
1

Damping Control in Power Systems under

Constrained Communication Bandwidth: A

Predictor Corrector Strategy
Nilanjan Ray Chaudhuri, Member, IEEE, Debraj Chakraborty, Member, IEEE

and Balarko Chaudhuri, Member, IEEE

Abstract— Damping electromechanical oscillations in power
systems using feedback signals from remote sensors is likely
to be affected by occasional low bandwidth availability due
to increasing use of shared communication in future. In this
paper, a predictor corrector (PC) strategy is applied to deal
with situations of low feedback data rate (bandwidth) where
conventional feedback would suffer. Knowledge of nominal sys-
tem dynamics is used to approximate (predict) the actual system
behavior during intervals when data from remote sensors are
not available. Recent samples of the states from a reduced
observer at the remote location are used to periodically reset
(correct) the nominal dynamics. The closed-loop performance
deteriorates as the actual operating condition drifts away from
the nominal dynamics. Nonetheless, significantly better perfor-
mance compared to conventional feedback is obtained under
low bandwidth situations. The analytical criterion for closed-loop
stability of the overall system is validated through a simulation
study. It is demonstrated that even for reasonably low data rates
the closed-loop stability is usually ensured for a typical power
system application confirming the effectiveness of this approach.
The deterioration in performance is also quantified in terms of
the difference between the nominal and off-nominal dynamics.

Index Terms— Damping Control, Power Systems, Electro-
mechanical oscillation, Observer, Data Feedback Rate, State-
feedback, Predictor Corrector

LIST OF NOTATIONS

Gn Reduced order state space model of power

system at nominal condition

Gi Reduced order state space model of power

system at ith off-nominal condition

L Observer gain vector

K State feedback gain vector

σ Time interval between consecutive samples

arriving at control center

xi State vector of reduced power system model

under ith off-nominal condition

x̄ State vector estimated by the observer

xn State vector of Gn
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tk Time instant of state resetting in Gn

x0 Observer estimated state at time tk
x′

0 Actual state of reduced power system

model at time tk
u(t) Control input to the actuator

ū(t) Control input calculated at the sensor location

Ã, B̃, C̃ Deviation in actual operating condition

from nominal

e(t) Error between observer and estimated

(by Gn) states

E(t) Error between estimated (by Gn)

and actual states of reduced model

‖·‖ Euclidian norm of a vector or a matrix

t∗ Time instant when ‖E(t)‖ is maximum

I. INTRODUCTION

FEEDBACK data rate is often limited by the available

bandwidth of communication channels and could be

critical for satisfactory closed-loop performance. Especially,

for networked control systems relying on communication of

feedback signals from distant sensors, bandwidth limitation

is a matter of serious concern. In the past researchers have

focussed on desirable properties of communication networks

to guarantee a minimum performance level with conventional

control approach [1], [2], [3]. Also a lot of attention has

been devoted to assessing the stability and performance of

controllers connected over standard communication networks

[4].

A novel control architecture was proposed in [5], [6] which

can produce satisfactory performance up to an extent even

with very low feedback data rates. The basic idea is to exploit

the knowledge of nominal system dynamics to approximate

(predict) the actual system behavior during intervals when data

from remote sensors are not available. Recent samples of the

states estimated from a reduced observer at the remote location

are used to periodically reset (correct) the nominal dynamics.

Throughout the rest of this paper, this idea would be referred

to as predictor corrector (PC) approach. With such a strategy

satisfactory closed-loop performance could be ensured up to

a certain data rate depending on the difference between the

nominal and actual system dynamics [5], [7].

In this paper, the above concept is applied in the context

of power systems to damp low frequency electromechanical

oscillations resulting out of generators in one geographical
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area swinging with respect to others in different regions [8].

Feedback signals from sensors (Phasor Measurement Units

(PMUs)) located over diverse geographical areas are consid-

ered for higher observability - an approach commonly known

in power systems literature as wide-area damping control

(WADC). Effectiveness of WADC employing GPS synchro-

nized measurements from remote sensors is well reported in

power systems literature [9], [10], [11], [12]. Conventional

feedback (CF) control is used for WADC wherein the remote

measurements (e.g. magnitude/phase angles of voltage, cur-

rent) are transmitted via communication link to distant control

centers. One of the concerns, however, is the adverse impact of

data communication problems like latency, low data feedback

rate etc. on the closed-loop performance and hence secure

operation of power systems. This in fact has inhibited practical

deployment of WADC till today except for a few prototype or

pilot schemes.

In most of the present day installations dedicated commu-

nication infrastructure is used for power systems applications

like online monitoring and discrete controls including special

protection schemes [13], [14], [15]. Bandwidth is not a prob-

lem with such dedicated links and data rates are limited to

about 25-60 samples per second mainly by the sampling rate

of the sensors [16]. For controlling low frequency (0.1 to 2.0

Hz) electromechanical oscillations above data rates are more

than adequate. However, with future smart electricity grids

relying more and more on communication the utilities are

contemplating increasing use of shared instead of dedicated

links. Only a part of the available bandwidth might be available

for WADC sharing the rest between other data intensive

services like substation networking [17] and even broadband

communication [18]. A recent paper on latency computation

for a hypothetical WADC in the context of Western Electricity

Coordinating Council (WECC) system conjectured a hierarchi-

cal configuration of data communication [19]. Possible use of

a shared communication was indicated with a large number of

signals from diverse geographical locations communicated to

many distant zonal phasor data concentrators (PDCs) [19].

With shared communication likely to be more common for

power systems applications in future, our objective here is

to demonstrate the application of a predictor corrector (PC)

approach that is capable of producing satisfactory closed-loop

performance despite occasionally unavoidable low feedback

data rates. With the PC strategy, satisfactory closed-loop per-

formance is achieved even with 1 sample/s while performance

with conventional feedback (CF) deteriorates significantly

below a data rate of 10 samples/s. It should be mentioned

that with normal data rates (25-60 samples/s) CF could be

used while switching to PC strategy below a certain threshold

indicated by the time-stamp information at either end [20].

The basic philosophy behind the PC approach is to to exploit

the knowledge of nominal system dynamics during the inter-

sampling time interval. Hence its performance would depend

to a large extent on the difference between the actual operating

condition and the nominal dynamics. The deterioration in per-

formance is quantified here in terms of the difference between

the linearized systems at nominal and off-nominal operating

conditions. Case studies are carried out on a test system under

several operating scenarios to compare the performance with

PC strategy against CF control for different feedback data

rates. Despite the deterioration under off-nominal conditions,

PC approach produces significantly better performance than

CF with low data rates.

The overall stability of the closed-loop system depends on

the length of inter-sampling time interval which is decided by

the data rate. Below a certain data rate, derived analytically in

[6], the system would be unstable depending on the difference

between nominal and actual operating conditions. Here the

stability limit in terms of the minimum allowable data rate is

verified through case studies across different scenarios. It is

demonstrated that even for reasonably low data rates (e.g. 1

sample every 2-3 seconds) the closed-loop stability is ensured

confirming the effectiveness of the PC approach.

The main contributions of this paper are:

• Application of a predictor corrector (PC) strategy for

damping electromechanical oscillations in power systems

to achieve satisfactory dynamic response with low feed-

back data rates

• Analyze the inter-sampling error in terms of difference

between the nominal (used to predict and correct) and

off-nominal dynamics

• Compare the performance of PC against conventional

feedback (CF) for different feedback data rates across

different scenarios

• Validate the analytical stability limit with respect to min-

imum permissible feedback data rate against simulation

results across different scenarios

The rest of the paper is organized as follows. Following

this introductory section, the principles of the PC strategy is

described in Section II. Quantification of performance deterio-

ration under off-nominal conditions is presented in Section III.

A case study on a 4-machine, 2-area test system is presented

in Section IV to illustrate the effectiveness of the PC approach

under low data rate situation.

II. PREDICTOR CORRECTOR (PC) STRATEGY

The predictor corrector (PC) strategy exploits the knowledge

of the nominal system dynamics to predict the actual system

behavior between two consecutive data samples which is

corrected every time fresh estimates of states are available

from the sensor location [6], [5]. At each instant the states of

the reduced order nominal system model (Gn) at the actuator

location are calculated (predicted) with periodic resetting

(corrected) at a lower rate (depending on feedback data rate)

with the most recent states estimated by an observer at the

sensor location as shown in Fig. 1.

The reduced order linearized model of the power system

around the nominal operating condition Gn is given by:

Gn =

[

An Bn

Cn 0

]

(1)

where, An ∈ <m×m , Bn ∈ <m×n and Cn ∈ <p×m. Reduced

order linearized model about the ith operating condition Gi

(e.g. line outage, larger power transfer) is denoted as:

Gi =

[

An + Ã Bn + B̃

Cn + C̃ 0

]

(2)
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Fig. 1. Overall architecture including conventional feedback (CF) (in grey)
and predictor corrector (PC) approach

where, Ã, B̃, C̃ represent the deviation around the nominal

operating condition. The states of Gn and Gi are denoted as

xn(t) and xi(t), respectively. Exogenous disturbances could

also be incorporated in (2), if required.

An observer (3) at the distant sensor location estimates the

states x̄ of the reduced order system which are transmitted

through the communication network to the controller. The state

equation of the observer is:

˙̄x = (An − LCn)x̄ + Bnū + LCixi (3)

Note that the observer at the PMU location requires knowl-

edge of control input u(t) which is calculated (ū(t)) using the

reduced-order model Gn and the state-feedback gain vector K,

see Fig. 1. This nominal dynamics at the actuator location can

be described by the following equation:

ẋn (t) = Anxn(t) + Bnu(t) (4)

Depending on the data rate available, the communication

channel transmits data between the remote observer location

and the local predictor corrector (PC) based controller, only

at time instants {tk}
∞

k=0. It is assumed that this “sampling”

of remote data occurs at equally spaced intervals so that the

inter-sample time is tk+1 − tk = σ ∀k = 0, 1, ..... Hence the

states of (4) are reset to the states estimated by (3) at the

sampling instants {tk}
∞

k=0.

xn(tk) = x̄(tk) for all k = 0, 1, 2, ... (5)

The control input is synthesized using the nominal model (4)

and (5) according to the following equation:

u(t) = −Kxn(t) (6)

where K ∈ <1×m is the state feedback gain vector designed

based on the nominal system model Gn.

During time interval σ, when the reduced order system

states are not available from the sensor (i.e. T is open, see

Fig. 1) the system nominal model Gn predicts the states. Upon

arrival of the next available sample of x̄(t) the states of Gn

are corrected/reset leading to a switched control strategy.

III. OVERALL STABILITY

Combining equations (2), (4), (6) and (3) the overall system

dynamics during the time interval t ∈ [tk, tk+1), tk+1−tk = σ

can be described as:




ẋi

ẋn

˙̄x



 =





Ai −BiK 0
0 An − BnK 0

LCi BnK An − LCn









xi

xn

x̄



 (7)

with the additional condition imposed by (5) at all tk. The

initial condition xi(0) is usually unknown while the initial

conditions for the nominal and the observer states are assumed

to be zero xn(0) = 0 and x̄(0) = 0.

Following [6], the error e = x̄ − xn is defined as the dif-

ference between the nominal and estimated (observer) states.

Using a linear transformation (7) can be re-written in terms

of the error e(t) as follows:




ẋi

˙̄x
ė



 =





Ai −BiK BiK

LCi An − LCn − BnK BnK

LCi −LCn An









xi

x̄

e



 (8)

It can be proved that the system (8) with periodic resetting is

globally, exponentially stable around the solution [xi x̄ e]T =
[0 0 0]T if and only if the eigenvalues of (9) lie inside the unit

circle [6].

Λ =





I 0 0
0 I 0
0 0 0



 eΓσ





I 0 0
0 I 0
0 0 0



 (9)

where Γ is the overall state matrix in (8). Maximum allowable

update interval σ i.e. minimum data rate can be obtained from

the eigenvalues of (9).

It should be noted here that while (9) characterizes global

exponential stability of the linear switched system (8), it does

not formally establish the stability of the non-linear power

system under switching [21]. However, for practical purposes,

stability and performance is guaranteed through extensive

simulations reported in Section VI.

IV. STATE TRAJECTORIES

The predictor corrector (PC) strategy is based on exploit-

ing the knowledge of nominal system dynamics. Hence, the

closed-loop performance is expected to deteriorate as the

actual operating condition drifts away from the nominal. It

is useful to estimate the deterioration in performance under

off-nominal conditions which would depend on the state

trajectories of Gi during the period between two consecutive

feedback samples.

During the inter-sample period [tk, tk+1) the dynamics of

the overall system including the power systems Gi and the

predictor corrector (PC) based controller is expressed by (7).

It can be seen that the responses of xi(t) and xn(t) are

uncoupled with that of the observer x̄(t). Hence, the left

upper block can be considered separately for analysis during
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t ∈ [tk, tk+1). Thus, neglecting observer dynamics without

loss of generality, (7) can be rewritten as:
[

ẋi(t)
ẋn(t)

]

=

[

Ai −BiK

0 An − BnK

] [

xi(t)
xn(t)

]

(10)

Note that the state xn(tk) is reset to the estimated observer

state x̄(tk) according to (5). Thus the initial conditions for

(10) are the states at the last available sampling instant tk:
[

xi(tk)
xn(tk)

]

=

[

x′

0

x0

]

where

xn(tk) = x̄(tk) = x0 (11)

Solution of (10) gives:
[

xi(t)
xn(t)

]

= exp

{[

Ai −BiK

0 An − BnK

]

(t − tk)

} [

x′

0

x0

]

(12)

Equation (12) represents the temporal evolution of system

states of the reduced order model and those predicted by Gn.

The state trajectory of Gn with initial state x0 can be expressed

as:

xn(t) = e(An−BnK)(t−tk)x0 for t ∈ [tk, tk+1) (13)

Analytical expression for the trajectory of the states of the

reduced order linearized power system model is derived as

follows. Transforming (12) to Laplace domain we get:�
Xi(s)
Xn(s) � = L

�
exp � �

Ai −BiK

0 An − BnK � (t − tk) � � �
x
′

0

x0 �
=

�
(sI − Ai)

−1
−(sI − Ai)

−1
BiK(sI − An + BnK)−1

0 (sI − (An − BnK))−1 � �
x
′

0

x0 �
(14)

After simplification the expression for Xi(s) can be written

as:

Xi(s) = (sI − An + BnK)−1x0 + (sI − Ai)
−1(x′

0 − x0)

+(sI − Ai)
−1(Ã − B̃K)(sI − An + BnK)−1x0

(15)

Notably Ã and B̃ represent the deviation of the nominal

dynamics embedded in Gn from the linearized model of

the actual system (corresponding to a particular operating

scenario). Thus the state trajectories are given by:

xi(t) = e(An−BnK)(t−tk)x0 + eAi(t−tk)(x′

0 − x0)

+
t
∫

tk

eAi(t−τ)(Ã − B̃K)e(An−BnK)τx0dτ
(16)

V. ERROR DUE TO OFF-NOMINAL DYNAMICS

The difference between the reduced order linearized system

state trajectories and those estimated by the nominal model

influences the performance of the PC strategy for an off-

nominal condition. The error in state trajectories can be

expressed as:

E(t) := xi(t) − xn(t)

= eAi(t−tk)(x′

0 − x0) +
t
∫

tk

eAi(t−τ)(Ã − B̃K)e(An−BnK)τx0dτ

(17)

The first term in (17) represents the deviation of linearized

system state from its asymptotic estimate computed by the

observer at t = tk. The second term arises due to the

difference between actual power system operating scenario

and the nominal dynamics. As expected, if both the initial

condition error and the model mismatch can be reduced to

zero, i.e.

x′

0 = x0; Ã = 0, B̃ = 0 (18)

the error E(t) ceases to exist. However, because of changes in

operating conditions in practical systems, (18) does not hold

good and there is a finite error.

Assuming stable open-loop system there are constants k1 >

0 and α1 > 0 such that for any vector c1 ∈ <m:
∥

∥eAitc1

∥

∥ ≤ k1e
−α1t ‖c1‖ (19)

Moreover, the closed-loop nominal system is stable and well-

damped with the designed controller implying there exists

constants k2 > 0 and α2 > 0 such that for any vector

c2 ∈ <m:
∥

∥

∥
e(An−BnK)tc2

∥

∥

∥
≤ k2e

−α2t ‖c2‖ (20)

Using (19) and (20) an estimate of the error E(t) can be

derived as follows:

‖E(t)‖ ≤
∥

∥eAi(t−tk)
∥

∥ ‖(x′

0 − x0)‖

+

∥

∥

∥

∥

∥

t
∫

tk

eAi(t−τ)(Ã − B̃K)e(An−BnK)τx0dτ

∥

∥

∥

∥

∥

⇒ ‖E(t)‖ k1 ‖(x
′

0 − x0)‖ e−α1(t−tk)

+k1k2

∥

∥

∥
(Ã − B̃K)

∥

∥

∥
‖x0‖

[e−α2(t−tk)
−e−α1(t−tk)]

(α1−α2)e
α2tk

(21)

It is to be noted that the consecutive asymptotic estimate

of reduced order system states reset the model Gn over finite

intervals of time. Assuming that the eigenvalues of (9) lie

inside the unit circle the system (8) is globally, exponentially

stable. Hence it follows that the norm of the error at the instant

of reset tends to zero as k → ∞. However, the maximum

value of the error over the inter-sample interval, t ∈ [tk, tk+1)
is of interest. Suppose the error attains the peak value at some

t∗k ∈ [tk, tk+1]. Assuming (x′

0 − x0) = 0, from (21), it can

be seen that the maximum error norm is proportional to the

mismatch between the nominal and actual model:

‖E(t∗)‖ ∝
∥

∥

∥
Ã − B̃K

∥

∥

∥
(22)

VI. CASE STUDY

A. Test system

To illustrate the effectiveness of the predictor corrector (PC)

strategy under low feedback data rate situation, case studies

were carried out with a 4-machine, 2-area power system shown

in Fig. 2 [22]. This test system is simple but representative of

typical low frequency electromechanical oscillatory problems

encountered in power systems.

Each of the four generators (G1-G4) are represented by a

sub-transient model with DC excitation [22]. Under nominal

condition, approximately 400 MW power flows from area 1

to area 2 over the two parallel 220 km tie lines connecting
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Fig. 2. 4-machine, 2-area test system with a TCSC

buses 7 and 9 through bus 8. To control and facilitate this tie-

line power flow, a thyristor controlled series capacitor (TCSC)

[23] is installed to provide 10% compensation in steady state

with a dynamic range of variation from 1 to 50%. Further

details of the system can be found in [22]. Linear analysis

about nominal operating scenario reveals one poorly damped

(about 1%) electromechanical oscillatory mode with 0.6 Hz

frequency. The objective of this exercise is to improve the

damping of this mode by modulating the compensation of the

TCSC.

The phase angle of the voltage measured at bus 5 was

considered as the feedback signal with bus 11 as the reference

bus. A phasor measurement unit (PMU) at bus 5 measures

the phase angle of the voltage which is communicated to the

distant control centre. Signals from a GPS satellite are used

to synchronizes the measurements through precise time-stamp

information [15].

The nominal and off-nominal operating scenarios consid-

ered for the case study are summarized in Table I.

TABLE I

OPERATING SCENARIOS FOR THE TEST SYSTEM IN FIG. 2

No. Identifier Tie line power flow Outage of tie-lines

1 nominal 400 MW none

2 8-9 outage 400 MW one between 8 and 9

3 7-8 outage 400 MW one between 7 and 8

4 heavy transfer 800 MW none

B. Control with CF and PC approaches

For a conventional feedback (CF) controller, the measured

signals from the remote sensor - phasor measurement unit

(PMU) at bus 5 in this case - is communicated to the controller

at the actuator location. Here the controller is designed using

linear quadratic regulator (LQR) approach [24] based on a 5th

order reduced equivalent of the nominal system.

For the predictor corrector (PC) strategy, states of the

reduced order system (not the measured outputs) estimated by

an observer are communicated over the network. A reduced

order system model is used to calculate the control input

(ū(t)) required by the observer at the sensor location, see

Fig. 1. A 5th order reduced equivalent of the nominal system

drives a state feedback controller at the actuator location as

described in Section II. In this exercise, balanced truncation

[25] was used to obtain the reduced order nominal model of

the power system. For large scale power systems subspace

based techniques for model reduction could be employed.

C. Overall stability with PC strategy

As explained in Section III the overall switched system is

stable if the eigenvalues of (9) lie within the unit circle in a

z-plane. Stability would dictate the minimum allowable data

rate for different operating conditions which could be figured

out from (9). The magnitudes of the maximum eigenvalue of

(9) for different data rates across varying operating scenarios

are shown in Fig. 3.

overall system stability analysis
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Fig. 3. Magnitudes of maximum eigenvalue of (9) for different data rates
across varying operating conditions

Since the PC approach uses knowledge of nominal system

dynamics, stability under nominal condition (upper left sub-

plot) is guaranteed with virtually any data rate. However, for

8-9 outage (upper right subplot) the system becomes unstable

for a feedback data rate of 1 sample every 3 seconds (1/3s).

Similarly, for 7-8 outage and heavy loading (see Table I) the

closed-loop system is unstable below data rates of 1/15s (lower

left subplot) and 1/4s (lower right subplot), respectively. It

should be noted that the eigenvalues of (9) indicates stabil-

ity only and is not necessarily representative of closed-loop

performance [6].

Although (9) characterizes global exponential stability of

the linear switched system, the stability of the non-linear

power system under switching is not guaranteed [21]. There-

fore, non-linear simulations were carried out in Matlab

Simulink to validate the stability limits given by (9).

A three phase short circuit at t = 5.0 s for 80 ms (5 cycles)

near bus 8 was considered as the disturbance. Closed-loop

behavior of the system across various scenarios considering

different data rates are shown in Fig. 4. For the nominal

scenario the closed-loop response is stable even with a data

rate as low as 1 sample every 4 s (1/4s). For scenarios 2,3 and

4, the closed-loop response becomes unstable below data rates

of 1/4s, 1/15s and 1/4s as obtained from linear analysis and

shown in Fig. 3. Thus, the minimum allowable data rates for

stability as indicated by linear analysis of the switched system

is found to be in agreement with the nonlinear simulation

results.
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Fig. 4. Closed-loop responses with PC strategy for different feedback data
rates across a range of operating conditions

It is to be noted that feedback data rates as low as 1 sample

every 4 seconds is highly unlikely in practice even with shared

communication links. Thus with the PC strategy closed-loop

stability could be guaranteed in practice as demonstrated here

across a range of scenarios which are representative of actual

conditions.

D. Comparison between CF and PC for low data rates

Following stability analysis, the closed-loop performance

with PC strategy is compared against CF. Before that the de-

terioration in closed-loop performance with PC as the scenario

drifts away from nominal is illustrated.

It is obvious that the difference between the nominal and

the actual operating scenario would affect the closed-loop

performance as the PC strategy is based on the knowledge

of nominal system dynamics. To understand this effect the

closed-loop performance with PC using a low data rate (1

sample every 2s) is benchmarked against CF at nominal data

rate of 50 samples/s across different operating conditions.

The expected deterioration in performance under off-nominal

conditions is evident in Fig. 5. For the nominal scenario,

PC produces almost similar response with different data rates

(1/2s, 10/s) as CF does with 50/s. However, for off-nominal

scenarios (2 and 3) the performance of PC gets worse for low

data rates. A comparison between closed-loop performance

with PC and CF is shown in Figs. 6 - 8 for the three off-

nominal scenarios (2-4).

The same data rate - 1 sample every 1 second (1/s) - is

considered in each case. Along with phase angle difference

between generator and other buses and active power flow

in lines, dynamic variation of compensation of the TCSC

(actuator) is also plotted. From the responses it is clear that

for each scenario (see Figs. 6 - 8) PC produces significantly

better closed-loop performance than CF.
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From the simulation studies, it is clear that even for a data

rate of 1 sample every 1 second, which is realistically as low

as it can get with worst possible communication bandwidth

encountered in relevant practical applications, PC strategy

not only guarantees closed-loop stability but also produces

satisfactory closed-loop responses while the performance with

CF is unacceptable. For higher and more realistic data rates

(2-5 samples every second) the difference in performance

between PC and CF would be less but enough to justify use

of PC during low bandwidth availability.

VII. CONCLUSION

In this paper, a predictor corrector (PC) strategy is applied

for power oscillation damping control to deal with situations of

low feedback data rate (bandwidth) where conventional feed-

back would suffer. Knowledge of nominal system dynamics

is used to approximate (predict) the actual system behavior

during intervals when data from remote sensors are not avail-

able. Recent samples of the states from a reduced observer at
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the remote location are used to periodically reset (correct) the

nominal dynamics. As expected the closed-loop performance

is shown to deteriorate as the actual operating condition drifts

away from the nominal dynamics. Nonetheless, significantly

better performance compared to conventional feedback is

obtained under low bandwidth situations. Simulation results

confirm the impact of decreasing data rate on the closed-loop

stability of the overall system. It is demonstrated that even for

reasonably low data rates the closed-loop stability is usually

ensured for a typical power system application confirming the

effectiveness of this approach. The deterioration in perfor-

mance is also quantified in terms of the difference between

the nominal and off-nominal dynamics.
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