Solving Linear systems
Triangular System.

$$
\left.\begin{array}{r}
b_{1}=l_{1} x_{1} \\
b_{2}=l_{21} x_{1}+l_{22} x_{2}
\end{array}\right\}\left[\begin{array}{l}
x_{1}=\frac{b_{1}}{l_{1}} \\
x_{2}=\frac{1}{l_{22}}\left(b_{2}-l_{21} x_{1}\right) \text { kerman apter } \\
\vdots \\
x_{i}=\frac{1}{l_{i 1}}\left(b_{i}^{0}-\sum_{j=1}^{i-1} l_{i j} x_{j}\right)
\end{array}\right.
$$

Two implementations passible
(i) Inner product firm (Slow) \rightarrow L accessed rove
for $\begin{aligned} i & =1: n \\ z & =00\end{aligned}$

$$
\begin{aligned}
& z=0.0 \\
& \text { for } j=1: i-1
\end{aligned}
$$

end

$$
z=z+L[i j j] * x[j]
$$

$$
\text { end } x[i]=(b[i]-z) / L(i ; i)
$$

(ii) Outer Product form (Fast) \rightarrow Column access $x=\operatorname{cop} y(b)$
for $j=1: n$

$$
\begin{aligned}
& x[j]=x[j] / L[j, j] \\
& \text { fer } i=j+1: n \\
& x[i]=x[i]-L[i, j] * x[j]
\end{aligned}
$$

encl
end

Example Lamp:

$$
\begin{array}{l|l}
i=1 \\
i=3 \\
i=3
\end{array}\left|\begin{array}{l}
l_{11} x_{1}=b_{1} \\
l_{21} x_{1}+l_{21} x_{2}=b_{2} \\
l_{31} x_{1}+l_{32} x_{2}+l_{33} x_{3}=b_{3} \\
j=1
\end{array}\right| \begin{aligned}
& x_{1}=\frac{b}{l_{1}}=\left[\begin{array}{l}
b_{1} \\
x_{2}
\end{array} \left\lvert\, \begin{array}{l}
\left.b_{2}\right] \\
x_{3}=\left[b_{3}-\right. \\
\end{array}\right.,-\frac{l_{32}}{12}\right.
\end{aligned}
$$

Computational complexity: [watkins 1.3] for $\begin{aligned} i & =1: n \\ z & =00\end{aligned}$

$$
\text { for } j=1: i-1
$$

$$
\rightarrow \xrightarrow[\longrightarrow]{\longrightarrow} \underset{i=1, \ldots, n}{(i-1) \text { flops }}
$$

$$
z=z+L[i j j] * x[j]
$$

$$
\begin{aligned}
& \rightarrow 2 \\
& =2(0+1+\cdots+n-1)+2 n \\
& \approx \frac{n-1)}{2}+2 n \\
& \approx n^{2}
\end{aligned}
$$

$$
\begin{aligned}
& i=2 \rightarrow x(2)=b^{\prime}[2]-l_{21} x[1] \\
& i=3 \longrightarrow x(3)=b_{1}(3)-1_{31} x[1] \\
& J=2 \longrightarrow x[2]={\frac{x[2]^{1}}{122} x[3]}^{1=3} \\
& i=3 \longrightarrow x[3]=x[3]-1_{32} x[2] \\
& =b[3]-1_{31} x[j]-1_{32}\left[\frac{b(2]-l_{2}, x(1)}{l_{22}}\right] \\
& j=3 \quad x[3]=\frac{x[3]}{133}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
l_{11} & & & \\
l_{21} & l_{22} & & \\
l_{31} & l_{32} & l_{33} & \\
j=3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
\vdots
\end{array}\right]} \\
& \left\{\begin{array}{c}
x_{11}=\frac{b_{1}}{\tau_{11}} \\
x_{2}=\left[b_{2}-\frac{l_{21} b_{1}}{u_{1}}\right] \frac{1}{l_{22}}
\end{array}\right. \\
& x_{3}=\left[b_{3}-l_{31} \cdot \frac{b_{1}}{41}\right. \\
& \left.-\frac{l_{32}}{1_{12}}\left[b_{2}-\frac{l_{21} b_{1}}{41}\right]\right] \frac{1}{b_{33}}
\end{aligned}
$$

Solving Creveral Systems $A x=b$
Def $\frac{2}{2}=A \in \mathbb{R}^{n \times n}$.
An $L U$ fortanjation is $A=\angle U$ where L is lowest tr. \& U is upper tr.

Q. When does it exist? - Post pored
Q. If it unique? - Also postponed
Q. How does it helps solve $A x=b$?

$$
\left.\begin{array}{l}
\text { ff it } \\
\text { exists }
\end{array}\right\} A x=b \Rightarrow \angle \underbrace{u x}_{z}=b
$$

1) First solve $\angle z=b$. Since L is
lower to. this is cony witt previcansalpo.
2) Second: Solve $U_{x}=z$. Also eng sine U is upper ts.

Construction: First assume A is fall rank sit. unique sots exist, for $A x=b$.
\# If $A=\angle L U$ then $\angle^{-1} A=U$
and L^{-1} is also lower triangular

$$
\begin{aligned}
& L^{-1} A=u \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{a_{21}}{a_{11}} & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & \cdots & \cdots \\
a_{21} & \cdots & \cdots \\
a_{31} & - & \cdots
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & y & -m \\
0 & x & -y \\
a_{31} & \rightarrow & -y
\end{array}\right]} \\
& \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{a_{21}}{a_{11}} & 1 & 0 \\
-\frac{a_{31}}{a_{11}} & 0 & 2
\end{array}\right]}_{a_{1}}\left[\begin{array}{ccc}
a_{11} & x & 4 \\
a_{21} & 0 & x \\
a_{31} & x & 6
\end{array}\right]-\left[\begin{array}{ccc}
a_{11} & x & 4 \\
0 & x & y \\
0 & 0 & i
\end{array}\right] \\
& \underbrace{\left[\begin{array}{c|cc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{a_{32}^{\alpha}}{a_{2}^{\alpha}} & 1
\end{array}\right]}_{a_{22}}+\left[\begin{array}{l|ll}
a_{11} & a_{22} & a_{33} \\
0 & a_{22}^{*} & a_{23}^{*} \\
0 & a_{32}^{\infty} & a_{33}^{\alpha}
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\alpha} & a_{23}^{\alpha} \\
0 & 0 & a_{33}^{\alpha *}
\end{array}\right]}_{U L} \\
& {\left[\begin{array}{c}
L_{0}^{-1}=G_{2} G_{1} ;\left[G_{1}\right]_{i 1}=1 j\left[G_{11}\right]_{i 1}=-\frac{a_{i 1}}{a_{11}} \\
\\
\text { Other entries of } G_{1} \text { are zero }
\end{array}\right.}
\end{aligned}
$$

In gereral: $G_{n-1}, G_{n-2} \ldots G_{1} A=u$

$$
A=\underbrace{G_{1}^{-1} G_{2}^{-1} \cdots G_{n-1}^{-1} \text { is L.T. }}_{L \rightarrow \text { lower tr sine }} \text { (} G_{i}^{-1} \text { is }
$$

\# $G_{i}=\left[\begin{array}{cccccc}1 & \ddots & \left.\right|^{\text {th column }} & & \\ 0 & \ddots & & & \\ 0 & 0 & & & \\ 0 & 0 & 1 & & & \\ 0 & 0 & -\left(g_{i}\right)_{i+1} & 1 & & \\ \vdots & & -\left(g_{i}\right)_{i+2} & 0 & \ddots & \\ 0 & 0 & -\left(g_{i}\right)_{n} & \vdots & & 0\end{array}\right]$
\# $\left(g_{i}\right)_{j}=\frac{a_{j i}^{(i)}}{a_{i i}^{(i)}}$ where $a_{i j,}^{(k)}$ is
the (i, j)-th entry in $\left[G_{k-1} \cdots G_{1} A\right]$
\# Gi's are called Gaurs transforms

FACT: If G_{i}, G_{j} are too Gaurs transforms $(B \leqslant j)$

$$
G_{i} G_{j}=I+g_{j} e_{j} \top+g_{i} e_{i}^{\top}
$$

Proof: Extra tom $=g_{i} \underbrace{e_{i}^{\top}} g_{j} e_{\rho}^{\top}=0$

$$
\left[\text { since } e_{i}^{\top} g_{j}=\left(g_{j}\right)_{i}=0 \text { foe } i \leqslant j\right]
$$

FACT: $\left[G_{i}\right]^{-1}=I-g_{i} e_{i}^{T}$
Pros: $\quad\left[-I+g_{i} e_{i} T\right]\left[I-g_{i} e_{i}{ }^{\top}\right]=I$
Enenise: What is $\left[G_{i}\right]^{-1}\left[G_{j}\right]^{-1}$, far $i<j$?

$$
[G_{i}^{-1} G_{j}^{-1}=I-g_{i} e_{i}^{\top}-g_{j} e_{j}^{\top}+\underbrace{g_{i} e_{i}^{\top} g_{j} e_{j}^{\top}}_{=0}]
$$

Heme: $L=G_{1}^{-1} G_{2}^{-1} \cdots G_{n-1}^{-1}$

Q. Consbuction seers to prove existence of LU fort? Is this correct os assumptions are req?
Implementation strategy \#1 (Outer product)
$\operatorname{Let} A^{(k)}=G_{k-1}, \cdots \cdot G, A$. Then $A^{(k+1)}=G_{k} A^{(k)}$
Then, by above calculations; fess $i>k$
(∞

$$
A^{(k+1)}[i, i]=A^{(k)}[i,:]-\left(g_{k}\right)_{i} A^{(k)}[k,:]
$$

$$
\text { for } \operatorname{all}\left[\begin{array}{c}
k+1 \\
\vdots \\
n
\end{array}\right] \text { Recall: } \frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}
$$

\#If we iterate through $K=1 ; \cdots, n$ then $A^{(n)}=U^{\text {ie }}$ upper triongedal
\# To save space, we car store L(xee (xx))) in the "strictly" bower triangular port of the matrix A.[Recall $\left[\right.$ Hic $\left._{i}=1 \quad \forall i\right]$

For all i, the (b) steps locks like:

$$
A^{(k)}-\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\left(g_{k}\right)_{k+1} \\
\left(g_{k}\right)_{n}
\end{array}\right]\left[\begin{array}{lllll}
0 & \cdots & 0 & a_{k k}^{(k)} & a_{k, k+1}^{(k)} \\
\cdots & a_{k, n}
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
\#[\text { Result }]_{k+1, k} & =0 \\
\vdots \\
{[\text { Result }]_{n, k}} & =0
\end{array}\right\}
$$

No point storing zeros Instead we could store

$$
\left[\begin{array}{l}
\left(g_{k}\right)_{k+1} \\
\left(g_{k}\right)_{n}
\end{array}\right] \text { in }\left[\begin{array}{l}
\operatorname{Result} \\
k+1, k \\
\operatorname{Resut}_{n, k}
\end{array}\right]
$$

Code: for $k=1: n$

\# Faster (column access) $\left.\frac{1}{\text { code: }: ~}\right]=2\left[\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n\right]$ $+\left[\frac{n(n+1)}{2}\right]$
for $j=1: n$
for $k=1: j-1$
for $i=k+1: n$

$$
A[i, j]=A[i, j]-A[i, k] * A[k, j]
$$

encl
end
for $i=j+1: n$

$$
A[i, j]=\frac{A[i, j]}{A[j, j]}
$$

end
end
(I) Shew intermediate steps in code
Q. Dells above alyo. work always?
\# Notice the clivision log $A[k, k]$ at each iteration
Suppers $A^{(k)}=G_{k-1} \cdots G, A=\left[{ }^{1}\right.$
II Show example $A^{(k)}$ with $A=\left[\begin{array}{llll}1 & 6 & 1 & 0 \\ 0 & 1 & 9 & 3 \\ 1 & 6 & 1 & 1 \\ 0 & 0 & 1 & 9\end{array}\right]$

$$
\left[A^{(k)}\right]_{k k}=0
$$

clearly at this step:

$$
\left.\left[\begin{array}{cc}
{\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
G_{k-1} & 1
\end{array}\right]}
\end{array}\right] A[1: k, 1: k]\right]=[
$$

or

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] } & =A[1: k, 1: k] \\
\operatorname{det}=0 & \Rightarrow \operatorname{det}\{A[1: k, 1: k]\}=0
\end{aligned}
$$

\# We cannot allow this at any stage.
The: If $\operatorname{det}(A[1: k, 1: k]) \neq 0$ for all $i \leqslant k \leqslant n-1$ then the $\angle U$ factanization exists and is unique
Prove: ExCise
\# Equivalent Statement: Ff the leading principal submatrices are non-singular, $L U$ decump.exists \& is unique.
\#Uniqueness:

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
a_{21} & \cdots & a_{2 n} \\
a_{n 1} & \cdots & a_{n 2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & & 0 \\
l_{21} & \cdots & 0 \\
l_{n 1} & & 1
\end{array}\right]\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
\vdots & \cdots & & u_{n n}
\end{array}\right]
$$

Clearly $a_{1 j}=u_{1 j} \Rightarrow\left[u_{11} \ldots u_{m}\right]$ is uniquely determined.
Abs $\quad a_{i 1}=l_{i 1} u_{11} \quad i=2, \cdots, n . \quad\left(u_{11} \neq 0\right.$ sims A

$$
\Rightarrow \quad l_{i 1}=\frac{a_{i p}}{u_{11}} \quad i=2, \cdot ., n .
$$

$\Rightarrow 1^{8 t}$ colum of L is unigndy determined.
Remaining lug induction: Freuise.
Q. But what if the pivot $A[k, k]$ is very small (not zero)?
$\begin{array}{ll}\text { For } \varepsilon=10^{-14} \\ {[\square] \text { Shes code }} & L \infty U=\left[\begin{array}{cc}10^{-14} & 1 \\ 1 & 3.140625\end{array}\right]\end{array}$
Q. Why is this happening? A. Postponed.
too mind error

$$
\pi \approx 3 \cdot 14159
$$

LU with pivoting
\# Instead of solving $\left[\begin{array}{ll}\varepsilon & 1 \\ 1 & \pi\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ we can equivalatly sole $\underbrace{\left[\begin{array}{ll}1 & \pi \\ \varepsilon & 1\end{array}\right]}_{\tilde{A}}\left[\begin{array}{l}x_{2} \\ x_{1}\end{array}\right]=\left[\begin{array}{l}b_{2} \\ b_{1}\end{array}\right]$
\# the LU l decamp. of \bar{A} is perfectly accurate! ([) Shew code
\#At each step we first find the highest $A[k i n, k]$ \& soap sees sit. this entry aypolas in the (k,k) position

\# insteva of $G_{n-1}, \cdots G_{1} A=U$ pe get $G_{n-1} p_{n-1} \cdots G_{2} p_{2} G_{1} P_{1} A=U$ where $P_{1}, \cdots P_{n_{-}}$, are permutalion matrices

Tsocys rows 284

Permatation Matrre Propesties: $\# P_{1} P_{2}$ is a permetain \# P is athogran $P^{-1}=P^{\top}$;
\# PA permutes rows while AP permates colums \# For elematay permitatice $P=p^{\top}$

$$
\left.\begin{array}{rl}
Q_{n-}, P_{n-1} G_{n} 2 P_{n-2} \cdots G_{2} P_{2} G_{1} P, A \\
= & G_{n-1}\left[P_{n-1} G_{n-2} P_{n-1}^{-1}\right] \underbrace{P_{n-1} P_{n-2}}_{\text {Pernitation }} G_{n-2}
\end{array} G_{2} P P_{2}, P, A\right)
$$

daim: $P C P^{-1}$ is a Gauss trarfaem

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & g_{1} & 1 & 0 \\
0 & g_{2} & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & g_{2} & 0 & 1 \\
0 & g_{1} & 1 & 0
\end{array}\right]} \\
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & g_{2} & 0 & 1 \\
0 & g_{1} & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & g_{2} & 1 & 0 \\
0 & g_{1} & 0 & 1
\end{array}\right]} \\
\underbrace{(1)}
\end{gathered}
$$ Gauss tranfform 7

\# Herce $G_{n-1} P_{n-1} G_{n-2} P_{n-2} \cdots G_{2} P_{2} G, P_{1} A$

$$
=\underbrace{\hat{G}_{n-}, \hat{G}_{n-2} \cdots \hat{G}_{1}}_{L^{-1}} \underbrace{P_{n-1}, P_{n-2} \cdots P_{1}}_{\hat{P}} A
$$

$$
\Rightarrow \quad L^{-1} \widehat{P} A=u \quad \Leftrightarrow \quad \widehat{P} A=L U
$$

Q. I \hat{G}_{k} a Gauss transform?

$$
\begin{aligned}
& \hat{Q}_{k}=\left[P_{n-1}, P_{n-2} \ldots P_{k+1}\right] G_{k}\left[P_{k+1} \ldots P_{n-1}\right] \\
& =\left[\quad \left[\quad\left[I+g_{k} e_{k}^{\top}\right][\quad "]\right.\right. \\
& =\left[P_{n-1} P_{n-2} \cdots P_{k+2}\right]\left[I+P_{k+1} \mathscr{O}_{k} e_{k}^{\top} P_{k-1}\right]\left[P_{k+2} \cdots P_{n-1}^{-}\right. \\
& =\left[P_{n-1} P_{n-2} \ldots P_{k+2}\right]\left[I+\widetilde{g}_{K} e_{k}^{T}\right]\left[P_{k+2} \ldots P_{n-1}\right] \\
& P_{K+1}\left[\begin{array}{c}
0 \\
\vdots \\
0_{k+1} \\
\sigma_{1}
\end{array}\right]\left[\begin{array}{llll}
0 & \cdots & 1 & 0^{2}
\end{array}\right] P_{K+1} \\
& =\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
e_{10} \\
\tilde{2}
\end{array}\right]\left[\begin{array}{ccccc}
0 & \cdots & 1 & 0 & 0
\end{array}\right] \\
& =\tilde{\mathscr{F}}_{k}^{k} e_{K}^{\top} \\
& \therefore \text { cefter all the metiplications } \\
& =\left[I+\hat{g}_{k} e_{k}^{\top}\right]
\end{aligned}
$$

Advantages/Observations

1) $\left|l_{i j}\right|<1$
it $\left\{\begin{array}{l}\text { so the problem with } \\ l_{i j} \text { growing }\end{array}\right.$
2) Alto (partial pivoting) always runs to ampletion. If $A^{(k)}[k: n, k]=0$, then $\hat{\mathrm{r}}_{k}=I_{n}$

Than: U with partial pivoting, applied to any $n \times n$ matrix A produces a unit lower triangular matrix \angle with $\left|L_{i j}\right|<1$. an uppes triangular U, and a peimatici matrix e P sit.

$$
A=P^{\top} \angle U
$$

Complex cis
for $k=1: n$
imp $=k-1+\operatorname{argmax}(a b s .(A[k:$ end, $k]))$
for $j=1: n$
Remains same us $\frac{2}{3} n^{3}$
for $j=1: n$

$$
\text { for } A[k, j], A[i \operatorname{in} x, j]=A[i m x, j], A[k, j]
$$ because the

complexity of

$$
\begin{aligned}
& \text { end } \\
& P[[k, i m x]]=P[[i m x, k]]
\end{aligned}
$$

usual $\angle u$
end
($n-k$) compasisurs at each step is

$$
\sum_{k=1}^{n-1}(n-k)=\frac{n(n-1)}{2} \approx \frac{n^{2}}{2}
$$

D Shew socle t example
Q. What can go wrongs?
[Parve 3.4]

$$
\begin{align*}
& \frac{\text { Problems }}{\text { Example }}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
-1 & 1 & 0 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & -1 & 1 & 0 \\
-1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right](n=4)
\end{align*}
$$

Elements of u can stol grow: \rightarrow Very Rare

Problem. 2
2) Cannot he used to reveal rank I
\# If $A=\mathbb{R}^{n \times n}$ is of rack $r<n$, then a factierization of the form
$A=W V^{\top}$ where $W \& V$ have r - columns is "ran k-revealing".
\# LU Can "calmest" he used fees such a factorization
FACT: If $\operatorname{det}(A[1: r, 1: r]) \neq 0$, then?

$$
\left.=\underset{r}{\left[\begin{array}{ll}
1 & 0 \\
m
\end{array}\right][2]}\right] r
$$

\# this will not work if the above cunclition doss not hold.

LU with Complete (row + column) pivoting [solves bott P1 \& P2 above)

\#Swap rows \& colum at each step to get the largest entry in $A[k: n, k: n]$ to the $(k, k)^{* t}$ position
\# The steps result in:

$$
Q_{n-1} P_{n-1} \cdots G, P, A Q_{1}^{\top} Q_{2}^{\top} \cdots Q_{n-1}^{\top}=u
$$

\longrightarrow Following same arguments as above

$$
\hat{G}_{n-1} \cdots \hat{G}_{1} P_{n-1} \cdots P, A=Q_{1}^{\top} \cdots Q_{n}^{\top}=u
$$

ar $P A Q^{\top}=L \cdot u\left[L^{-1}=\hat{G}_{n-1} \cdots, \vec{G},\right]$
\# If we were trying to solve $A_{x}=b$
\& $P A Q^{\top}=\angle U$ then

1) Solve $\angle Z=P b$ for z

\# This method is rank-revealing (ideally) as rank - approximating (in practice)

$$
\begin{aligned}
P A Q^{T} & =\left[\begin{array}{cc}
L_{11} & 0 \\
l_{2} & I_{n-1}
\end{array}\right]\left[\begin{array}{ll}
u_{11} & u_{12} \\
0 & 0
\end{array}\right] \leftarrow \text { ideally } \\
& =\left[L_{11}\right] r_{1} .
\end{aligned}
$$

$$
=\left[\begin{array}{l}
l_{11} \\
c_{21}
\end{array}\right]\left[\begin{array}{ll}
u_{11} & u_{12}
\end{array}\right]
$$ dents might be small.

\# Elements do not grow (How do we prove?)
\rightarrow But complete pivoting is slow (How to
\rightarrow But complete pivoting is slow (How to quantify?)
Cangtescity: Cost of comparison: $\sum_{k=1}^{n-1}(n-k)^{2}$
(Since at each step $(x-k)^{2}$ nos reed to be compared)

$$
\sum_{k=1}^{n-1}(n-k)^{2} \simeq \frac{1}{3} n^{3}
$$

So total cast $\approx \frac{2}{3} n^{3}+\frac{1}{3} n^{3} \approx \frac{n^{3}}{\bar{L}}$
[Watkins 1.8]
from usual
significantly partial pivoling.

Rook Pivoting -

$\Rightarrow 4$
stop
\# Summery: Find any element in $A^{(k)}[k: n, k: n]$ which is maximal in both its row $\&$ col.
\rightarrow Then use row \& col swap to get that elemat at $a^{(k)}[r, k]$.
(D) Shaw code
Q. Calculate the complexity (wort case?)

Open tissues: We reed a language to describe

1) Error in compotation ${ }^{\text {2) }}$ Growth of elements vent chapter

Remaining Material in Gourssion Elimination
LU Foct of SPD matice [Golwb 4:18 4 -. 2]]
$F A C T$: If $A \in \mathbb{R}^{n \times n}$ is symmetric with
son-singularigleading principol minoss,
 a unierling. ${ }_{1} \Rightarrow$ s. $\quad A=L D L^{\top}$
Proel: We know $A=\angle U$ (cmign $\angle 8 u$)
Since

Let $D=U L^{-T}$, ther $A=\angle D L^{T}$.
FACT: If A is SPD, then all principal submatrices are positive definite. In particular. all diagonal entries are tue.

Proof: Enervise
Thm (Cholesky Fact): H $A \in \mathbb{R}^{n \times n}$ is SPD, ther \exists a unigue L.T. $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries s.t. $A=G G_{2}^{\top}$ roed: Fran abave facts, \exists unit L.T. L
and didegonol D_{-T}, st. $A=\angle D L^{\top}$ Cleanly, $D=\angle^{-1} A L^{-T}$ is SPD. (time A is SPD $L_{8}^{-1} 8$ is foll rall)
$\Rightarrow D=i \operatorname{ding}\left(d_{1}, \ldots, d_{n}\right), d_{i}$'s are tue. \& $G:=L \operatorname{diag}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)$ is real \& Lower triangular with tue diagonals. Then $A=G G^{\top}$ (imiqueners follower from $\angle D L \backslash$

Computing Chelestay: a modification of CO
$A=G G^{\top}$ Normally if $\left.A=G H, A[i j)\right]=\sum_{k=1}^{n} G[i, k]+1[k, j]$
\# Here. $H=G_{n}^{\top} \Rightarrow+1[k, j]=G[j, k]$

$$
\begin{align*}
& \Rightarrow A[i, j]=\sum_{k=1}^{n} G[i, k] \cdot G[j, k] \\
& \Rightarrow A[i, j]=\sum_{k=1}^{n} G[i, k] \cdot G[j, k] \\
& \Rightarrow G[j, j] G[j, j]=A[i, j]-\sum_{k=1}^{j-1} G[j, k] \cdot G_{2}[i, k]
\end{align*}
$$

Then $\quad V[j]=G[j, j] \operatorname{Gr}[j, j]$
HBut G is lower triangular. Here from (Q)

$$
\operatorname{Gr}[j: n, j]=\frac{V[j: n]}{\operatorname{Cr}[j, j]}=\frac{V[j: \bar{n}]}{\sqrt{V[j]}}
$$

\# tierce the following alyo computes G :
foes $j=1: n$

$$
\begin{aligned}
& V[j: n]=A[j: n, j] \\
& \text { for } k=1: j-1 \\
& V[j: n]=V[j: n]-G_{c}[j, k] \cdot G[j: n, k]
\end{aligned}
$$

encl

$$
\begin{aligned}
& \text { end } \\
& G[j: n, j]=\frac{V[j: n]}{\sqrt{V[j]}}
\end{aligned}
$$

\#the above aldo can be re arranged to that G overwrites the lowes-is. pact of A
for $j=1: n$
S for $k=1: j-1$
for $i=j: n$

$$
\begin{aligned}
& \text { for } i=j=n \\
& A[i j]=A[i, j]-A[i j k] * A[j, k] \\
& \text { encl }
\end{aligned}
$$

$$
a_{j j}=\operatorname{sqst}(A[j, j])
$$

fer $i=j$ in
end
end

$$
\sim \frac{\frac{n^{3}}{3} \text { flops }}{} \begin{aligned}
& 2 \sum_{j=1}^{n}(n-j)(j-1) \\
& \approx 2\left[n \sum j-\sum j j^{2}\right] \\
& \approx\left[\frac{2 n^{3}}{2}-\frac{n^{3}}{3}\right] \approx \frac{1}{3} n^{3}
\end{aligned}
$$

Q. Hew to compute L, D ? [Dave 3.5]
\# Let A beSPD \& we blindly use $L U$ without any pivoting.
Let $A=\left[\begin{array}{cc}a^{a^{|x|}} & c^{\top} \\ \underbrace{}_{n \times n} & B\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ C / a & I\end{array}\right]\left[\begin{array}{cc}a & c^{T} \\ 0 & B-\frac{1}{a} c c^{T}\end{array}\right]$
Note: $B-\frac{1}{a} c e^{T}$ is still symmetric \Rightarrow we can compsite/stiere only half the entries
Q. Is $\left(B-\frac{1}{a} c^{\top}\right) \operatorname{spo} \eta \rightarrow$ Yes $]$

Schur Complement: Let $A=\left[\begin{array}{l|l}A_{11} & A_{12} \\ \hline A_{21} & A_{22} \\ \hline(n-k)_{x}\end{array}\right.$ he SPD. then clearly,

$$
A=\left[\begin{array}{ll}
I & 0 \\
A_{21} A_{11}^{-1} & I
\end{array}\right]\left[\begin{array}{ccc}
A_{11} & 0 \\
0 & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right]\left[\begin{array}{cc}
I & A_{11}^{-1} A_{12} \\
0 & I
\end{array}\right]
$$

Scour Conrlinet of A_{1},
Clearly, $\left[\begin{array}{ll}a & c^{\top} \\ c & B\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \frac{c}{a} & I\end{array}\right]\left[\begin{array}{cc}a & 0 \\ 0 & B-\frac{1}{a} c c^{+}\end{array}\right]\left[\begin{array}{cc}1 & c^{T} / a \\ 0 & 1\end{array}\right]$
Sines $A=A^{\top}>0,\left[\begin{array}{cc}a & 0 \\ 0 & B-\frac{1}{a} c c^{\top}\end{array}\right]>0 \Rightarrow B-\frac{1}{a} c c^{\top}>0$ Hence we can perform $\angle U$ steps (as in ((x)) recursively encling in $A \angle D L^{T}$
\#then define $G=\angle D^{\frac{1}{2}} \Rightarrow A=G G^{T}$
\# This idea can also be used for pivoting.
$L D L^{\top}$ with Symmetric Pivoting $A=A^{\top}>0$
\# Find P_{1} s.t. $P, A P_{1}^{T}=\left[\begin{array}{ll}a & C^{\top} \\ C & B\end{array}\right] \quad$ and

$$
\begin{aligned}
& a=\max \{\operatorname{diag}(A)\} \\
& \text { But we have seen }\left[\begin{array}{ll}
a & c^{\top} \\
c & B
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\frac{c}{a} & j_{n-1}
\end{array}\right]\left[\begin{array}{cc}
a & 0 \\
0 & A_{1}
\end{array}\right]\left[\begin{array}{cc}
1 & 0^{\top} \frac{c}{a} \\
r_{n-1}
\end{array}\right]^{\top}
\end{aligned}
$$

\# Use this strategy recursively to $A_{1} \&$ congrats

$$
P_{2} A_{1} P_{2}^{\top}=L_{2} D_{2} L_{2}^{\top}
$$

chen

$$
\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & P_{2}
\end{array}\right]\left[\begin{array}{l}
P_{1}
\end{array}\right]}_{P} A P^{T}=\left[\begin{array}{cc}
1 & 0 \\
c / a & L_{2}
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & D_{2}
\end{array}\right] L^{T}
$$

Because of (\&), $d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{n}>0$
Q. How does complexity congrare with previous
(0) Shew Choleslyy socle.
Q. How does this enters to $P D$ lust not symmetric matrice?
$\frac{\sec 1}{1, K=0, i=1: 2}$

$$
\left[\begin{array}{l}
A[1,1]=A[1,1] \\
A[2,1]=A[2,1] \\
A[3,1]=A[3,1]
\end{array}\right.
$$

$$
a_{41}=\sqrt{a_{11}}
$$

$$
\left\{\begin{array}{l}
A[1,1]=\frac{A[1,1]}{\sqrt{a_{11}}} \\
\dot{A}[2,1]=\frac{A[2,1]}{\sqrt{a_{11}}}
\end{array}\right.
$$

$$
A[B, 1]=\frac{A[3,1]}{\sqrt{a_{11}}}
$$

$$
i=j: n
$$

$$
(k=1 ; j-1)
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
A[2,2]=A[2,2]-A[2,1] \times A[2,1] \\
i \\
j, k \\
j, k \\
j, k \\
A[3,2]=A[3,2]-A[3,1] \times A[2,1]
\end{array}\right.} \\
& A Q 2=\sqrt{A[2,2]} \\
& A[2,2]=\frac{A[2,2]}{\sqrt{a 22}} \\
& A[3,2]=\frac{A(3,2]}{\sqrt{a_{22}}}
\end{aligned}
$$

Slep 3: $j=3, k=1,2, \quad i=3$

$$
\begin{aligned}
& 1 \\
& A[3,3]=A[3,3]-A[3,1] \times A[3,1] \\
& A[3,3]=A[3,3 j-A[3,2] \times A[3,2]
\end{aligned}
$$

$$
\begin{aligned}
& B-\frac{1}{a^{\top}} C C^{\top}=\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-\frac{1}{a}\left[\begin{array}{l}
a_{21} \\
a_{31}
\end{array}\right]\left[\begin{array}{ll}
a_{21} & a_{31}
\end{array}\right] \\
& \left.=\left[\begin{array}{l}
a_{22}-\frac{1}{a} a_{21} * a_{21} \\
a_{32}-\frac{1}{a} a_{31} \times a_{21}
\end{array}\right] \begin{array}{l}
a_{32}-\frac{1}{a} a_{21} \times a_{31} \\
a_{33}-\frac{1}{a} a_{31} \times a_{31} \\
\text { new }
\end{array}\right] \\
& \left.\left[\begin{array}{ccc}
4 & -2 & 4 \\
-2 & 10 & -2 \\
4 & -2 & 8
\end{array}\right] \leadsto\left[\left.\begin{array}{c}
\frac{4}{\sqrt{4}} \\
\frac{-2}{\sqrt{4}} \\
\frac{4}{\sqrt{4}}
\end{array} \right\rvert\, \operatorname{san}\right]=\left[\begin{array}{c}
2 \\
-1 \\
8
\end{array}\right] \operatorname{sen}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 8-2 \times 2-\frac{1}{3} \times \frac{1}{3}=8-4-\frac{1}{9}=4-\frac{1}{9}
\end{aligned}
$$

$\sqrt{a_{i i}}$ is sleicel hees

$$
\begin{aligned}
A & =G G^{\top} \\
& =L U=L^{\top}
\end{aligned}
$$

\# Ir exiginal \angle $\frac{a_{i j}}{a_{i i}}$ is stored. \# Here $\frac{a_{i j}}{\sqrt{a_{i i}}}$ is stored.
\#Sor to get oxiginal $L_{\text {, wee }}$ need to divide fursthe ly $\sqrt{a_{i 1}}$.

$$
L=\left[\begin{array}{ccc}
\frac{2}{2} & & 0 \\
-1 / 2 & 3 / 3 & \\
2 / 2 & 0 / 3 & \frac{2}{2}
\end{array}\right] \quad D=\left[\begin{array}{lll}
2 & 0 \\
0 & 3 & 2
\end{array}\right]
$$

