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Abstract 
 
DSP algorithms and necessity to do complex computation with strict time and accuracy constraints 
pioneered to the development in the architecture of digital signal processors. Different low and high 
end DSPs, which satisfies cost and speed constrains of various application are available in the market. 
This report reviews the available DSP processor architecture and their features. There is growing need 
to design customized DSP core, which suits to particular application. This fact is explained with the 
case study of DSP architecture designed for handheld devices such as mobile phones. 
  
1 Introduction: 
 

DSP has become a key component in many consumer, communication, medical, and industrial 
products. The number and variety of products that include some form of digital signal processing has 
grown dramatically over the years. These products use a variety of hardware approaches to implement 
DSP, ranging from the use of microprocessors to field-programmable gate arrays (FPGAs) to custom 
integrated circuits (ICs).  
In comparison to microprocessors, DSP processors often have an advantage in terms of speed, cost, 
and energy efficiency. In this report, we trace the evolution of DSP processors, from early 
architectures to current state-of-the-art devices. Some of the key differences among architectures, and 
their strengths and weaknesses are highlighted. Lastly, the case study of SPXK5, used in handheld 
applications is presented to explain how customized hardware are being used to satisfy need of 
particular application.  
 
2 Differences in DSP and General-Purpose Processors Architecture:  
 
From the beginning, DSP algorithms have driven DSP processor architectures. For nearly every 
feature found in a DSP processor, there are associated DSP algorithms whose computation, in some 
way are eased by inclusion of the feature. Therefore, perhaps the best way to understand the evolution 
of DSP architectures is to look at typical DSP algorithms and identify how their computational 
requirements have influenced the architectures of DSP processors [1]. As a case study, we will 
consider one of the most common signal processing algorithms, the FIR filter. 
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2.1 Fast Multipliers 

 
The FIR filter is mathematically expressed as, where is a vector of input data, and is a vector of filter 
coefficients. For each “tap” of the filter, a data sample is multiplied by a filter coefficient, with the 
result added to a running sum for all of the taps. Hence, the main component of the FIR filter 
algorithm is “multiply and add”. These operations are not unique to the FIR filter algorithm, in fact, 
multiplication (often combined with accumulation of products) is one of the most common operations 
performed in signal processing convolution, IIR filtering, and Fourier transforms also all involve 
heavy use of multiply accumulate operations. 
Originally, microprocessors implemented multiplications by a series of shift and add operations, each 
of which consumed one or more clock cycles. In 1982, however, Texas Instruments (TI) introduced 
the first commercially successful “DSP processor,” the TMS32010, which incorporated specialized 
hardware to enable it to compute a multiplication in a single clock cycle. As might be expected, faster 
multiplication hardware yields faster performance in many DSP algorithms, and for this reason all 
DSP processors include at least one dedicated single cycle multiplier or combined multiply-
accumulate (MAC) unit. 
 
2.2 Multiple Execution Units 
 
DSP applications typically have very high computational requirements in comparison to other types of 
computing tasks, since they often must execute DSP algorithms (such as FIR filtering) in real time on 
lengthy segments of signals sampled at 10-100 KHz or higher. Hence, DSP processors often include 
several independent execution units that are capable of operating in parallel. For example, in addition 
to the MAC unit; they typically contain an arithmetic-logic unit (ALU) and a shifter. 
 
2.3 Efficient Memory Accesses 
Executing a MAC in every clock cycle requires more than just a single-cycle MAC unit. It also 
requires the ability to fetch the MAC instruction, a data sample, and a filter coefficient from memory 
in a single cycle. Hence, good DSP performance requires high memory bandwidth higher than was 
supported on the general-purpose microprocessors, which typically contained a single bus connection 
to memory and could only make one access per clock cycle. To address the need for increased 
memory bandwidth, early DSP processors developed different memory architectures that could 
support multiple memory accesses per cycle. The most common approach (still commonly used) was 
to use two or more separate banks of memory, each of which was accessed by its own bus and could 
be read or written during every clock cycle. Often, instructions were stored in one memory bank, 
while data was stored in another. With this arrangement, the processor could fetch an instruction and a 
data operand in parallel in every cycle. 
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Figure 2: Difference between memory structures General Purpose Processor and DSPs 
 
Above figure illustrates the difference in memory architectures for early general-purpose processors 
and DSP processors. Since many DSP algorithms (such as FIR filters) consume two data operands per 
instruction (e.g., a data sample and a coefficient), a further optimization commonly used is to include 
a small bank of RAM near the processor core that is used as an instruction cache. When a small group 
of instructions is executed repeatedly (i.e., in a loop), the cache is loaded with those instructions, 
freeing the instruction bus to be used for data fetches instead of instruction fetches—thus enabling the 
processor to execute a MAC in a single cycle.  
High memory bandwidth requirements are often further supported via dedicated hardware for 
calculating memory addresses. These address generation units operate in parallel with the DSP 
processor’s main execution units, enabling it to access data at new locations in memory (for example, 
stepping through a vector of coefficients) without pausing to calculate the new address.  
Memory accesses in DSP algorithms tend to exhibit very predictable patterns; for example, for each 
sample in an FIR filter, the filter coefficients are accessed sequentially from start to finish for each 
sample, then accesses start over from the beginning of the coefficient vector when processing the next 
input sample. This is in contrast to other types of computing tasks, such as database processing, where 
accesses to memory are less predictable. DSP processor address generation units take advantage of 
this predictability by supporting specialized addressing modes that enable the processor to efficiently 
access data in the patterns commonly found in DSP algorithms. The most common of these modes is 
register-indirect addressing with post-increment, which is used to automatically increment the address 
pointer for algorithms where repetitive computations are performed on a series of data stored 
sequentially in memory. Without this feature, the programmer would need to spend instructions 
explicitly incrementing the address pointer. Many DSP processors also support “ circular addressing,”  
which allows the processor to access a block of data sequentially and then automatically wrap around 
to the beginning address. Circular addressing is also very helpful in implementing first-in, first-out 
buffers, commonly used for I/O and for FIR filter delay lines. 
 
2.4 Data Format 
Most DSP processors use a fixed-point numeric data type instead of the floating-point format. Though 
floating-point format have good numerical fidelity and virtually eliminates, numerical overflow etc, in 
many cases DSP processors face additional constraints i.e. they must be inexpensive and provide good 
energy efficiency. Fixed-point processors tend to be cheaper and less power-hungry than floating-
point processors at comparable speeds, because floating-point formats require more complex 
hardware to implement. To ensure adequate signal quality while using fixed-point data, DSP 
processors typically include specialized hardware to help programmers maintain numeric fidelity 
throughout a series of computations. For example, most DSP processors include one or more 
“ accumulator”  registers to hold the results of summing several multiplication products. Accumulator 
registers are typically wider than other registers; they often provide extra bits, called “ guard bits,”  to 
extend the range of values that can be represented and thus avoid overflow. 
Sensitivity to cost and energy consumption also influences the data word width used in DSP 
processors. DSP processors tend to use the shortest data word that will provide adequate accuracy in 
their target applications. Most fixed-point DSP processors use 16-bit data words, because that data 
word width is sufficient for many DSP applications. A few fixed-point DSP processors use 20, 24, or 
even 32 bits to enable better accuracy in applications that are difficult to implement well with 16-bit 
data, such as high fidelity audio processing. In addition, DSP processors usually include good support 
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for saturation arithmetic, rounding, and shifting, all of which are useful for maintaining numeric 
fidelity. 
 
2.5 Zero-Overhead Looping 
DSP algorithms typically spend the vast majority of processing time in relatively small sections of 
software that are executed repeatedly; i.e., in loops. Hence, most DSP processors provide special 
support for efficient looping.  
Zero overhead Looping is implemented in a DSP as a block of logic that uses a small instruction 
cache and a few register to repeat a predetermined block of code (determined in advance by program) 
with zero overhead.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Zero Overhead Looping 
 

 
When program reaches a block of code that will be repeated more than once, start address, and end-
address register and a loop count register are loaded. The block of code indicated by the start and end 
address is then repeated automatically the number of times specified in the loop count register. The 
benefit is that instead of having to do test and branch operations repeatedly, the hardware in the 
hardware branching logic block (which comprises part of the Zero Overhead Looping hardware) does 
it all. However most disadvantage of this is whole block to be repeated must be accommodate in 
cache.  
 
2.6 Streamlined I/O 
To allow low-cost, high-performance input and output, most DSP processors incorporate one or more 
specialized serial or parallel I/O interfaces, and streamlined I/O handling mechanisms such as low-
overhead interrupts and direct memory access (DMA) to allow data transfers to proceed with little or 
no intervention from the processor’s computational units.  
 
2.7 Specialized Instruction Sets 
DSP processor instruction sets are designed with following two goals in mind.    1. To make 
maximum use of the processor’s underlying hardware, thus increasing efficiency. 2. To minimize the 
amount of memory space required to store DSP programs, since DSP applications are often quite cost-
sensitive and the cost of memory contributes substantially to overall chip and/or system cost.  
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To accomplish the first goal, conventional DSP processor instruction sets generally allow the 
programmer to specify several parallel operations in a single instruction, typically including one or 
two data fetches from memory (along with address pointer updates) in parallel with the main 
arithmetic operation. To reduce the number of bits required to encode instructions, DSP processors 
often offer fewer registers than other types of processors, and may use mode bits to control some 
features of processor operation (for example, rounding or saturation) rather than encoding this 
information as part of the instructions. The overall result of these features is that conventional DSP 
processors tend to have highly specialized, complicated, and irregular instruction sets. This 
characteristic has come to be viewed as a significant drawback of these processors, because it 
complicates the task of creating efficient assembly language software. 
 
3 The DSP Landscapes 
In this section we look at the DSP from historical perspective and see how DSP’ s got evolved [3].  
 
3.1 Conventional DSP Processors 
The performance and price range among DSP processors is very wide.  
Some of the common features of these early (1980s) DSPs are: 
1. Issue and execute one instruction per clock cycle, and use the complex, multi-operation instructions. 
2.  Typically include a single multiplier or MAC unit and an ALU, but few additional execution units. 
Few examples of these groups are Analog Devices’  ADSP-21xx family, Texas Instruments’  
TMS320C2xx family, and Motorola’ s DSP560xx family. These processors generally operate at 
around 20-50 MHz, and provide good DSP performance while maintaining very modest power 
consumption and memory usage. They are typically used in consumer and telecommunications 
products that have modest DSP performance requirements and stringent cost and/or energy 
consumption constraints, like disk drives and digital telephone answering machines. 
The improvement in the performance of above processors was achieved through combination of 
increased clock speeds and somewhat more sophisticated architectures. DSP processors like the 
Motorola DSP563xx and Texas Instruments TMS320C54x operate at 100-150 MHz and often include 
a modest amount of additional hardware, such as a barrel shifter or instruction cache, to improve 
performance in common DSP algorithms. Processors in this class also tend to have deeper pipelines 
than their lower-performance cousins. However midrange DSP processors are more similar to their 
predecessors than they are different. By using this approach, midrange DSP processors are able to 
achieve noticeably better performance while keeping energy and power consumption low. Processors 
in this performance range are typically used in wireless telecommunications applications and high-
speed modems, which have relatively high computational demands but often require low power 
consumption. 
 
3.2 Enhanced-Conventional DSP Processors 
The purpose of these DSPs is to capitalize the performance with addition of few parallel execution 
units, typically a second multiplier and adder. These hardware enhancements are combined with an 
extended instruction set that takes advantage of the additional hardware by allowing more operations 
to be encoded in a single instruction and executed in parallel. With this increased parallelism, 
enhanced-conventional DSP processors can execute significantly more work per clock cycle e.g. two 
MACs per cycle instead of one. The Lucent Technologies DSP16xxx is one such example of DSPs. 
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Figure 4: Lucent Tech’ s DSP 16xxx  

Enhanced-conventional DSP processors are typically characterized by: 
1. Wider data buses to allow them to retrieve more data words per clock cycle in order to keep the 

additional execution units fed with data. 
2.  Wider instruction words to accommodate specification of additional parallel operations within a 

single instruction.  
Increases in cost and power consumption due to the additional hardware and architectural complexity 
are largely offset by increased performance. 
  
3.3 Multi-Issue Architectures 
Enhanced-conventional DSP processors provide improved performance by allowing more operations 
to be encoded in every instruction, however they are difficult to program in the assembly language 
and are unfriendly compiler targets.  
With the goals of achieving high performance and creating architecture that lends itself to the use of 
compilers, DSP processors with multi-issue approach were designed. In contrast to conventional and 
enhanced-conventional processors, multi-issue processors use very simple instructions that typically 
encode a single operation. These processors achieve a high level of parallelism by issuing and 
executing instructions in parallel groups rather than one at a time. Using simple instructions simplifies 
instruction decoding and execution, allowing multi-issue processors to execute at higher clock rates 
than conventional or enhanced conventional DSP processors. 
TI was the first DSP processor vendor to use this approach in a commercial DSP processor. TI’ s 
multi-issue TMS320C62xx, introduced in 1996, was dramatically faster than any other DSP processor 
available at the time. The two classes of architectures that execute multiple instructions in parallel are 
referred to as VLIW (very long instruction word) and superscalar. These architectures are quite 
similar, differing mainly in how instructions are grouped for parallel execution. 
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3.3.1 VLIW and Superscalar Architecture 
 
 
  
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: TMS320C6xx Execution Unit [6] 

 
 

VLIW and superscalar architectures provide many execution units, more than that found in 
conventional or even enhanced conventional DSPs, each of which executes its own instruction. Figure 
5 illustrates the execution units and buses of the TMS320C62xx, which contains eight independent 
execution units. VLIW DSP processors typically issue a maximum of between four and eight 
instructions per clock cycle, which are fetched and issued as part of one long super-instruction 
In VLIW architecture, the assembly language programmer (or code-generation tool) specifies which 
instructions will be executed in parallel. Hence, instructions are grouped at the time the program is 
assembled, and the grouping does not change during program execution. Superscalar processors, in 
contrast, contain specialized hardware that determines which instructions will be executed in parallel 
based on data dependencies and resource contention, shifting the burden of scheduling parallel 
instructions from the programmer to the processor.  
Superscalars may group the same set of instructions differently at different times in the program’ s 
execution e.g. it may group instructions one way the first time it executes a loop, then group them 
differently for subsequent iterations. This makes difficult for the programmer to predict exactly how 
long a given segment of software will take to execute. . The execution time may vary based on the 
particular data accessed, whether the processor is executing a loop for the first time or the third, or 
whether it has just finished processing an interrupt. The difference in the way these two types of 
architectures schedule instructions for parallel execution is important in the context of using them in 
real-time DSP applications because in this case execution time must be predictable.  
VLIW processors use wider instruction words than conventional DSP processors. When a processor 
issues multiple instructions per cycle, it must be able to determine which execution unit will process 
each instruction. Traditionally, VLIW processors have used the position of each instruction within the 
super-instruction to determine to where the instruction will be routed. Some recent VLIW 
architectures do not use positional super-instructions, however, and instead include routing 
information within each sub-instruction. To support execution of multiple parallel instructions, VLIW 
and superscalar processors must have sufficient instruction decoders, buses, registers, and memory 
bandwidth. VLIW processors typically use either wide buses or a large number of buses to access data 
memory and keep the multiple execution units fed with data. 
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VLIW and superscalar processors often suffer from high-energy consumption relative to conventional 
DSP processors. In general, multi-issue processors are designed with an emphasis on increased speed 
rather than energy efficiency. Hence VLIW and superscalar processors have mainly targeted for 
applications, which have very demanding computational requirements but are not very sensitive to 
cost or energy efficiency. For example, a VLIW processor might be used in a cellular base station, but 
not in a portable cellular phone. 
 
3.3.2 SIMD 
SIMD, or single-instruction, multiple-data, is an architectural technique that can be used within any of 
the classes of architectures described so far. SIMD improves performance on some algorithms by 
allowing the processor to execute multiple instances of the same operation in parallel using different 
data. For example, a SIMD multiplication instruction could perform two or more multiplications on 
different sets of input operands in parallel in a single clock cycle. This technique can greatly increase 
the rate of computation for some vector operations that are heavily used in multimedia and signal 
processing applications. 
On DSP processors with SIMD capabilities, the hardware that supports SIMD operations varies 
widely. Some of the approaches implemented are discussed here.          
1. Analog Devices, for example, modified their basic conventional floating-point DSP architecture, the 

ADSP-2106x, by adding a second set of execution units that exactly duplicate the original set. The 
new architecture is called the ADSP-2116x. Each set of execution units in the ADSP-2116x 
includes a MAC unit, ALU, and shifter, and each has its own set of operand registers. The 
augmented architecture can issue a single instruction and execute it in parallel in both data paths 
using different data and effectively doubling its performance in some algorithms. 

2. On the other hand instead of having multiple sets of the same execution units, some DSP processors 
can logically split their execution units (e.g., ALUs or MAC units) into multiple sub-units that 
process narrower operands. These processors treat operands in long (e.g., 32-bit) registers as 
multiple short operands (e.g., as two 16-bit operands or four 8-bit operands). This approach is been 
use in Analog Devices’  TigerSHARC  [4] processor.  

To explain the concept of splitting the execution units, take example of FIR filter. FIR filter with 
length M can be expressed as 
                              

∑
−

=

−=
1

0

)()()(
M

k

knxkcny  

 
To implement this filter with four parallel subunits simultaneously, equation can be expressed as 
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Each of the four sequences yi (n) maps directly to the four sub-word MAC units. 
 
 
4 Alternatives to DSP Processors 
 

4.1 High-Performance CPUs 
Many high-end CPUs, such as Pentiums and PowerPCs, have been enhanced to increase the speed of 
computations associated with signal processing tasks. The most common modification is the addition 
of SIMD-based instruction-set extensions, such as MMX for the Pentium, and AltiVec for the 
PowerPC. This approach is a good one for CPUs, which typically have wide resources (buses, 
registers, ALUs). 
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General-purpose processors are often able to achieve performance on DSP algorithms that is better 
than that of even the fastest DSP processors. This surprising result is partly due to the effectiveness of 
SIMD, but also because many CPUs operate at extremely high clock speeds in comparison to DSP 
processors; high-performance CPUs typically operate at upwards of 1- 1.5GHz, while the fastest DSP 
processors are in the 200-250 MHz range.  
However following are the reasons why DSP processors are preferred over these high performance 
processors for many applications.  
1. DSP processors provide better mixture of performance, power consumption, and price. 
2. As discussed before for real-time applications, the superscalar architectures and dynamic features 

common among high-performance CPUs can be problematic for execution time estimation. 
3.  Another key advantage is the availability of DSP-specific development tools and off-the-shelf 

DSP software components.  
 

4.2 DSP/Microcontroller Hybrids 
Many applications require a mixture of control-oriented software and DSP software. An example is of 
the digital cellular phone, which must implement both supervisory tasks and voice-processing tasks. 
In general, microcontrollers provide good performance in controller tasks and poor performance in 
DSP tasks, and DSP processors have the opposite characteristics. Hence, until recently, combination 
control/signal processing applications were typically implemented using two separate processors: a 
microcontroller and a DSP processor. In recent years, however, a number of microcontroller vendors 
have begun to offer DSP-enhanced versions of their microcontrollers as an alternative to the dual-
processor solution. Using a single processor to implement both types of software is attractive, because 
it can potentially: 
1. Simplify the design task 
2. Save circuit board space 
3. Reduce total power consumption 
4. Reduce overall system cost 
Microcontroller vendors such as Hitachi, ARM, and Lexra have taken a number of different 
approaches to adding DSP functionality to existing microprocessor designs, borrowing and adapting 
the architectural features common among DSP processors. Many of these hybrid processors achieve 
signal-processing performance that is comparable to that of low-cost or mid-range DSP processors 
while allowing re-use of software written for the original microcontroller architecture. 
 
5 Case Study: VLIW based Processor (SPXK5) for Mobile Applications 
The fast bit-rate, multimedia applications like video codecs, audio codecs, echo cancellers speech 
recognition systems executing simultaneously, are some of the key requirements of modern mobile 
applications which naturally demands higher processing power [2]. As discussed before VLIW 
architecture are particularly suitable for such applications because they enable the development of 
high-level language compilers that generates efficient codes and in turns reduces the development 
time. However almost all VLIW-based DSPs are developed for high-end applications and consume 
too much power to use in the handheld devices. To address these issues recently NEC Corporation 
come up with DSP core SPXK5 useful particularly for 3G mobile devices. In incorporates customized 
VLIW approach as well as SIMD features to give better performance. Here we take the review of the 
architecture of it and then study implementation of some of the DSP algorithms. 
 
5.1 Architecture of SPXK5 
The SPXK5 is a 16-bit general purpose DSP core based on the NEC µPD7701x architecture. Its low-
power consumption (0.15 mW / MIPS at 1.5V) and high performance makes it suitable for handheld 
devices: 
As shown in the block diagram below it consists of control blocks, buses, registers and functional 
units. The functional units consist of 
  
1. Two multiply-accumulate (MAC) units for 16-bit by 16-bit multiplications and 40/16-bit 

accumulations 
2. Two arithmetic units (ALU) for addition, subtraction, shift and logical operations. 
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3. Two data address units (DAU) for load and store. 
4. System control unit (SCU) for branch, zero overhead looping, and conditional execution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The SPXK5 block diagram showing functional units (Ref: [5]) 
 
 

5.2 Chip performance and Features  
Mobile applications need processors, which deliver required functionality by consuming as much 
small power as possible. With the advent of 2.5G, and 3G devises, processors must provide 
architecture that helps to perform necessary algorithm efficiently. Following are few features that 
make it suitable for mobile applications. [5]: 
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1. Operational Frequency 250 MHz; Average power Consumption: 0.15 mW/MIPS at 1.5 V and 0.05 
mW/MIPS at 0.9 V.  
2. SPXK5 is designed so that maximum four of seven functional units work simultaneously. Although 
it is desirable to run all seven blocks simultaneously it demands higher instruction width and in turn 
increasing the power dissipation beyond limit.  
3. 16 Kbyte instruction cache. Six-stage deep pipeline: Instruction fetch, dispatch queue, decode, DP 
register update, Execution phase I and II. However it relies on software for optimized instruction 
scheduling so that to have lesser hardware and consume less power. 
4. Instruction are either 16 or 32 bits long while instruction packet size can vary from 16 to 64 bits. 
This is in contrast to the conventional VLIW architecture. The variable length instruction packet 
allows the elimination of redundant NOP operations used to fill packets and in turn produces higher 
code density. 
5.  It also contains eight special SIMD instructions (PADD, PSUB, PSHIFT, PADDABS, PACKV etc) 
to take advantage of data-level parallelism. These instructions are helpful to implement DSP 
algorithms such as video encoding/decoding, viterbi decoding, FFT etc. These instructions are 
explained in detail in next subtopic where implementation of some of the algorithms is explained. 
 
5.3 Application Benchmarks 
In this section some of the processing results for SPXK5 are compared with different low power 
DSPs, which employ different architectural approaches. Ref [5].  
 
 

Cycle Counts BenchMarks 
PD77210 SPXK5 TI C55x Intel ADI MSA 

FIR filtering 
     ( N Samples, T taps) 

NT NT / 2 NT / 2  NT / 2 

IIR filtering                    
(N Samples, B biquads) 

5NB 3NB 3NB 2.5NB 

LMS adaptive filtering    
(N Samples, T Taps) 

3NT NT 2NT 1.5NT 

256 point complex FFT 9196 2944 4786 3176 
 

Table: Benchmark Comparison Ref [5]. 
 
  
5.4 Implementation of DSP Algorithm 
In this section we consider implementation of implementation of MPEG – 4 video codec system 
components which is key application in the mobile terminals. The main components in the MPEG-4 
video codec are Motion estimation (ME), Discrete cosine transform (DCT), inverse DCT (IDCT), 
Motion compensation (MC), quantization, variable length coding and decoding etc. Here we look in 
detail the motion estimation component. 
5.4.1 Motion Estimation for video codec: 
Motion estimation is most heavily demanding operations in video encoders. It uses block-matching 
techniques to search a motion vector for a desired macroblock. In a block-matching algorithm, both 
the mean absolute error (MAE) and mean square error (MSE) between a current macroblock and a 
reference macroblock are feasible as block-matching criteria.  
The MAE and MSE are defined as 
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where, amn and bmn are pixel values in respectively current and reference macroblock. 
Implementation diagram: Following diagram shows implementation of MEA. 
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Figure7: Implementation of mean absolute error 
 
As shown in the above flow diagram, to calculate mean absolute error we make use of two SIMD 
instructions, PSUB and PADDABS for doing two 16–bit subtraction simultaneously. Data is saved in 
registers with a pipeline structure as shown. MEA for 1 pixel can be calculated in 0.5 cycles and as 
the pixel size increase number of cycles will increase. 
Other blocks of MPEG codec can also be implemented using the same approach. For MPEG-4 video 
(352 x 288 pixels, 15 frames), it has been observed that encoding and decoding both can be observed 
at around 105 MHz. 
 
 
6 Conclusions 
DSP processor architectures are evolving to meet the changing needs of DSP applications. There are 
many diverse architecture are designed to address different issues and goals. The forces driving the 
evolution of DSP processors today include the persistent push for increased speed, decreased energy 
consumption, decreased memory usage, and decreased cost, to better meet the needs of new and 
existing applications. As shown with example of DSP processors for low power Mobile application 
customized products are coming up to address the new generation applications.  
The emphasis is for architectures that facilitate development of more efficient compilers, allowing 
DSP applications to be written primarily in high-level languages. This has become a focal point in the 
design of new DSP processors, because DSP applications are growing too large to comfortably 
implement and maintain in assembly language. As the needs of DSP applications continue to change, 
we expect to see a continuing evolution in DSP processors. 
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