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Abstract: The problem of maintaining acceptable performance of a perturbed control system under conditions of 
feedback failure is considered. The objective is to maximize the time during which performance remains within 
desirable bounds without feedback, given that the parameters of the controlled system are within a specified 
neighborhood of their nominal values. It is shown that there is an optimal open-loop controller that achieves this 
objective. The performance of this controller can be approximated by a bang-bang controller. 

 

1. INTRODUCTION 

Feedback is often used to ameliorate the adverse effects of 
perturbations and uncertainties on the performance of 
engineering systems. However, discontinuations in the service of 
the feedback channel cannot be completely avoided. For 
example, in applications such the control and guidance of space 
vehicles, disruptions of the line-of-sight may cause extended 
disruptions in feedback signal reception. In other applications, 
economic or other factors may dictate an operational policy 
wherein the feedback channel is opened only when performance 
degrades beyond an acceptable level. One such application is in 
networked control systems, where feedback is often used only 
intermittently, so as to reduce network traffic (Nair et al. 2007, 
Zhivogyladov and Middleton 2003 and Montestruque and 
Antsaklis 2004). 

To accommodate these and other applications, it would be 
beneficial to develop a controller that maximizes the duration of 
time during which a system can operate without feedback and 
not exceed acceptable error bounds. Of course, the parameters of 
the controlled system are never perfectly known, and this fact 
has to be taken into consideration when attempting to develop an 
appropriate control strategy. 

In more specific terms, we concentrate on the case of a linear 
time-invariant system  Σ  with given initial conditions with state 
output. We assume that the feedback signal is disconnected at 
the time t = 0. Let  Σ0  be the nominal version of  Σ, and let  Σε  
be the system that results when the parameters of  Σ  experience 
a perturbation  ε  from their nominal values. The exact value of 
the perturbation  ε  is not known, but it is known that  ε  does not 
exceed a specified bound  d. After possibly having applied an 
appropriate shift transformation on the signals, we assume that 
the desired nominal output of  Σ  is the zero signal. A maximal 
deviation of magnitude  M > 0  is permitted from the nominal 
output signal. Our objective is to find an input signal  u(t)  that 
drives the system  Σε  in such a way as to guarantee that the 
deviation of the output signal from zero stays below  M  for as 
long as possible, irrespective of the (unknown) deviation  ε  from 
nominality. In somewhat more formal terms, we are seeking a 
signal  u(t)  and a maximal time  tf  such that 

|Σεu(t)| ≤ M  for all  0 ≤ t ≤ tf  and all  ε ≤ d. (1) 

The signal  u(t)  is generated by a controller, according to the 
following diagram. 

 

 
 
 

 

Here, the controller  C  acts as a precompensator during 
feedback failure, generating the signal  u(t)  that keeps the output 
of  Σ  within its bound for the longest possible time. To the best 
of our knowledge, there are no reports in the literature of earlier 
examinations of this problem. 

Finding the signal  u(t)  helps maintain proper operation of  Σ  
for as long as possible after feedback failure, providing maximal 
time for repair. If the feedback is disconnected for cost reasons, 
then the input signal  u(t)  can help minimize operational costs 
by maximizing the time during which the system  Σ  can operate 
without feedback. Of course, at the time  tf, feedback must be 
restored to prevent further increase of the error. 

We show in section 2 that the problem of calculating the optimal 
signal  u(t)  is a max-min problem; in section 3 we prove that 
this problem has a solution; and in section 4 we show that the 
optimal signal  u(t)  can be replaced by a bang-bang signal, with 
only a negligible effect on system performance. The fact that the 
optimal signal can be replaced by a bang-bang signal is 
significant in applications, since the calculation of optimal bang-
bang signals is rather simple: all one needs to do is find the 
switching times. The paper concludes in section 5 with an 
example. Finally, we mention that the methodology developed in 
this paper can be extended to the treatment of partial feedback 
failure. 

2. NOTATIONS AND PROBLEM FORMULATION 

Consider a linear time invariant continuous-time system given 
by a realization of the form  

Σ : .x(t) = A′x(t) + B′u(t),         x(0) = x0. (2) 
Here, A′  and  B′  are constant real matrices of dimensions  n×n  
and  n×m, respectively. The state  x(t)  of the system is available 

  

feedback 
failure 

u(t) 
C Σ 

 



 
 

     

 

as output; the initial state  x0  is the state of  Σ  at the time 
feedback was lost, and thus is known. The input function  u(t)  is 
of dimension  m. 

An important aspect of our discussion is the fact that there are 
uncertainties about the entries of the matrices  A′  and  B′. To 
describe these uncertainties, we use the standard  l∞-norm  ||•||  
given, for a  q×r  matrix  G  by 

||G|| :=  maxi=1,...,q;j=1,...,r |Gij|, 
where  Gij  is the  i, j  entry of the matrix  G. Similarly, for a 
vector valued function  u(t)  having the components  u1(t), ..., 
um(t), we set  ||u(t)|| = maxi=1,…,m |ui(t)|  at each time  t. Now, 
given a real number  d > 0, let  ΔA  be the set of all real  n×n  
matrices  α  satisfying  ||α|| ≤ d, and let  ΔB  be the set of all real  
n×m  matrices  β  satisfying  ||β|| ≤ d. In other words, ΔA  and  ΔB  
are the set of all corresponding size matrices whose entries are in 
the range  [-d, d]. Then, we set 

 A′ := A + DA, B′ := B + DB, and  D := (DA,DB),            (3) 
where  A  and  B  are the nominal values of the matrices  A′  and  
B′  of (2), respectively, while  DA ∈ ΔA  and  DB ∈ ΔB  are the 
perturbation matrices that represent uncertainties. The only 
information available about our system  Σ  are the nominal 
matrices  A  and  B  and the uncertainty magnitude  d; the entries 
of the matrices  DA  and  DB  are not given. We use the notation  
D := (DA,DB)  and  Δ := ΔA×ΔB, so that  D ∈ Δ. We refer to  Δ  as 
the uncertainty range. We note that controllability of the pair  
(A′,B′)  is not required for the results presented in this paper. 
However, when the feedback is connected, controllability would 
be required to stabilize the system and reduce errors. 

Recalling the bound  M > 0  of (1) and taking into consideration 
the fact that the output of our system  Σ  is its state  x(t), our 
performance requirement becomes 

xT(t)x(t) ≤ M (4) 
where  xT  is the transpose of  x. The initial state satisfies   
x0

Tx0 ≤ M, so that performance was within the desirable range 
when the feedback channel was disconnected. 

It is convenient to define a weighted inner product over our 
space of input functions, as follows. Given two  m-dimensional 
vector valued functions  a(t), b(t), set 

<a, b> = ⌡⌠
0

∞

 e−αt a(t)Tb(t)dt,               ||a||2,α := <a‚ a> (5) 

where  α  is a positive real number, the integral is taken in the 
Lebesgue sense, and  ||a||2,α  is the corresponding norm. The 
weight function  e−αt  comes to allow us to include all bounded 
input functions in the domain over which the inner product (5) is 
well defined. We denote by  Lα‚m

2   the Hilbert space of all  m-
dimensional Lebesgue measurable functions with the inner 
product (5). 

Needless to say, all engineering systems are subject to input 
amplitude restrictions determined by the largest amplitude signal 
a system can tolerate. For our system  Σ, we assume that its input 
amplitude bound is  K > 0, so all input functions  u(t)  of  Σ  
must satisfy  ||u(t)|| ≤ K  for all  t, and thus are members of the 
Hilbert space  Lα‚m

2 . It is convenient to introduce the set of input 
functions 

U := {u ∈ Lα‚m
2  : ||u(t)|| ≤ K  for all  t ≥ 0}, (6) 

which describes all permissible input functions of  Σ. In these 

terms, our objective is to find an input function  u ∈ U  that 
drives  Σ  so as to satisfy the state amplitude bound (4) for the 
longest possible time. 

2.1 Problem Statement 

The state trajectory  x(t)  of the system  Σ  depends, of course, on 
the perturbation matrices  DA  and  DB, as well as on the input 
function  u. It is convenient, for the moment, to include these 
variables in explicit form in the function  x, namely, to write  
x(t,D,u)  instead of  x(t), where  D = (DA,DB). Rewrite now (4) in 
the form 

xT(t,D,u)x(t,D,u) ≤ M. (7) 
Next, the time duration during which the square-magnitude  
xT(t)x(t)  stays below or at the bound  M  can be represented by 

T(M,D,u) := inf {t ≥ 0 : xT(t)x(t) > M}, (8) 
where  T(M,D,u) := ∞  if  xT(t)x(t) ≤ M  for all  t ≥ 0. As the 
initial state satisfies  x0

Tx0 ≤ M, we have  T(M,D,u) ≥ 0. Our 
objective is to select the input function  u  so as to obtain the 
largest possible duration  T(M,D,u). 

Among the variables of the state  x(•), the entries of the pair of 
matrices  D  are unknown and unpredictable. As there is no 
feedback available, the control input function  u  cannot depend 
on  D. We must guaranty that the bound (7) is valid for all 
possible  D. As a result, we must consider the "worst case" with 
respect to the pair of matrices  D, and this leads us to the 
quantity 

T*(M,u) := infD ∈ Δ T(M,D,u). (9) 
Then, inequality (7) is valid for all  t ∈ [0, T*(M,u)], irrespective 
of the entries of  D. The duration  T*(M,u)  still depends on the 
input function  u, and we can choose any input function in the 
set  U  of (6). The best choice will, of course, be an input 
function  u  that maximizes  T*(M,u),  yielding the maximal 
duration 

t*
f := supu∈U T*(M,u). (10) 

Assuming that such an input function exists, let us denote it by  
u*, so that  t*

f = T*(M,u*). In this notation, our objectives can be 
formally phrased as follows. 

Problem 1: (i) Determine whether or not an input function  u* ∈ 
U  exists, and (ii) if there is such a function  u*, describe a 
method for its computation. ♦  

As we can see from (9) and (10), the calculation of the input 
function  u*  involves the solution a max-min optimization 
problem. In the next section, we show that an optimal solution  
u*  exists within our framework. Then, in section 4, we show 
that this optimal input function can be replaced by a bang-bang 
function, without appreciably affecting performance. Bang-bang 
functions are relatively easy to compute and work with in 
engineering environments. 

3. EXISTENCE OF AN OPTIMAL INPUT FUNCTION 

In this section, we prove the existence of an optimal input 
function  u*(t). The proof proceeds in two phases: first, we show 
that the set  U  of (6) has a certain compactness feature; then, we 
show that the function  T*(M,u)  has an appropriate continuity 
property. The existence of the optimal input function  u*(t)  
within  U  follows then from the well known fact that a 
continuous functional over a compact set achieves is maximum 



 
 

     

 

within the set. We start by reviewing a few notions from analysis 
(e.g., Liusternik and Sobolev 1961). 

Definition 1: Let  H  be a Hilbert space with inner product  
<•,•>. (i) A sequence  {xn}  in  H  converges weakly to an 
element  x ∈ H  if  limn→∞ <xn,y> = <x,y>  for every element  y 
∈ H. (ii) A subset  W  of  H  is weakly compact if every 
sequence of elements of  W  has a subsequence that converges 
weakly to an element of  W. (iii) A sequence  {zn} ⊂ H  is 
strongly convergent  if there is an element z ∈ H such that  
limn→∞ <zn-z,zn-z> = 0. (iv) A set  S  is strongly closed if every 
strongly convergent sequence of elements of  S  has its limit in  
S. ♦  

We are ready now for the first phase of our proof regarding the 
existence of an optimal input function. 

Lemma 1: The set  U  of (6) is weakly compact in the topology 
of the Hilbert space Lα‚m

2 . 

Proof: By (6), the set  U  is a bounded set. Recall Alaoglu’s 
theorem, which states that every bounded sequence in Hilbert 
space contains a weakly convergent subsequence (e.g., Halmos 
1982, pgs. 14 and 180). Hence, every sequence of elements of  U  
has a subsequence that is weakly convergent to an element of  
Lα‚m

2 . To prove weak compactness, we need to show that this 
element is a member of  U. In fact, we will show that  U  is 
weakly closed, namely, that every weakly convergent sequence 
of elements of  U  has its limit in  U. We will utilize Mazur's 
theorem, which states that a bounded and strongly closed convex 
set in Hilbert space is also weakly closed (e.g., Halmos 1982, pg. 
180). 

In preparation for applying Mazur's theorem, note first that  U  is 
convex. Indeed, given two Lebesgue measurable functions  v, w 
∈ U, we have, by the definition of  U, that  ||v(t)|| ≤ K  and  
||w(t)|| ≤ K  for all  t. Then, for a number  0 ≤ a ≤ 1, the function  
z(t) := av(t) + (1–a)w(t)  is clearly Lebesgue measurable, and  
||z(t)|| ≤ a||v(t)|| + (1–a)||w(t)|| ≤ K. Whence, w(t) ∈ U, and  U  is 
a convex set. 

To show that  U  is also strongly closed, let  un ∈ U, n = 1, 2, ..., 
be a strongly convergent sequence of functions with the limit  u, 
namely, limn→∞ <u – un, u – un> = 0. Assume, by contradiction,  
that  u ∉ U. Being the limit of a sequence of Lebesgue 
measurable functions, u  is Lebesgue measurable as well. But 
then, considering (6), the relation  u ∉ U  implies that there is a 
Lebesgue measurable subset  δ  of the time axis such that  ||u(t)|| 
≥ K + ε  for all  t ∈ δ, where  ε > 0  and  δ  has non-zero 
measure. As  u(t)  is a vector of dimension  m, it further follows 
that there is an integer  1 ≤ i ≤ m  and a measurable subset  δi ⊂ 
δ  of non-zero measure, such that the  i-th  component  ui(t)  of  
u(t)  satisfies 

|ui(t)| – K ≥ ε  for all  t ∈ δi. (11) 
Now, calculating the norm of the difference  u – un, we get 

<u – un, u – un> = ⌡⌠
0

∞

e−αt[u(t)−un(t)]T[u(t)−un(t)]dt ≥ 

⌡⌠δi
 e−αt[u(t) − un(t)]T[u(t) − un(t)]dt ≥ 

 ⌡⌠δi
 e−αt(ui(t) – un

i(t))2dt, (12) 

where  un
i(t)  is the  i-th  component of the function  un(t). Then, 

since  un ∈ U, we have that  ||un(t)|| ≤ K  for all  t, so that  |un
i(t)| ≤ 

K  for all  t  as well. Thus, |ui(t) – un
i(t)| ≥ |ui(t)| – |un

i(t)| ≥ |ui(t)| – 
K. Using (11), this entails that  |ui(t) – un

i(t)| ≥ ε  for all  t ∈ δi. 
Substituting into (12) yields 

<u – un, u – un> ≥ ⌡⌠δi
 e−αt(ui(t) – un

i(t))
2dt ≥ ⌡⌠δi

 e−αtε2dt > 0, 

for all  n = 1, 2, ..., contradicting the fact that the sequence  {un}  
is strongly convergent. Thus, u ∈ U, and the Lemma's assertion 
follows by Mazur's theorem. ♦  

In the present note, we focus on cases when the controlled 
system  Σ  is nominally unstable, namely, on cases when the 
nominal matrix  A  has an eigenvalue with positive real part. For 
such systems, the state trajectory  x(t)  must escape the bound  M  
for at least one perturbation matrix  D, as follows. For each t, we 
denote  ||x(t)|| = maxi=1,…,n |xi(t)|. 

Lemma 2: Assume that the system  Σ  of (2) is nominally 
unstable and has a non-zero initial state. Then, for each input 
function  u(t) ∈ U  and for every uncertainty range  Δ, there is a 
perturbation matrix  D ∈ Δ  for which  T(M,D,u) < ∞. 

Proof: Let  x0  be the initial condition of the system  Σ, and, 
referring to (3), denote by  x0(t) := e(A+DA)tx0  the zero input 
response of  Σ  for the perturbation matrix  DA ∈ ΔA. Then,  .x0(t) 
= (A+DA)x0(t). We show first that there is a matrix  DA ∈ ΔA  for 
which the norm  ||x0(t)||  approaches infinity as  t → ∞. Indeed, 
by assumption, the nominal matrix  A  has at least one 
eigenvalue with positive real part. Consequently, there is a 
similarity transformation  A+ := PAP−1  that brings  A  into the 
block diagonal form 

A+
 = 



As    0 

 0     Au
, 

where  Au  is an  nu×nu  matrix all of whose eigenvalues have 
strictly positive real parts, and  As  is an  ns×ns  matrix whose 
eigenvalues have non-positive real parts (possibly, ns = 0). Now, 
define the vector  z0(t) := Px0(t). Then, z0(t)  satisfies the 
differential equation  .z0(t) = A+z0(t). We claim that, for every 
real number  ε > 0, there is an  n×n  matrix  E  that satisfies the 
following: 

(i) The equation  .z(t) = (A+ + E)z(t)  has a divergent solution, 
where  z(0) = z0(0); and 

(ii) ||E|| ≤ ε. 

To prove this claim note that  z(0) = Px(0) = Px0 ≠ 0, since the 
initial state  x0  of  Σ  is not zero by the Lemma's assumption and 
the matrix  P  is non-singular. Partition  z(t): 

z(t) = ( )p(t)
q(t) , z(0) =: ( )p0

q0
, 

where  p(t)  has  ns  components and  q(t)  has  nu  components. 
Then, for  E = 0, we have 

.z(t) = 





.p(t)

.q(t)
 = 



As    0 

 0     Au ( )p(t)
q(t) , so that 

( )p(t)
q(t)  = 



exp(Ast)    0 

 0     exp(Aut) ( )p0
q0

. 

Now, if q0 ≠ 0, then  ||q(t)|| → ∞  as  t → ∞, since all eigenvalues 
of  Au  have positive real parts. Hence  ||z(t)|| → ∞  as  t → ∞  in 
this case, and our claim is valid for  E = 0. 

Otherwise, we have  q0 = 0. Then, since  z(0) ≠ 0, we must have  
p0 ≠ 0. Note that the matrix  Au, having no zero eigenvalues by 



 
 

     

 

construction, is invertible. Let  e > 0  be a real number, and 
consider the similarity transformation induced by the matrix 

Q := ( )I 0
eI I , where  Q–1 := ( )I 0

–eI I . 

Define the function  y(t) := Qz(t), and partition 

y(t) = ( )ys(t)
yu(t)

. 

As  p0 ≠ 0  and  q0 = 0, we have that  yu(0) = ep0 ≠ 0. Applying 
the similarity transformation, we get the matrix 

A′ := Q



As    0 

 0     Au
Q–1 = ( )As 0

e(As–Au) Au
. 

Adding to  A′  the perturbation matrix 

D ′A := ( )0 0
–e(As–Au) 0 , 

we obtain the differential equation 

.y(t) = 



As    0 

 0     Au
y(t). 

Thus, yu(t)  satisfies the equation  .yu(t) = Auyu(t), or  yu(t) = 
exp(Au)yu(0). In view of the fact that  yu(0) ≠ 0  and all 
eigenvalues of  Au  have strictly positive real parts, we obtain 
that  ||yu(t)|| → ∞  as  t → ∞. Thus, ||y(t)|| → ∞  as  t → ∞, and, 
considering that the matrix  Q  is invertible, we conclude that  
||z(t)|| → ∞  as well. 

Returning to the original coordinate system, we need to apply 
the perturbation  E := Q–1D ′AQ  to the matrix  A+  to achieve the 
same effect. Considering the forms of  Q  and  Q–1, it follows 
that   e > 0  can be selected to satisfy 

e||Q–1( )0 0
–(As–Au) 0 Q|| ≤ ε, 

and  E  fulfils our claim in the zero input case. 

Finally, consider the effect of an input function  u(t) ∈ U. Upon 
including the input in the differential equation and denoting the 
solution by  z′(t), we obtain 

.z′(t) = (A+ + E)z′(t) + B+u(t),  (13) 
where  z′(t) = Px(t)  and  B+ := PB. Then, 

||z′(t)|| =  ||Px(t)|| ≤  ||P||∞ ||x(t)|| (14) 
where ||•||∞ denotes the matrix norm induced by the l∞-norm on 
x(t). Since  P  is non-singular, ||x(t)||  approaches infinity when  t 
→ ∞, if the same is true for  z′(t). 

Now, if  ||z′(t)|| → ∞  as  t → ∞  for the current input function  
u(t), then the Lemma assertion is satisfied by  D := (P–1EP,0). 
Otherwise, if  ||z′(t)||  is bounded for all  t, recall that the solution 
of (13) has the form 

z′(t) = z(t) + exp[(A+ + E)t]⌡⌠
t

0
 exp[–(A+ + E)τ]B+u(τ)dτ, 

where  limt→∞ z(t) = ∞  for the current  DA. Defining 

φ(t) := exp[(A+ + E)t]⌡⌠
t

0
 exp[–(A+ + E)τ]B+u(τ)dτ, 

we can write  z′(t) = z(t) + φ(t). Now, choose a real number  δ > 
0  for which  ||δB+|| ≤ ε, and consider the perturbed matrix  B′ := 
B+ + δB+ = (1 + δ)B+. With the matrix  B′, we obtain the solution 

z″(t) = z(t) + (1+δ)φ(t) = z′(t) + δφ(t) = z′(t) + δ[z′(t) – z(t)] = 

(1+δ)z′(t) – δz(t), 
so that  ||z″(t)|| ≥ |(1+δ)||z′(t)|| – δ||z(t)|||. Using the facts that  
limt→∞ ||z′(t)|| < ∞, that  limt→∞ ||z(t)|| = ∞, and that  δ > 0, we 
conclude that  limt→∞  ||z″(t)|| = ∞. Finally, since  z″(t) = Px(t)  
and  P  is invertible, we obtain from (14) that  limt→∞ ||x(t)|| ≥ 
limt→∞ || z″t)||/||P||∞ = ∞. Thus, the Lemma is valid for the 
perturbation  D := (P–1EP,δP–1B+), where  ε > 0  and  δ > 0  can 
be selected as small as desired. ♦  

In view of Lemma 2, there is always a disturbance matrix  D  for 
which the escape time  T(M,D,u)  is finite. Thus, the smallest of 
these escape times, T*(M,u)  (see (9)), must be finite. We obtain 
then the following. 

Corollary 1: Assume that the system  Σ  of (2) is unstable and 
has a non-zero initial state. Then, for every input function  u(t) ∈ 
U  and for every uncertainty range  Δ, one has  T*(M,u) < ∞. ♦  

We turn now to part (i) of Problem 1, where we need to show 
that there is an input functional  u*(t) ∈ U  that maximizes  
T*(M,u). Considering that the set  U  is, in a sense, compact, and 
that a continuous functional always attains its maximum in a 
compact set, the existence of  u*(t)  will follow if we can show 
that  T*(M,u)  is continuous in an appropriate sense. In fact, the 
following rather weak form of continuity is sufficient for this. 

Definition 2. A functional  F  is weakly upper semi-continuous if 
the following is true for every weakly convergent sequence  zn 
w→ z: whenever  F(z)  is bounded, there is for every  ε > 0  an 

integer  N > 0  such that  F(zn) − F(z) < ε  for  n > N. ♦  

In the next two statements, we show that  T*(M,u)  has an 
appropriate continuity feature. 

Lemma 3: For a given perturbation matrix  D ∈ Δ, the function  
T(M,D,u)  of (8) is weakly upper semi-continuous in  u. 

Proof: Let  x(t,u)  be the solution of the state equation (2) for the 
perturbation matrix  D  and the input function  u  at the time  t < 
∞. Consider a weakly convergent sequence of input functions  
u1, u2, ..., ∈ U, say  un w→ u. We claim that the sequence of 
vectors  x(t,u1), x(t,u2), ... converges pointwise to the vector  
x(t,u). Indeed, write 

x(t,u) = eA′t[x0+⌡⌠
0

t

e–A′τB′u(τ)dτ] =eA′t[x0+⌡⌠
0

∞

ρ(τ)e–A′τB′u(τ)dτ] 

where  x0  is the initial condition, and 

ρ(τ) := 
 1  if  τ ≤ t‚
 0  otherwise.   

Then, the difference 

v(t,u) := x(t,u) – eA′tx0 = eA′t⌡⌠
0

∞

ρ(τ)e–A′τB′u(τ)dτ 

is a linear functional of  u. Recalling that weak convergence 
implies convergence of every linear functional of the sequence, 
we conclude that  limn→∞ v(t,un) = v(t,u)  for every  t < ∞. But 
then, since  x(t,u) = v(t,u) + eA′tx0, it follows that  limn→∞ x(t,un) 
= x(t,u)  for every  t < ∞. 

Next, consider the following functional defined over state 
trajectories:  

Θ(x) = inf {t ≥ 0 : xT(t)x(t) > M}, (15) 
where  Θ(x) := ∞  if  xT(t)x(t) ≤ M  for all  t ≥ 0. Let  x1(t), x2(t), 



 
 

     

 

... be a sequence of state trajectories that converges to the 
function  x(t)  for each  t ≥ 0, and assume that  Θ(x)  is bounded. 
We show that, for any  ε > 0, there is an integer  N > 0  that 
satisfies the following condition: Θ(xn) – Θ(x) < ε  all integers  n 
> N. 

Clearly, if there is an integer  N > 0  for which  Θ(xn) ≤ Θ(x)  for 
all  n > N, then our claim is true. So let us examine the case 
when there is no such  N. In such case, there is a divergent 
sequence of integers  i(1), i(2), ... such that  Θ(xi(n)) > Θ(x)  for 
all integers  n > 0. Set  Tx := Θ(x); since  Θ(x)  is bounded by 
assumption, we have  Tx < ∞. By (15), the following is true for 
every real number  ε > 0: there is a time  t′ ∈ [Tx, Tx+ε)  such 
that  xT(t′)x(t′) > M. 

Now, by assumption, we have that  xn(t) → x(t)  pointwise for 
every  t ≥ 0. Consequently, we also have that  limn→∞ xT

n(t)xn(t) = 
xT(t)x(t)  for every  t ≥ 0. Therefore, setting  t = t′, there must be 
an integer  N > 0  such that  |xT

n(t′)xn(t′) – xT(t′)x(t′)| < [xT(t′)x(t′) 
– M]/2. For such  n, we have  xT

n(t′)xn(t′) = xT(t′)x(t′) + [xT
n

(t′)xn(t′) – xT(t′)x(t′)] ≥ xT(t′)x(t′) – [xT(t′)x(t′) – M]/2 ≥ 
xT(t′)x(t′)/2 + M/2 > M, i.e., xT

n(t′)xn(t′) > M. By the last 
inequality, Θ(xn) ≤ t′; whence  Θ(xn) < Θ(x) + ε  for all  n > N, 
and  Θ(x)  is  upper semi-continuous. 

We turn now to the functional  T(M,D,u)  of (8). Denote by  
Σt(D,u)  the solution  x(t)  of  (2). Then, we clearly have the 
composition  T(M,D,u) = Θ(Σt(D,u)). For the weakly convergent 
sequence of input functions  un w→ u, we have shown pointwise 
convergence of the sequence  Σt(D,un)  for every  t. Combining 
this with the upper semi-continuity of  Θ  just shown, it follows 
that  T(M,D,u)  is weakly upper semi-continuous in  u. ♦  

Lemma 4: Assume that the system  Σ  of (2) is unstable and has 
a non-zero initial state. Then, the function  T*(M,u)  of (9)  is 
weakly upper semi-continuous in u. 

Proof: Our proof is based on the following general fact: Let S 
and A be two topological spaces, and let  fα  be a weakly upper 
semi-continuous real valued function on  S  for each element  α 
∈ A. If  infα∈A fα(x)  exists at each point  x ∈ X,  then the 
function  f(x) := 

α
inf fα(x)  is weakly upper semi-continuous on  X  

(e.g., Willard 1970, p. 49). Now, in view of Lemma 3, the 
function  T(M,D,u)  is weakly upper semi-continuous on  U  for 
each  D ∈ Δ. Furthermore, since  Σ  is unstable and has a non-
zero initial state, it follows by Lemma 2 that  infD∈Δ T(M,D,u) < 
∞, so that the infimum exists for every  u ∈ U. Thus, by the fact 
quoted at the beginning of this proof, T*(M,u) := infD∈Δ 
T(M,D,u)  is weakly upper semi-continuous in  u. ♦  

We are ready now to state the main result of this section, 
namely, the existence of an input function that maximizes the 
time during which our perturbed system's state remains within a 
specified error bound. This resolves Problem 1(i). 

Theorem 1: Assume that the system  Σ  of (2) is unstable and 
has a non-zero initial state, and let  T*(M,u)  be given by (9). 
Then, the following are valid. 

(i) There is a maximal time  t*
f := supu∈U T*(M,u) < ∞, and 

(ii) There is an input function  u* ∈ U  satisfying  t*
f = T*(M,u*). 

Proof: The set  U  is weakly compact by Lemma 1 and, by 
Lemma 4, the functional  T*(M,u)  is weakly upper semi-
continuous in  u  over  U. Consequently, we can apply the 
generalized Weierstrass Theorem (e.g., Zeidler 1985, pg. 152), 

which states the following in our current terminology: A weakly 
upper semicontinuous function attains a maximum on a weakly 
compact set. Hence, T*(M,u)  attains a maximum over the set of 
inputs  U.♦  

In conclusion, we have shown that, after a feedback failure 
occurs, there is an optimal input function  u*(t)  that keeps the 
open loop response below a specified error bound for a duration 
of at least  t*

f, irrespective of the perturbation matrices. While 
driven by the optimal input function  u*(t), the actual duration of 
time  tf  during which the system's response remains below the 
specified error bound depends, of course, on the particular 
perturbation matrix  D  present in the system. However, for all 
permissible perturbation matrices, tf ≥ t*

f, and there is a 
perturbation matrix for which  tf = t*

f. 

We turn now to the issue of calculating and implementing an 
optimal input function  u*(t). In the next section, we show that 
performance close to optimal performance can be achieved by 
using a bang-bang input function. Bang-bang functions are 
relatively easy to calculate and implement, since everything is 
determined by their switching times. 

4. BANG-BANG APPROXIMATIONS 

To obtain a bang-bang approximation of the optimal input 
function  u*(t), we have to soften slightly our optimization 
requirements. Recall that our objective is to control the system  
Σ  of (2) in the presence of feedback failure, subject to the 
perturbations described by (3). The optimal input function  u*(t)  
keeps the state trajectory of  Σ  below the bound  M  for the 
longest possible time  t*

f  that is compatible with all perturbations  
D ∈ Δ. To obtain a convenient approximation of the optimal 
input function, we allow the state trajectory of  Σ  to slightly 
exceed the bound  M. Specifically, let  x*(t,D)  be the state 
trajectory of  Σ  generated by the optimal input function  u*(t)  
for a particular uncertainty  D ∈ Δ. We are looking for a bang-
bang input function  u±(t)  for  Σ  that generates a state trajectory  
x±(t,D)  that deviates only slightly from  x*(t,D)  for all  t ∈ [0, t*

f

]  for all  D ∈ Δ. The next statement indicates that such an input 
function can be found. 

Theorem 2. Let  Σ  be the system of Theorem 1 and let  t*
f   be 

the optimal time of Theorem 1(i). Then, for every  ε > 0, there is 
a bang-bang input function u± ∈ U  for which the following are 
true. 

(i)  u±  has a only finite number of switches, and 

(ii) The state trajectory  x±(t,D)  of  Σ  created by  u±  satisfies  
||x*(t,D) – x±(t,D)|| < ε  for all  t ∈ [0, t*

f]  and all  D ∈ Δ. 

Proof. Fix a real number  ε > 0. Recall that all input functions  
u(t)  of  Σ  are bounded by  K, that  t*f < ∞  by Theorem 1, and 
that all perturbation matrices  D ∈ Δ  have entries of magnitude 
not exceeding  d > 0. Let  η > 0  be a real number (to be chosen 
later), and recall that  A′ = A + DA  and  B′ = B + DB, where  DA 
∈ ΔA  and  DB ∈ ΔB. Due to the uniform continuity of the 
function  eA′t, there is a real number  δ(η) > 0  such that the 
function  µ(t′,t) := e–A′t′ – e–A′t  satisfies  ||µ(t′,t)|| ≤ η  for all  t′, t 
∈ [0, t*f]  satisfying  |t′ – t| < δ(η). Also, let  β := sup {||B + DB|| : 
DB ∈ ΔB}  and let  N := sup {eA′t : DA ∈ ΔA, t ∈ [0, t*

f]}; here, N  
exists due the fact that all involved quantities are bounded. Let  0 
< γ ≤ δ(η)  be any number for which  t*

f/γ  is an integer. We build 
a partition of the interval  [0, t*f]  into segments of length  γ, 
namely, the partition determined by the points  0, γ, 2γ, ... 



 
 

     

 

Recalling that the input function  u(t)  of  Σ  is an  m-
dimensional vector with each component bounded by  K, we 
define a bang-bang input function  u±(t)  through its components  
u±

1(t), u±
2(t), ..., u±

m(t) as follows: for each component  i = 1, 2, ..., 
m, we select  in each interval  [qγ, (q+1)γ]  a switching time  θqi, 
q = 0, 1, 2, ..., i = 1, 2, ..., m, and set 

u±
i (t) := 


+K  for  t ∈ ([qγ‚θqi)‚
–K  for  t ∈ ([θqi‚(q+1)γ)‚ 

where the value of  θqi  is selected to satisfy the equality 

⌡⌠
qγ

(q+1)γ

ui
*(τ)dτ = K⌡⌠

qγ

θqi

dτ – K ⌡⌠
θqi

(q+1)γ

dτ = K[2(θqi – qγ) – γ]. 

Note that a solution  θqi  exists for all  q = 1, 2, ...  and all  i = 1, 
2, ..., m  due to the fact that  |u i

*(t)| ≤ K  for all  t ≥ 0. Then, we 
obtain the equality  

 ⌡⌠
qγ

(q+1)γ

[u i
*(τ) – u±

i (τ)]dτ = 0, q = 1, 2, ....  (16) 

Finally, let  x±(t)  be the state function generated by the system  
Σ  when driven by the input function  u±

i (t), and let  x*(t)  be the 
trajectory induced by the optimal input function  u*(t). Noting 
that the perturbation matrix  D  is the same in both cases (we are 
activating the same system sample), one obtains (using (16)) 

||x*(t) – x±(t)|| = 

= ||eA′t[x0+⌡⌠
0

t

e–A′τB′u*(τ)dτ] – eA′t[x0+⌡⌠
0

t

e–A′τB′u±(τ)dτ]|| = 

= ||eA′t
⌡⌠
0

t

e–A′τB′[u*(τ) – u±(τ)]dτ|| ≤  N||⌡⌠
0

t

e–A′τB′[u*(τ) – u±(τ)]dτ|| 

= N||[ Σ
q–1

r=0 ⌡⌠
rγ

(r+1)γ

e–A′τB′[u*(τ)–u±(τ)]dτ+⌡⌠
qγ

t

e–A′τB′[u*(τ)–u±(τ)]dτ||  

≤ N{|| Σ
q–1

r=0
[e–A′rγB′ ⌡⌠

rγ

(r+1)γ

[u*(τ)–u±(τ)]dτ+ 

⌡⌠
rγ

(r+1)γ

µ(τ,rγ)B′[u*(τ)–u±(τ)]dτ]|| + ||⌡⌠
qγ

t

e–A′τB′[u*(τ)–u±(τ)]dτ||} ≤ 

≤ N{ Σ
q–1

r=0
 ⌡⌠

rγ

(r+1)γ

||µ(τ,rγ)|| ||B′|| [||u*(τ)|| + ||u±(τ)||]dτ + 

+⌡⌠
qγ

t

||e–A′τ|| ||B′|| [||u*(τ)|| + ||u±(τ)||]dτ} ≤ 2KNβ[ηt*
f + Nγ]. 

We choose now the value of  η  so that   2KNβηt*
f < ε/2. Then, 

we choose  0 < γ ≤ min {δ(η), ε/(4KN2β)}  so that  t*
f/γ  is an 

integer. For these selections, we obtain  ||x*(t) – x±(t)|| < ε  for all  
t ∈ [0, t*

f], and our proof concludes. ♦  

Note that the approximation holds for all permissible 
perturbation matrices, and it is independent of the perturbation. 
The cost of making  ε  smaller is an increase in the number of 
switches of the bang-bang function  u±(t). A more detailed 
discussion of the results presented in this note, as well as a 
characterization of the conditions under which the optimal input 
function  u*(t)  is itself a bang-bang function, is provided in 

Chakraborty and Hammer (2008). 

5. EXAMPLE 

Consider the one-dimensional system  ·x(t) = ax(t) + u(t), where 
the time constant  a  is subject to the uncertainty  1.2 ≤ a ≤ 1.4. 
The system has the input bound  |u(t)| ≤ 2  for all  t, and the 
initial condition  x(0) = 1. The objective is to find an input 
function  u*(t)  that keeps the state amplitude below the bound  
x2(t) ≤ 1.96  for the longest period of time, irrespective of the 
value  a  adopts within its uncertainty range. The optimal input is 
shown in the left plot, and the corresponding state trajectories for 
different values of  a   are plotted on the right. We can see that 
the optimal input is not a bang-bang function (the upper value of  
u(t)  in the graph is not  2). 

 
Figure 1: Optimal input has one switch: M = 1.96, tf = 3.7 

A bang-bang input approximation with 16 switches is shown in 
the left plot below. As we can see, the state trajectories plotted 
on the right are close to the optimal ones. 

 
Figure 2: Approximate bang-bang input: 16 switches 
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