Errors
Recall $\left[\begin{array}{ll}\varepsilon & 1 \\ 1 & \pi\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Using $\left[\begin{array}{ll}\varepsilon & 1 \\ 1 & \pi\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{\varepsilon} & 1\end{array}\right]\left[\begin{array}{cc}\varepsilon & 1 \\ 0 & \pi-\frac{1}{\varepsilon}\end{array}\right]$ suppare the solution is \hat{x}, while the "rune" solution is (say) x^{∞}.
Q. How do we guarantee $\| \hat{x}-x^{\infty} / /$ to be small? Subsidiary questions:

1) Why is $\hat{x} \neq x^{x}$?
2) How to calculate $\left\|\vec{x}-x^{x}\right\|$?
3) Does $\left\|\hat{x}-x^{*}\right\|$ depend on data (ie, $\left.A, b\right)$ or on the algo ($L V, 10$ with pivot, Rook-LU etc) os on both?
[Darve 3.2]
Floating Point Arithmetic: (wo will use Julia comnods - same for man other lang.)
E.g.s $\frac{\text { Int } 8 \text {, integers }}{\text { Reals }}$, Float 64

Reals
$\pi+8 \rightarrow \underbrace{d_{7} d_{6} \cdots d_{0}}_{\text {binary }}$ witt $x=\sum_{i=0}^{6} d_{i} \cdot 2^{i}-d_{7} 2^{7}$

$$
\begin{aligned}
& \text { bitstang }(\operatorname{mot} 8(1))=100000001^{\prime \prime} \mid x=1.2^{0}=1 \\
& " \quad(\text { met } 8(-1))=" 111111111^{" 1} \left\lvert\, \begin{array}{ll}
x & =2^{0}+\cdots+2^{6}-2^{7}
\end{array}\right. \\
& \text { " }(\text { int }(-128))=1^{110000000 " ~} q^{\prime \prime} 127-128=-1
\end{aligned}
$$

Float 32: $\pm \underbrace{\left(1+\sum_{i=1}^{p^{-1}} d_{i} 2^{-i}\right)}_{\begin{array}{c}\text { Sigrificand } \\ \text { mantissa }\end{array}} 2^{\text {precisian }} \rightarrow$ exponent

Not stared \rightarrow always 1 by

$$
\begin{gathered}
0.5703125=\frac{\frac{1}{2}+\frac{1}{16}+\frac{1}{128}=2^{-1}+2^{-4}+2^{-7}}{\substack{\alpha \\
0.5}} \begin{array}{l}
0.0625 \\
0.0078125
\end{array}
\end{gathered}
$$

bitstring (Float 32 (3.140625))

$$
=\underbrace{\begin{array}{l}
e=\sum_{i=0}^{7} d_{i} 2^{i}-\left(2^{7}-1\right) \\
\text { Here } e=2^{7}-2^{7}+1 \\
=101
\end{array}}_{\substack{\sin _{\begin{subarray}{c}{0 \\
0 \rightarrow+\\
1 \rightarrow-} }}^{0}}\end{subarray}} \overbrace{d_{1}=d_{3}=d_{7}=1}^{d_{7}} \overbrace{10000000}^{d_{0}}
$$

Ene: bitstring $($ Float $32(1.5703125)) \rightarrow e=01111111$ (Why?)
En: What is bitstring (Flay $32(0.5703125)$)? Why?
En: Show that Flow i32 can he used to represent nos between 10^{-38} \% 10^{38}.

Float 64: Same setup: Sign $\rightarrow 1$ bit $e \rightarrow 1 /$ bits

Errors in FPA
Basic Error:

1) Over flow
2) Under flow
3) Round off
$\left\{\begin{array}{l}\text { when results } \\ \text { go out of }\end{array}\right.$ go cut of ser range for a pastisulas data type

Round off in base 10 (easier then base 2 for enplanatia)

Let $x= \pm d_{0 .} d_{1} d_{2} \times 10^{e}[$ Golub $2 \cdot 7]$ where $1 \leqslant d_{0} \leqslant q$ $0 \leqslant d, \leqslant 9$ $0 \leqslant d_{2} \leqslant 9$
\# Precision is defined ty
length of sigmifieand
$e \cdot g \cdot{ }^{\pi} \pi=3.14 \times 10^{\circ} \quad$ (Error $\approx 10^{-3}$)
\# Not enough sorn:

$$
\begin{aligned}
& \left(1.23 \times 10^{6}\right)+\left(4.56 \times 10^{4}\right)=1275600 \\
& \left(1.23 \times 10^{\prime}\right) *(4.56 \times 102)=5608.8 \\
& \text { Results must tie a minded }
\end{aligned}
$$

Results must he rounded
$\operatorname{rand}(1275600)=1.28 \times 10^{6}$
rand $(5608 \cdot 8)=5.61 \times 10^{3}$
\# There is a lowest \& highest no (leading to under flow \& overflow)
\# Set of nos in finite (Here $2 \times 9 \times 10 \times 10 \times 19$ $+1=34201$)
\# Spacing between Corsenctive nos. vary big. diff between $1 \times 10^{2} \times 1.01 \times 10^{2}$
but is diff between 1×10^{3} \& 1.01×10^{3} is 10 .
Def \because : Unit Roundoff Erreer:
$u=\frac{1}{2} \times[$ gap between 18 nest largest llt print $]$
\# Fer Float $32 u \approx 10^{-7} / \mathrm{Can}$ with checked
Float $64 \quad u \approx 10^{-16}$ next float (1.0)
command! D

FACT: For floating pl mes. addition is not associative
the H pt represectaicia of x
If $x \in \mathbb{R}$, then, $f l(x)=x(1+\varepsilon) \quad \mid \varepsilon)<u$
Let $x=1.24 \times 10^{\circ}$ (for out example

$$
\text { Let } \begin{aligned}
x & =1.24 \times 10^{0} \quad \text { (for out excarplle } \\
y & =-1.23 \times 10^{\circ} \quad 3 \text { digit call above) } \\
z & =1.00 \times 10^{-3} \\
f(x+y) & =1 \times 10^{-2}
\end{aligned}
$$

$$
f[g(x+y)+z]=1.10 \times 10^{-2}
$$

But, $f l(y+z)=-1.23 \times 10^{0}$

$$
f(x+f l(y+z))=1 \times 10^{-2}
$$

Q) Why is this happening?

Catastrophic Cancellation then error blows up (loges the u)

$$
\begin{aligned}
& f l(x)+f l(y)=x\left(1+\varepsilon_{1}\right)+y\left(1+\varepsilon_{2}\right) \left\lvert\, \begin{array}{l}
\left|\varepsilon_{1}\right| \approx|u| \ll 1 \\
\left|\left|\varepsilon_{2}\right|\right|=|u|<1
\end{array}\right. \\
& =x+y+x \varepsilon_{1}+y \varepsilon_{2} \\
& =(x+y)[1+\underbrace{\left.\left(\frac{x}{x+y}\right) \varepsilon_{1}+\left(\frac{y}{x+y}\right) \varepsilon_{2}\right]}\left[\begin{array}{c}
\text { Watkins 255 } \\
\text { pg } 144
\end{array}\right] \\
& \text { If either } x \geqslant x+y \text { es } y>x+y
\end{aligned}
$$

(get magrificel)
Q. It seems that such errors can accumulate through the steps of any aldo. Then know do we guarantee accuracy?
Show cockle fur Watkins $2.6 .1,2.6 .2,2.6 .9$
Some definitions: Let any alyo be defined by a map $f:[$ data $] \rightarrow[$ Result $]$
eng. in solving $A x=b$ using $\angle C$

$$
f(A, b)=A^{-\frac{1}{b}} \quad \text { Data }:[A, b]
$$

Ht Since this aldo is implemented on a comp. the output is $f[f(A, B)]$

\# Directly arspecting "Forward erreer" is difficult (cotastropic cancellation can ecus somewhere in the intermediate steps)
\# We ask a "strange" new question!
Q) Which $\left[\tilde{A}, \tilde{b}^{-}\right]$gives

$$
f[\widetilde{A}, \tilde{b}]=f[f(A, b)]
$$

Then define Backward ernes $=\|(A, b)-[\tilde{A}, \tilde{b}]\|$

\# It is often easy to bound backward eros for a specific alyorith.
Q. How decs B.E (even if early to compute) help in calculating F.E?

Sensitivity

$$
\text { sensitivity }=\frac{\left\|f\left[A_{1}, b_{1}\right]-f\left[A_{2}, b_{2}\right]\right\|}{\left\|\left[A_{1}, b,\right]-\left[A_{2}, b_{2}\right]\right\|}
$$

Note: i) sensitivity has nothing to do with flouting point operation. 2) Sensitivity depends on data \& f. \rightarrow hence can he bod. easily.
\#

$$
\begin{aligned}
F: E & =\|f(A, b)-f(f(A, b))\|=\|f(A, b)-f(\widetilde{A}, \tilde{b})\| \\
& =\frac{\|f(A, b)-f(\tilde{A}, \tilde{b})\|}{\|(A, b)-(\tilde{A}, \tilde{b})\|} \cdot \|(A, b)-(\tilde{A}, \tilde{b} \|) \\
& =\text { Sensitivity } \times B \cdot E
\end{aligned}
$$

\# If we have bounds on Sensivity \& B.E separately, then we can bound F.E also.

Big Notation: A function $f(n)$ is $O(g(n))$ if $\exists n_{0}>0 \quad \& \quad c>0$ s.t. for all $n \geqslant n_{0}$,
$f(n) \leqslant c g(n)$ $f(n) \leqslant c g(n)$

1) Sensitivity of Linear systems $(A x=b)$

Let $(A+\varepsilon F) x(\varepsilon)=b+\varepsilon f \quad[G$ club $2 \cdot 6 \cdot 1]$
(A is mun-singalar)
$F \in \mathbb{R}^{n \times n}, f \in \mathbb{R}^{n}$
\# Clearly, $x(\varepsilon)$ is diff in the neighborhood of O.

$$
A x(\varepsilon)+\varepsilon F x(\varepsilon)=b+\varepsilon f
$$

Diff. W.s.t $\varepsilon: A \dot{x}(\varepsilon)+F x(\varepsilon)+\varepsilon F x(\varepsilon)=f$

$$
\begin{aligned}
& (A+\varepsilon F) \dot{x}(\varepsilon)+F x(\varepsilon)=f \\
\Rightarrow \quad & A \dot{x}(0)+F x=f \Rightarrow \dot{x}(0)=A^{-1}[f-F x]
\end{aligned}
$$

Tayluer series of $x(\varepsilon)$ around " O ":

$$
x(\varepsilon)=x+\varepsilon \dot{x}(0)+O\left(\varepsilon^{2}\right)
$$

Then $\|x(\varepsilon)-x\|=\left\|\Sigma A^{-1}[f-F x]+O\left(\varepsilon^{2}\right)\right\|$

$$
\begin{aligned}
& \text { or } \frac{\|x(\varepsilon)-x\|}{\|x\|} \leqslant\|\varepsilon\| A^{-1} \|\left[\frac{\|g\|+\|F\|\|x\|}{\|x\|}\right]+O\left(\varepsilon^{2}\right) \\
& \leqslant|\varepsilon|\|A\|\left\|A^{-1}\right\|\left[\frac{\|F\|}{\|A\|}+\frac{\|f\|}{\|A\|\|x\|}\right]+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{l}
\sin m \\
\|A\|\|x\| \geqslant\|/\| /)
\end{array}\right] \\
& \leqslant K(A)[\underbrace{\frac{|\varepsilon|\|F\|}{\|A\|}}_{\substack{\text { Relative erac } \\
\text { in }\|A\|}}+\frac{|\varepsilon|\|f\|}{\|b\|}]+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Def \because Condition No: $K(A)=\|A\|\left\|A^{-1}\right\|$ with the conventian $K(A)=\infty$ if A singulas
\#Non-porametric beunds on relative erros bere also easily desined:
Thm. If A is sos-singulas, $\frac{\| f(\|A\|}{\|A\|}<\frac{1}{K(A)}, b \neq 0$ $A_{x}=b$ and $(A+\delta A)(x+\delta x)=b_{+}(A)$, ther

$$
\frac{\|\delta x\|}{\|x\|} \leqslant \frac{K(A)\left[\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta S\|}{\|b\|}\right]}{1-K(A) \frac{\|\delta A\|}{\|A\|}} \quad[\text { Watkins } 2 \cdot 3]
$$

Prove: $\quad A x+\delta A x+A \delta x+\delta A \cdot \delta x=\delta+\delta b$

$$
\text { ar } \quad \frac{\|\delta x\|}{\|x\|} \leqslant \frac{\delta<(A)}{1-K(A) \frac{\|\delta A\|}{\|A\|}}\left[\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right]
$$

Many similar bods are possible
The: Let A be mon-singular \& let $A x=b$ and $\hat{A} \hat{x}=\hat{b}$ whes $\hat{A}=A+\delta A, \quad \hat{x}=x+\delta x \neq 0$ $\hat{b}=b+8 b \neq 0$, the

$$
\frac{\|\delta x\|}{\|\hat{x}\|} \leqslant k(A)\left[\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|\hat{b}\|}+\frac{\|\delta A\|}{\|A\|} \frac{\|\delta b\|}{\|\hat{b}\|}\right]
$$

Csmall
Bottom line: $K(A)$ should lee sndl.
[wel l-conditioned]
\# H - conditional $\Leftrightarrow K(A)$ large

$$
\begin{aligned}
& \delta x=A^{-1}[-\delta A x-\delta A \cdot \delta x+\delta b] \\
& \|\delta x\| \leqslant\left\|A^{-1}\right\|[\|\delta A\|\|x\|+\|\delta A\|\|f x\|+\|\delta b\|] \\
& \leqslant K(A)\left[\frac{\|\delta A\| \|}{\| A()}\|x\|+\frac{\|\delta A\| \|}{\|A\|}\|\delta\|+\frac{\|\delta b\|}{\|A\|}\right] \\
& =\underbrace{k(A)\|\delta A\| \|}_{<1}\|\delta x\|+K(A)[\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|A\|\|x\|} \underbrace{\| \|\|A\| \| x}_{\|\Delta\|} \| \\
& \text { ar }[\underbrace{1-K(A) \frac{\|\delta A\|}{\|A\|}}_{>0}] \frac{\|\delta x\|}{\|x\|} \leqslant \mathcal{K}(A)\left[\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right]
\end{aligned}
$$

Backward Error for Gaussion Elimination
[Watkins 2.7]
FACT: Suppose we compute $\sum_{j=1}^{n} w_{j}$ using floating point arithmetic with unit rouncloff u. Then

$$
f l\left(\sum_{j=1}^{n} w_{j}\right)=\sum_{j=1}^{n} w_{j}\left(1+\nu_{j}\right)
$$

where $\left|\nu_{j}\right| \leqslant(n-1) u+O\left(u^{2}\right)$ regardless of the cerder in which the terms are accurnclated.

Proof: By induction, \rightarrow tree foe $n=1$.
let m he true foes all int. $m<n$.

$$
\sum_{j=1}^{m} w_{j}=\sum_{j=1}^{k} w_{j}+\sum_{j=k+1}^{m} w_{j}
$$

By induction hypootheris, $f\left(\sum_{j=1}^{k} \omega_{j}\right)=\sum_{j=1}^{k} w_{j}\left(1+\alpha_{j}\right)$

$$
\text { \& } f\left(\sum_{j=k+1}^{m} w_{j}\right)=\sum_{j=k+1}^{m} w_{j}\left(1+\alpha_{j}\right)
$$

where $\left(\alpha_{j}\right) \leqslant \begin{cases}(k-1) u+o\left(u^{2}\right) & j=1 \cdots k \\ (m-k-1) u+o\left(u^{2}\right) & j=k+1, \cdots, m\end{cases}$
But $k-1<m-2 \&(m-k-1) \leqslant m-2$
Hence $\lim _{(\infty)}\left|\alpha_{j}\right| \leqslant(m-2) u+O\left(u^{2}\right) j_{j}=1, \cdots, m$
Now,

$$
\begin{aligned}
& f\left(\sum_{j=1}^{m} w_{j}\right)=f\left[f\left(\sum_{j=1}^{k} w_{j}\right)+f\left(\sum_{j=k+1}^{m} w_{j}\right)\right] \\
& =\left[\sum_{j=1}^{k} w_{j}\left(1+\alpha_{j}\right)+\sum_{j=k+1}^{m} w_{j}\left(1+\alpha_{j}\right)\right](1+\beta) \\
& =\sum_{j=1}^{m} w_{j}\left(1+\alpha_{j}\right)(1+\beta) \quad[|\beta|<U]
\end{aligned}
$$

Let $\quad \gamma_{j}=\alpha_{j}+\beta+\alpha_{j} \beta$

$$
\Rightarrow f l\left[\sum_{j=1}^{m} w_{j}\right]=\sum_{j=1}^{m} w_{j}\left(1+\gamma_{j}\right)
$$

then

$$
\begin{aligned}
\left|\gamma_{j}\right| & \leqslant\left|\alpha_{j}\right|+|\beta|+O\left(u^{2}\right) \\
& \leqslant(m-2) u+O\left(a^{2}\right)+u+O\left(a^{2}\right) \\
& =(m-1) u+O\left(u^{2}\right)
\end{aligned}
$$

\# Notalia: $C \in \mathbb{R}^{m \times n}$, the $|C| \in \mathbb{R}^{m \times n}$ with $\left(|C| \|_{i j}=\left|e_{i j}\right|\right.$

$$
c \leqslant F \Leftrightarrow c_{1 j} \leqslant f_{j j} \quad \forall i j j
$$

B.E. for forward /bock ward substitalia

The. Let $G \in \mathbb{R}^{n \times n}$ he mon-singular, lower (upper) triangular matrix, and let $b \neq 0$. by $=b$ is solved lu amy variant of forward (backward) subsitulic using He pt. arithmetic, then the answer \hat{y} aligfies: $(a+\delta G) \hat{y}=b$

Proof: At the ideally. step: $y_{i}=\frac{b_{i}-\sum_{i=1}^{i-1} g_{i j} y_{j}}{g_{i i}}$
in reality: $\quad \hat{y}_{i}=\operatorname{ll}\left(\frac{b_{i}-\sum_{j=1}^{i-1} g_{i j} \hat{y}_{j}}{g_{i i}}\right)$
chain: $\quad f l\left(g_{i j} \hat{y}_{j}\right)=g_{i j} \hat{y}_{j}\left(1+\alpha_{i j}\right), \mid \alpha_{i j} / \leqslant u$

Prorg: Exenise

Frum previcus EACT:

$$
\begin{aligned}
& \text { Previdens } A_{1}^{A A_{i}}\left(b_{i}-\sum_{j=1}^{i=1} g_{i j} \hat{y}_{j}\left(1+\alpha_{i j}\right)\right) \\
& =b_{i} \cdot\left(1+\gamma_{i i}\right)-\sum_{j=1}^{i-1} g_{i j}\left(1+\alpha_{i j}\right)\left(1+\alpha_{i j}\right)
\end{aligned}
$$

where $\quad\left|\nu_{i j}\right| \leqslant{ }^{j=1}(i-1) u+O\left(u^{2}\right) j=1, \cdots 1^{0}$
Next division:

$$
\begin{array}{r}
\text { Nest divizian } \\
\hat{y}_{i}
\end{array}=\left[\frac{b_{i}\left(1+\gamma_{i i}\right)-\sum g_{i j} \hat{y}_{j}\left(1+\alpha_{i j}\right)\left(1+\nu_{i j}\right)}{g_{i i}}\left(1+\beta_{i}\right)\right.
$$

$$
\begin{aligned}
& =\frac{b_{i}^{0}-\sum_{j=1}^{i-1} g_{i j}\left(1+\varepsilon_{i j}\right) \hat{y}_{j}}{g_{i i}\left(1+\varepsilon_{i i}\right)} \sum_{i j} g_{i j}\left(1+\varepsilon_{i j}\right) y_{j}=b_{1}^{0} \quad 1+\varepsilon_{i j}=\left\{\frac{\left(1+\alpha_{i j}\right)\left(1+\alpha_{i j}\right), j 4 i}{1+r_{i i}}\right. \\
& \text { or } \sum g_{i j}\left(1+\varepsilon_{i j}\right) y_{j}=b_{1}{ }^{0}
\end{aligned}
$$

ar $(G+\delta G) \hat{b}=b$
L.T witt $f g_{i j}=\varepsilon_{i j} g_{i j}$ for $i>j^{0}$

Claim: $\left|\varepsilon_{i j}\right| \leqslant 2 m i+O\left(u^{2}\right) \quad \forall i j j$
Proog:

$$
\begin{aligned}
\frac{1}{1+\gamma_{i i}} & =1-\gamma_{i i}+\gamma_{i i}^{2}-\gamma_{i i}^{3} \\
& =1-\gamma_{i i}+O\left(u^{2}\right)
\end{aligned} \quad \begin{aligned}
& \text { since } \\
& \gamma_{i i}=O(u)
\end{aligned}
$$

Ther for $j<i, \quad 1+\varepsilon_{i j}=\left(1+\alpha_{i j}\right)\left(1+\gamma_{i j}\right)\left(1-\gamma_{i i}+o / a_{i}\right)$

$$
=1+\alpha_{i j}+\nu_{i j}-\gamma_{1 i}+O\left(a^{2}\right)
$$

$$
\begin{aligned}
\Rightarrow\left|\varepsilon_{i j}\right| & \leqslant\left|\alpha_{i j}\right|+\left|\gamma_{i j}\right|+\left|\gamma_{i i}\right|+O\left(u^{2}\right) \\
& \leqslant u+(i-1) u+(i-1) u+O\left(u^{2}\right) \\
& \leqslant\left(2_{i}-1\right) u+O\left(u^{2}\right) \\
& \leqslant 2 n u+O\left(u^{2}\right)
\end{aligned}
$$

Similarly $\left|\Sigma_{i i}\right| \leqslant i u+O\left(u^{2}\right) \leqslant 2 m+O\left(u^{2}\right)$
B.E. in LU.

Thu 1: Suppose the $L U$ decumpsesition of A is computed using fl l pit arithmetic, \& suppose no zero pivots are encountered. Let $\widehat{L} \& \hat{U}$ are the computed factors. Then:

$$
A+E=\hat{L} \hat{U}
$$

where $|E| \leqslant 2 n u / \hat{L}| | \hat{u} \mid+O\left(u^{2}\right)$
\& $\|E\|_{\infty} \leqslant 2 \operatorname{men}\|\hat{L}\|_{\infty}\|\hat{u}\|_{\infty}+o\left(u^{2}\right)$
Thin 2: (Sure assumptions as above the), suppress we solve $A x=b$ numerically using forward \& backwoed substitution using \bar{L}, \exists resp. Then the solution x satisfies:

$$
(A+f A) \hat{x}=b
$$

where $|\delta A| \leqslant 6 n u|\hat{L}||u|+O\left(u^{2}\right)$
$\& \quad\|\delta A\|_{\infty} \leqslant G_{n u}\|\hat{L}\|_{\infty}\|\pi\|_{\infty}+o\left(u^{2}\right)$

Backward Stable: (rather loosely used) \rightarrow either B.E. is "small" ar $\frac{\text { B.E. }}{\|D a t a l\|}\left(\rho \cdot g \cdot \frac{\|S A\|}{\|A\|}\right)$
\#From the abcere the, B.E. is small only when $\|L\|$ \& $\|U\|$ are small.
\Rightarrow LU without pivoting, $L U$ witt partial pivoting are both NOT. backward stable
$\Rightarrow L U$ witt fall pivoting is Backward stable.
Proof: 1) If $A=L U, \quad l_{i j}=\frac{\alpha_{i j}-\sum_{k=1}^{j-1} l_{i k} u_{k j}}{u_{j j} i=1} \quad i>j^{0}$
\& $\quad u_{i j}=a_{i j}-\sum_{k=1}^{i-1} l_{i k} u_{k j} \quad i<j$
In actual computaticen: $\hat{l}_{i j}=\mu\left(\cdots \hat{l}_{i k} \hat{u}_{k j}\right)$

$$
\vec{a}_{i j}^{i j}=k(\ldots)
$$

Then: $\hat{l}_{i j}=\frac{a_{i j}\left(1+\gamma_{i j}\right)-\sum_{k=1}^{i-1} \hat{i}_{i k} \hat{u}_{k j}\left(1+\alpha_{k}\right)\left(1+\gamma_{i k}\right)(1+\beta)}{\hat{u}_{i j}}$
\# $\left|r_{i j}\right| \leqslant\left(j^{-1}\right) u+O\left(u^{2}\right) \rightarrow$ from previous the
$\left|\alpha_{k}\right| \leqslant u \leftarrow$ roundoff gas suit.
$|\beta| \leqslant u \leftarrow$ roundoff fer div.
Proceeding as in last tho (Exercise),

$$
\tau_{i j}=\frac{a_{i j}-\sum_{k=1}^{0-1} \lambda_{i k} u_{k j}\left(1+\delta_{i k}\right)}{\widehat{u}_{i j}\left(1+\delta_{i j}\right)} ; \quad\left|\delta_{i k}\right| \leqslant 2 n u+o\left(u^{2}\right)
$$

or $a_{i j}+e_{i j}^{a 0}=\sum_{k=1}^{j} \hat{l}_{i k} \hat{u}_{k j}\left[\begin{array}{l}\text { Consolidating all } \\ \text { error term in } e_{i j}\end{array}\right]$ where $\left.e_{i j}=-\sum_{k=1}^{0} \hat{l}_{i k} \hat{u}_{k j} \delta_{i k}\left[\begin{array}{c}-0 \\ i\end{array}\right\rangle{ }^{0}\right]$

$$
\begin{align*}
& \Rightarrow \quad\left|e_{i j}\right| \leqslant\left|\delta_{i k}\right| \sum_{k=1}^{j}\left|\hat{\imath}_{i k}\right|\left|\hat{u}_{k j}\right|+o\left(u^{2}\right) \\
&=2 m \sum_{k=1}^{j}\left|\hat{\imath}_{i k}\right|\left|\hat{u}_{k j}\right|+o\left(u^{2}\right) \tag{}\\
& \underbrace{0}_{\text {(})}
\end{align*}
$$

For $i<j$, same results can be obtained using the $U_{i j}$ equation.
H Here B, is true for $\forall i, i$.
In matrix form:

$$
\& \quad A+E=2 u
$$

Proof of 2: $\quad(\hat{L}+\delta \hat{L}) \hat{y}=6 \quad \Rightarrow|\delta \hat{L}| \leqslant 2 \pi u|\hat{L}|$

$$
\begin{aligned}
& (\hat{u}+\delta \hat{u}) \hat{x}=\hat{y} \Rightarrow|\delta \hat{u}| \leqslant 2 m u|\hat{u}| \\
& (\hat{(}+\overrightarrow{\delta i})(\vec{u}+\overrightarrow{\delta u}) \vec{x}=b \\
& {[\hat{L} \hat{U}+\hat{\delta L} \hat{u}+\hat{L} \delta \hat{u}+\hat{\delta L} \hat{\delta} \vec{u}] \hat{x}=b} \\
& {[A+\underbrace{E+\cdots}_{8 A}] \hat{x}=b \quad \text { Assume }} \\
& \delta A=E+\hat{\delta i} \hat{u}+\hat{i} \hat{\delta a}+\hat{\delta i} \hat{\delta a} \\
& A+E=\hat{L} \hat{U} \\
& |E| \leqslant 2 \mathrm{~m}|\hat{c}|(\vec{a}) \\
& +O\left(u^{2}\right) \\
& \begin{array}{l}
2\left(a^{2}\right)
\end{array} \\
& =\operatorname{Gmu}|\hat{\imath} / \hat{u}|+O\left(u^{2}\right)
\end{aligned}
$$

