Eigervalues/Eiger vectors - II
Improving the QR Iteration Efficiency
\# We want a 'real' version of the Schur Decomposition \rightarrow impassible due to complex poles.
FACT (Real Schur Decomposition): If $A \in \mathbb{R}^{n \times n}$ then $\exists Q \in \mathbb{R}^{n \times n}$ sit.

$$
Q^{\top} A Q=\left[\begin{array}{ccc}
R_{11} & R_{12} & \cdots \\
0 & R_{12} \\
0 & R_{22} & R_{2 m} \\
\dot{0} & \vdots & 0
\end{array} R_{m m} .\right]
$$

where each $R_{i i}$ is either $\left[\begin{array}{lll}0.1 \\ \text { a } 1 \times 1 \text { matrix ar a } 2 \times 2 \text { matrix having }\end{array}\right]$ complex conjugate eigenvalues.

Proof: Only real or Complex Conjugate cig. values are pressible. Let there be -ampler cory; eigenvalues. We do induction on K.
True thy Schar's thin far $k=0$. Now let $k \geqslant 1$.
let $\lambda=2+i \mu \in \lambda(A)$, Then $\exists y, z \in \mathbb{R}^{n}(z \neq 0)$

$$
\text { sit ie } A(y+i z)=(\partial+i \mu)(y+i z) ~\left(\left[\begin{array}{ll}
y & z
\end{array}\right]=\left[\begin{array}{ll}
y & z
\end{array}\right]\left[\begin{array}{cc}
\nu & \mu \\
-\mu & \nu
\end{array}\right]\right.
$$

By $T A C T$ above $(A X=X B)$ sp $\{y, z\}$ is a real invariant subspace of A \& \exists esthoginal $Q \in \mathbb{R}^{n \times n}$ sit. $\quad Q^{\top} A Q=\left[\begin{array}{l|l}T_{11} & T_{12} \\ \hline 0 & T_{22}\end{array}\right]$ when $\lambda\left(T_{11}\right)=\{\nu+i \mu, \nu-i \mu\}$. Rest-erenise.
\# With this form in mind we set up the real conalog of the $Q P$ iteration Giver $A \in \mathbb{R}^{n \times n}$ \& esthegronal Q_{0},
set $H_{0}=Q_{0}^{\top} A Q_{0}$
for $k=1,2, \cdots \cdots$

$$
\begin{aligned}
& K=1,2, \\
& Q_{k} R_{k}=H_{k-1} \quad \text { (QR factouizotia) } \\
& H_{k}=R_{k} U_{k}
\end{aligned}
$$

end
\# We cam at best expect tHe to converge to the real schus form.
\#Hewever, effort at each step is shill O(n3)
Solution: If Q_{0} is chosen sit. To is upper
Hessenberg , ie. $Q_{0}^{\top} A Q=H=$
Then the $Q R=H$ ie

$$
R=Q^{\top} H \equiv \underbrace{C_{n-i}^{\top} \cdots G_{r}^{\top} H}_{n-1 \text { Givens Rotations }} \sim O\left(n^{2}\right)
$$

Similarly the $H_{1}=R Q=R(\underbrace{G_{1} \cdots G_{2-1}}) \leadsto O\left(n_{2}\right)$ upper Hessenbery Hence H_{+}is also upper Hessenbery.
for $k=1: n-1$

$$
\begin{aligned}
& {\left[c_{k}, s_{k}\right]=\text { givens }(H(k, k), H(k+1, k))} \\
& \quad H(k: k+1, k: n)=\left[\begin{array}{ll}
c_{k} & s_{k} \\
-s_{k} & c_{k}
\end{array}\right]^{\top} H(k: k+1, k: n)
\end{aligned}
$$

end
for $k=1: n-1$

$$
H(1: k+1, k: k+1)=H(1: k+1, k: k+1)\left[\begin{array}{cc}
C_{k} & S_{k} \\
-S_{k} & C_{k}
\end{array}\right]
$$

end
Q. Hew to choose Q_{0} sit. $Q_{0}^{\top} A Q$ is upper Hessuberg?
\# 1) $\operatorname{Let} A=\left[\begin{array}{ll}a_{1 \prime} & c^{\top} \\ b & \hat{A}\end{array}\right]$
2) Chase, Householder selectee \hat{X}, st.

$$
\hat{Q}, b=\left[\begin{array}{llll}
-\tau_{4} & 0 & \cdots & 0
\end{array}\right]_{;}^{\top} \quad\left|\tau_{1}\right|=\|b\|_{2}
$$

8 let $Q_{1}=\left[\begin{array}{ll}1 & 0^{\top} \\ 0 & Q_{1}\end{array}\right]$
3) hen

$$
A_{1 / 2}=Q, A=\left[\begin{array}{cc}
0 & \hat{Q}_{1} \\
a_{11} \\
\hline-\tilde{c}_{1} \\
0 & c^{\top} \\
\vdots
\end{array}\right]
$$

\& $A_{1}=A_{1 / 2} Q_{1}^{\top}=\left[\begin{array}{c|c}a_{1,} & c^{\top} \\ -\tau_{1} & \hat{Q}, \hat{A} \\ 0 & 0\end{array}\right]\left[\begin{array}{l|c}1 & 0 \\ \hline 0 & \hat{Q}_{1}\end{array}\right]\left[\begin{array}{c}\text { Sine } \\ Q_{1}^{-1}=Q_{1}^{\top} \\ =Q_{1}\end{array}\right\}$

$$
=\left[\begin{array}{c|c}
a_{11} & c^{\top} \hat{Q}_{1} \\
\hline-\tilde{\tau}_{1} & \hat{Q}_{1} \hat{A}_{2} \\
0 & 0
\end{array}\right]
$$

Note: The right multiplication thy Q, os $Q_{1}{ }^{\top}$ would have destroyed a upper triangular struclier if we tried that.
\#Repeating the same idea

Ago: fees $k=1: n-2$

$$
\begin{aligned}
& {[v, \beta]=\text { house }(A(k+1: n, k))} \\
& A(k+1: n, k: n)=\left(I-\beta v v^{T}\right) A(k+1: n, k: n) \\
& A(1: n, k+1: n)=A(1: n, k+1: n)\left(I-\beta v v^{T}\right)
\end{aligned}
$$

end
$\#$ Requires $10 n \frac{3}{3}$ flops \rightarrow Gut once.
Non-umiquerers of Hessenberg Decompositions
\# A Hessenberg matrix is said to be "cenreduced" if it has mo zero subdiagenal entry. Lot $A \in \mathbb{R}^{n \times n}$
Implicit Q.Theosen: Suppose $Q 2=\left[q_{1}|\cdots| q_{n}\right]$ and $V=\left[V_{1}|\ldots| v_{n}\right]$ are orthogonal matrices sit. $Q^{\top} A Q=H$ \& $V^{\top} A V=G$ are both upper
Hessenberg, Let k denote the smallest no. for which $h_{k+1, k}=0$. ($k=n$ if t is unreduced)

1) If $q_{1}=v_{1}$, then $q_{i}= \pm v_{i}$ \& $\quad\left|h_{i, i-1}\right|=\left|g_{i, i-1}\right|$ foes $\quad i=2: k$.
2) If $k<n$, the $g_{k+1, k}=0$

Prey: Define exttoyoral $W=\left[\omega_{1} / \ldots / \omega_{n}\right]=V^{\top} Q$. Note: $G W=G V^{\top} Q=V^{\top} A Q=V^{\top} Q Q^{\top} A Q=W H$.

Companing column for $i=2: K$

$$
\begin{align*}
& h_{i} 0,1 w_{i}+\sum_{j=1}^{i-1} h_{j, i-1} w_{j}=G w_{i-1} \tag{x}\\
& -\left\{\left[\prod_{i=1}^{\square}\right]=C_{i}\left[w_{1} \ldots w_{i,-}^{w}\right]\right\}
\end{align*}
$$

Recall $w_{1}=e_{1}$

Compore the 3,1 elemet: $0 . a+x, b=0.1+3.0+\cdots$

$$
\Rightarrow x_{1}^{\prime}=0
$$

Compare the 4,1 elent, $0 \cdot a+x_{2} \cdot b=0 \Rightarrow x_{2}=0$

$$
x_{3}=\cdots=x_{n-2}=0
$$

Hence

Comprue the 4,2 elluent $x_{1} \cdot d=0 \Rightarrow x_{1}=0$ elent $x_{2} \cdot d=0 \Rightarrow x_{2}=0$

$$
x_{1}=x_{2}=\cdots=x_{n-3}=0
$$

Proceeding similculy, $\left[w_{1} \cdots w_{k}\right]$ is upper tringela

$$
w_{l}^{0}=v^{\top} q_{i}^{0} \Rightarrow \pm e_{i}=v^{\top} \varphi_{i} \Rightarrow v_{i}^{0}= \pm q_{i}
$$

Also, $h_{i, i-1}=w_{i}{ }^{T} G W_{i-1}$ (from (d))

$$
\left|h_{i, i-1}\right|=\left|q_{i}^{\top} A q_{i-1}\right|=\left|v_{i}^{\top} A v_{i-1}^{\top}\right|=\left|q_{i, i-1}\right| \quad i=2: k
$$

Remaining: Exercise
Q) How to accelerate convergence?

Shiftect $Q R$: Let $\mu \in \mathbb{R}$ and corsides:
$H_{0}=Q_{0}^{\top} A Q_{0}$ (Hesserberg seduction)
far $k=1,2 \ldots$
Determine μ.
$Q_{k-1} R_{k-1}=\left(H_{k-1}-\mu I\right) \quad$ (QR factaigatio)

$$
H_{k}=R_{k-1} Q_{k-1}+\mu I
$$

end
\# $H_{k}(\forall k)$ is similar to A

$$
\begin{aligned}
H_{k} & =R_{k-1} Q_{k-1}+\mu I=Q_{k-1}^{\top} Q_{k-1}\left[\begin{array}{l}
R_{k-1} \\
Q_{k-1}
\end{array}+\mu J\right] Q_{k-1}^{\top} Q_{k-1} \\
& =Q_{k-1}\left[\left(H_{k-1}-\mu I\right) Q_{k-1}+\mu Q_{k-1}\right] \\
& =Q_{k-1}^{\top}\left[H_{k-1}\right] Q_{k-1}
\end{aligned}
$$

But H_{0} similar to $A \Rightarrow H_{k}$ sim to A.
\# If we re-numbes the eigavalues such that

$$
\left|\lambda_{1}-\mu\right| \geqslant \cdots \geqslant \lambda_{n}-\mu \mid
$$

Q. How \%o choose μ ? How norge from itestion to iteration?
\# Clearly if $\left|\lambda_{p}\right|=\left|\lambda_{p+1}\right|$ then there is no convergence $\lambda_{p+1} k$

$$
\left|\frac{\lambda_{p+1}-\mu}{\lambda_{p}-\mu}\right|^{k} \equiv 1
$$

FACT: Let μ he an eigenvalue of a $n \times n$ unreduced Hessenberg matrix $t /$. If

$$
\bar{H}=R U+\mu I
$$

where $H-\mu I=U R$ is the $Q R$ fact,

$$
\tilde{h}_{n, n-1}=0 \quad \& \quad \tilde{h}_{n, n}=\mu
$$

shetel:

$\Rightarrow \mu$ is revealed in 1 -step.
Deflation: Hessabery $H=\left[\begin{array}{ll}H_{11} & H_{12} \\ & \frac{H_{22}}{n-p}\end{array}\right]_{n-p}$
Commuly used for $p=n-1$ cos $p=n-2$

Single shift strategy
\#Assume han at each step as ecus guess of
μ
Fees $k=1,2, \ldots$

$$
\begin{aligned}
& \mu=H_{k-1}(n, n) \\
& Q_{k-1} R_{k-1}=H_{k-1}-\mu I \\
& H_{k}=R_{k-1} Q_{k-1}+\mu I
\end{aligned}
$$

end
Double Shift Strategy
\# Above strategy faces problem if $C_{2}=\left[\begin{array}{ll}h_{n-1, n-1} & h_{n-1, n} \\ h_{n, n-1} & h_{n n}\end{array}\right]$ say $a_{1} \& a_{2}$
\# Dauble shigt :

$$
a_{1}, a_{2}
$$

are conntere

$$
\begin{aligned}
& U_{1} R_{1}=H-a_{1} I \quad \rightarrow \text { QRfact } \\
& H_{1}=R_{1} U_{1}+a_{1} I \\
& U_{2} R_{2}=H_{1}-a_{2} I \rightarrow \text { fact } \\
& H_{2}=R_{2} U_{2}+a_{2} I
\end{aligned}
$$

(iminteal QRderivatia)
Resull: Froun abeve, $H_{1}=U_{1}^{\infty}+1 U_{1}$

$$
\Rightarrow \quad H_{2}^{*}=\left[u_{1} u_{2}\right]^{k} H\left[u_{1} u_{2}\right]
$$

Chim: $\left(H-a_{1} I\right)\left(H-a_{2} I\right)=U_{1} U_{2} R_{2} R_{1}$
Provef:

$$
H_{1}=U_{1}^{6} H U_{1}
$$

$$
\begin{align*}
& \operatorname{Sinc} \quad H 1=U_{1}^{B} H U_{1} \\
& \Rightarrow \quad\left(H-a_{2} I\right) u_{1}=u_{1}\left(H_{1}-a_{2} I\right)
\end{align*}
$$

Then: $\quad\left(H-a_{2} I\right)\left(H-a_{1} I\right)=\left(H-a_{2} I\right) V_{1} R$,

$$
\left.=u_{1}\left(H_{1}-a_{2} I\right) R_{1} \text { (fion (} 6\right)
$$

$$
=U_{1}\left(U_{2} R_{2}\right) R_{1}
$$

\# If $a_{1}=\overline{a_{2}}$, the $\left(H-a_{1} I\right)\left(H-a_{2} I\right)=M$ is real clecrely, $\left(H-a_{1} I\right)\left(H-a_{2} J\right)=H^{2}+\underbrace{\left(a_{1}+a_{2}\right)}_{\text {real }} H+\underbrace{a_{1} a_{2} I}_{\text {read }}$
\# be $M=\underbrace{\left[U_{1} U_{2}\right.}_{Q_{2}} \underbrace{\left[R_{2} R_{1}\right]}_{R}$ is QR AR fuctanization
$\Rightarrow Q, R$ are bott seal.
$\Rightarrow H_{2}=\left[u_{1} u_{2}\right]^{6} H\left[u_{1} u_{2}\right]$ is also real.
Problem: Becarse of round-off esros, exact retarn to reats is impossiblo.

Double - Implicit Shift (in $O\left(n^{2}\right)$)
\# Impractical Methced: (for getting rear Hz fur H)

1) Calculate $M=H^{2}-\left(a_{1}+a_{2}\right) H+a_{1} a_{2} I \sim O\left(n^{3}\right)$
2) Collate real $Q R$ fact: $M=Z R \sim O\left(n^{3}\right)$
3) Set $H_{2}=Z^{\top} H z$
\# Use implicit Q-theorem to get Hz from H in $O\left(r^{2}\right)$ flops (Francis $Q R$ step)
4) Calculate $M=\left(H-a_{1} I\right)\left(H-a_{2} J\right)$ and consider $\mathrm{Me}, \leftarrow{ }^{10 t}$ cole of M.
5) Determine a Householder motrin P_{0} sit. $\quad P_{0}\left(M e_{1}\right)=\left\|M e_{1}\right\|_{2} e_{1}$
6) Consents Householder matrices P_{1}, \cdots, P_{n-2} ot

$$
z_{1}=P_{0} P_{1} \cdots P_{n-2} \quad \Delta \cdot{ }_{1}^{\prime} \quad Z_{1}^{\top} H Z_{1} \text { is }
$$

upper Heisenberg
4) Then z, and z are equal equal unto signs.

Claim: First colum of $Z=$ First col of Z,
Proof: $\begin{aligned} & M e_{1}=\left[\begin{array}{l}z \\ y \\ z \\ 0 \\ 0 \\ 0\end{array}\right] \\ & x=h_{12} h_{12}\end{aligned}$

$$
x=h_{11}^{2}+h_{12} h_{21}-\left(a_{1}+a_{2}\right) h_{11}+a_{1} a_{2}
$$

$$
y=h_{21}\left(h_{11}+h_{22}-\left(a_{1}+a_{2}\right)\right)
$$

$z=h_{21} h_{32}$
so $P_{0}\left(M e_{1}\right)=P_{0}\left[\begin{array}{c}x \\ y \\ z \\ 0 \\ \vdots \\ 0\end{array}\right]=\left[\begin{array}{c}\infty \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right] \Rightarrow P_{0}=\left[\begin{array}{ccc}3 \times 3 & 0 \\ 0 & 1 & 0 \\ 0 & 1\end{array}\right]$

$\left\{h_{31}^{(1)}, h_{41}^{(1)}, \hat{h}_{42}^{(1)}\right\} \hookleftarrow$ bulye

upopes Hassaber strustrae

CDue to pre-mad by Po $18 t$ three raws are affected. Dre to past-mult ly P_{0}, the 181 three cols are offecter?
\# To calculate the oniginal Z, we shauld colculate M, then foctarizo $M=Z R$
 Then from abae desivation we cm erpect:

$$
H_{2}=z^{\top} H z
$$

dirl ther we should have frenncl cent P_{1} s.t.

$$
\left.P_{1} P_{0}^{\top} M=\left|\begin{array}{ll}
\infty & x \\
0 & \infty \\
\vdots & 0 \\
0 & 0
\end{array}\right| \quad \infty \quad\right]
$$

\# Instead we propose to find P, st.

$\Rightarrow P_{1}$ is designed as a reflection that

\# $\Rightarrow P_{k} e_{1}=e_{1} \quad k=1: x-2$ \#Po and Z hove the same $1 S t$ col
$\left.\left\{\begin{array}{ll}\text { Sine } & P\left(M e_{1}\right)=\left[\begin{array}{l}\infty \\ 0 \\ \vdots \\ \text { hi } \\ \text { design }\end{array}\right. \\ \text { (recall }\end{array}\right], Z\left(M e_{1}\right)=\left[\begin{array}{l}\text { Henselde } \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$
\# Hence $z_{1}=P_{0} P_{1} \ldots P_{n-2}$
will have

$\left\{\begin{array}{l}\text { Clearly } 1^{84} \text { col of } Z_{1}=184 \text { col of } D_{0} \\ \text { But it col of } P_{0}=184 \text { cal of } Z\end{array}\right.$

$$
\Rightarrow z_{1} e_{1}=z e_{1}
$$

Then lug the ingsicit Q-theorem, $Z, \& Z$ are equal unto signs if $Z^{\top} H Z$ and $Z_{1}{ }^{\top} Z_{1}$ are each unreduced.

Francis QR step: Giver unsecured upper Hessen berg $H \in \mathbb{R}^{n \times n}$ whose trailing 2×2 principal sulbmatrix has eigenvalues

$$
t=H(m, m) \cdot H(n, n)-H(n, n) \cdot H(n, m)
$$

 $H(m: n, m: n)$ $x=H(1,1) \cdot H(1,1)+H(1,2) \cdot H(2,1)-s \cdot H(1,1)+t$ $y=$ $z=$ -
for

$$
\begin{align*}
& k=0: n-3 \\
& {[v, \beta]=h=h \operatorname{cose}\left([x y z]^{\top}\right)} \\
& q=\max \{1, k\} \\
& i+(k+1: k+3, q: n)=\left(I-\beta v v^{\top}\right) \cdot H(k+1: k+3, q: n) \\
& r=\min \{k+4, n\} \\
& H(1: r, k+1: k+3)=H(1: r, k+1: k+3) \cdot\left(I-\beta v v^{\top}\right) \\
& x=H(k+2, k+1) \\
& y=H(k+3, k+1) \\
& \text { if } k<n-3 \\
& \quad z=H(k+4, k+1)
\end{align*}
$$

end

$$
\left.\begin{array}{l}
\text { end } \tag{1}\\
{[v, \beta]=\text { house }\left([x, y]^{\top}\right)} \\
H(n-1: n, n-2: n)=\left(I-\beta v \nu^{\top}\right) H(n-1: n, n \cdot 2: n) \\
H(1: n, n-1: n)=H(1: n, n-1: n) \cdot\left(I-\beta v v^{\top}\right)
\end{array}\right\}
$$

$\# \quad k=0, \quad q=1, r=4$

(1)

$$
\begin{aligned}
& k=0, \quad q=1, \underline{r=4} \\
& H(1: 3,1: n)= \\
& =[\underbrace{\left(1-\beta v \nu^{T}\right)}_{P_{0}}]
\end{aligned}
$$

(2)

$$
z=H(4,1) J
$$

\# $\bar{k}=1, q=1, r=5$
(1)

$$
\begin{aligned}
& k=1 \quad(2, \cdots, n-4)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } k=n-3, q=n-3, r=n
\end{aligned}
$$

$$
\begin{aligned}
& H(1: n, n-2: n)= \\
& x=H(n-1, n-2) \\
& y=H(n, n-2)
\end{aligned}
$$

Overall QR witt shifts
Compute Hesenbery reduction: $H=U_{0}^{\top} A O_{0}$ when

$$
U_{0}=P_{1} \ldots P_{n-2}
$$

while $q \leqslant n$
set to zero all sub-diaganol entities that satisfy

Find the largess q \& smallest p 4%.

$$
H=\left[\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
0 & H_{22} & H_{23} \\
0 & 0 & H_{33} \\
p & n-p-q & q
\end{array}\right] \begin{gathered}
p \\
n-p-q \\
q
\end{gathered}
$$

when t_{33} is upper quasi- triangular ard H_{22} is unreduced
if $\quad q<n$
Perform a Francis GR step on

$$
H_{22}=Z^{T} H_{22} Z
$$

end
\# if we don't do single-shigts in the $F, Q R$ step , then we need to separately upper triangalarize the 2×2 blocks to get seal eigervolues.
Q. How to add to this code to get Q

$$
H_{\text {final }}=Q^{\top} H Q
$$

Computation of Eigervitoss of A (ursymmettic)

1) Hessenberg reduction: $V_{0}^{\top} A V_{0}=H$
2) QR Iteration \rightarrow Calculate eigenvalues
3) For each computed λ, apply inverse iferatia with shift $\mu=\lambda$ to procluce

$$
Z \in \mathbb{R}^{n} \text { st. } H_{z}=\mu z
$$

4) Set $x=U_{0} Z \longleftarrow$ eigervectees coss to λ.
