Eigenvalues \& Eigervertars - I
\# Finding eigenvalues $\overline{=}$ solving polynomial Eyras. \#Consider a manic (lvCOQ) polynomal

$$
\begin{aligned}
& p(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0} \\
& A=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & \cdots & 1 & 1 \\
-a_{0}-a_{1} & \cdots & 0 & -a_{n-2}-a_{n-1}
\end{array}\right] \rightarrow \text { companion matrix } \quad \text { of } p(\lambda)
\end{aligned}
$$

Take $u=\left(1, \lambda ; \cdots, \lambda^{n-1}\right)$. If λ is a root of $p(\lambda)$ then, $A u=\lambda u \Rightarrow \lambda$ is an sig of A. \#Conversely, if λ is an eigenvalue of A the $\operatorname{det}(\lambda I-A)=0$.

FACT: There is no general formula (involving $t,-, x, \cdots$ and $\sqrt{ }$) fer the roots of polynomials with degree >4.
\Rightarrow There is no direct method for solving the gerecal eigenvalue problem.
Power Iteration: Let $A \in \mathbb{P}^{n \times n}$ with n linearly independent eigarvertars V_{1}, \cdots, v_{n}.
\# Assume: $\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant\left|\lambda_{3}\right| \geqslant \lambda_{4} \geqslant \cdots \geqslant \lambda_{n}$ dominant A \& Note strict inequality
\# Choose an arbitrary vectes q.

$$
q=c_{1} v_{1}+\cdots+c_{n} v_{n} \quad\left(\text { assume } c_{1} \neq 0\right. \text {) }
$$

(If q is chosen randomly, $c, \neq 0$ almost surely)

$$
\begin{aligned}
& A_{q}=c_{1} A_{1} v_{1}+\cdots+c_{n} A_{n} \\
&=c_{1} \lambda_{1} v_{1}+\cdots+c_{n} \lambda_{n} v_{n} \\
& A_{1}^{2}= c_{1} \lambda_{1}^{2} v_{1}+\cdots+c_{n} \lambda_{n}^{2} v_{n} \\
& A^{j} q=c_{1} \lambda_{1}^{j} v_{1}+\cdots+c_{n} \lambda_{n}^{j} v_{n}
\end{aligned}
$$

Define $q_{j}:=\frac{A^{j} q}{\lambda_{1}^{j}}=\left(c_{1} v_{1} \rightarrow c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{j} v_{2}-1+c_{n}\left(\frac{\lambda_{n}}{A_{1}}\right)^{j} v_{n}\right)$
Then $\| q_{j}-c_{1} v_{1}| | \leqslant\left[\left|c_{2}\right|| | v_{2}| |+\cdots+\left|c_{n}\right|| | v_{n}| |\right]\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{j}$

$$
\leqslant \subset\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{j} \quad\left[\text { rising }\left|\lambda_{2}\right| \geqslant \lambda_{1}, i \geqslant 3\right]
$$

Since $\left|\frac{\lambda_{2}}{\lambda_{1}}\right|<1,\left\|q_{j}-c_{j} v_{1}\right\| \rightarrow 0$ as ${ }^{j} \rightarrow \infty$
\# Note: We do not know λ_{1}. Hence q_{j}
cannot. he used.

$$
\rightarrow\left\|A_{j}^{j} q\right\| \rightarrow \infty \quad \text { if } \quad\left|\lambda_{1}\right|>1
$$

Hence it. is better to use a scaled version

$$
\text { of } A^{j} q: \otimes\left\{\begin{array}{l}
q_{0}=\dot{q} \\
q_{j+1}=\frac{A q_{j}}{\sigma_{j-11}}
\end{array}\right.
$$

\# When (x) converges, $q_{j}=\frac{A q_{j}}{\sigma_{i}}$

$$
\Rightarrow \text { i) } q_{j}=v_{1}\left(\text { or muttip } v_{i c}\right)
$$

2) $\sigma_{j}=\lambda_{1}$
convenient $\left|\begin{array}{c}e g \\ \sigma_{j+1} \\ o \max \\ i\end{array}\right|\left[\left.\begin{array}{ll}\left.A a_{j}\right]_{1}\end{array} \right\rvert\,\right.$ or

$$
\sigma_{j+1}=\left\|A q_{j}\right\|_{2}
$$

Flops: For j-iterations, $2 n^{2} j$ flops. However this is an ilesotive method. Converge can be show Gie. $j \rightarrow$ can he large before $\left\|q_{j+1}-q_{j}\right\|$ lecorres ≈ 0.
Q. Does this work of A is ret serisimple?

Rate of Convergence: x_{j} is said to converge linearly to x if $\exists \quad 0<r<1$ sit.

$$
\lim _{j \rightarrow \infty} \frac{\| x_{j+1}-x_{\|}}{\left\|x_{j}-x\right\|}=r
$$

ie $\quad\left\|x_{j+1}-x_{\|}\right\|=r_{i}\left\|x_{j}-x\right\|$ foes j sufficiently convergence ratio/
contraction no./
\#For power method, $r=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|$ (Erevise)
\# Power Heration often works well But limited to finding the largest eigenvalue.

$$
\begin{aligned}
& q k=\operatorname{randn}(n) \\
& q k=\frac{q k}{\operatorname{mesm}(q k)}
\end{aligned}
$$

for $k=1: n$-iterations

$$
\begin{aligned}
& z k=A * q k \\
& e-v a l=\operatorname{dot}(z k, q k) \\
& q k=\frac{z k}{\operatorname{nomm}(z k)}
\end{aligned}
$$

Eighualue est.

$$
=\frac{q k^{+} A q k}{q k^{\infty} q_{k}}
$$ (see below)

Can be restored witt pron $(z k) \mid$
level

Inverse Iteration: [Same cusumptions on A] Claim: If A is min-singular. Hf $A v=\lambda v$ then $\quad\left[A^{-1}\right] v=\left[\frac{1}{\lambda}\right]^{2} \quad\left[\begin{array}{c}v=\frac{1}{\lambda} A v \\ \Rightarrow A^{-1} v=\frac{1}{\lambda} v\end{array}\right]$
\# clearly, A^{-1} has lin. ind eigerveitars v_{n}, \cdots, v, cos to $, \lambda_{n}^{-1}, \lambda_{n-1}^{-1}, \cdots, \lambda_{1}^{-1}$.
\# of $\left|\lambda_{n}^{-1}\right|>\left|\lambda_{n-1}^{-1}\right|^{n-1}$ i.e $\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|$ same method car be used to compute V_{n}.
\# Convergence rate: $\| \lambda_{n} / \lambda_{n}$ - $\|\|$ Faster convergence if $\left|\begin{array}{c}\lambda_{n} \\ 4\end{array}\right| \ll\left\|\lambda_{n-1}\right\|$

Take away: We want λ_{n} very dose to zero.
Shifting: $\begin{aligned} & A \in \mathbb{R}^{n \times n}, \rho \in \mathbb{R} . \text { H }^{2} \quad A v=\lambda v, \\ & (A-\rho I) v=(\lambda-\rho) v\end{aligned}$

$$
(A-\rho I) v=(\lambda-\rho) v
$$

\# Choose $f \approx \lambda_{0}$ Goer any $i=1, \cdots$, n.
(in absolute $\begin{gathered}\left(\lambda_{k}-\rho\right) \\ \text { value }) \text { be the second smallest }\end{gathered}$ \# Apply inverse iteration an (A-SI).
\rightarrow will converge to eigerveclos $V_{i}{ }^{\circ}$ with
\# $q_{j+1}=\left.\frac{(A-\rho I)^{1} q_{j}}{\sigma_{j+1}}\right|_{\text {\#Just solve un g }}$ No invest. Just solve using eng u
end
Q1) How do we know $\lambda_{1}{ }^{\circ}$, in turn ρ ? Q2) If we take $\rho \approx \lambda_{i}{ }^{\circ}$ then $(A-\rho J)$ is ill - conditioned. Can me calculate \hat{q}_{j+1} accurately?
\# We do knew that even if $(A-\rho I)$ is ill-anditioned, $(B . E) \rightarrow(A+\delta A-\rho I) \hat{q}_{j+1}=q_{j}$ when $|\delta A|$ is small. \Rightarrow But what absent sensitivity? (Later)

Rayleigh Quotient \leftarrow Answers to Q1.
\# Estimate eigenvalue at each iteration. using qi
FACT: Let $A \in \mathbb{C}^{n \times n}$ \& $q \in \mathbb{C}^{n}$. The unique cimplese no. that minimizes $\|A q-\rho q\|_{2}$ is the

Rayliegh Quotient $\rho=\frac{q^{*} A q}{q^{*} q}$
Proof: Std. Leost sy.problem: $\square^{q-1[9]}=[]_{\rightarrow A q}^{1 \times 1}$
Normal Eqn: $\rho\left[q^{*} q\right]=q^{*}(A q) \rightarrow$ Note Cemplese

$$
\Rightarrow \quad \rho=\frac{q^{*} A q}{q^{*} q}
$$ corjugates

\# Clearly if q is an eigervecter of A
then $f=$ eigenclue coss. to q.
FACI: $A \in \mathbb{P}^{n \times n}, A \lambda=\lambda v$. Assune $\|V\|_{2}=1$. Let.
$q \in r^{n},\|q\|_{2}=1$ \& tet $\rho=q^{\infty} A q$ he
the Rayliegh Quolient of q. Then

$$
|\lambda-\rho| \leqslant 2\|A\|_{2}\|v-q\|_{2}
$$

Proof: Clcarly, $\lambda=V^{*} A V$.

$$
\begin{aligned}
\Rightarrow \lambda-\rho & =v^{*} A v-q^{*} A q \\
& =v^{*} A v-v^{\infty} A q+v^{\infty} A q-q^{*} A q \\
& =v^{*} A(v-q)+(v-q)^{*} A q \\
\Rightarrow|\lambda-\rho| & \leqslant\left|v^{*} A(v-q)\right|+\|(v-q)^{*} A q \mid \\
& \leqslant\|v\|_{2}\|A\|_{2}\|v-q\|_{2}+\|v-q\|_{2}\|A\|\| \|_{2} \|_{2} \\
& =2\|A\|_{2}\|v-q\|_{2}
\end{aligned}
$$

Royliegh Quotient Iteration
\# Inverse Heration with each shigt $=$ the ourrent Ruyhiegh qorotient.

At $k^{\text {th }}$ step, $\rho_{j}=\frac{q_{j}^{*} A_{j}}{q_{j}^{*} q_{j}}$
$\left(A-\rho_{j} 1\right) \tilde{q}_{j+1}=q_{j} \quad$ and $q_{j+1}=\frac{q_{j+1}}{\sigma_{j+1}}$
for $k=1: n_{n}$ ier

$$
\begin{align*}
& z k=(A-m u \times 1) \backslash q k \tag{7}\\
& q k=z k / \operatorname{mesm}(z k) \\
& m u=\operatorname{dot}(q k, A * q k)
\end{align*}
$$

\rightarrow final mu is our approximation of eigenvalue
end
\# Convergence is difficult to analyse since μ is charging at each step
\rightarrow It is roughly quadratic in practice.
\rightarrow Show example.
\# Flaps: $O\left(n^{3} j\right)$ since a new $L O$ is reg. at each step.

Review of Linear Algebra (T^{n})
\# Complex Amolay of Onttoganal Matrix \rightarrow Unitary Motion $\# U \in \mathbb{C}^{n \times n}$ is unitary if $U^{\infty} U=1$ ie $U^{\infty}=U^{-1}$
Eg. $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} i & -\frac{1}{\sqrt{2}} i \\ a_{1} & a_{2}\end{array}\right] \Rightarrow A^{*}=\left[\begin{array}{cc}\frac{i}{\sqrt{2}} & -\frac{1}{\sqrt{2}} i \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} i\end{array}\right] \quad \begin{aligned} & \text { Chede } \\ & A^{*} A=I_{2}\end{aligned}$

$$
\left.\begin{array}{l}
\left\langle a_{1}, a_{1}\right\rangle=a_{1}^{\infty} a_{2}=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} i
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} i
\end{array}\right]=\frac{1}{2}-\frac{1}{2} i^{2}=1 \\
\left\langle a_{1}, a_{2}\right\rangle=a_{1}^{\infty} a_{2}=a_{2}^{\infty} a_{1}=\left[\frac{1}{\sqrt{2}}\right. \\
\left.\frac{1}{\sqrt{2}} i\right]
\end{array}\right]\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} i
\end{array}\right]=\frac{1}{2}+\frac{1}{2} i^{2}=0 .
$$

Clewly:

1) If U, v are untory, $[u v][u v]^{*}=I \Rightarrow U v$ is ceritay
2) u^{-1} is unitay
3) $\langle u x, u y\rangle=\langle x, y\rangle,\left\|u_{x}\right\|_{2}=\|x\|_{2} v, x, y \in \mathbb{P}^{n}$
4) Retaters \& Reflectors have complex anoloegs
5) Every $A \in \mathbb{C}^{n \times n}, A=Q R$ where $Q \rightarrow$ unitany $R \rightarrow$ uppes triangolar
6) U is unitay \Leftrightarrow columns are cettoonermal
7) $A \& B$ are "umitanily similar" if $\exists a$ unitary matrin $U \in \mathbb{C}^{n \times n}$ s.t.

$$
B=U^{\infty} A U \quad\left(=U^{-1} A U\right)
$$

8) U is anitan $\Rightarrow\|U\|_{2}=1, \quad K_{2}(U)=1$
9) If $A=A^{x} \& A$ is uritanily similas to B, then $B=B^{*}$ [Proeg $B=u^{k} A U, B^{k}=u^{*} A^{*} u=u^{k} A u=B$]

Thm: (schuris Thm) Let $A \in \mathbb{Q}^{n \times n}$. Then there enists a unitauy matrix $U \in \mathbb{C}^{n \times n}$ \& a uppes triangulor matrix T s.t. $T=U^{k} A U$

Proog: Induction on n. Trivial far $n=1$ Assume true foer $n=k-1$.
Let $A \in \mathbb{C}^{k \times k}, A \lambda=\lambda v$ witt $\|V\|_{2}=1$ Let $u_{1}=\left[\begin{array}{ll}v & W\end{array}\right] \xrightarrow[\mathbb{C}_{k \times}(k-1)]{ }$ we choser in antary $\rightarrow \mathbb{C}^{k x}(k-1)$ chesen in a way
\Rightarrow Clearly $w^{*}=0$. s-t. u, is unitary.

Let $A_{1}=u_{1}^{x} A u_{1}=\left[\begin{array}{c}v^{*} \\ w^{*}\end{array}\right] A\left[\begin{array}{ll}v & w\end{array}\right]=[\begin{array}{ccc}v^{*} A v & \left.\begin{array}{ll}\neq O_{\text {remand }} v^{*} W \\ W^{*} A v & W^{*} A W\end{array}\right]\end{array} \underbrace{W^{*}}$
Since $A v=\lambda v, v^{*} A v=v^{*} \lambda v=\lambda$

By induction hypottiesi, 7 unitary \tilde{U}_{2} \& upper triangular \hat{T} set $\hat{T}=\widehat{U}_{2}^{*} \hat{A} \hat{U}_{2}$
Define $U_{2}=\left[\begin{array}{c|c}1 & 0 . .0 \\ 0 & \widehat{U}_{2} \\ \dot{0} & -\end{array}\right] \Rightarrow U_{2}$ is unitary

$$
\Rightarrow T=U_{2}^{\infty} A_{1} U_{2}=U_{2}^{\infty} U_{1}^{\infty} A U_{1} U_{2}=U^{\infty} A U
$$

Note: Constructia of U requires the eiganectars $v . \Rightarrow$ Hence cannot be used foe memesical construction.
Schus Dewrposition: $A=U T U^{*}$

$$
\begin{aligned}
& \text { \# valid foe all matrices } \\
& \# A\left[u_{1} \cdots u_{n}\right]=\left[u_{1} \ldots u_{n}\right] \mid\left[t_{11}\right. \\
& \# 0 \\
& \Rightarrow A u_{1}=u_{1}
\end{aligned}
$$

$$
\Rightarrow A u_{1}=u_{1} t_{11}
$$

$\xrightarrow{\longrightarrow}$ Eigementar witt cig. value t_{11}
(Other are not so ens y to find)

Example: $A=\left[\begin{array}{cc}-1.06 & -0.61 \\ 2.35 & 0.74\end{array}\right] \quad v_{1}=\left[\begin{array}{l}0.34-0.31 \\ -0.89\end{array}\right], \hat{A}_{1}=-0.156+07 \xi_{1} 0$

Related Resolts
(Spectral Thm far Hermition Matrices): Let $A \in \mathbb{C}^{n \times n}$ le Hermition. Then \exists a unitary $u \in \mathbb{C}^{n \times n}$ \& a diagenal $D \in \mathbb{R}^{n \times n}$ s.i. $D=U U^{*} A U$ Columas of U ase eigenverters \& diagornal entries of D are the eigervolues.
$\Rightarrow A=U D u^{\infty} \leftarrow$ spectral Decump of A
\Rightarrow Eigervalues of A or real.
$\Rightarrow A$ has n - derthonermal eigervertour
Eg: $A=\left[\begin{array}{cc}1 & 1+2 i \\ 1-2 i & 2\end{array}\right]$ Clearly $A=A^{\circ}$ (Hermition)
Eiguecten: $V_{1}=\left[\begin{array}{c}0.34 \\ -0.6\end{array}\right] \quad V_{2}=\left[\begin{array}{c}0.27+0.5 i^{\circ} \\ 0.78\end{array}\right]$
with lig values $\{-0.79, \quad 3.79\}$
Schur Decomposstion:

Normal Mofrize: A matrix is mosmal if $A A \stackrel{*}{=} A^{*} A$ (not neursaily $=1$)
Thi: (spectral Tim foer Normal Matices) Let $A \in \mathbb{R}^{n \times n}$. Then A is mormal iff \exists a unitury matrix $U \in \mathbb{R}^{n \times n}$ \& a cliagenal $D \in \mathbb{C}^{n \times n}$ s.t. $D=U^{\infty} A U$
\widehat{A} Anermal $\Leftrightarrow n$-orttomermal ligervectou
\Rightarrow Every skew-Hermition matix is mermal

$$
\left(A^{\infty}=-A\right) \quad\left(A A^{\infty}=-A^{2}=A^{\infty} A\right)
$$

Example: $A=\left[\begin{array}{cc}-i & 2 i \\ 2 i & i^{0}\end{array}\right]$ Chech: $A^{x}=\left[\begin{array}{cc}0 & -2 i \\ -2 i & -1\end{array}\right]=-A$
Also check $A A^{\circ}=A^{\infty} A=\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]$
Eig: $v_{1}=\left[\begin{array}{l}-0.5 \\ -0.8\end{array}\right], v_{2}=\left[\begin{array}{c}-0.8 \\ 0.5\end{array}\right], \lambda_{1}=2.23 i, \lambda_{2}=-2.23 i$
Scher: $A=\left[\begin{array}{cc}-0.85 i^{\circ} & 0.42-0.31^{\circ} \\ 0.52 i & 0.69-0.49 i^{\circ}\end{array}\right]\left[\begin{array}{cc}-2.23 i^{\circ} & 0 \\ 0 & 2.23^{\circ}\end{array}\right] u^{\infty}$

Subspaces, Distance between Subspaces, Invariant subspaces
Orthogonal $S \subset \mathbb{R}^{n}$ be a subspace. Then $P \in \mathbb{R}^{n \times n}$ is the esthogromal projection onto S if $R(p)=S, p^{2}=p$ and $p^{\top}=p$

$$
\Rightarrow \text { ff } x \in \mathbb{R}^{n}, P_{x} \in S,(I-P)_{x} \in S^{1}
$$

\Rightarrow If P_{1}, P_{2} are orthogonal projections onto S, then for any $Z \in \mathbb{R}^{n}$

$$
\text { for any }\left\|\left(P_{1}-P_{2}\right) z\right\|_{2}^{2}=\left(\mathbb{R}_{1} \mathbb{R}^{n} z\right)^{\top}\left(J-P_{2}\right) z+\left(P_{2} z\right)^{\top}\left(J-P_{1}\right) z=0
$$

$\Rightarrow P$ is unique
\Rightarrow If $V=\left[v_{1}|\cdots| v_{k}\right]$ is an orthonormal basis for S., then $P=V V^{\top}$ is the unique esttiogonal projection nato S.
(Recall SVD based projections)
Distance between frubsaces: $H_{1} S_{1}, S_{2}$ are sabysaces of \mathbb{R}^{n} / P^{n}, and $\operatorname{dim}\left(S_{1}\right)=\operatorname{dim}\left(S_{2}\right)$ then $\operatorname{Dist}\left(S_{1}, S_{2}\right)=\left\|P_{1}-P_{2}\right\|_{2}$
where P_{1}, P_{2} are orthogonal projection onto S_{1}, S_{2} resp

FACT: if $w=\left[\begin{array}{c}w_{1} \mid w_{2} \\ k\end{array}\right], z=\left[\begin{array}{l|l}z_{1} & \mid z_{2} \\ k & z_{2} \\ n-k\end{array}\right]$ are $n \times n$ orthogonal ${ }^{n-h} \operatorname{marivices.~}^{n-k} \quad \rho_{1}=R\left(w_{1}\right)$ \& $S_{2}=R\left(Z_{1}\right)$ then dist $\left(S_{1}, S_{2}\right)=\left\|\omega_{1}^{\top} z_{2}\right\|_{2}$ $=\left\|Z_{1}{ }^{\top} W_{2}\right\|_{2}^{2}$

Invariant subspace: A subspace $S \subset \mathbb{P}^{n}$ is said to lee invariant jas A

$$
\forall x \in S \Rightarrow A x \in S
$$

\# Define $S_{\lambda}=\left\{v \in C^{n} / A v=\lambda v\right\}$. S S_{λ} is a subspace of \mathbb{T}^{n}
$\rightarrow S_{\lambda}=0$ if $\lambda \neq$ eig. value of A,
\rightarrow For $\lambda=$ ling. value of $A, S_{\lambda}=$ big. space of A associated witt \cap.
\# Let S lee an invariant subspace of A. Define $\hat{A}=A / S$. Then $\hat{A}: S \rightarrow S$. But eig.vec/eig. value of A $\& A$ are same. \rightarrow study \hat{A} instead of A.
\# Next results show: If we know any invariant subspace S of A, we ear convert A to block trianyalas fair using unitary sim. tsansfans
FACT: Let $S=s p\left\{x_{1}, \cdots \mathbb{C}_{k}\right\} \& \quad \hat{X}=\left[x_{1}, \cdots x_{n}\right] \in \mathbb{C}^{n \times k}$ then S is invariant under $A \in \mathbb{C}^{n \times n}$ iff

$$
\exists \hat{\beta} \in \mathbb{T}^{k \times k} \text { sit } A \hat{x}=\hat{x} \hat{\beta}
$$

Proof: Excise.
\#Clearly, if $\widehat{B} \hat{v}=\lambda \widehat{v}^{\mathbb{C}^{\mathbb{C}}}$, the $A \hat{X} \widehat{v}=\widehat{X} \hat{B} \widehat{v}=\lambda \widehat{x} \widehat{v}$ $\Rightarrow V=\widehat{X} \widehat{v}$ is an eiguecter $\phi=A$ witt eigual λ. $\Rightarrow V \in S \Rightarrow V$ is an rig. veiter of A / S.

FACT: Under above cusunptions, \exists unitary $Q \in \mathbb{P}^{n \times n}$

$$
\begin{array}{ll}
\text { sit. } & Q^{*} A Q=T=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]_{n-p} p \\
p & n-p
\end{array}
$$

Prod Let $\left.\underset{\text { nip }}{\underset{X}{X}} \underset{n \times n}{\underset{X}{x}}=Q\left[\begin{array}{l}R, \\ 0\end{array}\right]\right] p \times p<Q R$ fact.

$$
\# A \hat{x}=\hat{x} \hat{B} \rightarrow A Q\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]=Q\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right] \hat{B}
$$

$$
\rightarrow \underbrace{Q^{\infty} A Q}_{\text {Define } T}\left[\begin{array}{l}
R, 1 \\
0
\end{array}\right]=\left[\begin{array}{l}
R, \\
0
\end{array}\right] \widehat{D}
$$

Let $T=\left[\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right] \Rightarrow\left[\begin{array}{ll}T_{11} & T_{12} \\ T_{21}, & T_{22}\end{array}\right]\left[\begin{array}{l}R_{1} \\ 0\end{array}\right]=\left[\begin{array}{l}R_{1} \\ 0\end{array}\right] \widehat{\beta}$

$$
\Rightarrow T_{2}, R_{1}=0 \Rightarrow T_{2}=0(\because R, \text { sen sing })
$$

Also, $T_{11} R_{1}=R_{1} \hat{\beta} \Rightarrow \lambda\left(T_{11}\right)=\lambda(\widehat{\beta})$.
Reinterpreting Schus Dearnscesition using variant Subspaces

The: If $A \in \mathbb{C}^{n \times n}$, then \exists a unitary $Q \in \mathbb{P}^{n \times n}$ sit.
(schuss D.)

$$
\begin{aligned}
Q^{k} A Q= & T=D+N \\
& \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)
\end{aligned}
$$

strictly apes triangular
Proof:(using above ideas): True for $n=1$. Assume foes $n-1$.

If $A x=\lambda x(x \neq 0), S=s p\{x\}$ is inv. subsp. Then ly abave FACT;

$$
A[x]=\left[x /\left[\begin{array}{l}
\lambda] \\
C \cos B)
\end{array}\right.\right.
$$

\& \exists unitan $u \in C^{n \times n}$, s.t.

$$
u^{*} A u=\left[\begin{array}{c|c}
\lambda & \omega^{\infty} \\
\hline 0 & C \\
\text { Erenise } & 1 \\
n-1
\end{array}\right]_{n-1}^{s, c}
$$

Rest: Erenise of A.

Dea: -
\# $Q=\left[q_{1}|\ldots| q_{n}\right]$ in abave Tim ase colled Schur
$\Rightarrow \quad A Q=Q T \Rightarrow A q_{k}=\lambda_{k} q_{k}+\sum_{i=1}^{k=1} n_{i k} q_{i} \quad k=1: n$ $\Rightarrow S_{k}=\operatorname{sp}\left\{q_{1}, \cdots, q_{k}\right\} \quad k=1$ in n are invariant.
\# ff $Q_{k}=\left[q_{1}|\cdots| q_{k}\right]$, then $\lambda\left(Q_{k}^{\alpha} A Q_{k}\right)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$

$$
\left.\begin{array}{rl}
Q^{*} A Q & =\left[\begin{array}{c|c|c|}
Q_{k}^{k} \\
\bar{Q}_{k}^{k}
\end{array}\right] A\left[Q_{k}\right. \\
\bar{Q}_{k}
\end{array}\right]\left[\begin{array}{|c|c|c}
T_{11} & T_{12} \\
& =\left[\begin{array}{ll|}
Q_{k}^{k} A Q_{k} & Q_{k}^{6} A \bar{Q}_{k} \\
\hline \bar{Q}_{k}^{k} A Q_{k} & \bar{Q}_{k}^{k} A \bar{Q}_{k}
\end{array}\right] \\
\Rightarrow \lambda\left(T_{11}\right)=\lambda\left(Q_{k}^{k} A Q_{k}\right)
\end{array}\right.
$$

\# For each $\left\{\lambda_{1}, \cdots, \lambda_{k}\right\}$ thens is a k-dim inv. sobosp asseciated i.e. $R\left\{Q_{k}\right\}=\operatorname{sp}\left\{q_{1}, \ldots, q_{k}\right\}$
Q. Is thi's unique?

QR Heration
\# How to \rightarrow witt out why for now
Given $A \in \mathbb{T}^{n \times n}$ and a unitary $U_{0} \in \mathbb{P}^{n \times n}$.
set $T_{0}=U_{0}^{\infty} A u_{0}$
for $k=1,2, \cdots$.

$$
\begin{aligned}
& U_{k} R_{k}=T_{k-1} \\
& T_{k}=R_{k} U_{k}
\end{aligned}
$$

(QR factorizatia of T_{k-1})
(Mutligly Re \& un in opposite order to get
end k)
\# Clearly

$$
\begin{aligned}
T_{k} & =R_{k} U_{k}=U_{k}^{\infty}\left(U_{k} R_{k}\right) U_{k} \\
& =U_{k}^{\infty} T_{k-1} U_{k} \\
& =\left[U_{0} U_{1} \cdots U_{k}\right]^{\infty} A\left[U_{0} U_{1} \cdots u_{k}\right]
\end{aligned}
$$

\# Claim: TK (which is unitarily similar to A) almost always converge to the schus decomposition. (upper Grianefular) of A.

Proof: Over the nest several results.
Power Iteration (and Invariant Subspaces)
Recall $\quad A^{k} q(0)=a_{1} \lambda_{1}^{k}\left(v_{1}+\sum \frac{a_{j}}{a_{1}} \cdot\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} v_{j}\right)$
$q(k)=\frac{A^{k} q^{(0)}}{\left\|A^{k} q^{(0)}\right\|} \in \operatorname{si}\left\{A^{k} q^{(0)}\right\}$

$$
\begin{aligned}
& q(k)=\frac{A^{k} q^{(0)}}{\left\|A^{k} q^{(0)}\right\|} \in \operatorname{sp}\left\{A^{k} q^{(0)}\right\} \\
& \operatorname{dist}\left(\operatorname{sp}\left\{q^{(k)}\right], \operatorname{sp}\left\{x_{1}\right\}\right)=0\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)
\end{aligned}
$$

Also, $\left.\mid \lambda_{1}-\lambda^{(k)}\right)=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)$
\#Power Heration generalizes to higher dimensional invariant subspaces:

Orthogonal Iteration : Let $1 \leqslant r \leqslant n$ Let $A \in \mathbb{C}^{n \times n}, Q_{0} \in \mathbb{P}^{n \times r}$ with erthomermal columns:
fer $k=1,2, \ldots$.

$$
\begin{aligned}
& Z_{k}=A Q_{k-1} \\
& Q_{k} R_{k}=Z_{k}
\end{aligned} \quad\left(Q R \text { factorization of } Z_{k}\right)
$$

encl

$$
\begin{aligned}
& \text { Optimal: } \\
& \lambda\left(Q_{k}^{x} A Q_{k}\right)=\left\{\lambda,(k), \ldots, \lambda_{r}^{(k)}\right\}
\end{aligned}
$$

\# For $r=1,0.1 .=p . I$. exactly s
\# Even foes $r>1$, the sequence $\left\{Q_{k} e,\right\}$ is exutly the seq. produce l li $P I I^{\text {an }}$,

$$
q(0)=Q_{0} e_{1}
$$

[Fer simplicity assume A semisimple]
\# Let the scour deconprasition of $A \in \mathbb{R}^{n \times n}$
(只 $\left.Q^{*} A Q=T=\operatorname{diag}\left(\lambda_{i}\right)+N^{0}\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant \cdots \lambda_{2}\right)$

Let $Q=$| $\left[\begin{array}{ll}Q_{\alpha} & Q_{\beta} \\ r & n-r\end{array}\right] \& \quad T=\left[\begin{array}{ll}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right] \sum_{n-r}^{r}$ | \sum_{n-r} |
| :---: | :---: |

\# Hf $\left|\lambda_{r}\right|>|\lambda r+1|$ then
$\operatorname{Dr}(A)=R\left(Q_{\alpha}\right)$ is called the dominant inv. subsp.
\# $\operatorname{Dr}_{r}(A) \leftarrow$ unique invariant subspace assecited with eig. values $\left\{\lambda, \ldots, \lambda_{\Omega}\right\}$

The: Let the schur deconpsesition of $A \in \mathbb{P}^{n \times n}$ be given by (above, $n \geqslant 2$. Assume $\left|\lambda_{r}\right|>\left|\lambda_{r+1}\right|$ and $\mu>0$ satisfies $(1+\mu)\left|\lambda_{r}\right|>\|N\| F$
Suppers $Q_{0} \in \mathbb{C}^{n \times r}$ has esthomermal columns and define

$$
d_{k}=\operatorname{dist}\left(D_{r}(A), R\left(Q_{k}\right)\right), k \geqslant 0
$$

If $d_{0}<1$, then $\left.Q_{k}\right\rangle$ generated by 0.1) satisfies:

$$
\begin{aligned}
& \quad\left[\begin{array}{l}
d_{k} \leqslant(1+\mu)^{n-2}\left(1+\frac{\left\|T_{12}\right\|_{F}}{\operatorname{sep}\left(T_{1,}, T_{22}\right)}\right)\left[\frac{\left|\lambda_{r+1}\right|+\frac{\|N\|_{F}}{1+\mu}}{\left|\lambda_{r}\right|-\frac{\|N\|_{F}}{1+\mu}}\right]^{k} \frac{d_{0}}{\sqrt{1-d_{0}^{2}}} \\
\rightarrow \operatorname{dor} \leqslant C\left|\frac{\lambda_{r+1}}{\lambda_{r}}\right|^{k} \\
\\
\operatorname{seg}\left(T_{11}, T_{22}\right)=\min _{x \neq 0} \frac{\left\|T_{11} \times-\times T_{22}\right\| F}{\|X\|_{F}}
\end{array}\right] .
\end{aligned}
$$

\rightarrow a measure of th i distance litre
\rightarrow smallest singular value of the linear transformation $x \rightarrow T_{11} x-X T_{22}$

Prof is skipped. in this covese. Refer to Bolus pogy 368 foes details)
\# At the $k^{\text {th }}$ step one car calculate

$$
Q_{k}^{*} A Q_{k}=\left[\begin{array}{ll}
T_{11}(k) & T_{12}^{(k)} \\
T_{21}(k) & T_{22}(k)
\end{array}\right]
$$

Under above cossumptions $T_{21}(k) \rightarrow 0$ \& $\lambda\left(T_{11}(k)\right)=\left\{\lambda_{1}(k), \cdots, \lambda_{r}^{(k)}\right\}$ are the estimate of A, \ldots, λ_{r} at the th iteration.
\# If $\left|\lambda_{r}\right|>\left|\lambda_{r+1}\right|$ holds for all then, the above convergence happens simultaneously for all r.
\Rightarrow

\rightarrow eigenvalues can blue read of.
Q. What hoppers for complex conjugate eigenvalue pairs?

Orthogonal Iteration to QR Iteration

$$
\begin{aligned}
& \text { fer } \begin{array}{l}
k=1,2, \cdots \quad-Q_{0} \mid \text { foe } \\
Z=A Q_{k}
\end{array} \\
& Z_{k}=A Q_{k-1} \\
& Q_{k} R_{k}=Z_{k} \\
& \begin{array}{l}
k=1,2, \cdots \quad T_{0}=Q_{0}^{\infty} A Q_{0} \\
Q_{k} R_{k}=T_{k-1}
\end{array} \\
& T_{k}=R_{k} Q_{k}
\end{aligned}
$$

\# Assume $Q_{0}=1$ in O.I. Then

$$
\begin{equation*}
A I=Z_{1}=Q_{1} R, \Rightarrow A=Q, R \tag{1}
\end{equation*}
$$

\# immediately estimate the eigenvalues:

$$
\begin{aligned}
T_{1} & =Q_{1}^{\infty} A Q_{1} \\
& =Q_{1}^{\infty}\left(Q_{1}, R_{1}\right) Q_{1} \quad(\text { using }(1)) \\
& =R, Q_{1}
\end{aligned}
$$

(Optimistically this shoved be upper
trianefolar imnecliately)
\# in O.1. we would have continued

$$
\text { as } \quad \hat{z}_{2}=A Q
$$

Instead we do the same computation in the coordinate basis of $T_{\text {, }}$ (similar to A)

$$
Z_{2}:=\underbrace{\hat{Z}_{2}}_{\hat{Q_{1}} \hat{Z}_{2}}=Q_{1}^{i}\left(A Q_{1}\right)^{\alpha}=T_{1}
$$

\hat{Z}_{2} expressed in basis of $T_{1}=Q_{1}^{*} A Q_{1}$
\Rightarrow Nest step: $Z_{2}=Q_{2} R_{2}$ (QR fact in OT.)
is equivalent to $T_{1}=Q_{2} R_{2}$
\# Current guess of eigenvalues (ar the upper Ir

$$
\begin{aligned}
T_{2} & =Q_{2}^{x} T_{1} Q_{2} \\
& =Q_{2}^{6}\left(Q_{2} R_{2}\right) Q_{2}=R_{2} Q_{2}
\end{aligned}
$$

\# QR Iteration is same as O.I. With change of basis at each step.
\# Alternate method to derive $Q R$ from O.I. From O.I. $\quad T_{K-1}=Q_{k-1}^{*} \underbrace{\nrightarrow} Q_{k-1}=\left[Q_{k-1}, Q_{k}\right] R_{k}$
and

$$
\begin{aligned}
T_{k} & =Q_{k}^{b} A Q_{k}=Q_{k}^{*} A Q_{k,}, Q_{k-1}^{b} Q_{k} \\
& =Q_{k}^{b}\left(Q_{k} R_{k}\right) Q_{k-1}^{b} Q_{k}=R_{k}\left[Q_{k-1}^{b} Q_{k}\right]
\end{aligned}
$$

Properties of QR Iteration
\# $T_{k} \frac{A t k \text {-th step }}{\text { generated ty }} Q R=Q_{k}^{k} A Q_{k}$ generated by $O . I$.
if bott started from $Q_{0}=1$.
\# R_{k} at k th step are same for both QR \& O.1.
\# $\frac{Q^{*} k}{O . I .}=\frac{Q_{1} Q_{2} \cdots Q_{k}}{Q \cdot R .}$
$\#$ In $Q R \because A=Q, R$,

$$
\begin{aligned}
& A^{2}=Q_{1} R_{1} Q_{1} R_{1}=Q_{1} Q_{2} P_{2} R_{1}=\widehat{Q}_{2} R_{2} \\
& \vdots \\
& A^{m}=\underbrace{Q_{1} \cdots Q_{m}}_{\hat{Q}_{m}} \underbrace{R_{m} \cdots R_{1}}_{R_{m}}=\widehat{Q}_{m} \widehat{R}_{m}
\end{aligned}
$$

Hence $Q R$ is computing $A^{m}\left[e_{1}, e_{n}\right]$ and finding an cesthonowal basis using $\hat{Q}_{m} \rightarrow$ Power iteration.

