Applications of DSP in Radio Detection & Ranging (Radar)

M Tech I Sem, Credit Seminar S.Bhaktavatsala (02307407)

Supervisor:-Dr Vikram M. Gadre, Associate Professor

Outline

- Modern Radar
- Clutter Rejection Technique
- Adaptive Threshold Detection
- Digital Beamforming
- Synthetic Aperture Radar (SAR)
- Case Study Radar Synthetic Vision System

Few Modern Radars

- Synthetic Aperture Radar
- ISAR
- EWACS
- Ground Penetrating Radar
- AirTraffic Control Radar
- Weather prediction Radar
- Commercial

Block Diagram of Modern Radar

Tasks of DSP in Radar

- Combining information
- Forming Tracks
- Resolving Ambiguities in range or Doppler measurements
- Ground Clutter Mapping
- Time and Power Management
- Countering Interference

Detection of Signals in Radar

¬ Clutter rejection Techniques

Detection of Signals in Radar

MTD Doppler Signal Processor

Detection of Signals in Radar

- ¬ Adaptive Thresholding and Automatic Detection
 - Reference signal is generated internally from the observations, permitting more sensitive & faster thresholds

ϖ Adaptive Threshold CFAR Processors

Distribution of processed data is known generally

ϖ Distribution free CFAR $\,$ Processors $\,$

When the background has a unknown distribution

Digital Beamforming

•Phased array- consists of small antenna elements with a phase shifter behind each element.

In digital arrays, there is an A/D converter behind each antenna element and the beam steering can be performed by digital signal processors.

•The beam steering is accomplished by multiplying the signal from each array element by a complex weight.

Synthetic Aperture Radar

- signal processing technique for improving azimuth resolution
- Strip Map SAR
- Spotlight SAR
- Matched Filtering in both range & azimuth
- Computational requirements are more
 Different azimuth pulse

Different azimuth pulse compression filter required for each range resolution cell.

Detection of Targets in Foliage in UHF SAR

Target Detection Techniques

- **¬Baseline approach**
 - Combination of CFAR algorithm and Clusterring algorithm

¬Adaptive Change Detection

- Uses adaptive filters for noise cancellation
- **¬Multiple Aperture Detection**
 - Splitting the integration aperture, multiple images are formed

Case Study-Radar Synthetic Vision System

 Use of Radar Imaging to aid aircraft takeoff and landing in adverse weather

Radar image Analysis

- Monitoring of synthetic Vision developed by navigation and terrain Data
- **Obstacle Detection**
- Extraction of simple runway structures from radar image

Radar Synthetic Vision -

Figure 3. HUD Terrain Display

Radar Synthetic Vision Radar

DSP algorithms are implemented to improve azimuth range resolution

- pulse integration is used to improve the SNR
- image is rotated to perform image enhancement on rows of data.
- Image Enhancement
 - Beam Sharpening
 - Noise Suppression
 - Motion Compensation

Conclusions

- We have seen that DSP is an integral part of radar
- Advances in DSP is going to facilitate better processing in future Radars