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Abstract— The problem of placing an arbitrary subset (m) inherently present in large inter connected power systéins [
of the (n) closed loop eigenvalues of a™ order continuous  Hence, it is required to carefully place only those intevaar
time single input linear time invariant(LTl) system, using full  ggcillation modes to ensure desired performance following
state feedback, is considered. The required locations of the disturb Th . dt bout th .
remaining (n—m) closed loop eigenvalues are not precisely ISturbances. There 'S_ no nge _oworry about the rema'n'n_g
specmed However’ they are required to be placed anywhere mOdeS as |Ong as the'r Setﬂll’]g times dO not exceed those n
inside a pre-defined region in the complex plane. The resulting open loop. Due to the very nature of the non-critical modes,
non-uniqueness is utilized to minimize the controller effort higher control efforts are required unless they are lefh@lo
through optimization of the feedback gain vector norm. Using a 4 take their natural course. This results in an overalldase

variant of the boundary crossing theorem, the region constraint . . .
on the unspecified(n— m) poles is translated into a quadratic in the norm of the feedback gain vector and hence, costlier

constraint on the characteristic polynomial coefficients. The actuators. _
resulting quadratically constrained quadratic program can be The conventional way to address such a problem would be

approximated by a quadratic program with linear constraints.  to : (i) choose closed loop critical pole locations accogdin

The proposed theory is demonstrated for power oscillation 4 the design specifications (i) choose the non-criticdepo
damping controller design, where the eigenvalues corresponding locations same as their open loob positions. However. in
to poorly damped electro-mechanical modes are critical for P PP : '

performance and hence are specified precisely by the designer, €stablished pole placement methods [12], [13] the compen-
whereas the remaining eigenvalues are non-critical and need not sation of feedback gain vector is a coupled procedure which

be specified precisely. Acceptable closed loop pole placementdepends both on the critical and non-critical closed lode po
is achieved for this example along with a 51% reduction in  chojces. As a result it often turns out in practice that this
controller norm. - - .

strategy leads again to a high value of the resulting feddbac
gain resulting in higher control effort requirements and-eno
costly actuators.

Conventional state feedback control can place closed looplt is proposed in this article that the state feedback
poles of a controllable linear time invariant system at areontroller can be designed in such a way that the critical
bitrary locations in the complex plane. However, in somgoles will be placed precisely at the pre-specified location
applications, only a given subset of the closed loop poles afhe controller norm is minimized explicitly under these
of interest and it is enough to place this subset of poles abnstraints and the remaining non-critical poles are left t
precise pre-specified locations. The other closed loopspolassume whatever natural position they might assume due to
can assume any positions in (or in a specified subset df)e optimization process. It is assumed that the non-atitic
the stable region of the complex plane. It is well known [2modes are already stable in the open loop, and that they may
that if the desired locations @l the closed loop poles are be allowed to move freely about their open loop locations
specified then for a SISO system the required feedback gaas long as they do not lose stability. Additionally, it iseoft
vector is unique. However if only a subset of the closed loopequired that all closed loop poles should have a minimum
poles are specified, the extra degrees of freedom associatianping which implies that they should be located to the
with the unspecified poles can be utilized to minimize théeft of a given vertical line in the left half of the complex
control effort associated with the controller. It is shown i plane. Using a version of the boundary crossing theorem [1]
this article that this problem can be posed as a quadraiicshown that (stability or minimum damping) requirements
program which can in turn be solved efficiently by standardn the closed loop non-critical poles can be translated into
numerical methods. constraints in the coefficient space of the characteristic

The proposed theory is demonstrated for inter-area oscill@olynomial corresponding to the non-critical poles. These
tion damping controller design in power system application requirements define a quadratic constraint on the subsequen
Inter-area oscillations (associated with inter-area rmpdee  minimization problem. It is shown that this problem can
electro-mechanical oscillations of order 0.1-0.8 Hz anel abe posed as a direct minimization of the feedback gain

vector norm with two types of constraints: (i) linear eqtyali
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computed by semi-definite programming methods. the complex plane. In general we will assume tfrat m)
This formulation can be further simplified by approximat-eigenvalues ofA—bk") are required to be located in a subset

ing the quadratic constraints on the characteristic patyigb S of the left half of the complex plane. In this article we will

coefficients by inscribing hypercubes in the coefficienttgpa defineS as follows:

This reduces the quadratically constrained quadraticramg )

to a quadratic program with linear constraints which can be S={s€C: Res) <y} ®)

solved efficiently using a variety of optimization techigu where the value of < 0 (signifying the maximum allowable

(3], [4]. settling time for the non-critical poles) is specified by the
Pole placement algorithms have been studied intensivediesigner. Then the problem described in the introduction ca

in the literature. Various researchers (e.g. [11], [14D]{1 be simply formulated as:

[12], [13] and [9]) have focused on finding numerically Problem 1: Find inf|k||» such that the eigenvalues @ —

stable and efficient algorithms for multi input multi outputbk™) have the following properties:

pole placement by minimizing the condition number of a 1) m out of the total n eigenvalues are placed at
related eigenvector matrix. In many practical applicaion {—, o, .., —Hm}.

pole placement within a desired subset of the complex planez) remainingn — m eigenvalues are placed anywhere in a
is relevant. This approach, called regional pole placement * ¢ psetS of the left half of C.

has been studied by [8] and references therein. In this

work we pose a novel problem with the following featuresB. Additional Notation

(a) precise placement of a (critical) subset of the closed According to the design specificationsy of the closed
loop poles (b) regional pole placement for the (non—cri)ica|oop poles are required to be placed atpy, — o, ..., —Um}
remaining closed loop poles within a specified region ofyhile the remainingn—m) poles can assume any location in
complex plane (c) minimization of the norm of controllerthe regionS Denote the unspecified closed loop eigenvalues
under the above constraints. as{—p1,—Pz,-..,—Pnm}. Without loss of generality, let the

closed loop poles be ordered as follows
II. NOTATION AND PROBLEM FORMULATION PP

A. Problem Formulation {—t,—H2,....,—Hm,—P1,— P2, —Pn-m}  (4)
Consider a continuous time LTI single-input system deFurther define
fined by the following state space equation m

|‘l(s+ pi) ="+ am_18™" T+ .+ oS+ ag
%= Ax+ bu 1) =

wherexe R", ue R, Ae R™" be R". Assume that the pair n-m - gm1

(Ab) is controllable and defink:= [k; k2-~kn]T cR" It Dl (s+pj) = +Pn-m-1 +.+Pis+Po
is well known that, a linear state feedback control law of the

form u= —kTx can be designed to plaal the eigenvalues Where

of the closed loop system m n—m
P sy amfl:lz Hiy Bn—mfl:lz Pi,
x = (A—bk")x @) =1 =1
m n—m
at any arbitrary locations of the complex plafie Om-2= i; Hi, Hi; Pr-m-2= i; Pix Pip
1<I12 1<I12

However, we are interested in applications where only
a few critical closed loop eigenvalues are specified. As

described in the introduction, the non-critical eigenealu m n—-m

are allowed to assume any value in (or in a pre-specifiedd1 = Y  Hiz---Hin Bi= > PuPi Pl
subset of) the stable region of the complex plane. With- sl 1SSl

out loss of generality, we assume that the finsteigen- ~ 90 =HiH2---Hm Po=p1pz.-- Pn-m

values of A are critical and their closed loop positions Then the characteristic equation of the closed loop system
are specified. Let us denote the eigenvalues ofA by  will be

{A1,A2,. ., Am, Ami1, Ame2, - - -, An} (M < n), which, in addi-

tion, are assumed to be distinct. Of the§k,, A2, ..., Am} are o(s) = = (S+ ) [n m(s+ ) (5)
critical and are required to be placed{atys, — iz, ..., —tm} ill JI:L

in the closed loop, whereas the remainifg— m) eigen-

values {Am+1,Am+2,...,An} are non-critical and are not Q R

associated with any desired closed loop location. Howevéising the above notation, the characteristic polynomial (5
it is often the case that a minimum damping (or maximunis divided into two parts:(Q) - polynomial of known
acceptable settling time) requirement exists on all theegdo coefficients andR) - polynomial of unknown coefficients.
loop poles. This is conventionally specified by restrictingClearly the Q polynomial is completely defined from the
the pole locations to the left of a given vertical line inproblem specification. However the only requirement of the



R polynomial is that its roots should be located in a preehoice ofﬁ(s), we propose to use the polynomial formed

specified regiorS e C defined in (3). out of the open-loop non-critical poles as follows:
Our objective is to pose Problem 1 as a quadratic program N
so as to make it numerically tractable. For this purpose it Rla) — A 7
) ) B(s) = (s+4)) )
would be convenient to translate the requirement on thespole =1

(-=p €S i=1,..,n—m) of polynomialR into requirements

on the coefficients(Bo, Br. ... Br_m_1) Of the polynomial Usually, those open loop eigenvalues, which are stable and

R. For this purpose let us denote the set of (@ m)t" already have adequate damping, are classified as noratritic
degree monic polynomials with real coefficientsRasm(s). | 1€NCe.In most practical scenaridga;1, Am:2, .., An € Sand

Further assume that the regi®e C corresponds to a set hencep(s)Cs. . . N
Cs C Pa_m(S). In other words, we assume that edch- m)th The second step in calculating the maximal stability ball

degree monic polynomials with roots i@ will belong to  B(B(S),r) is to estimate the radius For this purpose we
the setCs. Then problem 1 is equivalent to the following €@n use the following result where the ets assumed to

problem: be the entire left half ofC [1]. A slight modification in the
Problem 2: Find inf|[k][> such that(A—bk™) has the definition of3(s) andB(s) extends Theorem 2 to cases where
following properties: Sis defined fory <0 in (3).
. Denote the monic polynomial corresponding to (7) as
1) m out of the total n eigenvalues are placed at -~ ~ ~ 7= .
) (=11, —bloy . — i) g P B(s) ::§“*m+Bn_m_1s”*m*1+...+Bls+$o and define the
2) the polynomialR € Cs . n—mtuple B aspf = [B\n—m—l---ﬁl Eo] S

Note that the se€s is open [1] and hence the minimum Theorem 2: [1, Theorem 3.2] The radius of largest sta-
may not be achieved. This issue is addressed in the ndylity hypersphere around a stable polynomgs) is given
section by replacin@s with a compact subset @s. by

I1l. THE STABILITY BALL IN COEFFICIENT SPACE r = min(do, dmin) (8)

Let us consider an—m)" degree monic polynomial whered, (E(s)) —| Bo | and dnin := infe=00e (fs(s)). The
B(s) € Ph_m(s), represented as follows N
quantity d,, (B(s)

B(s) ="+ Brm1S" " +...+Bs+ B  (6)

N——

can be computed as follows.

d_w (E(S)) =dy (En—m—lsnimi1 +...+ Els-i- EO)

Define B := [Br-m-1 Brm-2 ... BO}T and denote the

vector space ofn—m tuples formed by the non-leading while dy(.), is given by

coefficients of the elements &,_m(s) as #p, such thai € (i) Forn—m—1=2q

¥,. On ¥;, the Euclidean norm is defined 4B ||3= B3 +

BZ+B3+...+ B2 ., 4, while a ball of monic polynomials [ﬁe(w)r {ﬁom)r

with center atB(s) € Py_m(s) and radius' is given by d5() = Trwit. 408 1rafr. +ofaD )
B(B(9).r) = {B(s) €Prm(s) : IB-Bl<r] (i) For n—m—1=29+1

[Be(@)] "+ [B°(w)]”
1+ w4 .. . +w™

where 3 andﬁ are in”p.

Consider the se8C C defined in (3) and denote @Sand
0B the boundary of the setSandB E(s),r respectively.
Then a maximal ball of polynomials having roots $can R R R R
be characterized by the following theorem. ~ | B3 (@) | = Bo— Bot® + Paw* + ... + (—1)IBoq™

Theorem 1:_ [1, Thgorem 3.1] Given a polynomm(s)_g | B\O(w) |= §1—§3w2+[§5w"’+ ot (_1)(q71)§2q_1w2q72
P-m(s), having all its roots inS there exist a positive N
real numberr such that every polynomial contained inAfter calculatingd,, dnin can be found out in following way

B(ﬁ(s),r has all its roots i and at least one polynomial 1y compute real positives's satisfying d(dw) _
In 0B has one of its roots i@ S (2) With thesew'’s evaluated,, and takgcf[)he minimum
Recall that Problem 1 and 2 are equivalent if the set qf - @

polynomials Cs corresponding to the desired pole regionValue of d.
S (see (3)) can be computed. The above theorem sho@é1 algorithm is given in [1] for calculatinglin. Using

that corresponding to ang ¢ C the corresponding set eorem 2, we can calculate the radius of stabiliground

-~ ~ L any E(s) for S= {se€ C: Re(s) < 0}. This requirement
B(B(S)’r) < Gs. However to computfs (B(s),r) explicitly is however not restrictive. To apply theorems 1 and 2 to

we still needa priori a polynomial 3(s) € Cs and subse- stability regions of the forn8= {se€ C: Re(s) <y}, y<O0,
quently we need to compute the radius of stabilitfror our  shift the imaginary axis to/ so that the variables’ in a

d5 () = (10)

where




polynomial (6) will become §—y". So the new polynomial Recalling the expression for the required closed loop
B(s) corresponding to the polynom|ﬁ|( s), will of the form: characteristic polynomial (5), and equating coefficienithw

~ L (12), we get:
B(s)=s""+ Brm 18 ™+ Bis+ o On1= Om-1-+Brm-1

The roots of the polynomigB(s) will be obtained by shifting On-2 = Om-2+ dm-1Bn-m-1+Bn-m-2 (16)
the roots of polynomlaB( s) by amounty. Since B( s) € Cs :
we can consider this as our nominal polynomﬁ(ls) and
apply Theorem 2 to find the radius of the stability ball. Every
polynomial belonging to this stability ball has all its rean

02 =0oP2+ a1+ a2
01 =00P1+ a1fo

S={seC: Res) <y}. % =GoPo
In (16) above, the coefficientsg, ay,...,am_1 are known
IV. MAIN RESULTS quantities (since(—py, — o, ..., —Hm) are specified by the

We show that Problem 2 is equivalent to a quadratidesigner), where ago,fi, ..., fn-m-1 are unknown quanti-
cally constrained quadratic program and subsequently inft§s due to dependency @, pz, ..., pr—m Which are unspec-

a quadratic program using a linear approximation of thied. First note thawg, 01, ...,0n-1 can be eliminated from
constraints. equations (15) and (16) to gatlinear equations:

A. An Equivalent Quadratically Constrained Quadratic Pro- —
q Q y Q Om-1+Bn-m-1=kKn+an_1

gram
Denote the open loop characteristic polynomial of (1) by: : a7)
a(s) = det(sl —A) QoL+ a1fo = Ez +a
a, =
= tan 1S a8 2+ .. fasta (11) oPo=ki+20
From (17),(Bo, ..., Br—m=1)_Can be expressed in terms of
Definea:= [an,l a2 - a ao] . The characteristic n—m linear equations irky,k, ..., K, A simple inductive
polynomial of the system (2) is defined as follows method to get such equatlons is shown below:
o(s) =detsl —A+bk") Bo= (k1+ao)
=4 0,19 140, 08" 2 +.. .+ oS+ 00 (12 1 o
" " (12) Blzafo<(k2+al)*afé(k1+ao)) (18)
Defineo:=[0n-1 On2 -+ O1 GO]T
. 2 n—-1
¢:=[b Ab A - Al (13) Brm1= ...
1 = = . a
0 anll Zj a; Then (18) can be compactly written as follows
dTi=10 0 (14) B=TFk+g (19)
0 O 0 - an1 n-m g (n—m)xn n-m
o o 0 ... 1 where B € R"™™ # € R , g € R"™™  Now

Bo, - -, Bn—m-1 from (18) can be back-substituted in the set
It is well known [2] that if the system is controllable Of nequations (17) to genlinear equations irtky, ko, ..., ka)

i.e. controllability matrix (13) is non-singular, the ctxs Which can be written in the form:

loop eigenvalues (oA—bk") can be placed at any arbitrary Skih=0 (20)

locations inC. Moreover, the corresponding feedback gain

vectork is unique and can be calculated from the followingvhere& e R™", he R™and 0 is a zero vector of appropriate

equations: dimension. Usingk = &% Tk, and defining
g€ k+a=0 F=24%" andE = &% (21)
Denotek = 7% Tk and letk = [ky kn_1...k1]T. Clearly each We get the following set of equations:
ki(i=1,...,n) is a linear combination okg, ...,k,. Then: B=Fk+g and Ek+h=0 (22)
On-1=kn+an1

Further, recall the definitions (ﬁ andr from (7) and (8).
On2=kKn-1+an2 (15)  Then the following result holds:
: __Theorem 3: If for some k € R", the relations||Fk+g—
= Bll2 <r and Ek+h =0 holds, then the eigenvalues of the
0o = k1 +@o matrix (A— bk") satisfy the following properties:



By

1) m out of the total n eigenvalues are c
{_I’llv_l-'l27"'7_um}' " : N
2) the remainingh— m eigenvalues—p; € SUJS for i = y Square in
A I A Stable Region
1,...,n—m. N A o m®
Proof: Let somek satisfy|[Fk+g— ]2 <r andEk+

h=0. Then||8 — B||2 < r. Hence the polynomiaB(s) € BN i Stability Ball

B B(s),r) UJdB. So we can apply theorem 1 to guarantee Bo

that the roots o (s) lie in SUJS. Them equationEEk+h=

0 imply that them roots of polynomialQ (see (5)) are placed

at{—pa,...,—Hm}- ]
Theorem 3 defines the constraint set on the feedback gain

vectork, which can be used to pose an optimization problem Problem 4: Find minegn ||K||2 subject to

that minimizes the norm df. After some simple calculations

|[Fk+g—Bll2 <r can be written a&"Mk+2m'k+c<0 Ek+h=0

whereM = FTF, m" = (g—B)'F andc = (g— )" (g— Fk+ges

B) —r?. HereM is a positive semi-definite matrixm is a

constant vector ande R. The optimization problem can be Problem 4 is a quadratic program with linear equality

Fig. 1. Square Approximating the Stability Ball

formulated as follows: constraints aneth—m linear inequality constraints. It is well
Problem 3: Find minegn ||k||2 subject to known [4] that this problem has a unique minimum and can
be solved efficiently using a variety of algorithms (e.g. see
Fk+h=0 3], [4)).

kK"Mk+2m'k+c <0
It sh_ould be no_tec_;l that the above cons_traint set is alwa)@_ Design Seps
feasible since it is known that there is always at least
one k which places the poles at arbitrary desired location. It should be noted that Theorem 1 is only sufficient in
However, the optimak might place some of the closed guaranteeing that the corresponding eigenvalues sta in
loop eigenvalues on the boundad$ of the stability region. Consequently, in some cases, it might be possible to find a
The designer should choose the stability reg®with this ~ k which preserves the pole placement requirements and but
consideration. Another issue with problem 3 is that th&as lesser norm than the solution to Problem 3. Additionally
optimization might not be numerically easy since the matrihe solution to Problem 3 might be hard in general, and one
M is positive semi-definite and not necessarily positivénay have to depend on the linear relaxation to compute a
definite [3]. It is known that such a quadratically constegin solution. Hence, a three step design procedure is suggested
quadratic program, though convex, can turn out to be Nielow to find a controller with maximum reduction in the
hard. Several relaxations of this problem have been studi®@rm. Since, the precise location requirement on the atitic
(see e.g [15] and references therein). In this article, we gi €igenvalues is inflexible, the equality constraits+h =0
a simple box approximation for the spherical constraint s@re assumed to be imposed on all the steps below:

defined in Problem 3. 1) Solve Problem 3 without considering the inequality
constraints. If all the poles belong t8 then stop;

. . . : ~ . otherwise go to step 2.
In this section the spherical constraiff —fjz <1 is 2) Solve Problem 3. (Recall that the solution might be NP-

approximated by a hypercube ®"™ that inscribes the hard.) If tractable, stop; otherwise proceed to step 3.
sphere. The situation is shown in Fig. 1 far—m= 2. 3) Solve Problem 4’ ’

A squareEFGH which approximates the stability ball is
obtained by projecting the vect@®G onto the lineAB and
CD respectively. The length of the projecti@M on AB will

B. Approximate Linear Constraints

V. NUMERICAL EXAMPLES

ber/+/2. So each edge of the square will be/22. Example 1: Consider a LTI system with
Similarly we can extend this notion to a higher dimen-
sional stable ball where each edge of the inscribed hypercub 0 1 0 0 0
will be 2r /\/n—m. Next define the set A 0O O 1 0 b— 0
_ _ . 10 O 0 1 |0
= MR <B<BTi= co,n—m-—
Zi={peRT ™A <H<fI=01...n-m-1} 51 -10 -30 —10 1
where fori=0,1,...n—m—1
N r . = r Eigenvalues ofA are at 1-3,—4+i. Only the pole at
=3 —— and T =3 H ;
B =8B T B =B+ T +1 is unstable and we assume that this pole needs to be

N placed at—1 using state feedback control. The remaining 3
ThenZ C {B eR™™:||B—B|2<r} and a sub-optimal poles are assumed to be non-critical and are allowed to be
reformulation of Problem 3 can be written as follows: placed arbitrarily within the open left half of complex p&an



TABLE | TABLE I

COMPARISONTABLE COMPARISONTABLE
Procedure|| Closed loop poles| [k:[[2 % Red. in] Sys. Procedure[| Non critical [TK][2 % Red. in[[ Sys.
Ik ll2 Cond. closed loop poles [IK]|2 Cond.
Step - 1| 0+6.4031,—-1,1 20 84.93 Unstable Step - 1 || —10.0009+9.0498 | 2.1128 || 51.2877 Stable
Step - 2 || —3.9158+1.9057 | 117.2485| 11.66 Stable —7.0277-0.4076

—2.2363,—1 Step - 2 || —5.9726+6.8484 4.0973 || 5.5326 Stable

Step - 3|[ —1.9161+5.0794 | 120.0862| 9.52 Stable —35.2522-0.3078
—1.5395,-1 Step - 3 || —5.8745+7.0547 4.1432 || 4.4723 Stable

Step- 4| —4+1i, -3,-1 132.7253 — Stable —34.6056,—0.3036
Step - 4 || —5.7250+ 7.4088 4.3372 - Stable

—335344,-0.3078

Following the discussion in Section IV, (22) takes the form:

Po=ki—51 is achieved in Step - 1. This leads to a substantial reduction
Br=—ky +ko+61 in controller effort and an associated reduction in actuato
By — ket 9 cost.

ki — ko + ks —kqs—40=0 VI. CONCLUSION

The article describes a general method of reducing con-
troller effort through optimization of the state feedback
Yector norm. The optimization guarantees that (a) thecatiti
poles are placed in specified locations in the complex plane
(b) the non-critical poles are placed inside a pre-specified
design regionS This regionS typically corresponds to a

Next we are required to construct the polynonﬁa(ls)
according to (7). Recalling that the open loop poles a
at —3,—4+i, B(s) := s + 11> + 41s+ 51. Following the
procedure given in Section lligy = 51 and according to
(10), d2, will be

(51— 11002]2 ) maximum settling time requirement on the non-critical gole
deZ ﬁJr [41— wz] The proposed method is shown to produce a substantial
. o _ . reduction in controller effort in two numerical examples.
and resultingdnyin = 9.74. Hence the radius of the stability
ball r = min(do,dmin) will be 9.74. REFERENCES
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and remaining 4 poles are non critical. Following all the )
design procedure proposed in IV-C, a comparison table is

shown in Table II. It is seen that a 2B% reduction in|k||2



