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Abstract

This article considers robust designs for safety and quality criticalgss®s. In critical pro-
cesses, the choice of control settings should ensure that the praility gemains near the target
for each and every value of the noise variable. This objective is redftigatsing a min-max
approach which minimizes the maximum possible deviation (caused by noise) eftimated
response from the target value. An algorithm for computing such cosetthgs based on en-
tropic regularization is discussed. The proposed method is used on aiitoorakh test data to
select maximally safe designs for the interior rim of cars. A second exampileealesign of drug
granulation parameters to produce uniformly sized granules is also included
AMS subject classification: 62K25, 62K20, 62P30
Key words: Crash Test, Control setting, Computational algorithms, Drug Granulatioarda-

teed Quality, Optimization

1 Introduction

In this article, we propose a min-max approach to addressstue of robust parameter designs
for safety and quality critical processes. In any producttioocess, there are two types of inputs:

some easy-to-manipulate control factors and some difftoutiontrol noise factors. The noise factors
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are the sources of uncontrollable variations in the procesgonse. However for some products
(henceforth called safety or quality critical), each andrgwsample (e.g. drugs or safety equipment)
must meet some pre-specified quality standard to be usakbherfse, even though the majority of
the produce is usable, the few sub-quality samples mighttieéoss of life or fatal accidents. Hence
during the production of such articles, one has to choosedh#&ol settings for which the product
guality remains near the target falt settings of the noise factors. This objective is realizee hiey
choosing control settings which minimizes the maximum fmssleviation (caused by noise) of the
estimated response from the target value. A numerical i#dhgoris proposed to solve the resulting
continuous min-max optimization.

Some instances of critical processes are the productiarepses in the automobile, drug or de-
fense industries. Consider a drug manufacturing processremery batch (lot or package) of the
manufactured drug, irrespective of the uncontrollablesadactors, should be near the target quality.
Otherwise, some samples of the drug may prove fatal oncasetein the market. Suppose, the qual-
ity of a manufactured drug is quantified by the percentagenpirities it may safely contain. Then
the production process should ensure that this percerdagyer exceeded no matter what value the
noise factors may take during a particular run of the manufagy process. This is also the case in
the manufacturing of military equipments and also certaiety devices (e.g. in the air/automobile
industry), where certain safety standards must be guadrite each and every product. Failure to
adhere to the standards may result in loss of life.

Traditional robust parameter design algorithms howevey nw be appropriate for such safety
or quality critical processes mentioned above. Two main@gghes are available in the literature for
solving the robust parameter design problem: the Tagucthiodeand the response surface approach.
Several papers by Taguchi and Wu (1985), Kacker (1985),[{882) discuss Taguchi’'s methodology
in details. The response surface approach to robust pagadetign can further be categorized into
the dual and single model approaches. Several authors iikagvand Myers (1990) Del Castillo
and Montgomery (1993), Lin and Tu (1995), Del Castillo et 4Bg7), Fan (2000), discussed the
dual response surface approach. The single model appraasimiwvoduced by Welch et al. (1990)
and later used by Myers et al. (1992). Most traditional apphes (e.g. see Vining and Myers
(1990), Myers et al. (1992) and the references therein) llaveloped algorithms to choose the

control factors so as to achieve the dual objective of kegtia process mean near some pre-assigned



target and simultaneously minimizing the process variant@wever, choosing the control factors
merely to minimize variance may not be safe enough in safetygaality critical processes discussed
in above applications. For example, in a sensitive proéksslrbag manufacture for automobiles it
is necessary for the chosen levels of control variables &waguee that product quality is close to the
pre-specified safety standards @l values of the noise variable. Minimizing variance may not be
enough in this situation since it gives no guarantee thaaitigs produced will meet the required
safety standard for each and every value of the noise. Evineiié is a single value of the noise,
for which the control variables give rise to a product gyahthich deviates from the target, it may
result in injury or even death. Hence, for these and otheliGgipns we seek to re-formulate the
robust parameter design paradigm using a min-max strafégykeep the product quality near the
pre-specified target or standard for all values of noise, wemize the worst deviation (maximum
possible deviation due to noise) of the estimated produalit§ufrom the target. Such a procedure
leads to the control settings for which the estimated prbduelity always stays near the target
whatever be the value of the noise. Though the min-max faatiar is rather new in the area of
robust parameter designs, it has been used earlier in ttstraotion of optimal designs (Mukherjee
and Huda (1985), Sitter (1992) and Dette et al. (2003)). Heeeoptimality criterion, for example the
D-optimality criterion, is maximized over the parameteaspwhile being minimized with respect to
the set of all designs.

For introducing the min-max formulation, the responseatefapproach proposed by Myers et al.
(1992) seems well suited. The responsés modeled as a function of the control and noise variables.
Due to the easy to manipulate nature of the control varialbhes are considered as fixed effects,
while noise variables are considered to be random. Howéwethe sake of experimentation and
estimating the response, the noise factors are consideree tixed, while in the process they are

taken to be random. To modglve use the full single response model for the response,

y(x,2) = Bo+9" (X)B+h"(2)y+g (X)AN(z) +¢, (1.1)

wherex = (xg,...,%)' andz= (z,...,z)" are the vectors of control and noise variables, respec-
tively; x € Ry andz € R, where bothR, andR; are closed and bounded (compact) sets. The exper-
imental regionR, is the Cartesian product of the s&sandR,, i.e., R=Rx x R,. Also, g(x) is a

known vector function ok containing polynomial terms and interactions of the cdniaoiables;h(z)



is a known vector function af containing polynomial terms and interactions of the noegables;3
andy are the coefficients of the control and noise variables,e@spely; A contains the coefficients
of the interaction effects between the control and the neisbles and ~ N(0, g?) is the error

term. The estimated process response is,

A

y(x,2) = Bo+g" (X)B+hT (2)7+g" (x)Ah(2). (1.2)

Whereﬁ’o, ﬁ, 7, A are the parameter estimates.

2 Preliminary Notion

As stated in the Introduction, our goal is to choose the cbfdictor vectorx so as to keep the esti-
mated responseof formula (1.2) near the target for all valuesaof R;,. In other words we would like

to minimize the worst deviation of the estimated responsmfthe target: let the target response be
T; Then for any choice of the control factor, the worst possible deviation of theénested response
from the target is

sup||T —y(x,2)]| (2.1)

ZeR,
where|| - || is some appropriately defined error criterion. However wasst deviation is still a func-

tion of the control variable. Hence we would like to choosexae Ry (sayx* € Ry) which minimizes

SUDcr, |IT—6(x.2)] i.e.

sup||T —4(x", 2)[| = inf SURDHT —4(x,2)]| (2.2)

=1
ZeR, X€Rx zeR,

It may be noted, that unlike most traditional approaches, abntrol settingx* may be decided
without making any assumptions on the distribution of thes@@ariables, nor on the expectation or
the variance-covariance structure of the noise varialllég. only assumption we make is tHatis
known. This seems to be a valid assumption, since in praglugtiocesses the experimenter usually
has a fair idea about the range of the noise variable.

The min-max optimization implied in (2.2) is clearly apprape for the safety or quality critical
production examples mentioned. However, the resultingarigal optimization for finding* is hard

in general. For example, (2.2) is not solvable by converlignadient based optimization techniques



due to the non-differentiability of the max function (sup ||T —¥(x,2z)||) (Polak (1994)). Finite or
discrete versions of this min-max optimization, where thts B, and/orR; are finite, or variants
where the function| T — y(x,z)|| is convex and concave i andz respectively, have been studied
by numerous authors in the numerical optimization litemi{Polyak (1988), Rustem and Nguyen
(1998), Kiwiel (1987), Sasai (1974) and Zakovic et al. (200@nd can be solved efficiently by a
number of available algorithms. However, in (2.2) above, 2btsR, andR; are compact subsets of
Euclidean spaces and the functiph— y(x, z)|| is a multivariate polynomial which is not necessarily
convex-concave ix andz. This general problem is computationally difficult, onlyceatly some
papers have addressed special cases of the generaliZzaiqras et al. (2009), Rustem et al. (2008)).
In this work, we outline a method for the computation of thémopl control settingc* of (2.2), based
on the iterative entropic regularization algorithm progd# Sheu and Lin (2004). This algorithm is
guaranteed to find the solution to (2.2), if a series of suberas with smooth but non-convex opti-
mizations, can be solved approximately. Sheu and Lin (28640t point out any method for solving
these subproblems. For solving these intermediate ogtioiz problems, we combine the above
algorithm with a global multilevel coordinate search alfon developed in Huyer and Neumaier
(1999). It is shown that this combination of algorithms &si\(2.2) satisfactorily for the practical
examples considered.

The remainder of the article is organized as follows. In 8ec8 we describe the problem for-
mulation in details. The algorithm used to compute the maxrsolution is defined in Section 4.
Section 5 presents numerical examples to illustrate thpge®d min-max methodology. The first
example considers the designing of the interior rim of aauich a way as to reduce the risk of fatal
head injury to the passenger in case of an accident. In tltmdewimerical example, control factors
are chosen for a drug granulation process used for the manugeof tablets in the pharmaceutical
industries. As discussed above, the min-max optimizatid@.@) is especially appropriate for these
examples. In Section 5 we also compare our method with than@e minimizing method of Myers
et al. (1992). The comparisons show that the min-max appreabetter suited for application to
critical processes than the traditional variance mininganethods. Concluding remarks are given in

Section 6.



3 The Min-max Problem Formulation

In a production process, Taguchi identified that an expartaremay be interested in choosing the

control setting with one of the following objectives:
1. The response achieving a given target
2. Minimizing the response,
3. Maximizing the response.

Associated with these goals are numerous error/perforenenteria (e.g. see Taguchi (1986), Vining
and Myers (1990), Myers et al. (1992), Lin and Tu (1995), Capeland Nelson (1996)). Since devi-
ation on either side of is undesirable, we use the squared distance between theagsdiresponse
and the specified targé&tas our performance criterion, also known as the estimateasd error loss
(denoted byM below):

M(x,z) = (T —y(x,2))%. (3.1)

Myers et al. (1992) used the expected valuavigk, z), taken with respect ta, assuming that the
noise variables are uncorrelated with expectation zerovandnce unity. In this article however, we
do not make any such assumptions on the distribution, eapewctor variance of; consequently our
performance criterion is given by (3.1).

Using this definition of error, we would like to translate theals outlined by Taguchi into a

min-max setting.

3.1 Targetis specified

We assume that the experimenter is trying to realize goahéljtioned above: namely he is interested
to keepy(x,z) near the targeT. In this endeavor, we recall that the noise variabis a random
guantity in the process and takes an unknown value in thespeeHied seR, during a particular
‘run’ of the process. For a particular value of the contraltée x and a particular realization of
the noise factor, the estimated response from (1.2)yix,z). Given any choice of the control
variablex, the worst possible scenario for the experimenter who isigryo realize goal (1), occurs,
when the noise variable maximizes the deviation of the edgthresponse from the target value i.e.

whenz satisfies:z = argsup.g, (T — J(x,2))?, if it exists. LetM*(X) = sup,cg (T — ¥(X,2))2. Now,
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M*(x) is still a function of the control factox. From the point of view of achieving goal (1), the
best choice of the control factor would be the one which minés the worst deviatioM*(x) with
respect tx. Let this best choice of the control factor, if it exists ez Ry. Hence x* should satisfy
M*(x*) = infxyer, M*(X). By hypothesis, the sef® and R, are compact; and clearly the function
M(X,z) is continuous in botl andz. Using standard arguments (e.g., see Evans and Gariepg)j199
it can be shown that there existsc R, andz* € R, which satisfies:

M(x*,z") = minmaxT —¥(x,z))? (3.2)

xXeRy zeR;

By such a choice of the control factor ixe= x*, the experimenter guarantees the following:

1. That the predicted response never deviates from thefigubtEargetl by more tharM(x*,z¥),
whatever be the actual value realized by the noise variabkegarticular process run. In other

words (T —¥(x*,2))? < M(x*,z*) for all z € R,.

2. This choice of the control factor minimizes the worst d¢on. Hence, for any other choice of
the control factox = x4, the maximum deviation due to noise can be worse. Equivg/dat

anyx; € Ry there existg; € R, for which: M(x*,z*) < (T —¥(x1,21))>.

An important fact to note here is that, unlike most previousks in this area, no assumptions are
made about the distribution, expectation, variance-camae structure dof.

It should be noted, however, that claims (1) and (2) abovevard for the actual process only if
we assume that the model used to fit the process responsesagstithated response is accurate over

the experimental region.

Unacceptable worst deviation

The design paradigm outlined above, guarantees that th&t @weviation of the predicted response
from the target is never more thdf(x*,z*). However, from the strict quality control requirements of
safety or quality critical processes, it may turn out thé tleviation ofM(x*,z*) is not acceptable.
In that case, one may try to choose the control factors ceithiel previously considered design region
Rx. Since the linear model (1.2) is only valid over the expentaéregionRy x R; a re-estimation
of the model over a different experimental region may thenelogiired. However, it is not apparent

a priori that where exactly the experimental region sho@dhosen from the entire set of possible
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control and noise settings, so that the min-max deviatlgr*, z*) is minimized. Hence an iterative
search may be the only solution in this approach. Howeveyeih this method fails to lower the
min-max deviation below acceptable limits, the process haase to be modified (if economically or

physically possible) to reduce the range of variation ofttheontrollable noise factors.

3.2 Smaller/Larger is better

For designs where Taguchi’'s second objective is applicalliemin-max design philosophy, neces-
sitates the control factors to minimize the maximum (witBpect to the noise factors) estimated
response. That is, we need to find the value @fhich minimizes maxg, J(x,z). Again sinceRy
andR; are compact by assumption and the estimated respdrs® is continuous in botkx andz,
there existx* € Ry andz* € R, which satisfy:

¥(X*,Zz*) = minmaxy(x, z), (3.3)

XeRy zeR;

Similarly for Taguchi’s “larger is better” paradigm, our@pach chooses a control factowhich
maximizes the minimum (with respect 8 y(x,z). Consequently, the problem is to fixdwhich
maximizes mincr,Y(X,z). Under the assumptions made Br R; andy(x,z), there existx* € Ry
andz* € R, which satisfy:

y(x*,z") = gnegfggg;y(x,z% (3.4)

Clearly, the optimal solutior™ to the equation (3.4) may equivalently be calculated by iclemsg a

min-max problem, simply by consideringy(x, z) instead ofy(x, z).

4 Computing the Min-max Using the IER-MCS Algorithm

Some of the difficulties in computing a solution to (3.2) warentioned in Section 2. In this section,
we propose to use a method of outer approximation first pexgposPolak (1994) and modified us-
ing an entropic regularization in Sheu and Lin (2004). Wiéofelthe authors of the latter paper in
calling this algorithm as Iterative entropic regularipati(or IER). This method has been shown to
have guaranteed convergence properties to the min-matxasoltiowever, in using this method one

needs to solve a sequence of (possibly non-convex) maximizand/or minimization problems. The



convergence of the min-max algorithm is based on the suitdesdution of these intermediate max-
imization and/or minimization problems. Clearly, in our edise error criteriotM (X, z) is frequently
non-convex irx or z. This makes the solution of the intermediate optimizatitbfems difficult. For
this purpose we propose to use a proven global optimizatgmrithm based on multilevel coordinate
search (MCS) (Huyer and Neumaier (1999) and Jones et al. J)1998s method, in turn, is guaran-
teed to converge if the optimized function is continuoushie meighborhood of the global optimum.
We show that this combination, which we name as IER-MCS, pedaconsistently in finding the
min-max optimization posed in (3.2) above. First we brietdgctibe the IER algorithm to make this

presentation self-contained.

Iterative Entropic Regularization:

Let us rewrite (3.2) simply as: Fing*,z*) € Rc x R; such thaM (x*,z*) = minyegr, Maxecr, M(X, 2)
whereM(x, z) is defined as in (3.1). Further recall thdt (X) = maxcr,M(X,z).

Next approximaté®, by a finite subseR)' := {z3, 25, ....,zm} of mpoints. CorrespondingIM*(x)
is approximated by}, (x) = maxcrnM(X,z). However this approximate function is still not differ-
entiable and hence we use the following smoothed versiow@sitropic regularization (Polak (1994)

and Sheu and Lin (2004)):
Minp(x) = (1/p) Iog{ >, exp(pM <x,z>}}

wherep > 0. Then the algorithm can be written as follows:
1. Selectz; € R;and letRL := {z;};m=k = 1. Choos& € (0,1), andp > 0.

2. Findxmp € Ry satisfyingM;;],p(xm,p) < Minker, M;ﬁp(x) + oK. Increase the iteration coukby

one.

3. 1f (i) M*(Xmp) <My, p(Xmp) and (i) +log(m)/ pis below a desired tolerance, then stop. If (i)
is violated then choose amy, 1 = argmaxer, M (Xm p,2), SetRIY 1 = R"U {zy,1}, increase
m by one, selecp > (log(m))? and go to step 2. If (i) is violated increageby a constant

factor and go to step 2.

This algorithm is guaranteed to converge to the global Boiuait step 3 with at most 45K +



log(m)/p) error; or it produces an infinite sequence of solutigpsE R;,(m — ), any cluster point
of which is a global solution.

However, the successful implementation of this algoritheeds the correct computation of the
minimum ofMy, ,(X) in step 2. Clearly, iM(X, z) is not convex irg, for each value ox, the smoothed
versionMy, ,(X) also may turn out to be non-convex. Hence, one needs to salea-gonvex op-
timization problem every time step 2 needs to be executededer for checking condition (i) of
step 3 one needs to complE (xm ), which is again a (possibly non-convex) maximization peotol
overR,. For these purposes, we use the global optimization algortased on multilevel coordinate
search proposed in Huyer and Neumaier (1999) and Jones(&08B). Briefly, this method uses a
modified branch and bound scheme to find the global minimigexdmbining global search with a
fast local search. This algorithm is guaranteed to convgigen that the function to be optimized
is continuous in the neighborhood of the global minimum. #etails about the performance of this
algorithm in benchmark optimization problems and abouwdtesl convergence properties, the reader
is referred to Huyer and Neumaier (1999). In this article e the MCS algorithm to solve the

non-convex optimization sub-steps of step (2) and (3)(i).

5 Numerical Examples

In this section, we illustrate our proposed min-max appnagsng four numerical examples. The first
two examples are based on data from sensitive processeh,test and granulation of drug. While,
the third and fourth examples are based on data sets fréguesed in literature.We also provide a
comparison of the results obtained by the min-max approadittee method proposed in Myers et al.

(1992).

5.1 Example 1: Automobile crash test

In this example we consider a data set taken from Rai et al5)200dying the effect of four factors on
the head injury criteria (HIC) measured during automobiéshrtests. The objective of the experiment
is to design the interior rim of a car in such a way as to redbeerisk of fatal head injury to the
passenger in case of an accident. The critical interior rimedsions known to affect HIC values

are wall thickness, draft angle and rib pitch (see Rai et 80%2 for a complete description). These
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parameters can be chosen easily and hence are considem@utras factors. Similarly, the angle at
which the head collides with the rim during the accident isn to affect the HIC value substantially.
However, this angle of head impact is completely unpretlletand is hence treated as noise variable.
It should be noted that the bounds on the control factors lealg known, being imposed by the
engineering, manufacturing and assembly guidelines wihgeangle of impact is bounded by the
45 and 90 degrees due to the geometry of possible head aondlisi{Rai et al. (2005)). A dummy
equivalent of HIC denoted by HIC(d) is used as the respongablarin the following model. It
should be emphasized, that the min-max paradigm is ideaillgdfor this example, since the design
should guarantee that the HIC value remains lowafbpossible angles of head impact.

To summarize, there are three control variabbes(wall thickness measured in mmy, (draft
angle),xs (rib height measured in mm), and one noise variabjgangle of head impact). A list of
factors and their levels is given in Table 1. Each factor &spnt at two levels. HerBy = { -1 <x; <
1;i =123} andR, = {—1 <z < 1}. The goal is to determine the settings of the control vaesbl

for which the head injury criteria is minimized, for all vaisiof the angle of head impaet,

Table 1: Factors and levels (Example 5.1)

Factors -1 1
Wall thickness X1) 2.4 mm 3.5 mm

Draft angle k2) 5degrees 10 degrees
Rib height &s) 12.5 mm 21 mm

Angle of impact 5) 45 degrees 90 degrees

The fitted responsgX,z;), is

74157—-12174x1 —11807xp — 28.33x3 — 1036421 +12196X1 X2 +53.97X121 +40.31x22; + 10.08%37; .
(5.1)
The analysis of variance results are given in Table 3. Wefated a model with the interaction terms,
X1X3, X2X3, ZX1X2, ZX1X3 andzxoxs included. However, the corresponding p-values for thetgzaction
terms were greater than 0.55. There was also no improvemeheiadjusted??(= 0.9265), F (=
26.21) value and thd=(= 0.2189 value for the lack of fit test. Studentized residuals commesing

to the fitted model (5.1) all lie between -2 and 2, with appntaie mean 0 and variance 1. Various
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Table 2: Design and response values (Example 5.1)

X1 X2 X3 Z1 y

-1 -1 -1 -1 1362
-1 -1 1 1 677
-1 -1 1 -1 750
-1 -1 1 1 734

X
'S
&
N

y

-1 -1 -1 968
-1 1 1 510
-1 1 -1 511
-1 1 1 501

PRRPRPRRPRRRRR
|_\
1
|_\
|_\

-1 1 -1 1 584 499
-1 1 -1 -1 742 1 -1 -1 584
11 -1 1 731 1 -1 1 499
-1 1 1 -1 636 1 1 -1 581
-1 1 1 1 608 1 1 1 578
-1 1 1 -1 716 1 1 -1 680

1 -1 -1 -1 857

Table 3: Analysis of variance (Ex 5.1)

Source  df SS MS F p-value R?>  adjusted”®
Model 8 764063 95508 36.2185 <0.0001 0.9602 0.9337
Residuals 12 31644 2637
Lack offit 5 4913 983 0.2573  0.9229
Pureerror 7 26730 3819

variable partial t p-value

X1 -10.058 <0.0001

X2 -9.755 <0.0001
X3 -2.207 0.0475

7 -8.876 <0.0001

X1 X2 9.012 <0.0001
X124 4.623 0.0006
X221 3.452 0.0048
X3Zy 0.891 0.3907

diagnostic measures showed that there were no outliergloemial points. Normal probability and
residual plots were used to confirm that normality and conistariance assumptions on the residuals
were satisfied.

Since our objective is to minimize the response (ife= 0) for all values ofz;, x* is the value of
x which satisfies

max Y(x*,z1) = min max V(X,z).
{71§zlgl}y( ) {—1§>qs1;i:1,2,3}{—lszlsl}y( )

Using the IER-MCS algorithm (see Section 4) implemented inltatve obtairk* = (x3 = 1,X2 =
1x3= 1).

We, next compare our results with those of Myers et al. (1992)e performance criterion of
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Myers et al. (1992) is,
Ez, (J(%,21) = T)? = (EY(x,21) — T)? + VarsJ(x,z1), (5.2)

whereT =0, E;Y(X,z1) = 74157—12174x; — 11807x; — 28.33x3+ 12196x1 %2 andVar Y(X,z1) =
(—10364+ 53.97x; + 40.31x, + 10.08x3)? + (51.35)2, making the assumptions thEtz;) = 0 and
Var(z1) = 1. The value ofx which minimizes (5.2), denoted B¥uky , iS Xmky = (X1 = Lo =

—0.4299x3 = 1). Figure 5.1 shows a comparisonMix*,z) andM (Xmkv ,Z1) against values afy

660

640}
620}

— 600}

3

= sg0f
5601

540

520
-1

. . .
-0.5 0 0.5 1
z

Figure 5.1: Comparison &l (x*,z;) andM (Xmkv ,21) againstz; € [—1,1].

in [—1,1]. From the figure we see that the worst (maximum) value of ttzel ligjury criteria when
X =Xx*is 59611 atz; = 1 (i.e., angle of head impact is 90 degrees). While, the wansix{(mum)
value of the head injury criteria afyky is 64674 atz= —1. Also we note that for values @f in
the interval[—1,—0.10], M(x*,z) < M(Xwvkv,z).This implies that choosing = xyky results in a
worse deviation due to noise in the inter{all, —0.10] than selectinge = x*. Thus, we see that for
quite a wide interval of values of the angle of impact the miax settings of the control variables
give a lower HIC than the settings of Myers et al. (1992).

It should, however, be noted that it may not always be passthineet the required quality stan-
dards using this methodology. For example, if in the cure@mple, the product requires a guar-
anteed quality quantified 8$x; z;) < 500, then evidently, our methodology fails to give satisiac
results. In such a case any of the alternatives suggestezttios 3.1 (unacceptable worst deviation)

may be used to meet the required quality standards.
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5.2 Example 2: Granulation of drugs

We consider here a data set based on drug granulation in aigy@ hear mixer from Vojnovic et al.
(1996). The response studied is the percentage in weighaoliges smaller than 20@m. The ob-
jective of this experiment is to maintain an unform granuse ©f 20Qu. This will be achieved by
minimizing the number of granules smaller than R@®in size. Note that the experimenter is not
concerned with granule sizes larger than 208, since larger granules are removed automatically
during the prior filtration process. The control factors wndo affecting the responseare moisture
level (%) and massing time (minute). In previous studiegrdac et al. (1993) and Ogawa et al.
(1994)) found that the impeller speed (measured in rpm)pis ah important factor affecting How-
ever, due to the difficult to control nature of impeller speéleely considered it as a noise variable.
Each factor and the levels (coded and uncoded) between wiegtvary are listed in Table 4. As ex-
plained in Section 1 it is critical that all the granules afsine 20Qum, otherwise the tablets formed
may contain varying concentrations of the active ingredigJsing our min-max methodology in this
situation, we are able to find the control settings which gogege that the response is minimized for

all values of the impeller speed.

Table 4. Control and noise variables with their levels (EX 5.2

Factors -1 0 1
Moisture level 1) 20% 30% 40%

MassingtimexXz) 3 mins  5mins 7 mins

Impeller speed) 100rpm 200 rpm 300 rpm

Table 5 shows the design points and the response values eftex point is replicated five times.
In this exampleRy = {-1<x <1;i=12} andR, = {—1 <z < 1}. We started with fitting a
second order model tg, however the error variance was not constant. The Box-Coxepioe in

SAS 9.1.3 suggested a square root transformation on thermespThus, we fit the following model

oy = .

y¥(X,21) = 3.82— 2.49; —0.91x, — 1.412; — 0.07x2 +0.27x5 + 0.447 +0.34x1 %2 — 0.65x12; — 1.03%07; .
(5.3)

The analysis of variance results are shown in Table 6. Hepg abrmal probability and residual plots
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Table 5: Design and response values (Ex 5.2)

X1 X 21 X X2 pal y X1 X Z1 X X2 pal y

40 55 225 1 0.25 025 047 30 65 125 0 0.75 -0.75 27.17
20 45 175 -1 -0.25 -0.25 43.82225 5 275 -0.75 0 0.75 27.58
325 7 225 0.25 1 0.25 368 30 35 275 0 -0.75 0.75 19.27
275 3 175 -0.25 -1 -0.25 34.4 30 5 200 0 0 0 14.24
375 35 200 0.75 -0.75 0 6.18 30 5 200 0 0 0 14.65
225 6.5 200 -0.75 0.75 0 25| 30 5 200 0 0 0 16.23
325 55 300 0.25 0.25 1 2.68 30 5 200 0 0 0 13.87
275 45 100 -0.25 -0.25 -1 37.66 30 5 200 0 0 0 14.04
375 5 125 0.75 0 -0.75 12.56

X = 2&{;&‘&(&%?&'}2()?)}; =127 = 22y —[mex(Zy) +min(Zy)]

max(Zy)—min(Zy)

showed that the normality and constant variance assungptiorthe residuals were satisfied. Since

our interest is in minimizing, x* is the value ok satisfying,

max y(x*,z).
{—1§21§1}y*( ) 1)

Using the IER-MCS algorithm we obtaix = (x; = 1,x, = —0.86004. The worst (minimum)
value of the response when= x* is 3.56. We do not compare our results with those of Myers et al.
(1992) for this particular problem. In their paper, Myersakt(1992) discussed the methodology of
obtaining robust design for models with linear terms in these variable. However, the fitted model
in this example involves a quadratic term in the noise végiabo compute the performance criterion
(5.2) of Myers et al. (1992) we require some assumptions eridrth order moment afy, E(z‘l‘).
The min-max strategy proposed in this paper however doesegeat to make any such assumptions
on the moments of the noise variable. To apply our method veel @ know only the interval in

which the noise variable lies in, as illustrated in this epéam

5.3 Example 3: Filtration rate of a chemical compound

We consider a data set taken from Robinson et al. (2004) [THbMhich studies the effect of four
factors on the rate of filtration of a chemical produgt (There are three control variables: (pres-
sure),x2 (concentration of formaldehyde); (stirring rate) and one noise variabla: (temperature).

Each factor is present at two levels. Afactorial design was used to get the response values. Here,
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Table 6: Analysis of variance (Ex 5.2)

Source df SS MS F p-value R?>  adjusted”®
Model 9 42735 4.748 284.4266 <0.0001 0.9973 0.9938
Residuals 7 0.117 0.017
Lack offit 3 0.057 0.019 1.2531 0.402
Pureerror 4 0.060 0.015

variable partial t p-value
X1 -40.935 <0.0001
X2 -14.861 <0.0001
z -23.076 <0.0001
X2 -0.749 0.4782
X3 2.908 0.0227
z 4.793 0.0020
X124 -4.494 0.0028
X271 -7.098 0.0002
X1X2 2.330 0.0526

Re={-1<x<1;i=123}andR,={-1 <z <1}. The goal is to determine the settings of the
control variables for whicly reaches a target of 75, for all settingszof

Using the same fitted model as in Robinson et al. (2004) fordbpanse,

Y(X,z1) = 70.06+ 10.8121 + 4.94%, + 7.31x3 — 9.06%2z; + 8.31x32y,

wherex = (x2,x3). The corresponding analysis of variance results are shoviiable 7. Our per-

Table 7: Analysis of variance (Ex 5.3)

Source df SS MS F p-value R?  adjustedr®
Model 5 55358 1107.2 56.7412 <0.0001 0.966 0.9489
Residuals 10 195.1 19.5
Lack of fit 2 15.6 7.8 0.3482 0.7162
Pureerror 8 179.5 22.4

variable partial t p-value

X2 6.622 <0.0001

X3 4471 0.00120
z 9.791 <0.0001
XoZy -4.494 0.0028
X3Zy -8.206 <0.0001

formance criterion isM(x,z1) = (Y(x,z1) — 75)2. Following the min-max strategy we find* =
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(xo = 1,x3 = —0.21). We, compare our results with those of Myers et al. (1992)enekyvky =

(xo = 1,x3 = —0.1211). Figure 5.2 shows a comparison Mf(x*,z) andM(xwvkv ,Z1) against val-

3

250 M(x*, 21)

2t

1.5}

M(x, z1)

s M(xmkv, 21)
i N

0.51

—Gl -0.5 0 0.5 1

21

Figure 5.2: Comparison &l (x*,z;) andM (Xmkv ,Z1) againstz; € [—1,1].

ues ofz in [-1,1]. We note from Figure 5.2 that for values bf in the interval[—-1,—0.879,

M (X*, Zl) <M (XMKV , Z]_).

5.4 Example 4

The data set is taken from (Myers et al., 1992) [Table 1]. &lae two control variables{ andx,)
and two noise variableg{andz). Each factor is at two levels;1 and 1. A 2 factorial design in the
control and noise variables, with five center runs was usa@rdst here is to determine the settings
of X = (x1,X%2) which maximizes the worst (minimum with respectzte (z1,2,)’ in R;) response.

Using the same fitted model for the response as in Myers 1392,

)’Z(X7 Z) = 24.472+46.89%1 — 9.11xp + 4.9471 + 3.52X1 X0 + 3.23x121 + 1.88%1 2. (5.4)

The corresponding analysis of variance results are showialhe 8. As in Section 3.%* is the
setting of the control factors which satisfies, Magy <1:i—12) MiN{_1<z<1;i—1,2} ¥(X,2). Using
the IER-MCS algorithm we obtaing* = (x; = 0.0101x, = —1). The approach by Myers et al.
(1992) yieldsxmky = (X1 = —0.3,x2 = 1). The variation in the values of the responges‘,z) and
Y(Xmkv ,2) over different values of the noise variables®nis shown in Figure 5.3a and Figure 5.3b,
respectively. From the figures it may be observed that thetworinimum) value of/(x*,z) = 33.56

which occurs atz; = —1,z, = —1) while the worst value of(Xmkv ,z) = 31 for (z; = +1,2o = +1).
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Table 8: Analysis of variance (Ex 5.4)

Source  df SS MS F p-value R?>  adjusted”®
Model 6 2868.03 478.01 81.8816 <0.0001 0.9723 0.9604
Residuals 14 81.73 5.84
Lack of fit 10 54.46 5.45 0.7987  0.6495
Pure error 4 27.27 6.82

variable partial t p-value
X1 11.345 <0.0001

X2 -15.005 <0.0001

z 8.099 <0.0001
X124 5.430 <0.0001
X222 3.054 0.00858
X1X2 5.746 <0.0001

33.7

33.65

M(x*,z)
M(xmxv . 2)

33.6

33.55

(@) M(x*,z) versusz (b) M(xmkv ,Z) versusz

Figure 5.3: Comparison &l (x*,z) andM (xumkv ,z) over{—1<z <1,i=1,2}
6 Concluding Remarks

In certain processes where it is very important to keep thienated response near the target for all
values of the noise, the min-max approach is the only tecienighich guarantees that the quality
of each and every product is better than some guaranteed quabty. However, determining the

min-max setting in most general situations is difficult gsoonventional optimization techniques. To
overcome this difficulty, a computational method for theimai control setting, based on the itera-
tive entropic regularization algorithm coupled with a gdbbultilevel coordinate search, is proposed.
The algorithm is shown to provide satisfactory solutiongh®numerical examples considered. Addi-
tionally, it is shown using the numerical examples, thataraze minimizing methods may sometimes
fail to keep the estimated response near the target for ttilhge of the noise variable for sensitive

processes, thus giving rise to a worse guaranteed qualigypfoposed min-max method can be used
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in various industries like drug manufacturing, defencepandustry to deliver robust products. The
methodology works without requiring any assumptions ondiséributional properties of the noise
variables. Furthermore, the above described min-max ftatmon can also be extended to include
cases where the noise variable is categorical or quawétatinature.

As in all model-based approaches, the value of the min-matta@icsettings depends on the model
chosen to fit the process response and any misspecificattbe model may lead to a change in the
optimal settings. However, we do not take into account thglications of model misspecification
in this paper and leave it for future research. One possilgthod to tackle this problem of model
misspecification may be to use non-parametric or semi-patrasriechniques to model the response

as suggested by Pickle et al. (2008).
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The R and Matlab codes used to compute the optimum conttoigefor this article are available

on request from the first author.

References

Copeland, K. A. F., Nelson, P. R., 1996. Dual response optiimizaia direct function minimization.

Journal of Quality Technology 28, 331-336.

Del Castillo, E., Fan, S. K., Semple, J., 1997. Computatioraiia optima in dual response systems.
Journal of Quality Technology 29, 347-353.

Del Castillo, E., Montgomery, D. C., 1993. A nonlinear prograimg solution to the dual response

problem. Journal of Quality Technology 25, 199-204.

Dette, H., Haines, L., Imhof, L., 2003. Bayesian and maxinptiroal designs for heteroscedastic

regression models. Canadian Journal of Statistics 33, 2A1-2

Evans, L. C., Gariepy, R. F., 1992. Measure Theory and Finegiiep of Functions, 2nd Edition.
CRC Press, Boca Raton, Florida.

Fan, S. K. S., 2000. A generalized global optimization atpar for dual response systems. Journal

of Quality Technology 32, 444—-456.

Huyer, W., Neumaier, A., 1999. Global optimization by mlekel coordinate search. Journal of

Global Optimization 14, 331-355.

Jones, D. R., Perttunen, C. D., Stuckman, B. E., 1993. Lipsahitgptimization without the lipschitz

constant. Journal of Optimization Theory and Applicati@g@s 157-181.

Kacker, R. N., 1985. Off-line quality control, parameterigas and the Taguchi method. Journal of
Quality Technology 17, 176-209.

Kiwiel, K., 1987. A direct method of linearization for contious minimax problems. Journal of

Optimization Theory and Applications 55, 271-287.

Lin, D. K. J., Tu, W,, 1995. Dual response surface optimaatiJournal of Quality Technology 27,
34-39.

20



Mukherjee, R., Huda, S., 1985. Minimax second- and thirdeordesigns to estimate the slope of a

response surface. Biometrika 72, 173-178.

Myers, R. H., Khuri, A. I., Vining, G. G., 1992. Response suefatternatives to the Taguchi robust

parameter design approach. The American Statistician316;1139.
Nair, V. N., 1992. Taguchi's parameter design: A panel disan. Technometrics 34, 127-161.

Ogawa, S., Kamijima, T., Miyamoto, Y., Miyajima, M., Sato,,HK., T., Nagai, T., 1994. A new
attempt to solve the scale-up problem for granulation usésgonse surface methodology. Journal

of Pharmaceutical Sciences 83, 439-443.

Parpas, P., Rustem, B., Pantelides, C., 2009. An algorithmhéglobal optimization of a class of

continuous minimax problems. Journal of Optimization Tiyesnd Applications 141, 461-473.

Pickle, S. M., Robinson, T. J., Bircha, J. B., Anderson-Cook, G.2008. A semi-parametric ap-

proach to robust parameter design. Journal of Statistiealthg and Inference 138, 114-131.

Polak, E., 1994. Optimization: Algorithms and ConsistenpAgximations, 2nd Edition. Springer
Verlag, New York.

Polyak, R. A., 1988. Smooth optimization methods for minirpeoblems. SIAM Journal on Control
and Optimization 26, 1274-1286.

Rai, B., Singh, N., Ahmed, M., 2005. Robust design of an intenend trim to improve occupant
safety in a vehicle crash. Reliability Engineering and SysEafety 89, 296-304.

Robinson, T. J., Borror, C. M., Myers, R. H., 2004. Robust parantssign: A review. Quality and

Reliability Engineering International 20, 81-101.

Rustem, B., Nguyen, Q., 1998. An algorithm for inequality ¢doaised discrete min-max problems.

SIAM Journal on Optimization 8, 256—283.

Rustem, B., Zakovic, S., Parpas, P., 2008. An interior poigrEthm for continuous minimax: im-

plementation and computation. Optimization Methods arfti\oe 23, 911-928.

Sasai, H., 1974. An interior penalty method for minimax peofis with constraints. SIAM Journal of

Control 12, 643—649.

21



Sheu, R. L., Lin, J. Y., 2004. Solving continuous min-max peofs by an iterative entropic regular-

ization method. Journal of Optimization Theory and Apdiicas 121, 597-612.
Sitter, R. R., 1992. Robust designs for binary data. Biometi@cd4445-1155.

Taguchi, G., 1986. Introduction to Quality Engineering. lBPNB/Kraus International, White Plains,
NY.

Taguchi, G., Wu, Y., 1985. Introduction to Off-Line Quali@ontrol. Central Japan Quality Control

Association, Nagoya, Japan.

Vining, G. G., Myers, R. H., 1990. Combining Taguchi and resgosurface philosophies: A dual
response approach. Journal of Quality Technology 22, 38—-45

Vojnovic, D., Chicco, D., El Zenary, H., 1996. Doehlert expental design applied to optimiza-
tion and quality control of a granulation process in a highahmixer. International Journal of

Pharmaceutics 145, 203-213.

Vojnovic, D., Moneghini, M., Rubessa, F., Zanchetta, A.,39imultaneous optimization of several
response variables in a granulation process. Drug Devedopand Industrial Pharmacy 19, 1479—

1496.

Welch, W. J., Yu, T. K., Kang, S. M., Sacks, J., 1990. Computpeaments for quality control by

parameter design. Journal of Quality Technology 22, 15-22.

Zakovic, S., Rustem, B., Pantelides, C., 2000. An interior fagporithm for computing saddle points

of constrained continuous minimax. Annals of Operationadech 99, 59-78.

22



