Partial Pole Placement with Controller by a few poorly damped electromechanical modes with very
Optimization little to zero influence from the other modes [2]. Hence, it is
important to carefully place only those critical poles tcare

Subashish Datta, Debraj Chakraborty and Balarko Chaudh@iiSired performance following disturbances. There is remine

to worry about the remaining non-critical poles as long &irth
damping/settling times do not exceed those in open loop. In
) fact, it often turns out to be counter productive to relocate

Abstract—An arbitrary subset (n—m) of the (n) closed loop

. h . . . . . . the non-critical poles or even force them to their open-loop
eigenvalues of an'" order continuous time single input linear time . .
invariant (LTI) system is to be placed using full state feedlck, POSitions. Due to the very nature of the non-critical modes,
at pre-specified locations in the complex plane. The remaing higher control efforts are required unless they are lefhalo
m closed loop eigenvalues can be placed anywhere inside a preto take their natural course. This results in an overalléase

defined region in the complex plane. This region constraint ® iy the norm of the feedback gain vector and hence, costlier
the unspecified poles is translated into an LMI constraint on actuators

the feedback gains through a convex inner approximation oftie . . L
polynomial stability region. The closed loop locations fotthesem 1N consideration of such applications, we formulate the op-
eigenvalues are optimized to obtain a minimum norm feedback timization problem which will minimize the norm of feedback

gain vector. This reduces the controller effort leading to éss gain vector ensuring (i) the critical poles are moved to r@ebi
expensive actuators required to be installed in the controbystem.  (precise) closed loop locations, and (i) the non-critipales
The proposed algorithm is illustrated on a linearized modelof a remain stable in closed loop
4-machine, 2-area power system example. .. L . ..
.p Y P o Additionally, it is often required that all non-critical f&s
c '”tdelx ;e”tnsp—'l-'”elar SYStetm;v LMIs, E:onvex optimization,  should have a minimum settling time and/or damping ratio
ontrof efiort, Fole placement, Fower systems. which implies that they should be located within some specifi
region of the complex plane in the closed loop. These require
|. INTRODUCTION ments on the closed loop non-critical poles are translatey i
Fonstraints in the coefficient space of the characteristigryo-

All the closed loop poles of a controllable single input™ ) L .
linear time invariant (LTI) system can be assigned arbjtra ial through an inner convex approximation of the polyndmia
tability region [3], [4]. In turn, these constraints defaknear

locations in the complex plane using full state feedbacR 2P litv (LM he feedback I N
However, in many applications, the control engineer is co natrix inequality (LMI) on the feedback controller gainii

cerned with only a subset of the open loop poles (possik}ye opt|;n|zat|on _prof"?”:_ mentlonedl_above IS S_O'V?d .W'th two
because of their physical significance, instability, lovmngéng types of constraints: (i) linear equality constraints iagsout

and/or associated oscillations), and would like to movesaeheof the precise p!acement requlireme_n.t of the critical glosed
undesired poles (henceforth called critical poles) to igeec loop poles, and (ii) LMI constraint arising out of the regabn

pre-specified locations inside some stability region. lasth placement requirement of the closed loop non-critical pole

applications, typically, the remaining (non-critical)eploop Minimization of norm of the feedback gain vector with

poles are already stable and well damped and there are tia_l pole p_lacement _was_introduced in [], [6], the rEsu_I
obvious desired closed loop locations for them. It is coersid of which are improved in this work through less conservative

enough if these well-behaved open loop poles do not IOEMI stability region estima_tes in the polynomial coefficten
their desirable properties in closed loop, or in other wpids space. Earlier work on minimum norm controlleryvas reported
these non-critical open loop poles continue to lie withimso in [7] where the Sylvester equation was used to simultarigous

desired re_gio_n of the complex plane in the closed loop. me\ya?ig::itizgetgﬁ:ﬁggn(\éegto[;]m?;?x'[g] [10] and [11]) have
such applications, since only a subset of the closed Iooqaspo# cused on findin numer.ic;elll 'stab’le ar,wd efficient algonish
are spe.c-ified, the extra degrees of freedgm associgt_e d-mithfgr multi-input mSIti—output (fBL/J”) pole placement bygm'mi
unspecified non-critical poles can be utilized to minimilze t izing the condition number of a related eigenvector matrix
norm of feedback gain vector in full state feedback contrg]
systems gain v i gole placement within arbitrary pre-specified subsets ef th
Consiaer the problem of power oscillation damping Cori:_omp_lex plane was studied by [12], [13] a_nd refe_rgnces
troller design where low frequency electro—mgchanicallkaec ﬂ;?:glsnp.c!:jir\:\éeltlokrsl(tjxrl]ethritc:thicszziggo%ri];r?:Iiggot?;rr?:nvex
tions (0.1-3 Hz) are damped through expensive actuatays (eg%%? [14], [15]). To overcome this non c,onvexity N & <ok
see [1]). State feedback approach has been used in the ’ ’ i T .
to damp oscillations following large and small disturbancd2Pers (see [14], [3], [4] and the references therein)saligal

in power systems where the oscillatory behavior is domahat&™e' apprommat_lo_ns and L.MI innher approximations for_ the
polynomial coefficient stability region have been derived.
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space is included in Section II-B. In Section I, an equérdl polynomial of unknown coefficients whil@(s) is a monic
semidefinite program (SDP) is presented to obtain a minimymolynomial of known coefficients (completely defined from
norm feedback gain vector. Numerical examples demonstrdte problem specifications). The only requirementadis) is
ing the application of the proposed theory on a linearizetat the roots should be located in a pre-specified re§iarC
model of a 4-machine, 2-area power system [18] are includddfined in (3). Next, denote the set of all" degree monic

in Section V. polynomials with real coefficients &@&[s] and define the set
Cs:={a(s) e R[g: roots ofa(s) € S}. Then, Problem 1 can
[l. PRELIMINARIES be restated as follows:
A. Problem Eormulation Problem 2: Find inf||k||2, such that/A—bk") has the fol-

. . . . . lowing properties:
Let us consider a continuous time LTI single-input system, g prop .
1) (n—m) out of the totaln eigenvalues are placed at

with full state feedback control, defined by the followingtst

space equations {_/\1,_/\27--:,—/\n—m}-

_ ; 2) the polynomiala(s) € Cs .

X=Ax+bu; u=—k'x (1)  our main objective is to convert Problem 2 into a semidefinite
where X e R". ue R, Ac R™ peR" and k := Program (SDP). For this purpose, we first need to express con-

[ka k2~~~kn}T € R". Assume that the paifA,b) is control- ;traints (1) and (2) above in terms of the problem unknowns

lable; thenall the eigenvalues of the closed loop system  I-€- ki.kz,....k,, which is accomplished in Section Ill. It will
be shown that constraint (1) is linear (and hence convex) in

X = (A—Dbk")x (2)  the unknowns. However, the 8¢ C R[s] in Problem 2 above
can be placed at any arbitrary locations of the complex plalfenot & convex set fom > 3 (see [15], [14]) and hence the
C through a unique choice o optimization implied in Problem 2 is not convex for> 3. To

However, in the applications of our interest, only a fewvercome this difficulty, we replacgs with an inner convex
critical closed loop eigenvalues are specified and the napproximation ofCs. For this purpose, we briefly discuss a
critical eigenvalues are allowed to assume any value im(@r i result from [4] next.
pre-specified subset of) the stable region of the complaxepla
Let us denot€ g, Lo, . . ., Um, Umi1, - - -5 Mn }, (M<N) as then
eigdenvalues ofA. Of thdese_,{hul,uz,d..,_una} allre r:joln-critilcal B. LMI stability region in the polynomial coefficient space
and are not associated with any desired closed loop location . ~ o -
whereas the remainingn — m) eigenvalues are critical and Define a(s) as any poAIynomlaI InCs and.the goefﬁuent
are required to be placed ft-A1,—Az,...,—An_m} in closed Vectors corresponding ta(s) and a(s) (defined in (4)) as
loop. We will assume that then non-critical eigenvalues of @ :=[Ap @1...0m 1]’ € R™anda :=[ap a1...0m 1]' €R™
(A—Dbk") are required to be located in some stable re§iaf respectively. Further, letre ;= [aT 1]T e R™1 and g, :=

the complex plane. Following [3], we will defirfeas follows: [aT 1]T € R™L. Then, for a fixedd(s) € Cs define the

following set:
1 ~ ~
§=qseC:[1 s E; ;ﬂ M <0 @) Suwmii={a(s) €R[Y: Al +Tetd —NT(S2P)N >0
— for someP = PT ¢ R™M (5)

wheres* denotes the complex conjugatesandS< R?*2, It where ® refers to the Kronecker product: 0 implies a
has been shown that this regiéncan be used to represenpositive semidefinite matrixS as defined in (3), andl €
some common stability regions in the complex plane (Iik@zmx(mﬂ) denotes a projection matrix given by

arbitrary half planes and discs [3]), while being particiyla T
R . o . 1 0O -~ 0
useful for characterization of polynomial stability regg The
optimization problem can now be posed as follows: 0— 1
Problem 1: Find inf||k||> such that the eigenvalues oA— -
bk") have the following properties: 0 é ' 1
1) (n—m) out of the totaln eigenvalues are placed at (m+1)x2m
{=A1,—A2,...,—An-m}. It was shown in [3, Theorem 1] that for any given stable
2) remainingm eigenvalues are placed anywhereSin polynomial@(s) € Cs, the polynomiala (s) € Cs if there exist
Denote the unspecified closed loop poles of the system asymmetric matri> € R™™ satisfying the matrix inequality
{—p1,—P2,...,—pm}. Hence the characteristic equation of théedd + dead —MT (S®P)M > 0. For every fixedi(s), this re-
closed loop system will be sult characterizes a subset of the stable polynomials amcehe

nm the setS_ i € Cs. Moreover the inequality in (5) is linear in
I—L(SJF ) ll—l (S+A) (4) the unknownsae and P, which makes this characterization
= i— convenient for convexifying Problem 2. This is achieved by
replacingCs with Sy in Problem 2.
(e B However to comput& m explicitly we still needa priori
where a(s) := "4 am 1™+ ...+ a1s+ap and B(s) ;= a polynomiald(s) € Cs. This is referred to as the “central
M4 By mo 1S ™+ 4+ Bis+ Bo. In (4), a(s) is a monic  polynomial” in [3] and [4] where various domain dependent

o(s) = .




heuristics are provided for design choices fofs). For our follows:
choice ofd(s), we propose to use the polynomial formed out

o On-1=PBn-m-1+0m-1
of the open loop non-critical poles as follows: " nem "

On2=PBn-m2+Br-m-10m-1+0m_2 (8
m

a(s) = [ﬂ (S—uj)] (6)

j=1 02 =Lo02 + Bra1+ B200

Usually, the stable and adequately damped open loop eigen- gl :ggl+ﬁlao

values are the ones classified as non-critical. Hence in most 0 P00

practical scenariospy, z,...,Um € S and henced(s) € Cs.  Since (—A1,—Az,...,—An_m) are specified by the designer,
However, there are some situations (see Example 2 belawg coefficientsf, B1,...,81-m-1 in (8) are known quanti-
where all them open loop non-critical poles (though stablgies. However, the non-critical polespy, —p2,...,—pm are
and adequately damped) do not belong to the chosen stabilityspecified, so thadg, ay,...,am_1 are unknown. First note
region S. As illustrated in Example 2, this might happenhat gp,01,...,0,_1 can be eliminated from equations (7) and
due to the limitations on the shapes of the stability regioii8) to getn linear equations:

constructible using (3). In such situations, one would have

to heuristically choose the required number of poles, ecorre Boom-1+ Qm-1=kKn+an_1

sponding to theu;’s outsideS, from the specified stability

region. Specific design choices for such a case are discussed : 9)
in Example 2. Boary + Brag = ko +ag
Now, sinceS; y; C Cs we can pose the following problem, Botto = E1+ao
which upper bounds the solution of Problem 2. It will be
shown that Problem 3 is convex {it, ko, . .., kn). From (9), (ao,...,am-1) can_be expressed in terms of
Problem 3: Find inf||k||2 such that(A—bkT) has the fol- m linear equations irky, ko, ..., kn. Let us represent this in
|owing properties: following matrix form
1) (n—m) out of the totaln eigenvalues are placed at a=7k+g (10)

{_A]_, _AZ, ey _Anfm}.

2) the polynomiala(s) € Symi . where.7 € R™", g e R™.

Now ao,...,0m-1 can be back-substituted in the set rof
equations (9) to gefn—m) linear equations ir(ky, ko, ..., kn)

1. MAIN RESULTS which can be written in the form:

We show that Problem 3 can be formulated as a SDP. Let Ek+h=0 (11)
a(s) be the open loop characTteristic polynomial of (1) an\%here@@ c RM-Mxn e R™M and 0 is a zero vector of
definea:=[ap a - a,1] asits assoc'atechoeﬁ'C'emappropriate dimension. Using= 7% Tk, we get the following
vector. Similarly definec := [0o 01 -+ 0n1] as the set of equations:
coefficient vector corresponding to the characteristig/pol
mial of system (2). Further define the controllability matri a=Fk+g and Ek+h=0 (12)
¢:=[b Ab Ab ... A'b] and whereF = Z¢T € R™" andE = £/%" € R(-MxN,

a & a1 1 Corresponding to the relatiom = Fk+ g, defineae as
a az - 1 0 de = Fk+§ whereF = [men} andg= ﬂ (13)
o = | . : : O1xn 1
a1 1 - 0O O Using (13) in the LMI defined in (5), we get
10 - 00 Ekal + @k ET +§aT +Geg" —NT(SeP)N >0  (14)

If the system is controllable, the closed loop eigenvaluesThen the following result holds:

(of A—bK") can be placed at any arbitrary locations@  Theorem 1:For any fixedd (s) € Cs, if for somek € R" and
and, the corresponding unique feedback gain vektcan be for someP = PT € R™™, the relations (14) an&k+h=10

calculated from the following equation7%¢"k+a= 0 [19]. hold, then the eigenvalues of the matik— bk") satisfy the
If we geﬁnek: V(Z{%Tk wherek = [k]_ k2...kn]T, it follows that fo”owing properties:

eachk (i=1,...,n) is a linear combination ok,...,k, and 1) (n —m) out of the total n eigenvalues are

henceo can be written as {21 —Aosees—Anm}

2) the remainingn eigenvalues-p; e Sfori=1,...,m.
Proof: Fix G(s) € Cs. Let somek € R" andP = PT ¢

Recalling the expression for the required closed loop chd™ ™ satisfy (14). Thenaedg + dead —M' (S@ P)M > 0.
acteristic polynomial (4), the coefficients could be writies Hence the polynomial (s) € Symi. ButSpw C Cs, so the roots

O-j:Ej+1+aj for j=0,1,...,n—1 (7



Table |

of a(s) lie in S. The (n—m) equation€Ek+ h= 0 imply that COMPARISONTABLE
the (n—m) roots of polynomialB(s) (see (4)) are placed at Procedure] Closed Toop poles | K|z % Red. | Sys.
{=A1,..,—An-m}- [ | [IKl|2 Cond.
Theorem 1 defines the constraint set on the feedback gain  Conven. Par. _
vectork, which can be used to pose the feedback gain vector Pole placement] —4+1i, -3, -1 | 132.7253] - Stable
L blem as a SDP: Step - 1 (W|th_c_)ut _ Uns-
norm minimization pro _ : const. (iii)) | 0+6.4031,—1,1 | 20 84.9312 | table
Problem 4: Find mirpy , y subject to Step - 2 (with | —25875£0.20786,
_ ' const. (ii)) | —0.5028, —1 56.5775 | 57.3724| Stable
(i) y—k'k>0
(i) Ek+h=0

(i) Fkal +aek"ET +§a7 +ae§" — N7 (S®P)M >0 interface [21] in MATLAB [22] environment. A comparison
table is shown in Table | where Step 1 and Step 2 correspond to
where y > 0. Note that Problem 4 is an LMI constraineghe solutions of Problem 4 without considering the constrai
optimization with variables, k andP and can be solved by (i) and with constrainiii) respectively. The conventional
using solvers likeSeDuMi[20] and its LMI interface [21] in partial pole placement step evaluatfd|, keeping the three
MATLAB [22] environment. non critical poles in their original locations. The percege
Note 1: a) The above constraint set is always feasible singgquctions in||k|, in Step-1 and Step-2 are compared with
it is known that there is always at least daehich places the conventional partial pole placement. It is observed thairge
poles at arbitrary desired location. b) Since the aboverdpéi- reduction in k||, is achieved in Step-1. However, the non-
tion deals with the coefficients of the closed loop charastier critical poles are in the unstable region. Hence the nextides
polynomial, it is possible to place multiple number of patgs step is followed and it is observed that with constraiit),
the same location in the complex plane. c) Theorem 1 is onfye percentage reduction jik||2 is about 573724%.
sufficient in guaranteeing that the corresponding eigemsl Example 2:In this example, a linearized model of a 4-
stay inS. Consequently, in some cases, it might be possible #®achine, 2-area power system [18] is considered. THB 40
find ak which preserves the pole placement requirements yfer original model is reduced to a'lrder equivalent
has a lower norm than the solution to Problem 4. Hence, a t4pstem using balanced reduction. The modes (correspotuing
step design procedure is suggested below to find a controligg |ow frequency electro-mechanical modes) having dagpin
with maximum reduction in the norm. ratio (£) less than @5 are classified as critical and hence
Design Steps need to be relocated such that their damping ratios increase
1) Define a stability regior$ in the complex plane for the beyond 025. Open loop pole locations and their damping
non-critical poles according to the requirement. Solv@tios are given in Table Il. It is observed that there are
Problem 4 without considering the constraiiit). If all ~ four critical poles, having damping ratio less tha2® The
the non-critical poles belong t then stop; otherwise go desired closed loop locations for these critical poles are
to Step 2. chosen as:2+6.9261 and —2+ 3.93542. We assume that
2) Form the nominal polynomiali(s) according to the the remaining 6 non-critical poles can assume any positions
equation (6). This step may require few trial and errdn the complex plane as long as their damping ratios are
iterations if all the non-critical poles do not belong to thenore than ®5. According to [3],S can be chosen either

chosenS. Solve Problem 4. as a half plane or a disc i6. However a half plane would
inadequately describe the cone corresponding to 0.25.
IV. NUMERICAL EXAMPLES Hence,S is chosen as a disc having center(at8,0) and
Example 1:Consider a continuous time, single input LTradius 76 as an approximation to the cone illustrated in Fig. 1.
system with The corresponding elements of matBxwould bes;; = 6.24,
S12 =8 andsy, = 1.
0 1 0 0 0 Optimization without constraintiii) in Problem 4: The
A= 0 0 1 0 b= 0 location of the closed loop poles and corresponding damping
0 0 0 1 0 ratios are shown in Table Ill. The percentage reduction immo
51 -10 -30 -10 1

of the feedback gain vector is compared with the conventiona
Eigenvalues ofA are at 1-3,—44i. We assume that the partial pole placement problem (see Table IV). It can be
unstable pole is critical and needs to be placed-at The noticed that a substantial reduction jik||, (76.2196%) is
remaining 3 poles are assumed to be non-critical and aehieved in this step. However, the closed loop poles are not
allowed to be placed arbitrarily to the left of a verticaldin meeting the damping ratio requirement leading to unsatisfa
at —0.5 in the complex plane. Corresponding to this stabilitiory closed loop response. Hence design Step - 2 is required.
region the elements & will be s;1 =1, s10 =1 andsy, = 0. Optimization with constraint(iii) in Problem 4: Since
Since all non-critical poles«{3,—4+i) are inS, the nominal the non-critical poles—44.7511 and —0.0999 are not in
polynomial @ (s) can be formed according to (6) and it willthe stability regionS as defined above, (6) cannot be used
bed(s) =+ 115’ + 41s+51. to form d(s). Instead the six poles needed to creates)
According to the procedure given in Section lll, the optiare formed out of the four non-critical open loop poles
mization problem is solved witBeDuMi 1.0920] and its LMI  already within S (—0.8960+ 0.8730,—11.6207,—0.7881);



el approach and the proposed approach, we present results for

the following two cases:

1) the full order plant is driven with the controller using
the k obtained with conventional partial pole placement

5 approach.

q 3 Re 2) the full order plant is driven with the controller usingeth

k obtained by the proposed approach.

The maximum overshoot of the controller effort is compared
through MATLAB simulation which is shown in Fig. 3. A sub-
stantial reduction (72569%) in maximum overshoot of the
controller effort is observed. In addition, the output r@sge
Figure 1. The coné\OB corresponds to the damping ratfo= 0.25 region Of the full order plant for both cases is depicted in Fig. 4isTh
in the complex plane. The disc with cente(—8,0) and radiusPQ=7.6 demonstrates that the proposed algorithm of minimizjkip

corresponds to the stability region for the non-criticaleso The+ marks are . . . L.
for critical poles andx marks are for non-critical poles in closed loop. r_educes m_ax|u(t)| effectively, while maintaining acceptable
time domain performance.

Stability Region for ~ +
Non-critical Poles

B

Table Il
POLE LOCATIONS AND DAMPING RATIO TABLE Plant
Open loop poles| Damping u X = Ax+bu y
ratio () y=clx

—0.5800+ 6.9241 0.0834
—0.0467+3.9352 0.0118
—0.8960+0.8730 0.7162
—44.7511 -11.6207 1
—0.0999 -0.7881 1

KT Reduced Order Observer

T, | =AUty i
% Y =¢l2 i
while the two non-critical open loop poles outsidg ! |
(—44.7511 —-0.0999), are replaced (heuristically) with two o i
new poles withinS at —15 and—0.6. The resulting nominal R g7 s 1
polynomial would bede = [1289886 5460504 8699103
677.7951 2634905 298007 1. The location of the closed '-=~ Reduced Order Controller

|OOp poles and_ Correspondlng damplng ratios are Shown_lgllaure 2. Closed loop controller-observer system. Heaady; denote the
Table Il and Fig. 1. It is observed that all modes are satigsduced order observer state and output respectifelyr, andc, denote the
fying the damping ratio requirement. Furthermore,5401% reduced order system matricéss the reduced order observer gain vector.

reduction in||k||2 is achieved in this step.

Comparison of Actual Controller Effort: For C(ghmplete-
ness, a reduced order controller (comprising of & Xhder
observer and the state feedback gain ve&jofor the full V. CONCLUSION
order plant (48 order) is designed. The closed loop sys- It is shown that two different types of pole placement
tem is depicted in Fig. 2. To compare the controller effo@onstraints for critical and non-critical poles can be fatated
(i.e. max |u(t)|) between the conventional pole placemerid terms of the state feedback controller gains. Due to non-

convexity of the regiorCs corresponding to the regidf, an

Table 1II LMI stability region is constructed insid&s. This enables the

POLE LOCATIONS AND DAMPING RATIO TABLE

Closed loop poles| Damping || Closed loop poles| Damping
(without const.(ii)) | ratio (£) (with const. (iii )) ratio () 7 ] Comventional Ap‘proach
—2+6.9261 0.2774 —2+6.9261 0.2774 % ' X114 —Proposed Approach ||
—2+3.9352 0.4530 —2+3.9352 0.4530 31 5 Y067 1
—56749L4.7914 | 0.7640 || —09515-2.2154 | 0.3946 g, /{ﬂ P
—0.3006+2.0094 0.1420 —0.4176+0.3151 0.7982 § P
—0.4338+0.39871 0.7362 —9.8734-5.0861 1 o 1
Table IV g4 Ll 1
COMPARISONTABLE
05 1 15 2 T_z,s ) 3 ; 35 4 45 5
Ime In secon
| Procedure] k2 | % Red. in[[k[2 [ Remark |
Conven. partial ) Figure 3. Comparison between the maximum overshoot of tméralter
pole placement] 235.3568 - Satisfactory effort. The magnitude of maximum overshoot of the controkdfort (u)
Step - 1 (without ) for conventional partial pole placement approach (dashex) hnd proposed
constraint(iii)) | 55.9687 76.2196 Not Satisfactory approach - Step 2 (solid line) is28 and 067 respectively. The percentage
Step - 2 (with reduction in the magnitude of maximum overshootuois about 7925% in
constraint(iii )) 59.9216 74.5401 Satisfactory proposed approach.




o 0.03— : : :
@ M -+- Conventional Approach
§ 0.0; % ,f“ - o —Proposed Approach a
o - H /"\ FARY A -~ Open Loop Response
3 0 Y A NN i ; Y
£ ,-"-\ FoN” L v
B 001 L\ Lo o : Lo N
8 AW VoS K ! N/ N
2 ';:.\/ ' v B -
‘£ -0.0 3 ’ 8
=] -
s
003y 2 3 5 6 7 8 9 10
Time in second
Figure 4. Output response of the 4-machine, 2-area poweeraydriven

by the controller using the feedback gain veckoobtained in conventional
partial pole placement approach and proposed approachp-25olid line).

The
The

highly oscillatory response corresponds to the openm $ystem response.
simulation is done in MATLAB Simulink. The open loop st and the

closed loop system are excited with a step input of step he@5 second.
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[19]
[20]

[21]

[22]

formulation of an equivalent SDP over feedback controllers
Similarly, other relevant controller and closed loop cloéea
istics, like closed loop sensitivity and controllids, norm can
be likewise optimized, and are topics of current research. |

would also be interesting to extend the current technique to
multi-input systems.
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