
Evolution Of DSPs Page 1 of 1

M.Tech. credit seminar report,

 Electronic Systems Group,
EE Dept, IIT Bombay,

Submitted: November 2002

Evolution of DSPs

Author: Kartik Kariya (Roll No. 02307923)

Supervisor: Prof. Vikram M. Gadre, Associate Professor, IIT Bombay.

Abstract

DSP algorithms and necessity to do complex computation with strict time and accuracy constraints
pioneered to the development in the architecture of digital signal processors. Different low and high
end DSPs, which satisfies cost and speed constrains of various application are available in the market.
This report reviews the available DSP processor architecture and their features. There is growing need
to design customized DSP core, which suits to particular application. This fact is explained with the
case study of DSP architecture designed for handheld devices such as mobile phones.

1 Introduction:

DSP has become a key component in many consumer, communication, medical, and industrial
products. The number and variety of products that include some form of digital signal processing has
grown dramatically over the years. These products use a variety of hardware approaches to implement
DSP, ranging from the use of microprocessors to field-programmable gate arrays (FPGAs) to custom
integrated circuits (ICs).
In comparison to microprocessors, DSP processors often have an advantage in terms of speed, cost,
and energy efficiency. In this report, we trace the evolution of DSP processors, from early
architectures to current state-of-the-art devices. Some of the key differences among architectures, and
their strengths and weaknesses are highlighted. Lastly, the case study of SPXK5, used in handheld
applications is presented to explain how customized hardware are being used to satisfy need of
particular application.

2 Differences in DSP and General-Purpose Processors Architecture:

From the beginning, DSP algorithms have driven DSP processor architectures. For nearly every
feature found in a DSP processor, there are associated DSP algorithms whose computation, in some
way are eased by inclusion of the feature. Therefore, perhaps the best way to understand the evolution
of DSP architectures is to look at typical DSP algorithms and identify how their computational
requirements have influenced the architectures of DSP processors [1]. As a case study, we will
consider one of the most common signal processing algorithms, the FIR filter.

Evolution Of DSPs Page 2 of 2

2.1 Fast Multipliers

The FIR filter is mathematically expressed as, where is a vector of input data, and is a vector of filter
coefficients. For each “tap” of the filter, a data sample is multiplied by a filter coefficient, with the
result added to a running sum for all of the taps. Hence, the main component of the FIR filter
algorithm is “multiply and add”. These operations are not unique to the FIR filter algorithm, in fact,
multiplication (often combined with accumulation of products) is one of the most common operations
performed in signal processing convolution, IIR filtering, and Fourier transforms also all involve
heavy use of multiply accumulate operations.
Originally, microprocessors implemented multiplications by a series of shift and add operations, each
of which consumed one or more clock cycles. In 1982, however, Texas Instruments (TI) introduced
the first commercially successful “DSP processor,” the TMS32010, which incorporated specialized
hardware to enable it to compute a multiplication in a single clock cycle. As might be expected, faster
multiplication hardware yields faster performance in many DSP algorithms, and for this reason all
DSP processors include at least one dedicated single cycle multiplier or combined multiply-
accumulate (MAC) unit.

2.2 Multiple Execution Units

DSP applications typically have very high computational requirements in comparison to other types of
computing tasks, since they often must execute DSP algorithms (such as FIR filtering) in real time on
lengthy segments of signals sampled at 10-100 KHz or higher. Hence, DSP processors often include
several independent execution units that are capable of operating in parallel. For example, in addition
to the MAC unit; they typically contain an arithmetic-logic unit (ALU) and a shifter.

2.3 Efficient Memory Accesses
Executing a MAC in every clock cycle requires more than just a single-cycle MAC unit. It also
requires the ability to fetch the MAC instruction, a data sample, and a filter coefficient from memory
in a single cycle. Hence, good DSP performance requires high memory bandwidth higher than was
supported on the general-purpose microprocessors, which typically contained a single bus connection
to memory and could only make one access per clock cycle. To address the need for increased
memory bandwidth, early DSP processors developed different memory architectures that could
support multiple memory accesses per cycle. The most common approach (still commonly used) was
to use two or more separate banks of memory, each of which was accessed by its own bus and could
be read or written during every clock cycle. Often, instructions were stored in one memory bank,
while data was stored in another. With this arrangement, the processor could fetch an instruction and a
data operand in parallel in every cycle.

Evolution Of DSPs Page 3 of 3

Figure 2: Difference between memory structures General Purpose Processor and DSPs

Above figure illustrates the difference in memory architectures for early general-purpose processors
and DSP processors. Since many DSP algorithms (such as FIR filters) consume two data operands per
instruction (e.g., a data sample and a coefficient), a further optimization commonly used is to include
a small bank of RAM near the processor core that is used as an instruction cache. When a small group
of instructions is executed repeatedly (i.e., in a loop), the cache is loaded with those instructions,
freeing the instruction bus to be used for data fetches instead of instruction fetches—thus enabling the
processor to execute a MAC in a single cycle.
High memory bandwidth requirements are often further supported via dedicated hardware for
calculating memory addresses. These address generation units operate in parallel with the DSP
processor’s main execution units, enabling it to access data at new locations in memory (for example,
stepping through a vector of coefficients) without pausing to calculate the new address.
Memory accesses in DSP algorithms tend to exhibit very predictable patterns; for example, for each
sample in an FIR filter, the filter coefficients are accessed sequentially from start to finish for each
sample, then accesses start over from the beginning of the coefficient vector when processing the next
input sample. This is in contrast to other types of computing tasks, such as database processing, where
accesses to memory are less predictable. DSP processor address generation units take advantage of
this predictability by supporting specialized addressing modes that enable the processor to efficiently
access data in the patterns commonly found in DSP algorithms. The most common of these modes is
register-indirect addressing with post-increment, which is used to automatically increment the address
pointer for algorithms where repetitive computations are performed on a series of data stored
sequentially in memory. Without this feature, the programmer would need to spend instructions
explicitly incrementing the address pointer. Many DSP processors also support “ circular addressing,”
which allows the processor to access a block of data sequentially and then automatically wrap around
to the beginning address. Circular addressing is also very helpful in implementing first-in, first-out
buffers, commonly used for I/O and for FIR filter delay lines.

2.4 Data Format
Most DSP processors use a fixed-point numeric data type instead of the floating-point format. Though
floating-point format have good numerical fidelity and virtually eliminates, numerical overflow etc, in
many cases DSP processors face additional constraints i.e. they must be inexpensive and provide good
energy efficiency. Fixed-point processors tend to be cheaper and less power-hungry than floating-
point processors at comparable speeds, because floating-point formats require more complex
hardware to implement. To ensure adequate signal quality while using fixed-point data, DSP
processors typically include specialized hardware to help programmers maintain numeric fidelity
throughout a series of computations. For example, most DSP processors include one or more
“ accumulator” registers to hold the results of summing several multiplication products. Accumulator
registers are typically wider than other registers; they often provide extra bits, called “ guard bits,” to
extend the range of values that can be represented and thus avoid overflow.
Sensitivity to cost and energy consumption also influences the data word width used in DSP
processors. DSP processors tend to use the shortest data word that will provide adequate accuracy in
their target applications. Most fixed-point DSP processors use 16-bit data words, because that data
word width is sufficient for many DSP applications. A few fixed-point DSP processors use 20, 24, or
even 32 bits to enable better accuracy in applications that are difficult to implement well with 16-bit
data, such as high fidelity audio processing. In addition, DSP processors usually include good support

DSP
Proc.
Core

Program

Memory

Data

Memory

General
Purpose

Processor
Program

/Data
Memory

Evolution Of DSPs Page 4 of 4

for saturation arithmetic, rounding, and shifting, all of which are useful for maintaining numeric
fidelity.

2.5 Zero-Overhead Looping
DSP algorithms typically spend the vast majority of processing time in relatively small sections of
software that are executed repeatedly; i.e., in loops. Hence, most DSP processors provide special
support for efficient looping.
Zero overhead Looping is implemented in a DSP as a block of logic that uses a small instruction
cache and a few register to repeat a predetermined block of code (determined in advance by program)
with zero overhead.

Figure 3: Zero Overhead Looping

When program reaches a block of code that will be repeated more than once, start address, and end-
address register and a loop count register are loaded. The block of code indicated by the start and end
address is then repeated automatically the number of times specified in the loop count register. The
benefit is that instead of having to do test and branch operations repeatedly, the hardware in the
hardware branching logic block (which comprises part of the Zero Overhead Looping hardware) does
it all. However most disadvantage of this is whole block to be repeated must be accommodate in
cache.

2.6 Streamlined I/O
To allow low-cost, high-performance input and output, most DSP processors incorporate one or more
specialized serial or parallel I/O interfaces, and streamlined I/O handling mechanisms such as low-
overhead interrupts and direct memory access (DMA) to allow data transfers to proceed with little or
no intervention from the processor’s computational units.

2.7 Specialized Instruction Sets
DSP processor instruction sets are designed with following two goals in mind. 1. To make
maximum use of the processor’s underlying hardware, thus increasing efficiency. 2. To minimize the
amount of memory space required to store DSP programs, since DSP applications are often quite cost-
sensitive and the cost of memory contributes substantially to overall chip and/or system cost.

Program Initialization:
Load Start and end address registers
Load Repeat Counter

Start Address
Register

Repeat
Counter

Start Address
Register

Code

Block to

be

Repeated
Decrement

Repeat
Counter

Counter = 0 ?

Yes
1.

Exit
Loop

Repeat Block
Code

No

Evolution Of DSPs Page 5 of 5

To accomplish the first goal, conventional DSP processor instruction sets generally allow the
programmer to specify several parallel operations in a single instruction, typically including one or
two data fetches from memory (along with address pointer updates) in parallel with the main
arithmetic operation. To reduce the number of bits required to encode instructions, DSP processors
often offer fewer registers than other types of processors, and may use mode bits to control some
features of processor operation (for example, rounding or saturation) rather than encoding this
information as part of the instructions. The overall result of these features is that conventional DSP
processors tend to have highly specialized, complicated, and irregular instruction sets. This
characteristic has come to be viewed as a significant drawback of these processors, because it
complicates the task of creating efficient assembly language software.

3 The DSP Landscapes
In this section we look at the DSP from historical perspective and see how DSP’ s got evolved [3].

3.1 Conventional DSP Processors
The performance and price range among DSP processors is very wide.
Some of the common features of these early (1980s) DSPs are:
1. Issue and execute one instruction per clock cycle, and use the complex, multi-operation instructions.
2. Typically include a single multiplier or MAC unit and an ALU, but few additional execution units.
Few examples of these groups are Analog Devices’ ADSP-21xx family, Texas Instruments’
TMS320C2xx family, and Motorola’ s DSP560xx family. These processors generally operate at
around 20-50 MHz, and provide good DSP performance while maintaining very modest power
consumption and memory usage. They are typically used in consumer and telecommunications
products that have modest DSP performance requirements and stringent cost and/or energy
consumption constraints, like disk drives and digital telephone answering machines.
The improvement in the performance of above processors was achieved through combination of
increased clock speeds and somewhat more sophisticated architectures. DSP processors like the
Motorola DSP563xx and Texas Instruments TMS320C54x operate at 100-150 MHz and often include
a modest amount of additional hardware, such as a barrel shifter or instruction cache, to improve
performance in common DSP algorithms. Processors in this class also tend to have deeper pipelines
than their lower-performance cousins. However midrange DSP processors are more similar to their
predecessors than they are different. By using this approach, midrange DSP processors are able to
achieve noticeably better performance while keeping energy and power consumption low. Processors
in this performance range are typically used in wireless telecommunications applications and high-
speed modems, which have relatively high computational demands but often require low power
consumption.

3.2 Enhanced-Conventional DSP Processors
The purpose of these DSPs is to capitalize the performance with addition of few parallel execution
units, typically a second multiplier and adder. These hardware enhancements are combined with an
extended instruction set that takes advantage of the additional hardware by allowing more operations
to be encoded in a single instruction and executed in parallel. With this increased parallelism,
enhanced-conventional DSP processors can execute significantly more work per clock cycle e.g. two
MACs per cycle instead of one. The Lucent Technologies DSP16xxx is one such example of DSPs.

Evolution Of DSPs Page 6 of 6

Figure 4: Lucent Tech’ s DSP 16xxx

Enhanced-conventional DSP processors are typically characterized by:
1. Wider data buses to allow them to retrieve more data words per clock cycle in order to keep the

additional execution units fed with data.
2. Wider instruction words to accommodate specification of additional parallel operations within a

single instruction.
Increases in cost and power consumption due to the additional hardware and architectural complexity
are largely offset by increased performance.

3.3 Multi-Issue Architectures
Enhanced-conventional DSP processors provide improved performance by allowing more operations
to be encoded in every instruction, however they are difficult to program in the assembly language
and are unfriendly compiler targets.
With the goals of achieving high performance and creating architecture that lends itself to the use of
compilers, DSP processors with multi-issue approach were designed. In contrast to conventional and
enhanced-conventional processors, multi-issue processors use very simple instructions that typically
encode a single operation. These processors achieve a high level of parallelism by issuing and
executing instructions in parallel groups rather than one at a time. Using simple instructions simplifies
instruction decoding and execution, allowing multi-issue processors to execute at higher clock rates
than conventional or enhanced conventional DSP processors.
TI was the first DSP processor vendor to use this approach in a commercial DSP processor. TI’ s
multi-issue TMS320C62xx, introduced in 1996, was dramatically faster than any other DSP processor
available at the time. The two classes of architectures that execute multiple instructions in parallel are
referred to as VLIW (very long instruction word) and superscalar. These architectures are quite
similar, differing mainly in how instructions are grouped for parallel execution.

Evolution Of DSPs Page 7 of 7

3.3.1 VLIW and Superscalar Architecture

Figure 5: TMS320C6xx Execution Unit [6]

VLIW and superscalar architectures provide many execution units, more than that found in
conventional or even enhanced conventional DSPs, each of which executes its own instruction. Figure
5 illustrates the execution units and buses of the TMS320C62xx, which contains eight independent
execution units. VLIW DSP processors typically issue a maximum of between four and eight
instructions per clock cycle, which are fetched and issued as part of one long super-instruction
In VLIW architecture, the assembly language programmer (or code-generation tool) specifies which
instructions will be executed in parallel. Hence, instructions are grouped at the time the program is
assembled, and the grouping does not change during program execution. Superscalar processors, in
contrast, contain specialized hardware that determines which instructions will be executed in parallel
based on data dependencies and resource contention, shifting the burden of scheduling parallel
instructions from the programmer to the processor.
Superscalars may group the same set of instructions differently at different times in the program’ s
execution e.g. it may group instructions one way the first time it executes a loop, then group them
differently for subsequent iterations. This makes difficult for the programmer to predict exactly how
long a given segment of software will take to execute. . The execution time may vary based on the
particular data accessed, whether the processor is executing a loop for the first time or the third, or
whether it has just finished processing an interrupt. The difference in the way these two types of
architectures schedule instructions for parallel execution is important in the context of using them in
real-time DSP applications because in this case execution time must be predictable.
VLIW processors use wider instruction words than conventional DSP processors. When a processor
issues multiple instructions per cycle, it must be able to determine which execution unit will process
each instruction. Traditionally, VLIW processors have used the position of each instruction within the
super-instruction to determine to where the instruction will be routed. Some recent VLIW
architectures do not use positional super-instructions, however, and instead include routing
information within each sub-instruction. To support execution of multiple parallel instructions, VLIW
and superscalar processors must have sufficient instruction decoders, buses, registers, and memory
bandwidth. VLIW processors typically use either wide buses or a large number of buses to access data
memory and keep the multiple execution units fed with data.

On-Chip Program Memory

32 x 8 = 256 bits
8 instruction

Dispatch Unit

L2 S2 M2 D2

Register File B

L1 S1 M1 D1

Register File A

On –Chip Data Memory

32 Bits Each L : ALU

S : Shifter

M : Multiplier

D : Address Gen

Evolution Of DSPs Page 8 of 8

VLIW and superscalar processors often suffer from high-energy consumption relative to conventional
DSP processors. In general, multi-issue processors are designed with an emphasis on increased speed
rather than energy efficiency. Hence VLIW and superscalar processors have mainly targeted for
applications, which have very demanding computational requirements but are not very sensitive to
cost or energy efficiency. For example, a VLIW processor might be used in a cellular base station, but
not in a portable cellular phone.

3.3.2 SIMD
SIMD, or single-instruction, multiple-data, is an architectural technique that can be used within any of
the classes of architectures described so far. SIMD improves performance on some algorithms by
allowing the processor to execute multiple instances of the same operation in parallel using different
data. For example, a SIMD multiplication instruction could perform two or more multiplications on
different sets of input operands in parallel in a single clock cycle. This technique can greatly increase
the rate of computation for some vector operations that are heavily used in multimedia and signal
processing applications.
On DSP processors with SIMD capabilities, the hardware that supports SIMD operations varies
widely. Some of the approaches implemented are discussed here.
1. Analog Devices, for example, modified their basic conventional floating-point DSP architecture, the

ADSP-2106x, by adding a second set of execution units that exactly duplicate the original set. The
new architecture is called the ADSP-2116x. Each set of execution units in the ADSP-2116x
includes a MAC unit, ALU, and shifter, and each has its own set of operand registers. The
augmented architecture can issue a single instruction and execute it in parallel in both data paths
using different data and effectively doubling its performance in some algorithms.

2. On the other hand instead of having multiple sets of the same execution units, some DSP processors
can logically split their execution units (e.g., ALUs or MAC units) into multiple sub-units that
process narrower operands. These processors treat operands in long (e.g., 32-bit) registers as
multiple short operands (e.g., as two 16-bit operands or four 8-bit operands). This approach is been
use in Analog Devices’ TigerSHARC [4] processor.

To explain the concept of splitting the execution units, take example of FIR filter. FIR filter with
length M can be expressed as

∑
−

=

−=
1

0

)()()(
M

k

knxkcny

To implement this filter with four parallel subunits simultaneously, equation can be expressed as

∑
−

=

−−+=
4

1

0

’’

’

)14()14()(

M

k
i knxkcny

 and ∑
=

=
3

0

)()(
i

i nyny

Each of the four sequences yi (n) maps directly to the four sub-word MAC units.

4 Alternatives to DSP Processors

4.1 High-Performance CPUs
Many high-end CPUs, such as Pentiums and PowerPCs, have been enhanced to increase the speed of
computations associated with signal processing tasks. The most common modification is the addition
of SIMD-based instruction-set extensions, such as MMX for the Pentium, and AltiVec for the
PowerPC. This approach is a good one for CPUs, which typically have wide resources (buses,
registers, ALUs).

Evolution Of DSPs Page 9 of 9

General-purpose processors are often able to achieve performance on DSP algorithms that is better
than that of even the fastest DSP processors. This surprising result is partly due to the effectiveness of
SIMD, but also because many CPUs operate at extremely high clock speeds in comparison to DSP
processors; high-performance CPUs typically operate at upwards of 1- 1.5GHz, while the fastest DSP
processors are in the 200-250 MHz range.
However following are the reasons why DSP processors are preferred over these high performance
processors for many applications.
1. DSP processors provide better mixture of performance, power consumption, and price.
2. As discussed before for real-time applications, the superscalar architectures and dynamic features

common among high-performance CPUs can be problematic for execution time estimation.
3. Another key advantage is the availability of DSP-specific development tools and off-the-shelf

DSP software components.

4.2 DSP/Microcontroller Hybrids
Many applications require a mixture of control-oriented software and DSP software. An example is of
the digital cellular phone, which must implement both supervisory tasks and voice-processing tasks.
In general, microcontrollers provide good performance in controller tasks and poor performance in
DSP tasks, and DSP processors have the opposite characteristics. Hence, until recently, combination
control/signal processing applications were typically implemented using two separate processors: a
microcontroller and a DSP processor. In recent years, however, a number of microcontroller vendors
have begun to offer DSP-enhanced versions of their microcontrollers as an alternative to the dual-
processor solution. Using a single processor to implement both types of software is attractive, because
it can potentially:
1. Simplify the design task
2. Save circuit board space
3. Reduce total power consumption
4. Reduce overall system cost
Microcontroller vendors such as Hitachi, ARM, and Lexra have taken a number of different
approaches to adding DSP functionality to existing microprocessor designs, borrowing and adapting
the architectural features common among DSP processors. Many of these hybrid processors achieve
signal-processing performance that is comparable to that of low-cost or mid-range DSP processors
while allowing re-use of software written for the original microcontroller architecture.

5 Case Study: VLIW based Processor (SPXK5) for Mobile Applications
The fast bit-rate, multimedia applications like video codecs, audio codecs, echo cancellers speech
recognition systems executing simultaneously, are some of the key requirements of modern mobile
applications which naturally demands higher processing power [2]. As discussed before VLIW
architecture are particularly suitable for such applications because they enable the development of
high-level language compilers that generates efficient codes and in turns reduces the development
time. However almost all VLIW-based DSPs are developed for high-end applications and consume
too much power to use in the handheld devices. To address these issues recently NEC Corporation
come up with DSP core SPXK5 useful particularly for 3G mobile devices. In incorporates customized
VLIW approach as well as SIMD features to give better performance. Here we take the review of the
architecture of it and then study implementation of some of the DSP algorithms.

5.1 Architecture of SPXK5
The SPXK5 is a 16-bit general purpose DSP core based on the NEC µPD7701x architecture. Its low-
power consumption (0.15 mW / MIPS at 1.5V) and high performance makes it suitable for handheld
devices:
As shown in the block diagram below it consists of control blocks, buses, registers and functional
units. The functional units consist of

1. Two multiply-accumulate (MAC) units for 16-bit by 16-bit multiplications and 40/16-bit

accumulations
2. Two arithmetic units (ALU) for addition, subtraction, shift and logical operations.

Evolution Of DSPs Page 10 of 10

3. Two data address units (DAU) for load and store.
4. System control unit (SCU) for branch, zero overhead looping, and conditional execution.

Figure 6: The SPXK5 block diagram showing functional units (Ref: [5])

5.2 Chip performance and Features
Mobile applications need processors, which deliver required functionality by consuming as much
small power as possible. With the advent of 2.5G, and 3G devises, processors must provide
architecture that helps to perform necessary algorithm efficiently. Following are few features that
make it suitable for mobile applications. [5]:

Interrupt Control Instruction Bus 64bits

JTAG Loop Control Stack Control Dispatcher Fetcher

MAC MAC ALU ALU DAU DAU SCU

 R0H R0L

 R1H R1L

 R2H R2L

 R3H R3L

 R4H R4L

 R5H R5L

 R6H R6L

 R7H R7L

40 Bit General Purpose Registers

R0

R1

R2

R3

R4

R5

R6

R7

32Bit Address

Register

DP0

DP 1

DP 2

DP 3

DP 4

DP 5

DP 6

DP 7

16 Bit Offset

Register

DN0

DN 1

DN 2

DN 3

DN 4

DN 5

DN 6

DN 7

System

Registers

Main Bus (32 Bit)

X Bus(32 Bit)

Y Bus (32 Bit)

Evolution Of DSPs Page 11 of 11

1. Operational Frequency 250 MHz; Average power Consumption: 0.15 mW/MIPS at 1.5 V and 0.05
mW/MIPS at 0.9 V.
2. SPXK5 is designed so that maximum four of seven functional units work simultaneously. Although
it is desirable to run all seven blocks simultaneously it demands higher instruction width and in turn
increasing the power dissipation beyond limit.
3. 16 Kbyte instruction cache. Six-stage deep pipeline: Instruction fetch, dispatch queue, decode, DP
register update, Execution phase I and II. However it relies on software for optimized instruction
scheduling so that to have lesser hardware and consume less power.
4. Instruction are either 16 or 32 bits long while instruction packet size can vary from 16 to 64 bits.
This is in contrast to the conventional VLIW architecture. The variable length instruction packet
allows the elimination of redundant NOP operations used to fill packets and in turn produces higher
code density.
5. It also contains eight special SIMD instructions (PADD, PSUB, PSHIFT, PADDABS, PACKV etc)
to take advantage of data-level parallelism. These instructions are helpful to implement DSP
algorithms such as video encoding/decoding, viterbi decoding, FFT etc. These instructions are
explained in detail in next subtopic where implementation of some of the algorithms is explained.

5.3 Application Benchmarks
In this section some of the processing results for SPXK5 are compared with different low power
DSPs, which employ different architectural approaches. Ref [5].

Cycle Counts BenchMarks
PD77210 SPXK5 TI C55x Intel ADI MSA

FIR filtering
 (N Samples, T taps)

NT NT / 2 NT / 2 NT / 2

IIR filtering
(N Samples, B biquads)

5NB 3NB 3NB 2.5NB

LMS adaptive filtering
(N Samples, T Taps)

3NT NT 2NT 1.5NT

256 point complex FFT 9196 2944 4786 3176

Table: Benchmark Comparison Ref [5].

5.4 Implementation of DSP Algorithm
In this section we consider implementation of implementation of MPEG – 4 video codec system
components which is key application in the mobile terminals. The main components in the MPEG-4
video codec are Motion estimation (ME), Discrete cosine transform (DCT), inverse DCT (IDCT),
Motion compensation (MC), quantization, variable length coding and decoding etc. Here we look in
detail the motion estimation component.
5.4.1 Motion Estimation for video codec:
Motion estimation is most heavily demanding operations in video encoders. It uses block-matching
techniques to search a motion vector for a desired macroblock. In a block-matching algorithm, both
the mean absolute error (MAE) and mean square error (MSE) between a current macroblock and a
reference macroblock are feasible as block-matching criteria.
The MAE and MSE are defined as

∑∑
−

=

−

=

−=
1

0

1

0

M

m

N

n
mnmn baMAE

()
21

0

1

0
∑∑

−

=

−

=

−=
M

m

N

n
mnmn baMSE

where, amn and bmn are pixel values in respectively current and reference macroblock.
Implementation diagram: Following diagram shows implementation of MEA.

Evolution Of DSPs Page 12 of 12

Figure7: Implementation of mean absolute error

As shown in the above flow diagram, to calculate mean absolute error we make use of two SIMD
instructions, PSUB and PADDABS for doing two 16–bit subtraction simultaneously. Data is saved in
registers with a pipeline structure as shown. MEA for 1 pixel can be calculated in 0.5 cycles and as
the pixel size increase number of cycles will increase.
Other blocks of MPEG codec can also be implemented using the same approach. For MPEG-4 video
(352 x 288 pixels, 15 frames), it has been observed that encoding and decoding both can be observed
at around 105 MHz.

6 Conclusions
DSP processor architectures are evolving to meet the changing needs of DSP applications. There are
many diverse architecture are designed to address different issues and goals. The forces driving the
evolution of DSP processors today include the persistent push for increased speed, decreased energy
consumption, decreased memory usage, and decreased cost, to better meet the needs of new and
existing applications. As shown with example of DSP processors for low power Mobile application
customized products are coming up to address the new generation applications.
The emphasis is for architectures that facilitate development of more efficient compilers, allowing
DSP applications to be written primarily in high-level languages. This has become a focal point in the
design of new DSP processors, because DSP applications are growing too large to comfortably
implement and maintain in assembly language. As the needs of DSP applications continue to change,
we expect to see a continuing evolution in DSP processors.

 a0.1 a0,0

32-bit Load

 b0.1 b0,0

32-bit Load

 a0.3 a0,2

32-bit Load

 b0.3 b0,2

32-bit Load

 a0,1- b0.1 a00 -b0,0

PSUB

 +=|a0,1- b0.1| += |a00 -b0,0|

PADDABS

 a0.5 a0,4

32-bit Load

 b0.5 b0,4

32-bit Load

 a0,3- b0.3 a02 -b0,2

PSUB

 +=|a0,3- b0.3| += |a02 -b0,2|

PADDABS

 a0.7 a0,6

32-bit Load

 b0.7 b0,6

32-bit Load

 a05- b0.5 a04 -b0,4

PSUB

Parallel Operations

Time

Evolution Of DSPs Page 13 of 13

Reference:

[1] A.L. Lilein (TI) "Digital Signal Processors vs. Universal Microprocessors” ESIEE, Paris
September 1996.
[2] Ichiro Kuoda, “ Multimedia Processors” , Proc. IEEE, Vol. 86, No.6, pp 1203-1221, 1998
[3] J. Eyre and J. Bier, "The evolution of DSP Processors", IEEE Signal Processing Magazine, vol17,
no.2, pp43-51, Mar.2000
[4] J. Fridman, “ Applying TigerSHARC Architecture: Sub-World Parallelism in Digital Signal
Processing” , IEEE Signal Processing Magazine, pp27-35, March 2000
[4] R. J. Higgins, "Digital Signal Processing in VLSI", Georgia Institute of Technology.
[5] Takahiro Kumara, Masao Ikekawa, Makoto Yoshida, and Ichiro Kuroda, “ VLIW DSP for Mobile
Applications” IEEE Signal Processing Magazine, pp10-21, July 2002
[6] TMS32060x Technical overview, Texas Instruments Inc.
[7] W. Strauss, “ Digital Signal Processing Semiconductor Industry Technology Driver” , IEEE Signal
Processing Magazine, vol17, no.2, pp52-56, Mar.2000

