Granting Agencies: Department of Science and Technology, Indian Space Research Organization

Time Optimal Feedback in Multi-Agent Systems

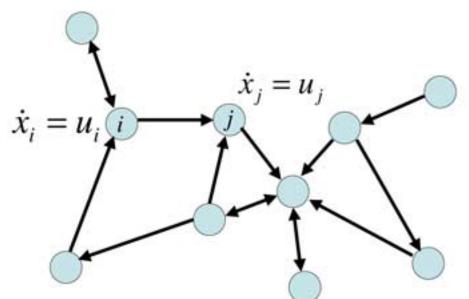
Joint Work with Deepak Patil, Ameer Mulla, and Sujay Bhatt

Debraj Chakraborty

Department of Electrical Engineering, Control and Computing Group

Question

 Given a collection of autonomous dynamical systems (or 'agents') communicating with each other over (undirected/directed, time invariant/time varying) graph(s), how do we bring them to a consensus/ synchronize them in minimum time?



Olfati-Saber et al, Proceedings of IEEE, 2007

GRASP Lab, UPenn

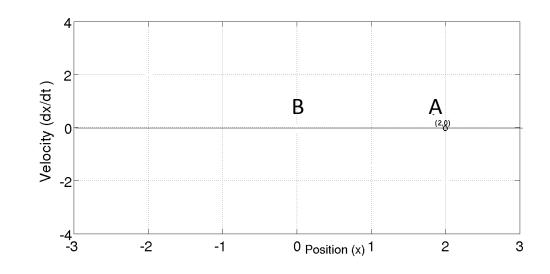
We solve two sub-questions Computation of Time Optimal Feedback using Groebner Basis

(Feedback) Pursuit-Evasion Games

Time Optimal Multi agent Consensus (complete graph)

Time Optimal Leader Tracking in Multiagent systems (directed graphs)

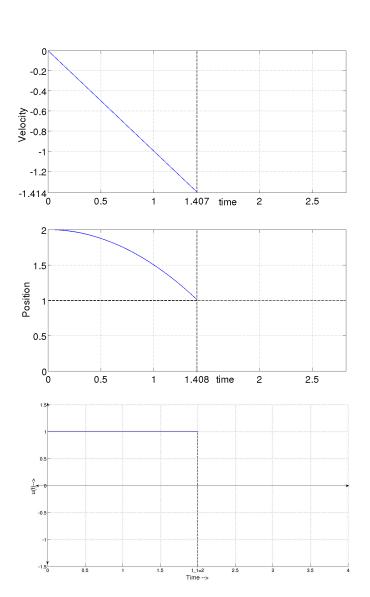
TIME OPTIMAL FEEDBACK

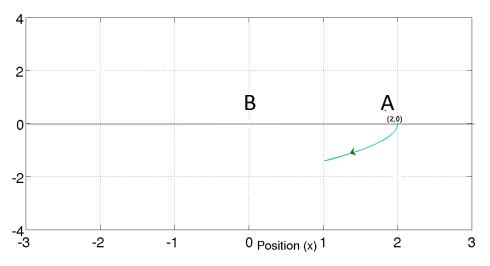


Problem: Go from A to B in minimum time with maximum allowed acceleration/deceleration = ± 1

$$\dot{p} = v; \ \dot{v} = u$$

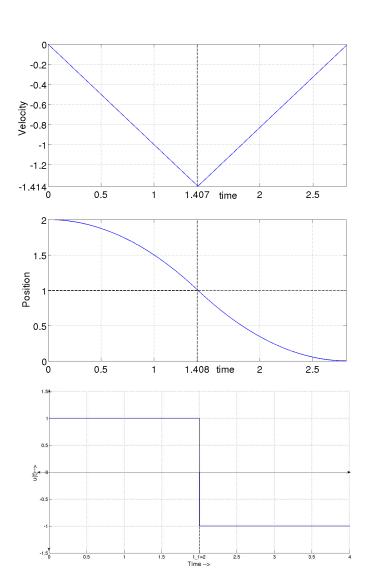
 $|u| \le 1$

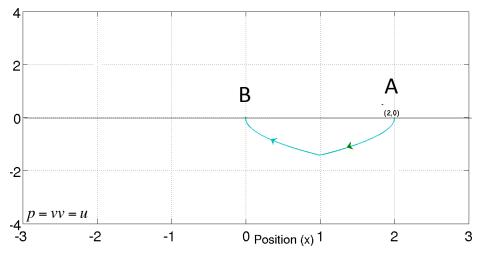




Problem: Go from A to B in minimum time with maximum allowed acceleration/deceleration = ± 1

$$\dot{p} = v; \ \dot{v} = u$$
$$|u| \le 1$$

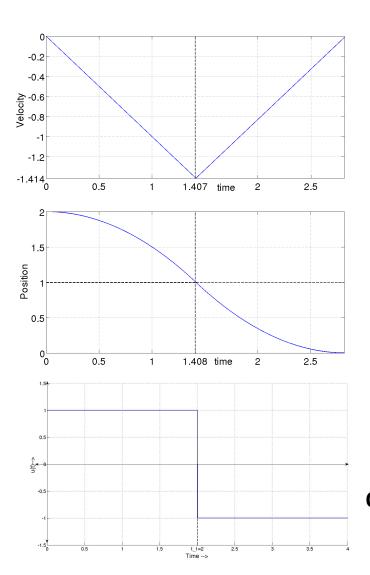


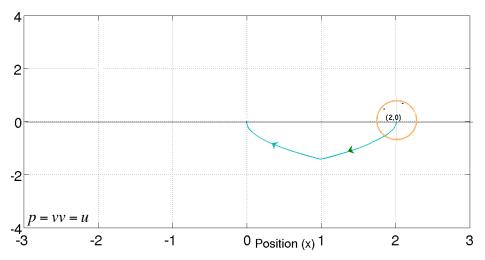


Problem: Go from A to B in minimum time with maximum allowed acceleration/deceleration = ± 1

$$\dot{p} = v; \ \dot{v} = u$$

 $|u| \le 1$





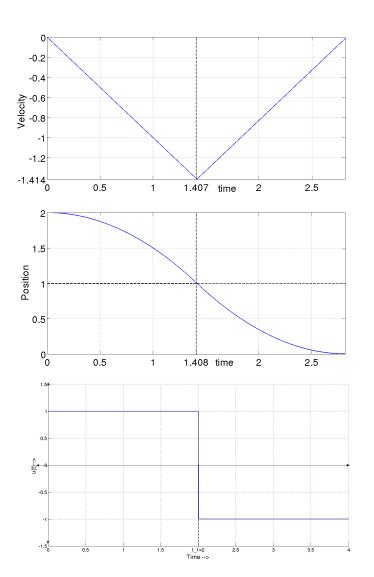
Problem: Go from A to B in minimum time with maximum allowed acceleration/deceleration = ± 1

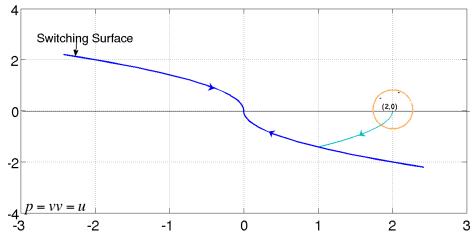
$$\dot{p} = v; \ \dot{v} = u$$

 $|u| \le 1$

Q. What if A/B is perturbed?

- Looks like we have to re-compute the switching instance all over again



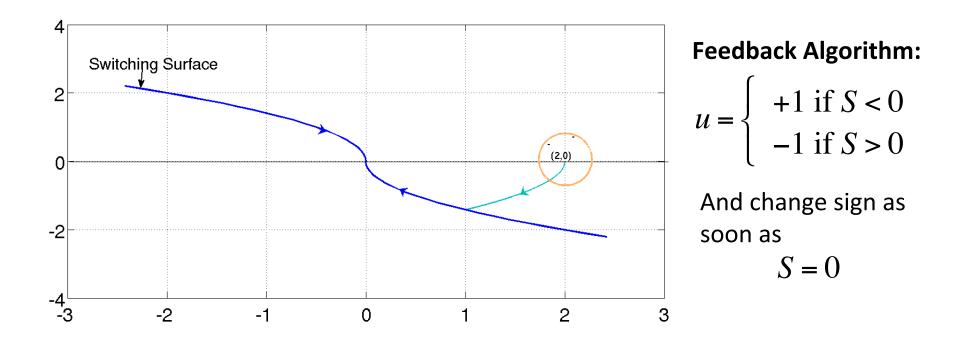


Q. What if A/B is perturbed?

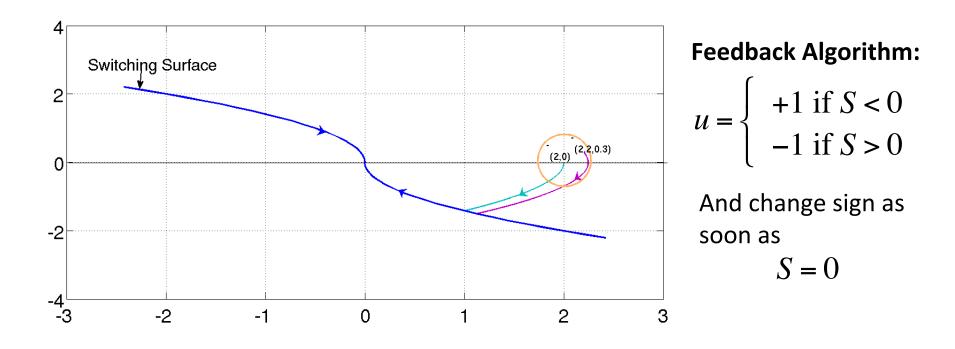
- Looks like we have to re-compute the switching instance all over again

NOT REALLY – On state space, switching occurs based on the SWITCHING SURFACE – the blue line

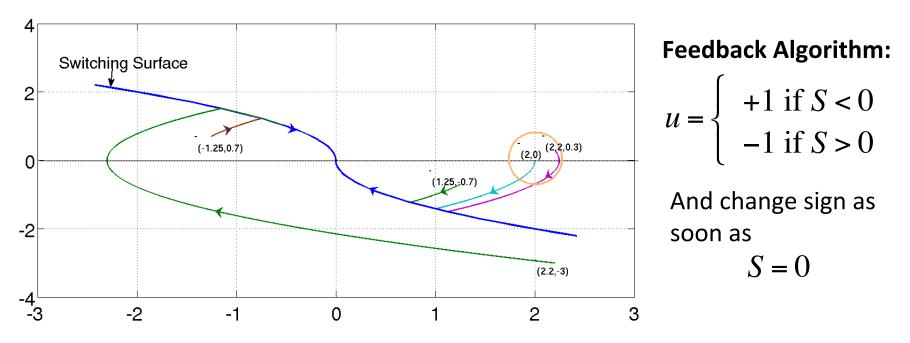
• If *S* (the switching surface) is known feedback control can be synthesized



• If *S* (the switching surface) is known feedback control can be synthesized

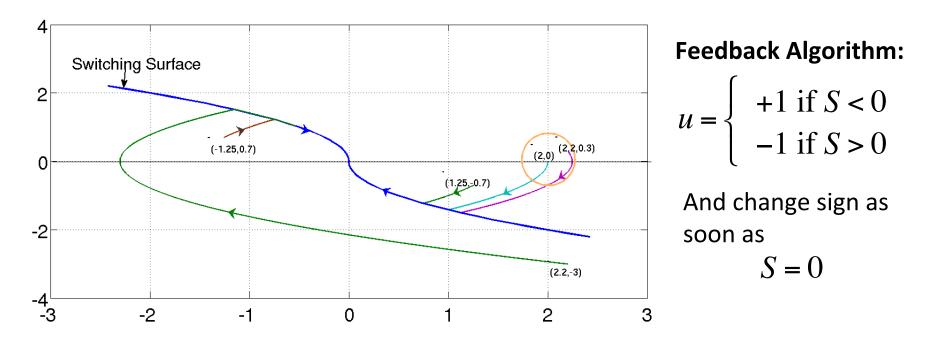


• If *S* (the switching surface) is known feedback control can be synthesized



 The virtues of feedback over open loop are many – In fact, the initial motivation for this research was ISRO RLV RCS thruster control design

• But for this we need an IMPLICIT expression i.e. $S(x_1, x_2) = 0$ equation for the switching surface



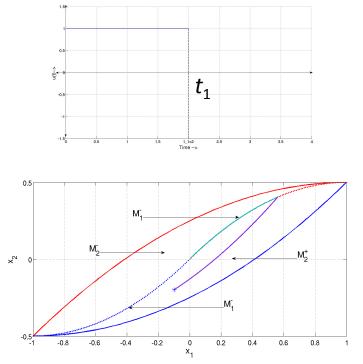
Basic Idea

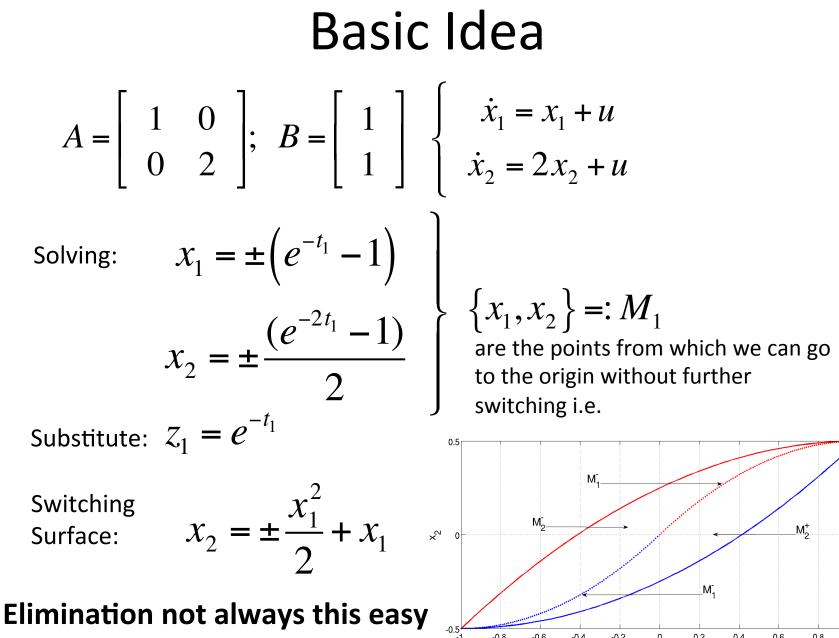
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{cases} \dot{x}_1 = x_1 + u \\ \dot{x}_2 = 2x_2 + u \end{cases}$$

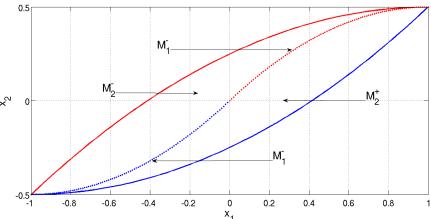
Parametric Equations for the Switching Surface are easy – just solve above equations (for no switch, with origin target)

$$0 = x_1 e^{t_1} \pm e^{t_1} \int_{0}^{t_1} e^{-\tau} d\tau$$
$$0 = x_2 e^{2t_1} \pm e^{2t_1} \int_{0}^{t_1} e^{-2\tau} d\tau$$

 $t_{\scriptscriptstyle 1}$ is unknown and to be eliminated. $0 \leq t_{\scriptscriptstyle 1} < \infty$





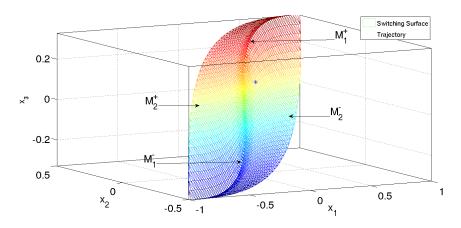


$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$x_{1} = 2e^{-t_{1}} - e^{-t_{2}} - 1$$
$$x_{2} = e^{-2t_{1}} - \frac{1}{2}e^{-2t_{2}} - \frac{1}{2}$$

$$x_{3} = \frac{2}{3}e^{-3t_{1}} - \frac{1}{3}e^{-3t_{2}} - \frac{1}{3}$$
$$0 \le t_{1} \le t_{2} < \infty$$

Things get complicated fast



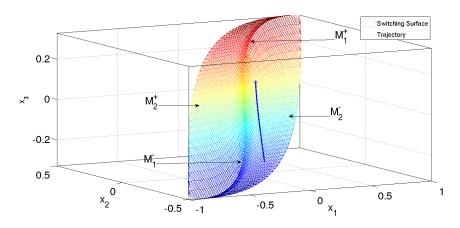
- Set of points which can reach origin in ONE switch (colored surface above)
- Parametric representation of Switching Surface

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$x_{1} = 2e^{-t_{1}} - e^{-t_{2}} - 1$$
$$x_{2} = e^{-2t_{1}} - \frac{1}{2}e^{-2t_{2}} - \frac{1}{2}$$

$$x_{3} = \frac{2}{3}e^{-3t_{1}} - \frac{1}{3}e^{-3t_{2}} - \frac{1}{3}$$
$$0 \le t_{1} \le t_{2} < \infty$$

Things get complicated fast



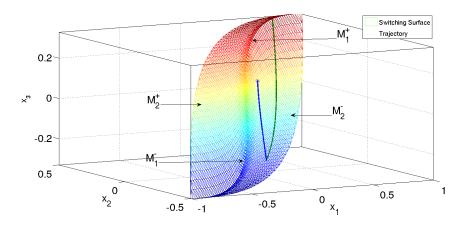
- Set of points which can reach origin in ONE switch (colored surface above)
- Parametric representation of Switching Surface

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$x_{1} = 2e^{-t_{1}} - e^{-t_{2}} - 1$$
$$x_{2} = e^{-2t_{1}} - \frac{1}{2}e^{-2t_{2}} - \frac{1}{2}$$

$$x_{3} = \frac{2}{3}e^{-3t_{1}} - \frac{1}{3}e^{-3t_{2}} - \frac{1}{3}$$
$$0 \le t_{1} \le t_{2} < \infty$$

Things get complicated fast



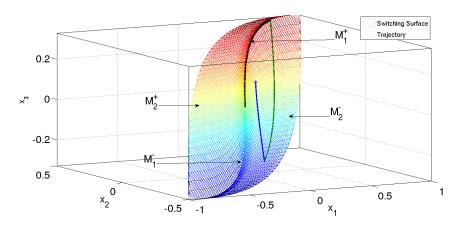
- Set of points which can reach origin in ONE switch (colored surface above)
- Parametric representation of Switching Surface

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$x_{1} = 2e^{-t_{1}} - e^{-t_{2}} - 1$$
$$x_{2} = e^{-2t_{1}} - \frac{1}{2}e^{-2t_{2}} - \frac{1}{2}$$

$$x_{3} = \frac{2}{3}e^{-3t_{1}} - \frac{1}{3}e^{-3t_{2}} - \frac{1}{3}$$
$$0 \le t_{1} \le t_{2} < \infty$$

Things get complicated fast

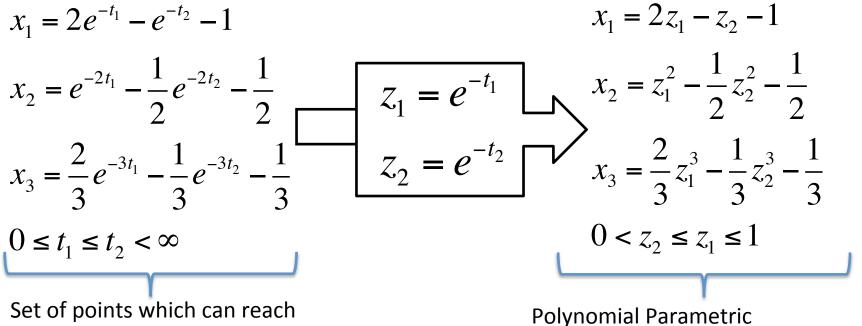


- Set of points which can reach origin in ONE switch (colored surface above)
- Parametric representation of Switching Surface

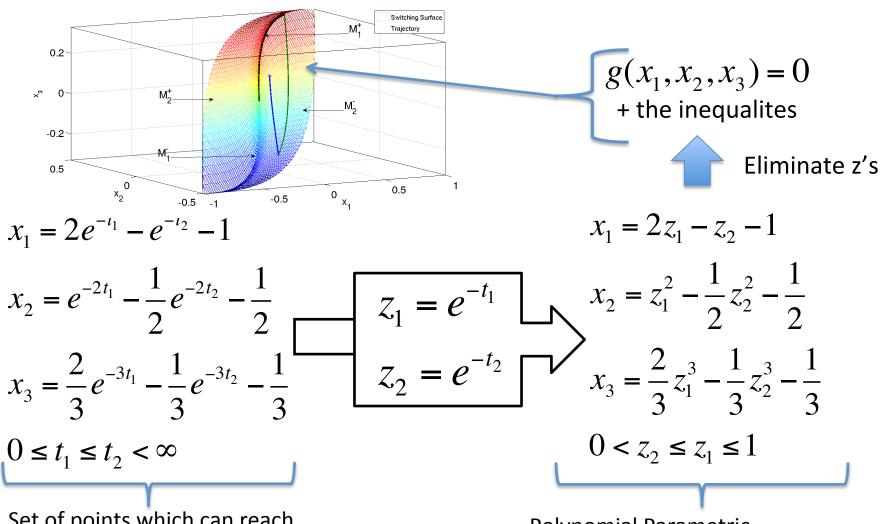
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

origin in ONE switch

Substitution to polynomials



Polynomial Parametric representation of Switching Surface



Set of points which can reach origin in ONE switch

Polynomial Parametric representation of Switching Surface

Elimination Algorithm

• Form an Ideal:

$$J = \left\langle x_1 - 2z_1 + z_2 + 1, x_2 - z_1^2 + \frac{1}{2}z_2^2 + \frac{1}{2}z_2^3 - \frac{2}{3}z_1^3 + \frac{1}{3}z_2^3 + \frac{1}{3}\right\rangle$$

- Compute Groebner basis G of J with lexicographic ordering $z_1 \succ z_2 \succ x_1 \succ x_2 \succ x_3$.
- The element $g \in G \cap Q[x_1, x_2, x_3]$ defines the smallest variety containing the parametric representation of the switching surface
 - Inequality constraints: z₁ and z₂ can be computed in terms of the states (skipped here)

Example

Example

- $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$
 - Form an ideal $J = \langle x_1 2z_1 + z_2 + 1, x_2 z_1^2 + \frac{1}{2}z_2^2 + \frac{1}{2}, x_3 \frac{2}{3}z_1^3 + \frac{1}{3}z_2^3 + \frac{1}{3}\rangle$.
 - Using Elimination Algorithm compute $g_2^+(x_1, x_2, x_3) = 0$.
 - Also compute $z_1 = \frac{-(-x_1^3 3x_1^2 3x_1 + 3x_3)}{(3x_1^2 + 6x_1 6x_2)}$ and $z_2 = \frac{-(x_1^3 + 3x_1^2 6x_1x_2 6x_2 + 6x_3)}{(3x_1^2 + 6x_1 6x_2)}$
 - Thus $M_2^+ = \{(x_1, x_2, x_3) : g_2^+(x_1, x_2, x_3) = 0, 0 < z_2 \le z_1 \le 1\}$

Guarantees

- $g(x_1, x_2, x_3)$ can be 'cut-out' to recover the actual switching surface.
- Switching based on $g(x_1, x_2, x_3)$ works.
- Inaccurate/practical switching converges to arbitrary neighborhood of origin
- The null controllable set can be algebraically computed.
- Limit cycles occur for most non-origin targets time period can be computed

The Good: Time Optimal + works for entire null controllable region + feedback control

The Bad – only works for rational/imag eigenvaluesrecently some hope of removing this limitation

Plan

Computation of Time Optimal **Feedback** using Groebner Basis

(Feedback) Pursuit-Evasion Games

Time Optimal Multi agent Consensus (complete graph)

Time Optimal Leader Tracking in Multiagent systems (directed graphs)

Pursuit Evasion Games

Time Optimal (*Feedback*) Pursuit Evasion

• Optimal Feedback strategy was hard to compute: can be computed now (for rational/imaginary eigenvalues)

$$\dot{x}_e = Ax_e + Bu_e; \quad |u_e| \le \alpha$$
$$\dot{x}_p = Ax_p + Bu_p \quad |u_p| \le \beta$$

Problem: 'e' tries to maximize and 'p' tries to minimize the time T when

$$x_e(T) = x_p(T)$$

Pursuit Evasion Games - Assumptions

- P and E do not know each others strategies
- Each needs to guard against worst possible strategies of the other
- Proposed pursuer control strategy (similarly for evader):

$$u_p^*(t) = \arg\min_{|u_p| \le \beta} \left(\max_{|u_e| \le \alpha} T(u_p, u_e) \right)$$

 $T(u_p, u_e)$ is capture time

 $u_p^*(t)$: min-max control strategy for pursuer

Trick: Difference System

• Difference System:

$$\dot{x}(t) = Ax(t) + Bu_{ep}(t)$$

where, $x(t) = x_p(t) - x_e(t)$ and $u_{ep}(t) = u_p(t) - u_e(t)$

- Capture condition: $x_p(t) = x_e(t) \implies x(t) = 0$ for some $t \ge T$
- Objective function:

$$J = \int_0^T 1dt = T(u_p, u_e)$$

• Min-max strategies: u_p^* and u_e^* such that

$$J^* = T(u_p^*, u_e^*) = \min_{\|u_p\| \le \beta} \max_{\|u_e\| \le \alpha} T(u_p, u_e)$$

Bryson and Ho (1969)

- Hamiltonian: $H = \lambda^T (Ax + B(u_p u_e)) + 1$
- Necessary condition for stationarity of J

$$\dot{\lambda} = -\frac{\partial H}{\partial t} = -A^T \lambda \qquad \lambda(0) = \lambda_0$$
$$H^* = \min_{|u_p| \le \beta} \max_{|u_e| \le \alpha} (\lambda^T (Ax + B(u_p - u_e)) + 1)$$

• Optimal inputs:

$$u_e^*(t) = \arg \max_{u_e} H(u_p, u_e) = -\alpha sign(\lambda_0^T e^{-At} B)$$
$$u_p^*(t) = \arg \min_{u_p} H(u_p, u_e^*) = -\beta sign(\lambda_0^T e^{-At} B)$$

• u_p^* and u_e^* should have same sign and switch according to same switching function.

Switching Surface

$$u_e^*(t) = \arg \max_{u_e} H(u_p, u_e) = -\alpha sign(\lambda_0^T e^{-At} B)$$
$$u_p^*(t) = \arg \min_{u_p} H(u_p, u_e^*) = -\beta sign(\lambda_0^T e^{-At} B)$$

A switching surface corresponding to this switching function can be computed by considering the difference system

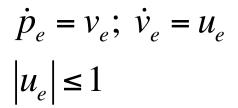
• The "difference" system:

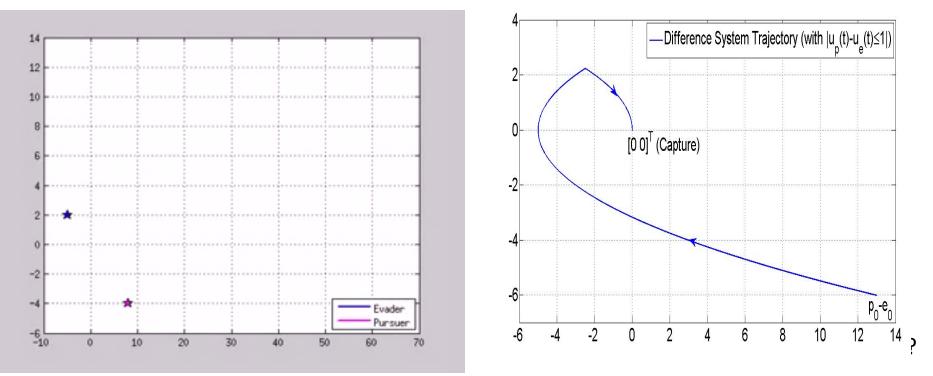
$$D: \dot{x}_p - \dot{x}_e = A(x_p - x_e)x_e + B(u_p - u_e); \quad |u_p - u_e| \le \beta - \alpha$$

- Capture when D reaches origin = Time Optimal transfer to origin with the changed input bound
- Feedback pursuit-evasion strategies can be computed
- Capture can be guaranteed if lpha < eta

Example Pursuit Evasion

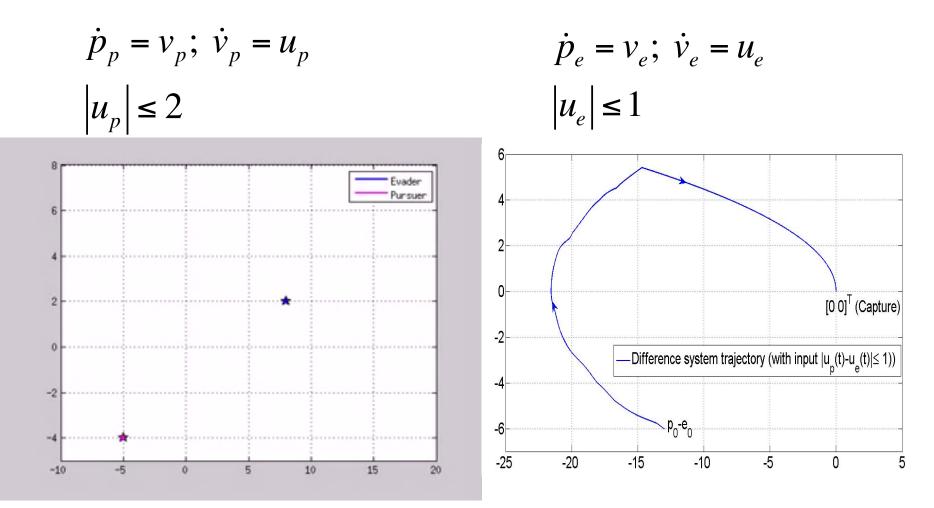
$$\dot{p}_p = v_p; \ \dot{v}_p = u_p$$
$$\left| u_p \right| \le 2$$





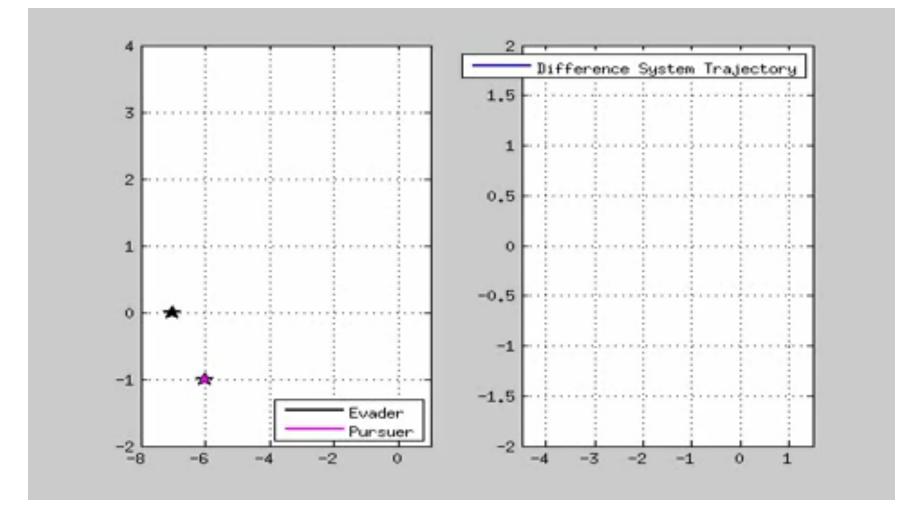
'p' plays **min-max feed**back while e plays **max-min feedback** strategy, but still gets captured.

Example Pursuit Evasion



'p' plays **min-max feed**back while e plays **NON-OPTIMAL** strategy, gets captured earlier.

Successful Escape



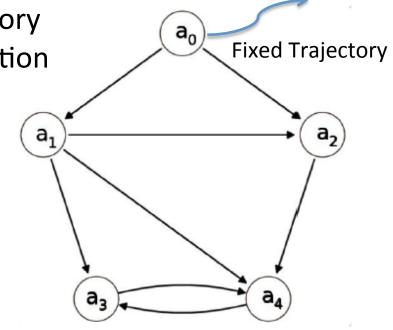
Time Optimal Leader Tracking in Multiagent systems

Consensus Tracking for Multiple Agents

Assumptions:

- All agents are stable with identical dynamics and input bounds
- a₀ is the leader
- a₀ moves along a given fixed trajectory
- State information flows in the direction of the arrows (directed graph)

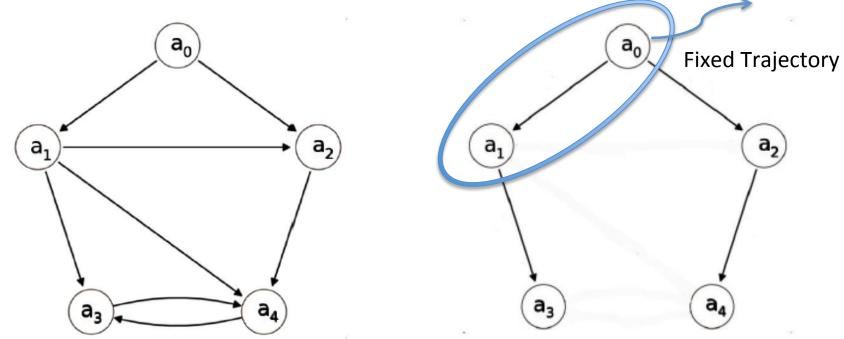
Problem: Find the *local* control laws for $a_1,...,a_4$ such that all of them track a_0 's trajectory in the minimum time possible.



Assumption: a₀ is "capturable" by the followers

Min-Max Pursuit

- Identify a directed spanning tree rooted at the leader (later)
- Apply the min-max pursuit policy for each follower
- For example: consider (a₀,a₁) pair and apply the min-max pursuit policy for a₁

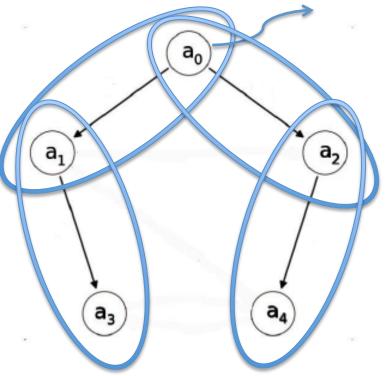


Min-Max Pursuit

- Identify a directed spanning tree rooted at the leader (later)
- Apply the min-max pursuit policy for each follower
- For example: consider (a₀,a₁) pair and apply the min-max pursuit policy for a₁
- Similarly for all pairwise leaderfollower pairs
- For each pair the upper bound on capture time is given by:

$$\bar{t}_{ij} = \min_{|u_i| \le \beta_i} \max_{|u_j| \le \beta_j} T(u_i, u_j)$$

 But there is no upper bound for identical bounds on the leader and follower



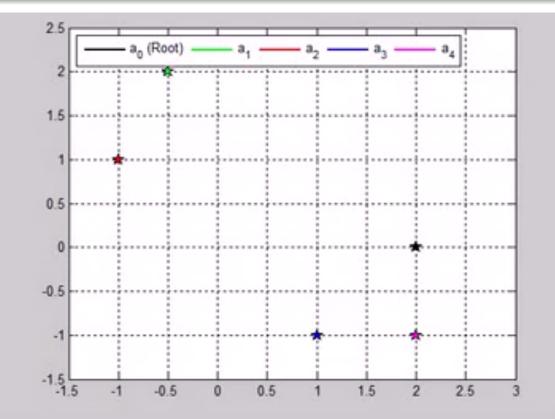
Min Time Leader Tracking

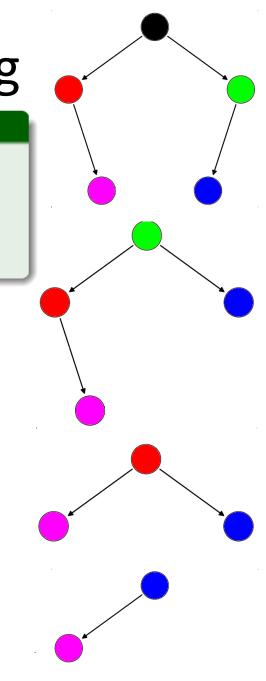
Example

5-agent systems communicating over a tree. Agent dynamics is given by

$$\dot{x}_i(t) = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x_i(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u_i(t) \quad \text{for } i = 0, 1, ..., 4$$

 $|u_0(t)| \le 1$ and $|u_i(t)| \le 3$ for i = 1, ..., 4





Selection of Directed Spanning Tree

- We have an algorithm which does this with local information (skipped here)
- How does the selection of the spanning tree affect time to consensus?
- Does using information from multiple leaders help reduce time to consensus?
- How do cycles (if allowed to remain) affect time to consensus?

Plan

Computation of Time Optimal **Feedback** using Groebner Basis

(Feedback) Pursuit-Evasion Games

Time Optimal Multi agent Consensus (complete graph)

Time Optimal Leader Tracking in Multiagent systems (directed graphs)

Multi Agent: Minimum Time Consensus

Consensus: Many 'agents' try to reach a previously unspecified point autonomously

Min Time Consensus

• **Problem**: Consider N double integrator 'agents' communicating over a complete graph

$$\dot{x}_{i}(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}}_{A} x_{i}(t) + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{b} u_{i}(t) \qquad i = 1, \dots, N$$

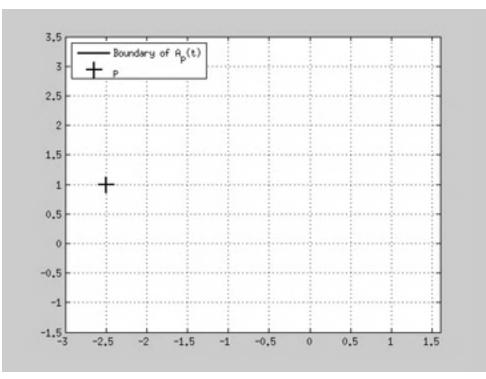
with $x_{i}(t) = \begin{bmatrix} r_{i}(t) \\ v_{i}(t) \end{bmatrix}, x_{i}(0) = x_{i0} = \begin{bmatrix} r_{i0} \\ v_{i0} \end{bmatrix}$ and $|u_{i}(t)| \le 1$.

Find \bar{x} and min \bar{t} such that, for all i, j $x_i(\bar{t}) = \bar{x}$ and $x_i(t) = x_j(t)$ for all $t \ge \bar{t}$

Attainable Set

Attainable Set from p at time t

$$\mathscr{A}_p(t) = \left\{ x : x = e^{At}p + \int_0^t e^{A(t-\tau)}bu(\tau)d\tau, \quad \forall u(t) : |u(t)| \le 1 \right\}$$



- Each point on the boundary can be reached using bangbang time optimal control.
- Polynomial Expressions for the boundaries can be obtained

Main Idea

• For consensus, it would seem that the attainable sets of all the agents need to intersect, i.e. for consensus at time *t*

$$\bigcap_{1\leq i\leq N}\mathscr{A}_{i}(t)\neq \phi \ (\mathscr{A}_{i}(t):=\mathscr{A}_{x_{i0}}(t))$$

- Solution requires solving large set of coupled polynomial equations and inequalities
- Computation cannot be distributed between the agents

Helly's theorem comes to the rescue

Let *F* be a finite family of **convex sets** in \mathbb{R}^n , containing **at least** n+1 elements. If every n+1 sets of *F* have a point in common, **then all the sets of** *F* have a point in common.

Parallel Computation

 \overline{t}_{ijk} : Minimum time to consensus for agents $\{a_i, a_j, a_k\}$

Lemma:
$$\overline{t} = \max_{1 \le i, j, k \le N} \overline{t}_{ijk}$$

Theorem:

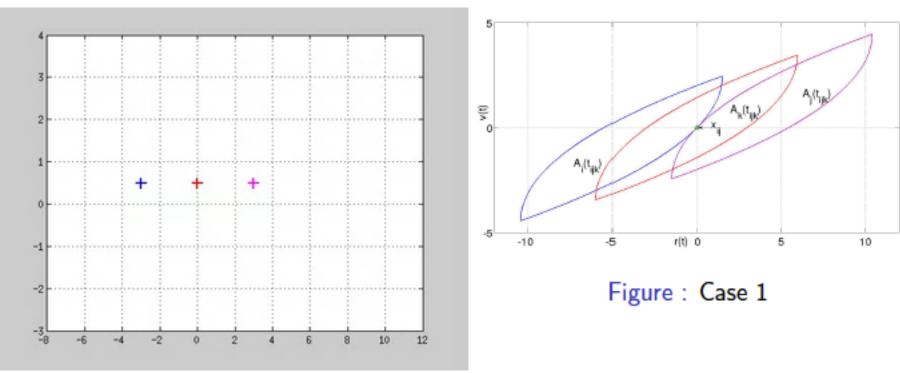
Let $\{a_p, a_q, a_r\}$ be the triple of agents such that $\overline{t}_{pqr} = \max_{1 \le i,j,k \le N} \overline{t}_{ijk}$. Then the minimum time to consensus $\overline{t} = \overline{t}_{pqr}$ and the corresponding consensus point $\overline{x} = \overline{x}_{pqr}$.

This means:

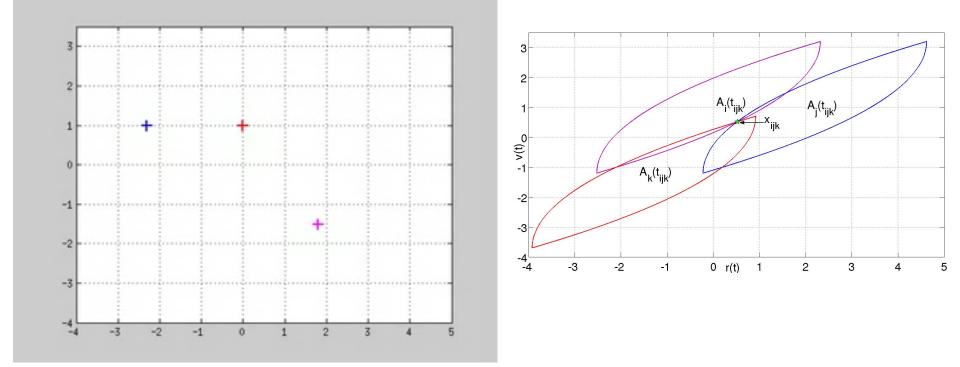
- We have to check ${}^{N}C_{3}$ combinations for the max.
- But each of these computations are decoupled from the other – can be distributed between the agents

Two ways to three agent consensus

Case 1:
$$\overline{t}_{ijk} = \overline{t}_{ij} = \max{\{\overline{t}_{ij}, \overline{t}_{jk}, \overline{t}_{ik}\}}$$
 i.e
 $\overline{x}_{ij} \in \mathscr{A}_k(\overline{t}_{ij})$



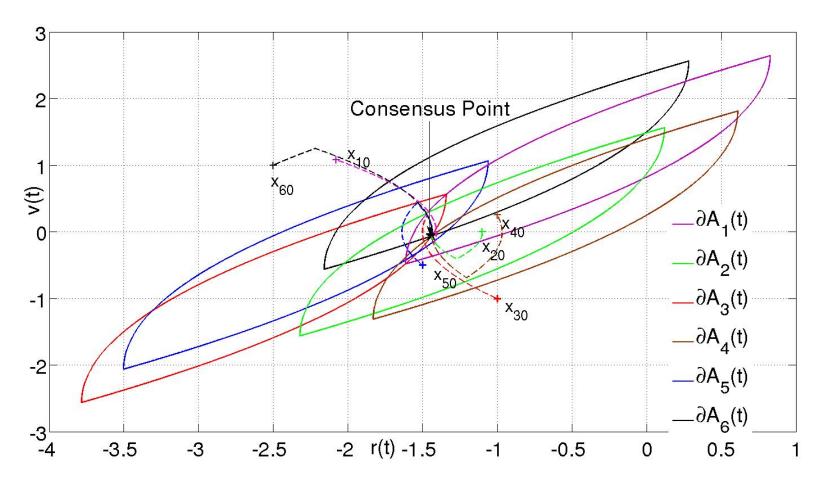
Two ways to three agent consensus **Case 2:** $\bar{t}_{ijk} > \max{\{\bar{t}_{ij}, \bar{t}_{jk}, \bar{t}_{ik}\}}$ i.e. $\bar{x}_{ij} \notin \mathscr{A}_k(\bar{t}_{ij})$



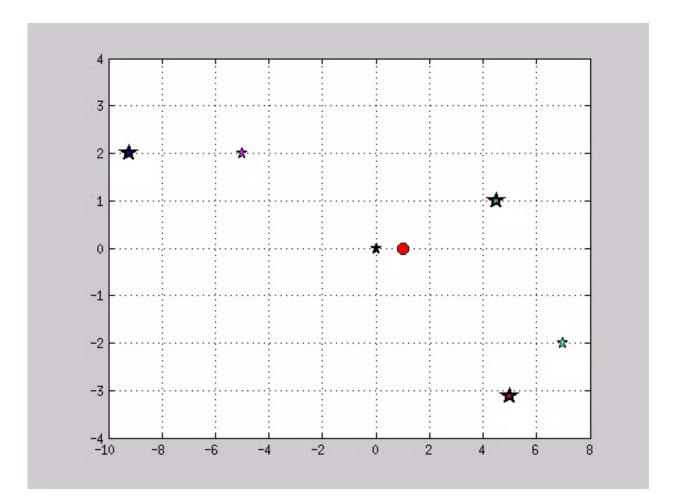
Computation

- Algebraic formula for computation in both cases have been derived.
- Can be used to directly compute the min time and the consensus point based on the current states
- Proposed algorithm can handle disturbances to the agents by dynamically (feedback) re-computing the target point
 - Then full computation (${}^{N}C_{3}/N$) needs to be done only once at the beginning

Six agents min time consensus



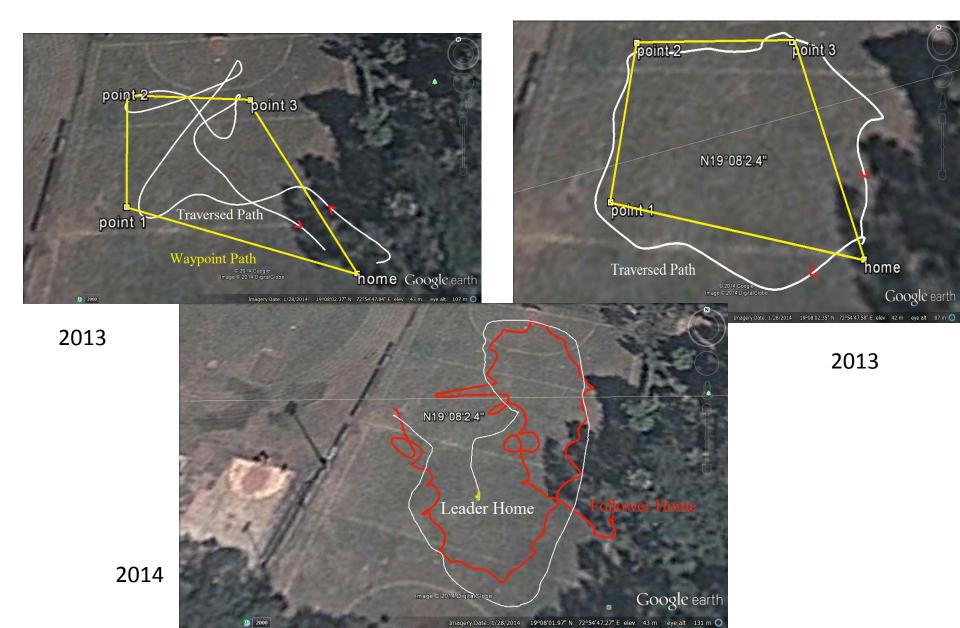
Min time consensus on R¹



Anything useful?

Quadcopter testbed

GPS waypoint-Leader Follower



Video: Leader Follower - 1

Video: Leader Follower - 2

Still a long way to go before we can catch up with the leopard, duck or even cows

Thank You