
A Computational Algorithm for Selecting Robust Designs

in Safety and Quality Critical Processes

S. Mukhopadhyaya ∗and D. Chakrabortyb

a Department of Mathematics, Indian Institute of Technology Bombay, Mumbai-400076, India,

b Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India

Abstract

This article considers robust designs for safety and quality critical processes. In critical pro-

cesses, the choice of control settings should ensure that the product quality remains near the target

for each and every value of the noise variable. This objective is realizedby using a min-max

approach which minimizes the maximum possible deviation (caused by noise) of the estimated

response from the target value. An algorithm for computing such controlsettings based on en-

tropic regularization is discussed. The proposed method is used on automobile crash test data to

select maximally safe designs for the interior rim of cars. A second example on the design of drug

granulation parameters to produce uniformly sized granules is also included.
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1 Introduction

In this article, we propose a min-max approach to address theissue of robust parameter designs

for safety and quality critical processes. In any production process, there are two types of inputs:

some easy-to-manipulate control factors and some difficult-to-control noise factors. The noise factors
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are the sources of uncontrollable variations in the processresponse. However for some products

(henceforth called safety or quality critical), each and every sample (e.g. drugs or safety equipment)

must meet some pre-specified quality standard to be usable. Otherwise, even though the majority of

the produce is usable, the few sub-quality samples might lead to loss of life or fatal accidents. Hence

during the production of such articles, one has to choose thecontrol settings for which the product

quality remains near the target forall settings of the noise factors. This objective is realized here, by

choosing control settings which minimizes the maximum possible deviation (caused by noise) of the

estimated response from the target value. A numerical algorithm is proposed to solve the resulting

continuous min-max optimization.

Some instances of critical processes are the production processes in the automobile, drug or de-

fense industries. Consider a drug manufacturing process, whereevery batch (lot or package) of the

manufactured drug, irrespective of the uncontrollable noise factors, should be near the target quality.

Otherwise, some samples of the drug may prove fatal once released in the market. Suppose, the qual-

ity of a manufactured drug is quantified by the percentage of impurities it may safely contain. Then

the production process should ensure that this percentage is never exceeded no matter what value the

noise factors may take during a particular run of the manufacturing process. This is also the case in

the manufacturing of military equipments and also certain safety devices (e.g. in the air/automobile

industry), where certain safety standards must be guaranteed for each and every product. Failure to

adhere to the standards may result in loss of life.

Traditional robust parameter design algorithms however may not be appropriate for such safety

or quality critical processes mentioned above. Two main approaches are available in the literature for

solving the robust parameter design problem: the Taguchi method and the response surface approach.

Several papers by Taguchi and Wu (1985), Kacker (1985), Nair(1992) discuss Taguchi’s methodology

in details. The response surface approach to robust parameter design can further be categorized into

the dual and single model approaches. Several authors like Vining and Myers (1990) Del Castillo

and Montgomery (1993), Lin and Tu (1995), Del Castillo et al. (1997), Fan (2000), discussed the

dual response surface approach. The single model approach was introduced by Welch et al. (1990)

and later used by Myers et al. (1992). Most traditional approaches (e.g. see Vining and Myers

(1990), Myers et al. (1992) and the references therein) havedeveloped algorithms to choose the

control factors so as to achieve the dual objective of keeping the process mean near some pre-assigned
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target and simultaneously minimizing the process variance. However, choosing the control factors

merely to minimize variance may not be safe enough in safety and quality critical processes discussed

in above applications. For example, in a sensitive process like airbag manufacture for automobiles it

is necessary for the chosen levels of control variables to guarantee that product quality is close to the

pre-specified safety standards forall values of the noise variable. Minimizing variance may not be

enough in this situation since it gives no guarantee that theairbags produced will meet the required

safety standard for each and every value of the noise. Even ifthere is a single value of the noise,

for which the control variables give rise to a product quality which deviates from the target, it may

result in injury or even death. Hence, for these and other applications we seek to re-formulate the

robust parameter design paradigm using a min-max strategy.To keep the product quality near the

pre-specified target or standard for all values of noise, we minimize the worst deviation (maximum

possible deviation due to noise) of the estimated product quality from the target. Such a procedure

leads to the control settings for which the estimated product quality always stays near the target

whatever be the value of the noise. Though the min-max formulation is rather new in the area of

robust parameter designs, it has been used earlier in the construction of optimal designs (Mukherjee

and Huda (1985), Sitter (1992) and Dette et al. (2003)). Here, the optimality criterion, for example the

D-optimality criterion, is maximized over the parameter space while being minimized with respect to

the set of all designs.

For introducing the min-max formulation, the response surface approach proposed by Myers et al.

(1992) seems well suited. The response,y, is modeled as a function of the control and noise variables.

Due to the easy to manipulate nature of the control variables, they are considered as fixed effects,

while noise variables are considered to be random. However,for the sake of experimentation and

estimating the response, the noise factors are considered to be fixed, while in the process they are

taken to be random. To modely we use the full single response model for the response,

y(x,z) = β0 +gT (x)β +hT (z)γ +gT (x)∆h(z)+ ε, (1.1)

wherex = (x1, . . . ,xk)
T andz = (z1, . . . ,zl)

T are the vectors of control and noise variables, respec-

tively; x ∈ Rx andz ∈ Rz where bothRx andRz are closed and bounded (compact) sets. The exper-

imental region,R, is the Cartesian product of the setsRx andRz, i.e., R = Rx ×Rz. Also, g(x) is a

known vector function ofx containing polynomial terms and interactions of the control variables;h(z)
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is a known vector function ofz containing polynomial terms and interactions of the noise variables;β

andγ are the coefficients of the control and noise variables, respectively;∆ contains the coefficients

of the interaction effects between the control and the noisevariables andε ∼ N(0,σ2) is the error

term. The estimated process response is,

ŷ(x,z) = β̂0 +gT (x)β̂ +hT (z)γ̂ +gT (x)∆̂h(z). (1.2)

whereβ̂0, β̂ , γ̂, ∆̂ are the parameter estimates.

2 Preliminary Notion

As stated in the Introduction, our goal is to choose the control factor vectorx so as to keep the esti-

mated response ˆy of formula (1.2) near the target for all values ofz∈ Rz. In other words we would like

to minimize the worst deviation of the estimated response from the target: let the target response be

T ; Then for any choicex of the control factor, the worst possible deviation of the estimated response

from the target is

sup
z∈Rz

‖T − ŷ(x,z)‖ (2.1)

where‖ · ‖ is some appropriately defined error criterion. However thisworst deviation is still a func-

tion of the control variablex. Hence we would like to choose ax ∈ Rx (sayx∗ ∈ Rx) which minimizes

supz∈Rz
‖T − ĝ(x,z)‖ i.e.

sup
z∈Rz

‖T − ĝ(x∗,z)‖ = inf
x∈Rx

sup
z∈Rz

‖T − ĝ(x,z)‖ (2.2)

It may be noted, that unlike most traditional approaches, the control settingsx∗ may be decided

without making any assumptions on the distribution of the noise variables, nor on the expectation or

the variance-covariance structure of the noise variables.The only assumption we make is thatRz is

known. This seems to be a valid assumption, since in production processes the experimenter usually

has a fair idea about the range of the noise variable.

The min-max optimization implied in (2.2) is clearly appropriate for the safety or quality critical

production examples mentioned. However, the resulting numerical optimization for findingx∗ is hard

in general. For example, (2.2) is not solvable by conventional gradient based optimization techniques
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due to the non-differentiability of the max function (supz∈Rz
‖T − ŷ(x,z)‖) (Polak (1994)). Finite or

discrete versions of this min-max optimization, where the sets Rx and/orRz are finite, or variants

where the function‖T − ŷ(x,z)‖ is convex and concave inx andz respectively, have been studied

by numerous authors in the numerical optimization literature (Polyak (1988), Rustem and Nguyen

(1998), Kiwiel (1987), Sasai (1974) and Zakovic et al. (2000)), and can be solved efficiently by a

number of available algorithms. However, in (2.2) above, the setsRx andRz are compact subsets of

Euclidean spaces and the function‖T − ŷ(x,z)‖ is a multivariate polynomial which is not necessarily

convex-concave inx andz. This general problem is computationally difficult, only recently some

papers have addressed special cases of the generalization (Parpas et al. (2009), Rustem et al. (2008)).

In this work, we outline a method for the computation of the optimal control settingx∗ of (2.2), based

on the iterative entropic regularization algorithm proposed in Sheu and Lin (2004). This algorithm is

guaranteed to find the solution to (2.2), if a series of subproblems with smooth but non-convex opti-

mizations, can be solved approximately. Sheu and Lin (2004)do not point out any method for solving

these subproblems. For solving these intermediate optimization problems, we combine the above

algorithm with a global multilevel coordinate search algorithm developed in Huyer and Neumaier

(1999). It is shown that this combination of algorithms solves (2.2) satisfactorily for the practical

examples considered.

The remainder of the article is organized as follows. In Section 3 we describe the problem for-

mulation in details. The algorithm used to compute the min-max solution is defined in Section 4.

Section 5 presents numerical examples to illustrate the proposed min-max methodology. The first

example considers the designing of the interior rim of a car in such a way as to reduce the risk of fatal

head injury to the passenger in case of an accident. In the second numerical example, control factors

are chosen for a drug granulation process used for the manufacture of tablets in the pharmaceutical

industries. As discussed above, the min-max optimization of (2.2) is especially appropriate for these

examples. In Section 5 we also compare our method with the variance minimizing method of Myers

et al. (1992). The comparisons show that the min-max approach is better suited for application to

critical processes than the traditional variance minimizing methods. Concluding remarks are given in

Section 6.
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3 The Min-max Problem Formulation

In a production process, Taguchi identified that an experimenter may be interested in choosing the

control setting with one of the following objectives:

1. The response achieving a given targetT ,

2. Minimizing the response,

3. Maximizing the response.

Associated with these goals are numerous error/performance criteria (e.g. see Taguchi (1986), Vining

and Myers (1990), Myers et al. (1992), Lin and Tu (1995), Copeland and Nelson (1996)). Since devi-

ation on either side ofT is undesirable, we use the squared distance between the estimated response

and the specified targetT as our performance criterion, also known as the estimated squared error loss

(denoted byM below):

M(x,z) = (T − ŷ(x,z))2. (3.1)

Myers et al. (1992) used the expected value ofM(x,z), taken with respect toz, assuming that the

noise variables are uncorrelated with expectation zero andvariance unity. In this article however, we

do not make any such assumptions on the distribution, expectation or variance ofz; consequently our

performance criterion is given by (3.1).

Using this definition of error, we would like to translate thegoals outlined by Taguchi into a

min-max setting.

3.1 Target is specified

We assume that the experimenter is trying to realize goal (1)mentioned above: namely he is interested

to keep ˆy(x,z) near the targetT . In this endeavor, we recall that the noise variablez is a random

quantity in the process and takes an unknown value in the pre-specified setRz during a particular

‘run’ of the process. For a particular value of the control factor x and a particular realization of

the noise factorz, the estimated response from (1.2) is ˆy(x,z). Given any choice of the control

variablex, the worst possible scenario for the experimenter who is trying to realize goal (1), occurs,

when the noise variable maximizes the deviation of the estimated response from the target value i.e.

whenz satisfies:z = argsupz∈Rz
(T − ŷ(x,z))2, if it exists. LetM∗(x) = supz∈Rz

(T − ŷ(x,z))2. Now,
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M∗(x) is still a function of the control factorx. From the point of view of achieving goal (1), the

best choice of the control factor would be the one which minimizes the worst deviationM∗(x) with

respect tox. Let this best choice of the control factor, if it exists, bex∗ ∈ Rx. Hence,x∗ should satisfy

M∗(x∗) = infx∈Rx M∗(x). By hypothesis, the setsRx and Rz are compact; and clearly the function

M(x,z) is continuous in bothx andz. Using standard arguments (e.g., see Evans and Gariepy (1992))

it can be shown that there existsx∗ ∈ Rx andz∗ ∈ Rz which satisfies:

M(x∗,z∗) = min
x∈Rx

max
z∈Rz

(T − ŷ(x,z))2 (3.2)

By such a choice of the control factor i.e.x = x∗, the experimenter guarantees the following:

1. That the predicted response never deviates from the specified targetT by more thanM(x∗,z∗),

whatever be the actual value realized by the noise variablesin a particular process run. In other

words(T − ŷ(x∗,z))2 ≤ M(x∗,z∗) for all z∈ Rz.

2. This choice of the control factor minimizes the worst deviation. Hence, for any other choice of

the control factorx = x1, the maximum deviation due to noise can be worse. Equivalently, for

anyx1 ∈ Rx there existsz1 ∈ Rz for which: M(x∗,z∗) ≤ (T − ŷ(x1,z1))
2.

An important fact to note here is that, unlike most previous works in this area, no assumptions are

made about the distribution, expectation, variance-covariance structure ofz.

It should be noted, however, that claims (1) and (2) above arevalid for the actual process only if

we assume that the model used to fit the process response and the estimated response is accurate over

the experimental region.

Unacceptable worst deviation

The design paradigm outlined above, guarantees that the worst deviation of the predicted response

from the target is never more thanM(x∗,z∗). However, from the strict quality control requirements of

safety or quality critical processes, it may turn out that this deviation ofM(x∗,z∗) is not acceptable.

In that case, one may try to choose the control factors outside the previously considered design region

Rx. Since the linear model (1.2) is only valid over the experimental regionRx ×Rz a re-estimation

of the model over a different experimental region may then berequired. However, it is not apparent

a priori that where exactly the experimental region should be chosen from the entire set of possible
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control and noise settings, so that the min-max deviationM(x∗,z∗) is minimized. Hence an iterative

search may be the only solution in this approach. However, ifeven this method fails to lower the

min-max deviation below acceptable limits, the process mayhave to be modified (if economically or

physically possible) to reduce the range of variation of theuncontrollable noise factors.

3.2 Smaller/Larger is better

For designs where Taguchi’s second objective is applicable, our min-max design philosophy, neces-

sitates the control factors to minimize the maximum (with respect to the noise factors) estimated

response. That is, we need to find the value ofx which minimizes maxz∈Rz ŷ(x,z). Again sinceRx

andRz are compact by assumption and the estimated response ˆy(x,z) is continuous in bothx andz,

there existsx∗ ∈ Rx andz∗ ∈ Rz which satisfy:

ŷ(x∗,z∗) = min
x∈Rx

max
z∈Rz

ŷ(x,z), (3.3)

Similarly for Taguchi’s “larger is better” paradigm, our approach chooses a control factorx which

maximizes the minimum (with respect toz) ŷ(x,z). Consequently, the problem is to findx which

maximizes minz∈Rz ŷ(x,z). Under the assumptions made onRx, Rz and ŷ(x,z), there existsx∗ ∈ Rx

andz∗ ∈ Rz which satisfy:

ŷ(x∗,z∗) = max
x∈Rx

min
z∈Rz

ŷ(x,z), (3.4)

Clearly, the optimal solutionx∗ to the equation (3.4) may equivalently be calculated by considering a

min-max problem, simply by considering−ŷ(x,z) instead of ˆy(x,z).

4 Computing the Min-max Using the IER-MCS Algorithm

Some of the difficulties in computing a solution to (3.2) werementioned in Section 2. In this section,

we propose to use a method of outer approximation first proposed in Polak (1994) and modified us-

ing an entropic regularization in Sheu and Lin (2004). We follow the authors of the latter paper in

calling this algorithm as Iterative entropic regularization (or IER). This method has been shown to

have guaranteed convergence properties to the min-max solution. However, in using this method one

needs to solve a sequence of (possibly non-convex) maximization and/or minimization problems. The
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convergence of the min-max algorithm is based on the successful solution of these intermediate max-

imization and/or minimization problems. Clearly, in our case the error criterionM(x,z) is frequently

non-convex inx or z. This makes the solution of the intermediate optimization problems difficult. For

this purpose we propose to use a proven global optimization algorithm based on multilevel coordinate

search (MCS) (Huyer and Neumaier (1999) and Jones et al. (1993)). This method, in turn, is guaran-

teed to converge if the optimized function is continuous in the neighborhood of the global optimum.

We show that this combination, which we name as IER-MCS, performs consistently in finding the

min-max optimization posed in (3.2) above. First we briefly describe the IER algorithm to make this

presentation self-contained.

Iterative Entropic Regularization:

Let us rewrite (3.2) simply as: Find(x∗,z∗) ∈ Rx ×Rz such thatM(x∗,z∗) = minx∈Rx maxz∈Rz M(x,z)

whereM(x,z) is defined as in (3.1). Further recall thatM∗(x) = maxz∈Rz M(x,z).

Next approximateRz by a finite subsetRm
z := {z1,z2, ....,zm} of m points. CorrespondinglyM∗(x)

is approximated byM∗
m(x) = maxz∈Rm

z
M(x,z). However this approximate function is still not differ-

entiable and hence we use the following smoothed version using entropic regularization (Polak (1994)

and Sheu and Lin (2004)):

M∗
m,p(x) = (1/p) log

{

∑
z∈Rm

z

exp{pM(x,z)}
}

wherep > 0. Then the algorithm can be written as follows:

1. Selectz1 ∈ Rz and letR1
z := {z1};m = k = 1. Chooseδ ∈ (0,1), andp > 0.

2. Findxm,p ∈ Rx satisfyingM∗
m,p(xm,p)≤ minx∈Rx M∗

m,p(x)+δ k. Increase the iteration countk by

one.

3. If (i) M∗(xm,p)≤M∗
m,p(xm,p) and (ii)δ k + log(m)/p is below a desired tolerance, then stop. If (i)

is violated then choose anyzm+1 = argmaxz∈Rz M(xm,p,z), setRm+1
z = Rm

z ∪{zm+1}, increase

m by one, selectp ≥ (log(m))2 and go to step 2. If (ii) is violated increasep by a constant

factor and go to step 2.

This algorithm is guaranteed to converge to the global solution at step 3 with at most a(δ k +
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log(m)/p) error; or it produces an infinite sequence of solutionsxm ∈ Rz(m → ∞), any cluster point

of which is a global solution.

However, the successful implementation of this algorithm needs the correct computation of the

minimum ofM∗
m,p(x) in step 2. Clearly, ifM(x,z) is not convex inz, for each value ofx, the smoothed

versionM∗
m,p(x) also may turn out to be non-convex. Hence, one needs to solve anon-convex op-

timization problem every time step 2 needs to be executed. Moreover for checking condition (i) of

step 3 one needs to computeM∗(xm,p), which is again a (possibly non-convex) maximization problem

overRz. For these purposes, we use the global optimization algorithm based on multilevel coordinate

search proposed in Huyer and Neumaier (1999) and Jones et al.(1993). Briefly, this method uses a

modified branch and bound scheme to find the global minimizer by combining global search with a

fast local search. This algorithm is guaranteed to convergegiven that the function to be optimized

is continuous in the neighborhood of the global minimum. Fordetails about the performance of this

algorithm in benchmark optimization problems and about related convergence properties, the reader

is referred to Huyer and Neumaier (1999). In this article we use the MCS algorithm to solve the

non-convex optimization sub-steps of step (2) and (3)(i).

5 Numerical Examples

In this section, we illustrate our proposed min-max approach using four numerical examples. The first

two examples are based on data from sensitive processes, crash test and granulation of drug. While,

the third and fourth examples are based on data sets frequently used in literature.We also provide a

comparison of the results obtained by the min-max approach and the method proposed in Myers et al.

(1992).

5.1 Example 1: Automobile crash test

In this example we consider a data set taken from Rai et al. (2005) studying the effect of four factors on

the head injury criteria (HIC) measured during automobile crash tests. The objective of the experiment

is to design the interior rim of a car in such a way as to reduce the risk of fatal head injury to the

passenger in case of an accident. The critical interior rim dimensions known to affect HIC values

are wall thickness, draft angle and rib pitch (see Rai et al. (2005) for a complete description). These
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parameters can be chosen easily and hence are considered as control factors. Similarly, the angle at

which the head collides with the rim during the accident is known to affect the HIC value substantially.

However, this angle of head impact is completely unpredictable and is hence treated as noise variable.

It should be noted that the bounds on the control factors are clearly known, being imposed by the

engineering, manufacturing and assembly guidelines whilethe angle of impact is bounded by the

45 and 90 degrees due to the geometry of possible head collisions. (Rai et al. (2005)). A dummy

equivalent of HIC denoted by HIC(d) is used as the response variable in the following model. It

should be emphasized, that the min-max paradigm is ideally suited for this example, since the design

should guarantee that the HIC value remains low forall possible angles of head impact.

To summarize, there are three control variables:x1 (wall thickness measured in mm),x2 (draft

angle),x3 (rib height measured in mm), and one noise variable:z1 (angle of head impact). A list of

factors and their levels is given in Table 1. Each factor is present at two levels. Here,Rx = {−1≤ xi ≤

1; i = 1,2,3} andRz = {−1≤ z1 ≤ 1}. The goal is to determine the settings of the control variables

for which the head injury criteria is minimized, for all values of the angle of head impact,z1.

Table 1: Factors and levels (Example 5.1)

Factors −1 1
Wall thickness (x1) 2.4 mm 3.5 mm

Draft angle (x2) 5 degrees 10 degrees

Rib height (x3) 12.5 mm 21 mm

Angle of impact (z1) 45 degrees 90 degrees

The fitted response ˆy(x,z1), is

741.57−121.74x1−118.07x2−28.33x3−103.64z1+121.96x1x2+53.97x1z1+40.31x2z1+10.08x3z1.

(5.1)

The analysis of variance results are given in Table 3. We alsofitted a model with the interaction terms,

x1x3, x2x3, zx1x2, zx1x3 andzx2x3 included. However, the corresponding p-values for these interaction

terms were greater than 0.55. There was also no improvement in the adjustedR2(= 0.9265), F(=

26.21) value and theF(= 0.2189) value for the lack of fit test. Studentized residuals corresponding

to the fitted model (5.1) all lie between -2 and 2, with approximate mean 0 and variance 1. Various
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Table 2: Design and response values (Example 5.1)

x1 x2 x3 z1 y x1 x2 x3 z1 y
-1 -1 -1 -1 1362 1 -1 -1 -1 968
-1 -1 1 1 677 1 -1 1 1 510
-1 -1 1 -1 750 1 -1 1 -1 511
-1 -1 1 1 734 1 -1 1 1 501
-1 1 -1 1 584 1 1 -1 1 499
-1 1 -1 -1 742 1 1 -1 -1 584
-1 1 -1 1 731 1 1 -1 1 499
-1 1 1 -1 636 1 1 1 -1 581
-1 1 1 1 608 1 1 1 1 578
-1 1 1 -1 716 1 1 1 -1 680
1 -1 -1 -1 857

Table 3: Analysis of variance (Ex 5.1)

Source df SS MS F p-value R2 adjusted-R2

Model 8 764063 95508 36.2185 <0.0001 0.9602 0.9337
Residuals 12 31644 2637
Lack of fit 5 4913 983 0.2573 0.9229
Pure error 7 26730 3819
variable partial t p-value

x1 -10.058 <0.0001
x2 -9.755 <0.0001
x3 -2.207 0.0475
z1 -8.876 <0.0001

x1x2 9.012 <0.0001
x1z1 4.623 0.0006
x2z1 3.452 0.0048
x3z1 0.891 0.3907

diagnostic measures showed that there were no outliers or influential points. Normal probability and

residual plots were used to confirm that normality and constant variance assumptions on the residuals

were satisfied.

Since our objective is to minimize the response (i.e.,T = 0) for all values ofz1, x∗ is the value of

x which satisfies

max
{−1≤z1≤1}

ŷ(x∗,z1) = min
{−1≤xi≤1; i=1, 2, 3}

max
{−1≤z1≤1}

ŷ(x,z1).

Using the IER-MCS algorithm (see Section 4) implemented in Matlab, we obtainx∗ = (x1 = 1,x2 =

1,x3 = 1).

We, next compare our results with those of Myers et al. (1992). The performance criterion of
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Myers et al. (1992) is,

Ez1(ŷ(x,z1)−T )2 = (Ez1ŷ(x,z1)−T )2 +Varz1ŷ(x,z1), (5.2)

whereT = 0, Ez1ŷ(x,z1) = 741.57−121.74x1−118.07x2−28.33x3+121.96x1x2 andVarz1ŷ(x,z1) =

(−103.64+ 53.97x1 + 40.31x2 + 10.08x3)
2 +(51.35)2, making the assumptions thatE(z1) = 0 and

Var(z1) = 1. The value ofx which minimizes (5.2), denoted byxMKV , is xMKV = (x1 = 1,x2 =

−0.4299,x3 = 1). Figure 5.1 shows a comparison ofM(x∗,z1) andM(xMKV ,z1) against values ofz1

−1 −0.5 0 0.5 1
520

540

560

580

600

620

640

660

z1

M
(x

,z
1
)

M(xMKV , z1)

M(x∗, z1)

Figure 5.1: Comparison ofM(x∗,z1) andM(xMKV ,z1) againstz1 ∈ [−1,1].

in [−1,1]. From the figure we see that the worst (maximum) value of the head injury criteria when

x = x∗ is 596.11 atz1 = 1 (i.e., angle of head impact is 90 degrees). While, the worst (maximum)

value of the head injury criteria atxMKV is 646.74 atz = −1. Also we note that for values ofz1 in

the interval[−1,−0.10], M(x∗,z1) < M(xMKV ,z1).This implies that choosingx = xMKV results in a

worse deviation due to noise in the interval[−1,−0.10] than selectingx = x∗. Thus, we see that for

quite a wide interval of values of the angle of impact the min-max settings of the control variables

give a lower HIC than the settings of Myers et al. (1992).

It should, however, be noted that it may not always be possible to meet the required quality stan-

dards using this methodology. For example, if in the currentexample, the product requires a guar-

anteed quality quantified as ˆy(x,z1) < 500, then evidently, our methodology fails to give satisfactory

results. In such a case any of the alternatives suggested in Section 3.1 (unacceptable worst deviation)

may be used to meet the required quality standards.
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5.2 Example 2: Granulation of drugs

We consider here a data set based on drug granulation in a 10 1 high shear mixer from Vojnovic et al.

(1996). The response studied is the percentage in weight of granules smaller than 200µm. The ob-

jective of this experiment is to maintain an unform granule size of 200µ. This will be achieved by

minimizing the number of granules smaller than 200µm in size. Note that the experimenter is not

concerned with granule sizes larger than 200µm, since larger granules are removed automatically

during the prior filtration process. The control factors known to affecting the responsey are moisture

level (%) and massing time (minute). In previous studies (Vojnovic et al. (1993) and Ogawa et al.

(1994)) found that the impeller speed (measured in rpm) is also an important factor affectingy. How-

ever, due to the difficult to control nature of impeller speedthey considered it as a noise variable.

Each factor and the levels (coded and uncoded) between whichthey vary are listed in Table 4. As ex-

plained in Section 1 it is critical that all the granules are of size 200µm, otherwise the tablets formed

may contain varying concentrations of the active ingredient. Using our min-max methodology in this

situation, we are able to find the control settings which guarantee that the response is minimized for

all values of the impeller speed.

Table 4: Control and noise variables with their levels (Ex 5.2)

Factors −1 0 1
Moisture level (x1) 20% 30% 40%

Massing time (x2) 3 mins 5 mins 7 mins

Impeller speed (z1) 100 rpm 200 rpm 300 rpm

Table 5 shows the design points and the response values. The center point is replicated five times.

In this example,Rx = {−1 ≤ xi ≤ 1; i = 1,2} andRz = {−1 ≤ z1 ≤ 1}. We started with fitting a

second order model toy, however the error variance was not constant. The Box-Cox procedure in

SAS 9.1.3 suggested a square root transformation on the response. Thus, we fit the following model

to y∗ =
√

y,

ŷ∗(x,z1)= 3.82−2.49x1−0.91x2−1.41z1−0.07x2
1+0.27x2

2+0.44z2
1+0.34x1x2−0.65x1z1−1.03x2z1.

(5.3)

The analysis of variance results are shown in Table 6. Here also, normal probability and residual plots
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Table 5: Design and response values (Ex 5.2)

X1 X2 Z1 x1 x2 z1 y X1 X2 Z1 x1 x2 z1 y
40 5.5 225 1 0.25 0.25 0.47 30 6.5 125 0 0.75 -0.75 27.17
20 4.5 175 -1 -0.25 -0.25 43.82 22.5 5 275 -0.75 0 0.75 27.58

32.5 7 225 0.25 1 0.25 3.68 30 3.5 275 0 -0.75 0.75 19.27
27.5 3 175 -0.25 -1 -0.25 34.6 30 5 200 0 0 0 14.24
37.5 3.5 200 0.75 -0.75 0 6.18 30 5 200 0 0 0 14.65
22.5 6.5 200 -0.75 0.75 0 25 30 5 200 0 0 0 16.23
32.5 5.5 300 0.25 0.25 1 2.63 30 5 200 0 0 0 13.87
27.5 4.5 100 -0.25 -0.25 -1 37.65 30 5 200 0 0 0 14.04
37.5 5 125 0.75 0 -0.75 12.56

xi = 2Xi−[max(Xi)+min(Xi)]
[max(Xi)−min(Xi)]

; i = 1,2; z1 = 2Z1−[max(Z1)+min(Z1)]
max(Z1)−min(Z1)

.

showed that the normality and constant variance assumptions on the residuals were satisfied. Since

our interest is in minimizingy, x∗ is the value ofx satisfying,

max
{−1≤z1≤1}

ŷ∗(x∗,z1).

Using the IER-MCS algorithm we obtain,x∗ = (x1 = 1,x2 = −0.86004). The worst (minimum)

value of the response whenx = x∗ is 3.56. We do not compare our results with those of Myers et al.

(1992) for this particular problem. In their paper, Myers etal. (1992) discussed the methodology of

obtaining robust design for models with linear terms in the noise variable. However, the fitted model

in this example involves a quadratic term in the noise variable. To compute the performance criterion

(5.2) of Myers et al. (1992) we require some assumptions on the fourth order moment ofz1, E(z4
1).

The min-max strategy proposed in this paper however does notneed to make any such assumptions

on the moments of the noise variable. To apply our method we need to know only the interval in

which the noise variable lies in, as illustrated in this example.

5.3 Example 3: Filtration rate of a chemical compound

We consider a data set taken from Robinson et al. (2004) [Table1] which studies the effect of four

factors on the rate of filtration of a chemical product (y). There are three control variables:x1 (pres-

sure),x2 (concentration of formaldehyde),x3 (stirring rate) and one noise variable:z1 (temperature).

Each factor is present at two levels. A 24 factorial design was used to get the response values. Here,
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Table 6: Analysis of variance (Ex 5.2)

Source df SS MS F p-value R2 adjusted-R2

Model 9 42.735 4.748 284.4266 <0.0001 0.9973 0.9938
Residuals 7 0.117 0.017
Lack of fit 3 0.057 0.019 1.2531 0.402
Pure error 4 0.060 0.015
variable partial t p-value

x1 -40.935 <0.0001
x2 -14.861 <0.0001
z1 -23.076 <0.0001
x2

1 -0.749 0.4782
x2

2 2.908 0.0227
z2
1 4.793 0.0020

x1z1 -4.494 0.0028
x2z1 -7.098 0.0002
x1x2 2.330 0.0526

Rx = {−1≤ xi ≤ 1; i = 1,2,3} andRz = {−1≤ z1 ≤ 1}. The goal is to determine the settings of the

control variables for whichy reaches a target of 75, for all settings ofz1.

Using the same fitted model as in Robinson et al. (2004) for the response,

ŷ(x,z1) = 70.06+10.81z1 +4.94x2 +7.31x3−9.06x2z1 +8.31x3z1,

wherex = (x2,x3). The corresponding analysis of variance results are shown in Table 7. Our per-

Table 7: Analysis of variance (Ex 5.3)

Source df SS MS F p-value R2 adjusted-R2

Model 5 5535.8 1107.2 56.7412 <0.0001 0.966 0.9489
Residuals 10 195.1 19.5
Lack of fit 2 15.6 7.8 0.3482 0.7162
Pure error 8 179.5 22.4
variable partial t p-value

x2 6.622 <0.0001
x3 4.471 0.00120
z1 9.791 <0.0001

x2z1 -4.494 0.0028
x3z1 -8.206 <0.0001

formance criterion isM(x,z1) = (ŷ(x,z1)− 75)2. Following the min-max strategy we find,x∗ =
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(x2 = 1,x3 = −0.21). We, compare our results with those of Myers et al. (1992), wherexMKV =

(x2 = 1,x3 = −0.1211). Figure 5.2 shows a comparison ofM(x∗,z1) andM(xMKV ,z1) against val-
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Figure 5.2: Comparison ofM(x∗,z1) andM(xMKV ,z1) againstz1 ∈ [−1,1].

ues ofz1 in [−1,1]. We note from Figure 5.2 that for values ofz1 in the interval[−1,−0.879],

M(x∗,z1) < M(xMKV ,z1).

5.4 Example 4

The data set is taken from (Myers et al., 1992) [Table 1]. There are two control variables (x1 andx2)

and two noise variables (z1 andz2). Each factor is at two levels,−1 and 1. A 24 factorial design in the

control and noise variables, with five center runs was used. Interest here is to determine the settings

of x = (x1,x2)
′ which maximizes the worst (minimum with respect toz = (z1,z2)

′ in Rz) response.

Using the same fitted model for the response as in Myers et al. (1992),

ŷ(x,z) = 24.472+6.89x1−9.11x2 +4.94z1 +3.52x1x2 +3.23x1z1 +1.88x1z2. (5.4)

The corresponding analysis of variance results are shown inTable 8. As in Section 3.2,x∗ is the

setting of the control factors which satisfies, max{−1≤xi≤1; i=1,2}min{−1≤zi≤1; i=1,2} ŷ(x,z). Using

the IER-MCS algorithm we obtain,x∗ = (x1 = 0.0101,x2 = −1). The approach by Myers et al.

(1992) yieldsxMKV = (x1 = −0.3,x2 = 1). The variation in the values of the responses ˆy(x∗,z) and

ŷ(xMKV ,z) over different values of the noise variables inRz is shown in Figure 5.3a and Figure 5.3b,

respectively. From the figures it may be observed that the worst (minimum) value of ˆy(x∗,z) = 33.56

which occurs at(z1 =−1,z2 =−1) while the worst value of ˆy(xMKV ,z) = 31 for (z1 = +1,z2 = +1).
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Table 8: Analysis of variance (Ex 5.4)

Source df SS MS F p-value R2 adjusted-R2

Model 6 2868.03 478.01 81.8816 <0.0001 0.9723 0.9604
Residuals 14 81.73 5.84
Lack of fit 10 54.46 5.45 0.7987 0.6495
Pure error 4 27.27 6.82
variable partial t p-value

x1 11.345 <0.0001
x2 -15.005 <0.0001
z1 8.099 <0.0001

x1z1 5.430 <0.0001
x2z2 3.054 0.00858
x1x2 5.746 <0.0001
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Figure 5.3: Comparison ofM(x∗,z) andM(xMKV ,z) over{−1≤ zi ≤ 1, i = 1,2}

6 Concluding Remarks

In certain processes where it is very important to keep the estimated response near the target for all

values of the noise, the min-max approach is the only technique which guarantees that the quality

of each and every product is better than some guaranteed worst quality. However, determining the

min-max setting in most general situations is difficult using conventional optimization techniques. To

overcome this difficulty, a computational method for the optimal control setting, based on the itera-

tive entropic regularization algorithm coupled with a global multilevel coordinate search, is proposed.

The algorithm is shown to provide satisfactory solutions tothe numerical examples considered. Addi-

tionally, it is shown using the numerical examples, that variance minimizing methods may sometimes

fail to keep the estimated response near the target for all settings of the noise variable for sensitive

processes, thus giving rise to a worse guaranteed quality. The proposed min-max method can be used
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in various industries like drug manufacturing, defence, auto industry to deliver robust products. The

methodology works without requiring any assumptions on thedistributional properties of the noise

variables. Furthermore, the above described min-max formulation can also be extended to include

cases where the noise variable is categorical or quantitative in nature.

As in all model-based approaches, the value of the min-max control settings depends on the model

chosen to fit the process response and any misspecification inthe model may lead to a change in the

optimal settings. However, we do not take into account the implications of model misspecification

in this paper and leave it for future research. One possible method to tackle this problem of model

misspecification may be to use non-parametric or semi-parametric techniques to model the response

as suggested by Pickle et al. (2008).
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The R and Matlab codes used to compute the optimum control settings for this article are available

on request from the first author.
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