The Least Squares Problem: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$

$$
\text { firs: } \left.\frac{m_{x \in \mathbb{R}^{n}}\|A x-b\|_{2} b}{R(A)}\left[A x^{*} \prod_{m \times n}\right]\left[x_{n}^{x}-b\right)[]_{n \times 1}^{x}=\right]_{m \times 1} b
$$

Normal Ears:
FACT: x solves the L.S. prolelem
$A^{\top} A x=A^{\top} b \rightarrow$ normal equips
FACT: a) Normal epis are always consistent
b) When A is fall rank, the unique solution is given by $\hat{x}=\left(A^{\top} A\right)^{-1} A^{\top} b$
c) When A is not foll earle, the normal eqn always have more than one solution, where arr tor solutions $\hat{x}, 8$ \hat{x}_{2} satisfy $A\left(\hat{x}_{1}-\hat{x}_{2}\right)=0$
d) The projection of b soto $R(A)$ is unique $\&$ is defined log $\hat{b}:=A \hat{x}$, where \hat{x} is any solution to the normal eqns. When A is full-sark. $\hat{b}=A\left(A^{\top} A\right)^{-1} A^{\top} b$

Prof i: a) $R\left(A^{\top} A\right)=R\left(A^{\top}\right) \rightarrow$ Enevise
b) A fall s ark $\Rightarrow A^{\top} A$ is men-singular (Proof: enevise)
$c>R\left(A^{\top} A\right)=R\left(A^{\top}\right) \Leftrightarrow R\left(A^{\top} A\right)^{-1}=R\left(A^{\top}\right)^{\perp}$

$$
\Leftrightarrow N\left(A^{\top} A\right)_{1}=N(A)
$$

Hence $A^{\top} A\left(\hat{x}_{1}-\vec{x}_{2}\right)=0 \Leftrightarrow A\left(\hat{x}_{1}-\vec{x}_{2}\right)=0$
d) From

$$
\text { (c) } \quad \hat{b}_{1}=A \hat{x}_{1}, \quad \hat{b}_{2}=A \hat{x}_{2}
$$

$$
\left(\hat{b}_{1}-\hat{b}_{2}\right)^{b_{1}=A x_{1}} A\left(\hat{x}_{1}-\hat{x}_{2}\right)^{b_{2}}=A_{1}^{1}
$$

Numerical Solution of Normal Ens

$$
x_{L S}=\arg \min _{x}\|A x-b\|_{2} \quad \& \quad \dot{x}_{L S}=b-A x_{L S}
$$

then
Q1) Hew chose is $\tilde{x}_{L S}$ to $x_{c S}$?
Q2) How dose is $\hat{r}_{5}:=b-A \hat{x}_{L S}$ to $k_{L_{S}}$?
Cholesky Factorization (for full rant A)
\# Let $\operatorname{rank}(A)=n$

$$
A^{\top} A x=A^{T} b
$$

1) Congrats $d=A^{\top} b$
2) Compute $c=A^{\top} A[C>0, \because A \text { full sale }]_{T}$
3) Connote Cholesky fortes of $C=G G$
4) Solve $G_{1} y=d$ and $G^{\top} x_{L S}=y$.
\# Algor requires $\left(m+\frac{n}{3}\right) n^{2}$ flops
\# B.E. We know ($\left.A^{\top} A+E\right) \hat{x}_{C S}=A^{\top} b$
where $\|E\| \approx c u\left\|A^{\top}\right\|\left\|_{2}\right\| A\left\|_{2}=c u\right\| A^{\top} A \|_{2}$ 4 small constant
Thew, $\left.\left(A^{\top} A+E\right) \vec{x}_{L S}=A^{T} b\right] \quad A^{\top} A \hat{x}_{L S}+E \hat{x}_{L S}-A^{T} A x_{L S}=0$

$$
\begin{aligned}
A^{\top} A x_{L S}=A^{\top} b & \Rightarrow A^{\top} A\left[\hat{x}_{L S}-x_{L S}\right]=-E \hat{x}_{L S} \\
& \Rightarrow \vec{x}_{L S}-x_{2 S}=-\left(A^{\top} A\right)^{-1} E \hat{x}_{L S}
\end{aligned}
$$

$$
\begin{aligned}
&\left\|\dot{x}_{L S}-x_{i S}\right\| \&\left\|\left(A^{\top} A\right)^{-1}\right\|\|E\|\left\|\vec{x}_{L S}\right\| \\
& \text { os }\left\|\dot{x}_{L S}-x_{l s}\right\| \\
&\left\|\hat{x}_{L S}\right\| \leqslant \frac{c u \sigma_{\text {mane }}\left(A^{\top} A\right)}{\sigma_{\text {min }}\left(A^{\top} A\right)} \\
& \leqslant c u K_{2}\left(A^{2} A\right)=c u K_{2}^{2}(A)
\end{aligned}
$$

\# Note: Fl. pi. errors in veating $A^{7} \theta$ is ignored above. \rightarrow can lead to serious eros.
L.S. solution via $Q R$
Let $Q^{\top} b=[C] 7 n$$\quad \begin{aligned} & A=Q R=Q\left[\begin{array}{l}R_{1} \\ 0\end{array}\right] \\ & \left.R_{1} \in \mathbb{R}^{n \times n}\right)\end{aligned}$

Let $\left.Q^{\top} b=\left[\begin{array}{l}c \\ d\end{array}\right]\right\}_{3 m-n}$

$$
\|A x-b\|_{2}^{2}=\left\|Q^{\top} A x-Q^{\top} b\right\|_{2}^{2}=\|R, x-c\|\left\|_{2}^{2}+\right\| d \|_{2}^{2}
$$

Hence $\underbrace{R_{1} x_{L S}=c}$ and $\left\|r_{L S}\right\|_{2}=\|d\|_{2}$
solve to get x_{L}
\# Flops required: $2 n^{2}(m-n / 3)$ - same as Heuscholdes $Q R$ sine $O(m n)$ for $Q^{\top} b$ and $O\left(n^{2}\right)$ for back
substitution ave mot significant.
Sensitivity of the Full Rank LS Problem (lug QR)
The: Suppose that $x_{l s}, r_{l S}, \hat{x}_{l S}$ \& $\hat{r}_{l S}$ satisfy

$$
\begin{aligned}
& \left\|A x_{l S}-b\right\|_{2}=\min , \quad r_{l S}=b-A x_{L S} \\
& \left\|(A+\delta A) \hat{x}_{l S}-(b+\delta b)\right\|_{2}=\min , \quad \hat{r}_{l S}=(b+\delta b)-(A+S A) \hat{x}_{L S}
\end{aligned}
$$

where A has rank n and $\|\delta A\|_{2}<\sigma_{n}(A)$.

Assume that $b, r_{L S}, x_{2 S}$ are not zero Let $\theta_{L S}=(0, \pi / 2)$ he defined lug

$$
\sin \left(\theta_{l s}\right)=\frac{\left\|r_{L S}\right\|_{2}}{\|b\|_{2}}
$$

If $\varepsilon=\max \left\{\frac{\left\{\|A\|_{2}\right.}{\|A\|_{2}}, \frac{\|\delta b\|_{2}}{\|b\|_{2}}\right\} \& v_{L S}=\frac{\left\|A x_{i s}\right\|_{2}}{\sigma_{n}(A)\left\|x_{L S}\right\|_{2}}$

$$
\begin{aligned}
& \frac{\left\|\hat{x}_{L S}-x_{L s}\right\|_{2}}{\left\|x_{l s}\right\|_{2}} \leqslant\left\{\frac{v_{L S}}{\cos \left(\theta_{s S}\right)}+\left[1+v_{L S} \tan \left(\theta_{L S}\right)\right] K_{2}(A)\right\}+O\left(\varepsilon^{2}\right) \\
& \frac{\left\|\hat{\varepsilon}_{L S}-r_{L S}\right\|_{2}}{\left\|r_{c s}\right\|_{2}} \leqslant \varepsilon\left\{\frac{1}{\sin \theta_{l S}}+\left[\frac{1}{V_{L S} \tan \left(\theta_{s s}\right)}+1\right] K_{2}(A)\right\}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Prual: Let $E=\frac{\delta A}{\varepsilon}, f=\frac{f b}{\varepsilon}$. Consider the rath
of

$$
\begin{equation*}
(A+t E)^{\top}(\underbrace{A+t E}) x(t)=(A+t E)^{\top}(b+t f) \tag{10}
\end{equation*}
$$

$\# x_{L S}=x(0)$ and $\hat{x}_{L S}=x(\varepsilon)$. Heme

$$
\begin{align*}
& \hat{x}_{L S}=x_{L S}+\varepsilon \dot{x}(0)+O\left(\varepsilon^{2}\right) \\
& \Rightarrow \frac{\left\|\hat{x}_{s s}-x_{L s}\right\|_{2}}{\left\|x_{c s}\right\|_{2}}=\varepsilon \frac{\|\dot{x}(0)\|_{2}}{\| x_{2}\left(\|_{2}\right.}+O\left(\varepsilon^{2}\right) \\
& \left.\begin{array}{c}
\text { Diff. } \otimes \rightarrow> \\
\text { at } t=0
\end{array}\right\},\left[\begin{array}{c}
\left.A^{\top} A+t \cdot A^{\top} E+t E^{\top} A+t^{2} E^{\top} E\right] x(t) \\
=A^{\top} b+t E^{\top} h+t A^{\top} f+t^{2} E^{T} f
\end{array}\right. \\
& \text { at } t=0]^{\prime}=A^{\top} b+t E^{\top} b+t A^{\top} f+t^{2} E^{\top} f \\
& {\left[A^{\top} E+E^{\top} A\right] x_{L S}+A^{\top} A \dot{x}(0)=A^{+} f+E^{\top} b} \\
& \Leftrightarrow \dot{x}(0)=\left[A^{\top} A\right]^{-1} A^{\top}\left[f-E x_{L S}\right]+\left[A^{\top} A\right]^{-1} E^{\top} r_{l S} \\
& \|\dot{x}(0)\|_{2} \leqslant\left\|\left[\dot{A}^{\top} A\right]^{-1} A^{\top} f\right\|_{2}+\left\|\left[A^{\top} A\right]^{-1} A^{\top} E x_{l s}\right\|_{2}+\left\|\left[A^{\top} A\right]^{-1} E^{\top} r_{l S}\right\|_{2}
\end{align*}
$$

$$
\left.\begin{array}{l}
\leqslant\left\|\left(A^{\top} A\right)^{-1} A^{\top}\right\|_{2}\|f\|_{2}+\left\|\left(A^{\top} A\right)^{-1} A^{\top}\right\|\| \| E\left\|_{2}\right\| x_{1 s}\left\|_{2}+\right\|\left(A^{\top} A\right)^{-1}\|E\|_{2}\left\|r_{r_{s}}\right\|_{2} \\
\leqslant \frac{\|b\|_{2}}{\sigma_{n}(A)}+\frac{\|A\|\| \|_{2}\left(S \|_{2}\right.}{\sigma_{n}(A)}+\frac{\|A\|_{2} \| r_{c}\left(\|_{2}\right.}{\sigma_{n}^{2}(A)} \\
\left\|\left(A^{\top} A\right)^{-1} A^{\top}\right\|_{2}=\frac{1}{\sigma_{n}(A)} ;\left\|\left(A^{\top} A\right)^{-1}\right\|_{2}=\frac{1}{\sigma_{n}^{2}(A)} ;\|\delta\| \leqslant\|b\|, \\
\|E\| \leqslant\|A\|
\end{array}\right]
$$

Replacement in (4) yields:

$$
\frac{\left\|\vec{x}_{c s}-x_{c s}\right\|}{\left\|x_{i s}\right\|} \leqslant \varepsilon\left[\frac{\|b\|_{2}}{\sigma_{n}(A)\left\|x_{s s}\right\|_{2}}+\frac{\|A\|_{2}}{\sigma_{n}(A)}+\frac{\|A\|_{2}\left\|r_{c s}\right\|_{2}}{\sigma_{n}^{2}(A)\left\|x_{s s}\right\|}\right]+O\left(\varepsilon^{2}\right)
$$

Desivation of the ras beand is similer. $\frac{\text { \#Chech b }}{\frac{\text { Ots }}{A x_{2 s}} \text { trs }}$

$$
\tan \left(\theta_{c s}\right)=\frac{\left\|r_{c s}\right\|}{\left\|A x_{l s}\right\|} ; v_{l S}=\frac{\left\|A x_{l s}\right\|}{\|b\|} \leq K_{2}(A)
$$

$$
\begin{equation*}
\text { Here }(\theta)=\varepsilon\left[\frac{V_{L S}}{\cos \left(\theta_{L S}\right)}+R_{2}(A)+V_{L S} \tan \left(\theta_{L S}\right) \operatorname{S}_{L}(\theta)\right] \tag{1}
\end{equation*}
$$

\# QR is better when 6 is close to $\mathcal{R}(A)$.

Q12 update

1) Rook 1 -change: $A \overrightarrow{=} A \in \mathbb{R}^{n \times n}$ kerman
\# A is charged to $\tilde{A}=A+u V^{\top}$. Conpute $\tilde{A}=Q, R$,
clearly $\quad \tilde{A}=A+u v^{\top}=Q\left[R+w v^{\top}\right]$
where $\quad w=Q^{\top} u$
\# We Givens rotations $J_{n-1}, \cdots, J_{2}, J_{1}$ (each
J_{k} in the plane $k, k+1$ to get

$$
J_{1}^{\top} \ldots J_{n-1}^{\top}, w= \pm\|w\|_{2} e_{1}
$$

\# Let $H=J_{1}{ }^{n} \cdots J_{n-1}^{\top}, R$
Claim: H is upper Hersenberg
ecg.

$$
J_{3}^{\top}=\left[\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & c & -s \\
0 & 0 & s & c
\end{array}\right]
$$

Hence
$\left.\begin{array}{l}H=\left[\begin{array}{ll}\frac{1}{2} \\ \frac{1}{0} & {[} \\ 0 & 0\end{array}\right] \\ 0\end{array}\right] \rightarrow\left[\begin{array}{ccc}c & - & s \\ s & c\end{array}\right]\left[\begin{array}{l}r_{23} \\ 0\end{array}\right]=$
\# Then $\left.\begin{array}{c}\text { is also }\end{array} J_{1}^{\top} \cdots J_{n-1}^{\top}{ }^{\top}\right]\left(R+w v^{\top}\right)=H \pm\|w\|_{2}, e^{\top} v^{\top}=H_{1}$,
is also upper Hessenbery
\# convert $H_{1}{ }^{+}$to upper triangular ln Givers rotation $C_{n-1}^{T} \cdots G_{2}, T_{1}=\underbrace{R_{1}}_{\longrightarrow}$ uppers Triagplas
\# Herne

$$
\begin{aligned}
& \tilde{A}=A+u v^{\top}=6\left[R+w v^{\top}\right]
\end{aligned}
$$

\# Flops required: $26 n^{2}$
Compare a fresh QR: $\sim O\left(n^{3}\right)$
\# Exercise: Enlwal to $A \in \mathbb{R}^{m \times n}$
Deleting a Column
\# Let $\quad Q R=A=\left[a_{1}|\cdots| a_{n}\right] \quad a_{i} \in \mathbb{R}^{m}$

$$
\begin{aligned}
& R= {\left[\begin{array}{ccc}
R_{11} & v & R_{13} \\
0 & r_{\text {kkk }} & w^{\top} \\
0 & 0 & R_{33}
\end{array}\right]_{m-k}^{k-1} \begin{array}{c}
1 \\
k-1
\end{array} 1 } \\
& n-k
\end{aligned}
$$

\# Problem: Compute $Q P$ of $\tilde{A}=\left[a_{1}|\cdots| a_{k-1}\left|a_{k+1}\right| \cdots \mid a_{n}\right]$
The $Q^{\top} \tilde{A}=\left[\begin{array}{cc}R_{11} & R_{13} \\ 0 & w^{\top} \\ 0 & R_{33}\end{array}\right]=: H$ is upper Hessenberg
\# Corsbinct $(n-k+1)$ Givers rotations is .t. $G_{n-1}^{T} \cdots G_{k}^{\top} H=R$, (upper triangular)

Then $A=Q^{\top} H=\underbrace{Q^{\top}\left(G_{k} \cdots G_{n-1}\right)}_{Q_{1}} R_{1}$
\# Flops $O\left(n^{2}\right)$ as compared to $O\left(n^{3}\right)$ for fresh QR

Appending a Column
$\operatorname{Let} Q R=A=\left[a_{1} \cdots a_{n}\right]$. Add a column to A :

$$
\widetilde{A}=\left[a_{1} \cdots a_{k}|z| a_{k+1} \cdots a_{n}\right] \in \mathbb{R}^{m \times(n+1)}
$$

\# $Q^{\top} \tilde{A}=\left[Q^{\top} a_{1} \cdots Q^{\top} a_{k}\left|Q^{\top} z\right| Q^{\top} a_{k+1}, \cdots Q^{\top} a_{n}\right]$

\# Use Givers sotalin. To zero ant the write: $G_{m-K-1}^{\top} \cdots G_{1}^{\top} W=R_{1}$ upper tringedlae The $\tilde{A}=Q W=\underbrace{Q Q_{1} \cdots G_{m-k-1}}_{Q_{1}} R_{1}$

Adding a Row : Let $Q R=A \in \mathbb{R}^{m \times n}$
QR Factorize $\tilde{A}=\left[\begin{array}{c}\omega^{\top} \\ A\end{array}\right], \omega \in \mathbb{R}^{n}$
\# Clearly, $\left[\begin{array}{c|cc}1 & 0 \cdots 0 \\ \hline 0 & Q^{\top} \\ 0 & Q^{\prime}\end{array}\right]\left[\begin{array}{c}\frac{w^{\top}}{A} \\ \hline\end{array}\right]=\left[\begin{array}{l}w^{\top} \\ R\end{array}\right]=H$ (Hessenbery)
\# Determine Givers sotaliars J_{1}, \cdots, J_{n} s.t.
$J_{n}^{\top} \cdots J_{1}^{\top} H=R$, is appes triaregolas \# $\widetilde{A}=\operatorname{diag}(1, Q) H=\underset{Q_{1}}{\operatorname{diag}(1, Q) J_{1} \cdots I_{n}} R$,

\& $\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right]=Q R$ is known $=\left[\begin{array}{c}w^{\top} \\ A_{1} \\ A_{2}\end{array}\right]$
\# Using praviaus mettod $\tilde{A}_{1}=Q_{1}, R$, , then

$$
\tilde{A}=\underbrace{P^{\top} Q_{1} R_{1}}_{\mathcal{Q}_{2}}
$$

Deleting a Row: $A=\left[\begin{array}{c}Z^{\top} \\ A_{1}\end{array}\right]_{m-1}^{1}=Q R=\overbrace{\left[\frac{q \pi}{Z}\right.}^{\frac{Q}{Z}}] R$ \# Compate Guivers rotation $G_{1}, \cdots, G_{m-1} s_{-y}$.

$$
G_{1}^{\top} \cdots G_{m-1}^{\top}, q= \pm e_{1}
$$

If we apply the sume G_{i} is on R,

Then $Q G_{m-1} \cdots G_{1}=\left[\begin{array}{c}q^{\top} \\ \hline Z\end{array}\right] \underbrace{G_{m,}}_{m-1} \cdots G_{1}=\left[\begin{array}{c|cc} \pm 1 & 0 & 0 \\ \hline 0 & Q_{1} \\ \vdots & 1\end{array}\right]$

$$
\begin{aligned}
\Rightarrow A & =\left[\begin{array}{c}
z^{\top} \\
A_{1}
\end{array}\right]=Q R \\
& =\left[\begin{array}{llll}
Q & G_{m-1} & \cdots & G_{1}
\end{array}\right]\left[G_{1}^{\top} \cdots G_{m-1}^{\top}\right. \\
& =\left[\begin{array}{cc}
\pm 1 & 0 \\
O & Q
\end{array}\right]\left[\begin{array}{c}
v^{\top} \\
R_{1}
\end{array}\right] \\
\Rightarrow & A_{1}=Q, R_{1}
\end{aligned}
$$

orthogenal
Q. What if A is not full rank?

Numerical Rank: $A=U \Sigma V^{\top}$. If rark $A=r(n$, then $\sigma_{r+1}=\cdots=\sigma_{n}=0$

$$
A=\sum_{k=1}^{n} \sigma_{k} u_{k} v_{k}^{\top}
$$

Hewever, computed muresically, $A=\sum_{k=1}^{n} \hat{\sigma}_{k} \hat{u}_{k} \hat{v}^{\top}{ }^{\top}$
\#Choese a totesance δ s.t.

$$
\begin{aligned}
& \text { a tolesarce } \delta \text { s.t. } \\
& \hat{\sigma}_{1} \geqslant \cdots \geqslant \hat{\sigma}_{\hat{r}}>\delta \geqslant \hat{\sigma}_{\hat{r}+1} \geqslant \cdots \geqslant \hat{\sigma}_{n} \\
& \xrightarrow[\rightarrow]{ } \rightarrow \text {-rark of } A
\end{aligned}
$$

$\hat{r} \longrightarrow \delta$-rark of A.
\# δ-is chosen usually as $\delta=u\|A\|_{\infty}$
$\frac{Q R \text { with Column Piveting: Modify House hodele }}{Q R \text { to get }}$
\# ff $A P=\left[a_{c_{1}}|\cdots| a_{c_{n}}\right], Q=\left[q_{1} \cdots \cdot q_{m}\right]$, then
$a_{c_{k}}=\sum_{i=1}^{\min \left(q_{2}, k q_{i}\right.} r_{i k} q_{i} \in \operatorname{span}\left\{q_{1}, \cdots, q_{k}\right\} \quad \forall k=1, \cdots, n$.

$$
\operatorname{rank}(A)=\operatorname{span}\left\{q_{f}, \ldots ; q_{r}\right\}
$$

for $j=1$ in

$$
\begin{aligned}
& j=1: n \\
& c(j)=A(1: m, j)^{\top} A(1 i m, j)
\end{aligned}
$$

end

$$
\tau=\max \{c(1) ; \quad ; c(n)\} ; r=0
$$

while $r>0$ \& $r<n$

$$
r=r+1
$$

maxi $\|\cdot\|_{2}$

$$
\begin{aligned}
& {[V, \beta]=\text { house }(A(r: m, r))} \\
& A(r: m, r: n)=\left(J m-r+1-\beta V V^{\top}\right) A(r: m, r: n) \\
& A(r+1: m, r)=V(2: m-r+1)
\end{aligned}
$$

for $i=r+1: n$

$$
c(i)=c(i)-A^{2}(r, i)
$$

$$
\tau=\max \{c(r+1, \cdots, c(\pi)\}
$$

end
Normally ore would require to recompute

$$
C(j)=A(1: m, j)^{\top} A(1: m, j) \text { foe } j=k+1: n
$$

offer $k^{\text {th }}$ step. However $Q^{\top} Z=\left[\begin{array}{l}\alpha \\ \omega\end{array}\right] \Rightarrow\|\omega\|_{2}^{2}=\|z\|_{2}^{2}-\alpha^{2}$
(Hence the new $c(j)$'s ear be congnited directly by subtraction of $A^{2}(s, i)$
Q. Does the above metticel reveal mireirial rank?

$$
f\left(H_{k} \cdots H_{1} A P_{1} \ldots P_{k}\right)=\left[\begin{array}{ll}
\hat{R}_{11}^{(k)} & \hat{R}_{12}^{(k)} \\
0 & \hat{R}_{12}^{(k)} \\
k & n-k
\end{array}\right]_{m-k}
$$

\#ff $\left\|\hat{R}_{22}(k)\right\|_{2} \leqslant \varepsilon_{1} \| A l_{2}$
we car darn the some machine dependant numerical rant of $A=K$. (Converse however is not always line
cools By. 279)
Basic solution of $L S$ with $Q Q$ witt Column
Pivoting

$$
A P=Q R=Q\left[\begin{array}{cc}
R_{11} & R_{12} \\
0 & 0 \\
r & n-r
\end{array}\right] \begin{gathered}
r \\
n-r
\end{gathered}
$$

$$
\begin{align*}
& \begin{aligned}
\|A x-B\|_{2}^{2}=\left\|\left(Q^{\top} A P\right)\left(P^{\top} x\right)-Q^{\top} b\right\|_{2}^{2} \\
=\left\|R_{11} y-\left(c-R_{12} z\right)\right\|_{2}^{2}+d^{2} \quad \left\lvert\, Q^{\top} b=\left[\begin{array}{l}
c \\
d
\end{array} P_{m-r} x=\left[\begin{array}{l}
y \\
z
\end{array}\right]_{n-r}\right.\right.
\end{aligned} \\
& \Rightarrow x^{x}=p\left[\begin{array}{c}
R_{11}^{-1}\left(c-R_{12} z\right) \\
z
\end{array}\right] \tag{x}
\end{align*}
$$

\# For each z, we have a differed sol= x°. For $z=0, x_{B}=P\left[\begin{array}{c}R_{11} \\ 0\end{array}\right] \leftarrow \begin{gathered}\text { Basic } \\ \text { Sol } \\ 0\end{gathered}$
\# A mere careful analysis of Rank deficient CS requires SVD.
the minimum berm \cong
FACT: The set of all minizers for the L.S. proleter: $x=\left\{x \in \mathbb{R}^{n}: \| A x-b / / 2=\min \right\}$ is converse

Prog: If $x_{1}, x_{2} \in X$ and $\lambda \in[0,1]$, the

$$
\begin{aligned}
& \left\|A\left(\lambda x_{1}+(1-\lambda) x_{2}\right)-b\right\|_{2} \\
\leqslant & \lambda\left\|A x_{1}-b\right\|_{2}+(1-\lambda)\left\|A x_{2}-b\right\|_{2} \\
= & \min _{i}\|A x-b\|_{2} \\
\Rightarrow & {\left[\lambda \mathbb{R}^{n}\right.} \\
\Rightarrow & {\left[\lambda x_{1}+(1-\lambda) x_{2}\right] \in \lambda }
\end{aligned}
$$

FACT: \exists unique $x_{L S} \in X$ s.t. $\left\|x_{1 S}\right\|_{2}=\min \left\|x_{2}\right\|_{2} \forall$ $x \in X$
(Recall in full-rark case thees is orleg one $x_{L S}$)

FACT: Let $A=U \sum V^{\top}, A \in \mathbb{R}^{m \times n}$ witt $\operatorname{rank}(A)=r$ $U=\left[u, \cdots u_{m}\right]$ \& $V=\left[v_{1} \cdots v_{n}\right]$, \& $b \in \mathbb{R}^{m}$ Then $\quad x_{c s}=\sum_{i=1}^{r} \frac{u_{0}{ }^{\top} b}{\sigma_{i}{ }^{i}} v_{i}^{0}$
Moreaver, $\rho_{i s}^{2}=\left\|A x_{i}-b\right\|^{2}=\sum_{i=r+1}^{m}\left(u_{i}^{\top} b\right)^{2}$

Proof:

$$
\begin{aligned}
& \text { wool: }\|A x-b\|_{2}^{2}=\left\|\left(u^{\top} A v\right)\left(v^{\top} x\right)-u^{\top} b\right\|_{2}^{2} \quad \alpha=v^{\top} x \\
& =\left\|\sum \alpha-u^{\top} b\right\|_{2}^{\alpha}=\sum_{i=1}^{n}\left(\sigma_{i} \alpha_{i}^{0}-u_{i}^{\top} b\right)^{2} \\
& \Rightarrow \sum_{i=r+1}^{m}\left(u_{i}^{\top} b\right)^{2} \\
& \Rightarrow \text { Min 2-ment } \alpha_{i}=\left\{\begin{array}{ll}
\frac{u_{i}^{\top} b}{\sigma_{i}^{0}}, i=1 \cdots r \\
\text { solution }
\end{array}\right\} \quad i=r+1, \cdots, r
\end{aligned}
$$

$$
x_{L S}=V \alpha
$$

$\underbrace{\text { Recall Gerrety of SuD: }}_{A}$

$$
\left.\left.\begin{array}{c}
v_{1} \xrightarrow{\stackrel{H}{\sigma_{1}}} u_{1} \xrightarrow{\sigma_{1}} v_{1} \\
v_{2} \xrightarrow[\sigma_{2}]{\sigma_{2}} u_{2} \xrightarrow[\sigma_{2}]{\sigma_{2}} \\
\dot{v_{r}} \xrightarrow{\sigma_{s}} u_{r} \xrightarrow[r]{\sigma_{r}} v_{s} \\
v_{r+1} \\
\vdots \\
v_{m}
\end{array}\right\} \rightarrow 0 \begin{array}{l}
u_{r+1} \\
\vdots \\
u_{n}
\end{array}\right\} \rightarrow 0
$$

\longrightarrow choose.

$$
\left\|x_{1 s}\right\|_{2}=\|\alpha\|_{2}
$$

Recall

$$
\begin{array}{l|l}
R(A)=p\left\{u_{1}, \cdots, a_{n}\right\} & R\left(A^{T}\right)=\phi p\left\{v_{1}, \cdots, v_{n}\right\} \\
N(A)=p\left\{v_{n+1}, \cdots ; v_{n}\right\} & N\left(A^{T}\right)=p p\left\{u_{n+1}, \cdots, u_{n}\right\}
\end{array}
$$

$\frac{\text { Psendo-inverse }}{A^{\top}} \rightarrow$ almost like inverse

Pseudor-mverse: $A^{+}=V \Sigma^{+} U^{\top} \in \mathbb{R}^{n \times m}$

$$
\Sigma^{+}=\operatorname{diag}\left(\frac{1}{\sigma_{1}}, \cdots, \frac{1}{\sigma_{r}}, 0_{i} ; 0\right) \in \mathbb{R}^{n \times m}
$$

then: $\quad x_{1 S}=A^{+} b$ \& $\left.\rho_{L S}=\| I I-A A^{+}\right] b \|_{2}$
\# If $\operatorname{rark}(A)=n$ ther $A^{+}=\left(A^{\top} A\right)^{-1} A^{\top}$
If $m=n=\operatorname{rack}(A)$ the $A^{+}=A^{-1}$
Projections:

$$
A x_{L_{S}}=\underbrace{A A^{+}} b
$$

Qerthogoral projeition matrix \rightarrow projecting b ato $R(A)$
\# Check this projectur gropectey
P is an erthogal projectia if $P^{2}=P=P^{T}$ Recall $R(A)=p\left\{a_{1}, \cdots, a_{n}\right\}$ $N(A)=p\left\{\left\{V_{k-1}, \cdots ; \nu\right.\right.$ $R\left(A^{T}\right)=\phi_{p}\left\{v_{1}, \cdots, v_{\mu}\right\}$ $N\left(A^{\top}\right)=8 p\left\{u_{r+1}, \cdots u_{n}\right\}$

$$
\Rightarrow\left[A^{+} A\right] y=\left[V, v_{1}^{\top}\right]_{n_{n}} \in \operatorname{sp}\left\{v_{1}, \ldots, v_{r}\right\}=R\left(A^{\top}\right)
$$

$n \times r r \times n \mathbb{R}^{n}$
arthogonal projection anto $R\left(A^{\top}\right)$
Exercise: Check A^{+}satigfies the freme Moore-Penrese conditions:
(i) $A \times A=A$
(iii) $(A X)^{\top}=A X$
(ii) $x A X=x$
(iv) $(X A)^{T}=X A$

Under determined Linear systems
$A \in \mathbb{R}^{m \times n}, m<n . \quad \operatorname{rank}(A)=m, b \in \mathbb{R}^{m}$
solve $A_{x}=b$
$\left.[A] \quad]_{x}\right]=[b]$
Infinitely many solutions.
Q. Can we use U to solve for at least one of the solutions?
Q. Car me use $Q R$ to find the min-norm sol?

UU with Complete/Ruok Pivoting

$$
P A Q^{\top}=L\left[U_{1} \mid U_{2}\right] \quad U_{1} \in \mathbb{R}^{m \times m}
$$

nos-singulas
$\mathbb{R}^{m \times m}$ unit lower tranayulas and spies tr.

$$
u_{2} \in \mathbb{R}
$$

$A x=b \Leftrightarrow\left(P A Q^{\top}\right)(Q x)=P b$
$\Leftrightarrow L\left[u_{1} \mid u_{2}\right]\left[\begin{array}{l}z_{1} \\ z_{1}\end{array}\right]=L\left(u_{1} z_{1}+u_{2} z_{2}\right)=C$
where $Q_{x}=\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]$ and $c=P b$

1) Solve $L y=P b$
$\rightarrow z_{2}=0$ is a natured choice
2) choose $z_{2} \in \mathbb{R}^{n-m}$ \& solve $u_{1} z_{1}=y-u_{2} z_{2}$ for z_{1} 3) Et $x=Q^{\top}\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]$.

QR can find the min-norm sole
Assume A has full sow rank $=m$ (as above) $Q^{\top} A P=\left[\begin{array}{ll}R & R_{2}\end{array}\right] \leftarrow Q R$ will al pivoting

$$
\underbrace{\left[Q_{m \times m}^{\top}\right]}_{m \times n} \begin{array}{c}
A \\
m \times n
\end{array}]\left[\begin{array}{c}
P \\
n \times n
\end{array}\right]=\underbrace{R_{m \times}}_{m \times m}=\underset{R_{2}(n-m)}{\left[\begin{array}{l}
0
\end{array}\right]}
$$

\# Due to col. pivoting, R_{1} is mn-singular (\because A has full rail)
\# Ore sol $\because \because: z_{2}=0, z_{1}=R_{1}^{-1} Q^{\top} b, x=P\left[\begin{array}{c}z_{1} \\ 0\end{array}\right]$
However min-merm is not guaranteed. $\left\|z_{1}\right\|_{2}$ depends on choice of P.
\# Flops: $2 m^{2} n-\frac{m^{3}}{3}$ (Eremise)
\# Alternatively, compute $A^{\top}=Q R=Q\left[R_{1}\right] D m \times n$ Then $\quad A x=S \Leftrightarrow(Q R)^{\top} x=R^{\top} Q^{T h} x e$

$$
=\left[R_{1} \mid 0\right] \underbrace{}_{\left.z=\left[\begin{array}{l}
Q_{1} \\
z_{1}
\end{array}\right]\right]_{m-m}}=\left[R_{1} \mid 0\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=b
$$

\# Pot $z_{2}=0, z_{1}=R_{1}^{-1} b \leftarrow \min \|\cdot\|_{2} \underset{\text { merm }}{\operatorname{mon}}$
\# Flops: $2 m^{2} n-\frac{2 m^{3}}{3}$ (Enecise)
SVD: SVD can we ased exactly as in tho overdetermined cuse:
Min Vdrm seln to $A x=b$

$$
\begin{aligned}
& x^{\alpha}=\sum_{i=1}^{r} \frac{u_{i}^{\top} b}{\sigma_{i}} v_{i}
\end{aligned}
$$

Comparisen fas Square System

$$
\begin{aligned}
& \angle U \\
& \text { Hanseboldes } Q R \longrightarrow \frac{2 n^{3}}{3} \\
& M G S \\
& S V D
\end{aligned} \longrightarrow 2 n^{3 / 3}
$$

