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Abstract— The problem of placing an arbitrary subset (m)
of the (n) closed loop eigenvalues of anth order continuous
time single input linear time invariant(LTI) system, using full
state feedback, is considered. The required locations of the
remaining (n − m) closed loop eigenvalues are not precisely
specified. However, they are required to be placed anywhere
inside a pre-defined region in the complex plane. The resulting
non-uniqueness is utilized to minimize the controller effort
through optimization of the feedback gain vector norm. Using a
variant of the boundary crossing theorem, the region constraint
on the unspecified(n−m) poles is translated into a quadratic
constraint on the characteristic polynomial coefficients. The
resulting quadratically constrained quadratic program can be
approximated by a quadratic program with linear constraints.
The proposed theory is demonstrated for power oscillation
damping controller design, where the eigenvalues corresponding
to poorly damped electro-mechanical modes are critical for
performance and hence are specified precisely by the designer,
whereas the remaining eigenvalues are non-critical and need not
be specified precisely. Acceptable closed loop pole placement
is achieved for this example along with a 51% reduction in
controller norm.

I. INTRODUCTION

Conventional state feedback control can place closed loop
poles of a controllable linear time invariant system at ar-
bitrary locations in the complex plane. However, in some
applications, only a given subset of the closed loop poles are
of interest and it is enough to place this subset of poles at
precise pre-specified locations. The other closed loop poles
can assume any positions in (or in a specified subset of)
the stable region of the complex plane. It is well known [2]
that if the desired locations ofall the closed loop poles are
specified then for a SISO system the required feedback gain
vector is unique. However if only a subset of the closed loop
poles are specified, the extra degrees of freedom associated
with the unspecified poles can be utilized to minimize the
control effort associated with the controller. It is shown in
this article that this problem can be posed as a quadratic
program which can in turn be solved efficiently by standard
numerical methods.

The proposed theory is demonstrated for inter-area oscilla-
tion damping controller design in power system applications.
Inter-area oscillations (associated with inter-area modes) are
electro-mechanical oscillations of order 0.1-0.8 Hz and are
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inherently present in large inter connected power systems [5].
Hence, it is required to carefully place only those inter-area
oscillation modes to ensure desired performance following
disturbances. There is no need to worry about the remaining
modes as long as their settling times do not exceed those in
open loop. Due to the very nature of the non-critical modes,
higher control efforts are required unless they are left alone
to take their natural course. This results in an overall increase
in the norm of the feedback gain vector and hence, costlier
actuators.

The conventional way to address such a problem would be
to : (i) choose closed loop critical pole locations according
to the design specifications (ii) choose the non-critical pole
locations same as their open loop positions. However, in
established pole placement methods [12], [13] the compen-
sation of feedback gain vector is a coupled procedure which
depends both on the critical and non-critical closed loop pole
choices. As a result it often turns out in practice that this
strategy leads again to a high value of the resulting feedback
gain resulting in higher control effort requirements and more
costly actuators.

It is proposed in this article that the state feedback
controller can be designed in such a way that the critical
poles will be placed precisely at the pre-specified locations.
The controller norm is minimized explicitly under these
constraints and the remaining non-critical poles are left to
assume whatever natural position they might assume due to
the optimization process. It is assumed that the non-critical
modes are already stable in the open loop, and that they may
be allowed to move freely about their open loop locations
as long as they do not lose stability. Additionally, it is often
required that all closed loop poles should have a minimum
damping which implies that they should be located to the
left of a given vertical line in the left half of the complex
plane. Using a version of the boundary crossing theorem [1]
it shown that (stability or minimum damping) requirements
on the closed loop non-critical poles can be translated into
constraints in the coefficient space of the characteristic
polynomial corresponding to the non-critical poles. These
requirements define a quadratic constraint on the subsequent
minimization problem. It is shown that this problem can
be posed as a direct minimization of the feedback gain
vector norm with two types of constraints: (i) linear equality
constraints arising out of the precise placement requirement
of the critical closed loop poles, and (ii) quadratic inequality
constraints arising out of the regional placement requirement
of the closed loop non-critical poles. By standard results on
semi-definite programming [3], [4] and [15], it is shown that
this problem has a unique minimum which in turn can be



computed by semi-definite programming methods.
This formulation can be further simplified by approximat-

ing the quadratic constraints on the characteristic polynomial
coefficients by inscribing hypercubes in the coefficient space.
This reduces the quadratically constrained quadratic program
to a quadratic program with linear constraints which can be
solved efficiently using a variety of optimization techniques
[3], [4].

Pole placement algorithms have been studied intensively
in the literature. Various researchers (e.g. [11], [14], [10],
[12], [13] and [9]) have focused on finding numerically
stable and efficient algorithms for multi input multi output
pole placement by minimizing the condition number of a
related eigenvector matrix. In many practical applications,
pole placement within a desired subset of the complex plane
is relevant. This approach, called regional pole placement,
has been studied by [8] and references therein. In this
work we pose a novel problem with the following features:
(a) precise placement of a (critical) subset of the closed
loop poles (b) regional pole placement for the (non-critical)
remaining closed loop poles within a specified region of
complex plane (c) minimization of the norm of controller
under the above constraints.

II. N OTATION AND PROBLEM FORMULATION

A. Problem Formulation

Consider a continuous time LTI single-input system de-
fined by the following state space equation

ẋ = Ax+bu (1)

wherex ∈R
n, u ∈R, A ∈R

n×n, b ∈R
n. Assume that the pair

(A,b) is controllable and definek :=
[
k1 k2 · · ·kn

]T ∈R
n. It

is well known that, a linear state feedback control law of the
form u = −kT x can be designed to placeall the eigenvalues
of the closed loop system

ẋ = (A−bkT )x (2)

at any arbitrary locations of the complex planeC.
However, we are interested in applications where only

a few critical closed loop eigenvalues are specified. As
described in the introduction, the non-critical eigenvalues
are allowed to assume any value in (or in a pre-specified
subset of) the stable region of the complex plane. With-
out loss of generality, we assume that the firstm eigen-
values of A are critical and their closed loop positions
are specified. Let us denote then eigenvalues ofA by
{λ1,λ2, . . . ,λm,λm+1,λm+2, . . . ,λn} (m ≤ n), which, in addi-
tion, are assumed to be distinct. Of these,{λ1,λ2, . . . ,λm} are
critical and are required to be placed at{−µ1,−µ2, . . . ,−µm}
in the closed loop, whereas the remaining(n−m) eigen-
values {λm+1,λm+2, . . . ,λn} are non-critical and are not
associated with any desired closed loop location. However
it is often the case that a minimum damping (or maximum
acceptable settling time) requirement exists on all the closed
loop poles. This is conventionally specified by restricting
the pole locations to the left of a given vertical line in

the complex plane. In general we will assume that(n−m)
eigenvalues of(A−bkT ) are required to be located in a subset
S of the left half of the complex plane. In this article we will
defineS as follows:

S = {s ∈ C : Re(s) < γ} (3)

where the value ofγ ≤ 0 (signifying the maximum allowable
settling time for the non-critical poles) is specified by the
designer. Then the problem described in the introduction can
be simply formulated as:

Problem 1: Find inf‖k‖2 such that the eigenvalues of(A−
bkT ) have the following properties:

1) m out of the total n eigenvalues are placed at
{−µ1,−µ2, . . . ,−µm}.

2) remainingn−m eigenvalues are placed anywhere in a
subsetS of the left half ofC.

B. Additional Notation

According to the design specifications,m of the closed
loop poles are required to be placed at{−µ1,−µ2, . . . ,−µm}
while the remaining(n−m) poles can assume any location in
the regionS. Denote the unspecified closed loop eigenvalues
as{−p1,−p2, . . . ,−pn−m}. Without loss of generality, let the
closed loop poles be ordered as follows

{−µ1,−µ2, . . . ,−µm,−p1,−p2, . . . ,−pn−m} (4)

Further define
m

∏
i=1

(s+ µi) := sm +αm−1sm−1 + . . .+α1s+α0

n−m

∏
j=1

(
s+ p j

)
:= sn−m +βn−m−1sn−m−1 + . . .+β1s+β0

where

αm−1 =
m

∑
i1=1

µi1 βn−m−1 =
n−m

∑
i1=1

pi1

αm−2 =
m

∑
i1<i2

µi1 µi2 βn−m−2 =
n−m

∑
i1<i2

pi1 pi2

...
...

α1 =
m

∑
i1<...<im−1

µi1 . . .µim−1 β1 =
n−m

∑
i1<...<in−m−1

pi1 pi2 . . . pin−m−1

α0 =µ1µ2 . . .µm β0 =p1p2 . . . pn−m

Then the characteristic equation of the closed loop system
will be

σ(s) =

[
m

∏
i=1

(s+ µi)

]

︸ ︷︷ ︸
Q

[
n−m

∏
j=1

(s+ p j)

]

︸ ︷︷ ︸
R

(5)

Using the above notation, the characteristic polynomial (5)
is divided into two parts:(Q) - polynomial of known
coefficients and(R) - polynomial of unknown coefficients.
Clearly the Q polynomial is completely defined from the
problem specification. However the only requirement of the



R polynomial is that its roots should be located in a pre-
specified regionS ∈ C defined in (3).

Our objective is to pose Problem 1 as a quadratic program
so as to make it numerically tractable. For this purpose it
would be convenient to translate the requirement on the poles
(−pi ∈ S, i = 1, ..,n−m) of polynomialR into requirements
on the coefficients(β0,β1, ...,βn−m−1) of the polynomial
R. For this purpose let us denote the set of all(n−m)th

degree monic polynomials with real coefficients asPn−m(s).
Further assume that the regionS ∈ C corresponds to a set
Cs ⊂ Pn−m(s). In other words, we assume that each(n−m)th

degree monic polynomials with roots inS will belong to
the setCs. Then problem 1 is equivalent to the following
problem:

Problem 2: Find inf‖k‖2 such that (A − bkT ) has the
following properties:

1) m out of the total n eigenvalues are placed at
{−µ1,−µ2, . . . ,−µm}.

2) the polynomialR ∈Cs .

Note that the setCs is open [1] and hence the minimum
may not be achieved. This issue is addressed in the next
section by replacingCs with a compact subset ofCs.

III. T HE STABILITY BALL IN COEFFICIENT SPACE

Let us consider a(n − m)th degree monic polynomial
β (s) ∈ Pn−m(s), represented as follows

β (s) := sn−m +βn−m−1sn−m−1 + . . .+β1s+β0 (6)

Define β :=
[
βn−m−1 βn−m−2 . . . β0

]T
and denote the

vector space ofn − m tuples formed by the non-leading
coefficients of the elements ofPn−m(s) asVp, such thatβ ∈
Vp. On Vp, the Euclidean norm is defined as‖ β ‖2

2= β 2
0 +

β 2
1 + β 2

2 + . . .+ β 2
n−m−1, while a ball of monic polynomials

with center atβ̂ (s) ∈ Pn−m(s) and radiusr is given by

B
(

β̂ (s),r
)

:=
{

β (s) ∈ Pn−m(s) : ‖ β − β̂ ‖2< r
}

whereβ and β̂ are inVp.
Consider the setS⊂C defined in (3) and denote by∂S and

∂B the boundary of the setsS and B
(

β̂ (s),r
)

respectively.
Then a maximal ball of polynomials having roots inS can
be characterized by the following theorem.

Theorem 1: [1, Theorem 3.1] Given a polynomial̂β (s) ∈
Pn−m(s), having all its roots inS, there exist a positive
real numberr such that every polynomial contained in
B

(
β̂ (s),r

)
has all its roots inS and at least one polynomial

in ∂B has one of its roots in∂S.
Recall that Problem 1 and 2 are equivalent if the set of

polynomials Cs corresponding to the desired pole region
S (see (3)) can be computed. The above theorem shows
that corresponding to anyS ∈ C the corresponding set
B

(
β̂ (s),r

)
⊆Cs. However to computeB

(
β̂ (s),r

)
explicitly

we still needa priori a polynomial β̂ (s) ∈ Cs and subse-
quently we need to compute the radius of stabilityr. For our

choice of β̂ (s), we propose to use the polynomial formed
out of the open-loop non-critical poles as follows:

β̂ (s) =

[
n

∏
j=m+1

(s+λ j)

]
(7)

Usually, those open loop eigenvalues, which are stable and
already have adequate damping, are classified as non-critical.
Hence in most practical scenarios,λm+1,λm+2, . . . ,λn ∈ S and
henceβ̂ (s) ∈Cs.

The second step in calculating the maximal stability ball
B(β̂ (s),r) is to estimate the radiusr. For this purpose we
can use the following result where the setS is assumed to
be the entire left half ofC [1]. A slight modification in the
definition ofβ (s) andβ̂ (s) extends Theorem 2 to cases where
S is defined forγ < 0 in (3).

Denote the monic polynomial corresponding to (7) as
β̂ (s) := sn−m + β̂n−m−1sn−m−1+ . . .+ β̂1s+ β̂0 and define the

n−m tuple β̂ as β̂ :=
[
β̂n−m−1 . . . β̂1 β̂0

]T
∈ Vp

Theorem 2: [1, Theorem 3.2] The radius of largest sta-
bility hypersphere around a stable polynomialβ̂ (s) is given
by

r = min(do,dmin) (8)

wheredo

(
β̂ (s)

)
=| β̂0 | and dmin := infω≥0d̄ω

(
β̂ (s)

)
. The

quantity d̄ω

(
β̂ (s)

)
can be computed as follows.

d̄ω

(
β̂ (s)

)
= dω

(
β̂n−m−1sn−m−1 + . . .+ β̂1s+ β̂0

)

while dω(.), is given by
(i) For n−m−1 = 2q

d2
ω (.) =

[
β̂ e(ω)

]2

1+ω4 + . . .+ω4q +

[
β̂ o(ω)

]2

1+ω4 + . . .+ω4(q−1)
(9)

(ii) For n−m−1 = 2q+1

d2
ω (.) =

[
β̂ e(ω)

]2
+

[
β̂ o(ω)

]2

1+ω4 + . . .+ω4q (10)

where

| β̂ e(ω) | = β̂0− β̂2ω2 + β̂4ω4 + . . .+(−1)qβ̂2qω2q

| β̂ o(ω) | = β̂1− β̂3ω2 + β̂5ω4 + . . .+(−1)(q−1)β̂2q−1ω2q−2

After calculatingd̄ω , dmin can be found out in following way

(1) Compute real positiveω ’s satisfying
d(d̄ω)

dω
= 0.

(2) With theseω ’s evaluated̄ω and take the minimum
value of d̄ω .
An algorithm is given in [1] for calculatingdmin. Using
theorem 2, we can calculate the radius of stabilityr around
any β̂ (s) for S = {s ∈ C : Re(s) < 0}. This requirement
is however not restrictive. To apply theorems 1 and 2 to
stability regions of the formS = {s ∈ C : Re(s) < γ}, γ ≤ 0,
shift the imaginary axis toγ so that the variable “s” in a



polynomial (6) will become “s− γ”. So the new polynomial
β̃ (s) corresponding to the polynomial̂β (s), will of the form:

β̃ (s) = sn−m + β̃n−m−1sn−m−1 + . . .+ β̃1s+ β̃0

The roots of the polynomial̃β (s) will be obtained by shifting
the roots of polynomial̂β (s) by amountγ. Since,β̃ (s) ∈Cs

we can consider this as our nominal polynomialβ̂ (s) and
apply Theorem 2 to find the radius of the stability ball. Every
polynomial belonging to this stability ball has all its roots in
S = {s ∈ C : Re(s) < γ}.

IV. M AIN RESULTS

We show that Problem 2 is equivalent to a quadrati-
cally constrained quadratic program and subsequently into
a quadratic program using a linear approximation of the
constraints.

A. An Equivalent Quadratically Constrained Quadratic Pro-
gram

Denote the open loop characteristic polynomial of (1) by:

a(s) = det(sI −A)

= sn +an−1sn−1 +an−2sn−2 + . . .+a1s+a0 (11)

Definea :=
[
an−1 an−2 · · · a1 a0

]T
. The characteristic

polynomial of the system (2) is defined as follows

σ(s) = det(sI −A+bkT )

= sn +σn−1sn−1 +σn−2sn−2 + . . .+σ1s+σ0 (12)

Defineσ :=
[
σn−1 σn−2 · · · σ1 σ0

]T

C :=
[
b Ab A2b · · · An−1b

]
(13)

A
T :=





1 an−1 an−2 · · · a1

0 1 an−1 · · · a2
...

...
...

.. .
...

0 0 0 · · · an−1

0 0 0 · · · 1




(14)

It is well known [2] that if the system is controllable
i.e. controllability matrix (13) is non-singular, the closed
loop eigenvalues (ofA−bkT ) can be placed at any arbitrary
locations inC. Moreover, the corresponding feedback gain
vectork is unique and can be calculated from the following
equations:

A C
T k +a = σ

Denotek̄ = A C T k and let k̄ = [k̄n k̄n−1...k̄1]
T . Clearly each

k̄i(i = 1, ...,n) is a linear combination ofk1, ...,kn. Then:

σn−1 = k̄n +an−1

σn−2 = k̄n−1 +an−2 (15)
...

σ0 = k̄1 +a0

Recalling the expression for the required closed loop
characteristic polynomial (5), and equating coefficients with
(12), we get:

σn−1 = αm−1 +βn−m−1

σn−2 = αm−2 +αm−1βn−m−1 +βn−m−2 (16)

...

σ2 =α0β2 +α1β1 +α2β0

σ1 =α0β1 +α1β0

σ0 =α0β0

In (16) above, the coefficientsα0,α1, . . . ,αm−1 are known
quantities (since(−µ1,−µ2, . . . ,−µm) are specified by the
designer), where asβ0,β1, . . . ,βn−m−1 are unknown quanti-
ties due to dependency onp1, p2, . . . , pn−m which are unspec-
ified. First note thatσ0,σ1, ...,σn−1 can be eliminated from
equations (15) and (16) to getn linear equations:

αm−1 +βn−m−1 = k̄n +an−1

... (17)

α0β1 +α1β0 = k̄2 +a1

α0β0 = k̄1 +a0

From (17),(β0, ...,βn−m−1) can be expressed in terms of
n−m linear equations in̄k1, k̄2, . . . , k̄n. A simple inductive
method to get such equations is shown below:

β0 =
1

α0

(
k̄1 +a0

)

β1 =
1

α0

((
k̄2 +a1

)
− α1

α0

(
k̄1 +a0

))
(18)

...

βn−m−1 = .....

Then (18) can be compactly written as follows

β = F k̄ +g (19)

where β ∈ R
n−m, F ∈ R

(n−m)×n, g ∈ R
n−m. Now

β0, . . . ,βn−m−1 from (18) can be back-substituted in the set
of n equations (17) to getm linear equations in(k̄1, k̄2, ..., k̄n)
which can be written in the form:

E k̄ +h = 0 (20)

whereE ∈R
m×n, h∈R

m and 0 is a zero vector of appropriate
dimension. Usinḡk = A C T k, and defining

F = FA C
T andE = E A C

T (21)

we get the following set of equations:

β = Fk +g and Ek +h = 0 (22)

Further, recall the definitions of̂β andr from (7) and (8).
Then the following result holds:

Theorem 3: If for some k ∈ R
n, the relations‖Fk + g−

β̂‖2 ≤ r and Ek + h = 0 holds, then the eigenvalues of the
matrix (A−bkT ) satisfy the following properties:



1) m out of the total n eigenvalues are
{−µ1,−µ2, . . . ,−µm}.

2) the remainingn−m eigenvalues−pi ∈ S∪ ∂S for i =
1, . . . ,n−m.
Proof: Let somek satisfy‖Fk+g− β̂‖2 ≤ r andEk+

h = 0. Then ‖β − β̂‖2 ≤ r. Hence the polynomialβ (s) ∈
B

(
β̂ (s),r

)
∪ ∂B. So we can apply theorem 1 to guarantee

that the roots ofβ (s) lie in S∪∂S. Them equationsEk+h =
0 imply that them roots of polynomialQ (see (5)) are placed
at {−µ1, . . . ,−µm}.

Theorem 3 defines the constraint set on the feedback gain
vectork, which can be used to pose an optimization problem
that minimizes the norm ofk. After some simple calculations
‖Fk + g− β̂‖2 ≤ r can be written askT Mk + 2mT k + c ≤ 0
where M = FT F , mT = (g− β̂ )T F and c = (g− β̂ )T (g−
β̂ )− r2. Here M is a positive semi-definite matrix,m is a
constant vector andc ∈ R. The optimization problem can be
formulated as follows:

Problem 3: Find mink∈Rn ‖k‖2 subject to

Ek +h = 0

kT Mk +2mT k + c ≤ 0
It should be noted that the above constraint set is always
feasible since it is known that there is always at least
one k which places the poles at arbitrary desired location.
However, the optimalk might place some of the closed
loop eigenvalues on the boundary∂S of the stability region.
The designer should choose the stability regionS with this
consideration. Another issue with problem 3 is that the
optimization might not be numerically easy since the matrix
M is positive semi-definite and not necessarily positive
definite [3]. It is known that such a quadratically constrained
quadratic program, though convex, can turn out to be NP-
hard. Several relaxations of this problem have been studied
(see e.g [15] and references therein). In this article, we give
a simple box approximation for the spherical constraint set
defined in Problem 3.

B. Approximate Linear Constraints

In this section the spherical constraint‖β − β̂‖2 ≤ r is
approximated by a hypercube inRn−m that inscribes the
sphere. The situation is shown in Fig. 1 forn − m = 2.
A squareEFGH which approximates the stability ball is
obtained by projecting the vectorOG onto the lineAB and
CD respectively. The length of the projectionOM on AB will
be r/

√
2. So each edge of the square will be 2r/

√
2.

Similarly we can extend this notion to a higher dimen-
sional stable ball where each edge of the inscribed hypercube
will be 2r/

√
n−m. Next define the set

Σ :=
{

β ∈ R
n−m : β−

i ≤ βi ≤ β+
i , i = 0,1, . . . ,n−m−1

}

where fori = 0,1, ...,n−m−1

β−
i = β̂i −

r√
n−m

and β+
i = β̂i +

r√
n−m

Then Σ ⊆ {β ∈ R
n−m : ‖β − β̂‖2 ≤ r} and a sub-optimal

reformulation of Problem 3 can be written as follows:

H G

E F

r

A B
MO

D

C

Square in

β1

β0

Stable Region

Stability Ball

Fig. 1. Square Approximating the Stability Ball

Problem 4: Find mink∈Rn ‖k‖2 subject to

Ek +h = 0

Fk +g ∈ Σ

Problem 4 is a quadratic program withm linear equality
constraints andn−m linear inequality constraints. It is well
known [4] that this problem has a unique minimum and can
be solved efficiently using a variety of algorithms (e.g. see
[3], [4]).

C. Design Steps

It should be noted that Theorem 1 is only sufficient in
guaranteeing that the corresponding eigenvalues stay inS.
Consequently, in some cases, it might be possible to find a
k which preserves the pole placement requirements and but
has lesser norm than the solution to Problem 3. Additionally,
the solution to Problem 3 might be hard in general, and one
may have to depend on the linear relaxation to compute a
solution. Hence, a three step design procedure is suggested
below to find a controller with maximum reduction in the
norm. Since, the precise location requirement on the critical
eigenvalues is inflexible, the equality constraintsEk +h = 0
are assumed to be imposed on all the steps below:

1) Solve Problem 3 without considering the inequality
constraints. If all the poles belong toS then stop;
otherwise go to step 2.

2) Solve Problem 3. (Recall that the solution might be NP-
hard.) If tractable, stop; otherwise proceed to step 3.

3) Solve Problem 4.

V. NUMERICAL EXAMPLES

Example 1: Consider a LTI system with

A =





0 1 0 0
0 0 1 0
0 0 0 1
51 −10 −30 −10



 b =





0
0
0
1





Eigenvalues ofA are at 1,−3,−4± i. Only the pole at
+1 is unstable and we assume that this pole needs to be
placed at−1 using state feedback control. The remaining 3
poles are assumed to be non-critical and are allowed to be
placed arbitrarily within the open left half of complex plane.



TABLE I

COMPARISONTABLE

Procedure Closed loop poles ‖kr‖2 % Red. in Sys.
‖kr‖2 Cond.

Step - 1 0±6.4031,−1,1 20 84.93 Unstable
Step - 2 −3.9158±1.9057i 117.2485 11.66 Stable

−2.2363,−1
Step - 3 −1.9161±5.0794i 120.0862 9.52 Stable

−1.5395,−1
Step - 4 −4±1i, −3, −1 132.7253 – Stable

Following the discussion in Section IV, (22) takes the form:

β0 = k1−51

β1 = −k1 + k2 +61

β2 = k4 +9

k1− k2 + k3− k4−40= 0

Next we are required to construct the polynomialβ̂ (s)
according to (7). Recalling that the open loop poles are
at −3,−4± i, β̂ (s) := s3 + 11s2 + 41s + 51. Following the
procedure given in Section III,do = 51 and according to
(10), d2

ω will be

d2
ω =

[
51−11ω2

]2

1+ω4 +
[
41−ω2]2

and resultingdmin = 9.74. Hence the radius of the stability
ball r = min(do,dmin) will be 9.74.

Following the design procedure proposed in IV-C, a
comparison table is shown in Table I where Steps 1 to 3
corresponds with the steps described in section IV-C, while
Step - 4 evaluates‖k‖2 keeping three non critical poles in
their original location.

The percentage reduction in‖k‖2 in Step - 1, Step - 2 and
Step - 3 is compared with Step - 4. It is observed that a large
reduction in‖k‖2 is achieved in Step-1. However, the non-
critical poles are in the unstable region. Hence this example
needs the design Step - 2 which is developed in Theorem 3.
In this step all the non-critical poles are in the stable region
and hence we have achieved our goal. But for comparison of
various norms ofk under different situations we have shown
the other steps also. In Step - 2, the percentage reduction
in ‖k‖ is modest i.e. about 11.6%. However, we can get a
better percentage reduction in‖k‖2 in practical situations as
is demonstrated by the power system example next.

Example 2: In this example, the linearized model of
a 16-generator, 68 bus bar power system [6] and [7] is
considered around its nominal operating condition. The 133
order original model is reduced to a 10th order equiva-
lent without introducing much error within the frequency
range of interest (0.1 to 0.8 Hz). Open loop poles of
the reduced system are at are at−33.5344,−5.7250±
7.4088i,−0.1741± 3.7981i,−0.1781± 3.1604i,−0.1808±
2.4535i,−0.3078. It is required to place six poles at
−0.4000± 3.7980i,−0.4000± 3.1604i,−0.4000± 2.4535i
and remaining 4 poles are non critical. Following all the
design procedure proposed in IV-C, a comparison table is
shown in Table II. It is seen that a 51.28% reduction in‖k‖2

TABLE II

COMPARISONTABLE

Procedure Non critical ‖k‖2 % Red. in Sys.
closed loop poles ‖k‖2 Cond.

Step - 1 −10.0009±9.0498i 2.1128 51.2877 Stable
−7.0277,−0.4076

Step - 2 −5.9726±6.8486i 4.0973 5.5326 Stable
−35.2522,−0.3078

Step - 3 −5.8745±7.0547i 4.1432 4.4723 Stable
−34.6056,−0.3036

Step - 4 −5.7250±7.4088i 4.3372 – Stable
−33.5344,−0.3078

is achieved in Step - 1. This leads to a substantial reduction
in controller effort and an associated reduction in actuator
cost.

VI. CONCLUSION

The article describes a general method of reducing con-
troller effort through optimization of the state feedback
vector norm. The optimization guarantees that (a) the critical
poles are placed in specified locations in the complex plane
(b) the non-critical poles are placed inside a pre-specified
design regionS. This regionS typically corresponds to a
maximum settling time requirement on the non-critical poles.
The proposed method is shown to produce a substantial
reduction in controller effort in two numerical examples.
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