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Abstract—The problem of maximizing the duration of open
loop operation of a perturbed linear time invariant system, while
keeping performance errors within bound, is considered. It was
shown in an earlier article that the optimal control for this
problem is purely bang-bang if an associated switching function
is non-zero almost everywhere. Sufficient conditions are derived
in this article to guarantee this situation.

I. INTRODUCTION

Consider a single input to state linear time invariant system
given by the state space description of the form

ẋ(t) = A
′
x(t) +B

′
u(t), (1)

where x ∈ Rn is the state of the system; u ∈ R is the input
and y ∈ Rm is the output. Here A

′
and B

′
are uncertain

system matrices of compatible dimensions. It is assumed
that the nominal values of these matrices are known: let
the nominal values be A and B while the uncertainties are
assumed to be norm bounded and additive with the following
representation: let d > 0 be a real number. Denote by ∆A

and ∆B the sets of all n×n and n× 1 matrices respectively
with each element in the interval [−d, d]. Then,

A′ := A+DA and B′ := B +DB (2)

where DA ∈ ∆A and DB ∈ ∆B are unspecified matrices
representing perturbations and uncertainties. In shorthand,
denote D := (DA, DB) and ∆ := ∆A × ∆B so that D ∈
∆. The input u(t) is assumed to be Lebesgue measurable
and bounded. Let K ∈ R+; then the set of possible inputs is
denoted by U = {u(t) : |u(t)| ≤ K for a.a. t ∈ [0,∞)}

Let M ∈ R+ be a pre-specified number. Assuming that the
system is started at time t = 0 with initial conditions such
that xT (0)x(0) ≤ M , we define the system performance as
acceptable for as long as the following equation hold:

xT (t)x(t) ≤M for all D ∈ ∆ and all t ∈ [0, tf ]. (3)

In this setting, our objective can be stated as follows:
Problem 1: Find maxu(t)∈U tf such that the solution to

(1) satisfies (3). Compute the optimal input achieving the
maximum (also see [2], [3]).
Such a problem arises in a variety of applications where the
feedback signal is intermittently available and the system is
often forced to function in open loop while maintaining ac-
ceptable performance[3]. Interruptions in the feedback signal
may be caused by malfunctions or disruptions in the feedback
communication link, or they may be the result of efforts to
reduce operating costs. In other applications, feedback chan-
nels are opened only occasionally, when system performance
degrades below an acceptable level.

Consider, for example, the medical treatment of type
1 diabetes. Individuals afflicted by this condition require
periodic injections of insulin in order to control the glucose

concentration in their blood. Insulin is injected when glucose
concentration deviates by more than a specified amount from
nominal level. Insulin injection is often done by an implanted
insulin infusion pump, which allows excellent control of the
infusion profile. The feedback mechanism in this case con-
sists of periodical blood analyses, which, at the present time,
require the drawing of blood through finger pricks or similar
irksome procedures. In order to improve patient comfort, it
would be desirable to maximize the time interval between
blood samplings, while maintaining blood glucose concen-
tration within desirable bounds. Needless to say, models of
the dynamics of blood glucose concentration are subject to
significant errors and depend on external interferences. In
this context, the objective of the present paper is to develop
techniques for the design of glucose infusion profiles that
keep blood glucose concentrations within desirable bounds
and allow the longest possible time interval between blood
samplings.

Intermittent use of feedback is also of interest in other
biomedical applications. Consider, for example, the treatment
of cancer by chemotherapy. Here, it would be of advantage
to maximize the time between observations of cancer sta-
tus, observations that often require extensive testing. The
methodology developed in the present paper can be used
to design optimal chemotherapy protocols that maximize the
time between subsequent tests. Such protocols will improve
patient independence and reduce costs (e.g. [5] and others).
Many additional potential applications in biomedicine are
possible as well.

Another potential applications can be found in networked
control systems, where feedback is used only intermittently
so as to reduce network traffic (e.g., [6], [8], [7] and others).
Here, feedback sensors and system actuators communicate
through networks that are shared by a vast number of
users, with only limited network capacity available for each
user. To abide by network capacity limitations, feedback
can only be used intermittently. Examples of applications
of networked control systems include spatially distributed
resource allocation networks, highway transportation control
systems, power generation and distribution networks, and
others. Clearly, to minimize traffic within communications
networks, it is necessary to reduce feedback and actuator use.
The methodology developed in the present paper can help
accomplish this task by providing open loop input signals
that allow operation without feedback for maximal intervals
of time.

In general terms, our objective is to address the needs
exhibited by such applications and others through the devel-
opment of open loop controllers that maximize the duration
of time during which a perturbed system can operate without
feedback and not exceed acceptable error bounds.



II. RESULTS

Assume that at least one of the eigenvalues of the nominal
system matrix A has non-negative real part and that the
initial condition satisfies x(0) 6= 0. Then the existence of
a finite maximal time t∗f and the optimal input u∗(t) can be
proved [2], [3]. Using the mathematical framework of [1],
the optimal input function is characterized as follows [2]:

Theorem 1: Let (u∗(t), t∗f ) be a solution of Problem 1.
Then, there is a Lebesgue measurable function z(t) :
[0, t∗f ] → R not identically zero, such that z(t)u∗(t) ≤
z(t)u(t) for all input functions u(t) ∈ U and for almost
all times t ∈ [0, t∗f ].

Corollary 1: [2] If the function z(t) is non-zero almost
everywhere in the interval [0, t∗f ]. Then, the optimal input
function u∗(t) of Problem 1 is a bang-bang function, where

u∗(t) :=
{
−K if z(t) > 0,
K if z(t) < 0, (4)

for almost all t ∈ [0, t∗f ] .
In the results above, the function z(t) plays a crucial part.
The expression for z(t) is described next. First we introduce
a few additional notations: denote

Ξ := {A+ ∆A} × {B + ∆B}. (5)

Now, let ω be a Radon probability measure on the set

P := [0, t∗f ]× Ξ. (6)

Given a point (t, A
′
, B
′
) ∈ P , let ω(A

′
, B
′ |t) be the

conditional probability measure induced by ω and let ω(t)
be the marginal probability measure, so that

ω(t, A
′
, B
′
) = ω(A

′
, B
′
|t)ω(t), where (t, A

′
, B
′
) ∈ P.

(7)
Then the function z(t) : [0, t∗f ]→ R of theorem 1, is given

by the following expression (see [2] for details):

z(t) (8)

=
ˆ t∗f

t

ˆ
Ξ

(x(s,A′, B′;u∗))T eA′(s−t)B
′
dω(A′, B′|s)dω(s)

where ω(t, A′, B′) is a Radon probability measure on P with
the support

Ω = {(t, A′, B′) ∈ [0, t∗f ]× Ξ : (9)

xT (t, A
′
, B
′
;u∗)x(t, A

′
, B
′
;u∗) = M}

and x(t, A
′
, B
′
;u∗) is the solution to (1) for particular values

of (t, A
′
, B
′
) ∈ P and for the optimal input u∗(t).

While it is important to understand the characteristics
of the function z(t), it is difficult to analyse except for
very simple cases. For example, it is especially important to
identify the cases where z(t) 6= 0 a.e. on [0, t∗f ] since then, the
optimal input is necessarily bang-bang on the entire interval
of interest. Bang-bang functions are preferable for design and
implementation, as they are completely determined by their
switching times, i.e., the time instances when z(t) changes
sign. However, as the following example shows, the optimal

0 0.5 1 1.5 2 2.5 3 3.5 4
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

time

u(
t)

Figure 1. The Optimal Input is Not Bang-Bang

0 0.5 1 1.5 2 2.5 3 3.5 4

!1

!0.5

0

0.5

1

time

x(
t)

Figure 2. The Response for Different a

input may not be purely bang-bang (i.e. z(t) = 0 over sets
of non-zero measure in [0, t∗f ]) in some cases:

Example 1: Consider the system ẋ(t) = ax(t) + u(t),
where the parameter a is subject to the uncertainty 1.2 ≤
a ≤ 1.4. The input is bounded: |u(t)| ≤ 2 for all t, and
x(0) = 1. The objective is to find an input function u∗(t) that
keeps the output amplitude below the bound x2(t) ≤ 1.96 for
the longest period of time, irrespective of the value a. The
optimal input is shown in the left plot, and the corresponding
state trajectories for different values of a are plotted on the
right with M = 1.96.

As can be seen from the plot in Figures1 and 2, the
solution is bang-bang only over the time span [0, 1.27]. For
the remaining time, the input switches to the value 1.67,
not one of the values ±2 that a bang-bang function would
assume. The maximal time here is t∗f = 3.7 seconds.

We next describe a sufficient condition for the optimal
solution u∗(t) to be purely bang-bang. However it turns out
that this is easy to guarantee only for completely unstable
systems. Moreover, the error bound M should be large
enough compared to the input bound K. We make the
additional (rather restrictive) assumption:

Assumption 1: All the eigenvalues of A
′

are on the right
half plane.



One of the implications of the assumption above is that
the quadratic form vTA

′
v > 0 for any v 6= 0. This fact is

crucial for proving the theorem below. Denote by λmin(P )
the minimum eigenvalue of a n× n matrix P .

Theorem 2: Let Assumption 1 be true and denote Π :=
{t ∈ [0, t∗f ) : z(t) = 0}. Define the follow-
ing constants: d = sup∆B

‖B + DB‖2 and g =
infDA∈∆A

λmin

[
(A
′
+A

′T )/2
]
. If
√
M > K

(
d
g

)
, then

following holds: (i) z(t) 6= 0 almost everywhere on (0, t∗f ).
(ii) Π do not have a limit point.
The proof of theorem 2 is divided into the following lemmas.

Lemma 1: Let u∗(t) be the optimal input solving Problem
1 and let Assumption 1 be true. Define d = sup∆B

‖B +
DB‖2 and g = infDA∈∆A

λmin

[
(A
′
+A

′T )/2
]
. If
√
M >

K
(

d
g

)
, then xT (t;D,u∗)x(t;D,u∗) < M for all D ∈ ∆

and t ∈ [0, t∗f ) and xT (t∗f , D, u
∗)x(t∗f , D, u

∗) = M for some
D ∈ ∆.

Proof: Let xT (t0)x(t0) = M for some t0 < ∞ and
for some D ∈ ∆. If for every permissible u∗(t0) and every
D ∈ ∆, the derivative (alternatively the right hand derivative
if xT (t)x(t) is not differentiable at t0)

d

dt
(xT (t,D, u∗)x(t,D, u∗)|t=t0 > 0, (10)

then xT (t0 + ε)x(t0 + ε) > M for every ε > 0 in some
neighborhood of t0. Hence by definition t∗f = t0. We derive
conditions for (10) to hold.

d

dt
(xT (t,D, u∗)x(t,D, u∗)|t=t0 > 0 ∀D ∈ ∆

and ∀u∗(t0) ∈ [−K,+K]

⇐xT (t0)
[
A
′
x(t0) +B

′
u∗(t0)

]
> 0

⇐xT (t0)A
′
x(t0) > |xT (t0)B

′
u∗(t0)| with u∗(t0) < 0

(11)

Now, let g = infDA∈∆A
λmin(A

′
) where λmin(A

′
) is the

minimum of the real parts of the eigenvalues of A
′
. Then

by Assumption 1, g > 0 and xT (t0)A
′
x(t0) ≥ g‖x(t0)‖22 =

gM . Then

(11) ⇐ |xT (t0)B
′
u∗(t0)| < gM

⇐ ‖B
′
‖
√
MK < gM

⇐ d

g
K <

√
M

Lemma 2: Let z(t) be defined as in (8) and denote Π :=
{t ∈ [0, t∗f ) : z(t) = 0}. If xT (t;D,u∗)x(t;D,u∗) < M for
all (D, t) ∈ ∆× [0, t∗f ) and xT (t∗f , D, u

∗)x(t∗f , D, u
∗) = M

for some D ∈ ∆, then the following holds: (i) z(t) 6= 0
almost everywhere on (0, t∗f ). (ii) Π do not contain a limit
point.

Proof: Consider the expression for z(t) as in (8):

z(t)

=
ˆ t∗f

t

ˆ
Ξ

(x(s,A′, B′; v∗))T eA′(s−t)B
′
dω(A′, B′|s)dω(s),

where the support of ω is given by Ω = {(t, A′, B′) ∈
[0, t∗f ] × Ξ : xT (t, A

′
, B
′
; v∗)x(t, A

′
, B
′
; v∗) = M}. Under

the hypothesis of the lemma, Ω = {(t, A′, B′) ∈ {t∗f} × Ξ :
xT (t∗f , A

′
, B
′
; v∗)x(t∗f , A

′
, B
′
; v∗) = M}. Then z(t) can be

simplified as follows:

z(t) =
ˆ

Ξ

(x(s,A′, B′; v∗))T eA′(t∗f−t)B
′
dω(A′, B′)

=
ˆ

Ξ

(x(s,A′, B′; v∗))T eA′t∗fB
′
dω(A′, B′)

− t

ˆ
Ξ

(x(s,A′, B′; v∗))T eA′t∗fA
′
B
′
dω(A′, B′)

+
t2

2!

ˆ
Ξ

(x(s,A′, B′; v∗))T eA′t∗fA
′2B

′
dω(A′, B′)

− ......................

Recall that theorem 1 guarantees that z(t) cannot be
identically zero over [0, t∗f ]. Since, in this case z(t) turns
out to be a power series in t over [0, t∗f ), z(t) 6= 0 a.e. on
the interval [0, t∗f ). Moreover noting that a non-zero analytic
function over a open connected set cannot have a limit point
in its domain of definition [4], it follows that Π do not contain
a limit point.

Example 2: Consider the one-dimensional system

ẋ(t) = ax(t) + u(t), (12)

where the time constant a is subject to the uncertainty 1.2 ≤
a ≤ 1.4. The system has the input bound |u(t)| ≤ 2 for all
t, and the initial condition is x(0) = 1. We set the bound
M := 25, so the objective is to find an input function u∗(t)
that keeps the state amplitude below the bound x2(t) ≤ 25
(i.e., |x(t)| ≤ 5) for the longest time, irrespective of the value
of a within its uncertainty range. We show next that, in this
case, z(t) 6= 0 for almost all t ∈ [0, t∗f ]. Thus, by corollary 1,
the optimal input function u∗(t) is a bang-bang function, as
depicted below. The maximal time during which all samples
of the system can be kept below the prescribed error bound
is t∗f = 5.08 seconds.
To show that the optimal input function is a bang-bang
function in this case, note first that the system cannot rebound
to lower valued states after reaching the state |x(t)| = 5;
essentially lemma 1 holds. Indeed, consider the error function

e(t) = x2(t).

Using the system equation (12), we get

ė(t) = x(t)ẋ(t) = x2(t)a+ x(t)u(t) = x(t)[x(t)a+ u(t)].

If e(t) = 25, we clearly need ė(t) ≤ 0 for the error not to
worsen. When e(t) = 25, we have either x(t) = 5 or x(t) =
−5. For x(t) = 5, we obtain ė(t) = x(t)[x(t)a + u(t)] =
5[5a + u(t)] > 0 for all possible values of a and of u(t).
Also, for x(t) = −5, we have ė(t) = −5[−5a + u(t)] > 0
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Figure 3. Optimal Input
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Figure 4. Optimal Response for Different a

for all possible values of a and u(t). Thus, once the system
reaches e(t) = 25, it has reached the terminal time, since
the error can only continue to grow. Hence, for any value of
a, the process terminates when the corresponding trajectory
hits the error bound M . In other words, any trajectory meets
the error bound only once: at the terminal time t∗f = 5.08.
Thus, in view of lemma 2, the support set of the measure
ω in this case is given by the following (in this example,
B′ = 1 always).

Ω = {(t, a′, 1) ∈ {5.08} × [1.2, 1.4]× {1} : (13)
x2(5.08, a′, 1, v∗) = M}

Note that Ω cannot be empty here, since that would imply
that x2 does not meet the bound M on the time interval
[0, t∗f ], contradicting what we have concluded in the previous
paragraph. Hence the hypotheses of theorem 2 are valid and
z(t) 6= 0 a.e. on [0, t∗f ). This can be independently verified
without using theorem 2 as follows. Substituting the support
set (13) into (8), we obtain

z(t) =
ˆ 1.4

1.2

x(5.08, a′, 1, v∗)ea′(5.08−t)dω(a′).

Let us now expand the exponential in the integrand into a

series and integrate; this yields

z(t) = p0+p1(5.08−t)+p2(5.08−t)2 . . .+pm(5.08−t)m+..,
(14)

where

pm =
ˆ 1.4

1.2

x(5.08, a′, 1, v∗)
(a′)m

m!
dω(a′).

As the integrand includes the power (a′)m, the equality pm =
0 for all m = 0, 1, 2, ... would imply that x(5.08, a′, 1, v∗) =
0 almost everywhere with respect to the measure ω(a′),
contradicting the support (13). Thus, at least one of the
coefficients of the power series (14) is not zero, and whence
z(t) 6= 0 almost everywhere on the interval (0, 5.08). By
corollary 1, this proves that the optimal input function is a
bang-bang function in this case.
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