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Euclidean geometry and the axiomatic method

Euclid’s Elements constitutes the earliest extant substantial presenta-
tion of a body of material in the axiomatico-deductive form1. Through
it the subject of geometry got permanently associated with axiomatico-
deductive formulation which was then viewed as a method, so much so
that the expression ‘more geometrico’ (the geometric way) became synony-
mous with axiomatico-deductive formulation. Thus arose the general be-
lief, especially in methodological quarters, that Euclid’s Elements and, in
particular, Euclid’s geometry were merely instances of the application of
a previously thought out/discovered/known method, and, thus, that the
axiomatico-deductive method existed prior to the axiomatico-deductive
formulation of geometry2.
Using Euclid’s Elements as my principal evidence3, I want to suggest

that the true state of affairs is the other way round. The axiomatico-
deductive formulation of geometry emerged out of a successful attempt-
most probably by some of Euclid’s predecessors-to solve some geometrical
problems. Once this was done, it was seen by these geometers and also,
of course, by Euclid as an instrument of open-ended discovery. Only,
then, could the germs of a method be seen in it.
My view of the genesis of the axiomatic method emboldens me to sug-

gest further that in general a method, which is something consciously
conceived, arises as the result of reflection on an activity that is already
being pursued ‘intuitively’. Again, once the method is consciously con-
ceived, it can engender new activity being pursued consciously in accor-
dance with the method, i.e. methodically.

The geometrical problems and their solutions

If the axiomatic method arose as a result of reflection on some geometrical
activity being pursued ‘intuitively’, what could this activity have been? I
suggest that this activity was initiated by a problem which, although it is
not explicitly posed in the Elements, can be solved on the basis of another
problem which is explicitly posed and solved in Book II, Proposition 14, of
the Elements: ‘To construct a square equal to a given rectilinear figure.’
This problem could well be called the problem of ‘squaring a rectilineal
figure’ by analogy with the name of a well-known problem of Greek geome-
try: ‘squaring the circle.’ (Euclid was not able to solve this latter problem,
and therefore, perhaps, does not mention it at all in the Elements). Let

1This paper was presented at the Workshop on Understanding Science, 6-8 April,
1985, Indian Institute of Technology, Bombay.
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us note that Book II ends with Proposition 14; I might say that our teach-
ing and learning of geometry-and of the axiomatic method-ought to begin
with this proposition which actually enunciates a problem.
But why is this problem of ’squaring a rectilineal figure’ important?

The comparison of two straight-line segments to find out whether they are
equally long or not, and, if not, to find out which one of the two segments
is shorter and which the longer is, practically speaking, a simple matter,
if one is allowed to use a string or a rope4. Euclid solved this problem
theoretically, allowing himself the use only of a straight-edge (to draw a
straight line joining two given points) and of a pair of compasses (to draw
a circle with a given centre and a given segment, of which that centre
is an extremity, as a radius of that circle, i.e. without using a pair of
compasses as a pair of dividers). In fact, this is reflected in his Postulates
1 and 3 of Book 1. Euclid’s solution of this problem of the comparison of
two straight-line segments is given as Proposition 3 of Book I: ’Given two
unequal straight lines, to cut off from the greater a straight line equal to
the less.’
The corresponding problem for plane rectilineal figures is far from

easy, even practically speaking. We may, where possible, move one of
the two given rectilineal figures and try to place it on the other to see
whether the two fit together perfectly, or whether one of them can be fit-
ted entirely within the other. (Common Notions 8 and 9 of Book I reflect
this approach. Common Notion 8: ’And things which coincide with one
another are equal to one another.’ Common Notion 9: ’And the whole
is greater than the part.’) But very often neither of these two things will
happen, even if the figures have some definite and simple shape such as
that of a rectangle. However, should both the figures be squares, super-
position will always yield a solution; in fact, we need not even superpose
the squares: we need only compare their sides. Note that this happy sit-
uation is based on the observation that any two right angles fit, and this
requirement is what perhaps led the geometers to define a right angle the
way Euclid does (Definition 10, Book I: ’When a straight line set up on a
straight line makes the adjacent angles equal to one another, each of the
equal angles is right’), and led Euclid to put down his Postulate 4, Book
I: ’And that all right angles are equal to one another.’
Another important observation would have to be made before one

could proceed further with the problem. A given figure can be cut up
or decomposed into parts and these parts put together differently to ob-
tain a different-looking figure. (This can be easily seen by cutting up a
square into two equal parts and putting these together to obtain a rect-
angle.) Now, two such figures are not equal (in the sense of Common
Notion 8), but there is something special about them, namely, that their
’corresponding’ parts are equal in the sense of congruence. At this point,
the ancient geometers must have realized that no further progress on
the problem of comparison of figures was possible unless one was willing
to regard two figures, which were equal in parts, to be equal’. This is,
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of course, a weakening or widening of the notion of equality of figures,
and appears as Common Notion 2 in Book I: ’And if equals are added to
equals the wholes are equals.’ (The original Greek wording of this Com-
mon Notion does not suggest the notion of addition in a numerical sense;
rather, it suggests ’putting together’-prostethe.) This broadening of the
original notion of equality as congruence allows one literally to transform
a given figure, i.e., change its form or shape, while retaining its ’size’, i.e.,
while keeping the new figure equal to the original figure. The problem of
comparison of two figures could now be ’reduced’ to the problem of trans-
formation of one figure into another through the techniques of ’dividing’
and ’putting together’. But the fact that squares can be compared with
ease would have suggested the following alternative. Suppose, instead
of trying to convert one of the given figures into the other, one tries to
convert both the figures into squares; and, suppose, it turns out that the
converted squares are equal. Could we, then, assert that the two orig-
inal figures were equal? The astute Greek geometers saw that this was
not justified unless the notion of equality was weakened further; thus,
we have Common Notion 1 of Book I: ’Things equal to the same thing are
also equal to one another.′5

Having agreed to the broadening of the notion of equality (of figures)
through the Common Notions 1 and 2, the problem of comparison of
two figures is ’reduced’ to the problem of squaring of a figure. Naturally,
Euclid takes up the simpler case of a rectilineal figure, and, thus, arrives
at the statement of his basic problem in Books I and II , Proposition II.
14; ’To construct a square equal to a given rectilineal figure.’
How does Euclid solve the problem? Or, rather, how did Euclid, or

some predecessor, arrive at the solution we find given in the Elements?
Certainly not by starting, off with the definitions, postulates and com-
mon notions, and brilliantly deducing one theorem after another (there
are forty-eight propositions in Book I and fourteen in Book II). The prob-
lem was solved by reducing it, in turn, to one or more problems. This
approach to problem solving was discussed much later by Pappus under
the name of ’the Method of Analysis and Synthesis’, but we find allusions
to it already in Plato. The ‘analysis’ part involves the formulation of aux-
iliary or subsidiary problems in what later appears as a ’back tracking’
when the solution is finally described in the ’synthesis’ part.
Although a triangle would be the simplest rectilineal figure, for obvious

reasons Euclid prefers to tackle the rectangle first. So the problem of
squaring a rectilineal figure is broken down into two sub-problems: (a) the
problem of squaring a rectangle (this construction is given in II.14) and
(b) the problem of ‘rectangulating’ any rectilineal figure (this construction
is given in I.45).
Euclid solves (a) essentially by transforming a rectangle into a gnomon

(which is an L-shaped figure left when a smaller square is taken out of a
bigger square; see shaded area in the figure).

3



������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

A gnomon is clearly a difference of
two squares, and we thus have the new
problem of constructing a square equal
to the difference of two squares. This
problem can be solved perhaps if we suc-
ceed in solving the problem of construct-
ing a square equal to the ’sum’ of two
squares; this is precisely what the fa-
mous Pythagorean proposition amounts
to, and it is Proposition I.47, the last
but one proposition in Book I, the last
(48th) proposition being the converse of
the Pythagorean proposition. Of course,

Pythagoras’ Theorem in the special case of the isosceles right-angled tri-
angle was known to many civilizations before Euclid, and perhaps even
before Pythagoras, and its ’truth’ could be visually ascertained. It must
have been natural to conjecture that the theorem was true for any ar-
bitrary right-angled triangle, but this already presupposes a broadened
notion of equality of figures. Indeed, Euclid makes use of this broad-
ened notion in his proof of Pythagoras’ Theorem by dividing the square
on the hypotenuse into two rectangles and showing the ’equality’ of these
rectangles with the squares on the corresponding sides. Now, getting
convinced about the ’correctness’ of the Pythagorean construction for the
sum of two squares required further backtracking and ultimately must
have led to the inverted or backward construction of Book I, or something
similar to it, perhaps by some predecessors of Euclid. This involves, in
particular, getting convinced that the diagonal of a parallelogram splits it
into two equal triangles, and that under certain conditions two triangles
are equal. (Incidentally, Common Notion 3 is ’demanded’ or postulated in
claiming that the gnomon is ’equal’ to an appropriate square.)
In his solution of problem (b), i.e., converting a rectilineal figure into a

rectangle (in fact, Euclid gives a stronger construction I.45: ’to construct
in a given rectilineal angle a parallelogram equal to a given rectilineal
figure’, and to effect that the construction I.44: ’to a given straight line
to apply, in a given rectilineal angle, a parallelogram equal to a given
triangle’), Euclid uses the obvious fact that a rectilineal figure can be
easily decomposed into triangles, so that one is led next to the problem
solved in I.44.
To summarize, I wish to suggest that investigations into the problem

of comparison of two rectilineal figures led the Greeks before Euclid to
the realization that some ’concessions’ had to be made with regard to
the notion of equality, which led to the formulation and investigation
of some subsidiary problems, leading finally to a number of postulates,
common notions and definitions. Having done this, they then reversed
the whole process of thinking, making it appear to posterity that, almost
by a miracle, from the small ‘acorns’ of a few innocent-looking definitions
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and postulates mighty ‘oaks’ such as Pythagoras’ Theorem and II.14 could
be grown. I have indicated this with reference to Books I and II, but the
same could be said about the other geometrical books.
It should be noted, however, that the other non-geometrical books of

Euclid’s Elements, namely, those on natural numbers and general mag-
nitudes do not invoke any postulates explicitly but are based only on def-
initions. So they could well have been the result of an application in the
forward direction of the axiomatic method discovered by investigations in
the reverse direction into some geometrical problems. Of course, geome-
ters after Euclid-and even Euclid himself-did carry out further geometri-
cal investigations in the forward direction, proving many interesting new
theorems. Eventually, Lobachevskii, and Bolyai followed, non-Euclidean
lines of exploration. This last step, after some initial resistance, later
turned into reluctance, and a considerable delay of about fifty years led to
our modern conception of the axiomatic method as the method of math-
ematics, involving notions of ’definition’, ‘axiom’ and ‘proof’.

The purposes of the axiomatic method

Having discussed the possible genesis of the axiomatic method in rather
great detail, I would like to turn to the several purposes or uses, to which
it has been put subsequently.

The Mathematical Use

As mentioned just above, the axiomatic method was put to use in mathe-
matics no sooner than it was discovered, and thus it was recognized to be
a powerful instrument of open-ended discovery or derivation. This had
several consequences. Firstly, the process of ’derivation’ or ’deduction’
came under close scrutiny giving rise to the subject of logic, and I would
venture the guess that Aristotle’s investigations into logic were stimulated
more by mathematics, particularly geometry, than by rhetoric or sophis-
tic discourse. Eventually, this led to the feeling that, logic was an engine
of deduction which required only the turning of a handle to churn out
new propositions from old. Now, deduction done by mathematicians-at
least the human ones-are not so mechanical as that, but it is possible to
automate the process of deduction, and this is, indeed, what has been
done recently by ’theorem-proving programs’.
The second, and rather unfortunate, consequence was that the pos-

tulates and common notions, with the exception of Euclid’s ’parallel pos-
tulate’, were regarded as being ’true’ in some sense and so irreplaceable.
Logic was then seen as an engine to derive new, ’less obvious’ truths
from old, ‘more obvious’, ‘self-evident’ truths. I doubt if the Greek ge-
ometers themselves regarded their postulates and common notions as
‘self-evident’ or ‘true’. Three of the five postulates are, not about propo-
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sitions, that is, about any state of affairs in this world or in some other
world. Rather, they are assumptions about what can be done in an ideal
world. Of the other two postulates, equality of all right angles could have
had some empiricism about it, but was finally assumed in order for some
constructions to work. Finally, the ’parallel postulate’ was necessitated by
the somewhat empirical fact that parallel straight lines cut by a transver-
sal produced equal angles, but this, too, was necessitated by the con-
ception of a square, say, as having all angles equal and right (Definition
22). (Euclid’s I.46 shows how to construct a square: ‘On a given straight
line to describe a square’.) The common notions were all required in or-
der to surmount the problem of equality and comparability of (rectilineal)
figures.
Of course, there was a happy side to the view that the postulates

and common notions were self-evident. Thanks to the non-self-evident
nature of the ’parallel postulate’, it eventually emboldened geometers to
abandon it, to replace it by something equally non-self-evident and then,
working the engine of deduction, squeeze out some startling and ”almost
false” consequences. But this development, in its turn, had the effect
that henceforth axioms (to use a single word for postulates and common
notions) were deemed to be completely arbitrary and unprovable asser-
tions, and, in an extreme view, even meaningless and having no relation
with truth or reality whatsoever. This was accompanied by the view, that
definitions also were completely arbitrary, and one merely defined some
terms (the ’defined’ terms) ’in terms of’ some other terms (the ‘undefined’
or undefinable? terms). Now clearly, for Euclid, definitions were far from
arbitrary, though he stretched himself too far, trying to define almost ev-
ery geometrical term. But it must be noted that nowhere did he or any
of his predecessors, say that terms like ’part’, ‘breadthless length’, ’ex-
tremity’, etc. were undefined in the modern mathematical sense of being
devoid of any connotations. They were undefinable in a relative sense;
they were simply left undefined in Euclid’s formulation. There was noth-
ing either undefined (meaningless) or undefinable about them.
However, towards the end of the nineteenth century there did arise

a widespread view of mathematics that it consists of setting out some
’undefined terms’ and some ’unproved propositions’ at the ’beginning’;
and then, after giving some definitions of defined terms as and when one
fancies, of proving or deriving some other assertions on the basis of or
from the unproved assertions using sheer logic or rules of inference. The
American mathematician Benjamin Peirce said, ’Mathematics is the sci-
ence which draws necessary conclusions’; and Russell confessed (with
tongue-in-cheek humour) [3]: ’Thus mathematics may be defined as the
subject in which we never know what we are talking about, nor whether
what we are saying is true.’ (One realizes, of course, that mathematics
is a creative or imaginative activity, and not a routine, mechanical activ-
ity, because necessary conclusions do not ’follow’ easily or automatically
from the unproved assertions; rather, they have to be conjectured and
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then ‘drawn out’ by hard work.) This open-ended view of the axiomatic
method in mathematics leads one to believe that one is free to start with
arbitrary undefined terms and arbitrary unproved assertions, and then
to make arbitrary definitions in order to draw the conclusions, too, some-
what arbitrarily, i.e., as and when they occur to the mathematician, so
that the whole thing is a stupendous exercise in arbitrariness! Of course,
Russell himself realized that this was not so, for he said (about twenty
years after his earlier quip) [4]:

Mathematics is a study which, when we start from its most
familiar portions, may be pursued in either of two opposite di-
rections. The more familiar direction is constructive, towards
gradually increasing complexity: from integers to fractions, real
numbers, complex numbers, from addition and multiplication
to differentiation and integration, and on to higher mathemat-
ics. The other direction, which is less familiar, proceeds, by
analysing, to greater and greater abstractness and logical sim-
plicity; instead of asking what can be defined and deduced from
what is assumed to begin with, we ask instead what more gen-
eral ideas and principles can be found, in terms of which what
was our starting-point can be defined or deduced. It is the fact
of pursuing this opposite direction that characterises mathe-
matical philosophy as opposed to ordinary mathematics. But it
should be understood that the distinction is one, not in the sub-
ject matter, but in the state of mind of the investigator. ... The
distinction between mathematics and mathematical philosophy
is one which depends upon the interest inspiring the research,
and upon the stage which the research has reached; not upon
the propositions with which the research is concerned.

I might add that many great mathematicians of the last hundred years
or so have contributed a lot to ’mathematical philosophy’ in Russell’s
sense, because they have contributed to the process of axiomatization of
mathematics in the original Euclidean sense. Further, it must be added
that usually one stipulates one or more of the following requirements
for an ’arbitrary’ set of axioms, namely, that they must be ’consistent’,
’independent’, ’complete’, ’categorical’.

The Cartesian Purpose

The use to which Descartes sought to put the axiomatic method was the
establishment of indubitable truths. A proposition about whose truth we
are ’doubtful’ (such as ’I exist’) is sought to be established on the basis
of some intuitively clear or indubitable propositions (such as ’I think’).
Thus, the axiomatic method is an instrument for dispelling doubt and
for creating certainty. Of course, the process of finding out whether a
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seemingly doubtful proposition can, indeed, be indubitably established is
one of back-tracking, quite similar to the back-tracking in mathematics,
where a conjectured theorem is sought to be proved. But the difference
is that, in mathematics we do not bother about the ’truth’ of the axioms,
whereas in the Cartesian approach the ’first principles’ have to be indu-
bitable and thus true.

Organization of Knowledge

Another use that has been found for the axiomatic method is that of
’organizing a body of knowledge’ or ’systematizing a discipline’. Here,
it is supposed that we already have a set of truths somehow obtained,
but these truths are perhaps too many or seemingly unrelated to each
other. We then try to create some system or order by trying to discover
whether a small subset of them can serve as a set of axioms from which
all the rest can be derived. One may, of course, question the utility of
such an enterprise. The whole exercise of organization is to start with
the knowledge base that is already there. This base would include terms
whose meanings we already know and assertions whose truth we are
already confident of. But, if this is so, why bother to define the already
known terms in terms of ’undefined’ terms, and to derive the already
trustworthy assertions in terms of some selected assertions? Perhaps
one is trying to apply Ockham’s razor here, i.e., one is trying to obtain
simplicity. But simplicity in the form of a small number of axioms is
won at the cost of complexity of derivations of the other truths from the
axioms.

Discovering Unknown Causes or Hypotheses

In this application of the axiomatic method, one starts with a known
body of truths with terms whose meanings are known. One then tries to
discover a set of undefined and unknown terms, a set of definitions of the
known terms in terms of the undefined and unknown terms; and, finally,
a set of assertions whose truth is unknown in such a way that the known
truths, when reformulated using the definitions in terms of the undefined
terms, can all be derived from the axioms. This is, of course, the game
of (scientific) theory construction. What is the point of such a game?
Well, after the axiomatization, using the axiomatic method in the forward
direction as an instrument of discovery, one may stumble across new
consequences of the axioms, which, when reformulated using the known
terms, give us propositions whose truth can then be ascertained. Their
truth is not guaranteed, because the axioms are not necessarily (known
to be) true. But the task of ascertaining the truth of new propositions
can produce new truths which, otherwise, we may not have bothered to
look for. The axioms could be called causes, hypotheses or principles of
the body of knowledge or the science that one is dealing with. Success in
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this approach at the initial stages depends upon the size of the body of
knowledge one starts with; usually, it does not pay to be too ambitious,
but one may gradually enlarge the body of knowledge and simultaneously
modify the undefined terms, definitions and axioms, that is, the theory.
I may, finally add that perhaps one should not be too much preoc-

cupied with ’truths’. Taking the cue from the initial axiomatization of
geometry, one should perhaps be equally concerned with problems, and
should try to discover an axiomatization in the course of the attempt to
find acceptable solutions.

Notes

1. Although the name ’Euclid’ is almost synonymous with the word ’ge-
ometry’, it should be noted that Euclid’s Elements deals not only
with geometry but also with (the natural) numbers, certain incom-
mensurable geometrical magnitudes (and thus indirectly with a spe-
cial class of irrational numbers), and a theory of general magnitudes.
The Elements is divided into thirteen Books. Books I to IV, VI, and
X to XIII deal with geometrical topics. Books VII to IX are concerned
with natural numbers. Book V-a very interesting one but, unfortu-
nately, rather overlooked by physicists and philosophers of science-
contains a theory of general magnitudes, which is in many respects
similar to algebra and lays the foundation of a theory of measure-
ment. Each Book contains a number of propositions, which are ei-
ther assertions (or theorems, in modern terminology), or problems.
The theorems (for example, in Book I, Proposition 5: ’In isosceles
triangles the angles at the base are equal to one another, and, if the
equal straight lines be produced further the angles under the base
will be equal to one another’) are followed by a demonstration of the
correctness of the assertion (proof), ending in the proverbial ’Q.E.D.’
(in the Latin version). The problems (for example, in Book I, Proposi-
tion 1: ’On a given finite straight line to construct an equilateral tri-
angle’) are followed by a construction and a demonstration that the
construction, indeed, solves the problem, ending with the less famil-
iar ’Q.E.F.’. Some Books (I to VII, X and XI) have some definitions
stated at the beginning. Only Book I has some postulates and com-
mon notions following the definitions. (In today’s terminology, these
can be called ’specific axioms’ and ’general axioms’ respectively.)

2. Although both Euclid’s name and the subject of geometry have be-
come synonymous with the axiomatic method, unfortunately we do
not find any elaboration of this method which says something about
the genesis, evolution or purpose of the method, either in Euclid’s
Elements or in any extant work by his predecessors (such as Plato
and Aristotle, among others). There is, for example, no preface to the
Elements. Plato, of course, alludes frequently to the ’method of the
geometers’, and Aristotle has written in detail on the ’demonstrative
sciences’.
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3. My main source is the second revised edition of The Thirteen Books
of Euclid’s Elements’ (3 vols.) translated from the text of Heiberg
with introduction and commentary by Sir Thomas L. Heath and
published by Cambridge University Press in 1925. The book was
reprinted by Dover Publications, Inc., in 1956. The contents of the
Elements have been put together in the appendix in Ian Mueller’s
Philosophy of Mathematics and Deductive Structure in Euclid’s Ele-

ments published by M.I.T. Press in 1981.

4. The comparison of two line segments to find out which one is the
longer and which the shorter is perhaps the earliest example of the
idea of the comparison of two objects with respect to a given qual-
ity to detect which one of the two has ’more’ and which one ’less’ of
the quality. I have argued in another paper being presented at this
workshop (’The Genesis and Purpose of Quantification and Measure-
ment’) that this idea of comparison with respect to a quality is more
primitive than the precursor of the notion of, quantity. The Greeks,
and in particular Plato talked repeatedly of the notion of ’the more’
and the ’less’, or ’the greater’ and ’the lesser’.

5. Thus far, I have ’accounted’ for three of the five Euclidean Postulates
and four of the five Euclidean Common Notions in Book I. (Mueller
lists one more Postulate and four more Common Notions, but these
are not regarded as genuinely Euclidean and so are enclosed within
square brackets.) This leaves only one more Common Notion (Com-
mon Notion 3): ’And if equals are subtracted from equals the re-
mainders are equal’ and two more Postulates; Book I, Postulate 2 is:
’To produce a finite straight line continuously in a straight line’ and
Book I, Postulate 5 is the so-called ’Parallel Postulate’: ’If a straight
line falling on two straight lines make the interior angles on the same
side less than two right angles, the two straight lines, if produced in-
definitely, meet on that side on which are the angles less than the
two right angles.’ Postulate 2 is obviously required in most con-
structions where a point is to be obtained by the intersection of two
straight lines or of a straight line and a circle. As regards Postulate
5, Euclid ’postpones’ the use of this postulate as far as possible; it, is
involved for the first time in proving Proposition 29: ’A straight line
falling on parallel straight lines makes the alternate angles equal to
one another, the exterior angle equal to the interior and opposite
angle, and the interior angles on the same side equal to two right
angles.’ In fact, this Proposition could well have been taken as a
postulate in place of Postulate 5. (The converse of this Proposition
is contained in Propositions 27 and 28 which are proved without
invoking Postulate 5, and this is incidentally the first occasion for
Euclid to talk about parallel lines). I have put the verb ’postpones’ in
quotation marks, because, according to the view that I am putting
forward here, this was not a deliberate postponement by Euclid on
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account of some inherent abhorrence of the parallel Postulate, as al-
leged by many critics, but rather it was the last step along one line of
progress in Euclid’s ’backtracking’ journey from Book II, Proposition
14 to the Definitions, Postulates and Common Notions.

6. One would immediately think of the Kinetic Theory of Gases as an
example.
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