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Abstract. The problem of controlling a perturbed open loop system so as to keep its performance errors
within bounds is considered. The objective is to maximize the time during which performance errors remain
below a prescribed ceiling, while the controlled system’s parameters are within a specified neighborhood of
their nominal values. It is shown that there is an optimal open-loop controller that achieves this objective.
Conditions under which the optimal controller generates a bang-bang control input signal are characterized.
In general, it is shown that the performance of the optimal controller can always be approximated by a
bang-bang signal.
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1. Introduction

Oftentimes, control systems must operate temporarily without feedback. Interruptions in the feedback
signal may be caused by malfunctions or disruptions in the feedback communication link, or they may be
the result of efforts to reduce operating costs. In other applications, feedback channels are opened only
occasionally, when system performance degrades below an acceptable level.

Consider, for example, the medical treatment of type 1 diabetes. Individuals afflicted by this condition
require periodic injections of insulin in order to control the glucose concentration in their blood. Insulin is
injected when glucose concentration deviates by more than a specified amount from nominal level. Insulin
injection is often done by an implanted insulin infusion pump, which allows excellent control of the infusion
profile. The feedback mechanism in this case consists of periodical blood analyses, which, at the present time,
require the drawing of blood through finger pricks or similar irksome procedures. In order to improve patient
comfort, it would be desirable to maximize the time interval between blood samplings, while maintaining
blood glucose concentration within desirable bounds. Needless to say, models of the dynamics of blood
glucose concentration are subject to significant errors and depend on external interferences. In this context,
the objective of the present paper is to develop techniques for the design of glucose infusion profiles that keep
blood glucose concentrations within desirable bounds and allow the longest possible time interval between
blood samplings.

Intermittent use of feedback is also of interest in other biomedical applications. Consider, for example,
the treatment of cancer by chemotherapy. Here, it would be of advantage to maximize the time between
observations of cancer status, observations that often require extensive testing. The methodology developed
in the present paper can be used to design optimal chemotherapy protocols that maximize the time between
subsequent tests. Such protocols will improve patient independence and reduce costs (e.g. PANETTA and
FISTER [2003] and others). Many additional potential applications in biomedicine are possible as well.

Another potential applications can be found in networked control systems, where feedback is used only
intermittently so as to reduce network traffic (e.g., NAIR, FAGNANI, ZAMPIERI, and EVANS [2007],
ZHIVOGYLADOV and MIDDLETON [2003], MONTESTRUQUE and ANTSAKLIS [2004], and others).
Here, feedback sensors and system actuators communicate through networks that are shared by a vast number
of users, with only limited network capacity available for each user. To abide by network capacity limitations,
feedback can only be used intermittently. Examples of applications of networked control systems include
spatially distributed resource allocation networks, highway transportation control systems, power generation
and distribution networks, and others. Clearly, to minimize traffic within communications networks, it is
necessary to reduce feedback and actuator use. The methodology developed in the present paper can help
accomplish this task by providing open loop input signals that allow operation without feedback for maximal
intervals of time.

In general terms, our objective is to address the needs exhibited by such applications and others through
the development of open loop controllers that maximize the duration of time during which a perturbed
system can operate without feedback and not exceed acceptable error bounds. Specifically, consider a system
Σ whose parameters are not accurately known. Let Σ0 be the nominal version of Σ, and let Σε be the system
obtained when the parameters of Σ are perturbed by ε from their nominal values. The exact value of ε is
not known; it is, however, assured that ε does not exceed a specified bound d. Now, for an input function
v(t), denote by Σ0v the response of the nominal system and let Σεv be the response of the perturbed system.
The perturbation then creates a deviation of the response, given by the magnitude |Σεv − Σ0v|. To reduce
this deviation, we employ an open loop controller that adds a "correction signal" u(t) to the input signal,
so that the output signal of the system with the controller becomes Σε(v + u). Comparing to the nominal
output signal, we have then the deviation |Σε(v + u) − Σ0v|. Of course, the correction signal u(t) must be
independent of the perturbation ε, since the perturbation is not specified. Furthermore, as the feedback
signal was completely disrupted at the time t = 0, the input function u(t) cannot depend on the state or
the output of Σ. Let M designate the maximal deviation that is allowed, and let tf be the duration of time
during which

(1.1) |Σε(v + u)(t)− Σ0v(t)| ≤M, 0 ≤ t ≤ tf .

The goal of our present discussion is to find a correction signal u(t) that maximizes the duration tf , given
only that the perturbation ε is bounded by d. To accommodate natural restrictions on the input amplitude
of the system Σ, we assume that all input signals of Σ must have an amplitude not exceeding K > 0.
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In the present paper, we concentrate on some of the basic aspects of this problem. In particular, we restrict
our attention to the case where the system Σ is a linear time-invariant system. To simplify the calculations, we
choose simple nominal operating conditions for the nominal system Σ0, setting the nominal initial conditions
at zero and taking the zero signal as the nominal input signal (however, the initial conditions of the perturbed
system Σ are not assumed to be zero). Under such nominal operating conditions, we obtain that Σ0v = 0;
the correction signal u(t) compensates for deviations caused by perturbations of the parameters and of the
initial conditions. Letting x0 be the initial condition of the perturbed system, inequality (1.1) reduces to

(1.2) |Σεu(t)| ≤M for all |x0| ≤M, |ε| ≤ d, and 0 ≤ t ≤ tf ,

where |u(t)| ≤ K for all t. We intend to derive the correction signal u(t) that maintains the validity of
(1.2) for the longest duration tf . The control configuration takes the form shown in Figure 1.1, where the
controller C generates the correction signal u(t).

disrupted feedback
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Figure 1.1. Feedback Failure Schematic Diagram

We show in section 2 that the calculation of the correction signal u(t) leads to a max-min optimization
problem. In section 3, we show that this problem does have a solution, and in section 4 we characterize the
conditions under which the optimal corrective signal u(t) is a bang-bang signal. (Recall that a bang-bang
signal is a signal whose components assume only their extreme values, switching from one extreme value
to another as necessary). Cases in which the optimal solution is not necessarily a bang-bang signal are
examined in section 5, where we show that optimal performance can always be approximated by using a
bang-bang correction signal u(t). Thus, one can always achieve optimal, or close to optimal, performance by
employing a bang-bang correction signal. Bang-bang signals are relatively easy to calculate and implement,
since one only has to calculate the switching times of the signal.

Critical features of the optimal correction signal u(t) are determined by a function z(t) introduced in
section 4, which is reminiscent of the switching function so often employed in classical time-optimal control.
The optimal correction signal u(t) is a bang-bang signal in intervals of time over which the function z(t) is
not identically zero. Like in the case of the classical switching function, components of the optimal correction
signal u(t) switch from one extremal value to another when the corresponding component of z(t) changes
sign. However, on intervals in which the function z(t) is identically zero, the optimal correction signal
u(t) may not be a bang-bang signal; nevertheless, we show in section 5 that optimal performance can be
approximated by a bang-bang corrective signal during such intervals.

The discussion in this paper impinges on some of the most common practices in modern control systems -
the use of digital controllers to operate continuous-time systems. Most often, when operating a continuous-
time system with a digital controller, the controller signal is kept constant between sample times (so-called
"zero order hold" method). The results of the present paper show that, by using an optimal signal instead of
the constant signal, the sampling interval can often be significantly increased without increasing performance
errors. A simple example in this regard is provided in section 4.

Our considerations in this paper rely on the large body of literature available in the area max-min opti-
mization, including the works of KELENDZHERIDZE [1961], PONTRYAGIN, BOLTYANSKY, GAMKRE-
LIDZE, and MISHCHENKO [1962], NEUSTADT [1966 and 1967], GAMKRELIDZE [1965], LUENBERGER
[1969], YOUNG [1969], WARGA [1972], the references cited in these works, and many others.
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2. Notation and Problem Formulation

Let Σ be a linear time invariant continuous-time system described by the realization

(2.1) Σ : ẋ(t) = A′x(t) +B′u(t), x(0) = x0.

Here, x(t) is the state of Σ at the time t, and u(t) is the input function at the time t. We denote by n the
dimension of x(t) and by m the dimension of u(t). Accordingly, A′ and B′ are constant real matrices of
dimensions n×n and n×m, respectively. Note that Σ is an input/state system, namely, the state x(t) of Σ
is available as output. We assume that the system Σ was connected in a state feedback loop until the time
t = 0, when the feedback signal was lost. Thus, the initial state x0 of Σ is known, being the last state value
provided by the feedback.

The entries of the matrices A′ and B′ are not accurately known; rather, there are uncertainties about
these entries. To describe these uncertainties, let d > 0 be a real number. Denote by ∆A the set of all n× n
matrices with entries in the interval [−d, d], and let ∆B be the set of all n × m matrices with entries in
[−d, d]. Then,

(2.2) A′ := A+DA and B′ := B +DB ,

where DA ∈ ∆A and DB ∈ ∆B are unspecified matrices. Here, A and B represent the nominal values of
the matrices A′ and B′ of (2.1), respectively, while DA ∈ ∆A and DB ∈ ∆B represent perturbations and
uncertainties. In shorthand, denote

(2.3) D := (DA, DB) and ∆ := ∆A ×∆B

so that D ∈ ∆. We refer to ∆ as the uncertainty range. The only information available about the system
Σ are the nominal matrices A and B and the uncertainty magnitude d; the entries of the matrices DA and
DB are not specified. The performance requirement (1.2) can now be rewritten in the form

(2.4) xT (t)x(t) ≤M for all D ∈ ∆ and all t ∈ [0, tf ],

where xT is the transpose of x. The initial state x0 satisfies xT0 x0 ≤ M , so that performance was within
bounds when the feedback channel was disrupted. Our objective is to find an input function u(t) that
maximizes the duration tf .

Given two m-dimensional vector valued functions a(t) and b(t), we define their weighted inner product by
setting

(2.5) 〈a(t), b(t)〉 =
ˆ ∞

0

e−αtaT (t)b(t)dt,

where α > 0 and the integral is taken in the Lebesgue sense. The weight function e−αt allows us to include
all bounded input functions in the domain over which the inner product (2.5) is well defined. Denote by
Lα,m2 the Hilbert space of all m-dimensional Lebesgue measurable functions with the inner product (2.5).

Physical systems often have restrictions on the largest input signal amplitude they can tolerate. To
describe these restrictions for a signal with m components, we use the pointwise norm

||u(t)|| = max
i=1,...,m

|ui(t)|,

where u(t) is the vector (u1(t), u2(t), ..., um(t))T at the time t. Letting K > 0 be the input amplitude bound
of the system Σ, it follows that the input function u(t) of Σ must satisfy ||u(t)|| ≤ K for all t. Then, all
Lebesgue measurable input functions of Σ are members of the Hilbert space Lα,m2 . Restricting ourselves to
this set of input functions, denote by

(2.6) U := {u ∈ Lα,m2 : ||u(t)|| ≤ K for all t ≥ 0}

the set of all permissible input functions of Σ. In these terms, our objective is to find an input function
u ∈ U that drives the system Σ so as to preserve the state amplitude bound (2.4) for the longest possible
time, irrespective of the perturbations that may affect Σ.
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2.1. Problem Statement. The response x(t) of the system Σ depends, of course, on the perturbation
matrices DA and DB , as well as on the input function u, so we often write x(t,D, u) instead of x(t), where
D = (DA, DB). Then, (2.4) takes the form

(2.7) xT (t,D, u)x(t,D, u) ≤M for all D ∈ ∆ and all t ∈ [0, tf ].

For a particular selection of D and u, the period of time during which the response amplitude does not
exceed the bound M is characterized by the quantity

(2.8) T (M,D, u) := inf{t ≥ 0 : xT (t,D, u)x(t,D, u) > M},
where T (M,D, u) := ∞ if xT (t)x(t) ≤ M for all t ≥ 0. Since xT0 x0 ≤ M by assumption, it follows that
T (M,D, u) ≥ 0 . Referring to (2.4), we have tf = T (M,D, u) for these particular selections of D and u. As
we discuss later, the form (2.8) turns the duration tf into an upper semi-continuous functional of the input
function, a fact that simplifies forthcoming mathematical arguments.

Among the variables of the state trajectory x(t,D, u), the entries of the matrix D = (DA, DB) are
unknown and unpredictable; since no feedback is available, the input function u cannot depend on D. In
order for the bound (2.7) to remain valid for all possible D, we must consider the "worst case" with respect
to D. This leads us to the quantity

(2.9) T ∗(M,u) := inf
D∈∆

T (M,D, u),

which describes the time duration during which inequality (2.7) is valid for all permissible perturbations
D ∈ ∆. Explicitly, for all t ∈ [0, T ∗(M,u)], we have xT (t,D, u)x(t,D, u) ≤M for any perturbation D ∈ ∆.

The duration T ∗(M,u) still depends on the input function u, and we can choose any input function in
the set U of (2.6). Of course, the best choice is an input function u that maximizes T ∗(M,u), yielding the
maximal duration

(2.10) t∗f := sup
u∈U

T ∗(M,u).

When such an optimal input function exists, we denote it by u∗, so that t∗f = T ∗(M,u∗). We can now state
our objectives in formal terms.

Problem 2.1. (i) Determine whether or not there is an optimal input function u∗ ∈ U that yields the
maximal duration t∗f ; and (ii) if such a function exists, describe a procedure for its computation. �

As we can see from (2.9) and (2.10), the derivation of the optimal input function u∗ involves the solution
a max-min optimization problem. In the next section, we show that this optimization problem does have a
solution, so that an optimal input function u∗ exists within the set U of input functions. Later, in sections
4 and 5, we show that this optimal input function is either a bang-bang function, or it can be replaced by a
bang-bang function without appreciably affecting performance. Bang-bang functions are relatively easy to
compute and work with, since they are completely determined by their switching times.

3. Existence of an Optimal Solution

In this section, we show that there is an optimal input function u∗(t) that keeps the perturbed system
Σ within its error bounds for the longest possible duration. The discussion proceeds along two main steps:
in the first step, we show that the set U of (2.6) is compact in a certain sense; and in the second step, we
show that the functional T ∗(M,u) of (2.9) is continuous in an appropriate sense. Then, the existence of an
optimal input function u∗(t) within U follows from the fact that a continuous functional over a compact set
achieves its maximum within the set. We start by reviewing a few notions from analysis (e.g., LIUSTERNIK
and SOBOLEV [1961]).

Definition 3.1. Let H be a Hilbert space with inner product 〈·, ·〉.
(i) A sequence {xn} in H converges weakly to an element x ∈ H if limn→∞ 〈xn, y〉 = 〈x, y〉 for every

element y ∈ H.
(ii) A subset W of H is weakly compact if every sequence of elements of W has a subsequence that

converges weakly to an element of W .
(iii) A sequence {zn} ⊂ H is strongly convergent if there is an element z ∈ H such that

limn→∞ 〈(zn − z), (zn − z)〉 = 0.
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(iv) A set S is strongly closed if every strongly convergent sequence of elements of S has its limit in S. �

We proceed now with the first step of our proof regarding the existence of an optimal input function u∗(t).

Lemma 3.2. The set U of (2.6) is weakly compact in the topology of the Hilbert space Lα,m2 .

Proof. By (2.6), the set U is bounded. Recall Alaoglu’s theorem, which states that every bounded sequence
in a Hilbert space contains a weakly convergent subsequence (e.g., HALMOS [1982]). Hence, every sequence
of elements of U has a subsequence that is weakly convergent to an element of Lα,m2 . To prove weak
compactness, it only remains to show that this element is a member of U . To this end, we show that U is
weakly closed, namely, that every weakly convergent sequence of elements of U has its limit in U . We utilize
Mazur’s theorem, which states that a bounded and strongly closed convex set in Hilbert space is also weakly
closed (e.g., HALMOS [1982]).

To apply Mazur’s theorem, note first that U is convex. Indeed, given two Lebesgue measurable functions
v, w ∈ U , we have, by the definition of U , that ||v(t)|| ≤ K and ||w(t)|| ≤ K for all t. Then, for a
number 0 ≤ a ≤ 1, the function z(t) := av(t) + (1 − a)w(t) is clearly Lebesgue measurable, and ||z(t)|| ≤
a||v(t)||+ (1− a)||w(t)|| ≤ K. Whence, w(t) ∈ U , and U is a convex set.

To show that U is strongly closed, let un ∈ U , n = 1, 2, ..., be a strongly convergent sequence of functions
with the limit u, namely, limn→∞ 〈(un − u), (un − u)〉 = 0. Assume, by contradiction, that u 6∈ U . Being
the limit of a sequence of Lebesgue measurable functions, u is Lebesgue measurable as well. But then, in
view of (2.6), the relation u 6∈ U implies that there is a Lebesgue measurable subset δ ⊂ [0,∞) of the time
axis over which ||u(t)|| ≥ K + ε for all t ∈ δ, where ε > 0 and δ has non-zero measure. As u(t) is a vector
of dimension m, it further follows that there is an integer 1 ≤ i ≤ m and a measurable subset δi ⊂ δ of
non-zero measure, such that the ith component ui(t) of u(t) satisfies

(3.1) |ui(t)| −K ≥ ε for all t ∈ δi.
Now, calculating the norm of the difference u− un, we get

〈(u− un), (u− un)〉 =
ˆ ∞

0

e−αt[u(t)− un(t)]T [u(t)− un(t)]dt

≥
ˆ
δi

e−αt[u(t)− un(t)]T [u(t)− un(t)]dt

≥
ˆ
δi

e−αt(ui(t)− uni (t))2dt,(3.2)

where uni (t) is the i-th component of the function un(t). Now, since un ∈ U , we have that ||un(t)|| ≤ K for
all t, so that |uni (t)| ≤ K for all t as well. Thus, |ui(t) − uni (t)| ≥ |ui(t)| − |uni (t)| ≥ |ui(t)| −K. Then, by
(3.1), we have that |ui(t)− uni (t)| ≥ ε for all t ∈ δi. Substituting into (3.2) yields

〈(u− un), (u− un)〉 ≥
ˆ
δi

e−αt(ui(t)− uni (t))2dt ≥
ˆ
δi

e−αtε2dt

for all n = 1, 2, ..., contradicting the fact that the sequence {un} is strongly convergent. Thus, u ∈ U , and
the Lemma’s assertion follows by Mazur’s theorem. �

Our main focus in this paper is on cases when the controlled system Σ is nominally unstable, namely,
on cases when the nominal matrix A has at least one eigenvalue with positive real part. For such systems,
controlling the error is particularly critical, as it may diverge and significantly impact system performance.
The next statement indicates that, for such systems, the state trajectory x(t) must escape the bound M of
(2.7) for at least one perturbation matrix D ∈ ∆.

Lemma 3.3. Assume that the system Σ of (2.1) is nominally unstable and has a non-zero initial state.
Then, for each input function u(t) ∈ U and for every uncertainty range ∆, there is a perturbation matrix
D ∈ ∆ for which T (M,D, u) <∞, where T (M,D, u) is given by (2.8).

The proof of Lemma 3.3 depends on an auxiliary fact, which is stated next. We denote by

||G|| := max
i=1,...,q;j=1,...,r

|Gij |

the `∞-norm of a q × r matrix G with entries Gij .
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Lemma 3.4. Let A+ be an n× n block diagonal matrix

A+ =
[
As 0
0 Au

]
,

where Au is an nu×nu matrix all of whose eigenvalues have strictly positive real parts, and As is an ns×ns
matrix whose eigenvalues have non-positive real parts (possibly, ns = 0). Assume that nu ≥ 1, and let z0 be
a non-zero vector. Then, for every real number ε > 0, there is an n×n matrix E that satisfies the following:

(i) The equation ż(t) = (A+ + E)z(t) has a divergent solution with z(0) = z0; and
(ii) ||E|| ≤ ε.

Proof. First, partition the vector z(t) into

z(t) =:
[
p(t)
q(t)

]
and z0 =:

[
p0

q0

]
,

where p(t) has ns components and q(t) has nu components. Then, for E = 0, we have

ż(t) =
[
ṗ(t)
q̇(t)

]
=
[
As 0
0 Au

] [
p(t)
q(t)

]
,

so that [
p(t)
q(t)

]
=
[
exp{As(t)} 0

0 exp{Au(t)}

] [
p0

q0

]
.

Now, we distinguish between two cases:
Case 1: q0 6= 0. Then, ||q(t)|| → ∞ as t→∞, since all eigenvalues of Au have positive real parts. Hence

||z(t)|| → ∞ as t→∞ in this case, and our claim is valid for E = 0. Hence, the Lemma is valid in this case.
Case 2: q0 = 0. Then, since z0 6= 0, we must have p0 6= 0. Let a > 0 be a real number, and consider the

similarity transformation induced by the matrix

Q :=
[
I 0
aI I

]
where Q−1 =

[
I 0
−aI I

]
.

Define the function y(t) := Qz(t), and partition

y(t) =
[
ys(t)
yu(t)

]
,

where ys has ns components and yu has nu components. Now, consider the vector y(0) = Qz0. As p0 6= 0
and q0 = 0, we have that yu(0) = ap0 6= 0. Applying the similarity transformation, we get the matrix

A′ := Q

[
As 0
0 Au

]
Q−1 =

[
As 0

a(As −Au) Au

]
.

Adding to A′ the perturbation matrix

D
′

A :=
[

0 0
−a(As −Au) 0

]
,

we obtain the differential equation

ẏ(t) =
[
As 0
0 Au

]
y(t).

Thus, yu(t) satisfies the equation ẏu(t) = Auyu(t), so that yu(t) = exp(Au)yu(0). In view of the fact that
yu(0) 6= 0 and all eigenvalues of Au have strictly positive real parts, we obtain that ||yu(t)|| → ∞ as t→∞.
Thus, ||y(t)|| → ∞ as t→∞, and, considering that the matrix Q is invertible, we conclude that ||z(t)|| → ∞
as well.

Returning to the original coordinate system, we add the perturbation E := Q−1D
′

AQ to the matrix A+

to achieve the same effect. Considering the forms of Q and Q−1, it follows that a > 0 can be selected to
satisfy

a

∥∥∥∥Q−1

[
0 0

−(As −Au) 0

]
Q

∥∥∥∥ ≤ ε;
then, our Lemma is valid for this choice of E. This completes our proof. �
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Proof. (of Lemma 3.3). Let x0 be the initial condition of the system Σ. Referring to (2.2), denote by x0(t)
the zero input response of Σ with the perturbation matrix DA ∈ ∆A. Then, we have the differential equation
ẋ0(t) = (A + DA)x0(t), and the solution is x0(t) := e(A+DA)tx0.We show first that there is a perturbation
matrix DA ∈ ∆A for which the norm ||x0(t)|| approaches infinity as t→∞.

Indeed, by assumption, the nominal matrix A has at least one eigenvalue with positive real part. Conse-
quently, there is a similarity transformation A+ := PAP−1 that brings A into the block diagonal form

A+ =
[
As 0
0 Au

]
,

where Au is an nu×nu matrix all of whose eigenvalues have strictly positive real parts, and As is an ns×ns
matrix whose eigenvalues have non-positive real parts (possibly, ns = 0). Note that, by assumption, nu ≥ 1.
Using the similarity transformation matrix, define the vector z0(t) := Px0(t). Then, z0(t) satisfies the
differential equation ż0(t) = A+z0(t). Note that the initial condition z0(0) = Px0(0) = Px0 is not zero,
since the initial state x0 is not zero by assumption and the matrix P is non-singular. In view of Lemma 3.4,
there is then a perturbation matrix E for which the differential equation ż(t) = (A+ +E)z(t) has a divergent
solution, when started from the initial condition z0(0).

Now, consider the effect of an input function u(t) ∈ U . Upon including the input in the differential
equation and denoting the solution by z′(t), we obtain

(3.3) ż′(t) = (A+ + E)z′(t) +B+u(t),

where z′(t) = Px(t) and B+ := PB. Then,

(3.4) ||z′(t)|| = ||Px(t)|| ≤ ||P ||∞||x(t)||
where || · ||∞ denotes the matrix norm induced by the l∞-norm on x(t). Since P is non-singular, (3.4) implies
that ||x(t)|| approaches infinity as t→∞, if the same is true for z′(t).

Now, if ||z′(t)|| → ∞ as t→∞ for the current input function u(t), then the Lemma assertion is satisfied
by D := (P−1EP, 0). Otherwise, assume that ||z′(t)|| is bounded for all t, and recall that the solution of
(3.3) has the form

(3.5) z′(t) = z(t) + exp[(A+ + E)t]
ˆ t

0

exp[−(A+ + E)τ ]B+u(τ)dτ,

where limt→∞ z(t) =∞ for the current DA. Defining

ϕ(t) := exp[(A+ + E)t]
ˆ t

0

exp[−(A+ + E)τ ]B+u(τ)dτ,

we can write z′(t) = z(t) + ϕ(t). As ||z(t)|| → ∞ and ||z′(t)|| is bounded, it follows that ϕ(t) cannot be
zero for all t. Choose then a real number δ > 0 for which ||δB+|| ≤ ε, and consider the perturbed matrix
B′ := B+ + δB+ = (1 + δ)B+. Using B′ as the perturbed input matrix of the system Σ, it follows from the
form of (3.5) that the solution becomes

z′′(t) = z(t) + (1 + δ)ϕ(t) = z′(t) + δϕ(t) = z′(t) + δ[z′(t)− z(t)] = (1 + δ)z′(t)− δz(t),
so that ||z′′(t)|| ≥ |(1+δ)||z′(t)||−δ||z(t)|||. Using the facts that limt→∞ ||z′(t)|| <∞, while limt→∞ ||z(t)|| =
∞ and δ > 0, we conclude that limt→∞ ||z′′(t)|| = ∞. Finally, since z′′(t) = Px(t) and P is invertible, we
obtain from (3.4) that limt→∞ ||x(t)|| ≥ limt→∞ ||z′′t)||/||P ||∞ = ∞. Thus, the Lemma is valid for the
perturbation D := (P−1EP, δP−1B+), where ε > 0 and δ > 0 can be selected as small as desired. �

Lemma 3.3 shows that there is always a disturbance matrix D for which the escape time T (M,D, u) is
finite. Consequently, the quantity T ∗(M,u) of (2.9), which is the smallest of these escape times, must also
be finite. This implies the following.

Corollary 3.5. Assume that the system Σ of (2.1) is nominally unstable and is operated from a non-zero
initial state, and let T ∗(M,u) be given by (2.9). Then, T ∗(M,u) <∞ for every input function u(t) ∈ U and
for every uncertainty range ∆. �

Our next objective is to show that there is an input function u∗(t) ∈ U that maximizes T ∗(M,u). We use
a line of argument based on the fact that a continuous functional always attains its maximum in a compact
set. Recall that we have shown in Lemma 3.2 that the set U is, in a sense, compact. We review now a
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weak notion of continuity that is compatible with the sense of compactness employed in Lemma 3.2 (e.g.,
LIUSTERNIK and SOBOLEV [1961]). (Throughout this paper, R denotes the real numbers.)

Definition 3.6. Let S be a subset of a Hilbert space, and let F : S → R be a functional. Then, F is
weakly upper semi-continuous at the point z ∈ S if the following is true for every sequence {zn}∞n=1 ⊂ S
that converges weakly to z: whenever F (z) is bounded, there is, for every ε > 0, an integer N > 0 such that
F (zn)−F (z) < ε for n > N . If the latter is true for all points z ∈ S, then F is weakly upper semi-continuous.
�

In order to show that the functional T ∗(M,u) is weakly upper semi-continuous, we need the following.

Lemma 3.7. The functional T (M,D, u) : U → R of (2.8) is weakly upper semi-continuous in u for any
choice of M and D.

Proof. Select a perturbation matrix D ∈ ∆ and a bound M , and consider a sequence of input functions
u1, u2, ... ∈ U that weakly converges to the limit u ∈ U . For a time t ≥ 0, consider the state vectors
x(t,D, u1), x(t,D, u2), .... We claim that this sequence converges pointwise to the vector x(t,D, u). Indeed,
letting x0 be the initial condition of Σ, it follows from the linear differential equation (2.1) that

(3.6) x(t,D, u) = eA
′t

[
x0 +

ˆ t

0

e−A
′τB′u(τ)dτ

]
.

Defining the function

ρ(τ) :=
{

1 if τ ≤ t,
0 otherwise,

we can rewrite (3.6) in the form

x(t,D, u) = eA
′t

[
x0 +

ˆ ∞
0

ρ(τ)e−A
′τB′u(τ)dτ

]
.

Subtracting the contribution of the initial condition, we obtain the difference

v(t,D, u) := x(t,D, u)− eA
′tx0 = eA

′t

ˆ ∞
0

ρ(τ)e−A
′τB′u(τ)dτ,

which is a linear functional of u. Recalling that weak convergence implies convergence of every linear
functional of the sequence, we conclude that limn→∞ v(t,D, un) = v(t,D, u) for every t < ∞. But then,
since x(t,D, u) = v(t,D, u) + eA

′tx0, it follows that limn→∞ x(t,D, un) = x(t,D, u) for every t <∞.
Next, consider the following functional defined over state trajectories x(t) of the system Σ :

(3.7) Θ(x) = inf{t ≥ 0 : xT (t)x(t) > M},
where Θ(x) :=∞ if xT (t)x(t) ≤ M for all t ≥ 0. Let x1(t), x2(t), ... be a sequence of state trajectories that
converges to the function x(t) at each t ≥ 0, and assume that Θ(x) is bounded. We show that, for any ε > 0,
there is an integer N > 0 that satisfies the following condition: Θ(xn)−Θ(x) < ε for all integers n > N .

Clearly, if there is an integer N > 0 for which Θ(xn) ≤ Θ(x) for all n > N , then our claim is true. So let
us examine the case when there is no such N . Then, there is a divergent sequence of integers i(1), i(2), ...
such that Θ(xi(n)) > Θ(x) for all integers n > 0. Recall that, by our assumption, Θ(x) < ∞. In view
of (3.7), the following is true for every real number ε > 0: there is a time t′ ∈ [Θ(x),Θ(x) + ε) at which
xT (t′)x(t′) > M .

Further, since xn(t) → x(t) at every t ≥ 0, we also have that limn→∞ xTn (t)xn(t) = xT (t)x(t) at every
t ≥ 0. Therefore, setting t = t′, there must be an integer N > 0 such that |xTn (t′)xn(t′) − xT (t′)x(t′)| <
[xT (t′)x(t′) − M ]/2 for all n ≥ N . For such n, we have xTn (t′)xn(t′) = xT (t′)x(t′) + [xTn (t′)xn(t′) −
xT (t′)x(t′)] ≥ xT (t′)x(t′) − [xT (t′)x(t′) −M ]/2 ≥ xT (t′)x(t′)/2 + M/2 > M, i.e., xTn (t′)xn(t′) > M . The
last inequality implies that Θ(xn) ≤ t′ so that, by the selection of t′, we have that Θ(xn) < Θ(x) + ε, or
Θ(xn)−Θ(x) < ε, for all n > N . Consequently, Θ(x) is upper semi-continuous.

Finally, regarding the functional T (M,D, u) of (2.8), note that T (M,D, u) = Θ(x(t,D, u)). Now, let
{un}∞n=1 ⊂ U be a sequence that converges weakly to the function u ∈ U . Then, we have shown earlier in
this proof that limn→∞ x(t,D, un) = x(t,D, u) for every t. Combining this with the upper semi-continuity
of Θ shown in the previous paragraph, it follows that T (M,D, u) is weakly upper semi-continuous in u. This
concludes our proof. �
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We can now address the semi-continuity of the infimal time T ∗(M,u).

Lemma 3.8. Assume that the system Σ of (2.1) is nominally unstable and has a non-zero initial state.
Then, the function T ∗(M,u) of (2.9) is weakly upper semi-continuous in u.

Proof. Our proof is based on the following mathematical fact (e.g., WILLARD [1970]): Let S and A be
topological spaces, and let fα be a weakly upper semi-continuous real valued function on S for each element
α ∈ A. If infα∈A fα(x) exists at each point x ∈ S, then the function f(x) := infα∈A fα(x) is weakly upper
semi-continuous on S. Now, in view of Lemma 3.7, the function T (M,D, u) is weakly upper semi-continuous
on U for each D ∈ ∆. Furthermore, since Σ is unstable and has a non-zero initial state, it follows by
Corollary 3.5 that infD∈∆ T (M,D, u) < ∞ for every u ∈ U . Thus, by the fact quoted at the beginning of
the proof, T ∗(M,u) := infD∈∆ T (M,D, u) is weakly upper semi-continuous in u. �

We are ready now to state the main result of this section: there is an input function that maximizes the
time during which our perturbed system’s state remains within a specified error bound. This resolves part
(i) of Problem 2.1.

Theorem 3.9. Assume that the system Σ of (2.1) is nominally unstable and has a non-zero initial state,
and let T ∗(M,u) be given by (2.9). Then, the following are valid.

(i) There is a maximal time t∗f := supu∈U T ∗(M,u) <∞, and
(ii) There is an input function u∗ ∈ U satisfying t∗f = T ∗(M,u∗).

Proof. The set U is weakly compact by Lemma 3.2 and, by Lemma 3.8, the functional T ∗(M,u) is weakly
upper semi-continuous over U for any fixed error bound M . Consequently, we can apply the generalized
Weierstrass Theorem (e.g., ZEIDLER [1985]), which, in our current terminology, states the following: A
weakly upper semi-continuous function attains a maximum on a weakly compact set. Hence, T ∗(M,u)
attains a maximum over the set of inputs U , and our proof concludes. �

To summarize, we have shown that, after a feedback failure occurs, there is an optimal input function u∗(t)
that keeps the open loop response below a specified error bound for a duration of at least t∗f , irrespective
of the perturbation matrices. While driven by the optimal input function u∗(t), the actual duration of time
tf during which the system’s response remains below the specified error bound depends, of course, on the
entries of the perturbation matrix D. However, for all permissible perturbation matrices D, the duration tf
is never less than t∗f , and there are values of D for which tf gets indefinitely close to t∗f . The optimal input
function u∗(t) is independent of the perturbation matrix D, as there is no feedback and no information can
be deduced about D. Our next objective is to obtain a description of the optimal input function u∗(t).

4. Characteristics of the Optimal Solution

We proceed in this section to show that the optimal input function u∗(t) is often a bang-bang function,
i.e., a function whose components switch between their bounds +K and −K, lingering at no other values.
Furthermore, in cases where u∗(t) is not a bang-bang function, we show in section 5 that u∗(t) can be
replaced by a bang-bang function without significant deterioration in system performance. Thus, the solution
of Problem 2.1 is closely linked to bang-bang input functions. Bang-bang input functions are desirable in
engineering applications, since, being determined by their switching times, they are relatively easy to compute
and implement.

4.1. Examining the optimal solution. To somewhat simplify the analysis of our optimization problem
2.1, it would be convenient to reformulate it so as to make the terminal time into a constant that is not
involved in the optimization process. This can be achieved simply by introducing a scaling factor β > 0 in
conjunction with the time variable, so that the actual time t is expressed as a product

t = βs,

where the variable s has the fixed range 0 ≤ s ≤ 1 and the scaling factor β represents the terminal time.
To obtain the maximal time duration, we then maximize the value of the scaling parameter β, rather than
maximize the length of the time interval. To this end, we introduce the variables

(4.1) y(s) := x(βs) and v(s) := u(βs),
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where s ∈ [0, 1] and β is a constant parameter. In this context, we introduce the set of input functions

(4.2) V :=
{
v ∈ Lα,m2 : ‖v(s)‖ ≤ K for all 0 ≤ s ≤ 1, and v(s) = 0 for all s > 1

}
.

Denoting ẏ := dy(s)/ds, we have ẏ = βdx/dt, and the system equation (2.1) takes the form

(4.3) Σ : ẏ(s) = β[A′y(s) +B′v(s)], 0 ≤ s ≤ 1, y(0) = x0.

As before, the matrices A′ = A+DA and B′ = B +DB are given by (2.2); the input function v(s) is taken
from the set V of (4.2). The new “time variable" s is within the fixed interval [0, 1], and is not subject
to optimization. To indicate the dependence of the solution y(s) of (4.3) on the matrices D := (DA, DB),
the number β, and the input function v, we often use the expanded notation y(s;β,D, v) instead of y(s).
Rephrasing (2.4), we are interested in values of β and in input functions v ∈ V for which

(4.4) yT (s;β,D, v)y(s;β,D, v) ≤M

for all 0 ≤ s ≤ 1 and for all matrices D ∈ ∆, given that the initial condition x0 6= 0 has a magnitude
xT0 x0 < M . A slight reflection shows that the maximal possible value of β is given by t∗f of (2.10); we denote
β∗ := t∗f . When the system Σ is nominally unstable, it follows by Theorem 3.9 that the maximal value β∗

exists and that there is an input function v∗(s) that forms the optimal solution, where

(4.5)
{
v∗ := u∗(β∗s), 0 ≤ s ≤ 1,
β∗ = t∗f ;

here u∗(t) is the optimal input function of Theorem 3.9.
Proceeding with our discussion, define the sets of matrices

{A+ ∆A} := {A′ ∈ Rn×n : A′ = A+DA, DA ∈ ∆A},
{B + ∆B} := {B′ ∈ Rn×m : B′ = B +DB , DB ∈ ∆B}.

To further shorten the notation, we use

(4.6) Ξ := {A+ ∆A} × {B + ∆B}.

Now, let ω be a Radon probability measure on the set

(4.7) P := [0, 1]× Ξ.

Given a point (s,A′, B′) ∈ P , let ω(A′, B′|s) be the conditional probability measure induced by ω and let
ω(s) be the marginal probability measure, so that

(4.8) ω(A′, B′, s) = ω(A′, B′|s)ω(s), (s,A′, B′) ∈ P.

The following statement will shortly lead us to the conclusion that the optimal input function of Problem
2.1 is often a bang-bang function, namely, a function whose components switch between their maximal
allowed values +K and −K.

Theorem 4.1. Assume that the conditions of Theorem 3.9 are valid. Let (v∗(s), β∗) be a solution of Problem
2.1 as described by (4.5), and let V be the set of input functions (4.2). Then, there is a Lebesgue measurable
function z(s) : [0, 1] → Rm such that zT (s)v∗(s) ≤ zT (s)v(s) for all input functions v ∈ V and for almost
all times s ∈ [0, 1].

We discuss the implications of Theorem 4.1 before providing its proof. One interesting implication of the
theorem is the following. When a component of the function z(s) of Theorem 4.1 is non-zero over an interval
of time, then the corresponding component of the optimal input function v∗(s) must equal either +K or
−K over the same interval of time, where K is the maximal permissible input amplitude of the controlled
system Σ. Indeed, assume that the j-th component zj(s) of z(s) is positive over the interval [s1, s2] ⊂ [0, 1],
and consider the measurable input function v(s) ∈ V whose components are given by

vi(s) :=
{
−K if i = j,
0 if i 6= j.

Then, the inequality zT (s)v∗(s) ≤ zT (s)v(s) reduces to the form zj(s)v∗j (s) ≤ zj(s)(−K); canceling zj(s) >
0, we obtain v∗j (s) ≤ −K which, due to the amplitude limitation, yields v∗j (s) = −K for all s ∈ [s1, s2].
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Instead, if zj(s) < 0 for all s ∈ [s1, s2], a similar argument shows that v∗j (s) = K for all s ∈ [s1, s2]. We can
summarize this discussion by the following statement.

Corollary 4.2. Under the conditions and the notation of Theorem 4.1, assume that all components of the
function z(s) are non-zero almost everywhere in the interval [0, 1]. Then, the optimal input function v∗(s)
of Problem 2.1 is a bang-bang function, where

(4.9) v∗j (s) :=
{
−K if zj(s) > 0,
K if zj(s) < 0,

for almost all s ∈ [0, 1] and all j = 1, 2, ...,m.

Bang-bang functions are preferable for design and implementation, as they are completely determined
by their switching times. Example 4.11 of the next subsection demonstrates the situation considered in
Corollary 4.2.

The function z(s) of Theorem 4.1 is reminiscent of the classical switching function that appears in bang-
bang control problems examined by PONTRYAGIN, BOLTYANSKY, GAMKRELIDZE, and MISHCHENKO
[1962]. However, our current function z(s) is, in some respects, different from the classical switching function.
One such aspect is the fact that no conclusions can be drawn about the optimal input function v∗(s) on time
intervals where the corresponding components of z(s) are zero. Nevertheless, we show in section 5 that, over
such intervals, optimal performance can be approximated by a bang-bang input function. We turn now to
some mathematical deliberations that lead to the proof of Theorem 4.1.

4.2. Mathematical Considerations. Our arguments in this section are based to a large degree on the
geometric form of the Hahn-Banach Theorem (e.g., BOURBAKI [1987]), which is frequently used in the
analysis of optimization problems and can be stated as follows. Let S′ and S′′ be non-empty disjoint convex
subsets of a topological vector space B. Assume that the interior of S′ is not empty and recall that R denotes
the real numbers. Then, there is a linear functional ` : B → R, not identically zero, that separates S′ from
S′′; namely, there is a real number ρ such that `(s′) ≤ ρ ≤ `(s′′) for all s′ ∈ S′ and s′′ ∈ S′′. On the cross
product space R× B, it is convenient to define the two following projections:
(i)The projection onto the reals Πr : R× B → R : (r, b) 7→ r, and
(ii)The projection Π− : R × B → B that provides the B components of pairs with negative real parts, i.e.,
for a pair (r, b) ∈ R× B,

Π−(r, b) :=
{
b if r < 0,
∅ if r ≥ 0,

where ∅ denotes the empty set. In these terms, the following consequence of the Hahn-Banach Theorem is
used repeatedly in the sequel. (For a subset C ⊂ B, denote by C̄ the closure of C in B).
Lemma 4.3. Let C be an open convex subset of the Banach space B, and let S be a convex subset of R×B.
Assume that S includes the origin (0, 0), that 0 is an interior point of ΠrS, and that 0 ∈ C̄. Then, one of
the following is true:

(i) There is a linear functional ` : B → R, not identically zero, such that `(s) ≥ 0 ≥ `(c) for all s ∈ Π−S
and all c ∈ C̄ ; or

(ii) There is an element s ∈ S for which Πrs < 0 and Π−s ∈ C.
Proof. Option (ii) simply states that (Π−S)∩C 6= ∅. Thus, it only remains to show that option (i) is valid
whenever (Π−S) ∩ C = ∅. To this end, we show first that the projection Π−S is a convex set. Indeed, let
Π : R×B → B : (r, b) 7→ b be the standard projection onto B. Then, linearity implies that, for every convex
set Z ⊂ R× B, the projection ΠZ is convex as well.

Let R− be the set of all negative real numbers; then, a slight reflection shows that R− × B is a convex
set. Now, since 0 is an interior point of ΠrS by assumption, the intersection (R− × B) ∩ S is not empty.
Furthermore, since S is convex by assumption and the intersection of convex sets is convex, it follows that
S ∩ (R− × B) is a convex set. As Π−S = Π(S ∩ (R− × B)) and Π preserves convexity, we conclude that
Π−S is a convex set. Applying the Hahn-Banach Theorem, we conclude that the condition (Π−S) ∩C = ∅
implies that there is a linear functional ` : B → R (not identically zero) and a real number α such that

`(s) ≥ α ≥ `(c) for all s ∈ Π−S and c ∈ C.
Finally, since 0 ∈ C̄ ∩ Π−S by the Lemma’s assumptions, we conclude that α = 0. This verifies option (i)
of the Lemma, and our proof concludes. �
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Next, we review a generalized notion of the directional derivative, often referred to as the Gateaux deriva-
tive. Let X be a vector space over the real numbers R, let D be a subset of X, let V be a normed space, and
let T : D → V be a function. Let x, h ∈ D be two vectors, and assume that there is a real number a(h) > 0
such that x+ αh ∈ D for all real numbers 0 ≤ α < a(h). Then, the right-sided Gateaux derivative of T at x
in the direction h is defined as the derivative of T (x+αh) with respect to α > 0 evaluated at α = 0, namely,

(4.10) DT (x;h) := lim
α→0+

1
α

[
T (x+ αh)− T (x)

]
;

here, the limit is taken from the right in the sense of the norm on V . If this limit exists for all h ∈ D, then
we say that T is right-sided Gateaux differentiable at x.

Assume now that T is right-side Gateaux differentiable at the point x. Then, the Gateaux derivative is,
of course, a function of the direction h in which it is taken. The right-sided Gateaux derivative of T at x is
linear in its direction if

DT (x;αh+ βk) = αDT (x;h) + βDT (x; k)
for all real numbers α, β. Linearity of the Gateaux derivative is a rather common feature, as indicated by
the following statement.

Lemma 4.4. Let X be a normed vector space over the real numbers, let D be a subset of X, let V be a
normed vector space, and let T : D → V be a function. Denote by | · | the norm over X and the norm over
V . Assume that T has a linear approximation, namely, that the following is valid for all vectors x, δ ∈ X
for which x+ δ ∈ D: there is a linear functional θ(x) : X → V such that T (x+ δ) = T (x) + θ(x)(δ) +O(δ2),
where lim|δ|→0 |O(δ2)|/|δ| = 0. Then, the right-sided Gateaux derivative of T at x is linear in its direction.

Proof. A direct substitution yields that DT (x;h) := limα→0+
1
α [T (x + αh) − T (x)] = limα→0+

1
α [T (x) +

θ(x)(δ) + O(δ2)− T (x)] = limα→0+
1
α [θ(x)(αh) + O((αh)2)] = θ(x)(h) + limα→0+ O((αh)2)/α = θ(x)(h) by

the Lemma’s assumption. Thus, DT (x;h) is linear in h, and our proof concludes. �

We state next a modified version of a result of WARGA [1970], which will help us investigate cases in
which the optimal solution of Problem 2.1 is a bang-bang function. First, some notation. For a function
T : S1 → S2, denote by T−1 the inverse set function of T , i.e., for a set S ⊂ S2,

T−1[S] := {s ∈ S1 : Ts ∈ S}.
For a subset P of a finite dimensional metric space, denote by C(P,R) the space of real valued continuous
functions over P . Given a pair of real numbers ε,M > 0, let G(−ε,M) be the subset of C(P,R) consisting
of all members whose image is contained in the interval [−ε,M ].

Lemma 4.5. Let Q be a convex subset of a Banach space, let F be a convex set of real numbers, and let P
be a compact subset of a finite dimensional metric space. Let T1 : Q× F → R and T2 : Q× F → C(P,R) be
functions that satisfy the following requirements:

(1) The restriction of the function T1 to the set (T2)−1G(−ε,M) attains a minimal value at the point
(q∗, f∗) ∈ (T2)−1G(−ε,M).

(2) The functions T1 and T2 have continuous right-sided Gateaux derivatives that are linear in their
direction at the point (q∗, f∗).

(3) The image T2[Q× F ] ⊂ C(P,R) includes only bounded functions.
Then, there is a Radon probability measure ω over P and an ω-integrable function λ : P → R such that

(i) |λ(p)| = 1 almost everywhere with respect to the measure ω;
(ii)
´
P
λ(p)DT2[(q∗, f∗); (q, f)− (q∗, f∗)](p)dω(p) ≥ 0 for all (q, f) ∈ Q× F ;

(iii) λ(p)T2(q∗, f∗)(p) = max{λ(p)(−ε), λ(p)M} for ω-almost every p ∈ P .

The proof of Lemma 4.5 depends on several auxiliary facts, which we list next.

Lemma 4.6. Under the notation and conditions of Lemma 4.5, the set of pairs

(4.11) W (p) :=
⋃

(q,f)∈Q×F

(
DT1[(q∗, f∗); (q, f)− (q∗, f∗)],DT2[(q∗, f∗); (q, f)− (q∗, f∗)](p)

)
is a convex subset of R2, for every point p ∈ P .
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Proof. Let a and b be two elements of the set W (p). Then, by (4.11), there are (q1, f1), (q2, f2) ∈ Q × F
such that

a =
(
DT1((q∗, f∗); (q1, f1)− (q∗, f∗)),DT2((q∗, f∗); (q1, f1)− (q∗, f∗))(p)

)
,

b =
(
DT1((q∗, f∗); (q2, f2)− (q∗, f∗)),DT2((q∗, f∗); (q2, f2)− (q∗, f∗))(p)

)
.

Now, let α, β ≥ 0 be two real numbers satisfying α + β = 1. Then, using the linearity assumption (2) of
Lemma 4.5 together with the fact that α+ β = 1, we can write

αa+ βb =
(
DT1((q∗, f∗);α[(q1, f1)− (q∗, f∗)]),DT2((q∗, f∗);α[(q1, f1)− (q∗, f∗)])(p)

)
+

(
DT1((q∗, f∗);β[(q2, f2)− (q∗, f∗)]),DT2((q∗, f∗);β[(q2, f2)− (q∗, f∗)])(p)

)
=

(
DT1((q∗, f∗);α(q1, f1) + β(q2, f2)− (q∗, f∗)),

DT2((q∗, f∗);α(q1, f1) + β(q2, f2)− (q∗, f∗))(p)
)

In view of the fact that Q and F are convex, the combination (q3, f3) := α(q1, f1) + β(q2, f2) belongs to
Q× F . Hence,

αa+ βb =
(
DT1((q∗, f∗); (q3, f3)− (q∗, f∗)),DT2((q∗, f∗); (q3, f3)− (q∗, f∗))(p)

)
∈W (p),

and W (p) is a convex set. This concludes our proof. �

By leaving the point p in (4.11) unspecified, we obtain the set

(4.12) S := W (·) =
⋃

(q,f)∈Q×F

(
DT1((q∗, f∗); (q, f)− (q∗, f∗)),DT2((q∗, f∗); (q, f)− (q∗, f∗))(·)

)
,

which forms a subset of the cross product space R× C(P,R). This set has the following feature.

Lemma 4.7. Under the notation and the assumptions of Lemma 4.5, the following are valid:
(i) The set S of (4.12) is a convex subset of R× C(P,R).
(ii) If there is a point (q′, f ′) ∈ Q× F at which DT1((q∗, f∗); (q′, f ′)− (q∗, f∗)) 6= 0, then 0 is an interior

point of ΠrS.

Proof. (i) To show that S is convex, let (r1, c1), (r2, c2) ∈ S be two points, let 0 ≤ α ≤ 1 be a real number,
and consider the combination (r, c) := α(r1c1) + (1− α)(r2, c2) = (αr1 + (1− α)r2, αc1 + (1− α)c2). By the
definition (4.12) of the set S, there are pairs (q1, f1), (q2, f2) ∈ Q× F such that

(r1, c1) =
(
DT1((q∗, f∗); (q1, f1)− (q∗, f∗)),DT2((q∗, f∗); (q1, f1)− (q∗, f∗))(·)

)
,

(r2, c2) =
(
DT1((q∗, f∗); (q2, f2)− (q∗, f∗)),DT2((q∗, f∗); (q2, f2)− (q∗, f∗))(·)

)
.

Using assumption 2 of Lemma 4.5 regarding the linearity of the Gateaux derivatives, we can write

(r, c) =
(
DT1((q∗, f∗); (αq1 + (1− α)q2, αf1 + (1− α)f2)− (q∗, f∗)),

DT2((q∗, f∗); (αq1 + (1− α)q2, αf1 + (1− α)f2)− (q∗, f∗))(·)
)
.

In view of the fact that Q and F are both convex sets, it follows that (r, c) ∈ S for all 0 ≤ α ≤ 1, and S is
convex.

(ii) Substituting (q, f) = (q∗, f∗) in (4.12), and using assumption (2) of Lemma 4.5 regarding the linearity
of the Gateaux derivatives, it follows that (0, 0) ∈ S. Consequently, 0 ∈ ΠrS. Further, assume that there is
a point (q′, f ′) ∈ Q× F at which the value d := DT1((q∗, f∗); (q′, f ′)− (q∗, f∗)) 6= 0. Then, by the assumed
linearity of the Gateaux derivative, it follows that, for every real number β, the number βd ∈ ΠrS. Thus, 0
is an interior point of ΠrS, and (ii) is valid. This concludes the proof. �

We introduce now an additional set that is important to our discussion. First, some notation. As usual,
for a subset B of a topological space, we denote by Int(B) the interior of B, namely, the largest open set
contained in B. Now, we shift the set of functions Int(G(−ε,M)) by subtracting the function T2(q∗, f∗)
from each element, to obtain the set of continuous functions

(4.13) C := Int(G(−ε,M))− T2(q∗, f∗).
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Lemma 4.8. Using the notation and the assumptions of Lemma 4.5, the set of continuous functions C of
(4.13) has the following properties:

(i) C is an open and convex subset of C(P,R);
(ii) 0 ∈ C̄;
(iii) If h ∈ C, then γh ∈ C for all 0 < γ < 1.

Proof. (i) Note that C is simply a shift of Int(G(−ε,M)) by the bounded function T2(q∗, f∗) ∈ C(P,R).
Thus, in order to show that C is an open and convex set it is enough to show that Int(G(−ε,M)) is
an open and convex set. As Int(G(−ε,M)) is an open set by the definition of the interior of a set, we
only have to show that Int(G(−ε,M)) is a convex set. To this end, let g1, g2 ∈ Int(G(−ε,M)) be two
functions, let 0 ≤ α ≤ 1 be a real number, and consider the combination g := αg1 + (1 − α)g2. A slight
reflection shows that g ∈ G(−ε,M). To show that g is an interior point of G(−ε,M), note that the inclusion
g1, g2 ∈ Int(G(−ε,M)) implies that there is a neighborhood N(g1) of g1 and a neighborhood N(g2) of
g2 such that N(g1), N(g2) ⊂ G(−ε,M). Assume now, by contradiction, that g is not an interior point of
G(−ε,M). Then, for every real number η > 0, there is a function f ∈ C(P,R) such that |f − g| < η
and f 6∈ G(−ε,M). Define the function φ := (f − g), and consider the two functions g′ := g1 + φ and
g′′ := g2 + φ. Then, |g′ − g1| = |φ| = |f − g| < η and, similarly, |g′′ − g2| < η. Consequently, for
sufficiently small η, we must have g′ ∈ N(g1) and g′′ ∈ N(g2), so that g′, g′′ ∈ G(−ε,M). Furthermore,
since αg′ + (1 − α)g′′ = αg1 + (1 − α)g2 + φ = g + φ = f and G(−ε,M) is a convex set, it follows that
f ∈ G(−ε,M), a contradiction. Thus, g is an interior point of G(−ε,M), and (i) is true.

(ii) By the notation of Lemma 4.5(1), we have that (q∗, f∗) ∈ (T2)−1G(−ε,M), so that T2(q∗, f∗) ∈
G(−ε,M). Now, if T2(q∗, f∗) ∈ Int(G(−ε,M)), then 0 ∈ C, and it follows that 0 ∈ C̄ as well. Otherwise,
let 0 < δ < 1 be a real number; a slight reflection shows that the function (1 − δ)T2(q∗, f∗) is an interior
point of G(−ε,M). Then, by the definition of C, the function

θδ := (1− δ)T2(q∗, f∗)− T2(q∗, f∗) = −δT2(q∗, f∗)

is in C, and the function 0 satisfies 0 = limδ→0 θδ, so that 0 ∈ C̄.
(iii) Let h be a function in C. There is then a function z ∈ Int(G(−ε,M)) such that z − T2(q∗, f∗) = h.

For a real number 0 < γ < 1, we can write γh = γ[z − T2(q∗, f∗)]. Now, let

(4.14) s := γh+ T2(q∗, f∗) = γz + (1− γ)T2(q∗, f∗).

We know that z ∈ Int(G(−ε,M)), so we have −ε < z(p) < M for all p ∈ P . Also, since T2(q∗, f∗) ∈
G(−ε,M), we have that −ε ≤ T2(q∗, f∗)(p) ≤ M for all p ∈ P . Consequently, s(p) = γz(p) + (1 −
γ)T2(q∗, f∗)(p) < γM+(1−γ)M = M , and s(p) = γz(p)+(1−γ)T2(q∗, f∗)(p) > γ(−ε)+(1 −γ)(−ε) = −ε,
so that −ε < s(p) < M for all p ∈ P . Thus, s ∈ Int(G(−ε,M)), and since γh = s− T2(q∗, f∗) by (4.14), it
follows that γh ∈ C, and our proof concludes. �

Lemma 4.9. Using the notation and the assumptions of Lemma 4.5, assume that DT1((q∗, f∗); (q, f) −
(q∗, f∗)) is not the zero function, and let C be the set of continuous functions (4.13). Then, there is a linear
functional ` : C(P,R)→ R, not identically zero, that satisfies the following inequalities:

`
(
DT2((q∗, f∗); (q, f)− (q∗, f∗))(p)

)
≥ 0 for all (q, f) ∈ Q× F and all p ∈ P ; and(4.15)

`(c) ≤ 0 for all c ∈ C̄.(4.16)

Proof. In view of Lemmas 4.7 and 4.8, the conditions of Lemma 4.3 are satisfied; whence one of the alter-
natives listed in Lemma 4.3 must be valid. Alternative (i) of Lemma 4.3 yields (4.15) and (4.16); we show
next that alternative (ii) of Lemma 4.3 cannot be valid.

By contradiction, assume that alternative (ii) of Lemma 4.3 is valid, namely, that there is an element
s ∈ S for which Πrs < 0 and Π−s ∈ C, where C is given by (4.13). Recall from Lemma 4.5(1) that the
point (q∗, f∗) is a minimum point of the function T1 over the set (T2)−1G(−ε,M). Our proof will conclude
upon showing that this fact contradicts Lemma 4.3(ii). Now, since DT1((q∗, f∗); (q, f) − (q∗, f∗)) is not
the zero function by assumption, it follows by Lemma 4.7(ii) that 0 is an interior point of the projection
ΠrS, where S is given by (4.12). As we have assumed that Lemma 4.3(ii) is valid, there must be a pair
(r, s) ∈ S such that r < 0 and s ∈ C, where C is given by (4.13). Explicitly, this means that there is a point
(q, f) ∈ (T2)−1G(−ε,M) at which
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(4.17)
{
DT1((q∗, f∗); (q, f)− (q∗, f∗)) < 0, and
DT2((q∗, f∗); (q, f)− (q∗, f∗)) ∈ C.

At this pair (q, f), we define two functions h1 : [0, 1]→ R and h2 : [0, 1] → C(P,R) as follows:

(4.18)
{
h1(θ) := T1(q∗ + θ(q − q∗), f∗ + θ(f − f∗)),
h2(θ) := T2(q∗ + θ(q − q∗), f∗ + θ(f − f∗)),

for all 0 ≤ θ ≤ 1. Then, referring to (4.10), we obtain that the derivatives are given by{
h′1(θ) := DT1[(q∗ + θ(q − q∗), f∗ + θ(f − f∗)); (q, f)− (q∗, f∗)],
h′2(θ) := DT2[(q∗ + θ(q − q∗), f∗ + θ(f − f∗)); (q, f)− (q∗, f∗)].

Taking θ = 0, we obtain

(4.19)
{
h′1(0) := DT1((q∗, f∗); (q, f)− (q∗, f∗))
h′2(0) := DT2((q∗, f∗); (q, f)− (q∗, f∗))

Now, we can use the Intermediate Value Theorem over the interval [0, δθ], δθ > 0, to write

h1(δθ) = h1(0) + h
′

1(η)δθ,

where 0 < η < δθ. Defining the quantity r(η) := [h
′

1(η)−h′1(0)], we can rewrite the last equality in the form

(4.20) h1(δθ) = h1(0) + [h
′

1(0) + r1(η)]δθ.

By the continuity assumption on the Gateaux derivatives listed in Lemma 4.5(2), we conclude that

(4.21) lim
δθ→0

r1(η) = 0.

Now, by (4.17) and (4.19), we have that h
′

1(0) < 0. In view of (4.21), there is a real number ζ > 0, ζ < 1,
such that |r1(η)| < |h′1(0)|/2 for all 0 < δθ < ζ. Then, for all 0 < δθ < ζ, we obtain that h1(δθ) < h1(0), or
using (4.18), we obtain that

(4.22) T1(q∗ + δθ(q − q∗), f∗ + δθ(f − f∗)) < T1(q∗, f∗).

Consequently, our proof will conclude upon showing that T2((q∗+δθ(q−q∗), f∗+δθ(f−f∗)) ∈ G(−ε,M),
since then (4.22) contradicts assumption (1) of Lemma 4.5, which states that (q∗, f∗) is a minimum of T1 on
the set (T2)−1G(−ε,M). This would then show that alternative (ii) of Lemma 4.3 is not valid.

To show that T2((q∗+δθ(q−q∗), f∗+δθ(f−f∗)) ∈ G(−ε,M), denote c− := DT2((q∗, f∗); (q, f)−(q∗, f∗));
then, c− ∈ C by (4.17). Further, by the definition (4.13) of the set C, there is a function c ∈ Int(G(−ε,M))
for which c− = c− T (q∗, f∗), or

(4.23) DT2((q∗, f∗); (q, f)− (q∗, f∗)) = c− T (q∗, f∗).

An argument similar to the one used in the derivation of (4.20) and (4.21), leads to the analogous equations

(4.24) h2(δθ) = h2(0) + h
′

2(0)δθ + r2(η)δθ,

where

(4.25) lim
δθ→0

r2(η) = 0.

Substituting (4.18) and (4.19) into (4.24), we obtain

T2(q∗ + δθ(q − q∗), f∗ + δθ(f − f∗))
= T2(q∗, f∗) +DT2((q∗, f∗); (q, f)− (q∗, f∗))δθ + r2(η)δθ
= T2(q∗, f∗) + [c− T (q∗, f∗)]δθ + r2(η)δθ.

This yields
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(4.26) T2(q∗ + δθ(q − q∗), f∗ + δθ(f − f∗))− T2(q∗, f∗) = [c− + r2(η)]δθ.

Now, as c− ∈ C and C is an open set by Lemma 4.8(i), there is a neighborhood N(χ) radius χ > 0 around
c− that is entirely contained in C. In view of (4.25), there is a real number µ > 0 such that |r2(η)| < χ for
all δθ < µ. Then, for all δθ < µ, we have that c− + r2(η) ∈ C. Applying now Lemma 4.8(iii), we conclude
that [c−+ r2(η)]δθ ∈ C. By the definition (4.13) of C, there is then a function f ∈ Int(G(−ε,M)) such that
[c− + r2(η)]δθ = f − T (q∗, f∗). Substituting into (4.26), we obtain

T2(q∗ + δθ(q − q∗), f∗ + δθ(f − f∗))− T2(q∗, f∗) = f − T (q∗, f∗),

so that T2(q∗+δθ(q−q∗), f∗+δθ(f−f∗)) = f ∈ Int(G(−ε,M)). Thus, T2((q∗+δθ(q−q∗), f∗+δθ(f−f∗)) ∈
G(−ε,M), and our proof concludes. �

Proof. (of Lemma 4.5). The proof is based on the Riesz - Markov Representation Theorem (e.g., EVANS
and GARIEPY [1992]), which can be stated as follows. Let P be a compact subset of Rm, and let L :
C(P,R) → R be a bounded linear functional. Then, there is a positive Radon probability measure ω on P
and an ω-measurable function λ : P → R such that |λ(x)| = 1 for ω-almost every x ∈ P and L(c) =

´
P
λcdω

for all c ∈ C(P,R). Applying this theorem to our functional ` : C(P,R) → R of (4.15) and (4.16), we
obtain an integral representation of `, namely, there is a positive Radon probability measure ω on P and an
ω-integrable function λ : P → R such that

(4.27)

 |λ(p)| = 1 for ω-almost all p ∈ P ;
`(c) =

´
P
λcdω for all functions c ∈ C(P,R); and

ω(P ) > 0,

where the last item follows from the fact that, according to Lemma 4.9, ` is not identically zero. Combining
(4.27) with (4.15), we obtain parts (i) and (ii) of Lemma 4.5(ii).

Next, consider the function

c∗(·) := T2(q∗, f∗)(·) : P → R.

In view of the definition (4.13) of the set C, every element c ∈ C̄ can be written in the form c = g − c∗,
where g ∈ G(−ε,M). Consequently, (4.16) takes the form `(g − c∗) ≤ 0 for g ∈ G(−ε,M). Using (4.27), we
can rewrite the latter in the form

(4.28)
ˆ
P

λ(p)[c∗(p)− c(p)]dω(p) ≥ 0 for all c(p) ∈ G(−ε,M).

We show next that this inequality implies Lemma 4.5(iii). Let C(P, [0, 1]) be the set of all continuous
functions mapping P into the real interval [0, 1]. For a pair of functions α ∈ C(P, [0, 1]) and c ∈ G(−ε,M),
consider the continuous function

(4.29) k(p) := (1− α(p))c∗(p) + α(p)c(p).

Since the real interval [−ε,M ] is convex and 0 ≤ α(p) ≤ 1, it follows that k(p) ∈ [−ε,M ] for all p ∈ P . As
k(·) is a continuous function, we conclude that k ∈ G(−ε,M) for all functions α ∈ C(P, [0, 1]). Substituting
the function k into (4.28) and using (4.29), we obtain thatˆ

P

λ(p) · [c∗(p)− k(p)]dω(p) =
ˆ
P

α(p)λ(p) · [c∗(p)− c(p)]dω(p) ≥ 0.

Keeping c fixed, the last expression forms a linear functional of α; as this functional is non-negative, it follows
(e.g., DOOB [1994]) that λ(p).[c∗(p) − c(p)] ≥ 0 for ω-almost every point p ∈ P . As this argument can be
repeated for every function c ∈ G(−ε,M), we conclude that

(4.30) λ(p)c∗(p) ≥ λ(p)c(p) for all functions c ∈ G(−ε,M) at ω-almost every point p ∈ P.
Now, according to (4.27), we have |λ(p)| = 1 for ω-almost all p ∈ P . Consider first a point p ∈ P at which
λ(p) = 1, and substitute into (4.30) the constant function c(p) := M for all p ∈ P . Then, (4.30) yields
c∗(p) ≥ M for ω-almost every p ∈ P . On the other hand, if λ(p) = −1, then (4.30) yields −c∗(p) ≥ −c(p),
or c∗(p) ≤ c(p); using the constant function c(p) = −ε, the latter yields c∗(p) ≤ −ε. Now, by assumption (1)
of Lemma 4.5, −ε ≤ c∗(p) ≤ M for all p ∈ P . Consequently, the last two sentences imply that c∗(p) = M
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when λ(p) = 1 and c∗(p) = −ε when λ(p) = −1, for ω-almost every p ∈ P . This proves statement (iii) of
Lemma 4.5, and our proof concludes. �

Proof. (of Theorem 4.1). The proof is based on Lemma 4.5. First, we identify the quantities listed in
Lemma 4.5 with the quantities that appear in Theorem 4.1, by setting

(4.31)
Q := {v(s) ∈ V : v(s) = 0 for all s > 1},
F := [0, t∗f + 1] ⊂ R,

where t∗f is the maximal time (2.10). Further, let P be the set given by (4.7). It is then easy to verify that Q
is a convex subset of the Banach space Lα,m2 ; that F is a convex set of real numbers; and that P is a compact
subset of the metric space R(1+nn+mn). Thus, Q, F , and P fulfill the requirements of the corresponding
quantities listed in Lemma 4.5.

Next, recalling the matrix D of (2.3), define the two functions

(4.32) T1(v(s), β) := −β, and
T2(v(s), β, p) := yT (s;β,D, v)y(s;β,D, v), where p ∈ P.

As y(s;β,D, v) is the solution of the linear differential equation (4.3), we have

(4.33) y(s;β,D, v) = eβA
′s

[
x0 +

ˆ s

0

e−βA
′τβB′v(τ)dµ(τ)

]
,

where µ(τ) is the unit Lebesgue measure. Thus, the function T2 satisfies requirement (3) of Lemma 4.5, and
T2(v(s), β, ·) ∈ C(P,R) for all (v(s), β) ∈ Q×F . Further, by (4.5), β∗ is the maximal value of β over the set
of all points (v(s), β) ∈ Q× F for which yT (s;β,D, v)y(s;β,D, v) ≤M . Whence, −β∗ is the minimal value
of T1(v(s), β) over the same set, and, consequently, requirement (1) of Lemma 4.5 is valid as well. Finally,
a direct examination shows that the functions T1 and T2 satisfy the requirements of Lemma 4.4. Thus, the
Gateaux derivatives of T1 and T2 are linear in their direction, and whence assumption (2) of Lemma 4.5 is
satisfied for T1 and T2.

A direct computation using (4.10) yields the Gateaux derivative of T1,

DT1((v∗, β∗); (v, β)− (v∗, β∗)) = β∗ − β.

For T2, we calculate the Gateaux derivative in the direction h = v − v∗ with β at its maximal value β∗,
namely, in the direction h = (v, β)− (v∗, β∗)|β=β∗ . Applying (4.10) to (4.32) while using (4.33), we obtain

(4.34) DT2((v∗, β∗), (s,A′, B′); (v − v∗))|β=β∗ =
yT (s,A′, B′;β∗, v − v∗)y(s,A′, B′;β∗, v∗) + yT (s,A′, B′;β∗, v∗)y(s,A′, B′;β∗, v − v∗).

As yT (s,A′, B′;β∗, v − v∗)y(s,A′, B′;β∗, v∗) is a scalar, we can write

yT (s,A′, B′;β∗, v − v∗)y(s,A′, B′;β∗, v∗) = [yT (s,A′, B′;β∗, v − v∗)y(s,A′, B′;β∗, v∗)]T

= yT (s,A′, B′;β∗, v∗)y(s,A′, B′;β∗, v − v∗).

Substituting into (4.34) and using (4.33), this yields

DT2((v∗, β∗), (s,A′, B′); (v − v∗))|β=β∗ =

= 2yT (s,A′, B′;β∗, v∗)y(s,A′, B′;β∗, v − v∗) =

= 2yT (s,A′, B′;β∗, v∗)
ˆ s

0

eβ
∗A′(s−τ)β∗B′(v(τ)− v∗(τ))dµ(τ).(4.35)

Applying now Lemma 4.5 with p := (τ,A′, B′) and using the notation of (4.31), we conclude that there is a
Radon probability measure ω over P and an ω-integrable function λ : P → R such that

(4.36) |λ(p)| = 1 for ω-almost all points p ∈ P, and
ˆ
λ(p)DT2((v∗, β∗), p; (v, β)− (v∗, β∗))dω(p) ≥ 0.
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Denoting y∗(s) := y(s,A′, B′;β∗, v∗), setting β = β∗, and substituting (4.35) into the last inequality, we
obtain

(4.37)
ˆ
P

λ(p)(y∗(s))T
{ ˆ s

0

eβ
∗A′(s−τ)β∗B′(v(τ)− v∗(τ))dµ(τ)

}
dω(p) ≥ 0.

It is convenient now to define the function

(4.38) η(s, τ) :=
{

1 for 0 ≤ τ ≤ s,
0 otherwise,

where s ≥ 0. Then, (4.37) can be rewritten in the form
ˆ
P

λ(p)(y∗(s))T
{ ˆ 1

0

eβ
∗A′(s−τ)β∗B′η(s, τ)(v(τ)− v∗(τ))dµ(τ)

}
dω(p) ≥ 0.

Applying Fubini’s Theorem (e.g. RUDIN [1966]) to the last expression, we obtain
ˆ 1

0

{ˆ
P

λ(p)(y∗(s))T eβ
∗A′(s−τ)B′η(s, τ)dω(p)

}
(v(τ)− v∗(τ))dµ(τ) ≥ 0.

Defining the function

(4.39) zT (τ) :=
ˆ
P

λ(p)(y∗(s))T eβ
∗A′(s−τ)B′η(s, τ)dω(p),

we can rewrite the last inequality as

(4.40)
ˆ 1

0

zT (τ)(v(τ)− v∗(τ))dµ(τ) ≥ 0,

which must be valid for every function v ∈ V , where V is our set of input functions (4.2). Now, recall that
ω(s,A′, B′) is a Radon probability measure over the space [0, 1] × Ξ, where Ξ is given by (4.6). Using the
conditional measure ω(A′, B′|s) and the corresponding marginal measure ω(s), we can rewrite (4.39) in the
form

zT (τ) =
ˆ 1

0

ˆ
Ξ

λ(s,A′, B′)(y∗(s))T eβ
∗A′(s−τ)B′dω(A′, B′|s)η(s, τ)dω(s).

In view of (4.38), this reduces to

(4.41) zT (τ) =
ˆ 1

τ

ˆ
Ξ

λ(s,A′, B′)(y∗(s))T eβ
∗A′(s−τ)B′dω(A′, B′|s)dω(s).

Finally, we show that (4.40) implies that the inequality

(4.42) zT (τ)v(τ) ≥ zT (τ)v∗(τ)

must be valid for µ-almost every τ ∈ [0, 1] and for every function v ∈ V . To this end, assume, by contradiction,
that there is an input function v′ ∈ V and a measurable set δ ⊂ [0, 1] of non-zero µ measure such that
zT (τ)v′(τ) < zT (τ)v∗(τ) for all τ ∈ δ. Then we can form a new measurable input function v′′ ∈ V by setting

v′′(τ) :=
{
v′(τ) if τ ∈ δ,
v∗(τ) otherwise.

Inserting this function for v into (4.40), we obtain

ˆ 1

0

zT (τ)(v′′(τ)− v∗(τ))dµ(τ) =
ˆ
δ

zT (τ)(v′(τ)− v∗(τ))dµ(τ) < 0,

contradicting (4.40). Thus, (4.42) must be valid, and the Theorem follows by changing τ into s. �

We provide now a somewhat simplified form of the function z(s) of Theorem 4.1.
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Lemma 4.10. Let Ξ be given by (4.6) and let P be given by (4.7). Then, the function z(s) of Theorem 4.1
can be expressed in the form

(4.43) zT (s) =
ˆ 1

s

ˆ
Ξ

(y(ζ,A′, B′;β∗, v∗))T eβ
∗A′(ζ−s)B′dω(A′, B′|ζ)dω(ζ),

where ω(A′, B′, ζ) is a Radon probability measure on P with the support

(4.44) Ω = {(A′, B′, ζ) ∈ Ξ× [0, 1] : yT (ζ,A′, B′;β∗, v∗)y(ζ,A′, B′;β∗, v∗) = M}.

Proof. We use the measure ω introduced in the proof of Theorem 4.1. In view of Lemma 4.5(iii), we have

(4.45) λ(p)yT (p; v∗, β∗)y(p; v∗, β∗) = max
a∈[−ε,M ]

λ(p)a

for ω-almost every p ∈ P , where P is given by (4.7). Recall from (4.36) that λ(p) = ±1 for ω-almost
all p ∈ P . Now, when λ(p) = 1, then the right side of (4.45) is M , and, consequently, we must have
yT (p;β∗, v∗)y(p;β∗, v∗) = M . When λ(p) = −1, then the right side of (4.45) is ε, while the left side cannot
be positive; hence, λ(p) = −1 is incompatible. Thus, we must have λ(p) = 1 for ω-almost every point p ∈ P .
This implies that the measure ω has the support set Ω = {p ∈ P : yT (p; β∗, v∗)y(p;β∗, v∗) = M}, as given
by (4.44). Finally, (4.43) follows directly from (4.41) by substituting λ(p) = 1 for ω-almost all p ∈ P and
renaming the variable τ to s. �

As we have seen in Corollary (4.2), the optimal input function that solves our optimization problem 2.1
is a bang-bang function over time intervals where the function z(s) of Theorem 4.1 is almost nowhere zero.
In the next section, we show that, over intervals where z(s) is identically zero, optimal performance can be
approximated by using bang-bang input functions. Thus, bang-bang functions can be generally used when
implementing the optimal solution. We complete this section with an example.

Example 4.11. Consider the one-dimensional system

(4.46) ẋ(t) = ax(t) + u(t),

where the time constant a is subject to the uncertainty 1.2 ≤ a ≤ 1.4. The system has the input bound
|u(t)| ≤ 2 for all t, and the initial condition is x(0) = 1. We set the bound M := 25, so the objective is to
find an input function u∗(t) that keeps the state amplitude below the bound x2(t) ≤ 25 (i.e., |x(t)| ≤ 5) for
the longest time, irrespective of the value of a within its uncertainty range. We show next that, in this case,
z(s) 6= 0 for almost all s ∈ [0, 1]. Thus, by Corollary 4.2, the optimal input function u∗(t) is a bang-bang
function, as depicted below. The maximal time during which all samples of the system can be kept below
the prescribed error bound is t∗f = 5.08 seconds.
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Figure 4.1. An Example

To show that the optimal input function is a bang-bang function in this case, note first that the system
cannot rebound to lower valued states after reaching the state |x(t)| = 5. Indeed, consider the error function

e(t) = x2(t).
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Using the system equation (4.46), we get

ė(t) = x(t)ẋ(t) = x2(t)a+ x(t)u(t) = x(t)[x(t)a+ u(t)].

If e(t) = 25, we clearly need ė(t) ≤ 0 for the error not to worsen. When e(t) = 25, we have either x(t) = 5
or x(t) = −5. For x(t) = 5, we obtain ė(t) = x(t)[x(t)a + u(t)] = 5[5a + u(t)] > 0 for all possible values of
a and of u(t). Also, for x(t) = −5, we have ė(t) = −5[−5a + u(t)] > 0 for all possible values of a and u(t).
Thus, once the system reaches e(t) = 25, it has reached the terminal time, since the error can only continue
to grow. Hence, for any value of a, the process terminates when the corresponding trajectory hits the error
bound M . In other words, any trajectory meets the error bound only once: at the terminal time s = 1.
Thus, in view of Lemma 4.10, the support set of the function z(s) in this case is given by the following (in
this example, B′ = 1 always).

(4.47) Ω = {(a′, 1, ζ) ∈ [1.2, 1.4]× {1} × {1} : x2(1, a′, v∗) = M}.

Note that Ω cannot be empty here, since that would imply that x2 does not meet the boundM on the scaled
time interval [0, 1], contradicting what we have concluded in the previous paragraph.

Substituting the support set (4.47) into (4.43), we obtain

z(s) =
ˆ 1.4

1.2

x(1, a′, v∗)eβ
∗a′(1−s)dω(a′).

Let us now expand the exponential in the integrand into a series and integrate; this yields

(4.48) z(s) = p0 + p1(1− s) + p2(1− s)2 + . . .+ pm(1− s)m + ...,

where

pm =
ˆ 1.4

1.2

x(1, a′, v∗)
(β∗a′)m

m!
dω(a′).

As the integrand includes the power (a′)m, the equality pm = 0 for all m = 0, 1, 2, ... would imply that
x(1, a, v∗) = 0 almost everywhere with respect to the measure ω(a′), contradicting the support (4.47). Thus,
at least one of the coefficients of the power series (4.48) is not zero, and whence z(s) 6= 0 almost everywhere
on the interval (0, 1). By Corollary 4.2, this proves that the optimal input function is a bang-bang function
in this case. �

4.3. Implications on Digital Control. It is interesting to compare the optimal input function derived
here with the "zero order hold" policy commonly employed in digital control, namely, the policy of keeping
the input signal constant between feedback sampling instants. Referring to Example 4.11, we can calculate
the best "zero order hold" for this case, namely, the constant input that will keep the output below the error
bound for the longest time. We obtain that the best constant input value here is u = −1.38; this input yields
the time tf = 3.26 seconds during which the output error is within the prescribed bound M for all possible
uncertainty values of a. The output functions for various values of a generated by this constant input are
depicted in Figure 4.2. As we can see, tf is substantially shorter than the optimal time t∗f = 5.08 seconds
obtained in Example 4.11.
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Figure 4.2. Comparing to a zero order hold
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5. Bang-bang Approximations

We explore now a methodology that provides convenient means for achieving optimal, or nearly optimal,
performance when controlling a system under conditions of feedback failure. Specifically, we show that the
optimal time t∗f of (2.10) can be achieved, or nearly achieved (depending on problem parameters), by using
bang-bang input functions. As mentioned earlier, bang-bang functions are convenient for calculation and
implementation, since they are determined solely by their switching times. We underscore the fact that,
when the optimal input function is itself not a bang-bang function, the bang-bang functions derived below
do not necessarily approximate the optimal input function; instead, they are designed to yield approximate
optimal performance. Of course, the latter is the aspect most pertinent in applications.

Recall that our objective is to control the system Σ of (2.1) under the perturbations described by (2.2).
The optimal input function u∗(t) keeps the state trajectory of Σ below the bound M for the longest possible
time t∗f that is compatible with all perturbation matrices D ∈ ∆. When approximating optimal performance,
we allow the state trajectory of Σ to slightly exceed the bound M . Specifically, let x(t,D, u∗) be the state
trajectory of Σ generated by the optimal input function u∗(t) for a particular uncertainty matrix D ∈ ∆.
We are seeking a bang-bang input function u±(t) which, when applied to Σ, generates a state trajectory
x(t,D, u±) that deviates only slightly from x(t,D, u∗) for all t ∈ [0, t∗f ] and for all D ∈ ∆. The next statement
indicates that there is such an input function.

Theorem 5.1. Let Σ be a system that satisfies the conditions of Theorem 3.9, and let t∗f be the optimal
time and u∗(t) the optimal input function of Theorem 3.9. Then, for every ε > 0, there is a bang-bang input
function u± ∈ U for which the following are true.

(i) u± has only finite number of switches, and
(ii) The state trajectory x(t,D, u±) of Σ created by u± satisfies ||x(t,D, u∗) − x(t,D, u±)|| < ε for all

t ∈ [0, t∗f ] and all D ∈ ∆.

Proof. Fix a real number ε > 0. Recall that all input functions u(t) of Σ are bounded by K, that t∗f < ∞
by Theorem 3.9, and that all perturbation matrices D ∈ ∆ have entries of magnitude not exceeding d > 0.
Recall that D = (DA, DB),∆ = (∆A,∆B), and that A′ = A + DA and B′ = B + DB in (2.1), where
DA ∈ ∆A and DB ∈ ∆B . Now, let η > 0 be a real number (to be selected later). By the uniform continuity
of the function eA

′t, there is a real number δ(η) > 0 such that the function

µ(t′, t) := e−A
′t′ − e−A

′t

satisfies ||µ(t′, t)|| ≤ η for all t′, t ∈ [0, t∗f ] satisfying |t′ − t| < δ(η). Also, let

β := sup{||B +DB || : DB ∈ ∆B},
and let

N := sup{eA
′t : DA ∈ ∆A, t ∈ [0, t∗f ]};

here, N exists due the fact that all involved quantities are bounded. Let 0 < γ ≤ δ(η) be any number
for which s := t∗f/γ is an integer. We build a partition of the interval [0, t∗f ] into segments of length γ,
namely, the partition determined by the points 0, γ, 2γ, ..., (s − 1)γ. Recalling that the input function u(t)
of Σ is an m-dimensional vector with each component bounded by K, we define a bang-bang input function
u±(t) := (u±1 (t), u±2 (t), ..., u±m(t))T through its components as follows: for each component u±i , i = 1, 2, ...,m,
select in each interval [qγ, (q + 1)γ] a switching time θqi, where q = 0, 1, 2, ..., s− 1, i = 1, 2, ...,m, and set

u±i (t) :=
{

+K for t ∈ [qγ, θqi),
−K for t ∈ [θqi, (q + 1)γ),

where the value of θqi is selected to satisfy the equality
ˆ (q+1)γ

qγ

u∗i (τ)dτ = K

ˆ θqi

qγ

dτ −K
ˆ (q+1)γ

θqi

dτ = K[2(θqi − qγ)− γ].

Note that θqi exists for all q = 0, 1, 2, ..., s − 1 and all i = 1, 2, ...,m due to the fact that |u∗i (t)| ≤ K for all
t ≥ 0. Then, we obtain the equality

(5.1)
ˆ (q+1)γ

qγ

[u∗i (τ)− u±i (τ)]dτ = 0, q = 0, 1, 2, ...., s− 1.
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Finally, let x±(t) be the state trajectory generated by the system Σ when driven by the input function u±(t),
and let x∗(t) be the trajectory induced by the optimal input function u∗(t). Noting that the perturbation
matrix D is the same in both cases (we are comparing the two input functions for the same system), one
obtains (using (5.1))

||x∗(t)− x±(t)|| =
∣∣∣∣∣∣∣∣eA′t[x0 +

ˆ t

0

e−A
′τB′u∗(τ)dτ

]
− eA

′t

[
x0 +

ˆ t

0

e−A
′τB′u±(τ)dτ

]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣eA′t ˆ t

0

e−A
′τB′[u∗(τ)− u±(τ)]dτ

∣∣∣∣∣∣∣∣
≤ N

∣∣∣∣∣∣∣∣ˆ t

0

e−A
′τB′[u∗(τ)− u±(τ)]dτ

∣∣∣∣∣∣∣∣.
Now, let q be the largest integer for which qγ ≤ t; then, continuing from the last expression, we can write

||x∗(t)− x±(t)|| ≤ N

∣∣∣∣∣∣∣∣ q−1∑
r=0

ˆ (r+1)γ

rγ

e−A
′τB′[u∗(τ)− u±(τ)]dτ +

ˆ t

qγ

e−A
′τB′[u∗(τ)− u±(τ)]dτ

∣∣∣∣∣∣∣∣
≤ N

{∣∣∣∣∣∣∣∣ (q−1)∑
r=0

[
e−A

′rγB′
ˆ (r+1)γ

rγ

[u∗(τ)− u±(τ)]dτ

+
ˆ (r+1)γ

rγ

µ(τ, rγ)B′[u∗(τ)− u±(τ)]dτ
]∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ ˆ t

qγ

e−A
′τB′[u∗(τ)− u±(τ)]dτ

∣∣∣∣∣∣∣∣}

≤ N

{ (q−1)∑
r=0

ˆ (r+1)γ

rγ

‖µ(τ, rγ)‖‖B′‖[||u∗(τ)||+ ‖u±(τ)||]dτ

+
ˆ t

qγ

‖e−A
′τ‖‖B′‖[‖u∗(τ)‖+ ‖u±(τ)‖]dτ

}
≤ 2KNβ[ηt∗f +Nγ].

We choose now the value of η so that 2KNβηt∗f < ε/2. Then, we choose 0 < γ ≤ min{δ(η), ε/(4KN2β)} so
that t∗f/γ is an integer. For these selections, we obtain ||x∗(t)− x±(t)|| < ε for all t ∈ [0, t∗f ], and our proof
concludes. �

Of course, the bang-bang input function u±(t) that replaces the optimal input function u∗(t) is indepen-
dent of the perturbation matrices. The cost of making ε smaller is an increase in the number of switches of
the bang-bang function u±(t). In many practical applications, a good approximation of optimal performance
can be achieved by a bang-bang input function with a relatively low number of switches, as the following
example indicates.

Example 5.2. Consider the one-dimensional system ẋ(t) = ax(t) + u(t), where the time constant a is
subject to the uncertainty 1.2 ≤ a ≤ 1.4. The system has the input bound |u(t)| ≤ 2 for all t, and the initial
condition x(0) = 1. The objective is to find an input function u∗(t) that keeps the state amplitude below the
bound x2(t) ≤ 1.96 for the longest period of time, irrespective of the value a adopts within its uncertainty
range. The optimal input is shown in the left plot, and the corresponding state trajectories for different
values of a are plotted on the right with M = 1.96, tf = 3.7.
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The Optimal Input is Not Bang-Bang
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Figure 5.1. Non Bang-Bang Optimal Input

As can be seen from the plot in Figure 5.1, the solution is bang-bang only over the time span [0, 1.27].
For the remaining time, the input switches to the value 1.67, not one of the values ±2 that a bang-bang
function would assume. The maximal time here is t∗f = 3.7 seconds.

The graphs in Figure 5.2 demonstrate a bang-bang input function with sixteen switches that approximates
optimal performance. As can be seen from the accompanying state trajectories, the same maximal time of
3.7 seconds can be kept if the error bound is allowed to increase from M = 1.96 to M = 2.01.
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Figure 5.2. Bang-Bang Approximation With 16 Switchings

�

To summarize in brief terms, we have seen that bang-bang input functions can always be used to achieve
optimal, or nearly optimal, performance, when the objective is to keep errors below a specified bound for
the longest time without feedback.
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