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Abstract  

Audio signal classification system analyzes the input audio signal and creates a label that 
describes the signal at the output. These are used to characterize both music and speech 
signals. The categorization can be done on the basis of pitch, music content, music tempo 
and rhythm. The signal classifier analyzes the content of the audio format thereby extracting 
information about the content from the audio data. This is also called audio content analysis, 
which extends to retrieval of content information from signals. In this report the 
implementation of the audio signal classification is presented. A number of features such as 
pitch, timbral, rhythmic features have been discussed with reference to their ability to 
distinguish the different audio formats. The selection of the important features as well as the 
common techniques used for classification has been explained. Finally an approach called 
the confusion matrix has been studied in order to evaluate performance of the classification 
system.  

1. Introduction  

An audio signal classification system should be able to categorize different audio input 
formats. Particularly, detecting the audio type of a signal (speech, background noise, and 
musical genres) allows such new applications as automatic organization of audio databases, 
segmentation of audio streams, intelligent signal analysis, intelligent audio coding, 
automatic bandwidth allocation, automatic equalization, automatic control of sound 
dynamics etc. Audio signal classification finds its utility in many research fields such as 
audio content analysis, broadcast browsing, and information retrieval. Recently its demand 
is increasing in the information retrieval field as a new approach of Query By Humming has 
been invented; in which the user has to hum a tune and the song that corresponds to that 
tune is returned. All classification systems employ the extraction of a set of features from 
the input signal. Each of these features represents an element of the feature vector in the 
feature space. The dimension of the feature space is equal to the number of extracted 
features. These features are given to a classifier that employs certain rules to assign a class 
to the incoming vector. Fig.1 shows the block diagram, which is self-explanatory.  

   

Fig.1. Block diagram of an audio signal classification system.  
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2. FEATURE EXTRACTION  

Before any audio signal can be classified under a given class, the features in that audio 
signal are to be extracted. These features will decide the class of the signal. Feature 
extraction involves the analysis of the input of the audio signal. The feature extraction 
techniques can be classified as temporal analysis and spectral analysis technique. Temporal 
analysis uses the waveform of the audio signal itself for analysis. Spectral analysis utilizes 
spectral representation of the audio signal for analysis.  

All audio features are extracted by breaking the input signal into a succession of analysis 
windows or frames, each of around 10-40-ms length, and computing one feature value for 
each of the windows. One approach is to take the values of all features for a given analysis 
window to form the feature vector for the classification decision, so that class assignments 
can be obtained almost in real time, thus realizing a real-time classifier.   

Another approach is to use the texture window, in which the long-term characteristics of the 
signal are extracted and the variation in time of each feature is measured, that often provides 
a better description of the signal than the feature itself. A texture window is a long-term 
segment in the range of seconds containing a number of analysis windows. In the texture-
based approach only one feature vector for each texture window is generated. The features 
are not directly obtained in each analysis window, but statistical measures of the values are 
obtained for all analysis windows within the current texture window. Therefore in this case 
real-time classification is not possible, since at least one whole texture window has to be 
processed to obtain a class decision.   

Since the analyzed audio files are supposed to contain only one type of audio, a single class 
decision is made for each type of audio, which can be derived following one of two possible 
approaches. The first approach is the single vector mode, which consists of taking the whole 
file length as the texture window. In this way, each file is represented by a single feature 
vector, which in turn is subjected only once to classification. The second approach is the 
texture window mode, which consists of defining shorter texture windows and making 
several class decisions along each file, one for each texture window. At the end of the file 
the decisions are averaged to obtain a final class decision. This average computation is 
weighted by the certainty of each class decision.  

As discussed previously feature extraction plays an important role in classification of an 
audio signal. Hence it becomes all the more important to select those features that help the 
classification process more efficient. There are different types of features, such as the pitch, 
timbral features, rhythm features etc that are explained below.  

2.1 Pitch: 
The sound that comes through vocal tract starts from the larynx where vocal cords are 
situated and ends at mouth. The vibration of the vocal cords and the shape of the vocal tract 
are controlled by nerves from brain. The sound, which we produce, could be categorized 
into voiced and unvoiced sounds. During the production of unvoiced sounds the vocal cords 
do not vibrate and stay open whereas during voiced sounds they vibrate and produce what is 
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known as glottal pulse. A pulse is a summation of a sinusoidal wave of fundamental 
frequency and its harmonics (Amplitude decreases as frequency increases). The fundamental 
frequency of glottal pulse is known as the pitch. 

In music, the position of a tone in the musical scale is designated by a letter name and 
determined by the frequency of vibration of the source of the tone. Pitch is an attribute of 
every musical tone. The fundamental or first harmonic of any tone is perceived as its pitch. 
Absolute pitch is the position of a tone in the musical scale determined according to its 
number of vibrations per second, irrespective of other tones. The term also denotes the 
capacity to identify any tone upon hearing it sounded alone or to sing any specified tone. 
For example pitch helps the human ear to distinguish between string instruments, wind 
instruments and percussion instruments such as the drums, tabla etc. 

After the voiced parts of the sound are selected the pitch has to be determined. There are 
several algorithms currently in use for accomplishing this task. These could be categorized 
into Time-domain and Frequency-domain analysis. In time domain analysis the pitch could 
be estimated by using the peaks, but due to the presence of formant frequencies (harmonics) 
this method could give a wrong estimation. So the formant frequencies are filtered out using 
a low pass filter and then zero crossing methods or any other suitable method is used to 
determine the pitch. The speech signal is also passed through a low pass filter in the 
frequency domain analysis and then the pitch is determined by analyzing the spectrum.  

2.2 Timbral features: 
Sound "quality" or "timbre" describes those characteristics of sound, which allow the ear to 
distinguish sounds that have the same pitch and loudness. Timbre is then a general term for 
the distinguishable characteristics of a tone. Timbre is mainly determined by the harmonic 
content of a sound and the dynamic characteristics of the sound such as vibrato and tremolo. 
In music timbre is the quality of a musical note that distinguishes different types of musical 
instrument. Each note produced by a musical instrument is made of a number of distinct 
frequencies, measured in hertz (Hz). The lowest frequency is called the fundamental and the 
pitch produced by this frequency is used to name the note. However, the richness of the 
sound is produced by the combination of this fundamental with a series of harmonics and/or 
partials (also collectively called overtones). Most western instruments produce harmonic 
sounds, and these can be calculated by multiplying the fundamental by an increasing series 
of numbers - x2, x3, x4, etc (whole number multiples). However many instruments produce 
inharmonic tones, and may contain overtones which are not whole number multiples, these 
being the partials. Therefore, when the orchestral tuning note is played, the sound is a 
combination of 440 Hz, 880 Hz, 1320 Hz, 1760 Hz and so on. The balance of the 
amplitudes of the different frequencies is responsible for giving each instrument its 
characteristic sound.  

The ordinary definition of vibrato is periodic changes in the pitch of the tone, and the term 
tremolo is used to indicate periodic changes in the amplitude or loudness of the tone. So 
vibrato could be called FM (frequency modulation) and tremolo could be called AM 
(amplitude modulation) of the tone. Actually, in the voice or the sound of a musical 
instrument both are usually present to some extent. Vibrato is considered to be a desirable 
characteristic of the human voice if it is not excessive. It can be used for expression and 
adds richness to the voice. If the harmonic content of a sustained sound from a voice or 
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wind instrument is reproduced precisely, the ear can readily detect the difference in timbre 
because of the absence of vibrato.   

In the following equations the r indicates the number of the current frame, xr [n] denotes the 
frame in the time domain, where n is the time index, and Xr [k] denotes the short-time 
Fourier transform (STFT) of that frame, where k is the frequency coefficient or bin index. 
The following are some of the timbral features,  

2.2.1 Zero crossings  
The zero crossings feature counts the number of times that the sign of the signal amplitude 

changes in the time domain in one frame. For single-voiced signals, zero crossings are used 
to make a rough estimation of the fundamental-frequency. For complex signals it is a simple 
measure of noisiness.  

2.2.2 Centroid 
The spectral centroid is defined as the center of gravity of the spectrum [1].   
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where f [k] is the frequency at bin k. 
The centroid is the measure of the spectral shape and higher centroid values correspond to 
brighter textures with more high frequencies. Centroid models the sound sharpness. 
Sharpness is related to the high-frequency content of the spectrum. Higher centroid values 
correspond to spectra in the range of higher frequencies. Due to its effectiveness to describe 
spectral shape, centroid measures are used in audio classification tasks.  

2.2.3 Rolloff 
The rolloff is defined as the frequency below which 85% of the magnitude distibution of the 
spectrum is concentrated. Like the centroid, it is also a measure of spectral shape and yields 
higher values for high frequencies. Therefore it can be said that there exists a strong 
correlation between both the features. The equation for rolloff is   
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If M is the largest value of k for which this equation is satisfied then this frequency M is the 
rolloff [1].  

2.2.4 Flux 
The spectral flux is defined as the squared difference between the normalized magnitudes of 
successive spectral distributions that correspond to successive signal frames. The equation 
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for flux is  
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Flux is an important feature for the separation of music from speech [1].  

2.2.5 Mel frequency cepstral coefficients (MFCC s) 
MFCCs are a compact representation of the spectrum of an audio signal taking into account 
the nonlinear human perception of pitch, as described by the mel scale. They are one of the 
most used features in speech recognition and have recently been proposed to analyze and 
represent musical signals. MFCCs are computed by grouping the Short Time Fourier 
Transform (STFT) coefficients of each frame into a set of 40 coefficients, using a set of 40 
weighting curves that simulate the frequency perception of the human hearing system. Then 
the logarithm of the coefficients is taken, and a discrete cosine transform (DCT) is applied 
to decorrelate them. Normally the five first coefficients are taken as features.  

2.3 Rhythm features: 
These are features that exhibit regularity or the structure of the audio signal. They define the 
characteristic of the audio signal because they follow a particular pattern. These features are 
rhythmical structure and beat strength. For better classification purposes it is more 
interesting to extract information about these features. An example is the regularity of the 
beats, which is expected to be higher in rock and pop. Beat strength also seems to be a 
valuable feature. For instance, it is likely to be higher in techno music than in jazz. A beat 
histogram is a curve describing beat strength as a function of a range of beats per minute 
values, and allows the extraction of the properties mentioned. Peaks on the histogram 
correspond to the main beat and other subbeats. The result is a curve describing beat 
strength as a function of the beat per minute (bpm) values. The high peaks in the beat 
histogram denote a high overall beat strength. High peaks correspond to high beat strength 
and peaks separated by integer bpm multiples denote rhythm regularity. All rhythm features 
are extracted from the beat histograms.  

2.3.1 Beat strength 
Statistical measures of the histogram such as mean, standard deviation, mean of the 
derivative, standard deviation of the derivative, third- and fourth-order central moments 
(called skewness and kurtosis, respectively), and entropy are evaluated to obtain an overall 
measure of beat strength. All these measures are computed in the beat domain .  

2.3.2 Rhythmic regularity 
A beat histogram in which there is periodic spacing the peaks denotes high rhythmic 
regularity. This can be measured by the normalized autocorrelation function of the beat 
histogram. It will contain clear peaks for rhythmically regular music examples and it will be 
the more linear if the regularity is weaker. To reduce this to a scalar measure of rhythm 
regularity, the mean across the lags of the difference between the autocorrelations and the 
linear function is computed. 
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Although the computation is performed on a frame-by-frame basis, histograms are obtained 
in long-term intervals given by the texture windows. Hence all of the features related to the 
beat histogram are single-valued features to which the time domain mean and standard 
deviation subfeatures will not be applicable.  

2.4 MPEG-7 features: 
Moving Pictures Experts Group (MPEG) has defined an international standard defining a set 
of techniques for analyzing and describing raw data in terms of certain features. They are a 
subset of the features that have been discussed so far.  It is an attempt to standardize the 
features that are used in audio signal classification. It deals the content-based description so 
that data can be described in terms of features.   

2.4.1 Audio spectrum centroid (ASC)  
A perceptually adapted definition of the centroid, which introduces a logarithmic frequency 
scaling centered at 1 kHz,  
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where Pr is the power spectrum of the frame r [1].  

2.4.2 Audio spectrum spread (ASS) 
 It describes concentration of the spectrum around the centroid and is defined as  

2/

1

2/

1

2
2

][

][])1000/][([log

N

k
r

N

k
rr

r

kP

kPASCkf
ASS  

Lower spread values would mean that the spectrum is highly concentrated near the centroid 
and higher values mean that it is distributed across a wider range at both sides of the 
centroid [1].  

2.4.3 Audio spectrum flatness (ASF) 
It can be defined as the deviation of the spectral form from that of a flat spectrum. Flat 
spectra correspond to noise or impulse-like signals hence high flatness values indicate 
noisiness. Low flatness values generally indicate the presence of harmonic components. 
Instead of calculating one flatness value for the whole spectrum, a separation in frequency 
bands is performed, resulting in one vector of flatness values per time frame. The flatness of 
a band is defined as the ratio of the geometric and the arithmetic means of the power 
spectrum coefficients within that band. Each vector is reduced to a scalar by computing the 
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mean value across the bands for each given frame, thus obtaining a scalar feature that 
describes the overall flatness.  

2.4.4 Harmonic ratio (HR) 
A measure of the proportion of harmonic components within the spectrum, defined as the 
maximum value of the autocorrelation (AC) of each frame [1],  
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2.5 Other Features 
The features grouped in this last section describe the signal regarding its dynamic properties, 
its statistical behavior, and its predictability.  

2.5.1 Root mean square 
It can be defined as the root mean square (rms) energy of each signal frame.  

2.5.2 Time envelope 
It is the measure of the maximum of absolute amplitude in each frame.  

2.5.3 Low energy rate 
It can be expressed as the percentage of frames within a file that have root mean square 
(rms) energy lower than the mean rms energy in that file. Apart from the beat-histogram-
based features, this is the only feature that is not computed on a frame-by-frame basis, but 
on a texture window basis.  

2.5.4 Loudness 
The previously discussed features were dynamic-related and are based on physical measures 
such as amplitude or energy. A better adaptation to the human ear perception of sound 
dynamics is provided by the measurement of loudness.    

3. IMPLEMENTATION OF SPECIFIC FEATURES  

After the brief overview of the different features it is important to figure out the important 
features so that these can be dealt in detail. These are   

3.1 Mel Frequency Cepstrum Coefficients (MFCC s) 
MFCC s employ   the mel scale which is a scale of pitches which are equal in distance from 
one another. The normal frequency f hertz can be converted to the mel range by the 
following equation [8],  

m = 1127.01048 log (1 + f / 700)  

A cepstrum is the result of taking the Fourier transform of the decibel spectrum (power 
spectrum) as if it were a signal. There is a complex cepstrum and a real cepstrum. The 
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cepstrum can be defined mathematically as   

cepstrum of a signal = FT(log(FT(the signal)))   where FT indicates  Fourier Transform.  

The real cepstrum uses the logarithm function defined for real values, while the complex 
cepstrum uses the complex logarithm function defined for complex values. The complex 
cepstrum holds information about magnitude and phase of the initial spectrum, allowing the 
reconstruction of the signal. The real cepstrum only uses the information of the magnitude 
of the spectrum. The cepstrum can be seen as information about rate of change in the 
different spectrum bands. Usually the spectrum is first transformed using the mel frequency 
bands. The result is called the MFCC's, which are used for voice identification, pitch 
detection and much more. This is a result of the cepstrum separating the energy resulting 
from vocal cord vibration from the "distorted" signal formed by the rest of the vocal tract.  

The human ear exhibits a nonlinear characteristic when it comes to the perception of pitch. 
Hence the mel scale takes into the account of this property. Below 500Hz the frequency and 
the mel scales coincide and above that larger and larger intervals produce equal pitch 
increments. As a result, four octaves on the hertz scale above 500Hz are judged to comprise 
about two octaves on the mel scale. After the translation to the mel frequency scale the 
coefficients can be evaluated. Normally the computation of MFCC s involves the 
windowing of the incoming audio signal. The log of the spectrum is computed and another 
transform is applied in order to obtain the cepstrum coefficients. This can be explained from 
Fig.2 as follows 

 

Fig.2. Block diagram to compute MFCC s [4].  

First the audio is hamming windowed in overlapping steps. For each window, the log of the 
power spectrum is computed using a DFT.  A nonlinear map of the frequency scale 
perceptually weights the log spectral coefficients. This operation called the mel scaling, 
emphasizes mid frequency bands in proportion to their perceptual importance. At the final 
stage the mel weighted spectrum is transformed into cepstral coefficients using another 
DFT. This results in features that are dimensionally uncorrelated. Thus MFCC s provide a 
compact representation of the spectral envelope, such that most of the signal energy is 
concentrated in the first few coefficients [4].  

MFCC s were originally invented for characterizing the seismic echoes resulting from 
earthquakes and bomb explosions. It is now used as an excellent feature vector for 
representing the human voice and musical signals.  

3.2 Beat Strength 
The feature beat strength is computed by detecting the beat of the audio signal. The main 
beat can be loosely defined as the regular periodic sequence of pulses corresponding to 
where a human would tap his foot while listening to the music. In automatic beat detection 
algorithms, the beat is characterized by its frequency (tempo), phase (accent locations) and a 
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confidence measure about its detection. Beat detection can be broadly classified into two 
categories, event based and self-similarity based. In event based algorithms, transient events 
such as note onsets or percussion hits are detected and their Inter Onset Arrival Intervals 
(IOI) are used to estimate the main tempo. In self-similarity based algorithms, the 
periodicity of amplitude envelopes usually of multiple bands is calculated and used to detect 
the tempo [3].  

Beat Strength can be defined as the rhythmic characteristic that allows discriminating 
between two pieces of music having the same tempo. Characteristics related to beat strength 
are implicitly used in automatic beat detection algorithms and known to be as important as 
tempo information for music classification and retrieval. The perception of beat strength and 
its measurement is based on the calculation of beat histograms, which are a global 
representation of musical rhythm based on self-similarity.  

Before the beat histogram can be evaluated the occurrence of a beat has to be detected first. 
Most automatic beat detection systems provide a running estimate of the main beat and an 
estimate of its strength. One of the common automatic beat detector structures consists of 
filter-bank decomposition, followed by an envelope extraction step and finally a periodicity 
detection algorithm which is used to detect the lag at which the signal s envelope is most 
similar to itself. The process of automatic beat detection resembles pitch detection with 
larger periods. The window that is used for the filter should be larger so that capturing the 
signal repetitions at the beat and subbeat levels can be done [2].  

The resulting histogram has bins corresponding to tempos in beats per minute (bpm) and the 
amplitude of each bin corresponds to the strength of repetition of the amplitude envelopes of 
each channel for that particular tempo. Two measures of beat strength can be derived from 
the beat histogram. The first measure is the sum of all histogram bins. Because of the 
autocorrelation calculation used for periodicity detection in the beat histogram this measure 
indicates how strong the self-similarity of the signal is at various tempos. The second 
measure is the ratio of the amplitude of the highest peak of the beat histogram to the average 
amplitude (peak) and indicates how dominant the main beat is. In addition to these features 
in order to characterize musical genres more information about the rhythmic content of a 
piece can be utilized. The regularity of the rhythm, the relation of the main beat to the sub-
beats, and the relative strength of sub-beats to the main beat are some of the important 
features that can be represented as feature vectors [3].  

4. FEATURE SELECTION  

From a large set of features it is important to select particular set of features that would 
determine the nature and hence the class of the audio signal. These features determine the 
dimensionality in the feature space. It is important therefore to select an optimum number of 
features that not only keeps accordance with the accuracy and the level of performance but 
also reduces the computation costs. Thus there is no point in increasing the number of 
features as it would not have a drastic impact on the accuracy but would pave for more 
complexities in computation. Therefore a selected feature must have the following 
properties, 
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1) Invariance to irrelevancies: Any good feature should exhibit invariance to irrelevancies 
such as noise, bandwidth or the amplitude scaling of the signal. It is also upon the 
classification system to consider such variations as irrelevant to achieve better classification 
across a wide range of audio formats. 
2) Discriminative Power: The purpose of feature selection is to achieve discrimination 
among different classes of audio patterns. Therefore a feature must take round about similar 
values within the same class but different values across different classes. 
3) Uncorrelated to other features: It is very important that there are no redundancies in the 
feature space. Each new feature that is selected must give altogether different information 
about the signal as possible. This helps in better computation efficiency, improved 
performance and optimization of cost [1].  

5. CLASSIFICATION  

After the feature selection process it is important to classify the signal. Classification is the 
process by which a particular label is assigned to a particular audio format. It is this label 
that would define the signal and its origin. A classifier defines decision boundaries in the 
feature space (ie. mean vs. maximum), which separate different sample classes from each 
other. Classifiers are categorized by their real time capabilities, on the basis of the approach 
and their character.  

On the basis of their real time capabilities, there are real time classifiers and non-real time 
classifiers. Real time classifiers can update classification results in time intervals of 
milliseconds. Hence their application comes of importance in the areas where the input 
signal consists of a sequence of different types of audio and it is absolutely necessary to 
keep updating, for class detection. In case of the non-real time classifiers, they analyze a 
longer fragment of the signal before they provide a classification result. Accuracy in this 
case is more than real time classifiers because they analyze a longer fragment of the 
incoming signal, which plays a prominent role to describe the signal.  

By character classifiers can be broadly divided as taxonomic and clustering classifiers. 
Taxonomic classifiers make use of supervised techniques implement the category that is 
defined beforehand by the user or by the implementation. Clustering classifiers rely on the 
separation algorithm that groups the audio samples according to some similarity in them. 
Therefore a classifier is a set of decision rules that are used to assign a class to the unknown 
input signal.  

On the basis of approach classifiers can be split into two types as flat or direct approach and 
hierarchical approach. In direct approach classifiers it is a case of single stage classification 
where in audio classes are decided directly by using all the features in one single step. In 
case of the hierarchical approach the genre dependency of features is used to suggest a 
hierarchical scheme so that, at each step only the features that are most appropriate to 
distinguish between the sub-features are used. This approach accounts for the class 
dependency of the features. The errors are more acceptable in this case than the direct 
classification techniques. It takes into consideration the future expansions of the system. If 
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in a direct classifier the addition of a new class would mean that the feature selection 
algorithm would have to be modified and would have to be run with all the training samples. 
But in the hierarchical classifier to add a new class only a separate genre branch would be 
modified with respect to feature training and the selection while rest of the model remains 
unchanged. The hierarchical classifier is more complicated and its implementation is 
computationally expensive because more classification decisions have to be made and more 
features have to be computed [1].  

In case of all the different types of classifiers it is important use an efficient algorithm that 
would classify the different audio inputs with less of computational complexities. At the 
same time the accuracy must be preserved. Normally the two most commonly used methods 
of computation are k-nearest neighbour and the Gaussian mixture model classifier.   

5.1 k-nearest neighbour (kNN) classifier   

The nearest neighbour method consists of assigning to the unlabelled feature vector the label 
of the training vector that is nearest to it in the feature space. In kNN, a training set T is used 
to determine the class of a previously unseen sample X. First, we determine the mean and 
maximum values in T, and similarly, for the unseen sample X. Then a suitable distance 
measure in the feature space is used to determine k elements in T closest to X. If most of 
these k nearest neighbours contain similar values, then X gets classified accordingly. This 
classification scheme clearly defines nonlinear decision boundaries and thus improves the 
performance.  Furthermore, the feature distribution suggests that the number of data-points 
used in the example set T can be considerably reduced for faster processing; only those 
examples that are close to the decision boundary are actually required [6]. This can be 
explained by the following example.  

Referring to Fig.3 each of the samples (marked by stars) have been labeled either A or B, 
except for the sample x. This needs to be labeled, the k NN classifier takes the k nearest, i.e. 
the closest, neighbours around the sample x and uses them to assign a label. This is usually 
done by a majority-voting rule, which states that the label assigned should be the one, which 
occurs most among the neighbours.   

 

Fig.3. Example of k nearest neighbour rule [8].  
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For example if k=1, the sample that is nearest to the sample x is sample B. Hence the 
unknown sample x is assigned as B. But if k=7, then there are four samples of A and three 
samples of B that are closer to the sample x. Now the sample x gets assigned as A by virtue 
of majority. Hence it can be inferred that the value of k is critical in order to assign an 
unknown sample by its nearest neighbours.  

As it can be seen that for k=7 sample x gets assigned to A on the basis of majority polling. It 
is also important to note that the k neighbours have been assumed to have equal influence on 
predictions irrespective of their relative distance from the query point. Since the three 
samples of B are closer than the four samples of A on the basis of distance, the former 
shows to have a greater influence on sample x even though the samples A are in majority. 
Therefore to increase the efficiency, it is equally important to pay attention to the relative 
distance of the k nearest samples to the query point in order that the unknown sample gets 
assigned to the sample that has greater influence on it.  

Therefore there exist two main problems in this classifier that has to be addressed. The first 
is to find a suitable distance measure that which sample is closer to the sample to the sample 
x.  

There are many distance metrics that are used to calculate the distance between the samples.  

1) Euclidian distance:  
Given two samples x and y the Euclidian distance between the samples is defined as  
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where n is the number of features describing x and y [8].  

2) City-block distance: 
The city-block distance can be defined as   
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where n is the number of features describing x and y [8].  

The second problem is the choice of k, choosing k large generally results in a linear 
classifier whereas small k results in nonlinear ones. This influences the generalization 
capability of the k NN classifier. The optimal k can be found by using for instance the leave 
out one method on the training set. A disadvantage of this method is its large computing 
power requirement, since for classifying an object its distance to all the objects in the 
learning set has to be calculated.     
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5.2 Gaussian Mixture Model  (GMM) classifier 
Gaussian mixture model is a weighted sum of Gaussian probability density functions, which 
are referred to as Gaussian components of the mixture model describing a class. The 
Gaussian probability density function in one dimension is a bell shaped curve defined by 
two parameters, mean and variance. The Gaussian distribution is usually quite good 
approximation for a class model shape in a suitably selected feature space. It is a 
mathematically sound function and extends easily to multiple dimensions. In the Gaussian 
distribution lies an assumption that the class model is truly a model of one basic class. If the 
actual model, the actual probability density function, is multimodal, it fails. Gaussian 
mixture model (GMM) is a mixture of several Gaussian distributions and can therefore 
represent different subclasses inside one class. The probability density function is defined as 
a weighted sum of Gaussians. The GMM classifier models each class as a linear 
combination of Gaussian or normal densities that is, each class k is represented by the 
multidimensional conditional density.   
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where k

 

is the event that belongs to class k, x denotes feature vector, wkm are the weights 

of the mixture, M is the total number of densities (components) in the mixture and  pkm is 
normal density [1].  

In a particular case when M=1, each class gets modelled by normal distribution and the 
classifier simplifies to a simple Gaussian classifier. Estimation of the Gaussian mixture 
parameters for one class can be considered as unsupervised learning of the case where 
samples are generated by individual components of the mixture distribution and without the 
knowledge of which sample was generated by which component. Clustering usually tries to 
identify the exact components, but Gaussian mixtures can also be used as an approximation 
of an arbitrary distribution.  

The expectation maximization (EM) algorithm is an iterative method used to handle cases 
where an analytical approach for maximum likelihood estimation is infeasible, such as 
Gaussian mixtures with unknown and unrestricted covariance matrices and means. The 
values of wkm, the mean vectors and the covariance matrices for each component in a 
particular class, which are the parameters for that class, are estimated using expectation 
maximization (EM) algorithm only. When an input vector has to be classified its conditional 
density in each of the classes is computed using the estimated parameters. The class for 
which the density value is highest becomes the class that is chosen for that vector. This 
decision rule is called as the maximum likelihood condition. This rule can be applied if the 
different classes are equally probable.   

The GMM classifier has to only store the set of estimated parameters for each class while a 
kNN classifier needs to store all the training vectors in order to compute the distances to the 
input feature vector. Also the number of features that are required to attain the same level of 
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accuracy is more in the case of kNN classifier as compared to GMM classifier. Therefore 
these features make the GMM more computationally optimal but the kNN classifier is still 
an efficient classifier that is very simple in methodology.   

6. EVALUATION  

After the detection of features in the audio taxanomy and its subsequent class detection it is 
also important to evaluate the accuracy of the output, that is the final class of the audio. This 
evaluation also gives an idea about the performance of the system, which in turn gives the 
detail about the efficiency of the different algorithms. This narrows down to one aspect i.e. 
the performance of the classification used. This is normally evaluated using the confusion 
matrix. 

A confusion matrix contains information about actual and predicted classifications done by 
a classification system. It shows the error in classification of a particular class if that classs 
had been wrongly classified as another one. This in turn helps in understanding and 
analyzing the performance of any classifier. Performance of such systems is commonly 
evaluated using the data in the matrix [5]. Fig.4 shows the confusion matrix for a two class 
classifier. The entries in the confusion matrix have the following meaning; a is the number 
of correct predictions that an instance is negative, b is the number of incorrect predictions 
that an instance is positive, c is the number of incorrect of predictions that an instance 
negative, and d is the number of correct predictions that an instance is positive.  

Therefore the confusion matrix can be constructed as follows:    

Predicted  

  

Negative

 

Positive 
Actual Negative

 

      a        b 

 

Positive       c        d 

Fig.4. Construction of a 2x2 classification matrix [7]. 

Therefore the classification matrix gives a general idea as to how the classification has 
performed. It is also important to note the efficiency of the confusion matrix. The most 
important property that describes this efficiency is the accuracy of the confusion matrix. The 
accuracy is the proportion of the total number of predictions that were correct. It can be 
defined by the equation (a + d) / (a +b +c + d) [7]. 

To illustrate this same feature with reference to studying the performances of the classifier 
consider the given example in Fig.5. The confusion matrix in the figure is a 4x4 matrix that 
contains the predicted as well as the actual class of an audio signal. The abbreviations Met, 
Ro, Ja and Cla stand for Metal, Rock, Jazz and Classical respectively, which denote the 
different classes of the music.     
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                     Predicted Class 

Met        Ro        Ja           Cla 

   
Actual 
Class    

Met

  

Ro  

Ja  

Cla  

86           10          4             ---    

 8            90          2             ---  

  1             4         94            ---    

---           ---          1            99 

 

Fig.5. Example of a confusion matrix to evaluate the classification.   

From above matrix the entry of an element say X in the matrix element depicting the rows 
as i and the columns as j means that X% of the test samples of class i were classified as 
belonging to class j. Therefore looking from the matrix it can be said that while 86% of 
metal was correctly classified as metal, 10% was wrongly classified as rock and 4% of it 
was improperly classified as jazz. So was the case when 99% of classical music was 
correctly classified as classical while 1% of it got wrongly classified as jazz. Thus the 
confusion matrix is a highly efficient method to evaluate the classifier performance.  

7. CONCLUSION  

It can be inferred that the incoming unknown audio signal needs to be classified as speech or 
music signal as per its nature. This can be done only by analyzing its properties, which 
means that its features that define its nature have to be extracted. The different features have 
been studied and only those features are given the priority of selection, which give a better 
description of the signal. MFCC s and beat strength are used because they give information 
abut the pitch and the rhythmic regularity respectively that aid in classification giving better 
classification results than the other features. Care must also be taken to optimize the number 
of features selected because each feature represents a dimension in the feature space. 
Therefore reducing number of features reduces the computational costs and at the same time 
maintains the accuracy levels. The subsequent process to the feature extraction is the 
classification process. It is to the classifier to accurately label the signal using the features 
selected so that the nature of the unknown audio taxonomy is known and it is classified 
under a known class of audio signals. The requirements for a classifier are that it must be 
computationally efficient with less complexity in its algorithm that economizes its cost. 
Among the direct approach and hierarchical classifiers the latter has the advantage of having 
flexibility in structure when future expansions are considered but the drawback being that it 
is complicated and expensive. The two classifier algorithms knn and the Gaussian classifier 
have been explained. While the knn classifier is relatively simpler the Gaussian classifier 
uses lesser number of features to obtain a similar level of performance accuracy thereby 
making it computationally less expensive. Finally it is most important to evaluate whether 
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the entire audio classification system has been faithful, efficient and accurate. This 
evaluation is done using confusion matrix method that is simple and efficient.  
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