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Abstract—1The product quality in manufacturing processes
is dependent on various process parameters (called control
settings) usually set by an human overseer at the beginning of
each process run. However quality is often adversely influenced
by several additional “noise” parameters which cannot be
controlled and hence can take random values for each process
run. The problem of computing the optimal sequence of control
settings for an infinite series of such manufacturing runs, such
that the product quality is maintained for all runs and for
all possible values of the noise parameter, is addressed in this
article. The dependence of product quality on control and noise
parameters is modeled using the response surface methodology.
Subsequently, the concept of mixed strategy equilibrium is
borrowed from the theory of games to compute a probability
distribution which optimally determines the control settings for
each process run. These choices of control settings maximally
improves product quality over all possible values of the noise
parameters for all runs of the process.

I. INTRODUCTION

Genichi Taguchi [1] discovered a statistical method called
robust parameter design for product quality improvement.
Taguchi identified two types of inputs in a manufacturing
process: some easy-to-manipulate control factors and also
some difficult-to-control noise factors. The noise factors are
the sources of uncontrollable variations in the product quality.
In a particular run of a manufacturing process, the best
settings of the control factors are those for which the product
quality is robust to the effects of the noise variables. However,
most manufacturing processes are repetitive and the product
quality must be maintained at the best possible value for each
process run. In this article we propose a min-max formulation
of the robust parameter design problem where we guarantee
the best average product quality for manufacturing processes
which are assumed to be infinitely repeated. A novel game
theoretic approach is introduced to address this problem.

As an example, consider a drug manufacturing processes,
where batches or lots of drugs are manufactured in each
process run and such runs are repeated many times. Evidently,
every instance (batch, lot or package) of the manufactured
drug, irrespective of the uncontrollable noise factors, should
be near the target quality. Suppose, the quality of a manu-
factured drug is quantified by the percentage of impurities
it may safely contain. Then the production process should
ensure that this percentage is never exceeded no matter
what particular value the noise factors takes during any
of the runs of the manufacturing process. Such a situation
is also prevalent in manufacturing of military and safety
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devices (e.g. in the automobile industry), where certain safety
standards must be guaranteed for each and every product. For
instance, life saving devices used by the military must have
a guaranteed product quality for each and every device being
used.

Traditional approaches (e.g. see [2], [3] and the references
therein) in the statistics literature have developed algorithms
to choose the best control factors for a particular run of
the process. Various approaches aimed at minimizing the
process variance due to noise has been studied. However,
none of these approaches deal with the scenario of repeated
production runs, which however is the practical situation in
most manufacturing processes. Moreover, we show that on
an average (taken over various process runs), it is possible
to have better product quality than for a single process run.

To the best of our knowledge, such a game theoretic
approach to the robust parameter design of repeated process
runs has not been addressed in the literature. Two con-
ventional approaches to solve the robust parameter design
problem for a single process run are the Taguchi method and
the response surface approach. Several articles and books by
Taguchi (e.g. [4], [1] and [5]), as well as papers by other
authors (e.g. [6], [7] and [8]) discuss Taguchi’s methodology
in details. While several authors in the statistical design area
(such as [9], [3], [10], [11] and references therein) have
investigated the response surface approach.

The method of finding optimal strategy sequences in
repeated game like situations was introduced by [12] and
later studied by several authors in game theory. Algorithms
to compute the optimal strategies in games with polynomial
payoff were introduced by [13] and have been recently im-
proved by [14]. In this article we use an algorithm proposed
by [15].

The remainder of the article is organized as follows. In
Section 2 we formulate the problem mathematically and
introduce the idea of probability distribution based control
setting selection for a repeated set of production runs. The
response surface approach used in this article to model
production processes is also briefly reviewed here. In Section
3, a result in [13] is extended to the multivariate situation
needed for this application. While, Section 4 describes the
numerical algorithm named IER, which is used to calculate
the optimal control settings for the problem described above.
A numerical example illustrating the theory introduced, is
also included in Section 4.



II. PROBLEM FORMULATION

A. Single Process Run

First consider the case of a single process run. We model
the dependence of the process response (i.e. product quality)
on the control and the noise parameters by a response surface
based on a single experimental design [9]. As mentioned
above, this process is repeated infinitely many times and
in each run, the noise parameters can assume any arbitrary
value within a given range. Let ŷ := ŷ(x, z) be the estimated
process response where x ∈ Rk are the k control factors and
z ∈ Rl are the l noise factors (details about the model ŷ is
given in subsection II-C). We assume that, x and z can take
values only in the sets Rx ⊂ Rk and Rz ⊂ Rl, respectively.
If we were concerned about only a single process run, we
might want to choose the control factor vector x for each run
of the process so as to keep the estimated response near the
target for all possible values of z ∈ Rz . In other words we
would like to minimize the worst deviation of the estimated
response from the target: let the target response be T ; Then
for any particular run, and for any fixed choice x of the
control factor, the worst possible deviation of the estimated
response from the target is

max
z∈Rz

‖T − ŷ(x, z)‖ (1)

where ‖ · ‖ is some appropriately defined error criterion. In
this article we will use the squared deviation of ŷ about the
target as the error criterion:

‖T − ŷ(x, z)‖ := (T − ŷ(x, z))2 (2)

However this worst deviation is still a function of the control
variable x. Hence, it would seem, that, in each run we would
like to choose a x ∈ Rx which minimizes supz∈Rz

(T −
ŷ(x, z))2. Consequently, we are looking for a x∗ ∈ Rx which
satisfies the following:

max
z∈Rz

(T − ŷ(x∗, z))2 = min
x∈Rx

max
z∈Rz

(T − ŷ(x, z))2 (3)

However, recall that in reality, the process is run for infinitely
many (at least for large number of) times. Surprisingly, it
turns out that it is sub-optimal to use the solution x∗ of (3)
for each run of an infinitely sequence of repeated production
runs. For such situations, the theory of mathematical games
[12], [13], predicts that the control setting for each run should
be selected randomly from Rx, according to a carefully
chosen optimal probability distribution over Rx. We next
elaborate on this concept:

B. Repeated Process Runs:

First note that the optimal value described in (3) can be
bounded below in the following way [13]:

min
x∈Rx

max
z∈Rz

(T − ŷ(x, z))2 ≥ max
z∈Rz

min
x∈Rx

(T − ŷ(x, z))2. (4)

In general, the minmax and the maxmin quantities are not
equal. This in turn seems to indicate that there is still room
for improvement by reducing the minmax, till we arrive at
an equilibrium solution where the two expressions are equal.

Situations where such an equilibrium solution exists have
been widely studied in the mathematical theory of games
(e.g. see [12], [16], [13] and references therein). It has been
shown that equality always holds in (4) if we re-interpret the
above inequality (4) in the following way.

Assume that the production process is ran repeatedly for
several times, where each run is independent of the previous
runs. We already know that the noise variable z is random
in nature taking values from the permissible region Rz . Let
us now assume that z takes values from Rz according to
some unknown probability distribution with the cumulative
distribution function (cdf) G(z), (where G(z) is defined
over Rz) for each run of the process. Similarly, the human
overseer, instead of using the same x for all runs of the
process, chooses the control factor x ∈ Rx for each run
of the process according to a probability distribution with
a cumulative distribution function F (x) defined over Rx.
[Once the value of the control factor is chosen for a run
it is then kept fixed at that value for the particular run].

Define the set of all cumulative distribution functions over
Rz and Rx as G and F , respectively. Then the estimated
error (T−ŷ(x, z))2 can be redefined in terms of the expected
estimated error, over the product space Rx ×Rz as follows:

M(F,G) =
∫

Rz

∫
Rx

(T − ŷ(x, z))2dF (x)dG(z), (5)

where the integral is considered in the Stieltjes sense [13].
Thus, the problem of choosing the minmax control setting
(x∗) as posed in 3 can now be translated to the problem of
choosing the optimal cdf F ∗ ∈ F while assuming that the
noise factors are chosen from the worst case cdf G∗ ∈ G for
repeated runs of the process. In other words, our objective in
this setting of repeated process runs, is to find the optimal
distribution function F ∗ ∈ F such that

max
G∈G
M(F ∗, G) = min

F∈F
max
G∈G
M(F,G). (6)

Moreover according to the well-known result in game
theory derived by [16] (also see [13]), the following always
holds:

min
F∈F

max
G∈G
M(F,G) = max

G∈G
min
F∈F
M(F,G), (7)

and at least one pair of distribution functions (F ∗, G∗)
achieving the above equilibrium, is guaranteed to exist. Such
distribution function pairs (F,G) are called mixed strategies
in game theory and the equilibrium defined by (7) is called
a mixed strategy equilibrium. This equilibrium solution has
the following properties and advantages over the solution to
(3).

1) The min-max value of M(F,G) always lower bounds
the min-max value of M(x, z). In other words:
M(F ∗, G∗) ≤ minx∈Rx

maxz∈Rz
(T − ŷ(x, z))2. This

property fulfills the promise of improving the min-
max solution of (3), thus providing the best possible
method of choosing the sequence of control settings to
get guaranteed average performance.

2) In reality, the noise variables are randomly created, and
hence, z may not follow the worst case distribution



G∗(z). But the optimal distribution function F ∗(x)
guards against this possibility, by guaranteeing that for
any incidence of the noise variable (say z = z1),

M(F ∗, G∗) ≤
∫

Rx

(T − ŷ(x, z1))2dF ∗(x)

The optimal distribution function thus provides a method
for selecting control settings for repeated production runs
in manufacturing processes. However the computation of
such a distribution function seems to be an issue. We show
first this infinite dimensional optimization can be reduced
to finite dimension using a property of moments (Section
III). In Section IV, we outline a method for the computation
of the optimal probability distribution for the control setting
x∗, based on the iterative entropic regularization algorithm
proposed in [15]. It is shown that this algorithm solves (3)
satisfactorily for the numerical example considered.

C. Statistical Model

A single experimental design known as the combined
array (see [9] and [3]) is used for both the control and
noise variables. Combined arrays are useful in estimating
main effects and interaction effects among control variables,
main effects and interaction effects among noise variables
and interaction effects between control and noise variables.
We make some standard assumptions: Due to the easy to
control/manipulate nature of the control variables, they are
considered as fixed effects, while noise variables are consid-
ered to be random. However, for the sake of experimentation
and estimating the response, the noise factors are considered
to be fixed at a certain level in the experiment; whereby
we obtain measurements on the response and then use these
data points to fit a model to the response. The fitted model
relates the process response y as a function of the control
(x) and the noise variables (z). We assume that the control
and noise variables are continuous in nature. Using the full
single response model proposed by [3] we write,

y(x, z) = β0 + x′β + x′Bx + z′γ + x′∆z + ε, (8)

where x = (x1, . . . , xk)T and z = (z1, . . . , zl)T are the
vectors of control and noise variables, respectively; β{k×1}
and γ{l×1} are the coefficients of the control and noise vari-
ables, respectively; B{k×k} is a symmetric matrix containing
the coefficients of the interaction effects between control
variables; ∆{k×l} is a matrix containing the coefficients of
the interaction effects between the control and the noise
variables and ε ∼ N(0, σ2) is the error term.

We assume that both the control and noise variables take
values in some closed bounded region: Let x ∈ Rx and z ∈
Rz , where both Rx and Rz are closed and bounded (compact)
sets; then the experimental region, R, is the Cartesian product
of the sets Rx and Rz , i.e., R = Rx × Rz . When planning
the experiment the researcher selects a number of levels of
both the control and the noise variables over the experimental
region R to obtain measurements on the response variable.
Using these measurements and considering both x and z to

be fixed in model (8) we estimate y(x, z) by least squares
regression. The fitted model is,

ŷ(x, z) = β̂0 + x′β̂ + x′B̂x + z′γ̂ + x′∆̂z. (9)

where θ̂ = (β̂0, β̂, B̂, ∆̂)′ is, θ̂ = (X′X)−1X′y,X is the
n× p design matrix, p = 1 + k + l + k(k−1)

2 + kl, and y is
the n× 1 vector of responses.

We can summarize the problem described above as fol-
lows:

Problem 1. Given the estimated response model as in
(9), a specified target response T and the design region
Rx × Rz , find F ∗ ∈ F such that maxG∈GM(F ∗, G) =
minF∈F maxG∈GM(F,G)

III. THE OPTIMAL DISTRIBUTION FUNCTION

We have seen that the optimal sequence of control setting
for a repeated production process can be computed from an
optimal distribution function. However, in order to compute
the optimal distribution, we need to search over the spaces
(F(x) and G(z)) of all possible distribution functions, defined
over Rx and Rz . It is evident that searching for distribution
functions is, in general, numerically impossible. In this
section, we show that for ŷ(x, z) described by (9), the optimal
distribution functions (F ∗, G∗) turn out to be step functions
with a finite number of steps. It is further shown that the
step function nature of the optimal distribution functions,
reduces the optimization over all possible distribution func-
tions implied by (6) into a much simpler finite dimensional
optimization over Euclidean spaces. First let us define a step
cumulative distribution function:

Definition 2. Let P ⊂ Rk, p = [p1,..., pk]T ∈ P and ᾱ =
[α1, ..., αk]T ∈ P. Then a cdf I(p;ᾱ) over P is said to be a
step function with one step, if it is of the form:

I(p; ᾱ) =
{

1 if p1 ≥ α1 and p2 ≥ α2 and ....pk ≥ αk

0 otherwise

It follows that for ᾱi ∈ P (i = 1, ...,m), the distribution
function

F (p) = γ1I(p; ᾱ1) + γ2I(p; ᾱ2) + ....+ γmI(p; ᾱm)

where γi ≥ 0 and
∑

i γi = 1, is a step function with m steps.

Now recall the single model in both control and noise
variables fitted to the response (9) and the min-max op-
timizations posed in the equation (3). Here the estimated
response ŷ(x, z) is a function (see (9)) of the control factors
x ∈ Rx ⊂ Rk and the noise factors z ∈ Rz ⊂ Rl.
Define the function M(x, z) = (T − ŷ(x, z))2, which is
a multivariate polynomial in the (k + l) components of
x = (x1, . . . , xk)T and z = (z1, . . . , zl)T . It is easy to
see that each term of the polynomial M(x, z) is of the
form a {(x1)t1(x2)t2 ...(xk)tk} {(z1)u1(z2)u2 ...(zl)ul} where
a ∈ R is a constant, each of t1, t2...tk take one of the values
in the set {0, 1, 2, 3, 4} and each of u1, u2...ul take one of



the values in the set {0, 1, 2}. Hence, the function M(x, z)
can be written as the following sum [13]:

M(x, z) =
m∑

j=1

n∑
i=1

aijsi(x1, ..., xk)vj(z1, ..., zl) (10)

where aij ∈ R are constants, the functions si(x1, ..., xk) =∏k
r=1(xr)ti

r and tir ∈ {0, 1, 2, 3, 4} for r = 1, 2, .., k.
Similarly the functions vj(z1, ..., zl) =

∏l
q=1(zq)uj

q and
uj

q ∈ {0, 1, 2} for q = 1, 2, .., l. Here m and n are positive
finite integers whose values depend on the number of non-
zero elements in the parameter matrix θ̂ (see (9)). The
expected estimated squared error can then be expressed as:

M(F (x), G(z)) =M(S,V) =
m∑

j=1

n∑
i=1

aijSiVj (11)

where

Si =
∫

Rx

si(x1, ..., xk)dF (x) and

Vj =
∫

Rz

vj(z1, ..., zl)dG(z). (12)

In the rest of this article, we denote in shorthand si(x) :=
si(x1, ..., xk), vj(z) := vj(z1, ..., zl), S := (S1, S2, ..., Sn)
and V := (V1, V2, ..., Vm).

We define the following notation. Let

C = {(s1(x), ..., sn(x)) ∈ Rn : x ∈ Rx} and
J = {(v1(z), ..., vm(z)) ∈ Rm : z ∈ Rz} (13)

While the sets C and J are not convex in general, we denote
the convex closures of C and J by

D = conv(C) and H = conv(J). (14)

In addition, using (12), we define the following sets created
by all possible distribution functions over F and G:

Q = {(S1, S2, ..., Sn) ∈ Rn : F ∈ F} and
P = {(V1, V2, ..., Vm) ∈ Rm : G ∈ G}

Using these definitions we can rewrite the equilibrium
defined in (7) in terms of (11) as follows:

min
S∈Q

max
V∈P

M(S,V) = max
V∈P

min
S∈Q
M(S,V). (15)

Let us denote the pair achieving the equilibrium of (15) by
(S∗,V∗). However, this restatement of (7) does not reduce
the computational complexity of the optimization. Hence we
need a simpler characterization of the sets Q and P which
is provided by the following theorem. The next theorem is
a straightforward extension of the results derived in [13], to
multi-dimensional Euclidean spaces.

Theorem 3. If M(x, z) is of the form (10), then we can
claim:

(i) There is at least one pair of optimal cumulative distri-
bution functions (F ∗, G∗) achieving the equilibrium defined
by (7) such that F ∗and G∗ are step functions of at most n
and m steps, respectively.

(ii) Q = D and P = H; i.e., every cdf F ∈ F
(alternatively G ∈ G) corresponds to a point in the convex
set D (alternatively H) and vice versa. Moreover, each point
in the set D (alternatively H) can be represented by a
distribution function of at most n (alternatively m) steps.

Proof: Using Kakutani’s fixed point theorem ([16]) it
is known that there exist at least one pair of cumulative
distribution functions (F ∗, G∗) ∈ F × G which achieves the
equality in (7). Hence claim (ii) implies (i). We thus start by
proving claim (ii) of the theorem.

Assume that there exists S0 := [S0
1 , S

0
2 , ..., S

0
n]T ∈ Q such

that S0 /∈ D. Let F0(x) be the distribution function which

produces S0, i.e.


S0

1

S0
2

.

.
S0

n

 =


∫

Rx
s1(x)dF0(x)∫

Rx
s2(x)dF0(x)

.

.∫
Rx
sn(x)dF0(x)

. Since

D is convex, there exists a hyperplane separating S0 and D,
i.e. for some δ > 0, there exists a constant vector w ∈ Rn

such that

wT S0 −wT


s1(x)
s2(x)
.
.

sn(x)

 > δ for all x ∈ Rx

Integrating both sides with respect to dF0(x), we get

wT S0 −wT


∫

Rx
s1(x)dF0(x)∫

Rx
s2(x)dF0(x)

.

.∫
Rx
sn(x)dF0(x)

 > δ

=⇒ wT S0 −wT S0 > δ

which implies a contradiction since δ > 0.
Conversely, let d0 ∈ D. Then there exists a vector

γ = [γ1....γn] ∈ Rn with γi ≥ 0 and
∑

i γi =
1, and n vectors x1, ...,xn ∈ Rx with corresponding
(s1(xi), s2(xi), ..., sn(xi)) ∈ C for all i = 1, ..., n, such

that d0 = γ1


s1(x1)
s2(x1)
.
.

sn(x1)

 + γ2


s1(x2)
s2(x2)
.
.

sn(x2)

 + ..... +

γn


s1(xn)
s2(xn)
.
.

sn(xn)

. It is easy to see that if we choose F0(x) =

γ1Ix1(x) + γ2Ix2(x) + .... + γnIxn(x) then we recover

d0 =
∫

Rx


s1(x)
s2(x)
.
.

sn(x)

 dF0(x). Hence d0 ∈ Q.

This shows that every cdf corresponds to a point in the
convex set D and vice versa. Moreover, by noting the form



of F0(x) above, it can be concluded that each point in the
set D can be represented by a distribution function of at
most n steps. Since the existence of the optimal distribution
function is guaranteed by Kakutani’s result, it follows that
it is equivalent to a step function of at most n steps. An
identical argument holds for proving that G∗(z) is a step
function of at most m steps.

The above result reduces the problem of computation of
the optimal distribution functions to a finite dimensional
optimization over convex sets. This can be seen by using
claim (2) of theorem 3 in (15). Since Q = D and P = H ,
(15) reduces to

min
S∈D

max
V∈H

M(S,V) = max
V∈H

min
S∈D
M(S,V). (16)

Here the sets D and H are convex subsets of n and m
dimensional Euclidean spaces, respectively. Moreover, the
sets D and H are easy to compute using (13) and (14).
Once we have calculated D and H , we can compute the
values (S∗,V∗) ∈ D × H which achieves the equilibrium
in (16), using, e.g., the IER algorithm described in Section
IV-A. But claim (2) of theorem 3 also asserts that any
point in D corresponds to a distribution function of at most
n steps. Hence we can recover the equivalent n step cdf
F ∗ ∈ F corresponding to S∗ and the m step cdf G∗ ∈ G
corresponding to V∗.

IV. COMPUTATION OF THE OPTIMAL CDF

A. The IER algorithm

Various researchers have studied efficient numerical algo-
rithms for solving min-max problems similar to (16). (e.g. see
[17] and the references therein). In this article we propose
to use a method of outer approximation first proposed in
[17] and modified using an entropic regularization in [15].
We follow the authors of the latter paper in calling this
algorithm as Iterative Entropic Regularization (or IER). This
method has been shown to have guaranteed convergence
properties to the min-max solution. However, in using this
method one needs to solve a sequence of maximization and/or
minimization problems with linear cost function but arbitrary
convex constraint sets. First we briefly describe the IER
algorithm to make this presentation self-contained.

Iterative Entropic Regularization:: Let us rewrite Problem
1 in terms of (16) simply as: Find (S∗,V∗) ∈ D ×H such
that M(S∗,V∗) = minS∈D maxV∈H

∑m
j=1

∑n
i=1 aijSiVj

where M(S,V) is defined as in (11). Further define that
M∗(S) = maxV∈HM(S,V).

Next approximate H by a finite subset Hm :=
{h1,h2, ....,hm} of m points. Correspondingly M∗(S) is
approximated by M∗m(S) = maxV∈HmM(S,V). However
this approximate function is still not differentiable and hence
we use the following smoothed version using entropic regu-
larization ([17] and [15]):

M∗m,p(S) = (1/p) log

{ ∑
V∈Hm

exp {pM(S,V)}

}
where p > 0. Then the algorithm can be written as follows:

1) Select V1 ∈ H and let H1 := {h1};m = k = 1.
Choose δ ∈ (0, 1), and p > 0.

2) Find Sm,p ∈ D satisfying M∗m,p(Sm,p) ≤
minS∈DM∗m,p(S) + δk. Increase the iteration count
k by one.

3) If (i)M∗(Sm,p) ≤M∗m,p(Sm,p) and (ii)δk+log(m)/p
is below a desired tolerance, then stop. If (i) is violated
then choose any Vm+1 = argmaxV∈HM(Sm,p,V),
set Hm+1 = Hm∪{Vm+1}, increase m by one, select
p ≥ (log(m))2 and go to step 2. If (ii) is violated
increase p by a constant factor and go to step 2.

This algorithm is guaranteed to converge to the global solu-
tion at step 3 with at most a (δk +log(m)/p) error; or it pro-
duces an infinite sequence of solutions Sm ∈ D(m → ∞),
any cluster point of which is a global solution.

B. Numerical Example

In this example, we study the effects of a single control
variable (x) and a single noise variable (z) on the response
y for repeated runs. A 22 factorial design with four added
center runs is used. The response values for this example
are simulated using the R (Version 2.7.1) software. The
interest is in determining the value of x which minimizes
the response for all settings of z. The regions Rx and
Rz are considered to be the closed intervals [−1, 1]. The
fitted model is ŷ(x, z) = 4 + x − x2 − 0.05z + 3xz. For
simplicity and ease of computation, we assume that the target
is to keep the response ŷ as small as possible. Clearly,
this scenario is a subclass of the theory developed in this
article. For example, one may choose T to be a extremely
low value to fit this problem into Problem 1. Equivalently,
the error criterion of (2) and (10) can be chosen simply
as, M(x, z) = ŷ(x, z) = 4 + x − x2 − 0.05z + 3xz. We
would like to apply the theory developed in Section III for
repeated process runs in this example. Clearly M(x, z) is a
separable function and hence it meets the requirements for
applying theorem 3. Using the notation of (11), let s1(x) = x,
s2(x) = x2 and v1(z) = z. The expected value of M(x, z)
is,

M(F (x), G(z)) = 4 + S1 − S2 − 0.05V1 + 3S1V1,

(=: M(S1, S2, V1))

where

S1 =
∫ 1

−1

x dF (x), S2 =
∫ 1

−1

x2 dF (x), .

and V1 =
∫ 1

−1

z dG(z)

Here

Q = {(S1, S2) ∈ R2 : F ∈ F} and P = {V1 ∈ R : G ∈ G}

We aim to find the equilibrium solution (S∗1 , S
∗
2 ) ∈ Q and

V ∗1 ∈ P such that

M(S∗1 , S
∗
2 , V

∗
1 ) = min

(S1,S2)∈Q
max
V1∈P

M(S1, S2, V1)

= max
V1∈P

min
(S1,S2)∈Q

M(S1, S2, V1)
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Figure 1: The set D

Even for this simple example, it is seen that these sets Q
and P are difficult to compute. However, using Theorem 3
we know that the search of the equilibrium solution over the
entire sets of distribution can be reduced to a search over the
following simpler sets:

D = conv {(x, x2) : −1 ≤ x ≤ 1} and
H = {z : −1 ≤ z ≤ 1}

Hence,

M(S∗1 , S
∗
2 , V

∗
1 ) = min

(S1,S2)∈D
max
V1∈H

M(S1, S2, V1)

= max
V1∈H

min
(S1,S2)∈D

M(S1, S2, V1)

The set D is shown as the shaded region in figure 1. Set
D is the convex closure of C. Using the IER algorithm, the
optimal choice in terms of (S1, S2) ∈ D which solves:

min
(S1,S2)∈D

max
V1∈H

[4 + S1 − S2 − 0.05V1 + 3S1V1].

is (S∗1 = 0, S∗2 = 1). The optimal choice (S∗1 , S
∗
2 ) =

(0, 1) is shown in figure 1. Figure 2 plots the values of
maxV1M(S1, S2, V1) against S1and S2. Note from figure
2 that the minimum value of maxV1M(S1, S2, V1) with
respect to S1and S2 corresponds to (S∗1 , S

∗
2 ) = (0, 1) ∈ D.

We know from theorem 3 each point in D can be recovered
from a cumulative distribution function of at most 2 steps. In
this case it is easy to see that, (S∗1 , S

∗
2 ) can be expressed as[

S∗1
S∗2

]
= 0.5

[
s1(xa)
s2(xa)

]
+ 0.5

[
s1(xb)
s2(xb)

]
for xa = 1 and

xb = −1.
This implies that the optimal mixed strategy F ∗ is a step

function of two steps, F ∗(x) = 0.5 I1(x)+0.5 I−1(x), where

I1(x) =
{

0 if x < 1
1 if x ≥ 1 and I−1(x) =

{
0 if x < −1
1 if x ≥ −1

V. CONCLUSION

A general methodology for computing the best possible
sequence of control settings for an infinitely repeated pro-
duction process is introduced. It is shown, using an idea
from game theory, that the control parameters of such a pro-
cess should be selected according to an optimal probability

Figure 2: maxV1M(S1, S2, V1) vs S1and S2 and the optimal
choice (S∗1 , S

∗
2 ) = (0, 1)

distribution. The polynomial structure of the fitted model is
then exploited to present an efficient algorithm to compute
the corresponding optimal cumulative distribution function.
The proposed method is then demonstrated on a simulated
example process.
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