Marcimum Likelihood Estimation (MLE)

I) MVVE might be difficult to synthesize > might not be efficient (FCRLB) & hence CRIB equality condition cannot be used. - Synthesis using "sufficient statistics" we will cover later (has its own problems) 2) MIE waskes always - nice asymptotic performance quarantées (é.g. min variance, untriased news, consistency Let p(r;0) (re ER ; DES) he the joint pdf / pmf of Exclos, re[N-1]}. Then the likelihood fr. is defined as $P(\alpha = \alpha_0; \mathcal{Q}) : S \longrightarrow \mathcal{R}$. Log-likelihord for : In p (a= 20; 0) If in the Graussia case; H= Ho was diserved; 2[6] = A+w[6] w[o] ~> wan $p(\pi; A) = \frac{1}{(2\pi\sigma^2)^{1/2}}$ $enp \left| -\frac{1}{26^2} \left(\mathcal{H} - A \right)^2 \right|$ p(m;A) T

AI

N[0]= A true

So MLE $\hat{Q} = \arg \max \ln p(x = x_0; Q)$ $\hat{Q} \in S$ For the accord above: $\frac{\partial ln p(\pi; A)}{\partial A} = \frac{1}{\sigma^2} (\pi \log - A)$ ⇒ Â_{MLE} = 27[0]. Similarly free 2c[n] = A + w[n] = n = 0, 1, ..., N-1 $A_{MLE} = \int_{N=0}^{N-1} x[n]$ $(\rightarrow wan)$ # In the above examples A_{MVUE} = A_{MUE} can be verified - since A_{MVUE} could be calculated from CRIB. # However MLE is easy to find even if MVUE is hard. $\mathcal{H}[n] = A + w[n] \quad n = 0, \dots, N - 1 \quad \& \quad A = A$ & W[m]~N(O,A) $P(x;A) = \frac{1}{(2\pi A)^{N/2}} e^{n} \left[-\frac{1}{2A} \sum_{n=0}^{N-1} (2\pi(nJ-A)^{2}) \right]$ $\frac{\partial h p(a, A)}{\partial A} = -\frac{N}{2A} + \frac{1}{A} \sum_{n=0}^{N-1} (a(n7 - A) + \frac{1}{2A^2} \sum_{n=0}^{N} (a(n7 - A)) + \frac{1}{2A^2} \sum_{$ Check "reg" and the holds so CRIB applicable dut it is difficult to see whether $\frac{\partial h p(n, A)}{\partial A} = \overline{J}(A)(A - A) ??$

In any case, CRLB can be computed $Var(A) > \frac{A^2}{N(A+1/2)}$ (But no MUU) estimatee $\frac{Now \text{ consides } MLE}{\frac{\partial \ln p(n;A)}{\partial n} = 0 \implies \widehat{A}^2 + \widehat{A} - \frac{1}{N} \sum_{r=0}^{N-1} [n] = 0$ Solving 8 using $\widehat{A} > O \rightarrow \widehat{A} = -\frac{1}{2} + \sqrt{\frac{1}{N} \frac{2\pi^2}{n_1^2}} \frac{1}{4}$ inbiased / Q. So how good is this MLE ? Is it MVDE? Is it efficient? We did not (could not) even compute var (AME)!! FACT: If an efficient estimates exists the MLE will produce it. (Enercise) Prof: Imp(a;0) = 0 gives MLE. But lig CRIB an efficient estimater will satisfy $\frac{\partial m p(m; 0)}{\partial \theta} = \overline{j}(0) \left[\overline{\theta} - \overline{\theta} \right] - \overline{0}$ clearly $\overline{0} = 0$ will produce $\overline{\theta} = \overline{\theta}$.

Asymptotic guarantees lates.

MLE works ensity for weither parameters: $Q^{2}[Q_{1} \cdots Q_{p}]; \begin{bmatrix} \frac{\partial h p(x; 0)}{\partial Q_{1}} & \frac{\partial h p(x; 0)}{\partial Q_{p}} \end{bmatrix} = O_{1\times p}$

En:
$$\mathcal{P}[n] = A + \mathcal{W}[n]$$
 $n = 0, \dots, N^{-1}$
 $(\Rightarrow N(0,0^2) & 0^2 \text{ inke new r.}$
 $\mathcal{O} = [A \circ 2]^T$, $\frac{\partial I_n p(\alpha; 0)}{\partial A} = \int_0^{-2} \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_0^{-2} \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_0^{-2} \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_0^{\infty} \frac{\partial A}{\partial a^2} = -\frac{N}{20} \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_0^{\infty} \frac{\partial A}{\partial a^2} = -\frac{N}{20} \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \frac{\partial A}{\partial a^2} = -\frac{N}{20} \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; \beta; 1 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}^{\infty} \mathcal{O}(\alpha; 2 + A)$
 $\frac{\partial A}{\partial A} = \int_{0}$

En:
$$\mathfrak{P}[n] = N(0, \sigma^2) \rightarrow \sigma^2 \operatorname{inknen} \rightarrow \operatorname{Pewer}$$
 in
 $dB \text{ to be estimated.}$
 $\mathfrak{P} = 10 \operatorname{teg}_{0} \sigma^2$
 $\mathfrak{P}(\mathfrak{P}, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{N/2}} \operatorname{enp}\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} \mathfrak{P}(n]\right]$
 $\frac{\partial h \mathfrak{p}(\mathfrak{P}; \sigma^2)}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n=0}^{N-1} \mathfrak{P}(n] = 0$
 $\partial^2 = \frac{1}{N} \sum_{n=0}^{N-1} \mathfrak{P}(n]$. From invance
 $\mathfrak{P} = 10 \operatorname{teg}_{0} \tilde{\sigma}^2 = 10 \operatorname{teg}_{0} \frac{1}{N} \sum_{n=0}^{N-1} \mathfrak{P}^2(n]$

$$\begin{array}{c} \underline{Recall}:\\ \hline \mathcal{Def}=: & A & \text{seq of } x.v.s & X_1, X_2, & \text{on verges in prob.}\\ to & a & s.v. & x, & \text{if flas every } \varepsilon > 0,\\ & \lim_{n \to \infty} P(|X_n - X| \rightarrow \varepsilon) = 0\\ & gs & \lim_{n \to \infty} P(|X_n - X| < \varepsilon) = 1 \end{array}$$

They converge almost energy to a r.v.
$$X$$

if for every $\varepsilon > 0$,
 $P(\lim_{n \to \infty} |x_n - x| < \varepsilon) = 1$

FACT: A.S.C > Conv. in prob > Conv. in diatrobutia

FACTI: Weak Kaw of Large Nos: Alt X_1, X_2 ··· he fid $\pi.v.$ with $EX_0 = \mu$ and $Var X_i = 0^2 < \infty$. Define $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i^i$. Then for every $\varepsilon > 0$ $\lim_{n \to \mathcal{B}} P(|\overline{X_n} - \mu| < \varepsilon) = 1$ $i.e. \quad X_{n} \xrightarrow{P} \mathcal{M}.$

FACT2: Strong law of large mes: Let X1, X2 ... le iid x.vs with EX; = M and Var $X_i = \sigma^2 < \beta$, define $\overline{X_n} = \frac{1}{n} \stackrel{*}{\leq} X_i$ Then for every E>O, $\mathcal{P}\left(\lim_{n \to \infty} \left| \overline{X_n} - \mu \right| < \epsilon\right) = 1$ $ie \qquad \overline{X_{n}} \xrightarrow{\alpha.s} \mathcal{M}.$

Central dimit Theorem: let X, X2, be a log. of iid r. V. 2 with EX;= M Lo and O < Var X;: 02 (0) Define $\overline{X}_n = \frac{1}{n} \stackrel{2}{\underset{i=1}{\overset{\times}{\simeq}} X_i^{\circ}$. Let $\overline{F}_n(\pi)$ denote the cdf g^{i} $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sqrt{n}}$. Then for any $x \in (-\infty, \infty)$, $\lim_{n \to \infty} F_n(x) = \int \frac{x}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$ $i.e. F_n(r) \xrightarrow{d} N(O, L)$ Def=: A sequence of estimators $\widehat{O}_{N}^{=} O_{N}(20] = \mathcal{N}(N-7)$ is a consistent sequence of estimators of Q if fres every $\varepsilon > 0$, $\varepsilon \neq Q$, $\lim_{N \to \infty} P_Q(|Q_N(\varepsilon) - Q| < \varepsilon) = 1$ $\equiv \lim_{N \to \infty} \mathcal{P}_{\mathcal{O}}(|\widehat{\mathcal{O}}_{N}(\mathcal{A}) - \mathcal{O}| \geq \varepsilon) = O$ # On(a) converges in prob. to O (true) for each Q

Ex: r[n] = A+w[n] y w[n7~ N(0,1)

Consider the seq. of sample means $\overline{\mathcal{R}} = \frac{1}{N} \leq \mathcal{R}[r^{\circ}] \qquad \overline{\mathcal{R}}_{N} \sim \mathcal{N}\left(A, \frac{1}{N}\right)$ where $\mathcal{P}_{A}\left(|\overline{\mathcal{R}}_{N} - A| < \varepsilon\right)$

Usually a sufficient condition is used to check:

Decall, from Cheby chev's Trequality,

 $\mathcal{P}_{\mathcal{P}}\left(\left|\hat{\mathcal{P}}_{\mathcal{N}}-\mathcal{P}\right|\geq\varepsilon\right)\leqslant\frac{\mathcal{E}_{\mathcal{P}}\left(\left(\hat{\mathcal{P}}_{\mathcal{N}}-\mathcal{P}\right)^{2}\right)}{\varepsilon^{2}}$

But $E_0[(\widehat{P}_N - Q)^2] = Var_0 \widehat{P}_N + [Bias_0 \widehat{P}_N]^2$ Hence if $Var \rightarrow O \ \& \ Bias \rightarrow O \ as N \rightarrow O$ the $\widehat{O}_N \xrightarrow{P} O$

Thm: If is a sequence of estimateus of a parameter & satisfying 1) the ON is a consistent sequence of estimations of Q. En: Easy to verify for the encomple above $E_0 \overline{z_N} = 0$ $Var_0(\overline{z_N}) = \frac{1}{N}$ Consistences of MIEs: Thm: Let x[1]-... x[r] we iid p(x[i]; D) and let $L(0; \alpha) = \prod_{i=1}^{n} p(\alpha(i); 0)$ be the likelihood $f^{\underline{m}}$. Let ∂_n denote the MLE of Q. Under <u>some segularity condition</u> on $p(\alpha(i); 0)$, for every $\varepsilon > 0 \ & \forall 0$, $\dim P_0(10n - 01 \ge \varepsilon) = 0$ i.e. $n \ge 0$ is a ansistent estimator of QOutline of prof. det Do he the true parameter value.

Let $L_n(Q) = \frac{1}{n} \sum_{i=1}^n \ln p(\alpha[i]; Q)$ trangele = Ep. [Im p(a;0)] Then buy L.L.N VO, $L_n(\mathcal{O}) \longrightarrow E_{\mathcal{O}}[hp(\alpha;\mathcal{O})] = L(\mathcal{O})$ Claim: $L(0) \leq L(0_0) \neq 0$ does does does does does not depend a sample. (mfact P(L(0) < L(0,)) = 1] Proof: Exercise Then: proof follow from: 1. O_n is the maninizes of $L_n(O)$ (M(E) 2. O_O is the maninizes of L(O) (lug 3. $\forall O$, $L_n(O) \rightarrow L(O)$ by U.N.

Q. What about depositatic variance of the estimator?

 $\frac{\partial e^{f - \frac{\omega}{m}}}{k_n \left(\tilde{\mathcal{O}}_n - \mathcal{O} \right)} \xrightarrow{d} N(\omega, \sigma^2), where$

Example: For n id $N(M, G^2)$ observation $X_1, \dots, X_n, \quad X_n = \frac{1}{n} \sum_{i=1}^n X_i$ $\sqrt{n}\left(\overline{X}_{n}-\mu\right) \xrightarrow{\mathcal{A}} \mathcal{N}\left(\mathcal{O},\sigma^{2}\right)$ Note: We need this Sn, othercerise Variance goes to O.

Def A sequence of estimaters On is asymptotically <u>efficient</u> for \mathcal{P} if $\sqrt{n}(\hat{\mathcal{O}}_n - \mathcal{P}) \stackrel{d}{\rightarrow} \mathcal{N}(\mathcal{O}, \mathcal{I}(\mathcal{O}))$ where $I(0) = E\left[\frac{\partial^2}{\partial Q^2} \ln p(\sigma; Q)\right]$ (i.e. asymptotically \widehat{O}_n is unbiased $\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ &$

Thm: Let x[1], rol he id p(x[i];0), O lie MLE for \mathcal{O}_{\bullet} . Under 'sleg. conditions' on $p(\mathcal{H};\mathcal{O}_{\bullet})$ $\sqrt{n(\mathcal{O}-\mathcal{O}_{\bullet})} \rightarrow N(\mathcal{O}, I(\mathcal{O}))$ where I (b) is the CRIB. ⇒ D is consistent & asymptotically efficient estimates of G. Proof det L(Q) = In p(7;0) he the like liked function & let Oo be the true value of O. Taylor - Series of <u>H</u> around Oo: $\frac{\partial L}{\partial Q} = \frac{\partial L}{\partial Q} \left|_{Q_{1}} + \left(Q - Q_{0}\right) \frac{\partial^{2} L}{\partial Q^{2}} \right|_{Q_{1}}$ For finding the MIE : O, we put $\frac{\partial L}{\partial Q} = O \implies \left(\overrightarrow{Q} - O_O \right) = - \frac{\partial L}{\partial O} |_{O_O}$ $\frac{\partial^2}{\partial Q^2} \Big|_{Q_2}$ $\sqrt{n}\left(\partial - \partial_{O}\right) = \frac{-\frac{1}{\sqrt{n}}}{\partial \partial \partial \partial_{O}}$ Ø, 1 32 /00 New: - In old los ~ N(O, I(D))/ Prosef Steipped $\frac{1}{n} \frac{\partial^2 \mathcal{L}}{\partial \mathcal{P}^2} \Big|_{\mathcal{O}_{\mathcal{O}}} \xrightarrow{\mathcal{P}} \mathcal{I}(\mathcal{O}_{\mathcal{O}})\Big|$

Hence $\sqrt{m(\partial - \partial_2)} \xrightarrow{d} N(\partial, \frac{1}{I(\partial_2)})$