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Abstract: An arbitrary subset (n − m) of the n closed loop eigenvalues of an nth order
continuous time single input linear time invariant (LTI) system is to be placed using full
state feedback, at pre-specified locations in the complex plane. The remaining m closed loop
eigenvalues can be placed anywhere inside a pre-defined region in the complex plane. This
region constraint on the unspecified poles is translated into an ellipsoidal constraint on the
characteristic polynomial coefficients through a convex inner approximation for polynomial
stability regions. The closed loop locations for thesem eigenvalues are chosen through an explicit
minimization of the feedback gain vector norm leading to an efficiently solvable semidefinite
program. The required controller effort is thus minimized leading to less expensive actuators.
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1. INTRODUCTION

All the closed loop poles of a controllable single input lin-
ear time invariant (LTI) systems can be assigned arbitrary
locations in the complex plane using full state feedback.
However, in many applications, such as the power system
example considered in this article, the control engineer is
concerned with only a subset of the open loop poles (possi-
bly because of their instability, low damping or associated
oscillations), and would like to move these undesired poles
(henceforth called critical poles) to precise pre-specified
locations inside the stability region. In these applications,
typically, the remaining (non-critical) open loop poles are
already stable and well damped and there is no obvious
desired closed loop location for them. It is considered
enough if these well-behaved open loop poles do not lose
their desirable properties in closed loop, or in other words,
if these non-critical open loop poles lie within some desired
region of the complex plane in the closed loop.

It is well known that if the desired locations of all the
closed loop poles are specified then for a single-input
LTI system the required feedback gain vector is unique
(Kailath (1980)). However if only a subset of the closed
loop poles are specified, the extra degrees of freedom
associated with the unspecified non-critical poles can be
utilized to minimize the control effort associated with
the controller. It is proposed in this article that the
location of these non-critical poles be chosen with the
explicit objective of minimizing the controller norm, while
assigning the critical poles their designed closed loop
locations.

The situation described above is typical for power oscilla-
tion damping controller design problem where electrome-

chanical oscillations (0.1-0.8 Hz) are damped through ex-
pensive actuators (Kundur (1994)). State feedback ap-
proach has been used in the past to damp oscillations
following large and small disturbances in power systems
where the oscillatory behavior is dominated by a few
poorly damped electromechanical modes with very little
to zero influence from the other modes (Chaudhuri and
Pal (2004)). Hence, it is important to carefully place only
those critical poles to ensure desired performance following
disturbances. There is no need to worry about the remain-
ing non-critical poles as long as their settling times do
not exceed those in open loop. In fact, it often turns out
to be counter productive to relocate the non-critical poles
or even force them to their open-loop position. Due to the
very nature of the non-critical modes, higher control efforts
are required unless they are left alone to take their natural
course. This results in an overall increase in the norm of
the feedback gain vector and hence, costlier actuators.

In this work, we propose that the feedback gain vector
norm be minimized while ensuring (i) the critical poles
are moved to desired (precise) closed loop locations, and
(ii) the non-critical poles remain stable in closed loop.
Additionally, it is often required that all closed loop poles
should have a minimum settling time which implies that
they should be located to the left of a given vertical line in
the left half of the complex plane. It is shown that such an
explicit minimization problem can be posed by translating
the stability or minimum settling time requirements on the
closed loop non-critical poles into constraints in the coeffi-
cient space of the characteristic polynomial corresponding
to the non-critical poles. Such a translation is achieved
through an inner convex approximation of the stability
region of a polynomial proposed in Henrion et al. (2003).
These requirements define a quadratic constraint on the



subsequent minimization problem. Thus the feedback gain
vector norm is minimized with two types of constraints:
(i) linear equality constraints arising out of the precise
placement requirement of the critical closed loop poles,
and (ii) quadratic inequality constraints arising out of
the regional placement requirement of the closed loop
non-critical poles. By standard results on semi-definite
programming discussed in Boyd and Vandenberghe (2004)
and Boyd et al. (1994), it is shown that this problem has a
unique minimum which in turn can be computed by semi-
definite programming methods.

The problem of minimization of the feedback gain vector
with partial pole placement was introduced in Datta et al.
(2010) where a maximal sphere due to Bhattacharyya
et al. (1995) was used to define the region constraint
on the non-critical poles. The results reported in Datta
et al. (2010) are improved in this work through less
conservative ellipsoidal estimates of the stability domain
of a polynomial.

2. NOTATION AND PROBLEM FORMULATION

Let us consider a continuous time LTI single-input system,
with full state feedback control, defined by the following
state space equations

ẋ = Ax+ bu; u = −kTx (1)

where x ∈ Rn, u ∈ R, A ∈ Rn×n, b ∈ Rn and

k := [k1 k2 · · · kn]
T

∈ Rn. Assume that the pair (A, b)
is controllable; then all the eigenvalues of the closed loop
system

ẋ = (A− bkT )x (2)

can be placed at any arbitrary location of the complex
plane C through a unique choice of k.

However, in the applications of our interest, only a
few critical closed loop eigenvalues are specified and
the non-critical eigenvalues are allowed to assume any
value in (or in a pre-specified subset of) the stable re-
gion of the complex plane. Without loss of generality,
we assume that the first m eigenvalues of A are non-
critical. The remaining (n − m) eigenvalues are critical
and their closed loop positions are specified. Let us denote
{µ1, µ2, . . . , µm, µm+1, µm+2, . . . , µn}, (m ≤ n) are the
n eigenvalues of A. Of these, {µ1, µ2, . . . , µm} are non-
critical and are not associated with any desired closed
loop location whereas the remaining (n − m) eigenvalues
{µm+1, µm+2, . . . , µn} are critical and are required to be
placed at {−λ1,−λ2, . . . ,−λn−m}. In general we will as-
sume that m eigenvalues of (A − bkT ) are required to be
located in the stable region S of the complex plane. In this
article we will define S as follows:

S = {s ∈ C : Re(s) < β}, β ≤ 0 (3)

Then the problem described in the introduction can be
simply formulated as:

Problem Statement 1. Find inf ‖k‖2 such that the eigen-
values of (A− bkT ) have the following properties:

(1) (n − m) out of the total n eigenvalues are placed at
{−λ1,−λ2, . . . ,−λn−m}.

(2) remaining m eigenvalues are placed anywhere in S.

Denote the unspecified closed loop poles of the system as
{−p1,−p2, . . . ,−pm}. Without loss of generality, let the
closed loop poles be ordered as follows

{−p1,−p2, . . . ,−pm,−λ1,−λ2, . . . ,−λn−m} (4)

Further define

α(s) :=

m∏

j=1

(s+ pj) := sm + αm−1s
m−1 + . . .+ α1s+ α0 (5)

γ(s) :=

n−m∏

i=1

(s+ λi) := sn−m + γn−m−1s
n−m−1 + . . .+ γ1s+ γ0

where

γn−m−1 =

n−m∑

i1=1

λi1 αm−1 =

m∑

i1=1

pi1

γn−m−2 =

n−m∑

i1<i2

λi1λi2 αm−2 =

m∑

i1<i2

pi1pi2

.

..
.
..

γ1 =

n−m∑

i1<..<i
n−m−1

λi1 ..λi
n−m−1

α1 =

m∑

i1<..<i
m−1

pi1 ..pim−1

γ0 =λ1λ2 . . . λn−m α0 =p1p2 . . . pm

Then the characteristic equation of the closed loop system
will be

σ(s) =




m∏

j=1

(s+ pj)




︸ ︷︷ ︸
α(s)

[
n−m∏

i=1

(s+ λi)

]

︸ ︷︷ ︸
γ(s)

(6)

Using the above notation, the characteristic polynomial
(6) is divided into two parts: α(s) - a monic polynomial
of unknown coefficients and γ(s) - a monic polynomial of
known coefficients. Clearly the γ polynomial is completely
defined from the problem specification. However the only
requirement of the α(s) polynomial is that its roots should
be located in a pre-specified region S ∈ C defined in (3).

To pose problem 1 as a quadratic program it would be con-
venient to translate the requirement on the poles (−pi ∈
S, i = 1, ..,m) of polynomial α(s) into requirements on
the coefficients (α0, α1, ..., αm−1) of the polynomial α(s).
For this purpose let us denote the set of all mth degree
monic polynomials with real coefficients as R[s] and define
the set

Cs := {α(s) ∈ R[s] : roots of α(s) ∈ S}.

Then problem 1 is equivalent to the following:

Problem Statement 2. Find inf ‖k‖2 such that (A − bkT )
has the following properties:

(1) (n − m) out of the total n eigenvalues are placed at
{−λ1,−λ2, . . . ,−λn−m}.

(2) the polynomial α(s) ∈ Cs .

For solving problem 2, we first need to express constraints
(1) and (2) above in terms of the problem unknowns i.e.
k1, k2, ..., kn

which is accomplished in Section 4. It will be
shown that constraint (1) is linear (and hence convex) in
the unknowns. However, we note that the set Cs is not
a convex set for m ≥ 3 (Henrion et al. (2003) and the
references therein), and hence the optimization implied in



problem 2 is not convex for m ≥ 3. In the next section, we
use a result proposed by Henrion et al. (2003) to construct
a convex inner approximation of Cs. As demonstrated in
Henrion et al. (2003), a set of linear matrix inequalities
(LMI) is solved to compute a maximal ellipsoid subset of
Cs, which is used in place of constraint (2) in problem 2.

3. STABLE ELLIPSOID IN THE POLYNOMIAL
COEFFICIENT SPACE

3.1 The Bezoutian for α(s)

The theory of Bezoutians and its implications on stability
of polynomials is reviewed briefly for completeness. Let us
consider the monic polynomial α(s) defined in (5). Define

α := [α0 α1 α2 . . . αm−1]
T
∈ R

m

ᾱ := [α0 α1 α2 . . . αm−1 1]
T
∈ R

m+1

α̃ :=
[
α0 −α1 α2 . . . (−1)m−1αm−1 (−1)m

]T
∈ R

m+1

Corresponding to α(s) the Bezoutian of α(s) is a bivariate
polynomial (Lev-Ari et al. (1991), Willems and Trentel-
man (1998)) and can be represented by

B(ζ, η) :=
α(ζ)α(η) − α(−ζ)α(−η)

ζ + η
(7)

where ζ, η are two indeterminates. The polynomial B(ζ, η)
can be written in a quadratic form as follows.

B(ζ, η) =
[
1 ζ ...ζm−1

]
H(α)

[
1 η ...ηm−1

]T
(8)

where the Hermite matrix H(α) = [hij ] (i, j = 0, ..,m− 1)
is a symmetric matrix whose m(m + 1)/2 independent
entries are polynomial functions in the coefficients of α(s).
It is well known (Lev-Ari et al. (1991) and Henrion et al.
(2003)) that all the roots of α(s) lie in S if and only if
H(α) > 0. In our notation, we note that the set Cs can
also be defined in terms of H(α) as follows: Cs := {α(s) ∈
R(s) : H(α) > 0}.

According to Lev-Ari et al. (1991) and Henrion et al.
(2003), the Hermite matrix H(α) can be computed from
the following relation

V + Ṽ = ᾱᾱT − α̃α̃T (9)

where

V =

[
01×m 01×1

H(α) 0m×1

]
Ṽ =

[
0m×1 H(α)
01×1 01×m

]

and V , Ṽ ∈ R(m+1)×(m+1). Problem 2 can now be re-
formulated in terms of H(α).

Problem Statement 3. Find inf ‖k‖2 such that (A − bkT )
has the following properties:

(1) (n − m) out of the total n eigenvalues are placed at
{−λ1,−λ2, . . . ,−λn−m}.

(2) the Bezoutian corresponding to the polynomial α(s)
satisfies H(α) > 0.

However, as mentioned earlier the set Cs is not convex, and
hence problem 3 do not necessarily have a computable so-
lution. To address this issue, we find a maximal ellipsoidal
subset Es of Cs, which is convex, and can be constructed
easily by solving a system of LMIs. This procedure, pro-
posed in Henrion et al. (2003) to find Es, is reviewed briefly
in the next section.

3.2 Ellipsoidal Approximation

Recall the vector α = [α0 α1 α2 . . . αm−1]
T

correspond-

ing to the polynomial α(s) defined in (5). A set of mth

order monic polynomials can be defined as follows:

Es = {α ∈ R
m : (α− α̂)TP (α− α̂) ≤ 1} (10)

where P ∈ Rm×m is a positive definite symmetric matrix
and α̂ is a given (nominal) mth order monic polynomial.
The above set is an ellipsoid with center at α̂. Let us denote

P11 = −P < 0 P12 = Pα̂ (11)

P21 = PT
12 P22 = 1− α̂TPα̂

Using (11), the inequality (α − α̂)TP (α − α̂) ≤ 1 can be
written as

[
αT 1

] [P11 P12

P21 P22

] [
α
1

]
≥ 0 (12)

with P11 ∈ Rm×m, P12 ∈ Rm and P22 ∈ R. Denoting

P̃ :=

[
P11 P12

P21 P22

]
and P (α) :=

[
αT 1

]
P̃

[
α
1

]

where P̃ ∈ R(m+1)×(m+1), equation (12) can be written as
P (α) ≥ 0.

Recall that our objective is to find the maximal set Es such
that Es ⊂ Cs. Given the center (nominal) polynomial α̂(s)
in (10), the set inclusion Es ⊂ Cs is guaranteed if and only
if for all the vectors α

P (α) ≥ 0 ⇒ H(α) > 0 (13)

The following proposition will give the sufficient LMI
conditions such that the above condition (13) holds.

First, however, we note that the Hermite matrix H(α),
discussed in the previous section, can also be written in
the following form

H(α) = [Im ⊗ ᾱ]TH [Im ⊗ ᾱ] (14)

where the matrix H ∈ Rm(m+1)×m(m+1) consists of block
matrices Hij ∈ R(m+1)×(m+1) (i, j = 1, ...,m), which in
turn can be computed in following manner. Denote the
(i, j)th entry in matrix H(α) by [H(α)]ij . Then the block
Hij can be calculated from the equation:

ᾱTHijᾱ = [H(α)]ij , i, j = 1, 2, ..m (15)

Lemma 4. (Henrion et al., 2003, Lemma:2) If there exists
a symmetric block matrix

G =




0 GT
21 · · · GT

m1

G21 0 · · · GT
m2

...
...

. . .
...

Gm1 Gm2 · · · 0


 (16)

consisting of skew symmetric matrices Gi,j = −GT
i,j ∈

R(m+1)×(m+1) for i, j = 1, 2...m and a symmetric matrix
D ∈ Rm×m satisfying following conditions

D > 0

(D ⊗ Im+1)H = H(D ⊗ Im+1) (17)

Im ⊗ P̃ +G < (D ⊗ Im+1)H

then the condition (13) holds.

It is well known (Boyd et al. (1994)) that the volume of
Es is proportional to the product of square roots of the
reciprocals of the eigenvalues of P . Hence, the maximum



volume Es can indirectly be obtained by maximizing the
trace of the matrix −P under the constraint set (11), (16)
and (17) with decision variables matrix P and scaling
matrices D and G. Then any vector α such that (α −
α̂)TP (α− α̂) ≤ 1 will parametrize a polynomial α(s) with
all its roots in stability region S. Given α̂, the maximal
ellipsoid can be computed by solving the following problem

Problem Statement 5. (Henrion et al., 2003, Theorem 1)
Maximize tr[−P ] over P , D and G such that (11), (16)
and (17) holds.

For use in Section 4, let us denote the solution to problem
5 as P ∗

α̂.

In the next section, we will use Es to replace Cs in problem
(2) to get a convex optimization easily solvable by semi-
definite programming. However to compute Es explicitly
we still need a priori a polynomial α̂(s) ∈ Cs. For our
choice of α̂(s), we propose to use the polynomial formed
out of the open loop non-critical poles as follows:

α̂(s) =




m∏

j=1

(s− µj)


 (18)

Usually, those open loop eigenvalues, which are sta-
ble and already have adequate damping, are classi-
fied as non-critical. Hence in most practical scenarios,
µ1, µ2, . . . , µm ∈ S and hence α̂(s) ∈ Cs.

Note that, the procedure demonstrated in Section 3.1
to calculate H(α) from the relation (31) is only for the
stability region S when β = 0. However, this restrictive
stability region can be relaxed by changing the Hermite
matrix H(α). A procedure to calculate H(α) for the
stability region S when β < 0 is discussed in Lev-Ari et al.
(1991) and Henrion et al. (2003).

4. MAIN RESULTS

In this section we will show that Problem 2 is equivalent to
a quadratically constrained quadratic program. We need a
few additional notations. Let the open loop characteristic
polynomial of (1) be denoted by:

a(s) = det(sI −A)

= sn + an−1s
n−1 + an−2s

n−2 + . . .+ a1s+ a0, (19)

while the characteristic polynomial of the system (2) is
defined as:

σ(s) = det(sI −A+ bkT )

= sn + σn−1s
n−1 + σn−2s

n−2 + . . .+ σ1s+ σ0 (20)

Further define

a := [a0 a1 · · · an−2 an−1]
T

σ := [σ0 σ1 · · · σn−2 σn−1]
T

C :=
[
b Ab A2b · · · An−1b

]
, (21)

and AT :=




a1 a2 · · · an−1 1
a2 a3 · · · 1 0
...

...
...

. . .
...

an−1 1 · · · 0 0
1 0 · · · 0 0




(22)

If the system is controllable i.e. controllability matrix (21)
is non-singular, the closed loop eigenvalues (of A − bkT )

can be placed at any arbitrary locations in C and, the
corresponding feedback gain vector k is unique (Kailath
(1980)). This unique k can be calculated from the following
equation:

ACT k + a = σ

If we define k̄ = ACT k where k̄ = [k̄1 k̄2...k̄n]
T , it

follows that each k̄i(i = 1, ..., n) is a linear combination
of k1, ..., kn. Then:

σn−1 = k̄n + an−1

σn−2 = k̄n−1 + an−2 (23)

...

σ1 = k̄2 + a1

σ0 = k̄1 + a0

Recalling the expression for the required closed loop char-
acteristic polynomial (6), and equating coefficients with
(20), we get:

σn−1 = γn−m−1 + αm−1

σn−2 = γn−m−2 + γn−m−1αm−1 + αm−2 (24)

...

σ2 =γ0α2 + γ1α1 + γ2α0

σ1 =γ0α1 + γ1α0

σ0 =γ0α0

Since (−λ1,−λ2, . . . ,−λn−m) are specified by the de-
signer, the coefficients γ0, γ1, . . . , γn−m−1 in (24) are
known quantities. However, the non-critical poles−p1,−p2,
. . . ,−pm are unspecified, so that α0, α1, . . . , αm−1 are un-
known. First note that σ0, σ1, ..., σn−1 can be eliminated
from equations (23) and (24) to get n linear equations:

γn−m−1 + αm−1 = k̄n + an−1

... (25)

γ0α1 + γ1α0 = k̄2 + a1

γ0α0 = k̄1 + a0

From (25), (α0, ..., αm−1) can be expressed in terms of
m linear equations in k̄1, k̄2, . . . , k̄n. A simple inductive
method to get such equations is shown below:

α0 =
1

γ0

(
k̄1 + a0

)

α1 =
1

γ0

((
k̄2 + a1

)
−

γ1
γ0

(
k̄1 + a0

))
(26)

...

αm−1 = .....

Equations (26) can be written in matrix form as follows

α = F k̄ + g (27)

where α ∈ Rm, F ∈ Rm×n, g ∈ Rm. Now α0, . . . , αm−1

from (26) can be back-substituted in the set of n equations
(25) to get (n−m) linear equations in (k̄1, k̄2, ..., k̄n) which
can be written in the form:

E k̄ + h = 0 (28)

where E ∈ R(n−m)×n, h ∈ Rn−m and 0 is a zero vector of
appropriate dimension. Using k̄ = ACTk, and defining



F = FACT and E = EACT (29)

we get the following set of equations:

α = Fk + g and Ek + h = 0 (30)

Then the following result holds:

Theorem 1. Let S be the open left half of complex plane
C, F and E are as defined in (29) and P ∗

α̂ be the solution to
problem 5 for α̂(s) defined in (18). If for some k ∈ Rn, the
relations (Fk+g− α̂)TP ∗

α̂(Fk+g− α̂) ≤ 1 and Ek+h = 0

holds, then the eigenvalues of the matrix (A− bkT ) satisfy
the following properties:

(1) (n−m) out of the total n eigenvalues are {−λ1,−λ2,
. . . ,−λn−m}.

(2) the remainingm eigenvalues−pi ∈ S for i = 1, . . . ,m.

Proof. Let some k satisfy (Fk+g−α̂)TP ∗

α̂(Fk+g−α̂) ≤ 1
and Ek + h = 0. Then (α − α̂)TP ∗

α̂(α − α̂) ≤ 1. Hence
the polynomial α(s) ∈ Es. So we can apply Lemma 4 to
guarantee that the roots of α(s) lie in S. The (n − m)
equations Ek + h = 0 imply that the (n − m) roots of
polynomial γ(s) (see (6)) are placed at {−λ1, . . . ,−λn−m}.

Theorem 1 defines the constraint set on the feedback
gain vector k, which can be used to pose an optimization
problem that minimizes the norm of k. Before proceeding
further let us express the constraint (Fk+g−α̂)TP ∗

α̂(Fk+
g − α̂) ≤ 1 in standard form:

[
Fk + (g − α̂)

]T
P ∗

α̂

[
Fk+ (g − α̂)

]
≤ 1

⇒
[
(Fk)T + (g − α̂)T

] [
P ∗

α̂Fk + P ∗

α̂(g − α̂)
]
≤ 1

⇒ (Fk)TP ∗

α̂Fk+ 2(g − β̂)TP ∗

α̂Fk + (g − α̂)TP ∗

α̂(g − α̂) ≤ 1

which can be written as kTMk + 2mTk + c ≤ 0 where
M = FTP ∗

α̂F , mT = (g−α̂)TP ∗

α̂F and c = (g−α̂)TP ∗

α̂(g−
α̂) − 1. Here M is a positive semi-definite matrix, m is a
constant vector and c ∈ R. The optimization problem can
be formulated as follows:

Problem Statement 6. Find mink∈Rn ‖k‖2 subject to

Ek + h = 0

kTMk + 2mTk + c ≤ 0

It should be noted that the above constraint set is always
feasible since it is known that there is always at least one
k which places the poles at arbitrary desired location.

It should be noted that Theorem 1 is only sufficient in
guaranteeing that the corresponding eigenvalues stay in S.
Consequently, in some cases, it might be possible to find
a k which preserves the pole placement requirements and
but has lesser norm than the solution to problem 6. Hence,
a two step design procedure is suggested below to find a
controller with maximum reduction in the norm. Since, the
precise location requirement on the critical eigenvalues is
inflexible, the equality constraints Ek+h = 0 are assumed
to be imposed on all the steps below:

(1) Solve problem 6 without considering the inequality
constraints. If all the poles belong to S then stop;
otherwise go to step 2.

(2) Solve problem 6.

5. NUMERICAL EXAMPLES

Example 7. Consider a LTI system with

Table 1. Comparison Table

Procedure Closed loop poles ‖k‖2 % Red. Sys.
in ‖k‖2 Cond.

Step - 1 0± 6.4031,−1, 1 20 84.93 Unstable

Step - 2 −0.1432± 0.5588i 56.86 57.16 Stable
−11.0230, −1

Step - 3 −4± 1i, −3, −1 132.73 – Stable

A =



0 1 0 0
0 0 1 0
0 0 0 1
51 −10 −30 −10


 b =



0
0
0
1




Eigenvalues of A are at 1,−3,−4 ± i. Only the pole at
1 is unstable and we assume that this pole needs to be
placed at −1 using state feedback control. The remaining
3 poles are assumed to be non-critical and are allowed to
be placed arbitrarily within the open left half of complex
plane. Following the discussion in Section 3, (9) takes the
form: 


0 h00 h01 h02

h00 2h01 h02 + h11 h12

h01 h02 + h11 2h12 h22

h02 h12 h22 0


 =




0 2α0α1 0 2α0

2α0α1 0 2α1α2 0
0 2α1α2 0 2α2

2α0 0 2α2 0


 (31)

Using (31) the Hermite matrix H(α) will be

H(α) =

[
2α0α1 0 2α0

0 2(α1α2 − α0) 0
2α0 0 2α2

]

Then matrixH can be constructed using the relation given
in (15). Next we are required to construct the nominal
polynomial α̂(s) according to (18). Recalling that the
open loop poles are at −3,−4 ± i, the corresponding

α̂ = [51 41 11]
T
. Following the procedure given in Section

3, the LMI optimization problem is solved with SeDuMi
1.05 (Sturm (2005)) and its LMI interface (Peaucelle et al.
(2002)) in Matlab environment. The resulting P ∗

α̂ matrix
is

P ∗

α̂ =

[
0.0252 −0.0311 −0.0001
−0.0311 0.0390 0.0001
−0.0001 0.0001 0.0179

]

Following the design procedure proposed at the end of the
last section, a comparison table is shown in Table 1 where
Steps 1 corresponds to minimization of ‖k‖2with only the
equality constraints Ek + h = 0, while Step 2 minimizes
‖k‖2with both the constraints described in problem 6.
In order to compare our methods with the conventional
methods of pole placement, Step - 3 evaluates ‖k‖2 keeping
three non critical poles in their original location.

The percentage reduction in ‖k‖2 in Step - 1 and Step
- 2 is compared with Step - 3. It is observed that a
large reduction in ‖k‖2 is achieved in Step-1. However,
the non-critical poles are in the unstable region. Hence
this example needs the design Step - 2 to ensure stability.
In this step all the non-critical poles are in the stable
region and hence we have achieved our goal. In this step
the percentage reduction in ‖k‖ is acceptable i.e. about
57.1595%.



Table 2. Comparison Table

Procedure Non critical ‖k‖2 % Red. Sys.
closed loop poles in ‖k‖2 Cond.

Step - 1 −10.0009 ± 9.0498i 2.1128 51.2877 Stable
−7.0277,−0.4076

Step - 2 −6.6687 ± 9.2732i 2.5222 41.8468 Stable
−10.4844,−0.3144

Step - 3 −5.7250 ± 7.4088i 4.3372 – Stable
−33.5344, −0.3078

Example 2: In this example, the linearized model of a
16-generator, 68 bus bar power system (Chaudhuri and
Pal (2004)) is considered around its nominal operating
condition. The 133 order original model is reduced to
a 10th order equivalent without introducing much error
within the frequency range of interest (0.1 to 0.8 Hz).
Open loop poles of the reduced system are at are at
−33.5344,−5.7250±7.4088i,−0.1741±3.7981i,−0.1781±
3.1604i,−0.1808± 2.4535i,−0.3078. It is required to place
six poles at−0.4000±3.7980i,−0.4000±3.1604i,−0.4000±
2.4535i and remaining 4 poles are non-critical. These four
non-critical poles can assume any positions in the open left
half of the complex plane. According to (31) demonstrated
in Section 3, the Hermite matrix H(α) will take the
following form:

H(α) =



2α0α1 0 2α0α3 0

0 2(α1α2 − α0α3) 0 2α1

2α0α3 0 2(α2α3 − α1) 0
0 2α1 0 2α3




Corresponding to the open-loop non-critical poles α̂ =

[904.87 3085 485.48 45.29]
T
. The resulting P ∗

α̂ matrix ob-
tained by solving the LMI optimization problem with
SeDuMi 1.05 and its LMI interface in Matlab environment
is

P ∗

α̂ =




0.0063 −0.0016 −0.0023 0.0062
−0.0016 0.0014 −0.0061 −0.0003
−0.0023 −0.0061 0.0442 −0.0109
0.0062 −0.0003 −0.0109 0.0124




Following the design procedure described at the end of
the last section, a comparison table is shown in Table 2.
It can be noticed that a substantial reduction in ‖k‖2 i.e
51.28% is achieved in Step - 1. Furthermore all the non-
critical poles have assumed their positions in the stable
region and hence we have achieved our objective in this
step. Moreover we have achieved the actual minimum of
the ‖k‖2. In Step - 2 it is observed that the reduction in
‖k‖2 is 41.8468% and all the non-critical poles are also in
the stable region. These results compare favorably with
similar results in Datta et al. (2010), where the stable
region was approximated by a hypersphere resulting in
a corresponding reduction in ‖k‖2 of 5.5326%. Further
comparing the ‖k‖2 reduction obtained in Step - 2 and
Step - 1, it would be justified to say that the ellipsoidal
approximation is a close approximation of the stability
region Cs.

6. CONCLUSION

We have considered the problem of reducing the con-
troller effort of a continuous time LTI single-input system.

The state feedback vector norm is minimized under the
constraints (a) the critical poles are placed in specified
locations in the complex plane (b) the non-critical poles
are placed anywhere inside a pre-specified design region
S. Due to non-convexity of the region Cs corresponding to
the region S, a maximal ellipsoid is constructed inside Cs.
It is demonstrated through numerical examples that the
proposed ellipsoid approximation is a good approximation
of the stability region Cs.
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