロト ・部ト ・ヨト ・ヨト

Conventional PC

- Plug-and-Play Functionality
- Standard PCI is 32 bit and operates at 33 MHz
 - Throughput 133 MB/sec
- PCI 2.1 introduced
 - Universal PCI cards supporting both 3.3V and 5V
 - 64 Bit slots and 66 MHz capability
 - 32-Bit throughput @ 66 MHz: 266 MB/sec
 - 64-Bit throughput @ 66 MHz: 532 MB/sec
- PCI 2.3 system no longer supports 5V-only adapters
 - 3.3V and Universal PCI products are still fully supported

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

・ロト ・部ト ・ヨト ・ヨト

PCI-X 1.0

- Based on existing PCI architecture
- 64-Bit slots with support for 3.3V and Universal PCI
 - No support for 5V-only boards!
- Fully backwards-compatible
 - $\bullet\,$ Conventional 33/66 MHz PCI adapters can be used in PCI-X slots
 - PCI-X adapters can be used in conventional PCI slots
- Provides two speed grades: 66 MHz and 133 MHz
 - The slowest board dictates the maximum speed on a particular bus !
 - Targeted at high-end data networking and storage network applications

PCI-X 2.0

- Based on PCI-X 1.0
 - Still fully backwards-compatible
- Introduces ECC (Error Correction Codes mechanism to improve robustness and data integrity
- Provides two additional speed grades
 - PCI-X 266: 266 MHz (2.13 GB/sec)
 - PCI-X 533: 533 MHz (4.26 GB/sec)
- Bandwidth sufficient to support new breed of cutting-edge technologies

IIT Bombay

- 10 Gigabit Ethernet / Fiber Channel
- 4X/12X infiniBand

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

PCI-X Speed Limitations

- PCI-X supports point-to-point and multi-drop loads
- Highest speed grades are supported exclusively with point-to-point loads
 - PCI-X 133
 - PCI-X 266
 - PCI-X 533
- Two PCI-X 133 loads operate at 100 MHz
- Four loads operate at a maximum of 66 MHz
- OEMs can build connector-less systems with multiple loads utilizing high speed grades

・ロト ・四ト ・ヨト ・ヨト

PCI Express

- High-speed point-to-point architecture that is essentially a serialized, packetized version of PCI
- General purpose serial I/O bus for chip-to-chip communication, USB 2.0 / IEEE 1349b interconnects, and high-end graphics
 - viable AGP replacement
- Bandwidth 4 Gigabit/second full duplex per lane
 - Up to 32 separate lanes 128 Gigabit/second
- Software-compatible with PCI device driver model
- Expected to coexist with and not displace technologies like PCI-X in the foreseeable future

イロン 不良と 不良と 一道

Outline

- 2 Motivation
- 3 Bus Standards
- 4 PCI Technology Overview
- 5 PCI Local Bus

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

▲ロ → ▲圖 → ▲ 画 → ▲ 画 →

-2

IIT Bombay

Introduction to the PCI Interface

PCI Local Bus

- Bus Width: 32 or 64 bits
- Operating frequency: 0-66 MHz
- Can support many more devices then VESA
- 64 bit extension for Pentium proc.
- Greater Variety of Expansion cards available.
- Multiplexed Address and Data
- PCI SIG (Special Interest Group)

(日)

PCI Local Bus Revisions

- 1.0 1992.
- 2.0 connector and expansion board specification
- 2.1 66MHz operation
- 2.2 protocol, electrical and mechanical specs

イロト イヨト イヨト イヨト 三星

Overview of Speeds of buses

Bus Type	Bus Width	Bus Speed	MB/sec
ISA	16 bits	8 MHz	16 MBps
EISA	32 bits	8 MHz	32 MBps
VL-bus	32 bits	25 MHz	100 MBps
VI-bus	32 bits	33 MHz	132 MBps
PCI	32 bits	33 MHz	132 MBps
PCI	64 bits	33 MHz	264 MBps
PCI	64 bits	66 MHz	512 MBps
PCI	64 bits	133 MHz	1 GBps

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

IIT Bombay

PCI Local Bus Features

• Performance -

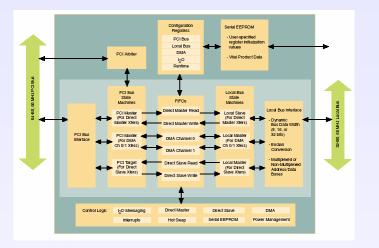
- Burst Transfer at 528 m bps peak (64 bit- 66 MHz)
- Fully concurrent with Processor-Memory subsystem
- Access time is as fast as 60ns.
- Hidden central arbitration.
- Low cost- multiplexed
- Low Pin count- 47 pin for target; 49 pin as initiator.
- Ease of Use- full auto configuration
- Flexibility- processor independent, accommodates other protocols

▲□ → ▲圖 → ▲ 画 → ▲ 画 →

IIT Bombay

 $\bullet~$ Green Machine 'CMOS drivers $\rightarrow~$ low power

PCI devices and PCI cores

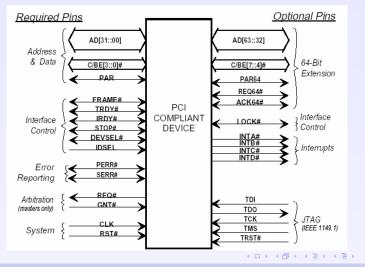

- Every device on the PCI bus is either
 - PCI compliant -has the same signals as the PCI bus
 - Connected via a PCI core- this piece of hardware does the interfacing
- Common devices
 - Audio/Video cards
 - LAN cards
 - SCSI controllers

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

ヘロト 人間 とくほと くほとう

PCI Core - 9656BA



Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

ntroduction to the PCI Interface

PCI Interface Signals

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

3

ntroduction to the PCI Interfac

PCI System Signals

- CLK : clean signal derived from the clock generator (33MHz , 66MHz)
- RST : Active Low Asynchronous reset
- PAR : Parity Signal to ensure the parity across the AD bus and C/BE.

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

・ロト ・聞ト ・ヨト ・ヨト

PCI Bus Protocol - Signal Definition

- AD- Multiplexed address and data lines
- C/BE Command and Byte Enables
- FRAME Master indicating start/end of transfer
- IRDY Master (initiator) ready
- TRDY Target ready
- DEVSEL Target device selected
- REQ Request for bus
- GNT Bus Grant

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

・ロト ・部 ・ ・ ヨ ・

PCI control signals contd.

- STOP [I/0]: Target asserts to stop the transaction in Progress.
- IDSEL [I]: Used as chip select
- LOCK [I/0] : During semaphore currently
- accessed target locked by initiator
- DEVSEL [I/0] :Asserted by target when the target asserts has decoded its address. (if by 6 clk not asserted =¿ master abort.

PCI Configuration Register

- Device ID
- Vendor ID
- Status / Command reg
- Base Address [0,1,2,3,4,5]
- Maximum Latency
- Minimum GNT
- Subsystem ID, Subsystem Vendor ID

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

・ロト ・部ト ・ヨト ・ヨト

PCI Command Types [C/BE]

- 0000 \rightarrow INTR ack
- 0010 \rightarrow I/O Read
- 0011 \rightarrow I/O Write
- 0110 \rightarrow Memory Read
- $0111 \rightarrow Memory Write$
- 1010 \rightarrow Configuration read
- $1011 \rightarrow Configuration$ write

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

3

・ロト ・雪 ・ ・ ヨ ・ ・

JTAG boundary scan

- Test Access Port
 - Test Clock
 - Test Data in
 - Test Data out
 - Test Mode select
 - Test Reset
- IEEE standard 1149.1 compliant

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

3

・ロト ・雪 ・ ・ ヨ ・ ・

Interrupts

- Asynchronous events
- 4 interrupt lines for multi-functional devices.
- Interrupt lines goes to the interrupt controller to execute the ISR

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

・ロト ・四ト ・ヨト ・ヨト

PCI Bus Protocol-Transfer mechanism

- Configuration read/write
- IO read/write
- Burst
 - Basic form of data transfer
 - Includes one address phase
 - One or more data phase

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

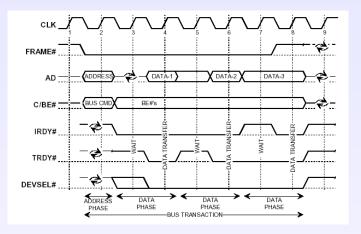
Introduction to the PCI Interface

IIT Bombay

ヘロト 人間 とくほと くほとう

Burst Transfer Mechanism

- Assert REQ
- GNT granted
- Wait for current transaction to end
- Assert FRAME
- Transfer data when both TRDY and IRDY are asserted
- De-assert FRAME during last data phase


Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

ヘロト 人間 とくほと くほとう

Introduction to the PCI Interface

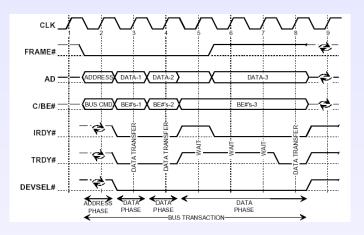
PCI Local Bus

Timing Diagram for a basic Read operation

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

イロト イヨト イヨト イヨト 三日


Introduction to the PCI Interface

Various read transaction

- Single cycle Read
- Burst data read
- Read with no wait states
- Byte Enables can be changed for every data cycle
- Data Cycle with NO byte enables.

▲□ → ▲圖 → ▲ 画 → ▲ 画 →

Basic Write Operation

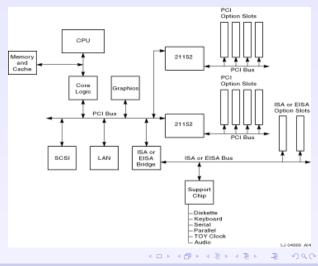
Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

イロト イヨト イヨト イヨト 三日

Introduction to the PCI Interface

Fransaction termination


• Last data phase completes when

- !FRAME and TRDY (normal master)
- !FRAME and STOP (target termination)
- !FRAME and Device Select Timer expires (Master abort)
- !DEVSEL and STOP (Target abort)

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

・ロト ・聞ト ・ヨト ・ヨト

Multiple bus

- PCI to PCI bridge
- Concept of LOCK
- All on one level

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

IIT Bombay

ntroduction to the PCI Interface

- References

Outline

- 2 Motivation
- 3 Bus Standards
- 4 PCI Technology Overview

5 PCI Local Bus

Karumanchi Narasimha Naidu Instructor: Prof. Girish P. Saraph

Introduction to the PCI Interface

・ロ・・母・・ヨ・・ヨ・ ゆくぐ

IIT Bombay

- References

References

- PCI System Architecture Tom Shanley and Don Anderson.. Mindshare
- http://www.mitsi.com/Engineering/pci.htm
- http://computer.howstuffworks.com/pci1.htm
- http://www.quatech.com/support/comm-over-pci.php

(ロ) (部) (E) (E) =