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Abstract—A linear time invariant system with uncertain initial
conditions, perturbed parameters, and active disturbance signals
operates in open loop as a result of feedback failure or interrup-
tion. The objective is to find an optimal input signal that drives
the system for the longest time without exceeding specified error
bounds, so as to allow maximal time for feedback reactivation. It
is shown that such a signal exists, and that it can be replaced by
a bang-bang signal without significantly affecting performance.
The use of bang-bang signals (i.e., signals that switch among their
extreme values) converts an infinite dimensional optimization
problem into a finite dimensional one.

I. INTRODUCTION

Needless to say, feedback is an essential tool for reducing
operating errors in control systems. However, blackouts in
feedback service cannot be completely avoided; temporary
loss of feedback due to technical failure is not uncommon in
applications. Furthermore, disruptions in feedback can be part
of routine operating conditions in certain applications, such
as guidance and control of space vehicles, where feedback
communication links may be disrupted by the loss of line-
of-sight; digital control of continuous time systems, where
feedback is obtained only at sampling intervals; networked
control systems, where feedback channels are disrupted in-
termittently to reduce network traffic (e.g., [6], [3]); and
medical applications, such as glucose control in diabetics,
where feedback requires irksome biological testing and is
obtained relatively infrequently (e.g. [11], [13] and [14]). Al-
though increases of performance errors are often unavoidable
during feedback blackout, it would be desirable to develop
an operating policy that keeps these errors below specified
bounds for the longest possible time, thus providing the best
opportunity to restore feedback before detrimental degradation
in performance occurs.

The present paper derives an open loop controller that
maximizes the duration of time during which a system can
operate without feedback and not exceed acceptable error
bounds. Additionally, issues related to the calculation and the
implementation of such a controller are also examined. In
particular, we show that the optimal input signal generated
by the controller can be replaced by a bang-bang signal
without significantly degrading system performance. Bang-
bang signals, i.e. signals that switch between their maximal
values, are relatively easy to compute and implement, as they
are completely determined by their switching times.

The control diagram is represented in Figure 1. Here, Σ is
a linear time invariant system whose parameters and initial

conditions are not precisely known and whose operation is
affected by an unspecified disturbance signal v(t).

Figure 1. Basic Configuration

The controlled system is described by

Σ : ẋ(t) = A′x(t)+B′u(t)+G′v(t), x(0) = x0, (1)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the
control input, v(t) ∈ Rp is a disturbance signal, A′ is an n×n
matrix, B′ is an n×m matrix, and G′ is an n× p matrix.
The initial condition x0 ∈ Rn of Σ, the entries of the matrices
A′,B′, and G′, and the disturbance signal v(t) are not accurately
specified. As the feedback signal is lost at the time t = 0,
the system Σ operates in open loop for all times t > 0. After
possibly having applied an appropriate shift transformation
on the signals, we assume that the desired state trajectory
of Σ is the zero signal x(t) = 0 for all t ≥ 0. Our objective
during the open loop operation is therefore to ensure that
x(t) remains close to 0 for as long as possible, despite the
mentioned uncertainties and disturbances.

To describe the extents of uncertainty, we use the `∞-
norm ‖ • ‖ given, for an n-dimensional vector (c1, ...,cn),
by ‖c‖ := maxi=1,...,n |ci|, and for an n× m matrix C by
‖C‖ := maxi=1,...,n; j=1,...,m |ci j|; here ci j is the (i, j) entry of
C. The information available about the system Σ consists of
the nominal initial condition x0

0 and the nominal matrices A,B,
and G of (1). The nominal disturbance signal is the zero signal.

To describe the uncertainty about the initial state x0, we use
a specified bound χ > 0 to characterize the maximal deviation
from the nominal initial state, so that the set of all possible
initial states is

X0 := {x0 ∈ Rn : ‖x0− x0
0‖ ≤ χ}. (2)

The uncertainties about the entries of the matrices A′, B′, and
G′ of (1) are characterized similarly in terms of the nominal
matrices A,B,G and a real number d > 0 by the inequalities

‖A′−A‖ ≤ d,‖B′−B‖ ≤ d, and ‖G′−G‖ ≤ d.



Denoting by ∆A (respectively, ∆B, ∆G) the set of all n× n
(respectively, all n×m, all n× p) matrices with entries in the
interval [−d,d], we can represent the perturbed matrices of (1)
in the form

A′ = A+DA, B′ = B+DB, G′ = G+DG, (3)

where DA ∈ ∆A,DB ∈ ∆B, and DG ∈ ∆G. In shorthand, denote

D := (DA,DB,DG) and ∆ := ∆A×∆B×∆G, (4)

so that D ∈ ∆. For a particular selection of matrices given by
(3), an initial condition x0 ∈ X0, and a disturbance signal v(t),
we denote the system of (1) by Σx0,D,v. The response to an
input signal u(t) is then x(t) = Σx0,D,vu(t).

As the desired output signal of the system is the zero signal
x(t) = 0 for all t ≥ 0, we define the performance error as
e(t) = xT (t)x(t). Our objective is to select the input signal u(t)
so as to keep the error e(t) below a specified bound M > 0
for the longest possible time. If the error does not exceed the
bound M during the time interval [0, t f ], we can write

e(t)≤M for all 0≤ t ≤ t f . (5)

The optimal choice of u(t) would maximize the value of t f
and take into consideration the uncertainties and disturbances
that affect Σ. In view of (5), we require xT

0 x0≤M, as otherwise
the initial error would exceed the allowed error.

An more restricted version of this problem was introduced
in [9],[7], and [8], where the noise signal v(t) was not included
and the initial condition x0 was assumed to be accurately
specified. The present paper extends these results to systems
that are subject to disturbances and have unspecified initial
conditions. We show in section II that the problem of calculat-
ing an optimal signal u(t) is a max-min optimization problem.
In section III we prove that this problem has a solution, and
in section IV we show that an optimal signal u(t) as well
as a worst disturbance signal v(t) can both be replaced by
bang-bang signals, with only a negligible effect on system
performance. This fact substantially simplifies the process of
calculating and implementing an optimal solution, as bang-
bang signals are completely determined by their switching
times.

II. A MAX-MIN FORMULATION

To formalize our objective, we use the weighted inner
product 〈a,b〉 =

´
∞

0 e−αta(t)T b(t)dt, where a(t) and b(t) are
m-dimensional vector valued Lebesgue measurable functions,
α is a positive real number, and the integral is taken in
the Lebesgue sense. The weight function e−αt makes this
inner product well-defined for all uniformly bounded func-
tions. Denote by Lα,m

2 the Hilbert space of all m-dimensional
Lebesgue measurable functions with the inner product 〈·, ·〉. In
addition, we use the point-wise `∞-norm, which, for a function
f (t) = ( f1(t), ..., fm(t)), is given by ‖ f (t)‖ := maxi=1,...,m| fi(t)|
at each time t.

The physical characteristics of systems often impose strict
bounds on the allowable input amplitude. We denote by K > 0

the input amplitude bound of the system Σ of (1), so that the
set of all permissible input functions of Σ is

U := {u ∈ Lα,m
2 : ‖u(t)‖ ≤ K for all t ≥ 0}. (6)

Similarly, the disturbance signal v(t) of (1) must also be
bounded. Denoting by L > 0 the bound on the disturbance
amplitude, the set of all permissible disturbance signals is

V := {v ∈ Lα,p
2 : ‖v(t)‖ ≤ L for all t ≥ 0}. (7)

While the arguments in this paper require the bounds L
and K to be finite, no special relationship is assumed about
their magnitudes. In practice, disturbance signals often orig-
inate from environmental noises and interferences, and have
amplitudes that are much smaller than the amplitude of the
control input signal u(t), i.e., often L�M.

To highlight the dependence of the state trajectory x(t) of (1)
on the quantities x0,D,v, and u, we usually write x(t,x0,D,v,u)
instead of x(t). Then (5) takes the form

e(t,x0,D,v,u) := xT (t,x0,D,v,u)x(t,x0,D,v,u)≤M,

0≤ t ≤ t f (8)

The time during which the error e(t,x0,D,v,u) does not exceed
its bound M is given by

T (M,x0,D,v,u) := inf{t ≥ 0 : e(t,x0,D,v,u) > M}, (9)

where T (M,x0,D,v,u) := ∞ if e(t,x0,D,v,u) ≤ M for all
t ≥ 0. As the initial state satisfies xT

0 x0 ≤ M, we have
T (M,x0,D,v,u) ≥ 0. Recall that our objective is to find an
input function u(t) ∈ U that drives Σ so as to satisfy the
error bound (5) for the longest possible time t f , irrespective
of uncertainties and disturbances. In our current notation,
we need to select the input function u so as to obtain the
largest possible duration T (M,x0,D,v,u), irrespective of the
uncertainties about the initial conditions, about the matrices
A′,B′,G′, and about the disturbance signal v.

Consider now a fixed input signal u. Taking into account
the perturbed values x0 ∈ X0, D ∈ ∆, and v ∈ V , the longest
time T ∗(M,u) during which the error does not exceed M
for any perturbation or disturbance is the lowest value of
T (M,x0,D,v,u) over all possible perturbations, i.e.,

T ∗(M,u) = inf
(x0,D,v)∈X0×∆×V

T (M,x0,D,v,u). (10)

Thus, to maximize the duration t f in (5), the best input
signal u(t) would be one that maximizes T ∗(M,u). If such an
input signal exists in U , it would yield the maximal time

t∗f := sup
u∈U

T ∗(M,u) (11)

during which the error remains within desirable bounds, ir-
respective of which permissible combination of perturbations
and disturbances is active. Denoting such an optimal function
by u∗(t), it would yield t∗f = T ∗(M,u∗), and our objective can
formally be phrased as follows.



Problem 1. Determine whether an optimal input signal u∗ ∈
U exists; if such a signal exists, describe a method for its
computation. �

From (10) and (11), it is follows that the calculation of
an optimal input signal u∗ involves the solution of a max-min
optimization problem. We proceed next to show that a solution
to this problem does exist.

III. EXISTENCE OF AN OPTIMAL SOLUTION

In this section, we show that Problem 1 does have a solution.
In broad terms, this is accomplished by showing that the set U
of (6) has a certain compactness feature and that the function
T ∗(M,u) of (10) has an appropriate continuity property. The
existence of the supremal time t∗f of (11) follows then by a
generalized version of the Weierstrass Theorem. The following
statements were proved in [7], [8] for known initial conditions,
and with no disturbance signal i.e. v(t) = 0. However, the
proofs of the results presented in this section are identical
to the proofs of similar results presented in [7], [8], and are
hence not repeated here. We start with the basic compactness
property of the set U .

Lemma 2. The set U of (6) is weakly compact in the topology
of the Hilbert space Lα,m

2 .

The system Σ of (1) is nominally unstable if the nominal
matrix A has at least one eigenvalue with strictly positive real
part. According to the following statement, nominal instability
of Σ implies that the state trajectory x(t) must escape the bound
M.

Lemma 3. Assume that the system Σ of (1) is nominally unsta-
ble and recall the notation of (2), (4), and (9). Then, for each
input function u(t)∈U, there is a triplet (x0,D,v)∈X0×∆×V
for which T (M,x0,D,v,u) < ∞.

Lemma 3 can be used to show that T ∗(M,u) is weakly upper
semi-continuous. This feature will help us prove the existence
of a solution of Problem 1.

Lemma 4. The function T ∗(M,u) of (10) is weakly upper
semi-continuous in u.

Lemma 2 and 4 can be combined using the generalized
Weierstrass Theorem (e.g., [5]) to prove the main result of
this section: there is an optimal solution of Problem 1 (see
also [10]).

Theorem 5. Assume that the system Σ of (1) is nominally
unstable, and let U be given by (6). Then, using the notation
of (11), the following are true.

(i) There is a finite maximal time t∗f := supu∈U T ∗(M,u), and
(ii) There is an input function u∗ ∈ U satisfying t∗f =

T ∗(M,u∗).

It may be noted that, depending on the actual values of
the initial condition x0, the perturbation matrix D, and the
disturbance signal v(t), the duration of time t f during which
the system’s response to u∗(t) remains below the specified

error bound may vary. However, it will always satisfy the
inequality t f ≥ t∗f , and t∗f is the maximal time that satisfies
this inequality.

IV. BANG-BANG APPROXIMATION

We turn now to the consideration of issues related to the
computation and the implementation of optimal input signals
u∗(t) that solve Problem 1 for the system Σ; recall that such
functions are guaranteed to exist by Theorem 5. Broadly
speaking, the computation and the implementation of optimal
signals is never an easy task. This is even more so in the
present case, due to the complex nature of the conditions that
characterize the optimal solution. The current section points
to a simple way out of this complexity: we show that an
optimal signal u∗(t) can be replaced by a bang-bang signal
without causing significant performance deterioration. A bang-
bang input signal of Σ consists of component functions whose
values switch between K and −K as necessitated by control
action, where K is the input bound of Σ. Bang-bang functions
are completely determined by their switching times, and hence
are relatively easy to calculate and implement.

Bang-bang input signals may not yield exactly the same
performance as an optimal input signal. However, as the next
statement indicates, optimal performance can be approximated
as closely as desired by bang-bang input signals (compare to
[7], where a related result is derived under more restrictive
conditions).

Theorem 6. Let Σ be a nominally unstable system described
by equation (1), let U be the set of input signals (6), and let
x(t,x0,D,v,u) be the state trajectory of Σ induced by an input
function u. Let t∗f be the optimal time and let u∗be an optimal
input function of Theorem 5. Then, for every ε > 0, there is a
bang-bang input function u± ∈U for which the following are
true.

(i) u± has only a finite number of switches, and
(ii) The discrepancy between the state trajectories satisfies

‖x(t,x0,D,v,u∗)− x(t,x0,D,v,u±)‖ < ε for all t ∈ [0, t∗f ] and
for all (x0,D,v) ∈ X0×∆×V .

Proof: We use the notation of (4), (5), and (6). As
Σ is nominally unstable, it follows by Theorem 5 that the
optimal time t∗f is finite. Now, let ε,η > 0 be two real
numbers. In view of the fact that the exponential function is
uniformly continuous over any finite interval of time, there
is a real number δ (η) > 0 such that the function µ(t ′, t) :=
e−A′t ′ − e−A′t satisfies ‖µ(t ′, t)‖ ≤ η whenever |t ′− t|< δ (η)
and t ′, t ∈ [0, t∗f ]. Denote β := sup{‖B + DB‖ : DB ∈ ∆B} and

N := sup
{∥∥∥eA′t

∥∥∥ : DA ∈ ∆A, t ∈ [0, t∗f ]
}

; here, β and N exist
due the fact that all involved quantities are bounded.

Next, let 0 < γ ≤ δ (η) be any number for which the ratio
t∗f /γ is an integer. We build a partition of the interval [0, t∗f ]
into segments of length γ , namely, the partition determined by
the intervals [qγ,(q+1)γ], q = 0,1,2, ...,(t∗f /γ)−1. Recalling
that input functions of Σ are m-dimensional column vectors
bounded by K > 0, we build a bang-bang input function



u±(t) = (u±1 (t),u±2 (t), ...,u±m(t))T ,0 ≤ t ≤ t∗f , as follows: for
the component u±i (t), select in each interval [qγ,(q + 1)γ] a
switching time θqi and set

u±i (t) :=

{
K for t ∈ [qγ,θqi),
−K for t ∈ [θqi,(q+1)γ),q = 0,1,2, ...,(t∗f /γ)−1,

(12)
i = 1,2, ...m. For each such component function, we have´ (q+1)γ

qγ
u±i (τ)dτ = K

´
θqi

qγ
dτ−K

´ (q+1)γ
θqi

dτ = K[2(θqi−qγ)−
γ]. Now, select θqi to satisfy the equality K[2(θqi−qγ)− γ] =´ (q+1)γ

qγ
u∗i (τ)dτ. Note that θqi exists due to the fact that

|u∗i (t)| ≤ K for all t ≥ 0. For this value of θqi, we obtain the
equality ˆ (q+1)γ

qγ

[u∗i (τ)−u±i (τ)]dτ = 0 (13)

for all i = 1,2, ...m and all q = 0,1,2, ...,(t∗f /γ)−1.
Recall that the solution of (1), for particular values

(A′,B′,G′) of the system parameters, to input u(t) and dis-
turbance v(t), is given by

x(t;u,v) = eA′t
[

x0 +
ˆ t

0
e−A′τ B′u(τ)dτ +

ˆ t

0
e−A′τ G′v(τ)dτ

]
(14)

Further, let x±(t) be the state trajectory generated by the
system Σ when driven by the input function u±(t), and let x∗(t)
be the state trajectory induced by the optimal input function
u∗(t). Noting that the initial condition x0, the perturbation
matrix D, and the disturbance input v(t) are all the same in
both cases (we are considering the performance of the same
system sample), we obtain from (14) and (13) that

‖x∗(t)− x±(t)‖

=‖eA′t
[

x0 +
ˆ t

0
e−A′τ B′u∗(τ)dτ

]
− eA′t

[
x0 +
ˆ t

0
e−A′τ B′u±(τ)dτ

]
=
∥∥∥∥eA′t

ˆ t

0
e−A′τ B′[u∗(τ)−u±(τ)]dτ

∥∥∥∥
≤ N

∥∥∥∥ˆ t

0
e−A′τ B′

[
u∗(τ)−u±(τ)

]
dτ

∥∥∥∥
=N
∥∥∥∥[q−1

∑
r=0

ˆ (r+1)γ

rγ

e−A′τ B′
[
u∗(τ)−u±(τ)

]
dτ

]
+
ˆ t

qγ

e−A′τ B′
[
u∗(τ)−u±(τ)

]
dτ

∥∥∥∥
≤N

∥∥∥∥∥q−1

∑
r=0

[
e−A′rγ B′

ˆ (r+1)γ

rγ

[
u∗(τ)−u±(τ)

]
dτ

+
ˆ (r+1)γ

rγ

µ(τ,rγ)B′
[
u∗(τ)−u±(τ)

]
dτ

]∥∥∥∥∥
+N

∥∥∥∥ˆ t

qγ

e−A′τ B′
[
u∗(τ)−u±(τ)

]
dτ

∥∥∥∥
≤N

q−1

∑
r=0

ˆ (r+1)γ

rγ

‖µ(τ,rγ)‖
∥∥B′
∥∥[‖u∗(τ)‖+‖u±(τ)‖

]
dτ

+N
ˆ t

qγ

∥∥∥e−A′τ
∥∥∥‖B′‖[‖u∗(τ)‖+‖u±(τ)‖

]
dτ

≤2KNβ (ηt∗f +Nγ)

for all t ∈ [0, t∗f ]. Finally, choose the value of η so that
2KNβηt∗f < ε/2. Then, choose γ so that

0 < γ ≤min{δ (η),ε/(4KN2
β )} and t∗f /γ is an integer.

(15)
For these selections, we obtain ‖x∗(t)−x±(t)‖< ε for all t ∈
[0, t∗f ], and our proof concludes.

We emphasize that the bang-bang input signal u±(t) of The-
orem 6 approximates optimal performance for all permissible
perturbations and disturbance signals of the system Σ (see [10]
for further details).
Remark 7. In Theorem 6, the cost of making the error ε

smaller is an increase in the number of switches of the bang-
bang function u±(t). This can be seen by examining inequality
(15): to maintain the inequality, γ must be decreased as ε is
decreased. According to (12), the number of switches is (in
general) t∗f /γ , so that a decrease of γ leads to an increase in
the number of switches. �

A. Design considerations
In view of (10) and (11), the calculation of an optimal input

function involves finding the ’worst’ disturbance signal v(t).
In close relation to Theorem 6, the next statement shows that
the worst disturbance signal can also be replaced by a bang-
bang signal without significantly affecting results. In other
words, both signals - an optimal input signal and a worst
disturbance signal - can be replaced by bang-bang signals
without significantly affecting the results. This fact is quite
important, since it indicates that a solution of Problem 1 can
found by solving a finite dimensional optimization problem.

Theorem 8. Let Σ be a nominally unstable system described
by equation (1), let U be the set of input signals (6), and let V
be the set of disturbance signals (7). Let x(t,x0,D,v,u) be the
state trajectory induced by the input function u in the presence
of the disturbance function v. Finally, let t∗f be the optimal
time and let u∗ be an optimal input function of Theorem 5.
Then, for every ε > 0 and for every disturbance signal v ∈V ,
there are a bang-bang input function u± ∈U and a bang-bang
disturbance function v± ∈V for which the following hold true.

(i) u± and v± have a finite number of switches, and
(ii) The state trajectory x(t,x0,D,v±,u±) created by u± and

v± satisfies ‖x(t,x0,D,v,u∗)− x(t,x0,D,v±,u±)‖ < ε for all
t ∈ [0, t∗f ] and all (x0,D) ∈ X0×∆.

Proof: We use the notation of the proof of Theorem 6.
As in that proof, the fact that Σ is nominally unstable implies,
by Theorem 5, that the optimal time t∗f is finite. The set
of permissible disturbance signals is given by the set V of
(7). A disturbance signal of Σ is a p-dimensional column
vector with entry functions bounded by L > 0. Now, fix a
disturbance signal v(t)∈V . We build a bang-bang disturbance
signal v±(t) = (v±1 (t),v±2 (t), ...,v±p (t))T ,0 ≤ t ≤ t∗f , that ’ap-
proximates’ the effects of v(t) as follows: for the component



v±i (t), select in each interval [qγ,(q + 1)γ] a switching time
ψqi and set

v±i (t) :=

{
L for t ∈ [qγ,ψqi),
−L for t ∈ [ψqi,(q+1)γ),q = 0,1,2, ...,(t∗f /γ)−1,

i = 1,2, ...m. Then, we have
´ (q+1)γ

qγ
vi(τ)dτ = L

´
ψqi

qγ
dτ −

L
´ (q+1)γ

ψqi
dτ = L[2(ψqi − qγ)− γ]. Select ψqi to satisfy the

equality

L[2(ψqi−qγ)− γ] =
ˆ (q+1)γ

qγ

vi(τ)dτ.

Note that ψqi exists due to the fact that |vi(t)| ≤ L for all t ≥ 0.
For this value of ψqi, we obtain

ˆ (q+1)γ

qγ

[vi(τ)− v±i (τ)]dτ = 0 (16)

for all i = 1,2, ...m and all q = 0,1,2, ...,(t∗f /γ)−1.
Further, let x±(t) be the state trajectory generated by the

system Σ when driven by the bang-bang input function u±(t)
of Theorem 6 in the presence of the bang-bang disturbance
signal v±(t), and let x∗(t) be the state trajectory induced by
the optimal input function u∗(t) in the presence of the actual
disturbance signal v(t). Noting that the initial condition x0 and
the perturbation matrix D are the same in both cases (we are
considering the performance of the same system sample), we
obtain from (14), (13), and (16) that

‖x∗(t)− x±(t)‖

=
∥∥∥∥eA′t

[
x0 +
ˆ t

0
e−A′τ B′u∗(τ)dτ +

ˆ t

0
e−A′τ G′v(τ)dτ

]
+

− eA′t
[

x0 +
ˆ t

0
e−A′τ B′u±(τ)dτ +

ˆ t

0
e−A′τ G′v±(τ)dτ

]∥∥∥∥
=
∥∥∥∥eA′t

ˆ t

0
e−A′τ B′[u∗(τ)−u±(τ)]dτ

+ eA′t
ˆ t

0
e−A′τ G′[v(τ)− v±(τ)]dτ

∥∥∥∥
≤N

∥∥∥∥ˆ t

0
e−A′τ B′

[
u∗(τ)−u±(τ)

]
dτ

∥∥∥∥
+N

∥∥∥∥ˆ t

0
e−A′τ G′

[
v(τ)− v±(τ)

]
dτ

∥∥∥∥ (17)

Now, according to the proof of Theorem 6, we have

N
∥∥∥∥ˆ t

0
e−A′τ B′

[
u∗(τ)−u±(τ)

]
dτ

∥∥∥∥≤ 2KNβ (ηt∗f +Nγ).

(18)
Further, using the quantity g := sup{‖G+DG‖ : DG ∈ ∆G}, an
argument similar to the one used in the proof of Theorem 6
yields the inequality

N
∥∥∥∥ˆ t

0
e−A′τ G′

[
v(τ)− v±(τ)

]
dτ

∥∥∥∥≤ 2LNg(ηt∗f +Nγ). (19)

Combining (18) and (19), we obtain from (17) that

‖x∗(t)− x±(t)‖ ≤ 2N(Kβ +Lg)(ηt∗f +Nγ).

Finally, choose the value of η so that 2N(Kβ +Lg)ηt∗f < ε/2.
Then, choose γ so that 0 < γ ≤min{δ (η),ε/[4N2(Kβ +Lg)]}
and t∗f /γ is an integer. For these selections, we obtain ‖x∗(t)−
x±(t)‖< ε for all t ∈ [0, t∗f ], and our proof concludes.

As in Remark 7, the accuracy of the approximation provided
by the bang-bang functions u± ∈U and v± ∈V of Theorem 8
can be improved by increasing the number of switches.

The following algorithm uses Theorem 8 and a finite
dimensional optimization process to obtain a bang-bang input
signal for Σ that approximates the performance of an optimal
solution of Problem 1.

B. Algorithm
Algorithm 9. Calculating a bang-bang approximant of an
optimal input function:

Let u±(t) = [u±1 (t),u±2 (t), ...,u±m(t)]T be a bang-bang ap-
proximant of an optimal input function u∗(t), let v±(t) =
[v±1 (t),v±2 (t), ....,v±p (t)]T be a bang-bang approximant of the
’worst’ disturbance function, and let x±(t) be the state trajec-
tory induced by u± and v±. Denote by t±f the time at which
x± exceeds the specified error bound, i.e., t±f := inf{t ≥ 0 :
[x±(t)]T x±(t) > M}. Let µ be the largest permissible deviation
between t±f and the optimal time t∗f , so that t∗f −t±f ≤ µ . Finally,
assume that a bound t f of t∗f is provided, so that t∗f ≤ t f . Let
k denote the number of switches of each component of u±(t)
and v±(t).

Step 1. Set t0
f := 0 and k := 1.

Step 2. Partition the interval [0, t f ] into Q � k equal
segments. On this partition, create two families of bang-
bang functions whose switching times are compatible with
the partition: the family U±(k,Q) of all bang-bang functions
u(t) = [u1(t),u2(t), ...,um(t)]T that have at most k switches in
each component; and the family V±(k,Q) of all bang-bang
functions v(t) = [v1(t),v2(t), ...,vm(t)]T that have at most k
switches in each component. Both of families are, of course,
finite.

Step 3. For each u(t) created in Step 2, calculate the
quantity T (u,k) := infx0,D,v T (M,x0,D,v,u), where x0 varies
over X0, D varies over ∆, and v varies over V±(k,Q). This is
a finite dimensional minimization process.

Step 4. Let tk
f := supu∈U±(k,Q) T (u,k) and denote by uk ∈

U±(k,Q) a function that achieves this maximum. Then, tk
f is

the best duration that can be achieved when using bang-bang
approximants with at most k switches.

If k = 1 or if k > 1 and tk
f > tk−1

f + µ , then replace k by
k +1 and return to Step 2.

Otherwise, i.e., if k > 1 and tk
f < tk−1

f + µ , then stop the
algorithm. Set t∗f ≈ tk−1

f and u±(t)≈ uk−1. �

Algorithm 9 transforms our dynamic optimization problem
into a finite dimensional optimization problem that can be
solved numerically by a wide range of available optimization
techniques (e.g., [16], [17], the references cited in these papers,
and others).

Example 10. Consider a single state system described by the
equation ẋ(t) = ax(t) + u(t) + v(t) with the initial condition



x(0) = x0, the control input u(t), and the disturbance signal
v(t). The uncertainties are described by x0 ∈ [0.9,1.1], a ∈
[1.2,1.4], and |v(t)| ≤ 0.2 for all t > 0; the input function
amplitude bound is 2, i.e., |u(t)| ∈ [−2,2] for all t ≥ 0. Taking
M = 25, we need to calculate an optimal input function u∗(t)
that produces the maximal time t∗f , irrespective of perturbations
and disturbances. In the process, we also find worst instances
of the parameters a and x0, and of the disturbance signal v(t).
Specializing (11) to our present data, we seek an input function
u∗(t) that solves the max-min problem

t∗f = sup
{u(t):|u(t)|≤2,t≥0}

 inf
0.9≤x0≤1.1
[1.2≤a≤1.4]

{v(t):|v(t)|≤0.2,t≥0}

T (25,a,x0,v(t),u(t))

 .

To find a solution to this problem, we use Algorithm 9 to
search over bang-bang approximants of optimal input signals
u∗(t) and worst disturbance signals v(t).

In Step 3 of Algorithm 9, we find for each bang-bang input
function u±(t), the values of a, of x0, and the switching times
of a disturbance signal v±(t) that yield the lowest value of
T (25,a,x0,v(t),u(t)). This search is implemented by using a
global optimization algorithm based on multilevel coordinate
search ([15]).

Using µ = 0.01, the present calculation stops at k = 2 in
Step 4 of Algorithm 9, yielding the approximation t∗f ≈ t2−1

f =
t1

f = 2.18 seconds; the approximate input solution u±(t) is
given by

u±(t) =

{
−2 for t ≤ 1.248,

+2 for t > 1.248.
(20)

With this input function, there are two sets of parameters and
disturbance combinations that yield the worst terminal time
t∗f ≈ 2.18, as follows:

{a = 1.4,x0 = 1.1, and v(t) = 0.2 for all t ≥ 0.} (21)
{a = 1.4,x0 = 0.9, and v(t) =−0.2 for all t ≥ 0.} (22)

In this approximation, the ’worst’ disturbance signal v±(t)
turns out to be constant in both cases. Figure 2 illustrates
the result under the conditions of (21).
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Figure 2. Disturbance set (21)

Similarly, Figure 3 displays the response under the condi-
tions of (22).
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Figure 3. Disturbance set (22)

In conclusion, the paper presents a general theory for finding
optimal input signals that keep performance errors below
specified bounds for the longest possible time under a broad
range of uncertainties and disturbances. The use of bang-
bang signals to approximate optimal performance provides an
effective approach to finding and implementing solutions of
this optimization problem.
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