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Partial Pole Placement with Controller
Optimization

Subashish Datta, Debraj Chakraborty and Balarko Chaudhuri

Abstract—An arbitrary subset (n−m) of the (n) closed loop
eigenvalues of anth order continuous time single input linear time
invariant (LTI) system is to be placed using full state feedback,
at pre-specified locations in the complex plane. The remaining
m closed loop eigenvalues can be placed anywhere inside a pre-
defined region in the complex plane. This region constraint on
the unspecified poles is translated into an LMI constraint on
the feedback gains through a convex inner approximation of the
polynomial stability region. The closed loop locations forthesem
eigenvalues are optimized to obtain a minimum norm feedback
gain vector. This reduces the controller effort leading to less
expensive actuators required to be installed in the controlsystem.
The proposed algorithm is illustrated on a linearized modelof a
4-machine, 2-area power system example.

Index Terms—Linear systems, LMIs, Convex optimization,
Control effort, Pole placement, Power systems.

I. INTRODUCTION

All the closed loop poles of a controllable single input
linear time invariant (LTI) system can be assigned arbitrary
locations in the complex plane using full state feedback.
However, in many applications, the control engineer is con-
cerned with only a subset of the open loop poles (possibly
because of their physical significance, instability, low damping
and/or associated oscillations), and would like to move these
undesired poles (henceforth called critical poles) to precise
pre-specified locations inside some stability region. In these
applications, typically, the remaining (non-critical) open loop
poles are already stable and well damped and there are no
obvious desired closed loop locations for them. It is considered
enough if these well-behaved open loop poles do not lose
their desirable properties in closed loop, or in other words, if
these non-critical open loop poles continue to lie within some
desired region of the complex plane in the closed loop. In
such applications, since only a subset of the closed loop poles
are specified, the extra degrees of freedom associated with the
unspecified non-critical poles can be utilized to minimize the
norm of feedback gain vector in full state feedback control
systems.

Consider the problem of power oscillation damping con-
troller design where low frequency electro-mechanical oscilla-
tions (0.1-3 Hz) are damped through expensive actuators (e.g.
see [1]). State feedback approach has been used in the past
to damp oscillations following large and small disturbances
in power systems where the oscillatory behavior is dominated
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by a few poorly damped electromechanical modes with very
little to zero influence from the other modes [2]. Hence, it is
important to carefully place only those critical poles to ensure
desired performance following disturbances. There is no need
to worry about the remaining non-critical poles as long as their
damping/settling times do not exceed those in open loop. In
fact, it often turns out to be counter productive to relocate
the non-critical poles or even force them to their open-loop
positions. Due to the very nature of the non-critical modes,
higher control efforts are required unless they are left alone
to take their natural course. This results in an overall increase
in the norm of the feedback gain vector and hence, costlier
actuators.

In consideration of such applications, we formulate the op-
timization problem which will minimize the norm of feedback
gain vector ensuring (i) the critical poles are moved to desired
(precise) closed loop locations, and (ii) the non-criticalpoles
remain stable in closed loop.

Additionally, it is often required that all non-critical poles
should have a minimum settling time and/or damping ratio
which implies that they should be located within some specific
region of the complex plane in the closed loop. These require-
ments on the closed loop non-critical poles are translated into
constraints in the coefficient space of the characteristic polyno-
mial through an inner convex approximation of the polynomial
stability region [3], [4]. In turn, these constraints definea linear
matrix inequality (LMI) on the feedback controller gains. Thus
the optimization problem mentioned above is solved with two
types of constraints: (i) linear equality constraints arising out
of the precise placement requirement of the critical closed
loop poles, and (ii) LMI constraint arising out of the regional
placement requirement of the closed loop non-critical poles.

Minimization of norm of the feedback gain vector with
partial pole placement was introduced in [5], [6], the results
of which are improved in this work through less conservative
LMI stability region estimates in the polynomial coefficients
space. Earlier work on minimum norm controller was reported
in [7] where the Sylvester equation was used to simultaneously
well condition the eigenvector matrix.

Various researchers (e.g. [7], [8], [9], [10] and [11]) have
focused on finding numerically stable and efficient algorithms
for multi-input multi-output (full) pole placement by mini-
mizing the condition number of a related eigenvector matrix.
Pole placement within arbitrary pre-specified subsets of the
complex plane was studied by [12], [13] and references
therein. It is well known that the set of polynomial coefficients
corresponding to stable root locations, might not be convex
(see [14], [15]). To overcome this non-convexity, in a series of
papers (see [14], [3], [4] and the references therein) ellipsoidal
inner approximations and LMI inner approximations for the
polynomial coefficient stability region have been derived.
Using a similar approach, [16] and [17] have designed fixed
order stabilizing controllers for SISO polytopic plants with
regional pole placement.

The remaining paper is organized as follows. In Section
II-A, the problem is formulated after introducing some pre-
liminary notations. Following [3] and [4], a procedure to find
a stable convex LMI region in the polynomial coefficients
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space is included in Section II-B. In Section III, an equivalent
semidefinite program (SDP) is presented to obtain a minimum
norm feedback gain vector. Numerical examples demonstrat-
ing the application of the proposed theory on a linearized
model of a 4-machine, 2-area power system [18] are included
in Section IV.

II. PRELIMINARIES

A. Problem Formulation

Let us consider a continuous time LTI single-input system,
with full state feedback control, defined by the following state
space equations

ẋ= Ax+bu ; u=−kTx (1)

where x ∈ R
n, u ∈ R, A ∈ R

n×n, b ∈ R
n and k :=[

k1 k2 · · ·kn
]T

∈ Rn. Assume that the pair(A,b) is control-
lable; thenall the eigenvalues of the closed loop system

ẋ= (A−bkT)x (2)

can be placed at any arbitrary locations of the complex plane
C through a unique choice ofk.

However, in the applications of our interest, only a few
critical closed loop eigenvalues are specified and the non-
critical eigenvalues are allowed to assume any value in (or in a
pre-specified subset of) the stable region of the complex plane.
Let us denote{µ1,µ2, . . . ,µm,µm+1, . . . ,µn}, (m≤ n) as then
eigenvalues ofA. Of these,{µ1,µ2, . . . ,µm} are non-critical
and are not associated with any desired closed loop location
whereas the remaining(n− m) eigenvalues are critical and
are required to be placed at{−λ1,−λ2, . . . ,−λn−m} in closed
loop. We will assume that them non-critical eigenvalues of
(A−bkT) are required to be located in some stable regionS of
the complex plane. Following [3], we will defineS as follows:

S=





s∈ C :
[
1 s∗

][s11 s12
s12 s22

]

︸ ︷︷ ︸
S

[
1
s

]
< 0





(3)

wheres∗ denotes the complex conjugate ofs andS∈R
2×2. It

has been shown that this regionS can be used to represent
some common stability regions in the complex plane (like
arbitrary half planes and discs [3]), while being particularly
useful for characterization of polynomial stability regions. The
optimization problem can now be posed as follows:

Problem 1: Find inf‖k‖2 such that the eigenvalues of(A−
bkT) have the following properties:

1) (n− m) out of the total n eigenvalues are placed at
{−λ1,−λ2, . . . ,−λn−m}.

2) remainingm eigenvalues are placed anywhere inS.
Denote the unspecified closed loop poles of the system as
{−p1,−p2, . . . ,−pm}. Hence the characteristic equation of the
closed loop system will be

σ(s) =

[
m

∏
j=1

(s+ p j)

]

︸ ︷︷ ︸
α(s)

[
n−m

∏
i=1

(s+λi)

]

︸ ︷︷ ︸
β (s)

(4)

where α(s) := sm+αm−1sm−1 + . . .+α1s+α0 and β (s) :=
sn−m+βn−m−1sn−m−1+ . . .+β1s+β0. In (4), α(s) is a monic

polynomial of unknown coefficients whileβ (s) is a monic
polynomial of known coefficients (completely defined from
the problem specifications). The only requirement onα(s) is
that the roots should be located in a pre-specified regionS⊂C

defined in (3). Next, denote the set of allmth degree monic
polynomials with real coefficients asR[s] and define the set
Cs := {α(s) ∈R[s] : roots ofα(s) ∈ S}. Then, Problem 1 can
be restated as follows:

Problem 2: Find inf‖k‖2, such that(A−bkT) has the fol-
lowing properties:

1) (n− m) out of the total n eigenvalues are placed at
{−λ1,−λ2, . . . ,−λn−m}.

2) the polynomialα(s) ∈Cs .

Our main objective is to convert Problem 2 into a semidefinite
program (SDP). For this purpose, we first need to express con-
straints (1) and (2) above in terms of the problem unknowns
i.e. k1,k2, ...,kn, which is accomplished in Section III. It will
be shown that constraint (1) is linear (and hence convex) in
the unknowns. However, the setCs⊂R[s] in Problem 2 above
is not a convex set form≥ 3 (see [15], [14]) and hence the
optimization implied in Problem 2 is not convex form≥ 3. To
overcome this difficulty, we replaceCs with an inner convex
approximation ofCs. For this purpose, we briefly discuss a
result from [4] next.

B. LMI stability region in the polynomial coefficient space

Define α̂(s) as any polynomial inCs and the coefficient
vectors corresponding tôα(s) and α(s) (defined in (4)) as
α̂ := [α̂0 α̂1 . . . α̂m−1]

T
∈Rm andα := [α0 α1 . . .αm−1]

T ∈Rm

respectively. Further, letαe :=
[
αT 1

]T
∈ R

m+1 and α̂e :=[
α̂T 1

]T
∈ R

m+1. Then, for a fixedα̂(s) ∈ Cs define the
following set:

SLMI := {α(s) ∈ R[s] : αeα̂T
e + α̂eαT

e −ΠT(S⊗P)Π ≥ 0

for someP= PT ∈ R
m×m} (5)

where ⊗ refers to the Kronecker product,≥ 0 implies a
positive semidefinite matrix,S as defined in (3), andΠ ∈
R2m×(m+1) denotes a projection matrix given by

Π =




1 0 · · · 0
... 1

1
...

0 · · · 0 1




T

(m+1)×2m

It was shown in [3, Theorem 1] that for any given stable
polynomialα̂(s) ∈Cs, the polynomialα(s) ∈Cs if there exist
a symmetric matrixP∈Rm×m satisfying the matrix inequality
αeα̂T

e + α̂eαT
e −ΠT(S⊗P)Π≥ 0. For every fixed̂α(s), this re-

sult characterizes a subset of the stable polynomials and hence
the setSLMI ⊆Cs. Moreover the inequality in (5) is linear in
the unknownsαe and P, which makes this characterization
convenient for convexifying Problem 2. This is achieved by
replacingCs with SLMI in Problem 2.

However to computeSLMI explicitly we still needa priori
a polynomial α̂(s) ∈ Cs. This is referred to as the “central
polynomial” in [3] and [4] where various domain dependent
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heuristics are provided for design choices forα̂(s). For our
choice ofα̂(s), we propose to use the polynomial formed out
of the open loop non-critical poles as follows:

α̂(s) =

[
m

∏
j=1

(s− µ j)

]
(6)

Usually, the stable and adequately damped open loop eigen-
values are the ones classified as non-critical. Hence in most
practical scenarios,µ1,µ2, . . . ,µm ∈ S and henceα̂(s) ∈ Cs.
However, there are some situations (see Example 2 below)
where all them open loop non-critical poles (though stable
and adequately damped) do not belong to the chosen stability
region S. As illustrated in Example 2, this might happen
due to the limitations on the shapes of the stability regions
constructible using (3). In such situations, one would have
to heuristically choose the required number of poles, corre-
sponding to theµi ’s outsideS, from the specified stability
region. Specific design choices for such a case are discussed
in Example 2.

Now, sinceSLMI ⊆Cs we can pose the following problem,
which upper bounds the solution of Problem 2. It will be
shown that Problem 3 is convex in(k1,k2, . . . ,kn).

Problem 3: Find inf‖k‖2 such that(A−bkT) has the fol-
lowing properties:

1) (n− m) out of the total n eigenvalues are placed at
{−λ1,−λ2, . . . ,−λn−m}.

2) the polynomialα(s) ∈ SLMI .

III. M AIN RESULTS

We show that Problem 3 can be formulated as a SDP. Let
a(s) be the open loop characteristic polynomial of (1) and
definea :=

[
a0 a1 · · · an−1

]T
as its associated coefficient

vector. Similarly defineσ :=
[
σ0 σ1 · · · σn−1

]T
as the

coefficient vector corresponding to the characteristic polyno-
mial of system (2). Further define the controllability matrix
C :=

[
b Ab A2b · · · An−1b

]
and

A :=




a1 a2 · · · an−1 1
a2 a3 · · · 1 0
...

...
.. .

...
...

an−1 1 · · · 0 0
1 0 · · · 0 0




If the system is controllable, the closed loop eigenvalues
(of A− bkT ) can be placed at any arbitrary locations inC
and, the corresponding unique feedback gain vectork can be
calculated from the following equation:A C Tk+a= σ [19].
If we definek̄=A C Tk wherek̄= [k̄1 k̄2...k̄n]

T , it follows that
eachk̄i (i = 1, ...,n) is a linear combination ofk1, ...,kn and
henceσ can be written as

σ j = k̄ j+1+a j for j = 0,1, . . . ,n−1 (7)

Recalling the expression for the required closed loop char-
acteristic polynomial (4), the coefficients could be written as

follows:

σn−1 = βn−m−1+αm−1

σn−2 = βn−m−2+βn−m−1αm−1+αm−2 (8)

...

σ2 =β0α2+β1α1+β2α0

σ1 =β0α1+β1α0

σ0 =β0α0

Since (−λ1,−λ2, . . . ,−λn−m) are specified by the designer,
the coefficientsβ0,β1, . . . ,βn−m−1 in (8) are known quanti-
ties. However, the non-critical poles−p1,−p2, . . . ,−pm are
unspecified, so thatα0,α1, . . . ,αm−1 are unknown. First note
that σ0,σ1, ...,σn−1 can be eliminated from equations (7) and
(8) to getn linear equations:

βn−m−1+αm−1 = k̄n+an−1

... (9)

β0α1+β1α0 = k̄2+a1

β0α0 = k̄1+a0

From (9), (α0, ...,αm−1) can be expressed in terms of
m linear equations in̄k1, k̄2, . . . , k̄n. Let us represent this in
following matrix form

α = F k̄+g (10)

whereF ∈Rm×n, g∈ Rm.
Now α0, . . . ,αm−1 can be back-substituted in the set ofn

equations (9) to get(n−m) linear equations in(k̄1, k̄2, ..., k̄n)
which can be written in the form:

E k̄+h= 0 (11)

where E ∈ R(n−m)×n, h ∈ Rn−m and 0 is a zero vector of
appropriate dimension. Usinḡk=A C Tk, we get the following
set of equations:

α = Fk+g and Ek+h= 0 (12)

whereF = FA C T ∈ Rm×n andE = E A C T ∈ R(n−m)×n.
Corresponding to the relationα = Fk+g, defineαe as

αe = F̃k+ g̃ whereF̃ =

[
Fm×n

01×n

]
and g̃=

[
g
1

]
(13)

Using (13) in the LMI defined in (5), we get

F̃kα̂T
e + α̂ek

T F̃T + g̃α̂T
e + α̂eg̃

T −ΠT(S⊗P)Π ≥ 0 (14)

Then the following result holds:
Theorem 1:For any fixedα̂(s)∈Cs, if for somek∈Rn and

for someP = PT ∈ Rm×m, the relations (14) andEk+h= 0
hold, then the eigenvalues of the matrix(A−bkT) satisfy the
following properties:

1) (n − m) out of the total n eigenvalues are
{−λ1,−λ2, . . . ,−λn−m}.

2) the remainingm eigenvalues−pi ∈ S for i = 1, . . . ,m.

Proof: Fix α̂(s) ∈ Cs. Let somek ∈ Rn and P = PT ∈
R

m×m satisfy (14). Thenαeα̂T
e + α̂eαT

e − ΠT(S⊗P)Π ≥ 0.
Hence the polynomialα(s)∈ SLMI . ButSLMI ⊆Cs, so the roots
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of α(s) lie in S. The (n−m) equationsEk+h= 0 imply that
the (n−m) roots of polynomialβ (s) (see (4)) are placed at
{−λ1, . . . ,−λn−m}.
Theorem 1 defines the constraint set on the feedback gain
vectork, which can be used to pose the feedback gain vector
norm minimization problem as a SDP:

Problem 4: Find minP,k,γ γ subject to

(i) γ − kTk≥ 0

(ii) Ek+h= 0

(iii ) F̃kα̂T
e + α̂ek

T F̃T + g̃α̂T
e + α̂eg̃

T −ΠT(S⊗P)Π ≥ 0

where γ > 0. Note that Problem 4 is an LMI constrained
optimization with variablesγ, k and P and can be solved by
using solvers likeSeDuMi[20] and its LMI interface [21] in
MATLAB [22] environment.

Note 1: a) The above constraint set is always feasible since
it is known that there is always at least onek which places the
poles at arbitrary desired location. b) Since the above optimiza-
tion deals with the coefficients of the closed loop characteristic
polynomial, it is possible to place multiple number of polesat
the same location in the complex plane. c) Theorem 1 is only
sufficient in guaranteeing that the corresponding eigenvalues
stay inS. Consequently, in some cases, it might be possible to
find a k which preserves the pole placement requirements but
has a lower norm than the solution to Problem 4. Hence, a two
step design procedure is suggested below to find a controller
with maximum reduction in the norm.
Design Steps

1) Define a stability regionS in the complex plane for the
non-critical poles according to the requirement. Solve
Problem 4 without considering the constraint(iii ). If all
the non-critical poles belong toS then stop; otherwise go
to Step 2.

2) Form the nominal polynomial̂α(s) according to the
equation (6). This step may require few trial and error
iterations if all the non-critical poles do not belong to the
chosenS. Solve Problem 4.

IV. N UMERICAL EXAMPLES

Example 1:Consider a continuous time, single input LTI
system with

A=




0 1 0 0
0 0 1 0
0 0 0 1
51 −10 −30 −10


 b=




0
0
0
1




Eigenvalues ofA are at 1,−3,−4± i. We assume that the
unstable pole is critical and needs to be placed at−1. The
remaining 3 poles are assumed to be non-critical and are
allowed to be placed arbitrarily to the left of a vertical line
at −0.5 in the complex plane. Corresponding to this stability
region the elements ofS will be s11 = 1, s12 = 1 ands22 = 0.
Since all non-critical poles (−3,−4± i) are inS, the nominal
polynomial α̂(s) can be formed according to (6) and it will
be α̂(s) = s3+11s2+41s+51.

According to the procedure given in Section III, the opti-
mization problem is solved withSeDuMi 1.05[20] and its LMI

Table I
COMPARISONTABLE

Procedure Closed loop poles ‖k‖2 % Red. Sys.
‖k‖2 Cond.

Conven. Par.
pole placement −4±1i, −3, −1 132.7253 – Stable

Step - 1 (without Uns-
const. (iii)) 0±6.4031i,−1,1 20 84.9312 table

Step - 2 (with −2.5875±0.2076i,
const. (iii)) −0.5028,−1 56.5775 57.3724 Stable

interface [21] in MATLAB [22] environment. A comparison
table is shown in Table I where Step 1 and Step 2 correspond to
the solutions of Problem 4 without considering the constraint
(iii ) and with constraint(iii ) respectively. The conventional
partial pole placement step evaluates‖k‖2 keeping the three
non critical poles in their original locations. The percentage
reductions in‖k‖2 in Step-1 and Step-2 are compared with
conventional partial pole placement. It is observed that a large
reduction in‖k‖2 is achieved in Step-1. However, the non-
critical poles are in the unstable region. Hence the next design
step is followed and it is observed that with constraint(iii ),
the percentage reduction in‖k‖2 is about 57.3724%.

Example 2: In this example, a linearized model of a 4-
machine, 2-area power system [18] is considered. The 40th

order original model is reduced to a 10th order equivalent
system using balanced reduction. The modes (correspondingto
the low frequency electro-mechanical modes) having damping
ratio (ξ ) less than 0.25 are classified as critical and hence
need to be relocated such that their damping ratios increase
beyond 0.25. Open loop pole locations and their damping
ratios are given in Table II. It is observed that there are
four critical poles, having damping ratio less than 0.25. The
desired closed loop locations for these critical poles are
chosen as:−2± 6.9261i and −2± 3.9352i. We assume that
the remaining 6 non-critical poles can assume any positions
in the complex plane as long as their damping ratios are
more than 0.25. According to [3],S can be chosen either
as a half plane or a disc inC. However a half plane would
inadequately describe the cone corresponding toξ ≥ 0.25.
Hence,S is chosen as a disc having center at(−8,0) and
radius 7.6 as an approximation to the cone illustrated in Fig. 1.
The corresponding elements of matrixS would bes11 = 6.24,
s12 = 8 ands22 = 1.

Optimization without constraint(iii ) in Problem 4: The
location of the closed loop poles and corresponding damping
ratios are shown in Table III. The percentage reduction in norm
of the feedback gain vector is compared with the conventional
partial pole placement problem (see Table IV). It can be
noticed that a substantial reduction in‖k‖2 (76.2196%) is
achieved in this step. However, the closed loop poles are not
meeting the damping ratio requirement leading to unsatisfac-
tory closed loop response. Hence design Step - 2 is required.

Optimization with constraint(iii ) in Problem 4: Since
the non-critical poles−44.7511 and−0.0999 are not in
the stability regionS as defined above, (6) cannot be used
to form α̂(s). Instead the six poles needed to createα̂(s)
are formed out of the four non-critical open loop poles
already within S (−0.8960± 0.8730i,−11.6207,−0.7881);
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Figure 1. The coneAOB corresponds to the damping ratioζ = 0.25 region
in the complex plane. The disc with centerP(−8,0) and radiusPQ= 7.6
corresponds to the stability region for the non-critical poles. The+ marks are
for critical poles and× marks are for non-critical poles in closed loop.

Table II
POLE LOCATIONS AND DAMPING RATIO TABLE

Open loop poles Damping
ratio (ξ )

−0.5800±6.9241i 0.0834
−0.0467±3.9352i 0.0118
−0.8960±0.8730i 0.7162

−44.7511,−11.6207 1
−0.0999,−0.7881 1

while the two non-critical open loop poles outsideS
(−44.7511,−0.0999), are replaced (heuristically) with two
new poles withinS at −15 and−0.6. The resulting nominal
polynomial would beα̂e = [128.9886 546.0504 869.9103
677.7951 263.4905 29.8007 1]T . The location of the closed
loop poles and corresponding damping ratios are shown in
Table III and Fig. 1. It is observed that all modes are satis-
fying the damping ratio requirement. Furthermore, 74.5401%
reduction in‖k‖2 is achieved in this step.

Comparison of Actual Controller Effort: For complete-
ness, a reduced order controller (comprising of a 10th order
observer and the state feedback gain vectork) for the full
order plant (40th order) is designed. The closed loop sys-
tem is depicted in Fig. 2. To compare the controller effort
(i.e. maxt |u(t)|) between the conventional pole placement

Table III
POLE LOCATIONS AND DAMPING RATIO TABLE

Closed loop poles Damping Closed loop poles Damping
(without const.(iii )) ratio (ξ ) (with const.(iii )) ratio (ξ )

−2±6.9261i 0.2774 −2±6.9261i 0.2774
−2±3.9352i 0.4530 −2±3.9352i 0.4530

−5.6749±4.7914i 0.7640 −0.9515±2.2154i 0.3946
−0.3006±2.0094i 0.1420 −0.4176±0.3151i 0.7982
−0.4338±0.3987i 0.7362 −9.8734,−5.0861 1

Table IV
COMPARISONTABLE

Procedure ‖k‖2 % Red. in‖k‖2 Remark

Conven. partial
pole placement 235.3568 – Satisfactory

Step - 1 (without
constraint(iii )) 55.9687 76.2196 Not Satisfactory
Step - 2 (with

constraint(iii )) 59.9216 74.5401 Satisfactory

approach and the proposed approach, we present results for
the following two cases:

1) the full order plant is driven with the controller using
the k obtained with conventional partial pole placement
approach.

2) the full order plant is driven with the controller using the
k obtained by the proposed approach.

The maximum overshoot of the controller effort is compared
through MATLAB simulation which is shown in Fig. 3. A sub-
stantial reduction (79.2569%) in maximum overshoot of the
controller effort is observed. In addition, the output response
of the full order plant for both cases is depicted in Fig. 4. This
demonstrates that the proposed algorithm of minimizing‖k‖2

reduces maxt |u(t)| effectively, while maintaining acceptable
time domain performance.

+

ẋ= Ax+bu
y= cTx

ˆ̇z= Ar ẑ+br u+ l(y− ŷr )

ŷr = cT
r ẑ

cT
r

-kT

ŷr

y

yu

ẑ

Reduced Order Observer

Plant

Reduced Order Controller

Figure 2. Closed loop controller-observer system. Here ˆz and ŷr denote the
reduced order observer state and output respectively.Ar , br , andcr denote the
reduced order system matrices.l is the reduced order observer gain vector.

V. CONCLUSION

It is shown that two different types of pole placement
constraints for critical and non-critical poles can be formulated
in terms of the state feedback controller gains. Due to non-
convexity of the regionCs corresponding to the regionS, an
LMI stability region is constructed insideCs. This enables the
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Figure 3. Comparison between the maximum overshoot of the controller
effort. The magnitude of maximum overshoot of the controller effort (u)
for conventional partial pole placement approach (dashed line) and proposed
approach - Step 2 (solid line) is 3.23 and 0.67 respectively. The percentage
reduction in the magnitude of maximum overshoot ofu is about 79.25% in
proposed approach.
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Figure 4. Output response of the 4-machine, 2-area power system driven
by the controller using the feedback gain vectork obtained in conventional
partial pole placement approach and proposed approach - Step 2 (solid line).
The highly oscillatory response corresponds to the open loop system response.
The simulation is done in MATLAB Simulink. The open loop system and the
closed loop system are excited with a step input of step length 0.05 second.

formulation of an equivalent SDP over feedback controllers.
Similarly, other relevant controller and closed loop character-
istics, like closed loop sensitivity and controllerH∞ norm can
be likewise optimized, and are topics of current research. It
would also be interesting to extend the current technique to
multi-input systems.
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