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Question

* Given a collection of autonomous dynamical systems
(or ‘agents’) communicating with each other over
(undirected/directed, time invariant/time varying)
graph(s), how do we bring them to a consensus/
synchronize them in minimum time?

X, =U. ;—>J
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Olfati-Saber et al, Proceedings of IEEE, 2007 GRASP Lab, UPenn




We solve two sub-questions

Computation of Time Optimal Feedback using
Groebner Basis

(Feedback) Pursuit-

Evasion Games Time Optimal Multi -
agent Consensus
(complete graph)

Time Optimal Leader Tracking in Multi-
agent systems (directed graphs)




TIME OPTIMAL FEEDBACK




Time Optimal Feedback
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Problem: Go from A to B in minimum time with
maximum allowed acceleration/deceleration=+1
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Q. What if A/B is perturbed?

- Looks like we have to re-compute the switching
instance all over again
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Q. What if A/B is perturbed?
- Looks like we have to re-compute the switching
instance all over again

NOT REALLY — On state space, switching occurs
based on the SWITCHING SURFACE — the blue
line



Switching Surface for Feedback

If S (the switching surface) is known feedback control

can be synthesized

Switching Surface

Feedback Algorithm:

_] +1if§<0
~1if §>0

And change sign as
soon as

S=0
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Switching Surface for Feedback

e If S (the switching surface) is known feedback control

can be synthesized
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Switching Surface
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Feedback Algorithm:

_] +1if§<0
~1if §>0

And change sign as
soon as

S=0

* The virtues of feedback over open loop are many — In fact, the initial
motivation for this research was ISRO RLV RCS thruster control design



Switching Surface for Feedback

But for this we need an IMPLICIT expression i.e.
S(x4,x,) = 0 equation for the switching surface

Switching Surface

-(71.25,0.57)

Feedback Algorithm:
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~1if §>0

And change sign as
soon as

S=0



Basic Idea

-

A = 1 O -; B= | < ).61=X1+l/t
0 2 1 X, =2x, +u

-

Parametric Equations for the Switching Surface are easy —
just solve above equations (for no switch, with origin target)

N

gl
0=xe"xe" fe_T dt t,
0 .‘

h

rrrrrrr

2 2 ) o
0=x,e tlieﬂfe “drt ’
0

S

t, is unknown and to be eliminated. e S

Ost1<oo



Basic Idea

-

0 | 1 X, =X +U
2

1 X, =2x,+u

-

Solving: xl = i(e_tl — 1)
XL, x, =M,

(6—21‘1 _ 1)
X. ==+ are the points from which we can go
2 to the origin without further
_ J  switchingi.e.

SUbSUtute Zl = e : 0.5
o L 2
Switching X,

Surface: X, = i? +X o

Elimination not always this easy
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1 Things get complicated fast

How to eliminate?
O _
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-2t 1 -2t, 1 o
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2 2 ONE switch (colored surface above)
X. = 26‘3% _ 16‘3& _ l « Parametric representation of Switching
) 3 3 3 Surface

O<t, <t,<x

Q. How to eliminate t; and t,?
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* Parametric representation of Switching
Surface

Q. How to eliminate t; and t,?
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How to eliminate?
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Substitution to polynomials

X =22-2,-1

Polynomial Parametric
representation of Switching Surface
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Elimination Algorithm

e Form an ldeal:
2
J=<xl—2zl+z2+1,x2—z1+5z2+E,x3—§z1+§z2+§

 Compute Groebner basis G of J with lexicographic
ordering 2z, > 2, ™ X, = X, >~ X;.

* The element ¢EGNQO|x,,x,,x;]
defines the smallest variety containing the
parametric representation of the switching surface

1, 1 23131>

* Inequality constraints: z, and z, can be computed in
terms of the states (skipped here)



Example
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Form an ideal J = (x; —2z1 + 22+ ],xg—z%—l—%z%+%,x3 —%z“;’+ 35+

Using Elimination Algorithm compute g5 (x1,x2,x3) =0.
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Guarantees

g(x,,Xx,,X3) can be ‘cut-out’ to recover the actual switching surface.
Switching based on g(x,,x,,x3) works.

Inaccurate/practical switching converges to arbitrary neighborhood
of origin

The null controllable set can be algebraically computed.

Limit cycles occur for most non-origin targets - time period can be
computed

The Good: Time Optimal + works for entire nuli
controllable region + feedback control

The Bad — only works for rational/imag eigenvalues-
recently some hope of removing this limitation



Plan

Computation of Time Optimal Feedback using
Groebner Basis

(Feedback) Pursuit-

Evasion Games Time Optimal Multi -
agent Consensus
(complete graph)

Time Optimal Leader Tracking in Multi-
agent systems (directed graphs)




Pursuit Evasion Games
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Time Optimal (Feedback) Pursuit
Evasion

 Optimal Feedback strategy was hard to compute: can be
computed now (for rational/imaginary eigenvalues)

X,=Ax,+Bu,; |u

x,=Ax, +Bu, up‘sﬁ

Problem: ‘e’ tries to maximize and ‘p’ tries to minimize
the time T when

x,(I)=x,(T)



Pursuit Evasion Games - Assumptions

* PandE do not know each others strategies

 Each needs to guard against worst possible strategies
of the other

* Proposed pursuer control strategy (similarly for
evader):

¥ .
u,(t) = arg min | max 7T (up, ue
() jup|<B <|uc|§a (tp; )>

T'(up,ue) is capture time

uy(t): min-max control strategy for pursuer



Trick: Difference System

e Difference System:
i(t) = Ax(t) + Buep(t)
where, z(t) = zp(t) — xe(t) and uep(t) = up(t) — ue(t)

o Capture condition: z,(t) = z.(t) = z(t) =0 for some t > T

@ Objective function:

T
J = / 1dt =T (up, ue)
0

o Min-max strategies: u, and u; such that

*

. :
psUp) = min  max T'(up,,u,)
|up|<B |ue|Sa

J* = T(u



Bryson and Ho (1969)
o Hamiltonian: H = AT (Az + B(u, — u.)) + 1

@ Necessary condition for stationarity of J

\ = —% =—ATX  X0)= )
H* = I‘t?z;lliélﬁ |113:|aé}ix(AT(Ax + B(up —ue)) + 1)
e Optimal inputs:
u,(t) = arg max H(up,u.) = —asign(\) e 4'B)

u,(t) = argmin H (up, u,;) = —Bsign( A} e A B)
Up

o u, and ug should have same sign and switch according to same

switching function.




Switching Surface

A switching surface

u,(t) = argmax H (up, ue) = n.s'-ig'n.(/\ge_AtB) corresponding to this
Ue switching function can be
uy,(t) = arg min H (up, ug) = — sign(\f e 4 B) computed by considering

Up the difference system

The “difference” system:

D:x,-x, =A(xp —xe)xe +B(up —ue); ‘up —-u,

<f-a

* Capture when D reaches origin = Time Optimal transfer to
origin with the changed input bound

* Feedback pursuit-evasion strategies can be computed

/

e Capture can be guaranteed if v < [



Example Pursuit Evasion

) =V iV =U ) =V v =
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‘p’ plays min-max feedback while e plays max-min feedback strategy, but still
gets captured.



Example Pursuit Evasion
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‘v’ plays min-max feedback while e plays NON-OPTIMAL strategy, gets
captured earlier.



Successful Escape
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Time Optimal Leader Tracking in Multi-
agent systems




Consensus Tracking for Multiple Agents

Assumptions:

* All agents are stable with identical dynamics and input bounds
* 3a,is the leader

* a, moves along a given fixed trajectory

e State information flows in the direction 20/ Fixed Trajectory
of the arrows (directed graph)

Problem: Find the local control

laws for a,,...,a, such that all of

them track a,’s trajectory in the
minimum time possible.

Assumption: a, is “capturable” by the foIIowers




Min-Max Pursuit

* |dentify a directed spanning tree rooted at the leader (later)

* Apply the min-max pursuit policy for each follower

* For example: consider (a,y,a,) pair and apply the min-max
pursuit policy for a,




Min-Max Pursuit

|dentify a directed spanning tree rooted at the leader (later)
Apply the min-max pursuit policy for each follower

For example: consider (a,,a,) pair and apply the min-max
pursuit policy for a,

Similarly for all pairwise leader-
follower pairs

For each pair the upper bound
on capture time is given by:

tij = min max T (u;, u;)
lui | <B; |’U'j|§5j

But there is no upper bound for

identical bounds on the leader

and follower




Min Time Leader Tracking o

H-agent systems communicating over a tree. Agent dynamics is given by

(7)) = [ —01 _02 ]:pi(t)-l- [ i ]ui(t) for:=0,1,...,4
luo(t)] <1 and |ui(t)| <3 fori=1,...,4

25 .
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Selection of Directed Spanning Tree

We have an algorithm which does this with
local information (skipped here)

How does the selection of the spanning tree
affect time to consensus?

Does using information from multiple leaders
nelp reduce time to consensus?

How do cycles (if allowed to remain) affect
time to consensus?
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Multi Agent: Minimum Time
Consensus

Consensus: Many ‘agents’ try to reach a previously
unspecified point autonomously




Min Time Consensus

* Problem: Consider N double integrator ‘agents’
communicating over a complete graph

X;(t)zlg (l)lx,-(t)-k-l]u,-(t) i=1,....N

—— —
A b

with x;(t) = [ 1) ],x,-(O) = Xio = [ \r,';.o

vi(t) ‘ and |u;(t)| <1.

Find X and min t such that, for all i,j
xi(t) =x and x;(t) =x;(t) forall t >t




Attainable Set

Attainable Set from p at time t

adp(t) = {x X = eAtp+/ot Al pu(t)dt, Vu(t): |u(t)] < 1}

| e I S N B * Each point on the
Lt ‘ boundary can be

ol | reached using bang-
! ~ 4 ] bang time optimal
g * control.

o * Polynomial

il . , ., Expressions for the
i ~ boundaries can be

-1.5

3 -2.15 2 -1;5 1 ~o.15 3 o.ls 1 1:5 obtained



Main Idea

* For consensus, it would seem that the attainable sets of all
the agents need to intersect, i.e. for consensus at time t

| IS?SN‘Q%(t) 7 ¢ (i(t):=(1))

e Solution requires solving large set of coupled polynomial
equations and inequalities
 Computation cannot be distributed between the agents

Helly’s theorem comes to the rescue

Let F be a finite family of convex sets in R”, containing at least
n+1 elements. If every n+1 sets of F have a point in common,
then all the sets of F have a point in common.




Parallel Computation

tiik: Minimum time to consensus for agents {a;, a;, a |

Lemma: £ = max f,-jk
1<ij.k<N

Theorem:

Let {ap, aq, ar} be the triple of agents such that

Lpgr = Max Ly. Then the minimum time to consensus
1<ij k<N

and the corresponding consensus point X = Xpgr.

<

This means:

* We have to check NC, combinations for the max.

e But each of these computations are decoupled from the
other — can be distributed between the agents




Two ways to three agent consensus

Case 1: tj) = t;j = max{tj, tjk, tik} i.e

/A

Figure : Case 1




Two ways to three agent consensus

Case 2: tjx > max{tj, i, tik} i-e. Xij & k(tj)

1 B
7
A (fl )

U \




Computation

* Algebraic formula for computation in both cases
have been derived.

* Can be used to directly compute the min time and
the consensus point based on the current states

* Proposed algorithm can handle disturbances to the
agents by dynamically (feedback) re-computing the
target point

— Then full computation (NC,/N) needs to be done only once
at the beginning



Six agents min time consensus
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Min time consensus on R?




Anything useful?



Quadcopter testbed
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Video: Leader Follower -1




Video: Leader Follower - 2

Still a long way to go before we can catch up with the leopard, duck or even cows



Thank You



