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Abstract— In this paper, an intermittent feedback based con-
trol policy is proposed for disturbance rejection in a continuous,
linear time invariant (LTI) system with distinct and rational
eigenvalues, subject to a bounded disturbance signal. According
to the proposed policy, the feedback link is intermittently
turned on and off, to maximize the average feedback-off time
while maintaining the state trajectory inside a pre-specified
safe region. When the feedback is on, the state trajectory is
steered to the origin and then the feedback is turned off for
some pre-computed duration. The feedback control and the
open-loop control in the proposed policy, which are applied
during feedback-on and feedback-off intervals respectively, are
obtained by solving certain time-optimal control problems. The
optimal control problems in the proposed policy need to be
solved only once offline and hence, do not add to the burden
of real-time computation.

I. INTRODUCTION

The presence of disturbance and model uncertainty can
severely hamper the performance of a control system. Such
performance degradation is usually prevented by feedback.
However, continuous availability of the feedback signal can-
not always be guaranteed. While disruption in feedback may
occur due to technical failure, it can also be intentionally
induced to reduce operational costs [5]. In absence of feed-
back, the deviation of the system’s states from the desired
operating point can exceed safe limits [10].

Consider the example of a networked control system
(NCS) [18], in which a large number of spatially distributed
control systems share a communication network for the
transmission of feedback signals. NCS has applications in
automobiles, power generation, transmission and transporta-
tion engineering etc. [19]. As the bandwidth of the shared
network is finite, continuous transmission of feedback signals
from all subsystems is not always possible [20], [21]. In
order to avoid congestion, it is necessary that each system
transmits feedback signal intermittently. However, in absence
of feedback, individual subsystems can become unstable
under the influence of disturbances [20].

Another example of intermittent feedback is a group of
surveillance drones controlled from the ground station by
feedback signal transmitted over a wireless communica-
tion channel [22], [23]. Here, the operational cost includes
communication cost and power consumption. The commu-
nication cost is proportional to the duration over which
the channel is used [26]. The power consumption of a
drone’s transponder is also proportional to the duration of
communication [27]. This consumption limits the life of
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drone’s battery and as a result, its flight time [32]. In order
to reduce the operational cost, it is necessary to use inter-
mittent communication. However, in absence of feedback,
disturbances such as wind gusts can drive drones away from
their desired trajectories [30].

It is clear from the above-mentioned examples that there is
a trade-off between feedback transmission related operational
cost and system performance/safety. In order to maintain the
balance between these two, the designer needs to develop
a control policy based on an intermittent feedback which
guarantees that system’s states remain within safe limit,
while maximizing the average feedback-off time.

Intermittent feedback based control is a well studied topic.
The problem of state estimation with finite communication
bandwidth is studied in [1]. The problem of stabilization
under the constraint of finite communication bandwidth is
investigated in [2], where a necessary condition for stabiliza-
tion in terms of required data rate and the rate of change of
system’s state is obtained. In [3], a stabilization method based
on feedback quantization is developed. In [4], conditions
for stabilization of a discrete system under the constraint
of limited data rate are obtained. An event-triggered control
technique is developed in [5], [6], where control action is
initiated only when certain error state reaches a threshold.
This reduces the duration over which feedback is needed.
However, there is no explicit maximization of feedback-
off time. Hence, the minimization of feedback cost is not
explicit. The problem of optimal control in the event of
feedback failure is studied in [10]. The problem of faster
reduction of operational errors after feedback disruption is
investigated in [11]. In [10] and [11], the system dynamics
has no external disturbances.

The problem of rejection of persistent bounded disturbance
was formulated in [7]. It has been solved using various
approaches such as dynamic programming [8], a linear
matrix inequality (LMI) based approach [9] etc.. In these
approaches, however, continuous feedback is necessary.

To the best of our knowledge, the problem of rejection
of persistent bounded disturbance under the constraint of
intermittent feedback has not been investigated. In this pa-
per, for the first time we develop an intermittent feedback
based control policy for LTI systems with distinct and
rational eigenvalues, which explicitly maximizes the average
feedback-off time. While maximizing the average feedback-
off time, the state trajectory is steered inside a prespecified
safe region and is confined inside this region thereafter. We
characterize all initial conditions which can be steered inside
the safe region under the proposed policy. The feedback
control in the proposed policy is obtained by solving a certain
min-max time-optimal control problem. During feedback-on



interval, the state trajectory is controlled to reach the origin
in min-max time, irrespective of the disturbance signal in
that interval. The open-loop control in the proposed policy is
obtained by solving a certain max-min time-optimal control
problem in order to maximize the feedback-off time, i.e.
the duration over which feedback can be kept off without
allowing the trajectory to escape the safe region, irrespective
of the disturbance signal during this period. The time-optimal
control problems in the proposed policy need to be solved
only once offline and hence, they do not add to the burden of
real-time computation. Thus, the proposed policy is suitable
for time-critical applications.

The remaining part of the paper is organized as follows.
The problem of developing intermittent feedback based con-
trol policy is formulated in Section II. In Section III, the
time-optimal feedback control is obtained. The time-optimal
open-loop control is obtained in Section IV. In Section V, it
is shown that under the proposed policy, the state trajectory
remains confined in a prespecified safe region. Simulation
results are presented in Section VI. In Section VII, paper is
concluded with future directions.

II. PROBLEM FORMULATION AND
PRELIMINARIES

A. Problem formulation

Consider a linear time invariant (LTI) system

ẋ(t) = Ax(t) +B
(
u(t) + d(t)

)
(1)

where, A ∈ Rn×n, B ∈ Rn×1, u is the control input and d is
the disturbance signal. We make the following assumptions:

1) The pair (A,B) is controllable.
2) Eigenvalues of the matrix A are distinct and rational.
3) The control input u and disturbance d belong to sets
U :=

{
u ∈ L

∣∣∣ |u(t)| ≤ umax, ∀t ≥ 0
}

and

D :=
{
d ∈ L

∣∣∣ |d(t)| ≤ dmax, ∀t ≥ 0
}

respec-
tively, where L is the set of measurable functions.

4) The relation between bounds on the control input and
disturbance is 0 < dmax < umax <∞.

We denote a state-feedback control by a function fu :
Rn → [−umax, umax] and its open-loop representation by
uf (t) := fu(x(t)). We denote an open-loop control by
uo. The state trajectory of system (1) at time t, under
control u ∈ U , disturbance d ∈ D and an initial condi-
tion x0, is denoted by x̄(t, x0, u, d). Define t̄(x0, u, d) :=
{inf t | x̄(t, x0, u, d) = 0}. Let W ⊆ Rn be a prespec-
ified safe region with safety limit α > 0. It is defined as
W :=

{
y ∈ Rn

∣∣∣ ||y||2 ≤ α}.
In the proposed intermittent feedback based policy, we

propose that the feedback be turned on and off over alter-
nating time intervals (see Figure 1) starting at t = 0. Let
ti,don be the end point of the ith time interval Ii,don over which
feedback is on and ti,doff be the end point of the ith time
interval Ii,doff over which feedback is off , in presence of the
realization d ∈ D of the disturbance. Then, I1,don = [0, t1,don ],
Ii,doff = (ti,don , t

i,d
off ], i ≥ 1 and Ii,don = (ti−1,doff , ti,don ], i ≥ 2. We

0 t1,don t1,doff t2,don t2,doff t
3,d
on t3,doff

I1,don I1,doff I2,don I2,doff I3,don I3,doff

Fig. 1. Intermittent feedback

define the ith feedback-on time T i,don and the ith feedback-
off time T i,doff as the lengths of intervals Ii,don and Ii,doff
respectively, in presence of the realization d ∈ D of the
disturbance.

Fix an integer N < ∞ and then define the average
feedback-off time as

Tavg := min
d∈D

N∑
k=1

T k,doff

N
(2)

Our objective is to develop an intermittent feedback based
policy which confines the state trajectory of system (1) inside
the set W for every realization d ∈ D of the disturbance,
while maximizing Tavg . We formalize it as follows

Problem 1: Develop an intermittent feedback based policy
i.e. a control signal u∗ : [0,∞]→ [−umax, umax] such that

u∗(t) :=

{
f∗u(x(t)), t ∈ Ii,don
u∗o(t), t ∈ Ii,doff

where, f∗u and u∗o are feedback and open-loop controls
respectively,

1) under which the state trajectory of system (1) satisfies
x(t) ∈ W, ∀t ∈ [td1,∞) for every realization d ∈ D
of the disturbance where, td1 < ∞ depends on the
particular d which gets realized.

2) which maximizes Tavg .

B. Preliminaries

We briefly review definitions and properties of an attain-
able set and a reachable set of an LTI system. Consider an
LTI system

ẋ(t) = Ax(t) +Bu(t) (3)

where, matrices A,B are as in system (1) and u ∈ U .
Definition 2: [15]An initial condition of system (3) which

can be steered to the origin in time t by using an admissible
control u ∈ U is called as a null-controllable state in time t.

Definition 3: The reachable set of system (3) at time t is
defined as the set of all null-controllable states in time t.
It is characterized ([17], [15]) as

R(t) =
{
x
∣∣∣ x =

∫ t

0

e−AτBu(τ)dτ, ∀u ∈ U
}

(4)

The following lemma enlists properties of the set R(t).
Lemma 4: [28] Let R(t) be the reachable set of system

(3) at time t. Then, the following hold.
1) For every t ∈ [0,∞), the set R(t) is closed and convex.
2) For every t ∈ [0,∞), the set R(t) has an antipodal

symmetry i.e. x ∈ R(t)⇔ −x ∈ R(t).
3) R(t1) ⊆ R(t2) if t1 ≤ t2.



Definition 5: [15]The null-controllable region X0 of sys-
tem (3) is defined as

X0 :=
⋃

t∈[0,∞)

R(t) (5)

Definition 6: [28]The attainable set A of system (3) is the
set of states which can be reached from the origin using an
admissible control u ∈ U .
It is characterized [28] as A =

⋃
t∈[0,∞)A(t), where

A(t) =
{
x
∣∣∣ x = eAt

∫ t

0

e−AτBu(τ)dτ, ∀u ∈ U
}

(6)

C. Conditions which necessitate intermittent feedback

Before attempting to solve Problem 1, we note that in-
termittent feedback is not always necessary to retain x(t) ∈
W, ∀t ≥ 0. In particular, the necessity of intermittent feed-
back depends on the stability of the matrix A in (1) and the
maximum magnitude dmax of the disturbance signal. In the
absence of control action i.e. u = 0, (1) becomes

ẋ(t) = Ax(t) +Bd(t) (7)

Let AD be the attainable set of (7) with d acting as a control
input. Depending on dmax and eigenvalues of the matrix A,
the following three situations are possible:

1) A is anti-hurwitz: In this case, AD = Rn [28]. As
AD 6⊆ W , some d ∈ D can drive the state trajectory of
system (1) outside W , in absence of feedback control. Hence,
feedback is necessary to confine the state trajectory in W .

2) A is neither hurwitz nor anti-hurwitz: In this case, the
set AD is unbounded [28]. As AD 6⊆ W , some d ∈ D can
drive the state trajectory of system (1) outside W , in absence
of feedback control. Hence, feedback is necessary to confine
the state trajectory in W .

3) A is hurwitz: In this case, the set AD is bounded
[28] and its size depends on the disturbance bound dmax. If
AD ⊆ W , then disturbance cannot drive the state trajectory
of system (1) outside W . Hence, once the state trajectory
reaches the origin, feedback is not necessary. If AD 6⊆ W ,
then some d ∈ D can drive the state trajectory of system (1)
outside W , in absence of feedback control. Hence, feedback
is necessary to confine the state trajectory in W .

In summary, an intermittent feedback based control policy
is necessary to solve Problem 1 if and only if AD 6⊆W .

D. Control Policy

Our objective (Problem 1.1) is to retain the state trajectory
of system (1) inside the safe region W . In the proposed
policy, we construct a subset of W , namely W -maximal feed-
back null-controllable set (W -MFNCS). The construction of
W -MFNCS will be presented later in Section IV. It will be
proved in Theorem 25 that by retaining the state trajectory
of system (1) inside W -MFNCS, the average feedback-off
time Tavg gets maximized. Hence, in the proposed policy, we
retain the state trajectory of system (1) inside W -MFNCS.

The proposed policy consists of the following three ele-
ments:

1) A feedback control f∗u to be applied in the intervals
Ii,don under which the state trajectory gets steered to the

origin in min-max time, for every realization d ∈ D of
the disturbance.

2) Open-loop control u∗o to be applied in the intervals
Ii,doff . The open-loop control and the feedback-off time
t∗off are computed in such a way that the state trajec-
tory remains inside W -MFNCS during Ii,doff , for every
realization d ∈ D of the disturbance.

3) An on/off rule according to which feedback is turned
on/off. When the state trajectory reaches the origin
under the feedback control f∗u , the feedback is turned
off for the duration t∗off and then again turned back
on.

The feedback control policy, open-loop control and on-off
rule together ensure that Tavg (defined in (2)) gets maximized
and for every realization d ∈ D of the disturbance, the state
trajectory x(t) ∈W, ∀t ≥ td1, where, td1 <∞ depends on the
particular d which gets realized.

Remark 7: In every feedback-on interval Ii,don , we choose
to transfer the state to the origin in min-max time. It might
seem that this choice is arbitrary and instead we might have
transferred the state to some x(ti,don) 6= 0. To justify our
choice of x(ti,don) = 0, we show that the corresponding
average feedback-off time (i.e. Tavg) cannot be increased
even if we had chosen x(ti,don) 6= 0 (see Theorem 23).

Secondly, if we start every feedback-off interval from the
origin (i.e. x(ti,don) = 0 ), then the corresponding optimal
open-loop control turns out to be particularly simple (u∗o(t) =
0,∀t ∈ Ii,doff , see Theorem 19).

Thirdly, if we had chosen x(ti,don) 6= 0, then the corre-
sponding optimal open-loop control would have been hard to
compute and would require the solution of a max-min time-
optimal control problem separately for each initial condi-
tion. This would be prohibitively expensive computationally
for many applications, with no guaranteed convergence for
known algorithms [31].

Remark 8: In Remark 7, we have justified why we choose
x(ti,don) = 0. However, the transfer of the state to the origin
during feedback-on interval might have been done in multiple
ways [12]. However, in each of these methods, one would
need to solve a differential game [12] since x(ti,don) = 0 is
required no matter what value of d(t) gets realized. Solutions
of such differential games rarely lead to nice closed form
feedback solutions [33]. Due to recent contributions in [13],
explicit feedback solutions are available if we pose the
feedback-on control synthesis problem as a min-max time-
optimal problem (see Problem 9).

III. CONTROL POLICY: FEEDBACK ON

A. Formulation of the feedback-on optimization problem

As pointed out in Remark 7 and Remark 8, it is necessary
to steer the state trajectory of system (1) to the origin in min-
max time during feedback-on intervals, for any realization
d ∈ D of the disturbance. Hence, the feedback control f∗u
in the proposed policy is obtained by solving the following
problem:

Problem 9: For system (1), find a feedback control f∗u :
Rn → [−umax, umax] whose open-loop representation u∗f ∈



U solves the following optimization problem:

arg min
u∈U

max
d∈D

tf s.t. tf = t̄(x0, u, d)

Henceforth, we refer to Problem 9 as the feedback-on min-
max problem (FOMMP).

B. Solution of the FOMMP
Define vmax := umax− dmax, where umax and dmax are

the bounds on control input and disturbance, respectively.
Then, define V :=

{
v ∈ L

∣∣∣ |v(t)| ≤ vmax < ∞,∀t ≥ 0
}

.
Consider the following system

ẋ(t) = Ax(t) +Bv(t) (8)

where, matrices A,B are as in (1) and v ∈ V . Let X0 be
the null-controllable region (see Definition 5) of system (8).
Now, consider the following problem:

Problem 10: Find a feedback control f∗v : X0 →
[−vmax, vmax] whose open-loop representation v∗f ∈ V
solves the following optimization problem:

min
v∈V

tf s.t. tf = t̄(x0, v, 0)

Henceforth, we refer to Problem 10 as the time minimization
problem (TMP).

Assume that the feedback solution f∗v of the TMP is
known. It is known that the open-loop representation v∗f of f∗v
is bang-bang i.e. it switches between vmax and −vmax[16].
Define

f∗u(x(t)) :=

{
umaxsign(f∗v (x(t))) if x(t) ∈ X0

0 if x(t) 6∈ X0
(9)

f∗d (x(t)) :=

{
−dmaxsign(f∗v (x(t))) if x(t) ∈ X0

0 if x(t) 6∈ X0
(10)

Then, it follows that

f∗v (x(t)) = f∗u(x(t)) + f∗d (x(t)), ∀x(t) ∈ X0

The following result from ([13] and [14]) establishes the
equivalence between the TMP and the FOMMP.

Theorem 11: ([13],[14]) Consider the FOMMP for system
(1) and the TMP for system (8). Then, the following hold.

1) For every x0 ∈ X0,∀u ∈ U and ∀d ∈ D,

t̄(x0, f
∗
u , d) ≤ t̄(x0, f

∗
u , f

∗
d ) ≤ t̄(x0, u, f

∗
d )

2) For every x0 ∈ X0, the pair (f∗u , f
∗
d ) is the unique

solution of the min-max optimization in the FOMMP
for system (1) if and only if f∗v is the unique feedback
solution of the TMP for system (8).

It follows from Theorem 11.2 that once we obtain the
feedback solution f∗v of the TMP, (9) directly gives the
solution f∗u of the FOMMP. Hence, in order to obtain f∗u ,
it is sufficient to compute f∗v . A technique of computing f∗v
and f∗u is given in the next section.

According to the proposed control policy, the feedback
control applied during feedback-on intervals Ii,don ,∀i ≥ 1 is
the solution f∗u of the FOMMP, irrespective of disturbance
realization. Let xion be the state of system (1) in the begin-
ning of interval Iion. Then, it follows from Theorem 11.1 that
for every xion ∈ X0 and ∀d ∈ D other than the open-loop

representation of f∗d , the feedback control f∗u steers the state
trajectory of system (1) from xion to the origin in time less
than that of f∗d .

Note that Theorem 11.2 gives the solution of the FOMMP
if the initial condition x0 ∈ X0. The following lemma shows
that for an initial condition x0 6∈ X0, a solution of the
FOMMP does not exist.

Lemma 12: For every admissible feedback control fu and
∀x0 6∈ X0, there exists d̃ ∈ D such that t̄(x0, fu, d̃) =∞.

C. Computation of feedback control

It is well known that the feedback solution f∗v of the
TMP consists of switching surfaces and a state-feedback
law [17]. The computation of switching surfaces and the
construction of a state-feedback law using Gröbner basis
based implicitization has been given recently in [15].

Define the set P := {1, 2, . . . , n}. Let M±k , k ∈ P be
the switching surfaces of the TMP where, M+

k corresponds
to bang-bang inputs v ∈ V with v(0) = vmax and at most
k − 1 switches while M−k corresponds to bang-bang inputs
v ∈ V with v(0) = −vmax and at most k − 1 switches.
Define Mk := M+

k ∪M
−
k . Then, the feedback solutions of

the TMP and the FOMMP are given ([13],[15]) as follows

f∗v (x(t)) =

{
vmax if x(t) ∈M+

k \Mk−1 ,∀k ∈ P \ {n}
−vmax if x(t) ∈M−k \Mk−1 ,∀k ∈ P \ {n}

f∗u(x(t)) = umaxsign(f∗v (x(t)))

f∗d (x(t)) = −dmaxsign(f∗v (x(t)))

D. Feedback null-controllable sets

In this section, we characterize all initial conditions of
system (1) which can be steered to the origin under the
solution f∗u of the FOMMP, for every realization d ∈ D
of the disturbance.

Definition 13: The feedback null-controllable set of sys-
tem (1) at time t, denoted by Sf (t), is defined as

Sf (t) := {x0 ∈ Rn | t̄(x0, f
∗
u , d) ≤ t, ∀d ∈ D}

Definition 14: The feedback null-controllable region of
system (1), denoted by Sf0 , is defined as

Sf0 :=
⋃

t∈[0,∞)

Sf (t) (11)

Define tmax as

tmax := max
[0,∞)

t s.t. Sf (t) ⊆W (12)

where, W is the prespecified safe region.
Definition 15: The W -maximal feedback null-

controllable set (W -MFNCS) of system (1), denoted
by S∗, is defined as S∗ := Sf (tmax).
The following lemma enlists the properties of S∗.

Lemma 16: Let W be the prespecified safe region and S∗

be as in Definition 15. Then,
1) S∗ is a closed, convex set with an antipodal symmetry.
2) 0 ∈ S∗. 3) S∗ ⊆ (Sf0 ∩W ).
The following lemma shows the invariance of the set S∗

under the solution f∗u of the FOMMP.



Lemma 17: Let x0 ∈ S∗ and x̄(tfinal, x0, f
∗
u , d) = 0 for

some d ∈ D. Let tmax be as defined in (12). Then,
1) tfinal ≤ tmax.
2) x̄(t, x0, f

∗
u , d) ∈ S∗, ∀t ∈ [0, tfinal].

IV. CONTROL POLICY: OPEN LOOP

A. Formulation of the open-loop optimization problem

Our objective (Problem 1.2) is to maximize Tavg (defined
in (2)). It will be proved in Theorem 25 that in order achieve
the maximize possible value of Tavg , it is necessary to retain
the state trajectory of system (1) inside S∗ (Definition 15),
for every realization d ∈ D of the disturbance. Hence, in the
proposed policy, we retain the state trajectory of system (1)
inside S∗ for every d ∈ D. Further, in order maximize Tavg,
we need to maximize the feedback-off time while retaining
the state trajectory inside S∗ for every d ∈ D. Hence, the
open-loop control and the feedback-off time in the proposed
policy are obtained by solving the following problem:

Problem 18: Let x0 ∈ S∗ be an initial condition of system
(1). Find an open-loop solution u∗o ∈ U of the following
optimization problem:

u∗o(t, x0) = arg max
u∈U

min
d∈D

to

t∗off (x0) = max
u∈U

min
d∈D

to

s.t. x̄(t, x0, u, d) ∈ S∗, ∀t ∈ [0, to]
(13)

Henceforth, we refer to Problem 18 as the open-loop max-
min problem (OLMMP).

B. Solution of OLMMP

In this section, first we obtain the solution u∗o(t, 0) of the
OLMMP for x0 = 0, in the following theorem.

Theorem 19: Consider system (1) with initial condition
x0 = 0. Then, the solution u∗o(t, 0) ∈ U of the OLMMP is

u∗o(t, 0) = 0, ∀t ∈ [0, t∗off (0)].
We will show in the following theorem that t∗off (x0) ≤
t∗off (0) for every x0 ∈ S∗.

Theorem 20: For every x0 ∈ S∗, t∗off (x0) ≤ t∗off (0).
Recall that ti,don are the end-points of the feedback-on

intervals in presence of a realization d ∈ D of the distur-
bance. Let xd be the state trajectory of system (1) under the
proposed policy and disturbance d ∈ D. In order to maximize
Tavg (Problem 1.2), we need to maximize the feedback-
off duration. Hence, based on Theorem 20, we ensure that
xd(ti,don) = 0,∀i ≥ 1 and ∀d ∈ D. Then, it follows from
Theorem 19 that the open-loop control and the feedback-off
time in the proposed policy are solutions u∗o(t, 0) and t∗off (0)
of the OLMMP, irrespective of the realized d ∈ D.

It follows from Theorem 19 that the feedback-off time
t∗off (0) is the solution of the following optimization problem:

min
d∈D

to s.t. x̄(to, 0, 0, d) ∈ ∂S∗ (14)

The optimization problem in (14) is an optimal control
problem. A technique of obtaining the expression of ∂S∗ is
developed in [15]. By using the expression of ∂S∗ and stan-
dard tools from optimal control theory [31], the optimization
problem in (14) can be solved.

Remark 21: The open-loop control u∗o(t, 0) = 0 in the
proposed policy does not require any run-time computation.
In addition, it needs zero controller effort during feedback-
off intervals. Hence, it is very efficient.

V. COMPLETE CONTROL POLICY

Let f∗u be the feedback control obtained by solving the
FOMMP. Let u∗o(t, 0) and t∗off (0) be the open-loop control
and the feedback-off time obtained by solving the OLMMP
for the zero initial condition, respectively. Recall that Ii,don
and Ii,doff are the ith feedback-on and feedback-off intervals
in presence of the realization d ∈ D of the disturbance,
respectively. Then, for any d ∈ D, the control input u∗

according to the proposed policy is

u∗(t) =

{
f∗u(x(t)), t ∈ Ii,don
u∗o(t, 0), t ∈ Ii,doff

The following theorem shows that for every realization
d ∈ D of the disturbance, the proposed policy retains the
state trajectory of system (1) inside set S∗ ⊆W and hence,
satisfies the requirement in Problem 1.1.

Theorem 22: Let xd be the state trajectory of system (1)
under the proposed policy, any d ∈ D and an initial condition
xd(0) = x0 ∈ S0. Let t1 < ∞ be the first time instant at
which xd(t) ∈ S∗. Then, xd(t) ∈ S∗ ⊆W, ∀t ≥ t1.
The following theorem shows that the average feedback-off
time under the proposed policy is more than that of any
other intermittent feedback based policy which retains the
state trajectory of system (1) inside the set S∗.

Theorem 23: Let P be any intermittent feedback based
policy which retains the state trajectory of system (1) inside
the set S∗. Let T ∗avg and TPavg be the average feedback-off
times under the proposed policy and policy P , respectively.
Then, T ∗avg ≥ TPavg .

Recall that T i,don and T i,doff are the ith feedback-on and
feedback-off times respectively, in presence of disturbance
d ∈ D. Recall that t∗off (0) is the feedback-off time in
the proposed policy and tmax is defined in (12). The fol-
lowing lemma shows the relation between (T i,don , T

i,d
off ) and

(tmax, t∗off (0)).
Lemma 24: According to the proposed policy, for any

realization d ∈ D of the disturbance,
1) T i,doff = t∗off (0), ∀i ≥ 1.
2) T i,don ≤ tmax, ∀i ≥ 2.
It follows from Lemma 12 and Lemma 17 that only sets of

the form Sf (t) ⊆ W (i.e. for t ≤ tmax) are invariant under
the proposed policy. Define Z :=

{
Sf (t)

∣∣∣ t ≤ tmax

}
. Let

TS,avg denote the average feedback-off time obtained when
the proposed policy retains the state trajectory of system (1)
inside S ∈ Z . Then, the following theorem shows that S∗

gives the maximum of TS,avg over the elements of Z .
Theorem 25: For every S ∈ Z , TS,avg ≤ TS∗,avg .

VI. SIMULATION RESULTS

Let W be the prespecified safe region with safety limit
α = 0.1. Let umax = 1, dmax = 0.2 and hence, vmax =



Fig. 2. State trajectory

umax − dmax = 0.8. Let x0 = [−0.14, 0.01] be an initial
condition of system (1) with

A =

[
1 0
0 10

]
, B =

[
1
1

]
The value of tmax (defined in (12)) is 0.1114s. The value
of t∗off (0) (solution of the OLMMP) is 0.0749s. The state
trajectory of this system under the proposed policy, some
disturbance d ∈ D and initial condition x0 is plotted in
Figure 2, for the duration 0.6615s. The feedback-on and
feedback-off times are T 1,d

on = 0.4003s, T 1,d
off = 0.0749s,

T 2,d
on = 0.1114s and T 2,d

off = 0.0749s. For any integer N , the
average feedback-off time Tavg is 0.0749s.

VII. CONCLUSION

In this paper, we developed an intermittent feedback based
control policy for continuous LTI systems with distinct and
rational eigenvalues, subject to a bounded disturbance signal.
The proposed policy confines the state trajectory of system
in a prespecified safe region while maximizing the average
feedback-off time. As the set of rational numbers is dense
in the set of real numbers, it is possible to extend the
proposed policy for systems with real eigenvalues. The work
of extending the proposed policy for systems with complex
eigenvalues is currently in progress.
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