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Performance Preserving Controller Reduction in the µ Setting

D. Chakraborty and K.E. Holé

Abstract— This paper is concerned with the order reduc-
tion of controllers produced by µ-synthesis controller design
paradigm. A new proof has been proposed for the additive
perturbation reduction technique with sufficient conditions
to guarantee the closed loop structured singular value to re-
main less than unity. Reduction of unstable controllers is
achieved through a new coprime factor reduction technique
with sufficient conditions to guarantee preservation of closed
loop performance. The coprime factor perturbations to the
controller have been shown to have a block diagonal struc-
ture. The proposed algorithms have been tested on a widely
studied benchmark HIMAT aircraft and have been found to
work satisfactorily producing more than 50% reduction in
the controller order without optimization.

Keywords— Controller Reduction, Structured Singular
Value, Coprime factors

I. Introduction

THE most widely used controller design techniques like
H∞ loop shaping and µ-synthesis typically produce

very high order controllers. But practical controllers must
be simple, linear and of low order. High complexity con-
trollers are not only difficult to understand but they may
turn out impossible to implement in hardware and soft-
ware. Also from the point of integrity and reliability, sim-
ple controllers are preferable.

The problem of reducing complexity via reducing the
state dimension of the controller has been the subject of
extensive research for the last forty years. See [1] and [2]
for a complete list of references. In the controller reduc-
tion literature open loop methods such as weighted and
unweighted balanced truncation [3], [4], [5] and optimal
Hankel norm approximation [6] have been widely stud-
ied. However these open loop methods do not guarantee
closed loop stability or performance with the reduced order
controller. These drawbacks were overcome among others
by Enns[4] and Anderson and Liu[1] who derived weights
for controller approximations which guaranteed closed loop
stability. Bounds on H∞-performance degradation were
derived by Lenz et al[7], which were improved by Goddard
and Glover[8] and Wang et al[9] to achieve performance
preserving controller reduction.

All these methods in general do not consider any struc-
ture in the uncertainty. However consideration of structure
in the uncertainty makes the reduction schemes less con-
servative. Thus a greater reduction in the controller order
is possible. In this paper we treat the controller reduction
problem in a µ-synthesis framework and derive a set of suf-
ficient conditions for preserving the closed loop µ with the
reduced order controller less than unity.

One of the main drawbacks of the above methods is that
it assumes the controller to be approximated is stable. Ro-
bust controller design techniques like H∞ loop shaping or
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µ-synthesis do not guarantee stability of the controllers. A
solution is to consider a fractional description, the basis of
which is multiplicative decomposition rather than additive
decomposition. Fraction approaches to controller reduc-
tion have received much attention in the literature. These
are generally termed as coprime factor approaches. Various
sufficient conditions for the stability of the closed loop sys-
tem when the controller is subjected to coprime factor per-
turbation has been derived in [10], [11]. H∞ performance
preserving techniques with multiplicative uncertainty have
been studied in Goddard and Glover [8]. In this paper we
propose a coprime factor based controller reduction scheme
that keeps the closed loop µ value with the reduced order
controller to remain less than one, thus guaranteeing ro-
bust stability and performance of the closed loop system.
We also show that the perturbations have a block diagonal
structure facilitating a greater reduction in the controller
order than possible with the additive schemes. Section 2
reviews relevant µ-analysis results while the main contri-
butions of this paper are presented in Section 3.

II. Preliminaries

The notation used in this paper is very standard and fol-
lows [12]. For any square matrix M we denote the complex
conjugate transpose by M∗. The largest singular value and
the structured singular value(SSV) with respect to the un-
certainty structure ∆ are denoted by σ̄(M) and µ(M,∆).
R denotes the set of real numbers while Re = R ∪∞ and
R+ denotes the set of positive real numbers. The defi-
nition of structured singular value(µ) is dependent on the
underlying uncertainty structure. We define a few common
uncertainty structures. Let S and F be nonnegative inte-
gers, not all zero, and let n, s1, ..., sS , f1, ..., fF be positive
integers, such that n =

∑

si+
∑

fi. Consider the subspace
of n × n complex matrices

C∆S,F = {diag(δ1Is1
, ...., δSIsS

, ∆1, ...., ∆F )

: δi ∈ C and ∆i ∈ C
fi×fi}

(1)

and denote its unit ball by ∆S,F = {∆ ∈ C∆S,F : σ̄(∆) ≤
1}. Now we define the time invariant uncertainty set using
functions that have continuous extensions on the right half
s-plane:

∆TI = {∆ ∈ L(L2) : ∆ is LTI and ∆(s) ∈ ∆S,F

for every Re(s) ≥ 0}
(2)

Definition 1: Given a matrix M ∈ C
n×n, we define the

matrix structured singular value or SSV of M with respect
to ∆S,F by

µ(M,∆S,F ) =

1

min{σ̄(∆) : ∆ ∈ C∆S,F and I − M∆ is singular}
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Fig. 1. Feedback System with Uncertainty
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Fig. 2. Equivalent Feedback System

when the minimum is defined. Otherwise µ(M,∆S,F ) is
defined to be zero.
The SSV is an useful tool to compute robust stability and
performance for LTI systems with structured uncertainty.
It is thus used to check whether a controller is able to pro-
vide desired closed loop characteristics. First we define
Robust stability and performance with respect to figures

1 and 2. Let M = Fl(G, K) =

[

M11 M12

M21 M22

]

be parti-

tioned compatibly with the input and output signals.
Definition 2: With reference to figure 2 and with the

extra assumption that the uncertainty class ∆ is causal,
the uncertain system (M11,∆) is robustly stable if (I −
M11∆)−1 exists in L(L2) and is causal for each ∆ ∈ ∆.

Definition 3: With reference to figure 2 and with the
extra assumption that the uncertainty class ∆ is causal,
the uncertain system (M,∆) has robust performance if
(M11,∆) is robustly stable and ‖Fu(M, ∆)‖ < 1, for every
∆ ∈ ∆.
The next theorem gives the major result of µ-synthesis pro-
viding us with a test of the µ norm to guarantee robust
performance and stability.

Theorem 4 (Proposition 9.10 in [12]) Suppose the con-
figuration of Figure 2 is nominally stable, and the uncer-
tainty class is ∆TI defined above. Define the perturbation
set

∆TI,p =

{[

∆u 0
0 ∆p

]

: ∆u ∈ ∆TI , ∆p ∈ L(L2) LTI

causal, ‖∆p‖ ≤ 1

}

Then the following are equivalent:

1. The uncertain system (M,∆TI) satisfies robust perfor-
mance: it is robustly stable and ‖Fu(M, ∆u)‖ < 1, for
every ∆u ∈ ∆TI .
2. The uncertain system (M,∆TI,p) is robustly stable.

3. supω∈R
µ(M(jω),∆S,F+1) < 1

Thus for any controller K, if we can show that
µ(M(jω),∆S,F+1) < 1 ∀ω, then the uncertain feedback
system (M,∆TI) is robustly stable and has robust per-
formance. This observation is the key to to the following
controller reduction procedure.

Next we present a result that will be the basis of our
controller reduction schemes. The main objective of the
following result is to extend the standard mixed-µ analy-
sis to the case when the complex uncertainties have fre-
quency dependent upper bounds. We augment the un-
certainty structures to meet the mixed-µ setup. Let R,
S and F be nonnegative integers, not all zero, and let n,
r1, ..., rR, s1, ..., sS , f1, ..., fF be positive integers, such that
n =

∑

ri +
∑

si +
∑

fi. The frequency dependent bound-
ing set is thus defined as

W = {W = diag(ρ1Ir1
, ..., ρRIrR

, w1Is1
, ...wSIsS

, wS+1If1

, ..., wS+F IfF
) : ρi > 0, i = 1, 2, ..., R, and some

functionswi : Re → R+, i = 1, ..., (S + F )}

(3)

Let C∆re be the subspace of real
∑

ri ×
∑

ri matrices
defined by

C∆re = {diag(γ1Ir1
, ..., γRIrR

: γi ∈ R} (4)

Next we define a structure consisting of those functions
that have continuous extension on the right half s-plane.
Define the set:

C∆TI = {∆(s) ∈ H∞ : ∆ is LTI and ∆(s) ∈

C∆S,F , for every Re(s) ≥ 0}
(5)

Next we define the augmented structure

∆rc = {∆rc : ∆rc ∈ diag(∆r, ∆), ∆r ∈ C∆re, ∆ ∈ C∆TI}
(6)

Finally we define the uncertainty set bounded above by the
frequency dependent functions. Given W ∈ W , define

∆W = {∆ ∈ ∆rc : ∆(jω)∗∆(jω) ≤ W (ω)2, ∀ω ∈ R}

Then we have the following result
Lemma 5 (Theorem 6 in [13]) Let W ∈ W and G ∈

H∞. If
µ(W (ω)G(jω),∆W ) < 1, ∀ω ∈ R,

then (G,∆W ) is robustly stable.

III. Main Results

A. Additive Reduction

In this section we present a new proof of Kavranoǧlu’s
[14] additive reduction algorithm using the above result.
To reframe the performance preserving controller reduc-
tion problem in the µ setting, consider the following block
diagrams.(Figures 3 and 4). Let the reduced order con-
troller Kr be expressed as a perturbation to the full order
controller Kf such that Kr = Kf + ∆c. We assume that
∆c ∈ ∆W . For the upper bound we define a frequency
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Fig. 3. Uncertain system with the reduced order controller
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dependent function Wa = γ(ω)I where γ(ω) : R → R+.
Clearly Wa ∈ W . Now define

T = S(G,

[

Kf I

I 0

]

) (7)

where S(·, ·) denotes the Redheffer star product,

T̃ =

[

I 0
0 Wa

]

T (8)

and

∆upc =

{

[

∆TI,p 0
0 ∆c

]

: ∆TI,p ∈ ∆TI,p and ∆c ∈ ∆W

}

(9)
A main drawback of this method is that this characteriza-
tion of the set of reduced order controller limits Kr(s) to
have the same number of unstable poles as Kf(s). This
problem is addressed in the next section.

Proposition 6: If σ̄(∆c(jω)) < γ(ω), ∀ω , and
µ(T̃ (jω), ∆upc) < 1, ∀ω, then the closed loop uncertain
system (Fl(G, Kr),∆TI) is robustly stable and has robust
performance.

Proof: Clearly

[

I 0
0 Wa

]

∈ W and by hypothesis for

each ω

σ̄(∆c(jω)) < γ(ω) ⇒ ∆c(jω)∗∆c(jω) < W 2
a

⇒ ∆upc(jω)∗∆upc(jω) <

[

I 0
0 Wa

]2

Now T̃ =

[

I 0
0 Wa

]

T . Also by hypothesis we have

µ(T̃ (jω),∆upc) < 1. Thus by direct application of Lemma

2.5 we have the system (T (jω),∆upc) is robustly stable.
Now for any particular Kf and Kr we have

(T (jω),∆upc) ≡ (S(G(jω),

[

Kf I

I 0

]

),∆upc)

≡ (Fl(G(jω), Kr),∆TI,p).

Thus we have shown that the closed loop uncertain system
(Fl(G, Kr),∆TI,p) is robustly stable. But by theorem 2.4
this is equivalent to (Fl(G, Kr),∆TI) being robustly stable
and having robust performance. Hence proved.

Remark 7: From the above theorem it is evident that if
we can find an γ(ω) such that µ(T̃ (jω),∆upc) < 1, ∀ω

then any Kr satisfying σ̄(Kf − Kr) < γ(ω) is a robustly
stabilizing controller and also provides robust performance
to the closed loop system.
Now let γ̂(jω) be a rational function approximating γ(ω)
such that γ̂(jω) < γ(ω). Thus for each ω we have the
following set of equivalences.

σ̄(Kf (jω) − Kr(jω)) < γ̂(jω)
⇐⇒ 1

γ̂(jω) σ̄(Kf (jω) − Kr(jω)) < 1

⇐⇒ σ̄[ 1
γ̂(jω)I(Kf (jω) − Kr(jω))] < 1

⇐⇒ σ̄[W−1
a (Kf (jω) − Kr(jω))] < 1

⇐⇒
∥

∥[W−1
a (Kf(jω) − Kr(jω))]

∥

∥

∞
< 1

Thus we have converted the controller reduction problem
into the widely studied frequency-weighted L∞ model ap-
proximation problem. This problem can be solved by a
number of methods such as frequency weighted balanced
truncation and optimal Hankel norm approximation.

Now the remaining problem is to calculate γ(ω) such that
µ(T̃ ,∆upc) < 1. To facilitate greater reduction a larger
γ(ω) is preferable. We can find γ(ω) using among others
the µ−tools software of MATLAB [15]. One has to perform
a few bisection steps on the size of σ̄(Kf(jω)−Kr(jω)) for
each frequency to determine the maximum size possible
such that µ(T̃ (jω),∆upc) = 1.

B. Coprime Factor Reduction

In this section we propose a coprime factor based con-
troller reduction scheme that keeps the closed loop µ value
with the reduced order controller to remain less than one,
thus guaranteeing robust stability of the closed loop sys-
tem. Apart from having the natural advantages of an mul-
tiplicative scheme, we also show that the perturbations
have a block diagonal structure. This points to the pos-
sibility of greater reduction in the controller order than
possible with the additive scheme.

We assume that the left coprime factors of Kr = V −1
r Ur

may be represented by perturbations to the left coprime
factors of the full order controller Kf = V −1

f Uf i.e.

Ur = Uf + ∆U (10)

Vr = Vf + ∆V (11)

We assume ∆U , ∆V ∈ ∆W . Let WV = γV (ω)I and WU =
γU (ω)I where γV (ω), γU (ω) : R → R+. Clearly WV , WU ∈
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W . Figure 3 can be redrawn as in Figure 5, which after
some manipulations give Figure 6. We define

KfA =





Kf V −1
f V −1

f

I 0 0
−Kf −V −1

f −V −1
f



 (12)

T = S(G, KfA) (13)

and

T̃ =





I 0 0
0 WV 0
0 0 WU



T (14)

while

∆upvu =

{





∆TI,p 0 0
0 ∆V 0
0 0 ∆U



 : ∆TI,p ∈ ∆TI,p,

∆V ∈ ∆W , ∆U ∈ ∆W

}

(15)

We have the following proposition to motivate our con-
troller reduction procedure.

Proposition 8: Let σ̄(∆V (jω)) < γV (ω) and σ̄(∆U (jω)) <

γU (ω), ∀ω. Now if µ(T̃ (jω),∆upvu) < 1, ∀ω,then the
closed loop uncertain system (Fl(G, Kr),∆TI) is robustly
stable and has robust performance.

Proof:

Clearly





I 0 0
0 WV 0
0 0 WU



 ∈ W and by hypothesis for each

ω

σ̄(∆V (jω)) < γV (ω) and σ̄(∆U (jω)) < γU (ω)

⇐⇒

[

∆V 0
0 ∆U

]∗ [

∆V 0
0 ∆U

]

<

[

WV 0
0 WU

]2

⇐⇒ ∆upvu(jω)∗∆upvu(jω) <





I 0 0
0 WV 0
0 0 WU





2 (16)

Now T̃ =





I 0 0
0 WV 0
0 0 WU



T . Also by hypothesis we

have µ(T̃ (jω),∆upvu) < 1. Thus by direct application of
Lemma 2.5 we have the system (T (jω),∆upvu) is robustly
stable. Now for any particular Kf and Kr we have

(T (jω),∆upvu)

≡

(

S

(

G(jω),





Kf V −1
f V −1

f

I 0 0
−Kf −V −1

f −V −1
f





)

,∆upvu

)

≡ (Fl(G(jω), Kr),∆TI,p).

(17)

Thus we have shown that the closed loop uncertain system
(Fl(G, Kr),∆TI,p) is robustly stable. But by theorem 2.4
this is equivalent to (Fl(G, Kr),∆TI) being robustly stable
and having robust performance. Hence proved.
Like in the additive case the above result implies that
if we can find suitable γV (ω) and γU (ω) such that
µ(T̃ (jω),∆upvu) < 1, ∀ω, then our controller reduction
problem can be written as frequency weighted L∞ approx-
imation problems. Let γ̂V (jω) and γ̂U (jω) be two ratio-

nal functions such that ŴV (jω) = γ̂V (jω) < γV (ω) and

ŴU (jω) = γ̂U (jω) < γU (ω)∀ω. Then our controller re-
duction problem reduces to the following set of frequency
weighted L∞ approximation problems following the argu-
ments outlined in the additive case.

∥

∥

∥
Ŵ−1

V (Vf − Vr)
∥

∥

∥

∞

< 1 (18)
∥

∥

∥
Ŵ−1

U (Uf − Ur)
∥

∥

∥

∞

< 1 (19)

Thus our objective again reduces to finding γV (ω) and
γU (ω) such that for each frequency µ(T̃ (jω),∆upvu) < 1.
Here also the bisection algorithm outlined in the addi-
tive case may be used. But search over two separate
parameters is not practically possible as the dependance
of µ on the bound of the uncertainty is not explicitly
known. However we could just search over one parameter
by taking WV = WU = γV U (ω)I. Under this assump-
tion we find out γV U (ω) by performing a few bisection

steps on the size of σ̄

(

[

∆V (jω) 0
0 ∆U (jω)

]

)

for each fre-

quency to determine the maximum size possible such that
µ(T̃ (jω),∆upvu) = 1 ∀ω. The weighted L∞ approximation
problem can be solved by a number of available algorithms
such as weighted balanced truncation or optimal Hankel
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TABLE I

Results of Model Reduction

Approach Controller Order µ(Fl(P, K),∆)

Full Order 30 0.966
µA(P ) 16 1.0567
µC(P ) 15 1.0536

µA(P )+B.T. 8 1.1219

norm approximation. In the example of the next section
we use the frequency weighted optimal Hankel norm ap-
proximation for its tight upper bound of approximation
error.

IV. Example

In this section we examine the application of the pro-
posed algorithms on the widely studied problem, the pitch
control of an experimental aircraft model, namely HIMAT.
A linearized model and detailed specifications can be found
in [15]. A generalized plant incorporating all the weights is
first formed. The resulting plant GAUG along with the un-
certainty set ∆G and the controller Kf is shown in figure
7. The generalized plant GAUG has 10 states. Kf is a 30
state controller designed in [15] by D-K iteration, satisfy-
ing the performance specifications. The closed loop robust
performance is conveniently measured in terms of the µ of
the closed loop with respect to an augmented uncertainty
set. We define

∆AUG :=

{

[

∆1 0
0 ∆2

]

: ∆1 ∈ C
2×2, ∆2 ∈ C

2×2

}

The Augmented plant GAUG has robust performance and
robust stability if µ(Fl(GAUG, Kf),∆AUG) < 1. In this
case Kf is found to satisfy µ(Fl(GAUG, Kf),∆AUG) ≤
0.996.

The results of controller reduction are presented in Table
I. The following abbreviations are used

µA(P ) - Additive Perturbation Reduction
µC(P ) - Coprime Factor Perturbation Reduction

Thus the proposed algorithms are found to produce a
50It is suspected that further reduction is possible but for
the poor performance of the actual frequency weighted re-
duction algorithms. In fact a 8th order controller can be
found simply by balanced truncation of the reduced con-
troller of the µA(P ) approach, which approximately satis-
fies the sufficient condition i.e. µ(Fl(GAUG, Kr),∆AUG) <

1 and is also found to give good performance in time sim-
ulations.

It should further be noted that the main advantage of
the proposed methods is not utilized in this example as the
original uncertainty of the HIMAT system was unstruc-
tured. With the incorporation of structure in the uncer-
tainty the proposed methods remain applicable. This is
not the case with most of the currently available techniques
which do not incorporate any knowledge of the uncertainty
structure.

V. Conclusion

In this paper two performance preserving techniques in
the µ-framework have been proposed. A new proof has
been given for the Kavranoğlu’s additive reduction tech-
nique [14]. A new coprime factor reduction scheme has
been proposed which guarantees closed loop stability and
performance with structured uncertainty. The coprime fac-
tor perturbations to the controller have been found to have
a block diagonal structure thus improving the reduction al-
gorithm.
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