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Two-Dimensional Round-Robin Schedulers for
Packet Switches with Multiple Input Queues

Richard O. LaMaire, Member, IEEE, and Dimitrios N. Serpanos, Member, lEEE

Abstmct— We present a new scheduler, the two-dimenswnal
round-robin (2DRR) scheduler, that provides high throughput and
fair access in a packet switch that uses multiple input queues. We
consider an architecture in which each input port maintains a
separate queue for each output. In an .V x .V switch, our scheduler
determines which of the queues in the total of .Y2 input queues
are served during each time slot. We demonstrate the fairness
properties of the 2DRR scheduler and compare its performance
with that of the input and output queueing configurations showing
that our scheme achieves the same saturation throughput as
output queueing. The 2DRR scheduler can be implemented using
simple logic components thereby allowing a very high-speed
implementation.

I. INTRODucTlON

T

HERE are many applications in the computer and com-

munications tields that require the scheduling of a system
(usually a switch) that has N input resources and iv output
resources. This gives rise to a scheduling problem in which
the resource requests can be represented by an N x N matrix
RM, where RAf[R. (‘] = 1 indicates that there is at least one
request for the Rth input and Cth output resource pair where R
and C denote row and column indexes, respectively. During a
time slot, only one request can be granted in any row or column

of this request matrix since a given input or output resource can

only serve one request per time slot. The scheduler determines
which requests are satisfied during successive time slots. The
objective of the scheduler is to provide high throughput, that
is, to serve as many requests as possible, while also providing
fair service to the different requests. The two-dimensional
round-robin (2DRR) scheduler that is described in this paper
satisfies these goals. The 2DRR algorithm can be efficiently
used for any such scheduling problem with AT input and N
output resources. Since we developed the algorithm for use
in a high-speed switch, we focus on a switch application
in the paper. One of the key characteristics of the 2DRR
scheduling algorithm is that it allows an efficient hardware
implementation so that it can be used in high-speed switches.

A related scheduling problem has been discussed in the
literature. In this related problem formulation, a o-aflc matri.r
represents the aggregate demand for input/output pairs over a
period of time slots. In a situation where the individual input
queues to a switch have more than one request in them, the
traffic matrix could be viewed as a tabulation of the queue
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contents for each inputioutput pair. This type of problem
formulation is common in the area of satellite-switched time-
division-mukiple-access (SS/TDMA) systems [6]. A class of
optimal algorithms (e.g., [6], [ 1I ], and references therein) have
been developed to satisfy a given traffic matrix within X time
slots where .Y is the maximum aggregate demand, from [he

traffic matrix, on any input or output.
Since the optimal scheduling algorithms are computationally

expensive they do not lend themselves to high-speed switch
applications, particularly for large AT. Since the centralized
optimal scheduler of [6] has a computation time that varies as
()(NZ), it is difficult to apply this scheduler to large switch
sizes. To apply optimal scheduling to situations in which A’ is
large, Rose has proposed an approach that uses .V2 processors

that run algorithms whose computation times vary as ()(N)
[ I I]. Thus, in high-speed packet switches with a large number
of ports, the computation of the optimal schedule can require a
prohibitive amount of hardware. While our approach is rather
different than [ 1I], our implementation is similar to [11 ] in that
we use N* cells (i. e., a few logic gates) each of which has a run
time that varies as ()(N). In contrast to [ 1I 1,our cells are very
simple and thus allow a simple high-speed implementation that

scales well to large values of iV.

II. ADVANCEDINPUT QUEUEING ARCHITECIWRE

The switch studied in this paper uses a type of advanced
input queueing in which a separate queue is maintained at
each input port for each output as is shown in Fig. 1. These
multiple input queues can be implemented in a shared memory
for efficiency. This architecture was chosen to prevent head-
of-line blocking. which occurs when a single queue is used at
each input port (see [7]). Tbus, in this switch, the utilization
can approach unity whereas in a simple input queueing switch
(i.e., one queue per input) the utilization cannot exceed 0.586
for a uniformly distributed traffic pattern and Bernoulli arrivals
of unit length [7].

Alternative approaches have been taken to avoid head-
of-line blocking. These approaches include window-based
scheduling algorithms [5] as well as reservation schemes [ 10].
An approach using the framework of the SS~DMA systems

[6], [1 1], [4] is also provided by Chen, Liu, and Tsay [3],
where an optimal time-slot assignment is calculated in an on-
line fashion. In addition, Bonuccelli, Gopal and Wong [21 have

considered the incremental time-slot assignment problem in
which newly arrived traffic requests are scheduled optimally
in a S! NTDMA satellite system. They proved that the optimal
scheduling algorithm for this problem is NP-complete and
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Fig. 1. Advanced input queueing architecture
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Fig. 2. Example request matrix.

developed several suboptimal heuristic algorithms. Karol, Eng,
and Obara [8] have also developed a suboptimal algorithm for
scheduling in a switch that has the advanced input queueing
structure that we have described. For a uniform traffic pattern,
their method of scheduling can provide an aggregate through-
put of 92% without speed-up and can yield up to 95% with
input grouping of size four.

The advanced input queueing switch considered in this
paper operates in a slotted time-frame. That is, packets arrive
at the input queues at the time slot boundaries and then,
after scheduling to avoid switch contention, complete their
transmissions at succeeding time slot boundaries. We assume
throughout this paper that all packets require one time slot to
complete their transmission.

Contention in an advanced input queueing switch is resolved
through the use of a scheduling algorithm. This algorithm uses
a request matrix, an example of which is shown in Fig. 2. In
this request matrix, RM[R, C], a “l” denotes a queue that
has at least one waiting packet whose origin is input R and
whose destination is output C’, while a “O” indicates an empty

queue. At each time slot, the scheduler chooses, at most,
IV nonconflicting requests that will actually be satisfied and
produces an allocation matrix whose entries indicate which
inputioutput queues can transmit in the next time slot. In this
allocation matrix, the set of chosen request pairs do not use
any input or output more than once.

III. l’WE BASIC 2DRR SCHEDULING ALGORITHM

We introduce a new type of scheduler that is a two-

dimensional generalization of the one-dimensional round-robin
scheme that is used in allocation problems with a single
shared resource [9]. In this section, we describe the Basic

2DRR scheduling algorithm, while in a later section, we will
describe a second version of the 2DRR scheduler that we
call the Enhanced 2DRR scheduling algorithm. The Enhanced
2DRR algorithm provides improved fairness for certain traffic
patterns at the cost of some additional complexity.

In an IV x N switch, up to N different requests can be
simultaneously served by the switch in one time slot such
that no two requests are in the same row or column in the
request matrix. In order to select such N elements of the

request matrix, RM, we follow a method in which we examine
elements of RM that belong to generalized diagonals.

Definition 1: A generalized diagonal is a set of N ele-
ments in an N x N matrix, such that no two elements are in
the same row or column.

Note that there are N! different generalized diagonals in an
N x N matrix. In the Basic 2DRR algorithm we use only N

of these diagonals by selecting one basic diagonal and then
generating the remaining N -1 ones by shifting the basic

diagonal across the matrix (so that each matrix element is
covered by one of the N diagonals). That is, by sweeping a
generalized diagonal pattern of length N through the request
matrix, all N2 inputioutput pairs in the request matrix can be
satisfied in N time slots. We use this property to guarantee a
minimum amount of service to each input/output queue.

The Basic 2DRR scheduling algorithm operates in repeating
cycles of N time slots in which the time slots of each cycle
are indexed by the variable L, which takes on values from O
through N – 1,We assume that we are given the following

N x N matrices:
●

●

●

Request Matrix: Each entry RM[R, C] is binary with
the semantics:

f 1, if there is at least one request for

RM[R, C] =
{

a connection from input R to
output c;

(O, otherwise.

We use zero-based indexes for the inputs and outputs as
is shown in Figs. 1 and 2.
Diagonal Pattern Matrix: Each entry DM[R, C] con-
tains an integer between O and N – 1 inclusive where

DM[R, C] = (C – R) mod N. (1)

If DM[R, C] = K, then RM[R, C] is covered by
diagonal pattern K.
Pattern Sequence Matrix: Each entry PMII, J1 is an. .
integer between O and N – 1 inclusive with the semantics:
PMII, J] = K implies that when the time slot index L of
a cycle is equal to J, then the l-th diagonal pattern in the
sequence applied by the algorithm is the one numbered
K in the diagonal pattern matrix. The ordering index 1
varies from O to N – 1.

Using these matrices, the Basic 2DRR algorithm produces
the Allocation Matrix, AM, with binary entries and the
semantics:

{

1, if a connection is allocated
AM[R, C] = from input R to outputC;

O, otherwise.
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At the beginning of time slot L in a cycle, all entries of

the allocation matrix are set to zero. Then a sequence of N

diagonal patterns is applied to the request matrix in the order

specified by the pattern sequence matrix PM. That is, the
diagonal pattern with index Pll [0, L] is applied first followed
by diagonal pattern Pilf[l. L] . . . PAf[i\’ – 1.L]. As these
diagonal patterns are overlaid on the request matrix, the entry
.4 A4[R. C] is set to I at the l-th point (() ~ I < .’V– 1) in the
sequence if the following conditions are true.

1) Z?l’l[li’.c] = 1,

2) Input R and output (’ are still available for allocation

(i.e., they have not been allocated to a different connec-

tion by a previously applied diagonal in the current time
slot).

3) DLf[R. C) = K, where PM[l. L] = h’.

The above scheduling procedure is repeated for each cycle

of IV successive time slots. That is. after a cycle has been
completed with the use of column N – 1 of the pattern
sequence matrix. we begin the scheduling procedure over with

column O of the pattern sequence matrix.

As was discussed above, the Basic 2DRR algorithm pro-
vides a fairness guarantee that each of the JV2 input/output

queues will receive at least one opportunity for service during
every cycle of N time slots. After providing this basic fairness
guarantee, there is a second problem of how to fairly serve
those requests that are not in the current diagonal, but for
which resources (i.e., input or output ports) are still available

after the basic fairness guarantee has been provided. In the
Basic 2DRR algorithm, if the diagonal patterns of Fig. 3

were used in numerically increasing order in the scheduling
sequence at every time slot, then the resulting algorithm would

yield significant unfairness by always favoring the elements of
a traffic pattern that were encountered first by the sweeping
diagonal, In our studies of this problem. we have found this
situation to be particularly apparent when the traffic pattern

in the request matrix is line-shaped. To solve this problem,
we seek a pattern sequence in which no pattern index is

consistently Favored over the other indexes. With this goal in

mind, we consider the pattern sequence matrix that is shown at

the top of Fig. 3. As is shown in the figure, a different ordering
of all diagonals is applied at different time slots. Note that a

different one of the N patterns is applied jirst during each time
slot to provide the aforementioned basic fairness guarantee.
Further, note that if the diagonal patterns are applied according
to the pattern sequence matrix of Fig. 3, then over a period of
IV = -1time slots, no pattern receives sequencing preference.

To illustrate the operation of the Basic 2DRR algorithm, we

show in the lower part of Fig, 3 an example for the request

matrix of Fig. 2. In time slot O, pattern O of [he diagonal pattern
matrix is applied resulting in the granting of request pairs (0.0)

and (1, I) and hence the allocation of inputs O and 1 and outputs
O and 1. Since some inputs and outputs are still unallocated,
we apply the next diagonal. pattern 1, as indicated by column
O of the pattern sequence matrix O. In this case, the request

pair (2,3) is granted, Note that request pairs ( 1,2) and (3,0)

could not be granted at this step because input I and output O,
respectively had already been allocated. After patterns 2 and
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Fig. 3, Operation of the Bwic 2DRR scheduling algori[hm over two time

slots.

3 have been applied in time slot O, the resulting allocation
of four request pairs for this time slot is shown. A similar
procedure is used for time slot 1, however, in this case the

pattern sequence of column 1 is now used.
The algorithm for generating the pattern sequence matrix of

the Basic 2DRR algorithm is shown in Algorithm I at the top
of the next page. In this algorithm, the modu/u.~ operator can
be implemented in the following simple form since we know
that 1’+OFFSET < 2L- 1 or i.)< 2,’+1 in the following:

{

Q.
7rto(hll /1s( (J. ,s) =

if Q < S

Q – S. otlwrwis[.

We note that the maximum number of times that the body of

the innermost do-loop executes is given by the integer part of
~ plus 1 (i.e., l~j + 1). Thus, when N + 1 is prime,
the do-loop body is only executed once and can be replaced
by a single statement in these cases.

The pattern sequence matrix P.lf that results from Algo-
rithm I can be expressed in the following iterative form for
l< I< A-1:

P.fvf[l. J] =
((PM[l -1, .1] + J + 1) HNN1,1/.

{ I
if F’Af[l- l.. J]< N-(.J+l,

(JW[l -1. .J] + [“’-p;:{-’’”] (.1+ 1)) lllo~l l~f. ‘2)

if~V–(.l +l)<P,\l[l–l. .J .

where P.11[(1, J] = .1 for () < .1 s N – 1. Further. if .V + 1

is prime, in which case M = N + 1, it can be shown that

P, If[I. J] = (I+ 1.1 + .1) 1110(] (iv + 1). (3)
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do from J = O until J = iv-l{ /“ sequence through N columns”/

OFFSET = J + 1

V=–1 /* setup to make J first pattern in sequence “/

do froml=Ountill=N–1{ /“ sequence through N rows “/

do { I* compute next pattern number in sequence “/

V = ?rtotiuius(v + OFFSET, M)

} until (V < N) /* ignore the values N, . . . . M – 2 *I

~lW[l, J] = V /* store the pattern sequence “/

} end.do

} end.do

Algorithm 1. For computing the pattern sequence matrix, P.lf[O... .%’ – 1,0. ..,V – I], where the modulus M is the smallest prime number that is
greater than or equal to ,Y + 1.

IV. ANALYSIS OF THE BASIC 2DRR ALGORITHM

ln this section, we consider the fairness, throughput and

delay properties of the Basic 2DRR algorithm. The fairness

properties of the Basic 2DRR algorithm are determined by

the properties of the diagonal pattern matrix and the pattern

sequence matrix. Our basic fairness guarantee is given by the

following.

Theorem 1: For the Basic 2DRR scheduling algorithm,

over every period of N time slots, each inputioutput queue

(i.e., each element of the request matrix, l?lk?[l?, C]) receives

at least one time slot of service.

F?oofi The N diagonal patterns, O, 1,... , (fv – 1), in

the matrix of (1) cover all N2 elements of an N x N request

matrix. Further, since the O-th row of the pattern sequence

matrix contains all N diagonal pattern indexes, O through

N – 1, we conclude that over every ~ time slot period, each

request element (i.e., each input/output queue) will have an

opportunity to transmit at least one of any waiting packets.
Q.E.D. ❑

The pattern sequence matrix of Fig. 3 has some important

properties that help provide fair scheduling in the Basic 2DRR

algorithm. In preparation, we define the following properties:

1)

2)

Maximum Direct Ordering: The maximum, for all
index pairs, of the number of times that the two di-

agonal pattern indexes follow one another in the pattern
sequence matrix. If this property is greater than one,

then some indexes receive preference in sequencing over

others.
Maximum Row(Column) Frequency: The maximum,
for all indexes, of the maximum number of times that the

diagonal pattern index appears in any one row (column)
of the pattern sequence matrix. If this property is greater

than one, then (on average) some indexes are tried in

sequence earlier than others across the N time-slot cycle

of the Basic 2DRR algorithm.

As an illustration of these properties we see that, in Fig. 3,

no pattern index follows any other index more than once. For

example, the column sequence O-1 only appears once in the

matrix. Thus, the maximum direct ordering is one for this

pattern sequence matrix. Further, in any row of the pattern

sequence matrix of Fig. 3, each index appears only once, so
the maximum row frequency is also one. Using the above
definitions, we cart prove the following theorem.

Theorem 2: If N + 1 is prime, then the maximum direct
ordering is one and the maximum row frequency is one for
the pattern sequence matrix that is defined by Algorithm 1.

Proof If IV + 1 is prime, then M is equal to N + 1

by the definition of lvl in Algorithm 1. Further, if we assume
that V < N in each step of Algorithm 1, then by expanding

the iteration with the initial condition of PiVf[O, J] = J we
find that

PA4[1,.J] = (1+ lJ+ J) mod (N+ 1),
o< I<lV-l, o< J< N-1.

(4)

We verify that V < N in each step when N + 1 is prime by
noting that if V was equal to N in a step then

I+ IJ+J=N (5)

and

(l+l)(J+l)=N+l. (6)

Since N+lisprime andl<N and J< N,(6) isa
contradiction and therefore V < N in each step of Algorithm
1. Having verified (4) we use it to show that both the maximum
direct ordering and the maximum row frequency are one when
N + 1 is prime,

To show that the maximum row frequency is one, we must

show that

F’lkf[l, J] # PM[l,K], for O s K < N – 1 where K # J.
(7)

Using (4), (7) is equivalent to

(I+lJ+J)-(I+ IK+K)#Q(N+l), (8)

where Q is an integer. This in turn is equivalent to

(I+l)(J-K)+Q(N+l). (9)

Since l<l+l<N, –(N–l)s J–K ~N–l, K#J
and N + 1 is prime, we conclude that there is no integer Q
that satisfies (9). Thus, we have proven that if N + 1 is prime,
then the maximum row frequency is one.
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Next, we prove that the primeness of N + 1 also implies
that the maximum direct ordering is one. We assume that two
different elements, PJ[ [11. .ll ] and F’M[12. .12], both take on
the same value, S’. From Algorithm 1 and the earlier part of

this proof. in which we proved that 1’< N, we conclude that

/’1l[l.. )] = (PJIII – 1..1] + .1+ 1) 1110(1 (iV + 1),

l<l<A-l, ()< J< A-1.
(lo)

Thus, the elements that follow Pilf[ll, .ll] and F’JW[12. ,12]
are given by

(Ls+.l, +l)lllo(l(lv+ l). OS S< N-1. () <J, <.V–2.
(11)

and

(IS+.12+ 1)111()(l(.V+ l). ()<s<,V–l. ()<,12<A’–2,

(12)
respectively. For these two elements to be equal, it must be
true that

,11– .12= Q (N + 1), where Q is an integer. (13)

Since –(A’ – 2) < (Jl – ,12) < N – 2 and .J1 # ,12 (see
Corollary I), we conclude that ( 13) is not true. Thus, we have
proven that it’ .V + I is prime, then the elements that follow a

value ,S ha\’e distinct values in each of the N — 1 columns in

which S is not the last column element. That is, if N + 1 is
prime, then the maximum direct ordering is one. Q.E.D. •l

Remark 1: From (4), it is clear that if A’ + 1 is prime,
then the pattern sequence matrix yielded by Algorithm 1 is
symmetric, [n this case, only ~ elements of the N x N
pattern sequence matrix need to be computed.

C’orollor,v I: The maximum column frequency is one for
the pattern sequence matrix that is defined by Algorithm 1.
That is. each of the indexes (), N – 1 appears once and only

once in each column.
Proof When V + I is prime, Theorem 2 tells us that

the maximum row frequency is one which implies that the N
entries in each row of the pattern sequence matrix are distinct.
Since the pattern sequence matrix is symmetric when A’ + 1
is prime. wc conclude that the N entries in each column of
the pattern sequence matrix are distinct so that the maximum
column frequency is one.

Now, we consider the case when N + 1 is not prime. In this
case, we can show that the pattern sequence matrix produced
by Algorithm 1 corresponds to taking a larger pattern sequence
matrix for the case of .~ = ltf – 1 and omitting: 1) columns
with indexes N through ~j – 1 inclusive, and 2) the entries in
the remaining columns that have values of N through ~ – 1
inclusive. The column entries are compacted upward to remove
any gaps that are created by omission 2. Thus. the fact that
the ,~ entries in each column of the pattern sequence matrix
for the ~ + 1 case are distinct implies that the N entries in

each column of the pattern sequence matrix for the N case are
also distinct so that the maximum column frequency is one.
Q,E.D, ❑

While Theorem 2 shows us that no diagonal pattern index
receives preferred treatment when N + 1 is prime, we cannot
make this same claim when V + 1 is not prime. However,
when N + I is not prime, we attempt to come close to the

TABLE I
PROPERTIESOF THE PATTERN SEQUENCE MATRIX FOR Dlmm?mm SWITCHS m.s

.Y MUX. Direct MUX, Row .Y Mar. Dirccr M(M. Row
Ordering Frequent> Ordering Frequenck

1 26 2 3

2 1 1 27 2 2

3 2 2 28 1 1

4 1 1 29 2 2

5 2 2 30 1 1
6 I 1 31 3 5
7 3 4 32 3 4
8 2 2 33 3 4
9 2 2 34 2 3
10 1 1 35 2 ~

11 2 2 36 I 1
12 1 I 37 3 4
13 3 4 38 2 3

14 2 3 39 2 2
15 2 2 40 I 1
16 1 I 41 2 2

17 2 2 42 I 1
18 1 I 43 3 4
19 3 4 44 2 3
20 2 3 45 2 2
21 2 2 46 1 I
22 1 1 47 3 4
23 3 4 48 3 4
24 3 4 49 3 4
25 3 4 50 2 3

desired properties of Theorem 2 by using a value of Af that
is the smallest prime that is greater than N + 1. [n Table I,
we investigate the properties of the pattern sequence matrix
for N < 50. Note, in Table 1, that when N + 1 is prime,

the maximum direct ordering and maximum row frequency
numbers are both one, as expected. The extent to which our
pattern sequence matrix comes close to achieving the ideal
properties specified in Theorem 2 depends on how close N + 1
is to Al. the smallest prime number that is greater than or
equal to N + 1. That is, in Table 1, the value of both the
maximum direct ordering and the maximum row frequency
are monotonically decreasing as the difference between N + 1
and M decreases.

Returning to our earlier example, in Fig. 3, we see that

N + 1 = 5 is prime, so for this case the maximum direct
ordering and the maximum row frequency are both one.

However, when N + 1 is not prime as is the case in Fig. 4
where N + 1 = 4, both the maximum direct ordering and
the maximum row frequency are equal to two. This results
in a slight unfairness, in that certain diagonal pattern indexes
receive sequencing preference relative to other indexes. For
example, in Fig. 4, the index O receives some preference at
the expense of index 2 because diagonal pattern O is applied,
on average, earlier in sequence than diagonal pattern 2.

We now consider the saturation throughput of the Basic

2DRR scheduling algorithm. Consider a situation in which

all elements of the N x N request matrix continually have
a backlog of requests in them. In this case, the Basic 2DRR
algorithm will serve all N elements in each of the N diagonal
patterns over the repeating N time slot cycle of the Basic
2DRR algorithm. Thus, the advanced input queueing structure
and the Basic 2DRR scheduling algorithm avoid head-of-



476 lEEEYACMTRANSACTIONSON NETWORKING,VOL. 2. NO. 5, tXTOBER 1994

Time Slot Index ~

Pattern
Sequence

Fig. 4. An example pattern sequence matrix when .Y + 1 is not prime.

line blocking and achieve a saturation throughput of one
for all input and output links in this uniform traffic pattern
case.

To examine the delay characteristics of the Basic 2DRR
algorithm, we use the well-known case of a uniform traffic

pattern with Bernoulli arrivals. Specifically, we assume that
unit-length packets arrive on the N input links according to
independent and identically distributed Bernoulli processes.
That is, the probability that a packet will arrive on a given
input link is p. A packet has an equal probability of being
destined for each of the .V outputs. For comparison, we
consider the cases of pure input queueing and output queueing
(see [7]). For the input queueing case, one can use random
scheduling (see [7]) when a conflict arises between multiple
input queues that have a head-of-line packet with the same

output destination. Alternatively, a one-dimensional round-
robin ( 1DRR) scheduling algorithm can be used. In our
implementation of this well-known scheduling policy, we used
an N-element storage vector to keep track of the input queue
that was last served by each of the IV output links. At a time
slot, for a given output, we scan the input queues (modulo N)
looking for a head-of-line packet that seeks the given output.
We begin this scanning with the input queue that follows the
one served during the last time slot in which a service occurred
for this output. In this way, no input queue is preferred over
others in the resolution of output conflicts.

In Fig. 5, we show the mean waiting time (not includ-
ing the packet transmission time of one slot) for an 8 x 8
switch in which the following queue structures and scheduling
types were used: 1) input queueing with random and lDRR

scheduling, 2) advanced input queueing with Basic 2DRR
scheduling, and 3) output queueing. These simulation results
were produced by using very long runs (many batches) that

yielded very small confidence intervals. As can be seen from
Fig. 5, the random and lDRR scheduling yield nearly identical
mean waiting times for the input queueing case. For the input
queueing case of IV = 8 with random scheduling, a saturation
throughput of 0.618 has been observed [7]. (Note that the
saturation throughput as h’ - m is 0.586. ) For both the
advanced input queueing case with Basic 2DRR scheduling

and the output queueing case, the saturation throughput is one.
However, the output queueing case has a lower mean waiting
time, but this approach requires the internal switching fabric
to have a speed-up of N as compared with that of the input
and advanced input queueing approaches.

5, , , , II

I
— RANDOM
. IDRR

@
04

------- 2DRR
—-– OUTPUT OUEUEING I

d
w

=3

w
z
K

,;

o , , I
o 0.2 0.4 0.6 0,8 1.0

INPUT LINK UTILIZATION p

Fig. 5. Mean waiting time for a uniform traffic case and an 8 x 8 switch.
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It is also interesting to consider the case of having traffic
hot-spots. Consider the cross-shaped traffic pattern of Fig. 6.
The arrivals on the input links are independent and identically

distributed Bernoulli processes. Packets arrive, with equal
probability, on input links O through 7, but all packets arriving

on input links O through 2 and 4 through 7 are destined
for output link 4, whereas each packet arriving on input

link 3 is destined with equal probability for one of the
8 outputs. We have found this pattern to be particularly

stressing of the fairness properties of schedulers. In a single
switch network, this pattern is not likely to arise, since the
center input/output pair of the cross would correspond to

a connected entity sending packets to itself. However, for
multiple switch networks, input and output ports would not
necessarily correspond to the same entity and this traffic

pattern could arise. This is particularly true of client/server
applications, where multiple requests are targeted to the server,
which in turn transmits to many clients.

We compare the mean waiting time results for input queue-
ing with 1DRR scheduling and advanced input queueing with
Basic 2DRR scheduling. For the (0,4) input/output request

pair, the lDRR and 2DRR scheduling algorithms yield similar

mean waiting times. The 2DRR result for the (0,4) pair is
slightly larger than the 1DRR result for this pair since in the
2DRR case, the central (3,4) element receives fairer treatment

(i.e., a greater portion of Output link 4’s utilization). The
most dramatic effect is the increased throughput and greatly
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decreased delay that is provided to the (3,0) pair with 2DRR as
compared with IDRR and input queueing. This performance
improvement is the result of the advanced input queueing and
Basic 2DRR scheduling overcoming the head-of-line blocking
effect that occurs in the input queueing case for packets that
arrive on input link 3. Note that input/output pair (3,4) obtains
service for a fraction of time that is no more than 1/N due
to contention for output 4. Thus, for the input queueing case,

packets from input 3 to output 4 frequently block other packets
in the input 3 queue.

V. THE EPJHANCED 2DRR SCHEDULING ALGORITHM

The Basic 2DRR scheduling algorithm uses a total of N
diagonal patterns in an attempt to provide fair scheduling.
There are actually .’V! different diagonal patterns that can

be considered for a N’ x N request matrix. We will show

that the fairness properties of the Basic 2DRR scheduling
algorithm can be improved by using a larger number of
diagonal patterns than .V. In this section, we introduce the
Enhanced 2DRR scheduling algorithm which uses a total of
.Vz different diagonal patterns.

The Enhanced 2DRR scheduling algorithm uses .V different
diagonal pattern matrices (each of which is comprised of JV
diagonal patterns), but still uses the same pattern sequence
matrix that is used in the Basic 2DRR scheduling algorithm.
As was shown in Fig. 3, the patterns in the diagonal pattern
matrix of the Basic 2DRR scheduling algorithm are generated
by shifting the main diagonal. Thus, the diagonal pattern that is
composed of the elements (0,0), (1,1), . . (,V– 1. N- 1), is the
getzerzitor of the diagonal pattern matrix of the Basic 2DRR
scheduling algorithm. In the Enhanced 2DRR algorithm, N
different generators are used to generate the N different
diagonal pattern matrices. These generating diagonal patterns
are derived from the pattern sequence matrix by applying a
new interpretation to the meaning of the matrix, We interpret
the row index of the pattern sequence matrix as corresponding
to the input link index as is done in the request matrix. Further,
we interpret the entries of the pattern sequence matrix as
column indexes of a diagonal pattern, so that each column
of the pattern sequence matrix represents a different diagonal.
To illustrate the operation of the Enhanced 2DRR scheduling
algorithm, we show in Fig. 8, the N = 4 diagonal pattern
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are not covered while the (1,0) and (2,2) request pairs are double covered by
the three diagonal patterns.

matrices that are used during .V phases of N time slots

each. The generators of these diagonal pattern matrices are

the elements that are marked with bold boundaries. Note how

diagonal patterns 1, 2, and 3 are obtained by shifting the

generating diagonal pattern to the right. The same pattern

sequence matrix is used for each diagonal pattern matrix.

When N+ 1 is not prime, the N generators can still be obtained
from the pattern sequence matrix, but now the generators do

not have the property that they provide a complete covering

of the N* elements of the request matrix (see Fig. 9). This is
not a problem for the Enhanced 2DRR algorithm since it does

N shifts in each stage to cover all of the N2 request elements.
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The Enhanced 2DRR scheduling algorithm operates in
repeating cycles of IVz time slots in which the time slots of
each cycle are indexed by the variable L which takes on values
from O through N2 – 1. The Enhanced 2DRR algorithm can be
viewed as applying the Basic 2DRR algorithm in N different
phases, where a different diagonal pattern matrix is used during

each phase of N time slots. The main steps of the Enhanced
2DRR scheduling algorithm are as follows.

1)

2)

3)

4)

Define the N diagonal pattern matrices, labeled matrix
O through N – 1, and the pattern sequence matrix that
will be used.
In the first scheduling phase, which lasts from time slot O
to IV – 1, use diagonal pattern matrix O and the pattern
sequence matrix as was described in the Basic 2DRR
algorithm.

In the second phase, which lasts from time slot N to
2N – 1, use diagonal pattern matrix 1 and the same

pattern sequence matrix.
Continue the procedure of steps 2) and 3) for the
remaining phases and dlagonrd pattern matrices until
phase N – 1 is completed at time slot N* – 1. At
this time, the entire process that begins with step 2) is
repeated.

We can formalize this procedure by defining a set of N
different diagonal pattern matrices, DA4P[R, C], one for each
phase P as follows:

DMP[R, C] = (C – PM[R, P]) mod N.

NL
where P = — ,0~L<N2–1.

N–
(14)

VI. ANALYSIS OF THE ENHANCED 2DRR ALGORfTHM

In this section, we consider the fairness, throughput and
delay properties of the Enhanced 2DRR scheduling algorithm
and compare it with the properties of the Basic 2DRR sched-
uling algorithm. Since different diagonal pattern matrices are
used for consecutive sets of time slots, the Enhanced 2DRR
algorithm has a looser fairness guarantee than the Basic 2DRR
algorithm.

Theorem 3: For the Enhanced 2DRR scheduling algorithm:
a) over every period of 2N – 1 time slots, each inputloutput
queue (i.e., each element of the request matrix, RM[R, C])
receives at least one time slot of service; b) over every period
of N2 time slots, each inputioutput queue receives at least N
time slots of service for an average of one time slot of service
for every N time slots.

Proof For each diagonal pattern matrix D&fP (O s P <
N – 1), the N diagonal patterns cover all N2 elements of an
N x N request matrix. Since two consecutive phases of the
Enhanced 2DRR algorithm use two different diagonal pattern

matrices, we must consider the relationship of the these two
matrices. In the worst case situation, one diagonal pattern
matrix will cover a given input/output queue in diagonal

pattern O and the diagonal pattern matrix of the next phase
will cover the given input/output queue in diagonal pattern
N – 1. In this case, the worst case time between services will
be 2 N – 1 which implies a). Now, to prove b), we note
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7

outputs

01234567

Fig. 10 Request pattern for line-shaped traffic case.

that since the O-th row of the pattern sequence matrix contains
all N diagonal pattern indexes, O through N – 1, we conclude
that over every iV2 time slot period, each request element (i.e.,

each inputloutput queue) will have an opportunity to transmit
at least N of any waiting packets. Q.E.D. ❑

The saturation throughput of the Enhanced 2DRR sched-
uling algorithm for a uniform traffic pattern is one since it
is really just N phases of Basic 2DRR type of scheduling. In
the next example, our motivation for developing the Enhanced
2DRR scheduling algorithm becomes clear. We consider the
vertical line-shaped traffic pattern of Fig. 10. To compute the

saturation throughputs for this pattern, we assume that requests
are always present for the three inputloutput pairs that are
indicated with a one in Fig. 10. In this case, we obtain the
throughput results of Fig. 11 for the Basic and Enhanced
2DRR algorithms. We have considered many types of traffic
patterns in our investigation of the properties of these two
scheduling algorithms. For the example of Fig. 10, the Basic
2DRR algorithm provides somewhat unequal throughputs to
the three input/output pairs [see Fig. 11(a)]. If the line-shaped
pattern included all IV = 8 of the inputioutput pairs in
the column for output 2 (see Fig. 10), then each one would
have a saturation throughput of ~ = 0.125 since each pair
is guaranteed to receive one time slot of service during
every period of N time slots. In the reduced length line of
Fig. 10, the (4,2) pair receives its basic throughput guarantee
of 0.125, but the other two elements receive greater amounts
of throughput. For the five elements of column 2 that are zero,

the pattern sequence matrix does not serve a request using the
diagonal pattern index that is in the Oth row of the pattern
sequence matrix. In these five cases, the pattern sequence
matrix is used to sequence through the diagonal patterns until a
pattern hits one of the three elements of the line-shaped traffic
pattern. As can be seen, the (5,2) pair is the most common
hit that occurs during this procedure, In the Enhanced 2DRR
algorithm, we use a larger number of diagonals, N* as opposed
to N for the Basic 2DRR algorithm, which tend to hit the three

elements of the line-shaped pattern in a more even manner
over the N2 time-slot cycle of the Enhanced 2DRR algorithm.
Thus, the throughputs that are shown in Fig. 11(b) are closer
to being equal than in the Basic 2DRR case.

We now consider the delay performance of the Enhanced
2DRR algorithm. For the uniform traffic pattern case that
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was discussed in Section IV, the Enhanced 2DRR algorithm
yields results that are identical to those of the Basic 2DRR

algorithm (see Fig. 5). Further, for cases in which the traffic

patterns occupy an entire row andlor column, such as the cross-
shaped traffic pattern of Fig, 6, the Basic and Enhanced 2DRR
algorithms yield similar delay performance. However, in cases
in which the traffic patterns do not fill entire lines in at least
one dimension, the delay results of the two algorithms can
differ significantly, as is suggested by the throughput results
of Fig. 11.

Consider again the line-shaped traffic pattern of Fig. 10. To
examine delay properties, we assume that the arrivals on the in-
put links are independent and identically distributed Bernoulli
processes. Packets arrive, with equal probability, on input links
3-5 and are all destined for output link 2. In Figs, 12 and
13, we show the mean waiting time results for the Basic and
Enhanced 2DRR algorithms, respectively. As expected from
the throughput results for the Basic 2DRR algorithm, we see
that the mean waiting times for the three input/output pairs

differ greatly from their composite mean. In contrast, in the
Enhanced 2DRR case, all three input/output pairs have similar
mean waiting times. That is, the Enhanced 2DRR algorithm
is fairer for these types of traffic patterns. We note that the
composite mean waiting time is the same for both algorithms.

VII. IMPLEMENTATION

One of the key characteristics of the Basic and Enhanced
2DRR algorithms is that they can be easily implemented
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in hardware and thus incorporated in high-speed switches.
In the following section we describe the architecture and
design of a high-speed scheduler that implements the Basic
2DRR algorithm as well as the architecture of a scheduler
for the Enhanced 2DRR algorithm. The characteristics of a
prototype implementation of the Basic 2DRR scheduler are

also discussed.

A. Basic 2DRR Scheduler

Fig. 14 shows the architecture of the Basic 2DRR design for
an N x N switch as well as the clocks required for the system’s
operation in the case of a 4 x 4 switch, The time-slot clock
(TSC) is the switch clock, i.e. a packet is transferred from an
input to an output during one period of the TSC clock. The
interval clock (lC) has a frequency that is N (in this case 4)

times that of the TSC clock, and regulates the application of
the diagonals within a time slot. The use of the clocks in the

calculation of the granted transfers can be simply described as
follows: during each time slot (one TSC period), a column of
the pattern sequence matrix is used; within a TSC cycle, the
N lC cycles are used to apply the N diagonals, one during
each lC cycle.

The scheduler uses as input the transmission requests,

i.e., the data of the request matrix (RM) as Fig. 14 shows.
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Fig. 14 2DRR design.

R&l[R, C] is an input signal that is asserted when there is a
request for at least one packet transfer from input R to output
C. If the scheduler grants a transfer from input R to output
C, then the output signal G[R, C] is asserted. The scheduler
is composed of two main modules as Fig. 14 demonstrates:
the pattern sequence matrix Jinite state machine (PSM-FSM)
and the cell matrix (CM). The PSM-FSM is responsible for
generating the control signals that apply the diagonals. It has
as inputs the TSC and the IC clocks. During each IC cycle,
the PSM-FSM asserts one signal of the IV diagonal signals
Do, D1 . . . . . D,v - ~. The signals are asserted within each
TSC cycle in the order directed by the pattern sequence
matrix. The PSM-FSM can be easily implemented, since it
simply executes Algorithm 1.

The cell matrix is an N x N matrix of functionally equiva-
lent cells. Each cell CM[R. C] inputs the request RA4[R, C]
and is responsible for asserting its grant signal, G[R, C], when
the corresponding request is granted. The cells in CA4 operate
in parallel, so that the delay of each calculated grant signal is
minimized.

Each of the diagonal signals is provided as input to the cells
of the cell matrix that are in the given diagonal pattern, e.g., DO
is input at cells C&f[(), O], CA4[1, 1], . . .. CA4[ZV – 1, IV – 1].
Note that there is exactly one diagonal signal that is input

to each cell. This occurs because each entry of the request
matrix is covered by exactly one diagonal as is described in
Algorithm 1.

The grant signals, G, are calculated (asserted) by the cells of
the cell matrix, which employ the design shown in Fig. 15(a).
The cell asserts its grant signal when the request signal,
RM[R, C], the diagonal signal, D~ (O s K S N – 1), and the
signals AVl[R] and AVOIC] are asserted, or if the aforemen-
tioned grant signal was asserted in the previous lC cycle and
the Reset signal has not occurred. The clock of the D-flip-flop

in the cell is IC. This flip-flop is reset at the beginning of each
TSC cycle. The signals AVIIR] and AVOIC] represent the
availability of input R and output C, respectively, for granting
a request, i.e., when AVIIR] is asserted, it means that the input
R has not been allocated earlier during the TSC cycle and
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G[R,N-2]
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m G[R,C]
DQ
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Reset

(lntefv$Clock)
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Fig. 15, 2DRR cell design, (a) cell design, (b) AVI design.

is thus available for allocation during the current IC cycle.
Similarly, the assertion of the AVOIC] signal indicates that
output C has not been allocated earlier. Fig. 15(b) shows the
calculation of the AVIIR] signal. AVOIC] is calculated in
a similar way. In the above design we have assumed that a
requesting input will negate its request signal (i.e., set it to
zero) when it is served if no further queued requests exist.

A prototype implementation of a 4 x 4 Basic 2DRR sched-
uler that uses the above design has been built. This prototype
uses two ALTERA [1] cell arrays, one for the PSM-FSM and
one for the 4 x 4 cell matrix. The prototype operates with
an IC clock period of 40 ns and thus demonstrates that the
Basic 2DRR algorithm is suitable for implementation in high-
speed switches. A scaled-up version of this simple prototype
could readily support an ATM switch operating at 155 Mbps
(SONET OC-3 rate) link speeds for switch sizes that are
64 x 64. For a 1 Gb/s link speed, the prototype could directly
be used for switch sizes of up to 8 x 8. Further, through the
use of a custom or semicustom implementation the IC clock
could be significantly sped up and thus the scheduler could
support switches of size 16 x 16 or larger for the 1 Gb/s link

speed since the cell computation time varies with O(lV).

B. Enhanced 2DRR Scheduler

The architecture of the Enhanced 2DRR scheduler follows
a similar approach to that described above, i.e., the grant
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signals are calculated in parallel. The information that is
needed at each cell is the same as was needed for the Basic
~DRR scheduler and the calculation of the C,~f cells is the

same. The fundamental difference in the case of the Enhanced

2DRR scheduler is that the cells belong to different diagonals
in different phases. So. although in the Enhanced 2DRR
scheduler architecture we can use the same cell as was used
in the Basic 2DRR scheduler for the calculation of G[R, C].
there is a difference in the selection process of a cell, i.e., the
calculation of DK. In the Basic 2DRR scheduler, a cell with
coordinates R and C’ is selected by the PSM-FSM when the
diagonal number that is selected for application in an interval
matches the entry Dfif [R. ~] in the diagonal matrix. For the

Basic 2DRR scheduler the diagonal Dill [R. C’] is static (i.e.,

constant over time) and is given by ( I ). This is not the case
for the Enhanced 2DRR scheduler.

To design the cell selection process for the Enhanced 2DRR
scheduler, we need to either move the selection decision to
each cell, or to change P.lf, and consequently the operation of
PSM-FSh4 every N cycles. The second alternative is complex
and costly as the size of the scheduler increases. Since each
diagonal coy ers different cells during each phase, a centralized
scheduler would require .V2 distinct output wires to control

all N2 cells of the cell matrix as well as a memory with N3
entries. For small size switches, this approach can provide a
solution. but when .V becomes large, the approach can be quite
costly. For such large designs we propose a design that uses
the first alternative, ie., to move the selection decision to the
cells. To design this alternative, we need to have every cell
with coordinates R and [“’ test in every interval whether the

following equality holds:

D(I. J) = (C – P.! f[l?. P]) mod ?V. (15)

where D( 1, J) is the diagonal number that is broadcasted to
all of the cells in the cell matrix during the lth interval of
the T’th TSd system cycle, and where J = T mod iV, and
P = 1(1’ m{Ml N2)/N] is the phase number. Equation ( 15) is
derived from ( 14) where the index T indicates that the system
cycle is the 7’-th system cycle since the switch was initialized.
With the approach of ( 15), each cell needs to read matrix

1’:11 every V cycles to obtain the entry P.tf[R. F’]. Since this
information is different for every cell, the memory that stores
PAf will be a hor-spo[ and thus the involved delays will be
high,

To avoid this problem, we distribute the control on a per
row basis. as is shown in Fig. 16. There is a controller in each
row, the ro}{’controller, In each interval, the row controller
broadcasts the index C of the selected cell to all of the cells in
its row. in turn. cells check, in parallel, whether the broadcast
index C matches their own column index. The cell of the row

that has a match is selected to calculate its grant signal. G,
as was done for the Basic 2DRR scheduler (with the same
circuitry as was shown in Fig. 15 where the D~ signal is the
coincidence signal). Each row controller calculates the index
(‘ that it broadcasts using the following equation:

(’ = (PM[l. J] + PM[R. P]) 1110(1lv. (16)

“oainzn

tire--b
l--lc”~:’’erlLE-_..lL-JCell

[N-1]

LlaT5”-
Fig. 16. Enhanced 2DRR design

where 1, .1, R, and P are the same as was defined for equation
(15).

The Enhanced 2DRR scheduler architecture is shown in
Figs. 16 and 17 and operates as follows. During initialization,
the initializer calculates the matrix F’.lf and stores it in
the row controllers on a row basis, i.e., rou ro71trollrr[R]
stores row[l?] of Plvf. Since roul cont~~JltTIR] has rfJu[R]
of F’A4 locally stored, it can obtain P,tf[R. P] by directly
accessing its local memory. I’. M[1.J] is the datum needed
by all of the row’ controllers. and is stored in the local store
of row controller-[1]. For this reason, the operation of the

controllers is divided into two phases: broadcast and calcu-

lation. During the broadcast phase, only ro?l colt trollw[l]
operates and broadcasts to all of the remaining controllers
the entry F’Af[l. J] that is stored in its local memory. This
is performed over the broadca.sfing bus (see Fig. 17). During
the calculation phase, each controller accesses its own local
memory to obtain the entry P,ll [R. P], which it then adds
to the latched entry ~lf[l. J] that was broadcasted during the
preceding broadcast phase. In this fashion, each row controller
calculates the index C that is active during this interval, as
shown in Fig. 17, and broadcasts it to all of the cells in its
row. The cell whose column index matches C is activated and
calculates the comesponding grant signal, G, in exactly the
same way as was described for the Basic 2DRR scheduler.

VIII, SUMMARY AND CONCLUSIONS

We have described two new types of computationally ef-
ficient scheduling algorithms for advanced input queueing

switching architectures. These two types of 2DRR schedulers.
the Basic and Enhanced 2DRR algorithms, have the same
saturation throughput (of one) that is achieved with an output
queueing architecture. However, compared with a simple input
queueing architecture, the 2DRR schedulers require only a
small increase in queue complexity (i.e.. advanced input
queueing) and the addition of our simple scheduler hard-
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ware to achieve this efficiency, whereas the output

architecture requires an IV times internal speed-up.

queueing

We analyzed the fairness guarantees that each of the 2DRR

scheduling algorithms provides and demonstrated the fairness
advantages of the Enhanced algorithm for certain traffic pat-
terns. While the Enhanced 2DRR algorithm is fairer than
the Basic 2DRR algorithm, it does require some additional
implementation complexity.

Both of the 2DRR schedulers can be implemented using
simple logic components thereby allowing a very high-speed
switch implementation. We have designed efficient hardware
implementations for both the Basic and Enhanced 2DRR

scheduler and have constructed a prototype of the Basic 2DRR
scheduler.
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