
vi

Comments on Notation

Sometimes, instead of numbering equations, key statements etc., we
have marked them with symbols such as (∗), (∗∗), (√). These marks
are used over and over again and have validity only within a local area
such as a paragraph, a proof or the solution to a problem.

In some cases, where there is no room for confusion, the same symbol
denotes different objects. For instance, usually B denotes a bipartite
graph. But in Chapter ??, B denotes a base of a matroid- elsewhere a
base is always denoted by b. The symbol E is used for the edge set of
a graph, in particular a bipartite graph. But E(X), X ⊆ V (G) denotes
the set of edges with both endpoints within X, while EL(X), X ⊆ VL,
in the case of a bipartite graph, denotes the set of all vertices adjacent
only to vertices in X.

We have often used brackets to write two statements in one.
Example: We say that set X is contained in Y (properly contained
in Y), if every element of X is also a member of Y (every element of
X is a member of Y and X 6= Y) and denote it by X ⊆ Y (X ⊂ Y).
This is to be read as the following two statements.

i. We say that set X is contained in Y , if every element of X is
also a member of Y and denote it by X ⊆ Y.

ii. We say that set X is properly contained in Y , if every element
of X is a member of Y and X 6= Y and denote it by X ⊂ Y.

vii

List of Commonly Used Symbols

Sets, Partitions, Partial Orders

{e1, e2, . . . , en} set whose elements are e1, e2, . . . , en

{xi : i ∈ I} set whose members are xi, i ∈ I

(xi : i ∈ I) a family (used only in Chapters 2 and 11)

x ∈ X element x belongs to set X

x 6∈ X element x does not belong to set X

∀x or ∀ x for all elements x

∃x there exists an element x

X ⊆ Y set X is contained in set Y

X ⊂ Y set X is properly contained in set Y

X ∪ Y union of sets X and Y

X ∩ Y intersection of sets X and Y

X ⊎ Y disjoint union of sets X and Y
n
⋃

i=1

Xi union of the sets Xi

n
⊎

i=1

Xi disjoint union of the sets Xi

X − Y set of elements in X but not in Y

X̄ complement of X

X × Y cartesian product of sets X and Y

X ⊕ Y direct sum of sets X and Y

2S collection of subsets of S

| X | size of the subset X

(P,�) preorder on P

(P,≤) partial order on P

Π partition Π

ΠN partition that has N as a block and all

blocks except N as singletons

PX collection of all partitions of X

Π ≤ Π′ partition Π is finer than Π′

viii

Π ∨ Π′ finest partition coarser than both Π and Π′

Π ∧ Π′ coarsest partition finer than both Π and Π′

ix

Functions,Set Functions and Operations on Functions

f(·) function f(·)
f/Z(·), f(·) on S restriction of f(·) to Z ⊆ S

gf(X), g ◦ f(X) g(f(X))

(f1 ⊕ f2)(·) direct sum of functions f1(·) and f2(·)
ffus·Π(·), f(·) on 2S, fusion of f(·) relative to Π

i.e., ffus.Π(Xf)

≡ f(
⋃

T∈Xf

T), Xf ⊆ Π

f/X(·), f(·) on 2S restriction of f(·) to 2X , X ⊆ S

(usually called) restriction of f(·) to X

f ⋄ X(·), f(·) on 2S contraction of f(·) to X

f ⋄ X(Y) ≡ f((S − X) ∪ Y) − f(S − X)

fd(·), f(·) on 2S contramodular dual of f(·)
fd(X) ≡ f(S) − f(S − X)

f ∗(·), f(·) on 2S comodular dual of f(·)
(with respect to weight function α(·))
f ∗(X) ≡ α(X) − (f(S) − f(S − X))

Pf , f(·) on 2S polyhedron associated with f(·)
x ∈ Pf iff x(X) ≤ f(X) ∀X ⊆ S

P d
f , f(·) on 2S dual polyhedron associated with f(·)

x ∈ P d
f iff x(X) ≥ f(X) ∀X ⊆ S

Vectors and Matrices

F ,ℜ, C,ℜ+ field F , real field, complex field,

set of nonnegative reals
∑

xi summation of elements xi

f vector f

V vector space V
V⊥ vector space complementary orthogonal to V

x1 ⊕ x2 direct sum of x1 and x2 (vector obtained by

x

adjoining components of vectors x1 and x2)

VS ⊕ VT , S ∩ T = ∅ direct sum of VS and VT (obtained by

collecting all possible direct sums of vectors

in VS and VT)

xi

dim(V), r(V) dimension of vector space V
d(V,V ′) r(V + V ′) − r(V ∩ V ′)

A(i, j) i, jth entry of matrix A

AT transpose of matrix A

A−1 inverse of matrix A

< f , g > dot product of vectors f , g

R(A) row space of A

C(A) column space of A

det(A) determinant of A

Graphs and Vector Spaces

G graph G
V (G) vertex set of G
E(G) edge set of G

t a tree

f a forest

t̄ cotree (E(G) − t) of G
f̄ coforest (E(G) − f) of G

L(e, f) f − circuit of e with respect to f

B(e, f) f − cutset of e with respect to f

r(G) rank of G (= number of edges in a

forest of G)

ν(G) nullity of G (= number of edges in a

coforest of G)

GopenT graph obtained from G by opening and

removing edges T

GshortT graph obtained from G by shorting and

removing edges T

G · T graph obtained from Gopen(E(G) − T) by

removing isolated vertices,

xii

restriction of G to T

G × T graph obtained from Gshort(E(G) − T) by

removing isolated vertices,

contraction of G to T

xiii

G1
∼= G2 G1 is 2 − isomorphic to G2

r(T) r(G · T)

ν(T) ν(G × T)

H hypergraph H
B(VL, VR, E) bipartite graph with left vertex set VL,

right vertex set VR and edge set E

A (usually) incidence matrix

Ar reduced incidence matrix

Qf fundamental cutset matrix of forest f

Bf fundamental circuit matrix of forest f

KCE Kirchhoff ′s current equations

KCL Kirchhoff ′s current Law

KV E Kirchhoff ′s voltage equations

KV L Kirchhoff ′s voltage Law

V i(G) solution space of KCE of G
Vv(G) solution space of KV E of G
V · T restriction of vector space V to T

V × T contraction of vector space V to T

ξ(T) for V r(V · T) − r(V × T)

Flow Graphs

F (G) ≡ (G, c, s, t) flow graph on graph G with capacity

function c, source s, sink t

(A, B) cut(A, B)

c(A, B) capacity of cut(A, B)

f(A, B) flow across cut(A, B), from A to B

|f | value of flow f

F (B, cL, cR) flowgraph associated with bipartite graph B

with source to left vertex capacity cL, right

xiv

vertex to sink capacity cR

and (left to right) bipartite graph edge capacity ∞

xv

Matroids

M ≡ (S, I) matroid M
I collection of independent sets

M∗ dual of the matroid M
B (only in Chapter 4) base of a matroid

L(e, B) f − circuit of e with respect

to base B

B(e, B) f − bond of e with respect to base B

r(T) rank of the subset T in the given matroid

r(M) rank of the underlying set of the matroid

ν(T) rank of the subset T in the dual of the given matroid

ν(M) rank of the underlying set in the dual matroid

M(G) polygon matroid of the graph G (bases

are forests)

M∗(G) bond matroid of the graph G (bases

are coforests)

M(V) matroid whose bases are maximal independent

columns of a representative matrix of V
M∗(V) dual of M(V)

∫ (X) span (closure) of the subset X in the matroid

M· T restriction of M to T

M× T contraction of M to T

M1 ∨M2 union of matroids M1 and M2

Electrical Networks

v voltage vector

i current vector

N electrical network

NAP electrical multiport with port set P and

remaining edge set A

E set of voltage sources in the network

xvi

J set of current sources in the network

R resistance, also collection of resistors or

‘current controlled voltage′ elements in the network

xvii

G conductance, also collection of

‘voltage controlled current′ elements

in the network

L inductance, also collection of inductors

in the network

L mutual inductance matrix

C capacitance, also collection of capacitors

in the network

vcvs voltage controlled voltage source

vccs voltage controlled current source

ccvs current controlled voltage source

cccs current controlled current source

D device characteristic

DAB (v/A, i/B), where v, i ∈ D
DA DAA

DAB ×DPQ {(v, i), v = vA ⊕ vP , i = iB ⊕ iQ

where (vA, iB) ∈ DAB, (vP , iQ) ∈ DPQ}
δAB {(vA, iB), vA is any vector on A, iB

is any vector on B}

Implicit Duality

KSP ↔ KP {fS : fS = fSP/S, fSP ∈ KSP s.t. fSP /P ∈ KP}
KS1

↔ KS2
{f : f = f1/(S1 − S2) ⊕ f2/(S2 − S1), f1 ∈ KS1

,

f2 ∈ KS2
and f1/S1 ∩ S2 = f2/S1 ∩ S2}

KS1
⇀↽KS2

{f : f = f1/(S1 − S2) ⊕ f2/(S2 − S1), f1 ∈ KS1
,

f2 ∈ KS2
and f1/S1 ∩ S2 = −f2/S1 ∩ S2}

< ·, · > a q − bilinear operation, usually dot product

K∗ collection of vectors q − orthogonal to those in K
d(V,V ′) r(V + V ′) − r(V ∩ V ′)

Kp the collection of vectors polar to those in K

xviii

Kd (only in Chapter 7) the collection of vectors

integrally dual to those in K

xix

Multiport Decomposition

(VE1P1
, · · · ,VEkPk

;VP) k − multiport decomposition ofVE

(i.e., (
⊕

i

VEiPi
) ↔ VP = VE)

((VEjPj
)k;VP) (VE1P1

, · · · ,VEkPk
;VP)

((VEjPj
)j∈I ;VPI

) (· · · VEjPj
· · · ;VPI

)

where j ∈ I ⊆ {1, · · · , k} and PI = ∪j∈IPj

(VEP , P) vector space on E ⊎ P with ports P

(VE1Q1
, · · · ,VEkQk

;VQP) matched or skewed decomposition of (VEP , P)

Functions Associated with Graphs and Bipartite Graphs

V (X), X ⊆ E(G) set of endpoints of edges X in

graph G
Γ(X), X ⊆ V (G) set of vertices adjacent to vertices

in vertex subset X in graph G
ΓL(X), X ⊆ VL in B ≡ (VL, VR, E), set of vertices

adjacent to vertices in X

ΓR(X), X ⊆ VR in B ≡ (VL, VR, E), set of vertices

adjacent to vertices in X

E(X), X ⊆ V (G) set of edges with both endpoints

in vertex subset X in graph G
EL(X), X ⊆ VL in B ≡ (VL, VR, E) set of vertices

adjacent only to vertices in X

ER(X), X ⊆ VR in B ≡ (VL, VR, E) set of vertices

adjacent only to vertices in X

I(X), X ⊆ V (G) set of edges with atleast one

endpoint in vertex subset X in graph G
cut(X), X ⊆ V (G) set of edges with exactly one

endpoint in vertex subset X in graph G
w(·) usually a weight function

wL(·), wR(·) weight functions on the left vertex set

xx

and on the right vertex set respectively

of a bipartite graph

xxi

Convolution and PP

f ∗ g(X) convolution of f(·) and g(·)
(minY ⊆X [f(Y) + g(X − Y)])

Bλf,g
, f(·), g(·) on 2S collection of sets which minimize

λf(X) + g(S − X) over subsets of S

Bλ Bλf,g

Xλ, Xλ maximal and minimal members of Bλ

Π(λ) the partition of Xλ − Xλ induced by Bλ
Πpp the partition of S obtained by taking the

union of all the Π(λ)

(Πpp,≥π) partition partial order pair

associated with (f(·), g(·))
∅, E1, · · · , Et (usually) the principal sequence of (f(·), g(·))

λ1, · · · , λt (usually) decreasing sequence of critical values

(≥R) refined partial order associated with (f(·), g(·))

Truncation and PLP

f(Π)
∑

Ni∈Π

f(Ni)

ft(·) ft(∅) ≡ 0,

ft(X) ≡ minΠ∈PX
(
∑

Xi∈Π

f(Xi))

Lλf
, f(·) on 2S collection of all partitions of S that

minimize f − λ(·)
Lλ Lλf

Πλ, Πλ maximal and minimal member partitions in Lλ
λ1, · · · , λt (usually) decreasing sequence of critical

PLP values of f(·)
Πλ1

, Πλ2
, · · · , Πλt

, Πλt principal sequence of partitions of f(·)
Π′

fus·Π, Π′ ≥ Π partition of Π with Nfus as one of its blocks

iff the members of Nfus are the set of blocks of Π

xxii

contained in a single block of Π′

(Πfus)exp.Π (Πfus, a partition of Π) a partition with N

as a block, iff N is the union of all blocks of

Π which are members of a single block of Πfus

Contents

1 Mathematical Preliminaries 1

1.1 Sets . 1

1.2 Vectors and Matrices 3

1.3 Linear Inequality Systems 13

1.3.1 The Kuhn-Fourier Theorem 13

1.3.2 Linear Programming 17

1.4 Solutions of Exercises 20

1.5 Solutions of Problems 20

2 Graphs 23

2.1 Introduction . 23

2.2 Graphs: Basic Notions 23

2.2.1 Graphs and Subgraphs 23

2.2.2 Connectedness 25

2.2.3 Circuits and Cutsets 27

2.2.4 Trees and Forests 30

2.2.5 Strongly Directedness 31

2.2.6 Fundamental Circuits and Cutsets 32

2.2.7 Orientation . 33

2.2.8 Isomorphism . 35

2.2.9 Cyclically connectedness 36

xxiii

xxiv CONTENTS

2.3 Graphs and Vector Spaces 37

2.3.1 The Circuit and Crossing Edge Vectors 39

2.3.2 Voltage and Current Vectors 41

2.3.3 Dimension of Voltage and Current Vector Spaces 43

2.3.4 Fundamental cutset matrix of a forest f 44

2.3.5 Fundamental circuit matrix of a forest f 44

2.4 Basic Operations on Graphs and Vector Spaces 47

2.4.1 Restriction and Contraction of Graphs 47

2.4.2 Restriction and Contraction of Vector Spaces . . 50

2.4.3 Vector Space Duality 52

2.4.4 Relation between Graph Minors and Vector Space
Minors . 53

2.4.5 Representative Matrices of Minors 55

2.4.6 Minty’s Theorem 58

2.5 Problems . 60

2.6 Graph Algorithms . 66

2.6.1 Breadth First Search 68

2.6.2 Depth First Search 70

2.6.3 Minimum Spanning Tree 72

2.6.4 Shortest Paths from a Single Vertex 73

2.6.5 Restrictions and Contractions of Graphs 75

2.6.6 Hypergraphs represented by Bipartite Graphs . 75

2.6.7 Preorders and Partial Orders 76

2.6.8 Partitions . 78

2.6.9 The Max-Flow Problem 79

2.6.10 Flow Graphs Associated with Bipartite Graphs 86

2.7 Duality . 90

2.8 Notes . 95

CONTENTS xxv

2.9 Solutions of Exercises 95

2.10 Solutions of Problems 110

Chapter 1

Mathematical Preliminaries

1.1 Sets

A set (or collection) is specified by the elements (or members) that
belong to it. If element x belongs to the set (does not belong to the
set) X, we write x ∈ X (x 6∈ X). Two sets are equal iff they have the
same members. The set with no elements is called the empty set and
is denoted by ∅. A set is finite if it has a finite number of elements.
Otherwise it is infinite. A set is often specified by actually listing
its members, e.g. {e1, e2, e3} is the set with members e1, e2, e3. More
usually it is specified by a property, e.g. the set of even numbers is
specified as {x : x is an integer and x is even } or as {x, x is an integer
and x is even }. The symbols ∀ and ∃ are used to denote ‘forall’ and
‘there exists’. Thus, ‘∀x’ or ‘∀ x’ should be read as ‘forall x’ and ‘∃x’
should be read as ‘there exists x’. A singleton set is one that has only
one element. The singleton set with the element x as its only member,
is denoted by {x}. In this book, very often, we abuse this notation and
write x in place of {x}, if we feel that the context makes the intended
object unambiguous.

We say that set X is contained in Y (properly contained in Y),
if every element of X is also a member of Y (every element of X is a
member of Y and X 6= Y) and denote it by X ⊆ Y (X ⊂ Y).
The union of two sets X and Y denoted by X ∪ Y, is the set whose
members are either in X or in Y (or in both). The intersection of

1

2 2. MATHEMATICAL PRELIMINARIES

X and Y denoted by X ∩ Y, is the set whose members belong both to
X and to Y. When X and Y do not have common elements, they are
said to be disjoint. Union of disjoint sets X and Y is often denoted
by X ⊎ Y. Union of sets X1, · · · , Xn is denoted by

⋃n
i=1 Xi or simply

by
⋃

Xi. When the Xi are pairwise disjoint, their union is denoted by
⊎n

i=1 Xi or
⊎

Xi.
The difference of X relative to Y , denoted by X − Y, is the set of all
elements in X but not in Y . Let X ⊆ S. Then the complement of X
relative to S is the set S −X and is denoted by X̄ when the set S is
clear from the context.

A mapping f : X → Y, denoted by f(·), associates with each
element x ∈ X, the element f(x) in Y . The element f(x) is called
the image of x under f(·). We say f(·) maps X into Y . The sets
X, Y are called, respectively, the domain and codomain of f(·). We
denote by f(Z), Z ⊆ X, the subset of Y which has as members, the
images of elements in Z. The set f(X) is called the range of f(·).
The restriction of f(·) to Z ⊆ X, denoted by f/Z(·) is the mapping
from Z to Y defined by f/Z(x) ≡ f(x), x ∈ Z. A mapping that has
distinct images for distinct elements in the domain is said to be one
to one or injective. If the range of f(·) equals its codomain, we
say that f(·) is onto or surjective. If the mapping is one to one
onto we say it is bijective. Let f : X → Y, g : Y → Z. Then the
composition of g and f is the map, denoted by gf(·) or g ◦ f(·),
defined by gf(x) ≡ g(f(x)) ∀x ∈ X. The Cartesian product X ×Y
of sets X, Y is the collection of all ordered pairs (x, y), where x ∈ X and
y ∈ Y. The direct sum X ⊕Y denotes the union of disjoint sets X, Y .
We use ‘direct sum’ loosely to indicate that structures on two disjoint
sets are ‘put together’. We give some examples where we anticipate
definitions which would be given later. The direct sum of vector
spaces V1,V2 on disjoint sets S1, S2 is the vector space V1⊕V2 on S1⊕S2

whose typical vectors are obtained by taking a vector x1 ≡ (a1, · · · , ak)
in V1 and a vector x2 ≡ (b1, · · · , bm) in V2 and putting them together
as x1 ⊕ x2 ≡ (a1, · · · , ak, b1, · · · , bm). When we have two graphs G1,G2

on disjoint edge sets E1, E2, G1 ⊕G2 would have edge set E1 ⊕E2 and
is obtained by ‘putting together’ G1 and G2. Usually the vertex sets
would also be disjoint. However, where the context permits, we may
relax the latter assumption and allow ‘hinging’ of vertices.

1.2. VECTORS AND MATRICES 3

We speak of a family of subsets as distinct from a collection of sub-
sets. The collection {{e1, e2}, {e1, e2}, {e1}} is identical to {{e1, e2}, {e1}}.
But often (e.g. in the definition of a hypergraph in Subsection 2.6.6)
we have to use copies of the same subset many times and distinguish
between copies. This we do by ‘indexing’ them. A family of subsets of
S may be defined to be a mapping from an index set I to the collection
of all subsets of S. For the purpose of this book, the index set I can
be taken to be {1, · · · , n}. So the family ({e1, e2}, {e1, e2}, {e1}) can be
thought of as the mapping φ(·) with

φ(1) ≡ {e1, e2}
φ(2) ≡ {e1, e2}
φ(3) ≡ {e1}.

(Note that a family is denoted using ordinary brackets while a set is
denoted using curly brackets).

1.2 Vectors and Matrices

In this section we define vectors, matrices and related notions. Most
present day books on linear algebra treat vectors as primitive elements
in a vector space and leave them undefined. We adopt a more old
fashioned approach which is convenient for the applications we have in
mind. The reader who wants a more leisurely treatment of the topics
in this section is referred to [Hoffman+Kunze72].

Let S be a finite set {e1, e2, . . . , en} and let F be a field. We will
confine ourselves to the field ℜ of real numbers, the field C of complex
numbers and the GF2 field on elements 0, 1 (0+0 = 0, 0+1 = 1, 1+0 =
1, 1 + 1 = 0, 1.1 = 1, 1.0 = 0, 0.1 = 0, 0.0 = 0). For a general definition
of a field see for instance [Jacobson74]. By a vector on S over F we
mean a mapping f of S into F .The field F is called the scalar field
and its elements are called scalars. The support of f is the subset
of S over which it takes nonzero values. The sum of two vectors f , g
on S over F is defined by (f + g)(ei) ≡ f(ei) + g(ei) ∀ei ∈ S. (For
convenience the sum of two vectors f on S,g on T over F is defined by
(f +g)(ei) ≡ f(ei)+g(ei) ∀ei ∈ S∩T , as agreeing with f on S−T , and
as agreeing with g on T − S). The scalar product of f by a scalar λ

4 2. MATHEMATICAL PRELIMINARIES

is a vector λf defined by (λf)(ei) ≡ λ(f(ei)) ∀ei ∈ S. A collection V
of vectors on S over F is a vector space iff it is closed under addition
and scalar product. We henceforth omit mention of underlying set and
field unless required.

A set of vectors {f1, f2, . . . , fn} is linearly dependent iff there exist
scalars λ1, . . . , λn not all zero such that λ1f1 + . . . + λnfn = 0. (Here
the 0 vector is one which takes value 0 on all elements of S). Vector
fn is a linear combination of f1, . . . , fn−1 iff fn = λ1f1 + . . . + λn−1fn−1

for some λ1, . . . , λn−1.

The set of all vectors linearly dependent on a collection C of vectors
can be shown to form a vector space which is said to be generated
by or spanned by C. Clearly if V is a vector space and C ⊆ V, the
subset of vectors generated by C is contained in V. A maximal linearly
independent set of vectors of V is called a basis of V.
In general maximal and minimal members of a collection of sets may
not be largest and smallest in terms of size.
Example: Consider the collection of sets {{1, 2, 3}, {4}, {5, 6}, {1, 2, 3, 5, 6}}.
The minimal members of this collection are {1, 2, 3}, {4}, {5, 6}, i.e.,
these do not contain proper subsets which are members of this collec-
tion. The maximal members of this collection are {4}, {1, 2, 3, 5, 6},
i.e., these are not proper subsets of other sets which are members of
this collection.

The following theorem is therefore remarkable.

Theorem 1.2.1 All bases of a vector space on a finite set have the
same cardinality.

The number of elements in a basis of V is called the dimension of
V, denoted by dim(V), or the rank of V, denoted by r(V). Using
Theorem 1.2.1 one can show that the size of a maximal independent
subset contained in a given set C of vectors is unique. This number is
called the rank of C. Equivalently, the rank of C is the dimension of the
vector space spanned by C. If V1,V2 are vector spaces and V1 ⊆ V2,
we say V1 is a subspace of V2.

A mapping A : {1, 2, . . . , m}×{1, 2, . . . , n} −→ F is called a m×n
matrix. It may be thought of as an m × n array with entries from F .
We denote A(i, j) often by the lower case aij with i as the row index
and j as the column index. We speak of the array (ai1, . . . , ain) as the

1.2. VECTORS AND MATRICES 5

ith row of A and of the array (a1j , . . . , anj) as the jth column of A.
Thus we may think of A as made up of m row vectors or of n column
vectors. Linear dependence, independence and linear combination for
row and column vectors are defined the same way as for vectors. We say
two matrices are row equivalent if the rows of each can be obtained
by linearly combining the rows of the other. Column equivalence is
defined similarly. The vector space spanned by the rows (columns) of A
is called its row space (column space) and denoted by R(A)(C(A)).
The dimension of R(A)(C(A)) is called the row rank (column rank)
of A.

If A is an m × n matrix then the transpose of A denoted by
AT is an n × m matrix defined by AT (i, j) ≡ A(j, i). Clearly the
ith row of A becomes the ith column of AT and vice versa. If B is
also an m × n matrix the sum A + B is an m × n matrix defined by
(A + B)(i, j) ≡ A(i, j) + B(i, j). If D is an n× p matrix, the product
AD is an m × p matrix defined by AD(i, j) ≡ ∑n

k=1 aikdkj. Clearly if
AD is defined it does not follow that DA is defined. Even when it is
defined, in general AD 6= DA. The most basic property of this notion
of product is that it is associative i.e. A(DF) = (AD)F.

Matrix operations are often specified by partitioning. Here we
write a matrix in terms of submatrices (i.e., matrices obtained by
deleting some rows and columns of the original matrix). A matrix
may be partitioned along rows:

A =







A11

. . .
A21







or along columns:
A =

[

A11|A12

]

or both:

A =









A11 . . . A1k

...
...

...
Ap1 . . . Apk









.

When two partitioned matrices are multiplied we assume that the par-
titioning is compatible, i.e., for each triple (i, j, k) the number of
columns of Aik equals the number of rows of Bkj. Clearly this is
achieved if the original matrices A,B are compatible for product and

6 2. MATHEMATICAL PRELIMINARIES

each block of the column partition of A has the same size as the cor-
responding row partition of B. The following partitioning rules can
then be verified.

i.







A11

. . .
A21





C =







A11C
. . .

A21C







ii. C
[

A11|A12

]

=
[

CA11|CA12

]

iii.
[

A11|A12

]







C11

. . .
C12





 =
[

A11C11 + A12C12

]

.

In general if A is partitioned into submatrices Aik,B into submatrices
Bkj then the product C = AB would be naturally partitioned into
Cij ≡

∑

k AikBkj.

Matrices arise most naturally in linear equations such as Ax = b,
where A and b are known and x is an unknown vector. When b = 0 it
is easily verified that the set of all solutions of Ax = b, i.e.,of Ax = 0,
forms a vector space. This space will be called the solution space of
Ax = 0, or the null space of A. The nullity of A is the dimension
of the null space of A. We have the following theorem.

Theorem 1.2.2 If two matrices are row equivalent then their null
spaces are identical.

Corollary 1.2.1 If A,B are row equivalent matrices then a set of
columns of A is independent iff the corresponding set of columns of B
is independent.

The following are elementary row operations that can be performed
on the rows of a matrix:

i. interchanging rows,

ii. adding a multiple of one row to another,

iii. multiplying a row by a nonzero number.

1.2. VECTORS AND MATRICES 7

Each of these operations corresponds to premultiplication by a matrix.
Such matrices are called elementary matrices. It can be seen that
these are the matrices we obtain by performing the corresponding ele-
mentary row operations on the unit matrix of the same number of rows
as the given matrix. We can define elementary column operations sim-
ilarly. These would correspond to post multiplication by elementary
column matrices.

A matrix is said to be in Row Reduced Echelon form (RRE) iff
it satisfies the following:
Let r be the largest row index for which aij 6= 0 for some j. Then the
columns of the r×r unit matrix (the matrix with 1s along the diagonal
and zero elsewhere) e1, . . . , er appear as columns, say Ci1 , . . . ,Cir of
A with i1 < . . . < ir. Further if p < ik then akp = 0. We have the
following theorem.

Theorem 1.2.3 Every matrix can be reduced to a matrix in the RRE
form by a sequence of elementary row transformations and is therefore
row equivalent to such a matrix.

It is easily verified that for an RRE matrix row rank equals column
rank. Hence using Theorem 1.2.3 and Corollary 1.2.1 we have

Theorem 1.2.4 For any matrix, row rank equals column rank.

The rank of a matrix A, denoted by r(A), is its row rank (= column
rank).
Let the elements of S be ordered as (e1, . . . , en). Then for any vector f
on S we define Rf , the representative vector of f , as the one rowed
matrix (f(e1), . . . , f(en)). We will not usually distinguish between a
vector and its representative vector. When the rows of a matrix R are
representative vectors of some basis of a vector space V we say that
R is a representative matrix of V. When R,R1 both represent V
they can be obtained from each other by row operations. Hence by
Corollary 1.2.1 their column independence structure is identical. An
r × n representative matrix R, r ≤ n, is a standard representative
matrix iff R has an r × r submatrix which can be obtained by per-
mutations of the columns of the r × r unit matrix. For convenience
we will write a standard representative matrix in the form [I|R12] or
[R11|I]. (Here I denotes the unit matrix of appropriate size).

The dot product of two vectors f , g on S denoted by < f , g > over

8 2. MATHEMATICAL PRELIMINARIES

F is defined by < f , g >≡ ∑

e∈S f(e).g(e). We say f , g are orthogonal
if their dot product is zero. If C is a collection of vectors on S then
C⊥ ≡ set of all vectors orthogonal to every vector in C. It can be
verified that C⊥ is a vector space. Let V be a vector space on S
with basis B. Since vectors orthogonal to each vector in B are also
orthogonal to linear combinations of these vectors we have B⊥ = V⊥.
If R is a representative matrix of V, it is clear that V⊥ is its null
space. Equivalently V⊥ is the solution space of Rx = 0. If R is a
standard representative matrix with R = [Ir×r|R12], then the solution
space of Rx = 0 can be shown to be the vector space generated by the

columns of







−R12

. . .
In−r×n−r





, where n = |S|.(Here Ik×k denotes the unit

matrix with k rows). Equivalently V⊥ has the representative matrix
[−RT

12|In−r×n−r]. The representative matrix of (V⊥)⊥ will then be R.
We then have the following

Theorem 1.2.5 i. if [Ir×r|R12] is a representative matrix of vector
space V on S then [−RT

12|In−r×n−r] is a representative matrix of
V⊥.

ii. r(V⊥) =|S| − r(V)

iii. (V⊥)⊥ = V. Hence two matrices are row equivalent iff their null
spaces are identical.

Consider the collection of all n × n matrices over F . We say that I
is an identity for this collection iff for every n × n matrix B we have
IB = BI = B. If I1, I2 are identity matrices we must have I1 = I2 = I.
The unit matrix (with 1s along the diagonal and 0s elsewhere) is clearly
an identity matrix. It is therefore the only identity matrix. Two n×n
matrices A,B are inverses of each other iff AB = BA = I. We say
A,B are invertible or nonsingular. If A has inverses B,C we must
have C = C(AB) = (CA)B = IB = B. Thus the inverse of a matrix
A, if it exists, is unique and is denoted by A−1. We then have the
following

Theorem 1.2.6 i. (AT)−1 = (A−1)T

ii. If A,D are n×n invertible matrices, then (AD)−1 = (D−1A−1).

1.2. VECTORS AND MATRICES 9

With a square matrix we associate an important number called its
determinant. Its definition requires some preparation.

A bijection of a finite set to itself is also called a permutation. A
permutation that interchanges two elements (i.e. maps each of them to
the other) but leaves all others unchanged is a transposition. Every
permutation can be obtained by repeated application of transpositions.
We then have the following

Theorem 1.2.7 If a permutation σ can be obtained by composition of
an even number of transpositions then every decomposition of σ into
transpositions will contain an even number of them.

By Theorem 1.2.7 we can define a permutation to be even (odd) iff it
can be decomposed into an even (odd) number of transpositions. The
sign of a permutation σ denoted by sgn(σ) is +1 if σ is even and −1
if σ is odd. It is easily seen, since the identity (= σσ−1) permutation is
even, that sgn(σ) = sgn(σ−1). The determinant of an n × n matrix
is defined by

det(A) ≡
∑

σ

sgn(σ)a1σ(1) . . . anσ(n),

where the summation is taken over all possible permutations of {1, 2, . . . , n}.
It is easily seen that determinant of the unit matrix is +1. We collect
some of the important properties of the determinant in the following

Theorem 1.2.8 i. det(A) = det(AT)

ii. Let

A =

[

a1

A2

]

,A′ =

[

a′
1

A2

]

,A” =

[

a1 + a′
1

A2

]

.

Then det(A”) = det(A) + det(A′).

iii. If A has two identical rows, or has two identical columns then
det(A) = 0.

iv. If E is an elementary matrix det(EA) = det(E)det(A). Since
every invertible matrix can be factored into elementary matrices,
it follows that det(AB) = det(A)det(B), for every pair of n × n
matrices A,B.

v. det(A) 6= 0 iff A is invertible.

Problem 1.1 Size of a basis: Prove

10 2. MATHEMATICAL PRELIMINARIES

i. Theorem 1.2.1

ii. If V1 is a subspace of vector space V2, dimV1 ≤ dimV2.

iii. If V1 ⊆ V2 and dimV1 = dimV2 then V1 = V2.

iv. an m × n matrix with m > n cannot have linearly independent
rows.

v. any vector in a vector space V can be written uniquely as a linear
combination of the vectors in a basis of V.

Problem 1.2 Ways of interpreting the matrix product: Define
product of matrices in the usual way i.e. C = AB is equivalent to
Cij =

∑

k aikbkj. Now show that it can be thought of as follows

i. Columns of C are linear combinations of columns of A using
entries of columns of B as coefficients.

ii. rows of C are linear combinations of rows of B using entries of
rows of A as coefficients.

Problem 1.3 Properties of matrix product: Prove, when A, B,
C are matrices and the products are defined

i. (AB)C = A(BC)

ii. (AB)T = BTAT

Problem 1.4 Partitioning rules: Prove

i. the partitioning rules.

ii.









A11 · · · A1k

...
...

Ar1 · · · Ark









T

=









AT
11 · · · AT

r1
...

...
AT

1k · · · AT
rk









Problem 1.5 Solution space and column dependence struc-
ture: Prove theorem 1.2.2 and Corollary 1.2.1.

1.2. VECTORS AND MATRICES 11

Problem 1.6 Algorithm for computing RRE: Give an algorithm
for converting any rectangular matrix into the RRE form. Give an
upper bound for the number of arithmetical steps in your algorithm.

Problem 1.7 Uniqueness of the RRE matrix: Show that no RRE
matrix is row equivalent to a distinct RRE matrix. Hence prove that
every matrix is row equivalent to a unique matrix in the RRE form.

Problem 1.8 RRE of special matrices:

i. If A is a matrix with linearly independent columns what is its
RRE form? If in addition A is square what is its RRE form?

ii. If A,B are square such that AB = I show that BA = I.

iii. Prove Theorem 1.2.6

Problem 1.9 Existence and nature of solution for linear equa-
tions: Consider the equation Ax = b.

i. Show that it has a solution

(a) iff r(A) = r(A|b).

(b) iff whenever λTA = 0, λTb is also zero.

ii. Show that a vector is a solution of the above equation iff it can
be written in the form xo + xp where xp is a particular solution
of the equation while xo is a vector in the null space of A (i.e. a
solution to the linear equation with b set equal to zero).

iii. Motivation for the matrix product: Why is the matrix prod-
uct defined as in Problem 1.2? (In the above equation suppose we
make the substitution x = By. What would the linear equation in
terms of y be?)

iv. Linear dependence and logical consequence: The above
equation may be regarded as a set of linear equations (one for
each row of A) each of which in turn could be thought of as a
statement. Show that a linear equation is a logical consequence
of others iff it is linearly dependent on the others.

Problem 1.10 Positive definite matrices:

12 2. MATHEMATICAL PRELIMINARIES

i. Construct an example where A, B are invertible but their sum is
not.

ii. A matrix K is positive semidefinite (positive definite) iff
xTKx ≥ 0 ∀x 6= 0 (xTKx > 0 ∀x 6= 0). Show that

(a) a matrix is invertible if it is positive definite;

(b) sum of two positive semidefinite matrices (positive definite
matrices) is positive semidefinite (positive definite);

(c) if K is a positive definite matrix,then AKAT is positive
semidefinite and if, further, rows of A are linearly indepen-
dent, then AKAT is positive definite;

(d) inverse of a symmetric positive definite matrix is also sym-
metric positive definite.

Problem 1.11 Projection of a vector on a vector space: Let x
be a vector on S and let V be a vector space on S. Show that x can be
uniquely decomposed as x = x1 + x2, where x1 ∈ V and x2 ∈ V⊥.The
vector x1 is called the projection of x on V along V⊥.

Problem 1.12 Parity of a Permutation: Show that if a permuta-
tion can be obtained by composing an odd number of transpositions it
cannot also be obtained by composing an even number of transpositions.

Problem 1.13 Graph of a permutation: Define the graph Gσ of a
permutation σ on {1, 2, · · ·n} as follows: V (Gσ) ≡ {1, 2, · · · , n}; draw
an edge with an arrow from i to j iff σ(i) = j.

i. Show that every vertex in this graph has precisely one arrow com-
ing in and one going out. Hence, conclude that each connected
component is a directed circuit.

ii. Show that if Gσ has an odd (even) number of even length circuits
then σ is odd (even).

Problem 1.14 Properties of the determinant: Prove Theorem
1.2.8.

Problem 1.15 Equivalence of definitions of a determinant: Show
that the usual definition of a determinant by expanding along a row or
column is equivalent to the definition using permutations.

1.3. LINEAR INEQUALITY SYSTEMS 13

Problem 1.16 Laplace expansion of the determinant: Let A be
an n × n matrix. Show that

det(A) =
∑

sgn(σ) det

(

A

(

r1, · · · , rk

i1, · · · , ik

))

det

(

A

(

rk+1, · · · , rm

ik+1, · · · , im

))

,

(A

(

d1, · · · , dp

i1, · · · , ip

)

is the p×p matrix whose (s, t) entry is the (ds, it)

entry of A), where the summation is over all subsets {r1, · · · , rk} of
{1, · · · , n}
and σ ≡

(

r1, · · · , rk, rk+1 · · · rn

i1, · · · , ik, ik+1 · · · in

)

i.e., σ(rj) ≡ ij , j = 1, · · · , n.

Problem 1.17 Binet Cauchy Theorem: Let A be an m×n and B
an n×m matrix with m ≤ n. If an m×m submatrix of A is composed
of columns i1, · · · , im, the corresponding m×m submatrix of B is the
one with rows i1, · · · , im. Prove the Binet Cauchy Theorem: det(AB) =
∑

product of determinants of corresponding m × m submatrices of A
and B.

1.3 Linear Inequality Systems

1.3.1 The Kuhn-Fourier Theorem

In this section we summarize basic results on inequality systems which
we need later on in the book. Proofs are mostly omitted. They
may be found in standard references such as [Stoer+Witzgall70] and
[Schrijver86]. This section follows the former reference.

A linear inequality system is a set of constraints of the following
kind on the vector x ∈ ℜn.

Ax = ao

Bx > bo

Cx ≥ co











(I)

Here, A,B,C are matrices, ao,bo, co are column vectors with appropri-
ate number of rows. We say x1 > x2(x1 ≥ x2) iff each component of x1

is greater than (greater than or equal to) the corresponding component
of x2.

14 2. MATHEMATICAL PRELIMINARIES

A solution of an inequality system is a vector which satisfies all the
inequality constraints of the system. A constraint which is satisfied by
every solution of an inequality system is said to be a consequence
of the system. In particular, we are concerned with constraints of the
kind dTx = do or > do or ≥ do. A legal linear combination of
the system (I) is obtained by linearly combining the equations and
inequalities with real coefficients - αi for the linear equations, and
non-negative real coefficients βj , γk for the ‘>’ linear inequalities and
‘≥’ linear inequalities respectively. The resulting constraint would be
a linear equation iff βj , γk are all zero. It would be a ‘>’ inequality
iff at least one of the βj ’s is nonzero. It would be a ‘≥’ inequality
iff all of βj are zero but at least one of the γk is nonzero. A legal
linear combination is thus a consequence of the system. A legal linear
combination, with at least one of the αi, βj, γk nonzero, that results in
the LHS becoming zero is called a legal linear dependence of the
system. Another important way of deriving consequence relations is
by weakening. This means to weaken ‘=’ to ‘≥’ and ‘>’ to ‘≥’ and
also in the case of ‘>’ and ‘≥’ to lower the right side value.

Example 1.3.1 Consider the system of linear inequalities:

x1 + 2x2 = 3

2x1 + x2 = 4

x1 + x2 > 1

2x1 + 3x2 > 2

x1 + 5x2 ≥ 2

−x1 − 2x2 ≥ 4.

The legal linear combination corresponding to α1 = 1, α2 = 1, β1 =
0, β2 = 0, γ1 = 0, γ2 = 0 is
3x1 + 3x2 = 7;
that corresponding to α1 = 1, α2 = 0, β1 = 1, β2 = 0, γ1 = 1, γ2 = 0 is
3x1 + 8x2 > 6;
that corresponding to α1 = 1, α2 = 0, β1 = 0, β2 = 0, γ1 = 1, γ2 = 0 is
2x1 + 7x2 ≥ 5.
The legal linear combination corresponding to α1 = 1, α2 = 0, β1 =
0, β2 = 0, γ1 = 0, γ2 = 1 is the zero relation
0x1 + 0x2 ≥ 7.

1.3. LINEAR INEQUALITY SYSTEMS 15

Thus in this case, the system has a legal linear dependence that is
a contradiction.

We can now state the fundamental theorem of Kuhn and Fourier
[Fourier1826], [Kuhn56].

Theorem 1.3.1 (Kuhn-Fourier Theorem) A linear inequality sys-
tem has a solution iff no legal linear dependence is a contradiction.

Sketch of the Proof of Theorem 1.3.1: First reduce the linear
equations to the RRE form. If a row arises with zero coefficients but
with nonzero right side at this stage, we have a legal linear dependence
that is a contradiction. Otherwise express some of the variables in
terms of the others. This substitution is now carried out also in the
inequalities. So henceforth, without loss of generality, we may assume
that we have only inequalities. If we prove the theorem for such a
reduced system, it can be extended to one which has equalities also.

Suppose each variable has either zero coefficient or the same sign in
all the inequalities of the system and further, if there are inequalities
with zero coefficients they are not contradictory.

In this case it is easy to see that the system has a solution whether
the coefficients of a particular variable are all zero or otherwise. If all
the coefficients are zero we are done - the theorem is clearly true. If
not, it is not possible to get a legal linear dependence without using
zero coefficients. So the theorem is again true in this case.

We now present an elimination procedure which terminates at the
above mentioned situation.
Let the inequalities be numbered (1), · · · , (r), (r + 1), · · · , (k). Let xn

be present with coefficient +1 in the inequalities (1), · · · , (r) and with
coefficient -1 in the inequalities (r + 1), · · · , (k). We create r(k − r)
inequalities without the variable xn by adding each of the first r in-
equalities to each of the last (k− r) inequalities. Note that if both the
inequalities are of the (≥) kind, the addition would result in another of
the (≥) kind and if one of them is of the (>) kind, the addition would
result in another of the (>) kind.

If the original system has a solution, it is clear that the reduced
system also has one. On the other hand, if the reduced system has a
solution (x′

1, · · · , x′
n−1) it is possible to find a value x′

n of xn such that
(x′

1, · · · , x′
n−1, x

′
n) is a solution of the original system. We indicate how,

16 2. MATHEMATICAL PRELIMINARIES

below.
Let the inequalities added be

ai1x1 + · · · + xn ≥ bi

aj1x1 + · · · − xn > bj

(The cases where both are (≥), both are (>) or first inequality (>)
and second (≥) are similar.) The pair of inequalities can be written
equivalently as

aj1x1+· · ·+aj(n−1)xn−1−bj > xn ≥ bi−ai1x1−· · ·−ai(n−1)xn−1 (∗)

The extreme left of the above inequality (∗) is always derived from the
inequalities (r + 1) to (k) while the extreme right is always derived
from the (1) to (r) inequalities. When x′

1, · · · , x′
n−1 is substituted in

the above inequality, it would be satisfied for every pair of inequalities,
from (j + 1) to (k) on the extreme left and (1) to (j) on the extreme
right. After substitution, let the least of the extreme left term be
reached for inequality (p) and let the highest of the extreme right term
be reached for inequality (q). Since

ap1x
′
1 + · · ·+ ap(n−1)x

′
n−1 − bp > bq − aq1x

′
1 − · · · − aq(n−1)x

′
n−1

(this inequality results when (p) and (q) are added), we can find a value
x′

n of xn which lies between left and right sides of the above inequality.
Clearly (x′

1, · · · , x′
n) is a solution of the original system.

If this procedure were repeated, we would reach a system where
there are inequalities with all the coefficients of zero value and where
the signs of the coefficients of a variable are all the same in all the
inequalities. If some of the inequalities which have all zero coefficients
are contradictory there is no solution possible and the theorem is true.
If none of such inequalities are contradictory the solution always exists
as mentioned before and there can be no legal linear combination that
is contradictory. Thus once again the theorem is true.

2

As an immediate consequence we can prove the celebrated ‘Farkas
Lemma’.

1.3. LINEAR INEQUALITY SYSTEMS 17

Theorem 1.3.2 (Farkas Lemma) The homogeneous system

A x ≤ 0

has the consequence
dTx ≤ 0

iff the row vector dT is a nonnegative linear combination of the rows
of A.

Proof : By Kuhn-Fourier Theorem (Theorem 1.3.1), the system

ATy = d

y ≥ 0

has a solution iff
‘xTAT + βT I = 0, βT ≥ 0’ implies ‘xT d ≤ 0’;
i.e., iff ‘Ax ≤ 0’ implies ‘dT x ≤ 0.’

2

The analogue of ‘vector spaces’ for inequality systems is ‘cones’. A
cone is a collection of vectors closed under addition and non-negative
linear combination. It is easily verified that the solution set of Ax ≥ 0
is a cone. Such cones are called polyhedral. We say vectors x, y
(on the same set S) are polar iff < x,y > (i.e., their dot product) is
nonpositive. If K is a collection of vectors, the polar of K, denoted by
Kp is the collection of vectors polar to every vector in K. Thus, Farkas
Lemma states:
‘Let C be the polyhedral cone defined by Ax ≤ 0. A vector d belongs
to Cp iff dT is a nonnegative linear combination of the rows of A.’

1.3.2 Linear Programming

Let S be a linear inequality system with ‘≤’ and ‘=’ constraints (‘≥’
and ‘=’ constraints). The linear programming problem or linear
program is to finda solution x of S which maximizes a given linear
function cTx (minimizes a given linear function cTx). The linear func-
tion to be optimized is called the objective function. A solution of
S is called a feasible solution, while a solution which optimizes cTx
is called an optimal solution, of the linear programming problem.

18 2. MATHEMATICAL PRELIMINARIES

The value of a feasible solution is the value of the objective function
on it.

The following linear programming problems are said to be duals of
each other

Primal program

Maximize cT
1 x1 + cT

2 x2

(

A11 A12

) x1

x2
= b1

(

A21 A22

) x1

x2
≤ b2

x2 ≥ 0

Dual program

Minimize bT
1 y1 + bT

2 y2

(

AT
11 AT

21

) y1

y2
= c1

(

AT
12 AT

22

) y1

y2
≥ c2

y2 ≥ 0.

We now present the duality theorem of linear programming [von Neumann47],
[Gale+Kuhn+Tucker51].

Theorem 1.3.3 For dual pairs of linear programs the following state-
ments hold:

i. The value of each feasible solution of the minimization program
is greater than or equal to the value of each feasible solution of
the maximization program;

ii. if both programs have feasible solutions then both have optimal
solutions and the optimal values are equal;

1.3. LINEAR INEQUALITY SYSTEMS 19

iii. if one program has an optimal solution then so does the other.

The usual proof uses Farkas Lemma, or more conveniently, Kuhn-
Fourier Theorem. We only sketch it.
Sketch of Proof: Part (i) follows by the solution of Exercise 1.1.
Now we write down the inequalities of the primal and dual programs
and another ‘≤’ inequality which is the opposite of the inequality in
part (i). Part (ii) would be proved if this system of inequalities has a
solution. We assume it has no solution and derive a contradiction by
using Kuhn-Fourier Theorem.

2

Exercise 1.1 Prove part (i) of Theorem 1.3.3.

A very useful corollary of Theorem 1.3.3 is the following:

Corollary 1.3.1 (Complementary Slackness)
Let










max cTx
Ax = b
x ≥ 0











and

{

minbT y
ATy ≥ c

}

be dual linear programs. Let x̂, ŷ be optimal solutions to the respective
programs. Then,

i. x̂i > 0 implies (AT)iŷ = ci,

ii. (AT)iŷ > ci implies x̂i = 0.

Proof : We have by part (ii) of Theorem 1.3.3 cT x̂ = ŷTb, equivalently

cT x̂ − ŷTAx̂ = (cT − ŷTA)x̂ = 0.

The result now follows since (cT − ŷTA) ≥ 0 and x̂ ≥ 0.

2

20 2. MATHEMATICAL PRELIMINARIES

1.4 Solutions of Exercises

E 1.1: We use the linear programs given in the definition of dual linear
programs. We have

(

bT
1 bT

2

) y1

y2
≥





(

xT
1 xT

2

)

[

A11 A12

A21 A22

]T




y1

y2

≥
(

xT
1 xT

2

)

[

c1

c2

]

.

1.5 Solutions of Problems

Most of these problems can be found as standard results in undergrad-
uate texts on linear algebra (see for instance [Hoffman+Kunze72]).
We only give the solution to the last two problems. Here we follow
[MacDuffee33], [Gantmacher59] respectively.

P 1.16: We state the following simple lemma without proof.

Lemma 1.5.1 If α1, · · · , αt are permutations of {1, · · · , n} then
sgn(α1α2 · · ·αt) = (sgn(α1))(sgn(α2)) · · · (sgn(αt)) (where αiαj de-
notes composition of permutations αi, αj).

We have

∑

sgn(σ) det

(

A

(

r1, · · · , rk

i1, · · · , ik

))

det

(

A

(

rk+1, · · · , rm

ik+1, · · · , im

))

=

∑

sgn(σ)(
∑

sgn(α)(ar1α(i1) · · ·arkα(ik)))(
∑

sgn(β)(ark+1β(ik+1) · · ·arnβ(in))),

where α, β are permutations on the sets {i1, · · · , ik}, {ik+1, · · · , in} re-
spectively. Let α′ agree with α over {i1, · · · , ik} and over {ik+1, · · · , in},
with the identity permutation. Let β ′ agree with β over {ik+1, · · · , in}
and with the identity permutation over {i1, · · · , ik}. So

LHS =
∑

sgn(σ)sgn(α′)sgn(β ′)(ar1α(i1) · · ·arkα(ik)ark+1β(ik+1) · · ·arnβ(in))

=
∑

sgn(β ′α′σ)(ar1ασ(r1) · · ·arkασ(rk)ark+1βσ(rk+1) · · ·arnβσ(rn))

=
∑

sgn(µ)(ar1µ(r1) · · ·arkµ(rk)ark+1µ(rk+1) · · ·arnµ(rn)),

where µ ≡ β ′α′σ. Since the RHS is the usual definition of the determi-
nant of A, the proof is complete.

1.5. SOLUTIONS OF PROBLEMS 21

P 1.17: Let aij, bij denote respectively the (i, j)th entry of A,B. Then
the matrix

AB =









∑n
i1=1 a1i1bi11 · · · ∑n

im=1 a1imbimm

...
...

∑n
i1=1 ami1bi11 · · · ∑n

im=1 amimbimm









.

Now each column of AB can be thought of as the sum of n appropriate
columns - for instance the transpose of the first column is made up of
rows - a typical one being (a1i1bi11, · · · , ami1bi11). Using Theorem 1.2.8

det(AB) =
∑

i1,···,im

det

















a1i1bi11 · · · a1imbimm

...
...

ami1bi11 · · · amimbimm

















=
∑

(bi11 · · · bimm) det

(

A

(

1, · · · , m
i1, · · · , im

))

,

where A

(

1, · · · , m
i1, · · · , im

)

is the m × m matrix which has the first m

rows of A in the same order as in A but whose jth column is the ithj
column of A. So, again by Theorem 1.2.8,

det(AB) =
∑

k1,···,km

det

(

A

(

1, · · · , m
k1, · · · , km

))

(sgn(σ)) bσ(k1)1 · · · bσ(km)m,

where k1 < · · · < km, {k1, · · · , km} = {i1, · · · , im} and σ is the permu-
tation
(

k1, · · · , km

i1, · · · , im

)

, i.e.,

σ(kj) = ij .

So,

det(AB) =

∑

k1, · · · , km

k1 < · · · < km

det

(

A

(

1, · · · , m
k1, · · · , km

))

det

(

B

(

k1, · · · , km

1, · · · , m

))

.

22 2. MATHEMATICAL PRELIMINARIES

Chapter 2

Graphs

2.1 Introduction

We give definitions of graphs and related notions below. Graphs should
be visualized as points joined by lines with or without arrows rather
than be thought of as formal objects. We would not hesitate to use
informal language in proofs.

2.2 Graphs: Basic Notions

2.2.1 Graphs and Subgraphs

A graph G is a triple (V (G), E(G), iG) where V (G) is a finite set of
vertices, E(G) is a finite set of edges and iG is an incidence func-
tion which associates with each edge a pair of vertices, not necessarily
distinct, called its end points or end vertices (i.e., iG : E(G) →
collection of subsets of V (G) of cardinality 2 or 1).
Vertices are also referred to as nodes or junctions while edges are
referred to also as arcs or branches.
We note

i. an edge may have a single end point - such edges are called
selfloops.

23

24 3. GRAPHS

ii. a vertex may have no edges incident on it - such vertices are said
to be isolated.

iii. the graph may be in several pieces.

e1 e2

e3 e4

e5 e6

e7
e8

e9

e10 e11

e12

e1
e2

e3

e4
e5

e6

e8e7

a

b
fc d

q

g

h j

k

a

b
c

d

h

f

g

Gu

Gd

Figure 2.1: Undirected and Directed Graphs

Figure 2.1 shows a typical graph Gu.

A directed graph G is a triple (V (G), E(G), aG) where V (G), E(G)
are the vertex set and the edge set respectively and aG associates with
each edge an ordered pair of vertices not necessarily distinct (i.e.,
aG : E(G) → V (G) × V (G)). The first element of the ordered pair
is the positive end point or tail of the arrow and the second element
is the negative end point or head of the arrow. For selfloops, posi-
tive and negative endpoints are the same. Directed graphs are usually
drawn as graphs with arrows in the edges. In Figure 2.1, Gd is a di-
rected graph.
We say a vertex v and an edge e are incident on each other iff v is an
end point of e. If e has end points u, v we say that u, v are adjacent

2.2. GRAPHS: BASIC NOTIONS 25

to each other. Two edges e1, e2 are adjacent if they have a common
end point. The degree of a vertex is the number of edges incident on
it with selfloops counted twice.
A graph Gs is a subgraph of G iff Gs is a graph, V (Gs) ⊆ V (G), E(Gs) ⊆
E(G), and the endpoints of an edge in Gs are the same as its end points
in G.
Subgraph Gs is a proper subgraph of G iff it is a subgraph of G but
not identical to it. The subgraph of G on V1 is that subgraph of G
which has V1 as its vertex set and the set of edges of G with both end
points in V1 as the edge set. The subgraph of G on E1 has E1 ⊆ E(G)
as the edge set and the endpoints of edges in E1 as the vertex set. If G
is a directed graph the edges of a subgraph would retain the directions
they had in G (i.e., they would have positive and negative end points
as in G).

Exercise 2.1 (k) In any graph with atleast two nodes and no parallel
edges (edges with the same end points) or selfloops show that the degree
of some two vertices must be equal.

Exercise 2.2 (k) Show that

i. the sum of the degrees of vertices of any graph is equal to twice
the number of edges of the graph;

ii. the number of odd degree vertices in any graph must be even.

2.2.2 Connectedness

A vertex edge alternating sequence (alternating sequence for
short) of a graph G is a sequence in which

i. vertices and edges of G alternate,

ii. the first and last elements are vertices and

iii. whenever a vertex and an edge occur as adjacent elements they
are incident on each other in the graph.

26 3. GRAPHS

Example: For the graph Gu in Figure 2.1, (a, e1, b, e3, c, e6, q, e6, c, e4, d)
is an alternating sequence.
A path is a graph all of whose edges and vertices can be arranged in
an alternating sequence without repetitions.
It can be seen that the degree of precisely two of the vertices of the
path is one and the degree of all other vertices (if any) is two. The
two vertices of degree one must appear at either end of any alternating
sequence containing all nodes and edges of the path without repetition.
They are called terminal nodes. The path is said to be between
its terminal nodes. It is clear that there are only two such alternating
sequences that we can associate with a path. Each is the reverse of
the other. The two alternating sequences associated with the path in
Figure 2.2 are (v1, e1, v2, e2, v3, e3, v4) and (v4, e3, v3, e2, v2, e1, v1).

v1 v2 v3 v4

e1 e2 e3

Figure 2.2: A Path Graph

We say ‘go along the path from vi to vj ’ instead of ‘construct the
alternating sequence without repetitions having vi as the first element
and vj as the last element’. Such sequences are constructed by con-
sidering the alternating sequence associated with the path in which vi

precedes vj and taking the subsequence starting with vi and ending
with vj .
A directed graph may be a path if it satisfies the above conditions.
However, the term strongly directed path is used if the edges can
be arranged in a sequence so that the negative end point of each edge,
except the last is the positive end point of the succeeding edge.
A graph is said to be connected iff for any given pair of distinct ver-
tices there exists a path subgraph between them. The path graph in
Figure 2.2 is connected while the graph Gu in Figure 2.1 is discon-
nected.
A connected component of a graph G is a connected subgraph of G
that is not a proper subgraph of any connected subgraph of G (i.e., it
is a maximal connected subgraph). Connected components correspond
to ‘pieces’ of a disconnected graph.

2.2. GRAPHS: BASIC NOTIONS 27

Exercise 2.3 (k) Let G be a connected graph. Show that there is a
vertex such that if the vertex and all edges incident on it are removed
the remaining graph is still connected.

2.2.3 Circuits and Cutsets

A connected graph with each vertex having degree two is called a
circuit graph or a polygon graph. (GL in Figure 2.3 is a circuit
graph). If G′ is a circuit subgraph of G then E(G ′) is a circuit of G.
A single edged circuit is called a selfloop.

GL GLD

Figure 2.3: A Circuit Graph and a Strongly Directed Circuit Graph

Each of the following is a characteristic property of circuit graphs
(i.e., each can be used to define the notion).
We omit the routine proofs.

i. A circuit graph has precisely two paths between any two of its
vertices.

ii. If we start from any vertex v of a circuit graph and follow any
path (i.e., follow an edge, reach an adjacent vertex, go along a
new edge incident on that vertex and so on) the first vertex to
be repeated would be v. Also during the traversal we would have
encountered all vertices and edges of the circuit graph.

28 3. GRAPHS

iii. Deletion of any edge (leaving the end points in place) of a circuit
graph reduces it to a path.

Exercise 2.4 Construct

i. a graph with all vertices of degree 2 that is not a circuit graph,

ii. a non circuit graph which is made up of a path and an additional
edge,

iii. a graph which has no circuits,

iv. a graph which has every edge as a circuit.

Exercise 2.5 Prove

Lemma 2.2.1 (k) Deletion of an edge (leaving end points in place)
of a circuit subgraph does not increase the number of connected com-
ponents in the graph.

Exercise 2.6 Prove

Theorem 2.2.1 (k) A graph contains a circuit if it contains two dis-
tinct paths between some two of its vertices.

Exercise 2.7 Prove

Theorem 2.2.2 (k) A graph contains a circuit if every one of its
vertices has degree ≥ 2.

A set T ⊆ E(G) is a crossing edge set of G if V (G) can be partitioned
into sets V1, V2 such that T = {e : e has an end point in V1 and in
V2}. (In Figure 2.4, C is a crossing edge set). We will call V1, V2 the
end vertex sets of T. Observe that while end vertex sets uniquely
determine a crossing edge set there may be more than one pair of end
vertex sets consistent with a given crossing edge set. A crossing edge
set that is minimal (i.e., does not properly contain another crossing
edge set) is called a cutset or a bond. A single edged cutset is a
coloop.

Exercise 2.8 Construct a graph which has (a) no cutsets (b) every
edge as a cutset.

Exercise 2.9 Construct a crossing edge set that is not a cutset (see
Figure 2.4).

2.2. GRAPHS: BASIC NOTIONS 29

Exercise 2.10 (k) Show that a cutset is a minimal set of edges with
the property that when it is deleted leaving endpoints in place the num-
ber of components of the graph increases.

Exercise 2.11 Short (i.e., fuse end points of an edge and remove the
edge) all branches of a graph except a cutset. How does the resulting
graph look?

Exercise 2.12 Prove

Theorem 2.2.3 (k) A crossing edge set T is a cutset iff it satisfies
the following:

i. If the graph has more than one component then T must meet the
edges of only one component and

ii. if the end vertex sets of T are V1, V2 in that component, then the
subgraphs on V1 and V2 must be connected.

V1

V2

V1

V2

C Cd

Figure 2.4: A Crossing Edge Set and a Strongly Directed Crossing
Edge Set

30 3. GRAPHS

2.2.4 Trees and Forests

A graph that contains no circuits is called a forest graph (see graphs
Gt and Gf in Figure 2.5). A connected forest graph is also called a tree
graph (see graph Gt in Figure 2.5).

Gt

Gf

Figure 2.5: A Tree Graph Gt and a Forest Graph Gf

A forest of a graph G is the set of edges of a forest subgraph of G
that has V (G) as its vertex set and has as many connected components
as G has. A forest of a connected graph G is also called a tree of G. The
complement relative to E(G) of a forest (tree) is a coforest (cotree)
of G. The number of edges in a forest (coforest) of G is its rank
(nullity). Theorem 2.2.4 assures us that this notion is well defined.

Exercise 2.13 (k) Show that a tree graph on two or more nodes has

i. precisely one path between any two of its vertices

ii. at least two vertices of degree one.

Exercise 2.14 Prove

Theorem 2.2.4 (k) A tree graph on n nodes has (n − 1) branches.
Any connected graph on n nodes with (n − 1) edges is a tree graph.

Corollary 2.2.1 The forest subgraph on n nodes and p components
has (n − p) edges.

2.2. GRAPHS: BASIC NOTIONS 31

Exercise 2.15 Prove

Theorem 2.2.5 (k) A subset of edges of a graph is a forest (coforest)
iff it is a maximal subset not containing any circuit (cutset).

Exercise 2.16 (k) Show that every forest (coforest) of a graph G in-
tersects every cutset (circuit) of G.

Exercise 2.17 Prove

Lemma 2.2.2 (k) A tree graph splits into two tree graphs if an edge
is opened (deleted leaving its end points in place).

Exercise 2.18 (k) Show that a tree graph yields another tree graph if
an edge is shorted (removed after fusing its end points).

Exercise 2.19 Prove

Theorem 2.2.6 (k) Let f be a forest of a graph G and let e be an
edge of G outside f . Then e ∪ f contains only one circuit of G.

Exercise 2.20 Prove

Theorem 2.2.7 (k) Let f be a coforest of a graph G and let e be an
edge of G outside f (i.e., e ∈ f). Then e ∪ f contains only one cutset
of G (i.e., only one cutset of G intersects f in e).

Exercise 2.21 (k) Show that every circuit is an f-circuit with respect
to some forest (i.e., intersects some coforest in a single edge).

Exercise 2.22 (k) Show that every cutset is an f-cutset with respect
to some forest (i.e., intersects some forest in a single edge).

Exercise 2.23 (k) Show that shorting an edge in a cutset of a graph
does not reduce the nullity of the graph.

2.2.5 Strongly Directedness

The definitions we have used thus far hold also in the case of directed
graphs. The subgraphs in each case retain the original orientation for
the edges. However, the prefix ‘strongly directed’ in each case implies
a stronger condition. We have already spoken of the strongly directed
path. A strongly directed circuit graph has its edges arranged in a
sequence so that the negative end point of each edge is the positive

32 3. GRAPHS

end point of the succeeding edge and the positive end point of the last
edge is the negative end point of the first (see GLd

in Figure 2.3). The
set of edges of such a graph would be a strongly directed circuit.

A strongly directed crossing edge set would have the positive
end points of all its edges set in the same end vertex set (see Cd in
Figure 2.4).

In this book we will invariably assume that the graph is directed but
our circuit subgraphs, paths etc. although they are directed graphs,
will, unless otherwise stated, not be strongly directed. When it is clear
from the context the prefix ‘directed’ will be omitted when we speak of
a graph. For simplicity we would write directed path, directed circuit,
directed crossing edge set instead of strongly directed path etc.

Exercise 2.24 Prove:
(Minty) Any edge of a directed graph is either in a directed circuit or

in a directed cutset but not both.

(For solution see Theorem 2.4.7).

2.2.6 Fundamental Circuits and Cutsets

Let f be a forest of G and let e /∈ f . It can be shown (Theorem 2.2.6)
that there is a unique circuit contained in e ∪ f . This circuit is called
the fundamental circuit (f - circuit) of e with respect to f and
is denoted by L(e, f). Let et ∈ f . It can be shown (Theorem 2.2.7)
that there is a unique cutset contained in et ∪ f̄ . This cutset is called
the fundamental cutset of et with respect to f and is denoted by
B(et, f).

Remark: The f-circuit L(e, f) is obtained by adding e to the unique
path in the forest subgraph on f between the end points of e. For the
subgraph on f , the edge et is a crossing edge set with end vertex sets
say V1, V2. Then the f-cutset B(et, f) is the crossing edge set of G with
end vertex sets V1, V2.

2.2. GRAPHS: BASIC NOTIONS 33

2.2.7 Orientation

Let G be a directed graph. We associate orientations with circuit
subgraphs and crossing edge sets as follows:

An orientation of a circuit subgraph is an alternating sequence of
its vertices and edges, without repetitions except for the first vertex
being also the last (note that each edge is incident on the preceding
and succeeding vertices). Two orientations are equivalent if one can
be obtained by a cyclic shift of the other. Diagrammatically an ori-
entation may be represented by a circular arrow. It is easily seen that
there can be at most two orientations for a circuit graph. (A single
edge circuit subgraph has only one). These are obtained from each
other by reversing the sequence. When there are two non equivalent
orientations we call them opposite to each other. We say that an edge
of the circuit subgraph agrees with the orientation if its positive end
point immediately precedes itself in the orientation (or in an equivalent
orientation). Otherwise it is opposite to the orientation.
The orientation associated with a circuit subgraph would also be called
the orientation of the circuit.

Example: For the circuit subgraph of Figure 2.6 the orientations
(n1, e, n6, e6, n5, e5, n4, e4, n3, e3, n2, e2, n1), and (n6, e6, n5, e5,
n4, e4, n3, e3, n2, e2, n1, e, n6) are equivalent. This is the orientation
shown in the figure. It is opposite to the orientation (n1, e2, n2, e3,
n3, e4, n4, e5, n5, e6, n6, e, n1). The edge e agrees with this latter
orientation and is opposite to the former orientation.

An orientation of a crossing edge set is an ordering of its end vertex
sets V1, V2 as (V1, V2) or as (V2, V1). An edge e in the crossing edge set
with positive end point in V1 and negative end point in V2 agrees with
the orientation (V1, V2) and is opposite to the orientation (V2, V1). In
Figure 2.6 the orientation of the crossing edge set is (V1, V2).

Theorem 2.2.8 (k) Let f be a forest of a directed graph G. Let et ∈ f
and let ec ∈ f . Let the orientation of L(ec, f) and B(et, f) agree with
ec, et, respectively. Then L(ec, f) ∩ B(et, f) = ∅ or {ec, et}.
Further when the intersection is nonvoid et agrees with (opposes) the
orientation of L(ec, f) iff ec opposes (agrees with) the orientation of
B(et, f).

34 3. GRAPHS

e2

e3

e4

e5

e6

n1

n2 n3

n4

n5

V 2

V1

e4
e3e2

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

e

e

Figure 2.6: Circuit subgraph and Crossing Edge Set with Orientations

Proof : We confine ourselves to the case where G is connected since
even if it is disconnected we could concentrate on the component where
et is present.
If B(et, f) is deleted from G, two connected subgraphs G1,G2 result
whose vertex sets are the end vertex sets V1, V2, respectively of B(et, f).
Now ec could have both end points in V1, both end points in V2, or one
end point in V1 and another in V2. In the former two cases L(ec, f) ∩
B(et, f) = ∅. In the last case L(ec, f) must contain et. For, the path in
the tree subgraph on f between the endpoints of ec must use et since
that is the only edge in f with one endpoint in V1 and the other in V2.
Now L(ec, f) contains only one edge, namely ec from f and B(et, f)
contains only one edge, namely et from f . Hence in the third case

L(ec, f) ∩ B(et, f) = {ec, et}.

Let us next assume that the intersection is nonvoid. Suppose that
ec has its positive end point a in V1 and negative end point b in V2.
Let (b, · · · , et, · · · , a, ec, b) be an orientation of the circuit. It is clear
that et would agree with this orientation if V2 contains its positive end
point and V1 its negative end point (see Figure 2.7). But in that case
ec would oppose the orientation of B(et, f) (which is (V2, V1), taken
to agree with the orientation of et). The other cases can be handled
similarly.

2.2. GRAPHS: BASIC NOTIONS 35

V1

V 2

a

b

ec
et
�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

Figure 2.7: Relation between f-circuit and f-cutset

2.2.8 Isomorphism

Let G1 ≡ (V1, E1, i1), G2 ≡ (V2, E2, i2), be two graphs. We say G1,
G2 are identical iff V1 = V2, E1 = E2 and i1 = i2. However, graphs
could be treated as essentially the same even if they satisfy weaker
conditions. We say G1, G2 are isomorphic to each other and denote
it by (abusing notation) G1 = G2 iff there exist bijections η : V1 → V2

and ǫ : E1 → E2 s.t. any edge e has end points a, b in G1 iff ǫ(e)
has endpoints η(a), η(b). If G1,G2 are directed graphs then we would
further require that an end point a of e, in G1, is positive (negative) iff
η(a) is the positive (negative) endpoint of ǫ(e). When we write G1 = G2

usually the bijections would be clear from the context. However, when
two graphs are isomorphic there would be many isomorphisms ((η, ǫ)
pairs) between them.

The graphs G,G′ in Figure 2.8 are isomorphic. The node and edge
bijections are specified by the (’). Clearly there is at least one other
(η, ǫ) pair between the graphs.

36 3. GRAPHS

e1

e2

e3 e4

e5

e’1e’2

e3

e4e5

a

b c

d

b’

a’

c’

d’

Figure 2.8: Isomorphic Directed Graphs

2.2.9 Cyclically connectedness

A graph G is said to be cyclically connected iff given any pair of
vertices there is a circuit subgraph containing them.

a

bc

G1 G2

Figure 2.9: Cyclically Connected and Cyclically Disconnected Graphs

2.3. GRAPHS AND VECTOR SPACES 37

Example: The graph G1 in Figure 2.9 is cyclically connected while G2

of the same figure is not cyclically connected since no circuit subgraph
contains both nodes a and b.
Whenever a connected graph is not cyclically connected there would
be two vertices a, b through which no circuit subgraph passes. If a, b
are not joined by an edge there would be a vertex c such that every
path between a and b passes through c. We then say c is a cut vertex
or hinge. The graph G2 of Figure 2.9 has c as a cut vertex.
It can be shown that a graph is cyclically connected iff any pair of
edges can be included in the same circuit.

In any graph it can be shown that if edges e1, e2 and e2, e3 be-
long to circuits C12, C23, then there exists a circuit C13 ⊆ C12 ∪ C23

s.t. e1, e3 ∈ C13. It follows that the edges of a graph can be parti-
tioned into blocks such that within each block every pair of distinct
edges can be included in some circuit and edges belonging to different
blocks cannot be included in the same circuit (each coloop would form
a block by itself). We will call such a block an elementary sepa-
rator of the graph. Unions of such blocks will be called separators.
The subgraphs on elementary separators will be called 2-connected
components.(Note that a coloop is a 2-connected component by it-
self). If two 2-connected components intersect they would do so at a
single vertex which would be a cut vertex. If two graphs have a single
common vertex, we would say that they are put together by hinging.

2.3 Graphs and Vector Spaces

There are several natural ‘electrical’ vectors that one may associate
with the vertex and edge sets of a directed graph G.

e.g. i. potential vectors on the vertex set,
ii. current vectors on the edge set,
iii. voltage (potential difference) vectors on the edge set.

Our concern will be with the latter two examples. We need a
few preliminary definitions. Henceforth, unless otherwise specified, by
graph we mean directed graph.

The Incidence Matrix

38 3. GRAPHS

The incidence matrix A of a graph G is defined as follows:
A has one row for each node and one column for each edge.

A(i, j) = +1(−1) if edge j has its arrow leaving (entering) node i.
0 if edge j is not incident on node i

or if edge j is a selfloop.

Example: The incidence matrix of the directed graph Gd in Figure
2.1 is

e1 e2 e3 e4 e5 e6 e7 e8

A =

a
b
c
d
f
g
h



























+1 +1 0 0 0 0 0 0
−1 0 +1 +1 0 0 0 0

0 −1 −1 0 +1 0 0 0
0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 +1 +1
0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0



























(2.1)

Note that the selfloop e6 is represented by a zero column. This is
essential for mathematical convenience. The resulting loss of informa-
tion (as to which node it is incident at) is electrically unimportant.
The isolated node h corresponds to a zero row. Since the graph is
disconnected the columns and rows can be ordered so that the block
diagonal nature of the incidence matrix is evident.

Exercise 2.25 (k) Prove:
A matrix K is the incidence matrix of some graph G iff it is a 0, ±1
matrix and has either zero columns or columns with one +1 and one
−1 and remaining entries 0.

Exercise 2.26 (k) Prove:
The sum of the rows of A is 0. Hence the rank of A is less than or
equal to the number of its rows minus 1.

Exercise 2.27 (k) Prove:
If the graph is disconnected the sum of the rows of A corresponding to
any component would add up to 0. Hence, the rank of A is less than
or equal to the number of its rows less the number of components (=
r(G)).

2.3. GRAPHS AND VECTOR SPACES 39

Exercise 2.28 (k) Prove:
If f = λTA, then f(ei) = λ(a) − λ(b) where a is the positive end point
of ei and b, its negative end point. Thus if λ represents a potential
vector with λ(n) denoting the potential at n then f represents the cor-
responding potential difference vector.

Exercise 2.29 Construct incidence matrices of various types of graphs
e.g. connected, disconnected, tree, circuit, complete graph Kn (every
pair of n vertices
joined by an edge), path.

Exercise 2.30 Show that the transpose of the incidence matrix of a
circuit graph, in which all edges are directed along the orientation of
the circuit, is a matrix of the same kind.

Exercise 2.31 (k) Show that an incidence matrix remains an inci-
dence matrix under the following operations:

i. deletion of a subset of the columns,

ii. replacing some rows by their sum.

2.3.1 The Circuit and Crossing Edge Vectors

A circuit vector of a graph G is a vector f on E(G) corresponding to
a circuit of G with a specified orientation:

f(ei) = +1(−1) if ei is in the circuit and agrees
with (opposes) the orientation of the circuit.

= 0 if ei is not in the circuit.

Example: The circuit vector associated with the circuit subgraph in
Figure 2.6

e e2 e3 e4 e5 e6

f =
[

−1 +1 −1 +1 −1 +1 0 . . . 0
]

(2.2)

Exercise 2.32 (k) Compare a circuit vector with a row of the inci-
dence matrix. Prove:
A row of the incidence matrix and a circuit vector will

40 3. GRAPHS

i. have no nonzero entries common if the corresponding node is not
present in the circuit subgraph, or

ii. have exactly two nonzero entries common if the node is present
in the circuit subgraph. These entries would be ±1. One of these
entries would have opposite sign in the incidence matrix row and
the circuit vector and the other entry would be the same in both.

Exercise 2.33 Prove

Theorem 2.3.1 (k) Every circuit vector of a graph G is orthogonal
to every row of the incidence matrix of G.

(This follows immediately from the statement of the previous exercise).
A crossing edge vector of a graph G is a vector f on E(G) corre-
sponding to a crossing edge set with a specified orientation (V1, V2):

f(ei) = +1(-1) if ei is in the crossing edge set and agrees
with (opposes) the orientation (V1, V2).

= 0 if ei is not in the crossing edge set.

If the crossing edge set is a cutset then the corresponding vector is a
cutset vector.

Example: The crossing edge vector associated with the crossing edge
set of Figure 2.6 is

e e2 e3 e4

f =
[

+1 −1 +1 +1 0 · · · 0
]

. (2.3)

Exercise 2.34 Prove

Theorem 2.3.2 (k) The crossing edge vector corresponding to the
crossing edge set of orientation (V1, V2) is obtained by summing the
rows of the incidence matrix corresponding to the nodes in V1.

Hence, a crossing edge vector of G is a voltage vector and is orthogonal
to every circuit vector of G. (This can also be proved directly).

Exercise 2.35 (k) When is a row of the incidence matrix also a cutset
vector? Can a cutset be a circuit? Can a cutset vector be a circuit
vector?

Exercise 2.36 (k) RRE of an Incidence Matrix:
Give a simple rule for finding the RRE of an incidence matrix.

2.3. GRAPHS AND VECTOR SPACES 41

2.3.2 Voltage and Current Vectors

For a graph G a current vector i is a vector on E(G) that is or-
thogonal to the rows of the incidence matrix of G, equivalently, that
satisfies Kirchhoff’s current equations (KCE): Ax = 0 [Kirchhoff1847].
A voltage vector v of G is a vector on E(G) that is linearly dependent
on the rows of the incidence matrix of G i.e.
vT = λTA for some vector λ.
The vector λ assigns a value to each node of G and is called a poten-
tial vector. We say v is derived from the node potential vector λ.
If c is a circuit vector corresponding to the circuit C with an orienta-
tion then the Kirchhoff’s Voltage Equation (KVE) [Kirchhoff1847]
corresponding to C is

cTx = 0

We now have the following basic characterization of voltage vectors,
which is the more conventional way of viewing voltage vectors:

Theorem 2.3.3 (k) A vector v on E(G) is a voltage vector iff it sat-
isfies KVE corresponding to each circuit with an orientation.

Proof : By Theorem 2.3.1 we know that a circuit vector is orthog-
onal to every row of the incidence matrix. Hence, a circuit vector is
orthogonal to any vector that is linearly dependent on the rows of the
incidence matrix i.e. orthogonal to a voltage vector. Hence, every volt-
age vector satisfies KVE corresponding to any circuit with orientation.
Now let v be a vector that satisfies KVE corresponding to every circuit
with an orientation. We will construct a potential vector λ s.t. λTA =
vT. Take any node d as the datum node, i.e., λ(d) ≡ 0. Suppose λ(a) is
already defined and edge e has a as the positive (negative) end and b as
the opposite end. Then we take λ(b) ≡ λ(a)−v(e)(λ(b) ≡ λ(a)+v(e)).
In this manner every node in the same connected component is assigned
a λ value. A node that is reachable from d by two different paths will
not be assigned two different values as otherwise we can find a circuit
with orientation for which KVE is violated. Repeating this procedure
for each component yields a λ vector s.t. λTA = vT.

2

Voltage vectors and current vectors form vector spaces denoted by

42 3. GRAPHS

Vv(G),Vi(G), and called voltage space of G and current space of G
respectively.

Observe that a vector that is orthogonal to the rows of the inci-
dence matrix is also orthogonal to all linear combinations of the rows.
Thus (Vv(G))⊥ is the same as the solution space of Kirchhoff’s current
equations. We thus have the following celebrated theorem.

Theorem 2.3.4 (Tellegen’s Theorem (strong form)) (Vv(G))⊥ =
Vi(G).

In the literature, the above theorem is often stated in its ‘weak form’,
viz., that any vector satisfying Kirchhoff’s voltage law for a given di-
rected graph is orthogonal to any vector satisfying Kirchhoff’s current
law for the same graph. In fact, the above theorem says in addition
that if a vector is orthogonal to every voltage vector of a graph, it must
be a current vector of the same graph.

Remark: When the graph is disconnected with components G1 . . .Gp

it is clear that both the current and voltage space can be written in the
form ⊕p

i=1V(Gi). However, in order to write the space in this decom-
posed form it is not necessary that the Gi be disconnected. All that
is required is that there be no circuit containing edges from different
Gi (see the discussion on separators). We say that graphs G1,G2 are
2-isomorphic and denote it by G1

∼= G2 iff there exists a bijection
∈: E(G1) → E(G2) through which an edge in G1 can be identified with
an edge in G2 so that Vv(G1) = Vv(G2).
Whitney [Whitney33c] has shown that two 2-isomorphic graphs can be
made isomorphic through the repeated use of the following operations:

i. Decompose the graphs into their 2-connected components.

ii. Divide one of the graphs into two subgraphs G ′ and G” which
have precisely two vertices, say a and b, in common. Split the
nodes into a1, a2 and b1, b2 so that the two subgraphs are now
disconnected with a1, b1, belonging to G′ and a2, b2 to G”. Let
G′

e be the graph obtained from G ′ by adding an edge e between
a1, b1. Now reverse all arrows of edges of G ′ which lie in the 2-
connected component containing e in G′

e and attach a1 to b2 and
a2 to b1.

2.3. GRAPHS AND VECTOR SPACES 43

2.3.3 Dimension of Voltage and Current Vector
Spaces

In this subsection, we compute the rank of Vv(G) and Vi(G).

Theorem 2.3.5 (k) Let G be a graph on n nodes with p connected
components. Then

i. Any set of (n−p) rows of A which omits one row per component
of G, is a basis of Vv(G).

ii. r(Vv(G)) = n − p

Proof :
If G is made up of p connected components, by (if necessary) rearrang-
ing the rows and columns of A it can be put in the block diagonal
form with p blocks. Hence, any union of linearly independent vectors
from different Ai would be linearly independent. We need to show that
dropping any row of Ai results in a set of linearly independent vectors.
So let us, without loss of generality, assume that G is connected and
select any (n − 1) rows of A. Suppose these are linearly dependent.
Then there is a non trivial linear combination of these rows which is a
zero vector. From this set of rows we omit all the rows which are being
multiplied by zeros. The remaining set of rows is nonvoid. Consider
the corresponding set of vertices say V1. This set does not contain all
vertices of the graph. Since the graph is connected there must be an
edge e with one end point in V1 and the other outside. The submatrix
of A with rows V1 has only one nonzero entry in the column e. Hence,
by multiplying these rows by nonzero scalars and adding we cannot
get a zero row. This contradiction shows that any (n − 1) rows of A
must be linearly independent. Since the sum of rows of A is a zero
vector, dropping one row of A results in a basis of Vv(G) when G is
connected and hence any set of (n−p) rows of A which omits one row
per component of G is a basis of Vv(G). Hence, r(Vv(G)) = n − p.

2

A reduced incidence matrix Ar of a graph G is obtained by
omitting one row belonging to each component of G.

44 3. GRAPHS

We know by Theorem 2.3.5 that the reduced incidence matrix is a
representative matrix for Vv(G). A standard representative matrix for
Vv(G) may be built as described below.

2.3.4 Fundamental cutset matrix of a forest f

We know by Theorem 2.2.7 that there is a unique cutset of a graph G
that intersects a forest f in an edge e. This we have called the funda-
mental cutset of e with respect to f and denoted it by B(e, f). We as-
sign this cutset an orientation agreeing with that of e. Let e1, e2, . . . , er

be the edges in the forest f and let v1, . . . ,vr be the corresponding
cutset vectors. A matrix which has v1, . . . ,vr as rows is called the
fundamental cutset matrix Qf of f . This matrix is unique within
permutation of rows and columns. By reordering rows and columns, if
required, this matrix can be cast in the form

f̄ f

Qf ≡
[

Q11 I
]

(2.4)

It is clear that Qf has | f | (= (n − p)) rows which are linearly inde-
pendent. Since a cutset vector is linearly dependent on the rows of the
incidence matrix A (Theorem 2.3.2) and r(A) = n− p, it follows that
Qf is a standard representative matrix for Vv(G).
Example: Consider the graph of Figure 2.10.
Let f≡{e3 e4 e5 e6 e7} and let f̄ = {e1 e2}.

e1 e2 e3 e4 e5 e6 e7

Qf =

















0 1 1 0 0 0 0
1 0 0 1 0 0 0
−1 −1 0 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1

















(2.5)

2.3.5 Fundamental circuit matrix of a forest f

We have already seen that addition of an edge e to a forest f creates a
unique circuit which we have called the fundamental circuit of e with

2.3. GRAPHS AND VECTOR SPACES 45

e3 e4

e5

e6
e7

e3 e4

e6 e7

e2 e1

e5e2 e1

Figure 2.10: f-cutsets and f-circuits

respect to f denoted by L(e, f). As before we assign this circuit an ori-
entation agreeing with that of e. Let e1, · · · , eν be edges in the coforest
f̄ . Let c1, · · · , cν be the corresponding circuit vectors. A matrix with
these vectors as rows is called the fundamental circuit matrix Bf

of f . This matrix is unique within permutation of rows and columns.
By reordering rows and columns, if required, this matrix can be cast
in the form

f̄ f
Bf ≡ [I B12]

It is clear that Bf has | f̄ | rows which are linearly independent. Since
a circuit vector is orthogonal to all the rows of the incidence matrix,
it must be a current vector. Thus rows of Bf are current vectors.
Example: Consider the graph in Figure 2.10. Here f ≡ {e3, e4, e5, e6, e7}
and f̄ ≡ {e1, e2}.

e1 e2 e3 e4 e5 e6 e7

Bf =

[

1 0 0 −1 +1 0 −1
0 1 −1 0 +1 −1 0

]

. (2.6)

Theorem 2.3.6 (k) Let G be a graph on e edges, n nodes and p con-
nected components. Then r(Vi(G)) = e − n + p.

Proof : By Theorem 1.2.5, r(Vv(G)) + r(Vv(G))⊥ = e
We have already seen that r(Vv(G)) = n − p. Hence r(Vv(G))⊥ =

46 3. GRAPHS

e−n+p. By Theorem 2.3.4, (Vv(G))⊥ = Vi(G). So r(Vi(G)) = e−n+p.
We have already seen that r(Vv(G)) = n − p.

2

Corollary 2.3.1 (k) The rows of an f-circuit matrix of a graph G form
a basis for the current space of G.

Exercise 2.37 (k) Examine which potential vectors correspond to a
zero voltage vector.

Exercise 2.38 Consider the column space C(A) of A. Show that
(C(A))⊥ is one dimensional if the graph is connected. Hence show
that r(A) = n − 1.

Exercise 2.39 (k) The following is another proof for ‘r(A) = n−1 if
the graph is connected’. If the graph is connected r(A) ≤ n − 1 since
the sum of the rows is zero. But Qf has n− 1 independent rows which
are linear combinations of rows of A. Hence r(A) = n − 1.

Exercise 2.40 An elementary vector of a vector space is a nonzero
vector with minimal support (subset on which it takes nonzero values).
Prove

Theorem 2.3.7 (k) The circuit vector (cutset vector) is an elemen-
tary current vector (elementary voltage vector) and every elementary
current vector (elementary voltage vector) is a scalar multiple of a cir-
cuit vector (cutset vector).

Exercise 2.41 Prove

Theorem 2.3.8 (k) A set of columns of A is linearly independent iff
the corresponding edges of the graph do not contain a circuit. A set
of columns of Bf is linearly independent iff the corresponding edges of
the graph do not contain a cutset.

Exercise 2.42 (k) Every standard representative matrix of Vv(G) (stan-
dard representative matrix of Vi(G)) is a fundamental cutset (funda-
mental circuit) matrix of G.

Exercise 2.43 An alternative proof of the strong form of Tel-
legen’s Theorem:
(k) Let Bf , Qf be the f-circuit and f-cutset matrix with respect to the
same forest. Prove:

2.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES47

i. BT
f Qf = 0

ii. If Bf = [I B12] then Qf = [−BT

12
I]. (Note that this implies

Theorem 2.2.8).

iii. Rows of Bf , Qf are current vectors (voltage vectors). Their
ranks add upto e(=| E(G) |). Hence, (Vi(G))⊥ = Vv(G).

Exercise 2.44 (k) Prove

Theorem 2.3.9 (k) The maximum number of independent KVE for
a graph is r(Vi(G))(= e − n + p).

2.4 Basic Operations on Graphs and Vec-

tor Spaces

In this section, we discuss basic operations on graphs (directed and
undirected) which correspond to open circuiting some edges and short
circuiting some others. These operations are related to two vector
space operations: restriction and contraction. Since real vector spaces
are associated primarily with directed graphs, henceforth we deal only
with such graphs, but, omit the adjective ‘directed’.

2.4.1 Restriction and Contraction of Graphs

Let G be a graph on the set of edges E and let T ⊆ E.

Definition 2.4.1 The graph Gopen(E − T) is the subgraph of G with
T as the edge set and V (G) as the vertex set. Thus Gopen(E − T) is
obtained by removing (deleting) edges in E−T leaving their end points
in place.
The restriction of G to T , denoted by G ·T, is the subgraph of G
obtained by deleting isolated vertices from Gopen(E − T). Thus, G · T
is the subgraph of G on T .
If G is directed, Gopen(E − T),G · T , would be directed with edges
retaining the original directions they had in G.

Definition 2.4.2 The graph Gshort (E − T) is built by first building
GopenT . Let V1, · · · , Vk be the vertex sets of the connected components

48 3. GRAPHS

of GopenT . The set {V1, · · · , Vk} is the vertex set and T is the edge
set of Gshort (E − T). An edge e ∈ T would have Vi, Vj as its end
points in Gshort (E − T) iff the end points of e in G lie in Vi, Vj. If G
is directed, Vi, Vj would be the positive and negative endpoints of e in
Gshort (E − T) provided the positive and negative end points of e in
G lie in Vi, Vj respectively.
(Thus, Gshort (E−T) is obtained from G by short circuiting the edges
in (E − T) (fusing their end points) and removing them).
The contraction of G to T, denoted by G × T , is obtained from
Gshort (E − T) by deleting the isolated vertices of the latter.

Example: Consider the graph G of Figure 2.11.
Let T = {e1, e6, e11}. The graph GopenT is shown in the figure. Graph
G · (E − T) is obtained by omitting isolated vertex v1 from GopenT .
Graph Gshort (E−T) is also shown in the same figure. Graph G×T is
obtained by omitting the isolated vertex { v8, v9 } from Gshort (E−T).

We denote (G×T1)·T2, T2 ⊆ T1 ⊆ E(G) by G×T1 ·T2 and (G·T1)×T2.
T2 ⊆ T1 ⊆ E(G) by G · T1 × T2. Graphs denoted by such expressions
are called minors of G. It can be seen that when a set A ⊆ E(G) is
being shorted and a disjoint set B ⊆ E(G), is being opened then the
final graph does not depend on the order in which these operations are
carried out but only on the sets A and B. Now G × T (G · T) differs
from Gshort (E−T) (Gopen(E −T)) only in that the isolated vertices
are omitted. We thus have the following theorem where equality refers
to isomorphism.

Theorem 2.4.1 (k) Let G be a graph with T2 ⊆ T1 ⊆ E(G). Then

i. G × T1 × T2 = G × T2,

ii. G · T1 · T2 = G · T2,

iii. G × T1 · T2 = G · (E − (T1 − T2)) × T2.

Proof : The theorem is immediate when we note that both graphs
are obtained by shorting and opening the same sets. In (i) E − T2 is
shorted while in (ii) E − T2 is opened. In (iii) E − T1 is shorted and
T1 − T2 is opened.

2

2.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES49

e1

e2 e3

e6

e7 e8

e9 e10

e12 e13

V1

V3

V4

V6

V7

V9

V8

V5

V2

e2 e3

V3

V4

e4 e5

e4 e5

e13e12

V8

V9

V1

V7

e9 e10

V6

V5

e8
e7

e11

e1

e6

V2, V3, V4

V8, V9

V5, V6, V7

e11

{ }
{ }

{ }

V1

G

GopenT

Gshort(E − T)

Figure 2.11: Minors of a Graph

50 3. GRAPHS

Exercise 2.45 (k) Simplification of Expression for minors:
Show that any minor of the form G×T1 ·T2×T3 . . . Tn, T1 ⊇ T2 ⊇ . . . ⊇
Tn

(the graph being obtained by starting from G and performing the oper-
ations from left to right in succession), can be simplified to a minor of
the form
G · T ′ × Tn or G × T

′ · Tn.

Exercise 2.46 Train yourself to visualize G1 ≡ Gshort (E − T) (Put
components of GopenT inside surfaces which then become nodes of G1).
How many components does it have? When would a branch of G become
a selfloop of G1? When would a circuit free set of branches of G become
dependent in G1?

Exercise 2.47 Circuits of minors: Prove

Lemma 2.4.1 (k)

i. A subset C of T is a circuit of G · T iff C is a circuit of G.

ii. A subset C of T is circuit of G×T iff C is a minimal intersection
of circuits of G with T (equivalently,iff C is an intersection of a
circuit of G with T but no proper subset of C is such an inter-
section).

Exercise 2.48 (k) Cutsets of minors: Prove

Lemma 2.4.2 (k)

i. A subset B of T is a cutset of G ·T iff it is a minimal intersection
of cutsets of G with T .

ii. A subset B of T is a cutset of G × T iff it is a cutset of G.

2.4.2 Restriction and Contraction of Vector Spaces

We now describe operations on vector spaces which are analogous to
the operations of opening and shorting edges in a graph.
Let V be a vector space on S and let T ⊆ S.

2.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES51

Definition 2.4.3 The restriction of V to T , denoted by V.T , is the
collection of vectors fT where fT is the restriction of some vector f of
V to T .
The contraction of V to T , denoted by V × T , is the collection of
vectors f ′T where f ′T is the restriction to T of some vector f of V such
that f/(S − T) = 0 .

It is easily seen that V · T , V × T are vector spaces.

As in the case of graphs we denote (V × T1) · T2 by V × T1 · T2.
Such expressions denote vector spaces which are called minors of V.
To bring out the analogy between graph minor and vector space minor
operations we say we ‘open’ T when we restrict V to (S − T) and say
we ‘short’ T when we contract V to (S − T).
It turns out that the order in which we open and short disjoint sets of
elements is unimportant. More formally we have

Theorem 2.4.2 (k) Let T2 ⊆ T1 ⊆ S. Then

i. V · T1 · T2 = V · T2,

ii. V × T1 × T2 = V × T2,

iii. V × T1 · T2 = V · (S − (T1 − T2)) × T2.

Proof of (iii): We show that a vector in the LHS belongs to a vector
in the RHS.
Let fT2

∈ V × T1 · T2.
Then there exists a vector fT1

∈ V × T1 such that fT1
/T2 = fT2

and a
vector f ∈ V with f/(S − T1) = 0 such that f/T1 = fT1

.
Now let f ′ denote f/(S − (T1 − T2)).
Clearly f ′ ∈ V · (S − (T1 − T2)). Now f ′/(S − T1) = 0.
Hence, f ′/T2 ∈ V · (S − (T1 − T2)) × T2.
Thus, V × T1 · T2 ⊆ V · (S − (T1 − T2)) × T2.
The reverse containment is similarly proved.

2

Remark: To see the proof of the above theorem quickly, observe that
a typical vector of both LHS and RHS is obtained by restricting a
vector of V, that takes zero value on S − T1, to T2.

52 3. GRAPHS

Exercise 2.49 (k) Prove:
Any minor of the form V × T1 · T2 × T3 . . . Tn, T1 ⊇ T2 ⊇ . . . ⊇ Tn, can
be simplified to a minor of the form

V · T ′ × Tn or V × T ′ · Tn.

2.4.3 Vector Space Duality

We now relate the minors of V to the minors of V⊥. We remind the
reader that V̂⊥, the complementary orthogonal space of V̂ is defined
to be on the same set as V̂. In the following results we see that the
contraction (restriction) of a vector space corresponds to the restriction
(contraction) of the orthogonal complement. We say that contraction
and restriction are (orthogonal) duals of each other.

Theorem 2.4.3 (k) Let V be a vector space on S and let T ⊆ S.
Then,

i. (V · T)⊥ = V⊥ × T.

ii. (V × T)⊥ = V⊥ · T.

Proof :
i. Let gT ∈ (V · T)⊥. For any f on S let fT denote f/T. Now if f ∈ V,
then fT ∈ V · T and < gT , fT > = 0.
Let g on S be defined by g/T ≡ gT , g/S − T ≡ 0. If f ∈ V we have

< f , g > = < fT , gT > + < fS−T , gS−T >

= 0+ < fS−T , 0S−T >

= 0.

Thus g ∈ V⊥ and therefore, gT ∈ V⊥ × T .Hence, (V . T)⊥ ⊆ V⊥ × T .
Next let gT ∈ V⊥ × T .
Then there exists g ∈ V⊥ s.t. g/S − T = 0 and g/T = gT .
Let fT ∈ V · T . There exists f ∈ V s.t. f/T = fT .
Now 0 =< f , g >=< fT , gT > + < fS−T , 0S−T > =< fT , gT >.
Hence, gT ∈ (V · T)⊥.
We conclude that
V⊥ × T ⊆ (V · T)⊥. This proves that (V · T)⊥ = V⊥ × T.

2.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES53

ii. We have (V⊥ · T)⊥ = (V⊥)⊥ × T .
By Theorem 1.2.5
((V⊥ · T)⊥)⊥ = V⊥ · T and (V⊥)⊥ = V. Hence, V⊥ · T = (V × T)⊥.

2

The following corollary is immediate.

Corollary 2.4.1 (k) (V × P · T)⊥ = V⊥ · P × T, T ⊆ P ⊆ S.

2.4.4 Relation between Graph Minors and Vector
Space Minors

We now show that the analogy between vector space minors and graph
minors is more substantial than hitherto indicated - in fact the minors
of voltage and current spaces of a graph correspond to appropriate
graph minors.

Theorem 2.4.4 (k) Let G be a graph with edge set E. Let T ⊆ E.
Then

i. Vv(G · T) = (Vv(G)) · T
ii. Vv(G × T) = (Vv(G)) × T

Proof : We remind the reader that by definition a voltage vector v is a
linear combination of the rows of the incidence matrix, the coefficients
of the linear combination being given by the entries in a potential
vector λ. We say v is derived from λ.
i. Let vT ∈ Vv(G · T)
Now Vv(G · T) = Vv(Gopen(E − T)).
Thus, vT ∈ Vv(Gopen(E−T)). The graph Gopen(E−T) has the same
vertex set as G but the edges of (E − T) have been removed.
Let vT be derived from the potential vector λ of Gopen(E − T). Now
for any edge e ∈ T , vT (e) = λ(a)−λ(b), where a, b are the positive and
negative end points of e. However, λ is also a potential vector of G.
Let the voltage vector v of G be derived from λ. For the edge e ∈ T ,
we have, as before, v(e) = λ(a)−λ(b). Thus, vT = v/T and therefore,
vT ∈ (Vv(G)) · T. Hence Vv(G · T) ⊆ (Vv(G)) · T .
The reverse containment is proved similarly.

54 3. GRAPHS

ii. Let vT ∈ Vv(G × T). Now Vv(G × T) = Vv(Gshort (E − T)).
Thus, vT ∈ Vv(Gshort (E − T)).
The vertex set of Gshort (E − T) is the set {V1, V2, . . . Vn} where Vi is
the vertex set of the ith component of GopenT. Let vT be derived from
the potential vector λ̂ in Gshort (E −T). The vector λ̂ assigns to each
of the Vi the value λ̂(Vi). Now define a potential vector λ on the nodes
of G as follows: λ(n) ≡ λ̂(Vi), n ∈ Vi. Since {V1, . . . Vk} is a partition
of V (G), it is clear that λ is well defined. Let v be the voltage vector
derived from λ in G. Whenever e ∈ E−T we must have v(e) = 0 since
both end points must belong to the same Vi.
Next, whenever e ∈ T we have v(e) = λ(a) − λ(b) where a is the
positive end point of e and b, the negative endpoint. Let a ∈ Va,
b ∈ Vb,where Va, Vb ∈ V (Gshort (E − T)). Then the positive endpoint
of e in Gshort (E − T) is Va and the negative end point, Vb.
By definition λ(a) − λ(b) = λ̂(Va) − λ̂(Vb).Thus v/T = vT . Hence,
vT ∈ (Vv(G)) × T . Thus, Vv(G × T) ⊆ (Vv(G)) × T . The reverse
containment is proved similarly, but using the idea, that if a voltage
vector is zero on all elements of E − T , then a potential vector from
which it is derived, must have the same value on all vertices of each
Vi, since these are vertex sets of componentsof GopenT .

2

Using duality we can now prove

Theorem 2.4.5 (k) Let G be a directed graph on edge set E. Let
T ⊆ E. Then,

i. Vi(G . T) = (Vi(G)) × T.

ii. Vi(G × T) = (Vi(G)) · T.

Proof :
i. Vi(G . T) = (Vv(G . T))⊥ by the strong form of Tellegen’s Theorem.
By Theorem 2.4.4, Vv(G . T) = (Vv(G)) · T.
Hence,

Vi(G . T) = ((Vv(G)) · T)⊥

= (Vv(G))⊥ × T

= Vi(G) × T.

2.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES55

ii. The proof is similar.

2

Exercise 2.50 (k) For a connected directed graph G on node set {v1, . . . , vk}
if currents J1, J2 . . . , Jk enter nodes v1, v2, . . . , vk show that
there exists a vector i on E(G), s.t. Ai = J
iff ΣJi = 0.

Exercise 2.51 Prove Theorem 2.4.5 directly. (Hint: the result of the
preceding exercise would be useful in extending a current vector of G×T
to a current vector of G).

2.4.5 Representative Matrices of Minors

As defined earlier, the representative matrix R of a vector space
V on S has the vectors of a basis of V as its rows. Often the choice
of a suitable representative matrix would give us special advantages.
We describe how to construct a representative matrix which contains
representative matrices of V . T and V × (S − T) as its submatrices.
We say in such a case that V . T and V × (S − T) become ‘visible’ in
R.

Theorem 2.4.6 (k) Let V be a vector space on S. Let T ⊆ S. Let R
be a representative matrix as shown below

T S − T

R =

[

RTT RT2

0 R22

]

(2.7)

where the rows of RTT are linearly independent. Then RTT is a rep-
resentative matrix for V . T and R22, a representative matrix for
V × (S − T).

Proof : The rows of RTT are restrictions of vectors on S to T . Hence,
any linear combination of these rows will yield a vector of V . T. If fT
is any vector in V . T there exists a vector f in V s.t. f/T = fT . Now f
is a linear combination of the rows of R. Hence, f/T (= fT) is a linear
combination of the rows of RTT . Further it is given that the rows of
RTT are linearly independent. It follows that RTT is a representative
matrix of V . T.

56 3. GRAPHS

It is clear from the structure of R (the zero in the second set of rows)
that any linear combination of the rows of R22 belongs to V × (S −T).
Further if f is any vector in V s.t. f/T = 0 then f must be a linear
combination only of the second set of rows of R. For, if the first set
of rows are involved in the linear combination, since rows of RTT are
linearly independent, f/T cannot be zero. We conclude that if f/(S−T)
is a vector in V × (S − T), it is linearly dependent on the rows of R22.
Now rows of R are linearly independent. We conclude that R22 is a
representative matrix of V × T .

2

Remark:To build a representative matrix of V with the form as in
Theorem 2.4.6, we start from any representative matrix of V and per-
form row operations on it so that under the columns T we have a
matrix in the RRE form.

The following corollary is immediate

Corollary 2.4.2 (k)

r(V) = r(V . T) + r(V × (S − T)) , T ⊆ S

Corollary 2.4.3 (k) Let G be a graph on E. Then

r(G) = r(G . T) + r(G × (E − T)) , ∀ T ⊆ E

Proof : We observe that r(G) = number of edges in a forest of G =
r(Vv(G)). The result follows by Theorem 2.4.4.

2

In the representative matrix of Theorem 2.4.6 the submatrix RT2 con-
tains information about how T, S −T are linked by V. If RT2 is a zero
matrix then it is clear that V = VT ⊕VS−T where VT ,VS−T are vector
spaces on T, S − T.

Definition 2.4.4 A subset T of S is a separator of V iff V × T =
V . T.

It is immediate that if T is a separator so is (S − T). Thus, we might
say that T, (S − T) are decoupled in this case. Now by definition
V . T ⊇ V×T. Hence, equality of the spaces follows if their dimensions
are the same. Hence, T is a separator iff r(V × T) = r(V . T).

2.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES57

The connectivity of V at T is denoted by ξ(T) and defined as follows:

ξ(T) ≡ r(V . T) − r(V × T)

It is easily seen that ξ(T) = ξ(S − T). Further, this number is zero if
T is a separator.

Exercise 2.52 (k)

i. Let
T1 T2 T3

R =







R11 R12 R13

R21 0 R23

0 0 R33





 (2.8)

Rows of R12 and

[

R11

R21

]

are given to be linearly independent.

Show that R33 is a representative matrix of V×T3, R12 of V . T2,
R21 of V . (T1 ∪ T2)× T1 as well as V × (T1 ∪ T3). T1 (and hence
these spaces must be the same).

ii. How would R look if V . (T1 ∪ T2) has T1, T2 as separators?

Exercise 2.53 (k) Let
T1 T2

R =







R11 0
R21 R22

0 R33





 . (2.9)

Suppose rows of
(

R11

R21

)

,

(

R22

R33

)

, are linearly independent. Show that the number

of rows of R22 = r(V . T2) − r(V × T2) (= r(V . T1) − r(V × T1)).

Exercise 2.54 (k) Prove:
Let ξ′(·) be the ξ(·) function for V⊥. Then ξ′(T) = ξ(T), ∀ T ⊆ S.

Exercise 2.55 (k) Show that the union of a forest of G × T and a
forest of G . (E − T) is a forest of G. Hence, (Corollary 2.4.3) r(G ×
T) + r(G . (E − T)) = r(G).

58 3. GRAPHS

Exercise 2.56 (k) Prove:
ν(G . T) + ν(G × (S − T) = ν(G).

Exercise 2.57 (k) Prove:
Let G be a graph on E. Then T ⊆ E is a separator of G (i.e., no circuit
intersects both T and E − T (Subsection 2.2.9) iff T is a separator of
Vv(G). Hence, T is a separator of G iff r(G . T) = r(G × T).

Exercise 2.58 Let T be a separator of G. Let G . T,G . (E − T) have
α1, α2 forests respectively, β1, β2 circuits respectively and γ1, γ2 cutsets
respectively. How many forests, coforests, circuits and cutsets does G
have?

2.4.6 Minty’s Theorem

Tellegen’s Theorem is generally regarded as the most fundamental re-
sult in Electrical Network Theory. There is however, another funda-
mental result which can be proved to be formally equivalent to Telle-
gen’s Theorem [Narayanan85c] and whose utility is comparable to the
latter. This is Minty’s Theorem (strong form) [Minty60], which we
state and prove below.

Theorem 2.4.7 (Minty’s Theorem (strong form)) Let G be a di-
rected graph.
Let E(G) be partitioned into red,blue and green edges. Let e be a green
edge.
Then e either belongs to a circuit containing only blue and green edges
with all green edges of the same direction with respect to the orienta-
tion of the circuit or e belongs to a cutset containing only red and
green edges with all green edges of the same direction with respect to
the orientation of the cutset but not both.

Proof: We first prove the weak form:

‘in a graph each edge is present in a directed circuit or
in a directed cutset but not both’

Proof of weak form: We claim that a directed circuit and a directed
cutset of the same graph cannot intersect. For, suppose otherwise.
Let the directed cutset have the orientation (V1, V2). The directed

2.4. BASIC OPERATIONS ON GRAPHS AND VECTOR SPACES59

circuit subgraph must necessarily have vertices in V1 as well as in V2 in
order that the intersection be nonvoid. But if we traverse the circuit
subgraph starting from the node in V1 we would at some stage crossover
into V2 by an edge e12 and later return to V1 by an edge e21. Now e12, e21

have the same orientation with respect to the circuit which means that
if one of them has positive end point in V1 and negative end point in
V2 the other must have the positive and negative end points in V2, V1,
respectively. But this contradicts the fact that they both belong to the
same directed cutset with orientation (V1, V2).

Next we show that any edge e must belong either to a directed circuit
or to a directed cutset. To see this, start from the negative end point n2

of the edge and reach as many nodes of the graph as possible through
directed paths. If through one of these paths we reach the positive end
point n1 of e we can complete the directed circuit using e. Suppose
n1 is not reachable through directed paths from n2. Let the set of all
nodes reachable by directed paths from n2 be enclosed in a surface.
This surface cannot contain n1 and has at least one edge, namely e
with one end inside the surface and one outside. It is clear that all
such edges must be directed into the surface as otherwise the surface
can be enlarged by including more reachable nodes. This collection
of edges is a directed crossing edge set and contains a directed cutset
which has e as a member (see Exercise 2.59). This completes the proof
of the weak form.

Proof of strong form: We open the red edges r and short the blue
edges b to obtain from G, the graph Gg on the green edge set g ,i.e.,
Gg = G×(E(G)−b) ·g. In this graph the weak form holds. Suppose the
edge e is part of a directed cutset in Gg. Then this is still a directed
cutset containing only green edges in G · (E(G)−r). (By Lemma 2.4.2,
a set C ⊆ T ⊆ E(G) is a cutset of G × T iff it is a cutset of G). It
would be a part of a red and green cutset in G when red edges are
introduced between existing nodes. On the other hand, suppose the
edge e is part of a directed circuit in Gg. Then this is still a directed
circuit containing only green edges in G × (E(G) − b). (By Lemma
2.4.1, a set C ⊆ T ⊆ E(G) is a circuit of G ·T iff it is a circuit of G). It
would be a part of a blue and green circuit in G when blue edges are
introduced by splitting existing nodes.
Thus, the strong form is proved.

60 3. GRAPHS

2

Exercise 2.59 (k) Let e be a member of a directed crossing edge set
C. Show that there exists a directed cutset C1 s.t. e ∈ C1 ⊆ C.

Exercise 2.60 (k) A Generalization: Prove:
Let V be a vector space on S over the real field and let e ∈ S. Then e is
in the support of a nonzero nonnegative vector f in V or in the support
of a nonzero nonnegative vector g in V⊥ but not in both.

Exercise 2.61 (k) Partition into strongly connected compo-
nents: Prove:
The edges of a directed graph can be partitioned into two sets - those
that can be included in directed circuits and those which can be included
in directed cutsets.

i. Hence show that
the vertex set of a directed graph can be partitioned into blocks
so that any pair of vertices in each block are reachable from each
other; partial order can be imposed on the blocks s.t. Bi ≥ Bj iff
a vertex of Bj can be reached from a vertex of Bi.

ii. Give a good algorithm for building the partition as well as the
partial order.

2.5 Problems

Problems on Graphs

Problem 2.1 (k) If a graph has no odd degree vertices,then it is possi-
ble to start from any vertex and travel along all edges without repeating
any edge and to return to the starting vertex. (Repetition of nodes is
allowed).

Problem 2.2 (k) Any graph on 6 nodes has either 3 nodes which are
pairwise adjacent or 3 nodes which are pairwise non-adjacent.

Problem 2.3 (k) A graph is made up of parallel but oppositely directed
edges only. Let T, E − T be a partition of the edges of G such that

2.5. PROBLEMS 61

i. if e ∈ T then the parallel oppositely directed edge e′ ∈ T .

ii. it is possible to remove from each parallel pair of edges in T (E −
T) one of the edges so that the graph is still strongly connected.

Show that it is possible to remove one edge from each parallel pair of
edges in G so that the graph remains strongly connected.

Problem 2.4 (k) We denote by Kn the graph on n nodes with a single
edge between every pair of nodes and by Km,n the bipartite graph (i.e.,no
edges between left vertices and no edges between right vertices) on m
left vertices and n right vertices, with edges between every pair of right
and left vertices.

i. How many edges do Kn,Km,n have?

ii. Show that every circuit of Km,n has an even number of edges.

iii. Show that Kn has nn−2 trees.

iv. A vertex colouring is an assignment of colours to vertices of the
graph so that no two of them which have the same colour are
adjacent. What is the minimum number of colours required for
Kn,Km,n?

Problems on Circuits

Problem 2.5 [Whitney35] Circuit Matroid: Show that the collec-
tion C of circuits of a graph satisfy the matroid circuit axioms:

i. If C1, C2 ∈ C then C1 cannot properly contain C2.

ii. If ec ∈ C1 ∩ C2, ed ∈ C1 − C2, then there exists C3 ∈ C and
C3 ⊆ C1 ∪ C2 s.t. ec /∈ C3 but ed does.

Problem 2.6 (k) Circuit Characterization:

i. A subset of edges C is a circuit of a graph iff it is a minimal set
of edges not intersecting any cutset in a single branch.

62 3. GRAPHS

ii. Same as (i) except ‘single branch’ is replaced by ‘odd number of
branches’.

iii. C is a circuit of a graph iff it is a minimal set of branches not
contained in any forest (intersecting every coforest).

Problem 2.7 (k) Cyclically Connected in terms of Edges: A
graph in which any two vertices can be included in a circuit subgraph
is said to be cyclically connected. In such a graph any two edges can
also be so included.

Problem 2.8 (k) Cut Vertex: A graph with no coloops is cyclically
connected iff it has no cut vertex (a vertex whose removal along with
its incident edges disconnects the graph).

Problems on Cutsets

Problem 2.9 (k) Cutset Matroid: Show that the collection of cut-
sets of a graph satisfies the circuit axioms of a matroid.

Problem 2.10 (k) Cutset Characterization:

i. A subset of edges C is a cutset of a graph iff it is a minimal set
of edges not intersecting any circuit in a single edge (in an odd
number of edges).

ii. C is a cutset of a graph iff it is a minimal set of branches not
contained in any coforest (intersecting every forest).

Problem 2.11 (k) Show that every crossing edge set is a disjoint
union of cutsets.

Problem 2.12 (k) Cyclically Connected in terms of Edges in
Cutsets: In a cyclically connected graph any two edges can be included
in a cutset.

Problems on Graphs and Vector Spaces

Problem 2.13 (k) Show directly that KCE of a tree graph has only
the trivial solution. What is the structure for which KVE has only the
trivial solution?

2.5. PROBLEMS 63

Problem 2.14 Rank of Incidence Matrix of a Tree Graph:
Give three proofs for ‘rank of incidence matrix of a tree graph = number
of edges of the graph’ using

i. the determinant of a reduced incidence matrix

ii. current injection

iii. by assuming branches to be voltage sources and evaluating node
potentials.

Problem 2.15 (k) Nontrivial KCE Solution and Coforest:
Prove directly that the support of every nonzero solution to KCE meets
every coforest. Hence, the rows of an f-circuit matrix of G span V i(G).
Hence, r(V i(G)) = e − (v − p).

Problem 2.16 (k) Nontivial KVE Solution and Forest:
Prove directly that the support of every nonzero solution to KVE meets
every forest. Hence, the rows of an f-cutset matrix of G span Vv(G).
Hence, r(Vv(G)) = (v − p).

Problem 2.17 (k) Determinants of Submatrices of Incidence
Matrix:
The determinant of every submatrix of the incidence matrix A is 0,
±1. Hence, this property also holds for every Qf and Bf .

Problem 2.18 Interpreting Current Equations:
Let A be an incidence matrix.

i. Find one solution to Ax = b, if it exists, by inspection (giving a
current injection interpretation).

ii. Find one solution to ATy = v by inspection (using voltage sources
as branches).

Problem 2.19 i. Let A be the incidence matrix of G. If Ax = b
is equivalent to Qfx = b̂, relate b̂ to b. Using current injection

give a simple rule for obtaining b̂ from b.

ii. If Qf1
x = b1, and Qf2

x = b2 are equivalent give a simple rule
for obtaining b1 from b2.

64 3. GRAPHS

iii. If Bf1
y = d1, and Bf2

y = d2 are equivalent give a simple rule
for obtaining d1 from d2.

Problem 2.20 If two circuit (cutset) vectors figure in the same f-
circuit (f-cutset) matrix show that the signs of the overlapping portion
fully agree or fully oppose. So overlapping f-circuits (f-cutsets) fully
agree or fully oppose in their orientations.

Problem 2.21 (k) Give simple rules for computing AAT ,BfB
T
f ,QfQ

T
f .

Show that the number of nonzero entries of AAT is 2e+n if the graph
has no parallel edges. Show that BfB

T
f ,QfQ

T
f may not have any zero

entries. Hence observe that nodal analysis is preferable to fundamental
loop analysis and fundamental cutset analysis from the point of view
of using Gaussian elimination.
(Consider the case where a single edge lies in every circuit (cutset)
corresponding to rows of Bf(Qf)).

Problem 2.22 Under what conditions can two circuit (cutset) vectors
of a given graph be a part of the same f-circuit (f-cutset) matrix?

Problem 2.23 (k) Construct good algorithms for building f-circuit
and f-cutset vectors for a given forest (use dfs or bfs described in Sub-
sections 2.6.1, 2.6.2). Compute the complexity.

Problem 2.24 Special Technique for Building a Representa-
tive Matrix of V i(G):
Prove that the following algorithm works for building a representative
matrix of V i(G):
Let G1 be a subgraph of G,
G2 be a subgraph of G s.t. E(G1) ∩ E(G2) is a forest of G1,
...
Gk be a subgraph of G s.t. E(Gk) ∩

[

⋃k−1
i=1 E(Gi)

]

is a forest of the sub-
graph
G ·

(

⋃k−1
i=1 E(Gi)

)

and let
⋃

E(Gi) = E(G).

Build representative matrices Rj for V i(Gj), j = 1, 2, · · ·k. Extend the
rows of Rj to size E(G) by padding with 0s. Call the resulting matrix

R̂j. Then R is a representative matrix for V i(G), where

2.5. PROBLEMS 65

R =









R̂1
...

R̂k









.

Problem 2.25 Equivalence of Minty’s and Tellegen’s Theo-
rems:
Prove that Minty’s Theorem (strong form) and Tellegen’s Theorem
(strong form) are formally equivalent.

Problems on Basic Operations of Graphs

Problem 2.26 (k) Let G be graph. Let K ⊆ E(G). Then

i. K is a forest of G · T iff it is a maximal intersection of forests of
G with T .

ii. K is a forest of G × T iff it is a minimal intersection of forests
of G with T .

iii. K is a forest of G × T iff K∪ (a forest of G · (S − T)) is a forest
of G.

iv. K is a coforest of G · T iff K∪ (a coforest of G × (S − T)) is a
coforest of G.

Problem 2.27 Relation between Forests Built According to
Priority and Graph Minors: Let A1, · · ·An be pairwise disjoint
subsets of G.

i. A forest f of G contains edges from these sets in the same priority
iff it is the union of forests from G · A1, G · (A1 ∪ A2) × A2,
G · (A1 ∪ A2 ∪ A3) × A3, · · · G × An.

ii. Suppose the graph has only such forests what can you conclude?

iii. What can you conclude if the priority sequence Ai, i = 1, · · ·n
and Aσ(i)i = 1, · · ·n for every permutation σ of 1, · · ·n yield the
same forests?

66 3. GRAPHS

Problem 2.28 (k) Show how to build an f-circuit (f-cutset) matrix of
G in which f-circuit (f-cutset) matrices of G ·T and G×(E−T) become
‘visible’ (appear as submatrices). Let T2 ⊆ T1 ⊆ E(G). Repeat the
above so that the corresponding matrix of G × T1 · T2 is ‘visible’.

Problem 2.29 (k) Suppose in an electrical network on graph G the
subset T is composed of current (voltage) sources. How will you check
that they do not violate KCL (KVL)?

2.6 Graph Algorithms

In this section we sketch some of the basic graph algorithms which we
take for granted in the remaining part of the book. The algorithms we
consider are

• construction of trees and forests of various kinds for the graph
(bfs, dfs, minimum spanning)

• finding the connected components of the graph

• construction of the shortest path between two vertices of the
graph

• construction of restrictions and contractions of the graph

• bipartite graph based algorithms such as for dealing with parti-
tions

• flow maximization in networks

The account in this section is very brief and informal. For more details
the readers are referred to [Aho+Hopcroft+Ullman74] [Kozen92]
[Cormen+Leiserson+Rivest90].

For each of the above algorithms we compute or mention the ‘asymp-
totic worst case complexity’ of the algorithm. Our interest is primarily
in computing an upper bound for the worst case running time of the
algorithm and sometimes also for the worst case storage space required
for the algorithm. A memory unit, for us, contains a single elementary

2.6. GRAPH ALGORITHMS 67

symbol (a number - integer or floating point, or an alphabet). Access-
ing or modifying such a location would be assumed to cost unit time.
Operations such as comparison, addition, multiplication and division
are all assumed to cost unit time. Here as well as in the rest of the
book we use the ‘big Oh’ notation:
Let f, g : N p → N where N denotes the set of nonnegative integers
and p is a positive integer. We say f is O(g) iff there exists a positive
integer k s.t. f(n) ≤ kg(n) for all n outside a finite subset of N p.

The time and space complexity of an algorithm to solve the prob-
lem (the number of elementary steps it takes and the number of bits
of memory it requires) would be computed in terms of the size of the
problem instance. The size normally refers to the number of bits
(within independently specified multiplying constant) required to rep-
resent the instance of the problem in a computer. It could be specified
in terms of several parameters. For example, in the case of a directed
graph with capacitated edges the size would be in terms of number of
vertices, number of edges and the maximum number of bits required
to represent the capacity of an edge. In general, the size of a set
would be its cardinality while the size of a number would be the
number of bits required to represent it. Thus, if n is a positive inte-
ger, log n would be its size – the base being any convenient positive
integer. All the algorithms we study in this book are polynomial time
(and space) algorithms, i.e., their worst case complexity can be writ-
ten in the form O(f(n1, · · · , np)) where f(·) is a polynomial in the ni.
Further, in almost all cases, the polynomials would have low degree
(≤ 5).

Very rarely we have used words such as NP-complete and NP-Hard.
Informally, a problem is in P if the ‘answer to it’ (i.e., the answer to
every one of its instances) can be computed in polynomial time (i.e.,
in time polynomial in the size of the instance) and is in NP if the cor-
rectness of the candidate answer to every instance of it can be verified
in polynomial time. It is clear that P ⊆ NP. However, although it is
widely believed that P 6= NP, a proof for this statement has not been
obtained so far. An NP-Hard problem is one which has the prop-
erty that if its answer can be computed in polynomial time, then we
can infer that the answer to every problem in NP can be computed in
polynomial time. An NP-Hard problem need not necessarily be in NP.

68 3. GRAPHS

If it is in NP, then it is said to be NP-complete. The reader inter-
ested in formal definitions as well as in additional details is referred to
[Garey+Johnson79], [Van Leeuwen90].

Exercise 2.62 A decision problem is one for which the answer is (yes
or no). Convert the problem ‘find the shortest path between v1 and v2

in a graph’ into a ‘short’ sequence of decision problems.

For most of our algorithms elementary data structures such as
arrays, stacks, queues are adequate. Where more sophisticated data
structures (such as Fibonacci Heaps) are used, we mention them by
name and their specific property (such as time for retrieval, time for
insertion etc.) that is needed in the context. Details are skipped and
may be found in [Kozen92].

Storing a graph: A graph can be stored in the form of a sequence
whose ith (composite) element contains the information about the ith

edge (names of end points; if edge is directed the names of positive
and negative end points). This sequence can be converted into another
whose ith element contains the information about the ith node (names
of incident edges, their other end points; if the graph is directed, the
names of out-directed and in-directed edges and their other end points.)
We will assume that we can retrieve incidence information about the
ith edge in O(1) time and about the (ith node) in O(degree of node i)
time. The conversion from one kind of representation to the other can
clearly be done in O(m + n) time where m is the number of edges and
n is the number of vertices.

Sorting and Searching: For sorting a set of indexed elements in or-
der of increasing indices, there are available, algorithms of complexity
O(n log n), where n is the number of elements [Aho+Hopcroft+Ullman74].
We use such algorithms without naming them. In such a sorted list of
elements to search for a given indexed element takes O(log n) steps by
using binary search.

2.6.1 Breadth First Search

A breadth first search (bfs) tree or forest for the given graph G
is built as follows:
Start from any vertex vo and scan edges incident on it.

2.6. GRAPH ALGORITHMS 69

Select these edges and put the vertices v1, v2 · · · vko which are adjacent
to vo in a queue in the order in which the edges between them and vo

were scanned.
Mark vo as belonging to component 1 and level 0. Mark v1, · · · , vko,
as belonging to component 1 and level 1 and as children of vo. Mark
the vertex vo additionally as a parent of its children (against each of
its children).
Suppose at any stage we have the queue vi1, · · · , vik and a set Mi of
marked vertices.
Start from the left end (first) of the queue, scan the edges incident
on it and select those edges whose other ends are unmarked. If a
selected edge is between vij and the unmarked vertex vum then the
former (latter) is the parent (child) of the latter (former).
Put the children of vi1 in the queue after vik and delete vi1 from the
queue.
Mark these vertices as belonging to the level next to that of vi1 and to
the same component as vi1 and as children of vi1 (against vi1). Mark
the vertex vi1 as a parent of its children (against its children).
Continue.
When the graph is disconnected it can happen that the queue is empty
but all vertices have not yet been marked. In this case continue the
algorithm by picking an unmarked vertex.
Mark it as of level 0 but as of component number one more than that
of the previous vertex. Continue.
STOP when all vertices of the graph have been marked.

At the conclusion of the above algorithm we have a breadth first
search forest made up of the selected edges and a partition of the ver-
tex set of the graph whose blocks are the vertex sets of the components
of the graph. The starting vertices in each component are called roots.
The level number of each vertex gives its distance from the root (tak-
ing the length of each edge to be one). The path in the forest from a
given vertex in a component to the root in the component is obtained
by travelling from the vertex to its parent and so on back to the root.

In a directed graph a bfs starting from any vertex would yield all
vertices reachable from it through directed paths. In this case, while
processing a vertex, one selects only the outward directed edges.

The complexity of the bfs algorithm is O(m + n) where m

70 3. GRAPHS

is the number of edges and n is the number of vertices. (Each edge
is ‘touched’ atmost twice. Each vertex other than the root is touched
when an edge incident on it is touched or when it is a new root. Except
where the root formation is involved the labour involved in touching
a vertex can always be absorbed in that of touching an edge. Each
touching involves a fixed number of operations).

The complexity of computing all the reachable vertices from
a given vertex or a set of vertices of a directed graph through bfs is
clearly also O(m + n).

2.6.2 Depth First Search

A depth first search (dfs) tree or forest for the given graph G is
built as follows:
Start from any vertex vo and scan the edges incident on it.
Select the first nonselfloop edge. Let v1 be its other end point. Put
vo, v1 in a stack. (A stack is a sequence of data elements in which
the last (i.e., latest) element would be processed first). Mark vo as be-
longing to component 1 and as having dfs number 0, v1 as belonging
to component 1 and as having dfs number 1. Mark vo as the parent
of v1 (against v1) and v1 as a child of vo (against vo).
Suppose at any stage, we have the stack vi1, · · · , vik and a set Mi of
marked vertices.
Start from the top of the stack, i.e., from vik and scan the edges in-
cident on it. Let e be the first edge whose other end point vi+1 is
unmarked. Select e. Mark vi+1 as of dfs number one more than that
of the highest dfs number of a vertex in Mi and of component number
same as that of vik. Mark (against vi+1) vik as its parent and (against
vik) vi+1 as one of its children. Add vi+1 to the top of the stack and
repeat the process.
Suppose vik has no edges incident whose other end points are un-
marked. Then delete vik from the stack (so that vi(k−1) goes to the
top of the stack).
Continue.
STOP when all vertices in the graph have been marked.
When the graph is disconnected it can happen that the stack is empty

2.6. GRAPH ALGORITHMS 71

but all vertices have not yet been marked. In this case continue the
algorithm by picking an unmarked vertex. Give it a dfs number 0 but
component number one more than that of the previous vertex.

At the conclusion of the above algorithm we have a depth first search
forest made up of the selected edges and a partition of the vertex set
of the graph whose blocks are the vertex sets of the components of the
graph. The starting vertices in each component are called roots. The
path in the forest from a given vertex in a component to the root in the
component is obtained by travelling from the vertex to its parent and
so on back to the root. The time complexity of the dfs algorithm
can be seen to be O(m + n) where m is the number of edges and n,
the number of vertices in the graph.

Exercise 2.63 (k) Let e be an edge outside a dfs tree of the graph.
Let v1, v2 be the end points of e with dfs numbering a, b respectively. If
b > a show that v1 is necessarily an ancestor of v2 (ancestor ≡ parent’s
parent’s ... parent).

The dfs tree can be used to detect 2-connected components of the
graph in O(m + n) time [Aho+Hopcroft+Ullman74]. It can be used
to construct the planar embedding of a planar graph in O(n) time
[Hopcroft+Tarjan74], [Kozen92]. There is a directed version of the
dfs tree using which a directed graph can be decomposed into strongly
connected components (maximal subsets of vertices which are mutually
reachable by directed paths). Using the directed dfs tree this can be
done in O(m + n) time [Aho+Hopcroft+Ullman74].

Fundamental circuits: Let t be a forest of graph G and let e ∈
(E(G) − t). To construct L(e, t) we may proceed as follows: Do a dfs
of G . t starting from any of its vertices. This would give a dfs number
to every vertex in G . t.
Let v1, v2 be the end points of e. From v1, v2 proceed towards the
root by moving from child to parent until you meet the first common
ancestor v3 of v1 and v2. This can be done as follows: Suppose v1 has
a higher dfs number than v2. Move from v1 to root until you reach
the first v′

1 whose dfs number is less or equal to that of v2. Now repeat
the procedure with v2, v

′
1 and so on alternately until the first common

vertex is reached. This would be v3. Then L(e, t) ≡ {e} ∪ { edges in
paths from v1 to v3 and v2 to v3}.
To build the circuit vector corresponding to L(e, t) proceed as follows:

72 3. GRAPHS

Let v1 be the positive end point and v2, the negative end point of e.
The path from v2 to v1 in the tree is the path from v2 to v3 followed by
the path from v3 to v1. The circuit vector has value +1 at e, 0 outside
L(e, t) and +1 (−1) at ej, if it is along (against) the path from v2 to
v1 in the tree. Complexity of building the L(e, t) is O(| L(e, t) |) and
that of building all the L(ei, t) is O(

∑ | L(e, t) |).
Exercise 2.64 How would you build the f-circuit for a bfs tree?

2.6.3 Minimum Spanning Tree

We are given a connected undirected graph G with real weights (w(·))
on its edges. The problem is to find a spanning tree of least total
weight (total weight = sum of weights of edges in the tree). We give
Prim’s algorithm for this purpose:
Choose an arbitrary vertex vo. Among the edges incident on vo select
one of least weight.
Suppose at some stage, X is the set of edges selected and V (X), the set
of their end points. If V (X) 6= V (G), select an edge e of least weight
among those which have only one end point in V (X).
Now replace X by X ∪ e and repeat.
Stop when V (X) = V (G).
The selected edges constitute a minimum spanning tree.

Exercise 2.65 Justify Prim’s algorithm for minimum spanning tree.

Complexity: Let n be the number of vertices and m, the number
of edges of the graph. The algorithm has n stages. At each stage
we have to find the minimum weight edge among the set of edges
with one end point in V (X). Such edges cannot be more than m in
number. So finding the minimum is O(m) and the overall complexity
is O(mn). However, this complexity can be drastically improved if we
store the vertices in (V (G) − V (X)) in a Fibonacci Heap. This data
structure permits the extraction of the minimum valued element in
O(log n) amortized time (where n is the number of elements in the
heap), changing the value of an element in O(1) amortized time and
deleting the minimum element in O(log n) amortized time. (Loosely, an
operation being of amortized time O(f(n)) implies that, if the entire
running of the algorithm involves performing the operation k times,

2.6. GRAPH ALGORITHMS 73

then the time for performing these operations is O(kf(n)).

For each vertex v in (V (G) − V (X)) the value is the minimum
of the weights of the edges connecting it to V (X). To pick a vertex of
least value we have to use O(log n) amortized time. Suppose v has been
added to V (X) and X replaced by X∪e, where e has v as one its ends.
Now the value of a vertex v′ in (V (G)− (V (X)∪ e)) has to be updated
only if there is an edge between v and v′. Throughout the algorithm this
updating has to be done only once per edge and each such operation
takes O(1) amortized time. So overall the updating takes O(m) time.
The extraction of the minimum valued element takes O(n log n) time
over all the n stages. At each stage the minimum element has to
be deleted from the heap. This takes O(log n) amortized time and
O(n log n) time overall. Hence, the running time of the algorithm is
O(m + n log n). (Note that the above analysis shows that, without the
use of the Heap, the complexity of Prim’s algorithm is O(n2)).

2.6.4 Shortest Paths from a Single Vertex

We are given a graph G, without parallel edges, in which each edge e
has a nonnegative length l(v1, v2), where v1, v2 are the end points of
e. If v1 = v2, then l(v1, v2) ≡ 0. The length of a path is defined to
be the sum of the lengths of the edges in the path.
The problem is to find shortest paths from a given vertex (called the
source) to every vertex in the same connected component of the graph.
We give Dijkstra’s Algorithm for this problem.
Start from the source vertex vo and assign to each adjacent vertex vi, a
current distance dc(vi) ≡ l(vo, vi). Mark, against each vi, the vertex
vo as its foster parent. (We will call vi, the foster children of vo).
Let v1 be the adjacent vertex to vo with the least value of dc(vi). De-
clare the final distance of v1, df(v1) ≡ dc(v1). Mark, against v1, the
vertex vo as its parent. (We will call v1, a child of vo).
(At this stage we have processed vo and marked its adjacent ver-
tices).
Assign a current distance ∞ to each unmarked vertex.
Suppose X ⊆ V (G) denotes the processed set of vertices at some stage.
For each neighbour vj ∈ (V (G) − X) of last added vertex vk,

Check if dc(vj) > df(vk) + l(vk, vj).

74 3. GRAPHS

If Yes, then
Mark, against vj , the vertex vk as its foster parent
(deleting any earlier mark, if present). (We will call vj, a foster

child of vk).
Set dc(vj) ≡ df(vk) + l(vk, vj).

Find a vertex vq ∈ (V (G) − X) with the least current distance dc(vq).
Declare vq to have been processed and its final distance df(vq) from vo

to be dc(vq). Mark, against vq, its foster parent uq as its parent (we
will call vq a child of uq).
Add vq to X. Repeat the procedure with X ∪ vq in place of X.
STOP when all vertices in the connected component of vo are pro-
cessed.

To find a shortest path from a processed vertex vj to vo, we travel
back from vj to its parent and so on, from child to parent, until we
reach vo.

Justification: To justify the above algorithm, we need to show that
the shortest distance from vo to vq (the vertex with the least current
distance in V (G) −X) is indeed df(vq). First, we observe that a finite
dc(v), and therefore df(v), for any vertex v is the length of some path
from vo to v. By induction, we may assume that for every vertex vin

in X, df(vin) = length of the shortest path from vo to vin. Note that
this is justified when X = {vo}. Suppose df(vq) is greater than the
length of a shortest path P (vo, vq) from vo to vq. Let P (vo, vq) leave X
for the first time at v3 and let the next vertex be vout ∈ (V (G) − X).
If vout = vq, we must have
df(vq) ≤ df(v3) + l(v3, vq) = length of P (vo, vq).
This is a contradiction. So vout 6= vq. Now
dc(vout) ≤ (df(v3) + l(v3, vout)) ≤ length of P (vo, vq).
Hence, dc(vout) < dc(vq) = df(vq), which contradicts the definition
of vq. We conclude that df(vq) must be the length of the shortest path
from vo to vq.

Complexity: Let n be the number of vertices and m, the number of
edges of the graph. This algorithm has n stages. At each stage we have
to compute dc(vj) for vertices vj adjacent to the last added vertex. This
computation cannot exceed O(m) over all the stages. Further at each
stage we have to find the minimum of dc(vi) for each vi in (V (G)−X).
This is O(n). So we have an overall complexity of O(n2 + m). Now

2.6. GRAPH ALGORITHMS 75

m ≤ n2. So the time complexity reduces to O(n2).
We note that the complexity of this algorithm reduces to O(m+n log n)
if the elements in V (G) − X are stored in a Fibonacci Heap (see
[Kozen92]).

2.6.5 Restrictions and Contractions of Graphs

Let G be a graph and let T ⊆ E(G). To build G . T , we merely pick
out the edge - end point list corresponding to T. This has complexity
O(| T |). (Note that the edges of T still bear their original index as in
the sequence of edges of G).
To build G×T we first build GopenT. The graph GopenT has G . (E(G)−
T) + remaining vertices of G as isolated vertices. Next we find the con-
nected components of GopenT. Let the vertex sets of the components
be X1, · · · , Xk. For each Xi, whenever v ∈ Xi, mark it as belonging to
Xi (some one vertex of Xi can represent Xi). Changing the names of
endpoints amounts to directing a pointer from vertices to the Xi that
they belong to. Now in the edge - end point list of T , for each edge
e, if v1, v2 are its (positive and negative) endpoints, and if v1 ∈ Xi,
v2 ∈ Xj, then replace v1 by Xi and v2 by Xj (GshortT has vertex set
(X1, · · · , Xk)).
The complexity of building GopenT is O(n+ | E − T |), where n is
the number of vertices of G, that of finding its components is O(n+ |
E−T |) (using dfs say). Changing the names of endpoints amounts to
directing a pointer from vertices to the Xi that they belong to. This
has already been done. So the overall complexity is O(n + m) where
m =| E(G) | .

Elsewhere, we describe methods of network analysis (by decompo-
sition) which require the construction of the graphs G . E1, · · · ,G . Ek

or G ×E1, · · · ,G ×Ek, where {E1, · · · , Ek} is a partition of E(G). The
complexity of building ⊕iG . Ei is clearly O(n + m), while that of
building ⊕iG × Ei is O(k(n + m)).

2.6.6 Hypergraphs represented by Bipartite Graphs

Hypergraphs are becoming increasingly important for modeling many
engineering situations. By definition, a hypergraph H is a pair

76 3. GRAPHS

(V (H), E(H)), where V (H) is the set of vertices of H and E(H), a
family of subsets of V (H) called the hyperedges of H. (We remind the
reader that in a family, the same member subset could be repeated with
distinct indices yielding distinct members of the family). The reader
would observe that undirected graphs are a special case of hypergraphs
(with the hyperedges having cardinality 1 or 2). The most convenient
way of representing a hypergraph is through a bipartite graph B ≡
(VL, VR, E) - a graph which has a left vertex set VL, a (disjoint)
right vertex set VR and the set of edges E each having one end in
VL and the other in VR. We could represent H by BH ≡ (VL, VR, E)
identifying V (H) with VL, E(H) with VR with an edge in the bipartite
graph between v ∈ VL and e ∈ VR iff v is a member of the hyperedge
e of H.

We can define connectedness for H in a manner similar to the way
the notion is defined for graphs. H is connected iff for any pair of ver-
tices v1, vf there exists an alternating sequence v1, e1, v2, e2, · · · , ef , vf ,
where the vi are vertices and ei, edges s.t. each edge has both the pre-
ceding and succeeding vertices as members. It is easily seen that H
is connected iff BH is connected. Hence, checking connectedness of H
can be done in O(| VL | + | VR | + | E |) time. Since everything about
a hypergraph is captured by a bipartite graph we confine our attention
to bipartite graphs in this book. The reader interested in ‘standard’
hypergraph theory is referred to [Berge73].

2.6.7 Preorders and Partial Orders

A preorder is an ordered pair (P,�) where P is a set and ‘ �’ is a
binary relation on P that satisfies the following:
x � x, ∀ x ∈ P ;
x � y, y � z ⇒ x � z , ∀ x, y, z ∈ P.
We can take the elements of P to be vertices and join x and y by an
edge directed from y to x if x � y. Let Gp be the resulting directed
graph on the vertex set P . Then the vertex sets of the strongly con-
nected components of GP are the equivalence classes of the preorder
(x, y belong to an equivalence class iff x � y and y � x).
Let P be the collection of equivalence classes. If X1, X2 ∈ P, we define
X1 ≤ X2 iff in the graph Gp, a vertex in X1 can be reached from a

2.6. GRAPH ALGORITHMS 77

vertex in X2. It is easily seen that this defines a partial order (Xi ≤
Xi; Xi ≤ Xj and Xj ≤ Xi iff Xi = Xj; Xi ≤ Xj, Xj ≤ Xk ⇒ Xi ≤ Xk).
This partial order (P,≤) is said to be induced by (P,�). By using
a directed dfs forest on the graph GP representing the preorder (P,�)
we can get a graph representation of the induced partial order in time
O(m + n) where m is the number of edges and n is the number of
vertices in GP [Aho+Hopcroft+Ullman74].

A partial order can be represented more economically by using a
Hasse Diagram. Here a directed edge goes from a vertex y to a vertex
x iff y covers x, i.e., x ≤ y, x 6= y and there is no z s.t. z 6= x and
z 6= y and x ≤ z ≤ y. An ideal I of (P,≤) is a collection of elements of
P with the property that if x ∈ I and y ≤ x then y ∈ I. The principal
ideal Ix in (P,≤) of an element x ∈ P is the collection of all elements
y ∈ P s.t. y ≤ x. Clearly an ideal is the union of the principal ideals of
its elements. A dual ideal Id is a subset of P with the property that
if x ∈ I and x ≤ z then z ∈ Id. Ideals and dual ideals of preorders
are defined similarly. The dual of a partial order (P,≤) is the partial
order (P,≥), where x ≥ y iff y ≤ x. We define the dual of a preorder
in the same manner. We use ≤ and ≥ interchangeably (writing y ≤ x
or x ≥ y) while speaking of a partial order or a preorder.

Preorders and partial orders are used repeatedly in this book (see
for instance Chapter ??).

Lattices

Let (P,≤) be a partial order. An upper bound of e1, e2 ∈ P is an
element e3 ∈ P s.t. e1 ≤ e3 and e2 ≤ e3.
A lower bound of e1 and e2 would be an element e4 ∈ P s.t. e4 ≤ e1

and e4 ≤ e2.
A least upper bound (l.u.b.) of e1, e2 would be an upper bound
eu s.t. whenever e3 is an upper bound of e1, e2 we have e3 ≥ eu. A
greatest lower bound (g.l.b.) of e1, e2 would be a lower bound el

s.t. whenever e4 is a lower bound of e1, e2 we have e4 ≤ el. It is easy
to see that if l.u.b. (g.l.b.) of e1, e2 exists, then it must be unique.
We denote the l.u.b. of e1, e2 by e1 ∨ e2 and call it the join of e1 and
e2. The g.l.b. of e1, e2 is denoted by e1 ∧ e2 and called the meet of e1

and e2. If every pair of elements in P has a g.l.b. and an l.u.b. we say

78 3. GRAPHS

that (P,≤) is a lattice. A lattice can be defined independently of a
partial order taking two operations ‘∨’ and ‘∧’ as primitives satisfying
the properties given below:
(idempotency) x ∨ x = x ∀ x ∈ P; x ∧ x = x ∀ x ∈ P.
(commutativity) x∨ y = y ∨ x ∀ x, y ∈ P; x∧ y = y ∧ x ∀ x, y ∈ P.
(associativity) (x ∨ y) ∨ z = x ∨ (y ∨ z) ∀ x, y, z ∈ P.

(x ∧ y) ∧ z = x ∧ (y ∧ z) ∀ x, y, z ∈ P.
(absorption) x ∧ (x ∨ y) = x ∨ (x ∧ y) = x ∀ x, y ∈ P.
The reader may verify that these properties are indeed satisfied by
g.l.b. and l.u.b. operations if we start from a partial order.
A lattice that satisfies the following additional property is called a dis-
tributive lattice.
(distributivity) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ∀ x, y, z ∈ P;

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ∀ x, y, z ∈ P.
e.g. The collection of all subsets of a given set with union as the join op-
eration and intersection as the meet operation is a distributive lattice.
(For a comprehensive treatment of lattice theory see [Birkhoff67]).

Exercise 2.66 Show that the collection of ideals of a partial order
form a distributive lattice under union and intersection.

2.6.8 Partitions

Let S be a finite set. A collection {S1, · · · , Sk} of nonvoid subsets of
S is a partition of S iff

⋃

i Si = S and Si ∩ Sj = ∅ whenever i, j are
distinct. If {S1, · · · , Sk} is a partition of S then the Si are referred to
as its blocks.
Let PS denote the collection of all partitions of S. We may define a
partial order (P,≤) on PS as follows: Let Π1, Π2 ∈ PS. Then Π1 ≤ Π2

(equivalently Π2 ≥ Π1) iff each block of Π1 is contained in a block of
Π2. We say Π1 is finer than Π2 or Π2 is coarser than Π1. If Πa, Πb

are two partitions of S, the join of Πa and Πb, denoted by Πa ∨Πb, is
the finest partition of S that is coarser than both Πa and Πb and the
meet of Πa and Πb denoted by Πa ∧ Πb, is the coarsest partition of S
that is finer than both Πa and Πb. It can be seen that these notions are
well defined: To obtain the meet of Πa and Πb we take the intersection
of each block of Πa with each block of Πb and throw away the empty
intersections. Observe that any element of S lies in precisely one such

2.6. GRAPH ALGORITHMS 79

intersection. Clearly, the resulting partition Πab is finer than both Πa

and Πb. Suppose Πc is finer than both Πa and Πb. Let Nc be a block
of Πc. Then Nc is contained in some block Na of Πa and some block
Nb of Πb. So Nc ⊆ Na ∩ Nb and hence Nc is contained in some block
of Πab. This proves that Πab is the meet of Πa and Πb and therefore,
that the ‘meet’ is well defined. Next let Π, Π′ be two partitions coarser
than Πa and Πb. It is then easy to see that Π∧Π′ is also coarser than
Πa and Πb. Hence there is a unique finest partition of S coarser than
Πa and Πb. Thus, the ‘join’ is well defined.

Storing partitions: We can store a partition by marking against an
element of S, the name of the block to which it belongs.

Building Πa ∧ Πb: When Πa, Πb are stored, each element of S would
have against it two names - a block of Πa and a block of Πb; a pair of
names of intersecting blocks of Πa, Πb can be taken to be the name of
a block of Πa ∧ Πb. Thus forming Πa ∧ Πb from Πa, Πb is O(| S |).
Building Πa∨Πb: We first build a bipartite graph B with blocks of Πa

as VL, blocks of Πb as VR with an edge between Na ∈ VL and Nb ∈ VR

iff Na ∩ Nb 6= ∅. It can be seen that this bipartite graph can be built
in O(| S |) time (For each element of S, check which blocks of Πa, Πb

it belongs to). We find the connected components of this bipartite
graph. This can be done in O(m + n) time where m is the number of
edges and n, the number of vertices in the bipartite graph. But both
m and n do not exceed | S | . So O(m + n) = O(| S |). Now we collect
blocks of Πa (or Πb) belonging to the same connected component of
B. Their union would make up a block of Πa ∨ Πb. (For, this block is
a union of some blocks K of Πa as well as a union of some blocks of
Πb. Union of any proper subset of blocks of K would cut some block
of Πb). This involves changing the name marked against an element
u ∈ S - instead of say Na, it would be Nv, which is the name of the
connected component of B in which Na is a vertex. Thus, building
Πa ∨ Πb is O(| S |).

2.6.9 The Max-Flow Problem

In this subsection we outline the max-flow problem and a simple solu-
tion for it. We also indicate the directions in which more sophisticated
solutions lie. In subsequent chapters we use max-flow repeatedly to

80 3. GRAPHS

model various minimization problems. Other than the flexibility in
modeling that it offers, the practical advantage of using the concept of
max-flow lies in the availability of efficient algorithms.

Let G be a directed graph. The flow graph (or flow network) F (G)
is the tuple (G, c, s,t) where c : E(G) → ℜ+ is a real nonnegative
capacity function on the edges of G and s and t are two vertices of G
named source and sink, respectively. A flow f associated with F (G)
is a vector on E(G) satisfying the following conditions:

i. f satisfies KCE at all nodes except s and t, i.e., at each vertex v
other than s, t, the net outward flow

∑

i

f(eouti) −
∑

j

f(einj) = 0

where eouti(einj) are the edges incident at v and directed out of
(directed into) v.

ii. the net outward flow at s is nonnegative, and at t, is non-positive.

iii. 0 ≤ f(e) ≤ c(e) ∀ e ∈ E(G).

(Often a flow is defined to be a vector satisfying (i) and (ii) above while
a feasible flow would be one that satisfies all three conditions). An
edge e with f(e) = c(e) is said to be saturated with respect to f. The
value of the flow f, denoted by | f |, is the net outward flow at s. A flow
of maximum value is called a max-flow. An s,t-cut (cut for short) is
an ordered pair (A, B), where A, B are disjoint complementary subsets
of V (G) s.t. s ∈ A and t ∈ B. The capacity of the cut (A, B), denoted
by c(A, B) is the sum of the capacities of edges with positive end in A
and negative end in B. A cut of minimum capacity is called a min-
cut. The flow across (A, B) denoted by f(A, B), is the sum of the
flows in the ‘forward’ edges going from A to B minus the sum of the
flows in the ‘backward’ edges going from B to A.

Example: Figure 2.12 shows a flow graph. Alongside each directed
edge is an ordered pair with the second component indicating the ca-
pacity of the edge. A feasible flow f is defined on this flow graph with
f(e) being the first component of the ordered pair alongside e. The
reader may verify that the net flow leaving any node other than the

2.6. GRAPH ALGORITHMS 81

f

(4 , 6)

(1 , 4)

(5
 , 5

)

(4 , 4)

(2 , 4)

(6 , 7)

(1 , 5)

(3 ,3)(3 , 5)

(0 , 5)

(2 , 5)

(0 , 4)

S

t

(0 , 4)

BA

a

b

gc

d

Figure 2.12: A Flow Graph with a max-flow and a min-cut

source s and the sink t is zero. At s there is a net positive outward
flow (= 7) and at t there is a net negative outward flow (= −7). Let
A ≡ {s, a, b, c, d} and let B ≡ {g, f, t}. Then (A, B) is an s, t cut. It
can be verified that f(A, B) = 4+3−0 = 7. Observe that the forward
edges (c, g) and (d, f) of the cut (A, B) are saturated while the back-
ward edge (g, d) carries zero flow. It is clear that in the present case
f(A, B) = c(A, B). From the arguments given below it would follow
that the given flow has the maximum value, i.e, is a max-flow and that
the cut (A, B) is a min-cut, i.e., has minimum capacity.

Clearly the flow across an s,t-cut (A, B) cannot exceed the capacity
of (A, B), i.e., f(A, B) ≤ c(A, B). Let (A, B) be an s,t-cut. If we add
the outward flows at all nodes inside A we would get the value f(A, B)
(flow of each edge with both ends within A is added once with a (+)
sign and another time with a (−) sign and hence cancels) as well as | f |
(at all nodes other than s the net outward flow is zero). We conclude
that | f |= f(A, B).

Let f be a flow in F (G). Let P be a path oriented from s to t.
Suppose it is possible to change the flow in the edges of P , without
violating capacity constraints, as follows: the flow in each edge e of P is
increased (decreased) by δ > 0 if e supports (opposes) the orientation
of P.

82 3. GRAPHS

Such a path is called an augmenting path for the flow f. Observe
that this process does not disturb the KCE at any node except s, t. At
s, the net outward flow goes up by δ, while at t, the net inward flow
goes up by δ. Thus, if f ′ is the modified flow, | f ′ |=| f | +δ. This is the
essential idea behind flow maximization algorithms.

It is convenient to describe max-flow algorithms and related re-
sults in terms of the residual graph Gf associated with the flow f .
The graph Gf has the vertex set V (G). Whenever e ∈ E(G) and
f(e) < c(e), Gf has an edge e+ between the same end points and in
the same direction as e; and if 0 < f(e), Gf has an edge e− in the
opposite direction as e. Note that both e+ and e− may be present in
Gf . The edge e+ has the residual capacity rf (e+) ≡ c(e) − f(e)
and the edge e− has the residual capacity rf(e−) ≡ f(e).
We note that a directed path P from s to t in the residual graph Gf

corresponds to an augmenting path in F (G) with respect to f . Hence-
forth we would call such a path P in Gf also, an augmenting path
of f . The maximum amount by which the flow can be increased using
this augmenting path is clearly the minimum of the residual capacities
of the edges of P. This value we would call the bottle neck capacity
of P.

We now present a simple algorithm for flow maximization. This
algorithm is due to Edmonds and Karp [Edmonds+Karp72].

ALGORITHM 2.1 Algorithm Max-Flow
INPUT A flow graph F (G) ≡ (G, c, s, t).

OUTPUT(i) A maximum valued flow fmax for F (G).
(ii) A min-cut (A, B) s.t. | fmax |≡ c(A, B).

Initialize Let f be any flow of F (G) (f could be the zero flow for
instance).

STEP 1 Draw the residual graph Gf . Do a directed bfs starting from
s.

2.6. GRAPH ALGORITHMS 83

STEP 2 If t is reached, we also have a shortest augmenting path
P . Compute the bottle neck capacity δ of P. Increase the
flow along P by δ. Let f ′ be the new flow. Set f ≡ f ′ and
GOTO STEP 1.

If t is not reached, let A be the set of all vertices reached
from s and let B ≡ V (G) − A. Declare fmax ≡ f , min-cut to
be (A, B).

STOP.

Justification of Algorithm 2.1

We need the following

Theorem 2.6.1 (Max-Flow Min-Cut Theorem [Ford+Fulkerson56],
[Ford+Fulkerson62])

i. The flow reaches its maximum value iff there exists no augment-
ing path.

ii. The maximum value of a flow in F (G) is the minimum value of
the capacity of a cut.

Proof : If a flow has maximum value it clearly cannot permit the
existence of an augmenting path. If there exists no augmenting path
the directed bfs from s in the residual graph will not reach t. Let A be
the set of all vertices reached from s and let B be the complement of A.
All edges with one end in A and the other in B must be directed into A
as otherwise the set of reachable vertices can be enlarged. Now consider
the corresponding edges of F (G). Each one of these edges, if forward
(away from A), must have reached full capacity, i.e., be saturated and
if backward (into A), must have zero flow. But then, for this cut,
f(A, B) = c(A, B). Since for any flow f and any cut (A′, B′), we have
| f |= f(A′, B′) ≤ c(A′, B′), we conclude that f is a maximum flow.
This completes the proof of (i).
Since | f |= c(A, B) and | f |≤ c(A′, B′) for any cut (A′, B′), it is clear
that c(A, B) is the minimum capacity of a cut of F (G). This proves
(ii).

84 3. GRAPHS

2

The integral capacity case: We can justify the above algorithm for
the case where capacities are integral quite simply. Let M be the
capacity of the cut ({s}, V (G) − s). The bottle neck capacity of any
augmenting path is integral. Whenever we find an augmenting path
we would increase the flow by an integer and Theorem 2.6.1 assures
us that if we are unable to find an augmenting path we have reached
max-flow. Thus, in atmost M augmentations we reach maximum flow.
This justification also proves the following corollary.

Corollary 2.6.1 If the capacity function of a flow graph is integral,
then there exists a max-flow in the flow graph which is integral.

Complexity

We consider the integral capacity case. Each augmentation involves
a directed bfs. This is O(m) in the present case. Hence, the overall
complexity of Algorithm Max-Flow is O(Mm), where m ≡| E(G) | .

It is not obvious that Algorithm Max-Flow would terminate for
real capacities. However, it can be shown that it does. Since the
augmenting path is constructed through a bfs it is clear that it has
minimum length. Edmonds and Karp [Edmonds+Karp72] have shown
that if the shortest augmenting path is chosen every time, there are
atmost mn augmentations. So the overall complexity of Algorithm
Max-Flow is O(m2n).

Exercise 2.67 [Edmonds+Karp72] In Algorithm Max-Flow, if the short-
est augmenting path is chosen every time, show that there are atmost
mn augmentations.

We mention a few other algorithms which are faster. These are
based on Dinic’s Algorithm [Dinic70]. This algorithm proceeds in
phases, in each of which, flow is pushed along a maximal set of short-
est paths. Each phase takes O(mn) effort. The total number of phases
is bounded by the length L of the longest s − t path in G (Clearly
L ≤ n). So the overall complexity is O(Lmn) .
The MPM Algorithm [MPM78] has the same number of phases as
Dinic’s Algorithm. But each phase is O(n2). So the overall complexity
is O(Ln2).

2.6. GRAPH ALGORITHMS 85

The Sleator Algorithm [Sleator80], [Sleator+Tarjan 83] computes each
phase in O(m log n) time and has an overall complexity O(Lm log n).
(Usually the above complexities are stated with n in place of L). For
a comprehensive treatment of flow algorithms the reader is referred to
[Ahuja+Magnanti+Orlin93].

The Nearest Source Side and Sink Side Min-Cuts

When combinatorial problems are modelled as max-flow problems, usu-
ally the cuts with minimum capacity have physical significance. Of
particular interest would be minimum capacity cuts (A, B) where A or
B is minimal. Below we show that these cuts are unique. Further, we
show that computing them, after a max-flow has been found, is easy.
We begin with a simple lemma.

Lemma 2.6.1 (k) Let (A1, B1), (A2, B2) be two minimum capacity cuts.
Then (A1 ∪A2, B1 ∩B2) and (A1 ∩A2, B1 ∪B2) are also minimum ca-
pacity cuts.

Proof : Let f(A) ≡ sum of the capacity of edges with one end in A
and directed away from A, A ⊆ V (G).
Later, in Chapter ?? (see Exercise ??, Examples ??,??) we show that
f(·) is submodular, i.e.,

f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) ∀ X, Y ⊆ V (G).

Now if X, Y minimize f(·), the only way the above inequality can be
satisfied is for f(·) to take the minimum value on X ∪ Y, X ∩ Y also.
This proves the lemma.

2

The following corollary is now immediate.

Corollary 2.6.2 Let F (G) ≡ (G, c, s, t). Then F (G) has a unique
min-cut (A, B) in which A is minimal (B is minimal).

We will call the min-cut (A, B) nearest source side (sink side)
min-cut iff A is minimal (B is minimal). To find the nearest source
side (sink side) min cut we proceed as follows
Algorithm Source (Sink) Side Min-Cut: First maximize flow and
let f be the max-flow output by the algorithm. Draw the residual graph

86 3. GRAPHS

Gf . Do a directed bfs in Gf starting from s and proceeding forward.
Let As be the set of all vertices reachable from s. Then (As, V (G)−As)
is the desired nearest source side min-cut.
Let G−

f denote the directed graph obtained from Gf by reversing all
arrows. The nearest sink side min-cut is obtained by doing a directed
bfs starting from t in G−

f . Let Bt be the set of all vertices reachable
in G−

f from t. Then (V (G) − Bt, Bt) is the desired nearest sink side
min-cut.

In order to justify the above algorithms we first observe that when
we maximize flow for each min-cut (A, B) we would have f(A, B) =
c(A, B). Thus, if (A, B) is a min-cut, all the forward edges from A to
B would be saturated and all the backward edges from A to B would
have zero flow. Therefore, in the residual graph Gf all edges across the
cut would be directed into A. Now s ∈ A and doing a bfs starting from
s we cannot go outside A. Hence, if (A, B) is a min-cut As ⊆ A, where
As is the set of all vertices reachable from s in Gf . But (As, V (G)−As)
is a min-cut. Hence, (As, V (G)−As) is the nearest source side min-cut.
The justification for the sink side min-cut algorithm is similar. (Note
that the above justification provides an alternative proof that min-cuts
(A, B), where A or B is minimal, are unique).

The complexity of the above algorithms is O(m). So if they are
added to the max-flow algorithms the overall complexity would not
increase.

2.6.10 Flow Graphs Associated with Bipartite Graphs

Many optimization problems considered in this book are based on bi-
partite graphs. Usually they reduce to max- flow problems on a flow
graph derived from the bipartite graph in a simple manner. We give
below a brief account of the situation and standardize notation.

Let B ≡ (VL, VR, E) be a bipartite graph. The flow graph F (B, cL, cR)
associated with B with capacity cL(·)⊕cR(·) is defined as follows:

cL(·), cR(·) are nonegative real functions on VL, VR respectively. (They
may therefore be treated as weight vectors). Each edge e ∈ E is di-
rected from VL to VR and given a capacity ∞. Additional vertices

2.6. GRAPH ALGORITHMS 87

(source) s and (sink) t are introduced. Directed edges (s, vL), (vR, t)
are added for each vL ∈ VL and each vR ∈ VR. The capacity of the
edge (s, vL) is cL(vL), vL ∈ VL and the capacity of the edge (vR, t) is
cR(vR), vR ∈ VR. Figure 2.13 illustrates the construction of this flow
graph.

CL
 (V

L1
)

VL2

CL
 (V

)
L2

C
L (V

L3)

C
L (V

L4) VL3

VL4 VR4

VR3
C R

)

 (
V R

4

VR2

C
R (V)R2

CR

)
 (V R3

s t

VL1 VR1

CR (VR1)

Figure 2.13: The Flow Graph associated with B

Let Γ(X) denote the set of vertices adjacent to the vertex subset
X ⊆ VL ⊎ VR in the bipartite graph B. Let cL(Z) (cR(Z)) denote the
sum of the values of cL(·) (cR(·)) on elements of Z. The cut corre-
sponding to X ⊆ VL is the cut (s⊎X ⊎ Γ(X), t⊎ (VL −X)⊎ (VR −
Γ(X))) (see Figure 2.14). We now have the following simple theorem
which brings out the utility of the flow formulation.

Theorem 2.6.2 (k) Let B, cL(·), cR(·), F (B, cL, cR) be as defined above.

i. The capacity of the cut corresponding to X, X ⊆ VL, is cL(VL −
X) + cR(Γ(X)).

ii. Z ⊆ VL minimizes the expression cL(VL−X)+cR(Γ(X)), X ⊆ VL,
iff the cut corresponding to Z is a min-cut of F (B, cL, cR).

iii. There is a unique maximal subset Zmax and a unique minimal set
Zmin which minimize the above expression. Let cR(·) be strictly

88 3. GRAPHS

C L
 (V L

)

L VR

V

X

LC (VL − X)

VL− X

S t

Γ(X)

VR − Γ(X)

CRΓ(X)

Figure 2.14: The Cut corresponding to X in the Flow Graph associated
with B

positive. Then the cuts corresponding to Zmax, Zmin are respec-
tively the nearest sink side and the nearest source side min-cuts
of F (B, cL, cR).

Proof :
i. This is immediate (see Figure 2.14).

ii. We will first show that there exist min-cuts which are cuts corre-
sponding to some X1 ⊆ VL.

Let (s⊎X1⊎Y, t⊎(VL−X1)⊎(VR−Y)) be a min-cut of F (B, cL, cR),
where X1 ⊆ VL, Y ⊆ VR. Since this is a min-cut, no infinite capacity
edge must pass from s⊎X1⊎Y to its complement. This means that any
edge leaving X1 must terminate in Y , i.e., Γ(X1) ⊆ Y. The capacity of
the cut is cL(VL−X1)+cR(Y). Now consider the cut (s⊎X1⊎Γ(X1), t⊎
(VL − X1) ⊎ (VR − Γ(X1))). The capacity of this cut is cL(VL − X1) +
cR(Γ(X1)) ≤ cL(VL − X1) + cR(Y), (cL, cR are nonnegative vectors).
Thus the cut corresponding to X1, is a min cut.
Let Z minimize the expression cL(VL − X) + cR(Γ(X)), X ⊆ VL, and
let the cut corresponding to Z ′ ⊆ VL be a min-cut of F (B, cL, cR).
The capacity of this cut is cL(VL − Z ′) + cR(Γ(Z ′)). So cL(VL − Z) +
cR(Γ(Z)) ≤ cL(VL −Z ′)+ cR(Γ(Z ′)). However the LHS is the capacity

2.6. GRAPH ALGORITHMS 89

of the cut corresponding to Z. Since the cut corresponding to Z ′ is a
min cut we must have cL(VL − Z) + cR(Γ(Z))
≥ cL(VL − Z ′) + cR(Γ(Z ′)). We conclude that the two capacities are
equal. Therefore Z ′ minimizes cL(VL − X) + cR(Γ(X)), X ⊆ VL, and
the cut corresponding to Z is a min-cut.

iii. The nearest source side min-cut can be seen to be corresponding to
some subset X1 of VL even if cR(·) is nonnegative, but, not necessarily,
strictly positive.
Now let cR(·) be strictly positive.
The nearest sink side min-cut is obtained by travelling backward from
t through all unsaturated arcs to reach TR ⊆ VR and then backwards
to Γ(TR) ⊆ VL. The cut that we obtain by this process is (s ⊎ X2 ⊎
(VR − TR), t ⊎ Γ(TR) ⊎ TR) where X2 ≡ VL − Γ(TR). It is clear that
Γ(X2) ⊆ VR−TR. Suppose Γ(X2) ⊂ VR−TR. Then the capacity of the
cut corresponding to X2 = cL(VL − X2) + cR(Γ(X2))
< cL(VL −X2)+ cR(VR −TR), since cR is strictly positive. The RHS of
the above inequality is the capacity of the min-cut (s⊎X2⊎(VR−TR), t⊎
Γ(TR) ⊎ TR) - a contradiction. We conclude that Γ(X2) = VR − TR, so
that the nearest sink side min-cut corresponds to X2.

We know that X1, X2 minimize the expression cL(VL−X)+cR(Γ(X)),
X ⊆ VL. Let A ⊂ s ⊎ X1 ⊎ Γ(X1) and let B be the complement of
A with respect to VL ⊎ VR ⊎ {s, t}. Then (A, B) cannot be a min-cut
(using the justification for the Algorithm Source Side Min Cut). Also
s ⊎ X1 ⊎ Γ(X1) is the unique set with the above property. It follows
that X1 is the unique minimal set s.t.
(s⊎X1⊎Γ(X1), t⊎(VL−X1)⊎(VR−Γ(X1))) is a min-cut. Hence, X1 is
the minimal set that minimizes cL(VL−X)+cR(Γ(X)). The proof that
X2 is the maximal set that minimizes the above expression is similar.

2

Remark: The expression that was minimized in the above proof is
a submodular function. We shall see later, in Chapter ??, that such
functions always have a unique minimal and a unique maximal set
minimizing them.

90 3. GRAPHS

Complexity of Max-Flow Algorithms for Bipartite Graph Case

Finally we make some observations on the complexity of the max flow
algorithms when the flow graph is associated with a bipartite graph.
We note that, in this case, the longest undirected path from s to
t is O(min(| VL |, | VR |)) , since every path from s to t has to alternate
between vertices of VL, VR. So the number of phases for Dinic’s (and
related) algorithms would be O(min(| VL |, | VR |)). Therefore the
overall complexities of the algorithms for this case would be

Dinic′s − O(mn(min(| VL |, | VR |)))
MPM − O(n2(min(| VL |, | VR |)))

Sleator − O(m logn(min(| VL |, | VR |))).

Here, n, m refer to the total number of vertices and edges respectively
in the flow graph. So
n =| VL | + | VR | +2 and m =| E | + | VL | + | VR | .

Exercise 2.68 [Menger27] In any graph, show that the number of arc
disjoint paths, between any pair of vertices s and t, is the number of
branches in a min-cut separating s and t.

2.7 Duality

Duality is a useful concept often met with in mathematics, e.g. dual-
ity of vector spaces and spaces of functionals, duality of partial orders,
duality of functions and Fourier transforms etc. When we encounter
it we need to know why it arises and how to use it. The duality that
one normally deals with in electrical network theory, arises because the
voltage and current spaces of graphs are complementary orthogonal.
(For other examples of duality that one encounters within electrical
network theory see [Iri+Recski80]). In this section we discuss infor-
mally how to dualize statements about graphs, vector spaces (and
therefore, implicitly, electrical networks) and also as to when we may
expect the dual of a true statement to be true.

Let V be a vector space on S. We associate with V

i. a set of operations each of which converts V to a vector space on

2.7. DUALITY 91

a subset of S - a typical operation is (S − T1, T1 − T2)(·), T2 ⊆
T1 ⊆ S, where

(S − T1, T1 − T2)(V) ≡ V . T1 × T2;

ii. classes of objects:

• class of forests

• class of coforests

• class of circuits

• class of cutsets

• primal vectors (vectors in V)

• dual vectors (vectors in V⊥).

Remark: For convenience we generalize the usual definitions of forest,
coforest, circuit, cutset etc. to vector spaces. The reader may verify
that, if V were replaced by Vv(G), these definitions do reduce to the
usual definitions in terms of graphs. A forest of V is a maximally
independent subset of columns of a representative matrix of V, a co-
forest of V is the complement, relative to the set of columns of the
representative matrix, of a forest, a circuit of V is a minimal set that
is not contained in any forest of V, while a cutset of V is a minimal
set that is not contained in any coforest of V. The classes of coforests,
circuits and cutsets are used for convenience. Actually any one of the
four classes can be treated as primitive and the rest expressed in terms
of it.

Now we list the results which ‘cause’ duality.

i. (V⊥)⊥ = V , equivalently, x is a primal vector for V iff it is a dual
vector for V⊥.

ii. (V . T1 ×T2)
⊥ = V⊥×T1 ·T2 = V⊥ · (S − (T1 −T2))×T2, i.e., the

operation (S − T1, T1 − T2)(·) holds the same place relative to V,
that the operation (T1 − T2, S − T1)(·) holds, relative to V⊥. We
say (S − T1, T1 − T2)(·) is dual to (T1 − T2, S − T1)(·).

iii. (later we add one more operation which includes all the above,
namely, that of generalized minor)

(VS ↔ VP)⊥ = V⊥
S ↔ V⊥

P , P ⊆ S.

92 3. GRAPHS

iv. T is a forest (coforest) of V iff T is a coforest (forest) of V⊥.

v. C is a circuit (cutset) of V iff C is a cutset (circuit) of V⊥.

Let us consider how to ‘dualize’ a statement about a vector space
and the associated set of operations and classes of objects. Our pro-
cedure requires that the statement to be dualized be in terms of the
primitive objects and operations, associated with a vector space, that
we described above. Consider the statement
i. ‘A subset is a circuit of V × T iff it is a minimal intersection of a
circuit of V with T ’.
The first step is to write the statement in terms of V⊥ :
‘A subset is a circuit of V⊥ × T iff it is a minimal intersection of a
circuit of V⊥ with T ’.
Next we try to express the sets of objects involved in terms of the ap-
propriate complementary orthogonal space. Thus ‘circuit of V⊥ × T ’
becomes ‘cutset of (V⊥ × T)⊥ ’ and ‘circuit of V⊥ ’ becomes ‘cutset of
(V⊥)⊥ ’ we thus obtain the dual of (i):
id. ‘A subset is a cutset of V . T iff it is a minimal intersection of a
cutset of V with T ’.

The above procedure will yield a true (false) dual statement if we
start with a true (false) statement. However, as we mentioned before,
the statement that we start with must involve only the ‘primitives’ viz.
the sets of operations and the classes of objects.

Next let us consider the case of (directed) graphs. We associate with
a graph, a vector space, namely, its voltage space. Given a statement
about graphs we first see whether it can be written entirely in terms
of its voltage space. If so, then we dualize it and interpret the dual
statement in terms of graphs. For instance consider the statement
ii. ‘A subset is a circuit of G × T iff it is a minimal intersection of a
circuit of G with T ’.
This statement can be written entirely in terms of Vv(G). If we substi-
tute V in place of Vv(G) in this latter statement, we get the statement
(i) above. Its dual is (id). Now we resubstitute Vv(G) in place of V.
This gives us
‘A subset is a cutset of Vv(G) · T iff it is a minimal intersection of a
cutset of Vv(G) with T ’.
Interpreting this statement in terms of G gives us

2.7. DUALITY 93

iid. ‘ A subset is a cutset of G . T iff it is a minimal intersection of a
cutset of G with T ’.
The above procedure could fail in the beginning when we try to write
the statement about G as a statement about Vv(G) or when we replace
Vv(G) by a general V (all Vv(G) satisfy properties that all V do not).
It could also fail when we replace V by Vv(G) in the dual statement.

Here are a couple of examples of statements which cannot be dual-
ized by our procedure.

i. ‘Let G be a connected graph and let f be a forest of G. Then there
exists a unique path between any given pair of vertices using the edges
of f alone ’.
The procedure fails because ‘path’ and ‘vertices’ cannot be extended
to vector spaces.

ii. ‘There exists a graph G that has the given sets of edges C1, · · · , Cn

as circuits’.
We can extend this to Vv(G), thence to V , and dualize the statement
involving V . This statement would be:
‘There exists a vector space V that has the given sets of edges C1, · · · , Cn

as cutsets’.
The procedure can fail if we replace V by Vv(G) since the latter state-
ment may be false.

Exercise 2.69 What are the duals of the following?

i. rank function of a graph

ii. r(·) where r(T) ≡ dim(V . T)

iii. ξ(·), where ξ(T) ≡ dim(V . T) − dim(V × T)

iv. Closed sets of a graph (a subset of edges is closed if its rank is
less than that of any proper superset)

v. selfloops

vi. coloops

vii. separators of V

viii. separators (2 connected components) of a graph.

94 3. GRAPHS

Exercise 2.70 Dualize the following statements. Assuming the truth
of the original statement, comment on the truth of the dual.

i. A coforest is a minimal set that intersects every circuit.

ii. A circuit is a minimal set that intersects every coforest.

iii. Every ring sum of circuits of G is a disjoint union of circuits.
(C1 +r · · ·+r Cn is the set of all elements which occur in an odd
number of the Ci).

iv. Let C1, C2 be circuits of G and let ec ∈ C1∩C2 and e1 ∈ C1−C2.
Then there exists a circuit C3 of G s.t. e1 ∈ C3 ⊆ C1 ∪ C2 − ec.

v. Let G be a graph and let E(G) be partitioned into E1, · · · , En. Let
f be a forest of G which has as many edges as possible of E1, then
as many as possible of E2 · · · upto En. Then f ∩Ej is a forest of
G . (

⋃j
i=1 Ei) × Ej , j = 1, · · · , k.

vi. Let G be a graph. Let E ≡ E(G) be partitioned into sets A, B.
Then L ⊆ B is a minimal set such that G . (E − L) has A as a
separator iff

(a) r(G × (A ∪ L)) = r(G . A).

(b) L has no self loops in G × (A ∪ L).

vii. Let V be a vector space on S and let S be partitioned into A, B.
Let K ⊆ A be s.t. V × (E −K) has B as a separator. If x on S
is s.t. x/A ∈ V . A, x/B ∪ K ∈ V . (B ∪ K), then x ∈ V .

Remark: i. We have described a ‘sufficient’ procedure for dualiza-
tion. If the procedure fails we cannot be sure that the ‘dual’ statement
is necessarily false. The procedure is, however, applicable wherever
duality is found - we merely have to use the appropriate dual objects
and operations.

ii. If we restrict ourselves to the class of planar graphs we have the
interesting result that there exists a graph G∗ s.t. Vi(G) = Vv(G∗). In
this case a wider range of statements can be dualized. In particular
there is the notion of ‘mesh’ or ‘window’ that is dual to that of a vertex.
In this book we do not exploit ‘planar duality’.

2.8. NOTES 95

2.8 Notes

Graph theory means different things to different authors. The kind of
graph theory that electrical networks need was developed systemati-
cally (for quite different reasons) by Whitney [Whitney32], [Whitney33a],
[Whitney33b], [Whitney33c]. In this chapter the emphasis has been
on the topics of direct use to us later on in the book. We have fol-
lowed, in the main, [Seshu+Reed61] and [Tutte65] for the sections
dealing with graphs, their representations and operations on graphs
and vector spaces. For the section on graph algorithms we have used
[Aho+Hopcroft+Ullman74] and [Kozen92]. For a recent survey of
graph algorithms, the reader is referred to
[Van Leeuwen90].

2.9 Solutions of Exercises

E 2.1: If the graph is disconnected concentrate on one component of
it. For this component there are (n− 1) possible values for the degree
of a node and n vertices if n > 1.

E 2.2:
i. If we add all the degrees (counting self loops twice) each edge is
being counted twice.

ii. The sum of all degrees is even. So is the sum of all even degrees.
So the sum of odd degrees is even and therefore the number of odd
degree vertices is even.

E 2.3: (Sketch) Start from any vertex vo and go to a farthest vertex.
If this vertex is deleted there would still be paths from vo to remaining
vertices.

E 2.4:
i. circuit graphs disconnected from each other;
ii. add the edge between a non-terminal vertex and another vertex of
the path;
iii. a single edge with two end points;
iv. a graph with only self loop edges.

E 2.5: Consider the graph obtained after deleting the edge e. If v1, v2

96 3. GRAPHS

are two vertices of this graph, there must have been a path P1 between
them in the original graph. If this path had no common vertex with
the circuit subgraph it would be present in the new graph also. So let
us assume that it has some common vertices with the circuit subgraph.
If we go along the path from v1 to v2 we will encounter a vertex of the
circuit graph for the first time (say the vertex a) and a vertex of the
circuit graph for the last time (say b). In the circuit subgraph there is
a path P2 between a and b which does not have e as an edge. If we
replace the segment in P1 between a and b by P2, we would get a path
P3 in the new graph between v1 and v2.

E 2.6: Let P1, P2 be the two paths between nodes a, b. We start from
node a and go along P1, P2 towards b until we reach a vertex say c
after which the two paths have different edges. (Note that the vertex
c could be a itself). From c we follow P1 towards b until we reach a
vertex say d which belongs also to P2. Such a vertex must exist since b
belongs both to P1 and to P2. From d we travel back towards a along
P2. The segments c to d along P1 and d to c along P2 would constitute
a circuit subgraph since it would be connected and every vertex would
have degree 2.

E 2.7: If the graph has a self loop then that is the desired circuit.
Otherwise we start from any vertex a and travel outward without re-
peating edges. Since every vertex has degree ≥ 2 if we enter a vertex
for the first time we can also leave it by a new edge. Since the graph is
finite we must meet some vertex again. We stop as soon as this hap-
pens for the first time. Let c be this vertex. The segment (composed
of edges and vertices) starting from c and ending back at c is a circuit
subgraph.

E 2.8: (a) A graph made up of self loops only.
(b) A single edge with two end points.

E 2.10: A cutset is a set of crossing edges. Hence, it contains a minimal
set of edges which when deleted increases the number of components of
the graph. Consider any edge set C with the given property. It should
be possible to partition the vertices of the graph into two subsets so
that all edges between the two subsets are in C since deletion of C
increases the number of components of the graph. Thus, we have two
collections of subsets each member of which contains a member of the
other. Hence, minimal members of both collections must be identical.

2.9. SOLUTIONS OF EXERCISES 97

E 2.11: All edges are parallel. There may be isolated vertices.

E 2.12:
i. Deletion of T must increase the number of components. Minimality
implies that only one of the components should be split.

ii. if the subgraphs on V1, V2 are not connected deletion of T would
increase the number of components by more than one. On the other
hand, if subgraphs on V1, V2 are connected the set of edges between
them must constitute a cutset because their deletion increases the
number of components and deletion of a proper subset will leave a
connected subgraph with vertex set V1 ∪ V2.

E 2.13:
i. There must be at least one path because of connectedness. More
than one path would imply the presence of a circuit by Theorem 2.2.1.

ii. The tree graph cannot have only nodes of degree greater or equal
to two as otherwise by Theorem 2.2.2 it will contain a circuit. Hence,
it has a node a of degree less than two. Now if it has more than one
node, because of connectedness, a has degree one. If we start from a
and proceed away from it we must ultimately reach a node b of degree
one since the graph is finite and repetition of a node would imply two
distinct paths between some two nodes.

E 2.14: Proof of Theorem 2.2.4: The trivial single node graph
with no edges is a tree graph. The graph on two nodes with an edge
between them is also a tree graph. It is clear that in these cases the
statement of the theorem is true. Suppose it is true for all tree graphs
on (n − 1) nodes. Let t be a tree graph of n nodes. This graph, by
Theorem 2.2.2, has a vertex v of degree less than two. If n > 1, since t
is connected, this vertex has degree 1. If we delete this vertex and the
single edge incident on it, it is clear that the remaining graph t′ has no
circuits. It must also be connected. For, if nodes v1, v2 have no path
in t′, the path between them in t uses v as a nonterminal node which
therefore has degree ≥ 2 in t-a contradiction. Thus t′ is a tree graph
on (n − 1) nodes. By induction it has (n − 2) edges. So t has (n − 1)
edges. On the other hand, let G be a connected graph on n nodes with
(n − 1) edges. If it contains a circuit, by Lemma 2.2.1 we can delete
an edge of the circuit without destroying connectedness of the graph.
Repeating this procedure would ultimately give us a graph on n nodes

98 3. GRAPHS

that is connected but has no circuits. But this would be a tree graph
with (n − 1) edges. We conclude that G must itself be a tree graph.
Proof of Corollary 2.2.1: The number of edges =

∑p
i=1(ni − 1),

where ni is the number of nodes of the ith component.

E 2.15: We will only show that maximality implies the subset is
a forest (coforest). Suppose the set is maximal with respect to not
containing a circuit. Then it must intersect each component of the
graph in a tree. For, if not, atleast one more edge can be added without
the formation of a circuit. This proves the set is a forest.
Next suppose a set L is maximal with respect to not containing a
cutset. Removal of such a set from the graph would leave at least a
forest of the graph. However, it cannot leave more edges than a forest
for in that case the remaining graph contains a circuit. Let e be in this
circuit. Deletion of L ∪ e cannot disconnect the graph and so L ∪ e
contains no cutset – this contradicts the maximality. So removal of L
leaves precisely a forest.

E 2.16: Deletion of the edges in a cutset increases the number of com-
ponents in the graph. Hence, every forest must intersect the cutset
(otherwise the corresponding forest subgraph would remain when the
cutset is deleted and would ensure that the number of components re-
mains the same).
Removal of edges of a coforest must destroy every circuit as other-
wise the corresponding forest would contain a circuit. So a coforest
intersects every circuit of the graph.

E 2.17: Proof of Lemma 2.2.2: Let a, b be the end points of the
edge e being deleted. Let Va, Vb be the set of all vertices which can
be reached from a, b respectively, by paths in the tree graph which
do not use e. Suppose node v is not in Va or Vb. But the connected
component containing v cannot meet Va or Vb (otherwise v can be
reached from a or b by a path) and hence, even if e is put back v
cannot be connected to Va ∪ Vb by a path. But this would make the
tree graph disconnected. We conclude that Va ∪ Vb is the vertex set of
the tree graph. The subgraphs on Va, Vb are connected and contain no
circuits and are therefore tree graphs.

E 2.18: Let a, b be the end points of the edge e being contracted. It
is clear that the graph after contraction of an edge e is connected. If it
contains a circuit graph this latter must contain the fused node {a, b}.

2.9. SOLUTIONS OF EXERCISES 99

But if so there exists a path in the original tree graph between a, b
which does not use e. This is a contradiction.

E 2.19: Proof of Theorem 2.2.6: Let fG denote the subgraph
of G on f . By the definition of a forest subgraph, between the end
points of e say n1, n2 there must be a path, say P in fG. Addition
of e to fG creates precisely two paths between n1, n2, namely, P and
the subgraph on e. The path P has n1, n2 of degree 1 and remaining
vertices of degree two. Hence addition of e to P will create a connected
subgraph in which every vertex has degree two. Now this must be the
only circuit subgraph created when e is added to f. For if there are two
such subgraphs, e must be a part of both of them since f contains no
circuit. Hence they and therefore, fG must have distinct paths between
n1, n2 which do not use e. But then by Theorem 2.2.1 there must be
a circuit subgraph in fG - a contradiction.

E 2.20: Proof of Theorem 2.2.7: We will prove the result for a con-
nected graph first. Deletion of an edge of a tree graph must increase
its connected components by one by Lemma 2.2.2. Deletion of e ∪ f̄
from the given graph G is equivalent to first deleting f̄ and then, in
the resulting tree subgraph fG on f , deleting e. Therefore, the number
of connected components must increase precisely by one when e∪ f̄ is
deleted. Let a, b be the endpoints of e and let Va, Vb be the vertex sets
of the tree subgraphs (which do not however correspond to trees of G)
that result when the edge e is deleted from fG, equivalently, when e∪ f̄
is deleted from G. Any crossing edge set that e∪ f̄ contains must have
Va, Vb as end vertex sets. There is only one such. We conclude that
e ∪ f̄ contains only one crossing edge set. This must be a cutset since
the subgraphs on Va, Vb are connected.
If the graph were disconnected, when e∪ f̄ is deleted, only one compo-
nent say Ge which contains e would be split. Since any cutset contained
in e ∪ f̄ is contained in Ge we could argue with Ge in place of G and
the subset of f in Ge in place of f . So the theorem would be true in
this case also.

E 2.21: Let C be a circuit. Let e ∈ C. Then C − e does not contain
a circuit and can be grown to a forest of G. C is an f-circuit of this
forest.

E 2.22: Let B be a cutset with e ∈ B. By minimality, deletion of
B − e will not increase the number of components of the graph, i.e.,

100 3. GRAPHS

there is a forest remaining when B − e is deleted. So B − e can be
included in a coforest and B is an f-cutset of the corresponding forest.

E 2.23: Let f̂ be a forest subgraph of the given graph containing edge
e of cutset C.This is possible since e is not a self loop. Contraction
of this edge would convert f̂ to a forest subgraph f of the new graph.
The number of edges in the coforest would not have changed.

E 2.25: Given such a matrix associate a vertex with each row and
an edge with each column. The edge has an arrow leaving the vertex
(row) where its column has a +1 and entering the vertex (row) where
its column has a −1. If the column has only zeros the corresponding
edge is a self loop incident on any of the vertices.

E 2.31: The matrix retains the property given in Exercise 2.25 when
these operations are performed.

E 2.35:
i. When the vertex v is not a cutvertex (i.e., a vertex which lies
in every path between some two vertices a, b of the graph which are
distinct from itself). In this case deletion of the edges incident at the
vertex would break up the graph into atleast three components viz. v
alone, component containing a and component containing b.

ii. Consider a graph made up of only two parallel edges.

iii. No. It then has to be orthogonal to itself. Over the real field this
would imply that it has null support.

E 2.36: Scan the columns from left. Pick the first column correspond-
ing to a non-selfloop edge. If k columns (edges) have been picked, pick
the next column to be corresponding to the first edge which does not
form a circuit with previously picked edges. Continue until all columns
are exhausted. This gives us a forest of the graph. The f-cutset matrix
of this forest with columns in the same order as before and rows such
that an identity matrix appears corresponding to the forest would con-
stitute the first set of rows of the RRE matrix. The second set of rows
would be zero rows equal in number to the number of components.

E 2.37: If the graph is connected all nodes must have the same poten-
tial in order that the voltages of all branches are zero. (Otherwise we
can collect all nodes of a particular voltage inside a surface. At least
one branch has only one endpoint within this surface. This branch

2.9. SOLUTIONS OF EXERCISES 101

would be assigned a nonzero voltage by the voltage vector). If the
graph is disconnected all nodes of the same component must have the
same potential by the above argument.

E 2.38: We use the above solution. If the graph is connected we
see that λTA = 0 iff λ has all entries the same, i.e., iff λ belongs
to the one dimensional vector space spanned by (1 1 · · · 1). But this
means (C(A))⊥ has dimension one. Hence dim(C(A)) = n − 1, i.e.,
r(A) = n − 1.

E 2.40: Let i be a nonzero current vector. Let T be the support of
i. The subgraph G . T of G must have each vertex of degree at least
two (otherwise the corresponding row of A cannot be orthogonal to
i). Hence G . T contains a circuit by Theorem 2.2.2. Thus support
of i contains a circuit. Next every circuit vector is a current vector
(Theorem 2.3.1). It follows that its support cannot properly contain
the support of another nonzero current vector since a circuit cannot
properly contain another circuit.
Next let i be an elementary current vector. Clearly its support must
be a circuit C. Let iC be the corresponding circuit vector. Now by
selecting a suitable scalar α, the current vector i + αiC can be made
to have a support properly contained in C. But this implies that the
support of i + αiC is void, i.e., i = −αiC as needed.
Now regarding the cutset vector. Let v be a voltage vector. We know
that it must be derived from a potential vector. Let V1 be the set
of all nodes having some fixed potential (among the values taken by
the potential vector). Then the crossing edge set corresponding to
(V1, E − V1) must be a subset of the support of v. Thus, the support
of v must contain a cutset. Now every cutset vector is a voltage vector
(Theorem 2.3.2). It follows that its support cannot properly contain
the support of another nonzero voltage vector since a cutset cannot
properly contain another cutset.
Next let v be an elementary voltage vector. Proceeding analogously to
the current vector case we can show that v must be a scalar multiple
of a cutset vector, as required.

E 2.41: A set of columns T of A are linearly dependent iff there exists
a vector i with support T such that Ai = 0. By definition i is a current
vector. By Theorem 2.3.7 we know that T must contain a circuit of G.
Further, if T contains a circuit of G the corresponding circuit vector of

102 3. GRAPHS

G is a current vector from which it follows that the set of columns T
of A are linearly dependent.
The rows of Bf constitute a basis for V i(G). By the strong form of
Tellegen’s Theorem we know that Vv(G) = (V i(G))⊥. Hence, v is a
voltage vector iff Bfv = 0. The rest of the argument parallels that of
the linear dependence of columns of A.

E 2.42: An f-cutset matrix Qf of G is a representative matrix of Vv(G)
since by Theorem 2.3.2 its rows are linearly dependent on the rows of
the incidence matrix and its rank equals the rank of A. Now we know
that (Theorem 2.3.8) the columns of A are linearly independent iff the
corresponding edges do not contain a circuit. This must also be true of
any representative matrix Qf of Vv(G) since A and Qf have the same
column dependence structure. Let Q′ be any standard representative
matrix of Vv(G). Let us assume without loss of generality that

T E − T

Q′ =
(

I Q′
12

)

. (2.10)

The columns corresponding to T are linearly independent and (n−p)
in number. Hence, T must be a forest of G. Let QT be the f-cutset
matrix with respect to T . Then QT =

(

I Q12

)

for some Q12. But

Q′ and QT are row equivalent to each other. So we conclude that
Q12 = Q′

12 and Q′ = QT . The f-circuit case proof is similar.

E 2.44: Proof of Theorem 2.3.9: Each KVE has the form cTv = 0,
where c is a circuit vector.
Now every circuit vector is a current vector. So the size of a maximal
independent set of circuit vectors cannot exceed r(Vi(G)). However,
the rows of Bf constitute an independent set of circuit vectors of this
size. The result follows.

E 2.47:
i. is immediate.

ii. (Sketch) If we start from any node of a circuit subgraph of G (that
intersects T) and go around it, this would also describe an alternating
sequence (without edge repetition) of G × T starting and ending at
the same vertex. This subgraph of G × T has each vertex of degree
≥ 2 and so contains a circuit of G × T. On the other hand given any

2.9. SOLUTIONS OF EXERCISES 103

circuit subgraph of G × T we can trace a closed alternating sequence
around it which can be expanded to a closed alternating sequence of
G corresponding to a circuit subgraph. So every circuit of G ×T is the
intersection of some circuit of G with T.

E 2.48: (Sketch) Assume without loss of generality that G is con-
nected. Any cutset of G that intersects T would, when removed, in-
crease the number of components of G . T. Hence, it contains a cutset
BT of G . T. Any cutset of G . T corresponds to vertex sets V1, V2

between which it lies (the subgraphs of G . T on V1, V2 are connected).
Now let V1 be grown to as large a vertex subset of V ′

1 of (V (G) − V2)
as possible using paths that do not intersect BT . Next let V2 be grown
to as large a vertex subset of V ′

2 of (V (G)−V ′
1) as possible using paths

that do not intersect BT . The cutset of G defined by V ′
2 , (V (G) − V ′

2)
intersects T in BT .
Next consider any cutset CT of G × T. This corresponds to a partition
V1T , V2T of V (G × T). Now V1T , V2T are composed of supernodes of G
which are the vertex sets of components of (GopenT). The union of
these supernodes yields a partition V1, V2 of V (G). Clearly CT is the
set of edges between V1, V2. The subgraphs of G × T on V1T , V2T are
connected. So the subgraphs of G on V1, V2 are also connected. So
CT is a cutset of G. Any cutset of G made up only of edges in T can
similarly be shown to be a cutset of G × T.

E 2.50: Ai = J has a solution iff λT A = 0 ⇒ λTJ = 0. If the graph
is connected λTA = 0 ⇒ all components of λ are identical.

E 2.51:
i. A vector satisfies KC Equations of G . T iff when padded with 0s
corresponding to edges in E(G)−T it satisfies the KC Equations of G.
Hence, Vi(G . T) = (Vi(G)) × T.

ii. Let iT ∈ Vi(G × T). In the graph G this vector satisfies generalized
KCE at supernodes which are vertex sets of components of GopenT.
The previous exercise implies that we can extend this vector to edges
within each of these components. Thus there is a vector i ∈ Vi(G)
s.t. i/T ∈ Vi(G × T). Thus, Vi(G × T) ⊆ (Vi(G)) · T. Any vector
that satisfies KCE of G would satisfy generalized KCE at supernodes.
Hence, if i ∈ Vi(G) then i/T ∈ Vi(G×T). Hence, (Vi(G))·T ⊆ Vi(G×T).

E 2.52:

104 3. GRAPHS

i. From Theorem 2.4.6, R33 is a representative matrix of V × T3 and

T1 T2

[

R11 R12

R21 0

]

(2.11)

is a representative matrix of V · (T1 ∪ T2).
Now R21,R12 are given to have linearly independent rows. So R21,R12

are representive matrices of V·(T1∪T2)×T1 and V·(T1∪T2)·T2(= V·T2)
respectively. Next

T1 T3
[

R21 R23

0 R33

]

(2.12)

must be a representive matrix of V×(T1∪T3). So R21 is a representative
matrix of V × (T1 ∪ T3) · T1.

ii. If R11 is a zero matrix, then V · (T1 ∪ T2) would have T1, T2 as
separators.

E 2.53: R33 is a representative matrix of V × T2 while

[

R22

R33

]

is a

representative matrix of V . T2. The result follows.

E 2.54:

ξ′(T) = r(V⊥ · T) − r(V⊥ × T)

= | T | −r(V × T)− | T | +r(V · T)

(by Theorem 2.4.3).

E 2.55: We shall show that the union of a forest f1 of Gshort(E − T)
and a forest f2 of GopenT yields a forest of G. GopenT has a number of
connected components. The forest f2 intersects each of these compo-
nents in a tree. The vertex sets (supernodes) Vi of these components
Gi figure as nodes of Gshort(E − T). If f1 ∪ f2 contains a circuit of G
it cannot be contained entirely in GopenT . The corresponding circuit
subgraph can be traced as a closed path starting from some vertex
in Vi going through other sets Vj and returning to Vi. When the Vi

are fused to single nodes this subgraph would still contain two distinct
paths between any pair of its vertices (which are supernodes in the old

2.9. SOLUTIONS OF EXERCISES 105

graph G). Thus, f1 would contain a circuit of Gshort(E − T) which is
a contradiction. Hence, f1 ∪ f2 contains no circuit of G. On the other
hand we can travel from any vertex v1 in G to any other vertex vf in
the same component using only edges of f1 ∪ f2. This is because a
connected component of G would reduce to a connected component of
Gshort(E − T). So v1, vf would be present in supernodes say V1, Vf

which are nodes of Gshort(E − T) and which have a path between
them using only the edges of f1. This path P2 can be exploded into a
path P12 using only edges of f1 ∪ f2 in G as follows:

The path P2 can be thought of as a sequence

v1, v11, e1, v2, v22, e2 · · · ef , v
′
f , vf

where v1, v11 belong to the same component and in general vj , vjj

belong to the same component of GopenT . So would (for notational
convenience) v′

f , vf . Now we can travel from v1 to v11, v2 to v22, vj to
vjj etc. using edges of f2. Addition of these intermediate edges and
vertices yields the path P12. Thus, f1 ∪ f2 contains no circuits and
contains a tree of each component of G.

E 2.56: Immediate from the above.

E 2.57: Consider the incidence matrix A of G. A set of columns of A
are linearly independent iff the corresponding edges do not contain a
circuit. Thus, T is a separator of G iff there is no minimal dependent
set of columns of A intersecting both T and (E − T).
Let

T E − T

R =

[

RTT RT2

0 R22

]

(2.13)

be a representative matrix of Vv(G). This matrix and the incidence
matrix are row equivalent and therefore have the same column depen-
dence structure. If the rows of RT2 are linearly dependent on the rows
of R22, we can perform reversible row operations using the rows of the
latter so that rows of RT2 are made zero.If RT2 is the zero matrix it
is clear that no minimal dependent set of columns can intersect both
T and E − T ,where E ≡ E(G). If rows of RT2 are not linearly de-
pendent on those of R22, then r((Vv(G)) · T) > r((Vv(G))× T). Now,

106 3. GRAPHS

let f1, f2 be forests of G . T,G . (E − T), respectively. The union of
these two forests contains more edges than the rank of G and therefore,
contains a circuit. But f1, f2 do not individually contain circuits. We
conclude that there must exist a circuit that intersects both f1 and f2.
Thus, we see that T is a separator of G iff rows of RT2 are linearly
dependent on the rows of R22 i.e., iff T is a separator of Vv(G), i.e.,
iff r((Vv(G)) · T) = r((Vv(G)) × T). The last statement is equivalent
to saying r(G . T) = r(G × T).

E 2.58: The graph G has α1α2 forests as well as coforests, β1 + β2

circuits, γ1 + γ2 cutsets. This is because every forest of G, when T is
a separator, is a union of a forest of G . T and a forest of G . (E − T).
Further, each circuit of G is either a circuit of G . T or a circuit of
G . (E − T).

E 2.59: Let the directed crossing edge set have the orientation (V1, V2).
The tail of the edge e lies in a component of the subgraph on V1.Let
V ′ be the vertex set of this component.Consider the directed crossing
edge set defined by (V ′, V (G) − V ′). The head of the edge e lies in
a component of the subgraph on V (G) − V ′.Let V ” be the vertex set
of this component.Consider the crossing edge set defined by (V (G) −
V ”, V ”).This has e as a member. It can be seen that it is a directed
cutset.

E 2.60: We use Kuhn-Fourier Theorem. Let V be the solution space of
Ax = 0. Suppose V has no nonnegative vector whose support contains
e. Then the following system of inequalities has no solution

Ax = 0

x(e) > 0

x ≥ 0.

By Kuhn-Fourier Theorem there exists a vector λ, a scalar α > 0 and
a vector σ ≥ 0 s.t. λTA + αχe + σT = 0. Thus, −λTA = (σT + αχe).
The vector σT + αχe lies in the space V⊥ and has e in its support.

E 2.61:
ii. From each vertex obtain the set of all reachable vertices (do a bfs).
This takes O(| V || E |) time. Sort each of these sets and obtain
a list in increasing order of indices. This takes O(| V |2 log | V |)
time. For each pair (v1, v2) check if v2 is reachable from v1 and if v1 is

2.9. SOLUTIONS OF EXERCISES 107

reachable from v2. This takes O(| V |2) time. So overall complexity is
O(| V | (max(| E |, | V | log | V |))).
E 2.62: We assume that the length of an edge is an integer. We first
find an upper bound u and a lower bound l for the length of this path.
The upper bound could be the sum of all the lengths and the lower
bound could be the minimum length of an edge. Narrow down to the
correct value of the distance between v1 and v2 by asking question of
the type ‘is there a path between v1 and v2 of length ≤ di’. The value
of di in this question could be chosen by binary search between u and
l: d1 = (l + u−l

2
), if yes d2 = (l + u−l

4
), if no d2 = (u − u−l

4
) and so

on. (Whenever any of these numbers is a fraction we take the nearest
integer). Clearly the number of such di is O(log(u − l)).
Suppose d is the length of the shortest path. To find the edges of the
shortest path we ask, for each edge e between v1 and v11 say, if there is
a path of length d−d(e) between v11 and v2. If yes (and it must be yes
for one such edge) then e belongs to the path and we now try to find a
path of length d−d(e) between v11 and v2. By this process the shortest
path can be found by framing O(| E(G) |) decision problems. Overall
the total number of decision problems is O(log(u − l)+ | E(G) |).
E 2.63: Observe that in the stack at any stage the top vertex has the
highest dfs numbering and we cannot get below it unless it has been
deleted from the stack. Once a vertex has been deleted from the stack
it can never reappear. If v1 is not an ancestor of v2 then they have a
common ancestor v3 of highest dfs number. Since v1 has a lower dfs
number than v2 it would have been deleted from the stack before we
went back to v3 and travelled down to v2. But then the edge e would
have been scanned when we were processing v1 for the last time. At
that time the other end of e would have been unmarked and e would
then have been included in the dfs tree. This is a contradiction.

E 2.64: The technique described for building f-circuits using dfs would
work for any rooted tree (a tree in which each node has a single parent).
In the case of bfs we walk from v1 and v2 towards the root by first
equalising levels (if v1 has a higher level number we first reach an
ancestor v′

1 of the same level as v2). Thereafter we move alternately
one step at a time in the paths v1 to root and v2 to root until the first
common ancestor is reached.

E 2.65: Let the sequence of edges generated by Prim’s algorithm in

108 3. GRAPHS

building talg be e1, e2, . . . , ek. Let t be a min spanning tree which has the
longest unbroken first segment e1, e2, . . . , er in common with talg. We
will show that r = k. Suppose r < k. Now er+1 was selected during
the execution of the algorithm as the edge of least weight with one
end in the current set of vertices V ({e1, e2, . . . , er}) and another in the
complement. Consider the f-circuit L(er+1, t). The edges of L(er+1, t)−
er+1 constitute a path between the endpoints of er+1. Atleast one of
them, say ê, has only one endpoint in V ({e1, e2, . . . , er}) and has weight
not less than that of er+1. Now t− ê∪er+1 is a tree with weight greater
than that of t and a greater first segment overlap with talg. This is a
contradiction.

Suppose t is a minimum spanning tree whose total weight is less
than that of the tree talg generated by the algorithm. Let t be the
nearest such tree to talg (i.e., | talg − t | is minimum). Let e ∈ (talg − t).
Consider the f-circuit L(e, t). If w(e) ≤ w(ej) for some ej ∈ (L(e, t)−e),
then we could replace t by the tree t ∪ e − ej without increasing its
weight. This would contradict the fact that t is the nearest minimum
spanning tree to talg. Hence w(e) > w(ej) for each ej in (L(e, t) − e).
However, e was selected, during some stage of the algorithm, as the
edge of least weight with one end in the current set of vertices Ve.
The edges of (L(e, t) − e) constitute a path between the end points of
e. At least one of them, therefore, has only one end point in Ve and,
therefore, has weight not less than that of e. This contradiction proves
that talg − t is void. Since both talg and t have the same number of
edges we conclude that talg = t.

E 2.67: Construct a ‘level graph’ containing all the edges of a bfs tree
in the residual graph from s to t and any other edge of that graph that
travels from a lower to a higher level. (The level of a node is the bfs
number of the node). Clearly only such edges can figure in a shortest
path from s to t. Whenever we augment the flow using a shortest path
upto its bottleneck capacity, atleast one of the edges, say e, of the
residual graph will drop out of the level graph.
In the residual graph an oppositely directed edge to e would remain.
But this edge cannot figure in the level graph unless the length of the
shortest path changes (increases), since it would be travelling from a
higher to a lower level. An edge that has dropped out cannot return
until the length of the shortest path changes. It follows that there

2.9. SOLUTIONS OF EXERCISES 109

can be at most m augmentations at a particular length of the shortest
path from s to t. The length of the shortest path cannot decrease and
also cannot exceed the number of nodes in the graph. Hence the total
number of augmentations cannot exceed mn.

E 2.68: (Sketch) Replace each edge by two oppositely directed edges
of capacity 1. Treat s as source and t as sink. Maximize flow from
source to sink. Each unit of flow travels along a path whose edges (since
their capacity is 1) cannot be used by another unit of flow. Hence, the
maximum flow ≤ maximum number of arc disjoint paths. The reverse
inequality is obvious. In any cut of the flow graph the forward arcs
(each of capacity 1) would correspond to arcs in the corresponding cut
of the original graph. The result follows.

E 2.69:
i. r(T) = size of the maximum circuit free set contained in T. So the
dual function at T would give the size of the maximum cutset free set
contained in T , i.e., the dual is ν(·), the nullity function (ν(T) =| T |
−r(G × T)).
ii. Let r∗(·) be the dual. Then

r∗(T) ≡ dim(V⊥ · T) =| T | − dim(V × T)

iii. Let ξ∗(·) be the dual. Then

ξ∗(T) ≡ dim(V⊥ · T) − dim(V⊥ × T) = | T | −dim(V × T)− | T | +dim(V . T)

= ξ(T).

Thus, ξ(·) is self dual.
iv. Closed sets are complements of unions of cutsets. So the duals are
complements of unions of circuits.
v. Selfloop is a single edged circuit. The dual is a single edged cutset,
i.e., a coloop.
vi. the dual is the selfloop.
vii. A separator T satisfies r(V . T)− r(V ×T) = 0, i.e., ξ(T) = 0. Its
dual would satisfy ξ∗(T) = 0. But we saw that ξ(T) = ξ∗(T). So the
dual of ‘separator’ is ‘separator’.
viii. A separator T satisfies r(G . T) − r(G × T) = 0, i.e.,

r((Vv(G)) · T) − r((Vv(G)) × T = 0.

110 3. GRAPHS

If we go through the procedure of dualization we must replace Vv(G)
by V ,V by V⊥. This would yield

r(V⊥ · T) − r(V⊥ × T) = 0.

As we have seen before this is equivalent to

r(V . T) − r(V × T) = 0.

Substituting Vv(G) in place of V and interpreting in terms of G we get

r(G . T) − r(G × T) = 0

Thus separator of a graph is self dual.

E 2.70:

i. replace ‘coforest’ by ‘forest’, ‘circuit’ by ‘cutset’.

ii. as above.

iii. replace ‘circuits’ by ‘cutsets’.

iv. replace ‘circuit’ by ‘cutset’.

v. replace ‘forest’ by ‘coforest’, interchange ‘dot’ and ‘cross’ opera-
tions.

vi. replace ‘r(·)’ by ‘ν(·)’, interchange ‘dot’ and ‘cross’ operations,
replace ‘self loops’ by ‘coloops’

vii. interchange ‘dot’ and‘cross’, V and V⊥.

The dual is true if the original is true (and the original is in fact true)
in each of the above cases.

2.10 Solutions of Problems

P 2.1: (Sketch) Break the graph up into disjoint union of circuit sub-
graphs. This is possible since when a circuit is deleted the remaining

2.10. SOLUTIONS OF PROBLEMS 111

graph still has only even degree vertices. Within each circuit subgraph
we can start from any vertex, go through all vertices and come back to
it. By induction, when one circuit is deleted, in the remaining graph
within each component we can start from any vertex go through all
vertices and come back to it. Now start from a vertex of the (deleted)
circuit subgraph, go around it until a vertex of one of the components
of the remaining graph is met. Complete a closed traversal of the
component, come back to the vertex of the circuit subgraph and pro-
ceed along the circuit subgraph until the next vertex of a component is
met. Continue until you come back to the starting vertex of the circuit
subgraph.

P 2.5:
i. is easy to see.

ii. Start from the two end points of ed ∈ C1 − C2, proceed outward
until you first reach vertices a, b of the subgraph on C2 (a, b could even
be the end points of ec). Vertices a, b must be distinct as otherwise
C1 ∩ C2 = ∅. Now in the subgraph on C2 there are precisely two
distinct paths between a, b. Only one of them contains ec. If we follow
the other path we would have constructed the desired circuit subgraph
corresponding to C3.

P 2.9: We use the notation of the Circuit Axioms in Problem 2.5. It
is easy to see that axiom (i) is satisfied.
Axiom (ii): If (V1, V2) defines C1 and (V ′

1 , V
′
2) defines C2, then ec lies

between V1 ∩ V ′
1 and V2 ∩ V ′

2 while ed lies entirely within V ′
1 or entirely

within V ′
2 . Delete C1 ∪ C2. The graph is broken up into atleast three

pieces (atleast three of the sets V1 ∩ V ′
1 , V1 ∩ V ′

2 , V2 ∩ V ′
1 , V2 ∩ V ′

2

must be nonvoid). Now add back ec . The graph would still have
atleast two pieces. Consider the crossing edge set corresponding to
((V1 ∩ V ′

1) ∪ (V2 ∩ V ′
2), (V1 ∩ V ′

2) ∪ (V2 ∩ V ′
1)). This crossing edge set

contains ed and is itself contained in C1 ∪C2. Now every crossing edge
set is a disjoint union of cutsets (Problem 2.11). So there exists a
cutset C3 s.t. ed ∈ C3 ⊆ C1 ∪ C2 − ec.

P 2.11: Let G be connected. Let (V1, V2) define the crossing edge
set. Let the subgraph on V1 have components whose vertex sets are
V11, · · · , V1k and V2 be similarly partitioned into V21, · · · , V2t. When
k = t = 1 the result is clear since the crossing edge set is a cut-
set.Otherwise we can break up the crossing edge set into crossing edge

112 3. GRAPHS

sets corresponding to (V11, (V2 ∪ V1) − V11), · · · , (V1k, (V2 ∪ V1) − V1k).
So without loss of generality we assume k = 1. In this case the cross-
ing edge set can be broken up into cutsets corresponding to (V21, (V2 ∪
V1)−V21), · · · , (V2t, (V2∪V1)−V2t). (The subgraph on V21 is connected
and the subgraph on (V2 ∪ V1 − V21) is connected because the graph G
is connected and the subgraph on V11 is connected).

P 2.13:
i. By KCE at a node of degree 1, the branch incident at it must carry
zero current. So the vertex and the branch can be deleted without
affecting KCE at any other node. What is left is a tree graph on a
smaller set of nodes so the argument can be repeated.

ii. All selfloops. This is the structure that results when a tree of the
(connected) graph is contracted. (Observe that the tree graph results
when the cotree is deleted (opened)).

P 2.14: (a) At least one of the non datum nodes has degree 1. This
node and the corresponding terminal branch would give us a row and a
column which contain only one nonzero entry (±1, where they meet).
Deletion of this node and edge would give us a tree graph on nodes
whose size is one less than before. Its determinant could be taken, by
induction, to be ±1. So the original determinant is also ±1.
(b) For every injecting current vector corresponding to all the non
datum nodes, if one can fix the currents in the branches uniquely we
are done. The current at a tree branch that is terminal (incident at
a vertex of degree 1) could be taken as a part of the injecting current
source. We are now left with a new tree graph on less number of nodes
for which (by induction) we may assume that branch currents are fixed
uniquely by injecting currents.
(c) We have λT (Ar) = vT . So if λT is uniquely fixed for a given vT

we are done. Starting from the datum node we travel to a given node
along voltage sources (This is possible since the graph is connected).
Their algebraic sum gives the unique node voltage.

P 2.15: Suppose the support is contained in a forest. Then there is a
nontrivial solution to the KCE of a forest graph which is impossible by
Problem 2.13 (one can also argue in terms of f-cutsets of this forest).

P 2.16: Suppose the support of the voltage vector meets only the
coforest. So we have all the forest voltages zero. But each coforest

2.10. SOLUTIONS OF PROBLEMS 113

edge forms an f-circuit with the forest. So its voltage is the algebraic
sum of the voltages of the circuit branches in the forest. This would
give the coforest edge voltage to be zero. So the voltage vector would
be a zero vector.

P 2.17: Use solution of Problem 2.14 (a). Now Ar = ArtQf , where
Qf is the f-cutset matrix corresponding to tree t.From this and from
Problem 2.14 conclude that determinant of every full submatrix of Qf

is 0,±1. For proving the property for subdeterminants use appropri-
ate trees. (Note that, if a subdeterminant is nonzero, corresponding
columns say t ∩ t′, together with some other edges form a tree t′.
The determinant corresponding to t′ is ±1. But this is also equal to
±1(subdet corresponding to t∩ t′) × (subdet (t′ − t)). Since both the
factors are clearly integers, the result follows.

P 2.18: See solution of Problem 2.14.

P 2.19: (a) The vector b gives the injected currents at the nodes. Let

Ax = b be equivalent to Qfx ≡
(

I Q12

) x1

x2
= b̂. One possible

solution of the latter equations has all entries in x2 zero and x1 = b̂.
This is also a solution of the former equations. So b̂ is the vector of
forest branch currents (the forest being the one corresponding to Qf)

when the node injection currents are given by b. To compute b̂ by
inspection proceed as follows: (a) select some node as datum node in
each component. (b) for each node v draw a path Pv in the forest
graph to the datum node of the component. Associate with Pv the
value of b at v. (c) if e is a branch of the forest the value of b̂ at e is
the algebraic sum of the b(v) where e lies in Pv. (If e agrees with Pv

add b(v), if it opposes subtract b(v) and if e does not lie in Pv ignore
b(v)).

ii. Start with the graph G . f1. To this add a copy f2
′ of f2. Now

associate each branch e′ of f2
′ with a current source of value equal to

b2(e
′). Find the currents in branches of f1 by constructing f-circuits of

branches in f2
′ and taking the value of b1(e) to be the algebraic sum

of b2(e
′) where e lies in the f-circuit of e′.

P 2.20: Consequence of total unimodularity of Qf ,Bf , i.e., every
subdeterminant has value 0,±1 (see Problem 2.17).

P 2.21: AAT : The (i, j) entry is the negative of the number of edges

114 3. GRAPHS

between i, j, if i 6= j, and equal to the number of edges incident at i, if
i = j.
Bf Bf

T : The (i, j) entry is (number of edges which lie in ith and
jth f-circuits with same orientation relative to f-circuit orientation)
- (number of edges which lie in ith and jth f-circuits with opposite
orientation).
Qf Qf

T : similar to Bf Bf
T case.

P 2.22: (sketch) Let C1,C2 be the circuits (cutsets). The correspond-
ing circuit (cutset) vectors can be a part of the same f-circuit (f-cutset)
matrix iff G . (C1 ∪C2) (G × (C1 ∪C2)) has nullity 2 (rank 2). These
ideas follow by noting that if C1,C2 correspond to f-circuit vectors of
some forest then the submatrix of the f-circuit matrix of that forest
composed of these two vectors and columns C1 ∪ C2 must be a rep-
resentative matrix of Vi(G . (C1 ∪ C2)) (using Theorem 2.4.6 and the
fact that Vi(G . T) = (Vi(G))×T). The cutset case arguments are dual
to the above.

P 2.23: See Subsection 2.6.2 for a good algorithm for building the
f-circuit.Building all f-circuits of a tree has been shown there to be
O(
∑ | L(e, t) |). For building the f-cutset, with respect to a tree t,

of a branch et, find the sets of all nodes reachable from either of the
end points of et in the graph G · t by doing a bfs. If these sets are
V1, V2 respectively then the desired f-cutset is defined by (V1, V2). The
complexity of this algorithm is O(|V (G)|). However building all f-
cutsets of a tree is clearly equivalent to building all f-circuits of the
same tree (see Exercise 2.43).

P 2.24: (Sketch) If G ′ is a subgraph of G then let V̂i(G′) denote the
vectors obtained from those of Vi(G′) by adjoining zeros correspond-
ing to edges outside G ′. Clearly V̂i(Gj) ⊆ Vi(G). Now, by construc-
tion, there exists a coforest of G . (

⋃j−1
t=1 E(Gt)) that does not intersect

E(Gj), j = 2, · · · , k. Assume by induction that V̂i(G . (
⋃j−1

t=1 E(Gt)))

has R′
j−1 ≡









R̂1
...

R̂j−1









as a representative matrix. The rows of R̂j

are linearly independent of these rows since the columns correspond-
ing to the above coforest are independent in R′

j−1 and have zero en-

tries in R̂j . So if we show that R′
j has the correct number of rows

2.10. SOLUTIONS OF PROBLEMS 115

(= ν(G . (
⋃j

t=1 E(Gt)))) we are done.We have,

ν(G . (
j
⋃

t=1

E(Gt))) = ν(G . (
j−1
⋃

t=1

E(Gt)))+ν(G . (
j
⋃

t=1

E(Gt))×(E(Gj)−(
j−1
⋃

t=1

E(Gt))))

(using Corollary 2.4.3).
Now

ν(G . (
j
⋃

t=1

E(Gt))×(E(Gj)−(
j−1
⋃

t=1

E(Gt)))) = ν(Gj×(E(Gj)−(
j−1
⋃

t=1

E(Gt))))

(since,as far as E(Gj) is concerned, contracting all of (
⋃j−1

t=1 E(Gt)) is the

same as contracting the forest E(Gj)∩
[

⋃j−1
i=1 E(Gi)

]

of G . (
⋃j−1

t=1 E(Gt))).
But

ν(Gj×(E(Gj)−(
j−1
⋃

t=1

E(Gt)))) = ν(Gj)−ν(Gj ·(E(Gj)∩(
j−1
⋃

t=1

E(Gt)))) = ν(Gj)

(since E(Gj) ∩
[

⋃j−1
i=1 E(Gi)

]

is a subforest of Gj). This proves the re-
quired result.

P 2.25: See [Narayanan85c].

P 2.26: (Sketch)
i. Every forest of G intersects T in a subforest of G . T and every forest
of G . T can be grown to a forest of G.

ii. Union of a forest of G . (E − T) and a forest of G × T is a forest of
G. The result now follows from the previous part.

iii. ‘Only if’ is clear. Suppose K∪ (a forest fE−T of G . (E − T)) is a
forest of G. When edges of fE−T are contracted K would not contain a
circuit. The remaining edges of (E − T) would have become selfloops
by then. So K must also be a subforest of G ×T. But | K |= r(G ×T).
So K is a forest of G × T.

iv. Arguments similar to the previous part.

P 2.27: (Sketch)
i. We know that union of a forest of G . A1 and a forest of G×(E−A1)
is a forest of G and if a forest of G contains a forest of G . A1 then its
intersection with (E − A1) is a forest of G × (E − A1). So the given
statement is true for n = 2. If it is true for n = k − 1 then by working

116 3. GRAPHS

with G . (A1 ∪ · · · ∪ Ak−1) and G × Ak we see that it must be true for
n = k also.

ii. If the graph has only such forests A1, · · · , An become separators.
Proof by induction.

iii. If this is true for each σ then A1, · · · , An become separators.

P 2.28: (Sketch for the second part) Select a forest with priority
E − T1, T2, T1 − T2. Now use ideas of Exercise 2.52.

P 2.29: We need to check that there is no violation of KCL (KVL)
in any cutset (circuit) contained in T. So check if there is violation of
KCL in G × T and violation of KVL in G . T.

Bibliography

[Aho+Hopcroft+Ullman74] A.V. Aho, J.E. Hopcroft and J.D. Ull-
man: The Design and Analysis of Computer Algorithms (Addison-
Wesley, Reading, Mass., 1974).

[Ahuja+Magnanti+Orlin93] R.K.Ahuja, T.L.Magnanti and J.B.Orlin:
Network Flows: Theory, Algorithms and Applications (Prentice
Hall, Englewood Cliffs 1993).

[Aigner79] M. Aigner: Combinatorial Theory (Springer, Berlin, 1979).

[Amari62] S.Amari: Topological foundations of Kron’s tearing of elec-
trical networks. RAAG Memoirs 3 (1962) 322.

[Asimow+Roth78] L. Asimow and B. Roth: The rigidity of graphs I.
Transactions of American Mathemaical Society 245 (1978) 279-
289.

[Asimow+Roth79] L. Asimow and B. Roth: The rigidity of graphs II.
Transactions of American Mathemaical Society 68 (1979) 171-190.

[Balas+Pulleyblank87] E.Balas and W.R.Pulleyblank: The perfectly
matchable subgraph polytope of an arbitrary graph: CORR Re-
search Report 87-39, Faculty of Maths, University of Waterloo
(1987).

[Belevitch68] V. Belevitch: Classical Network Theory (Holden-Day,
San Francisco, 1968).

[Berge73] C. Berge: Graphs and Hypergraphs (translated by
E.Minieka, North Holland, Amsterdam, 1973).

117

118 BIBLIOGRAPHY

[Birkhoff35] G. Birkhoff: Abstract linear dependence and lattices.
American Journal of Mathematics 57 (1935) 800-804.

[Birkhoff67] G. Birkhoff: Lattice Theory (American Mathematical Col-
loquium Publications 25 (3rd ed.) Providence, R.I., 1967).

[Bordewijk56] J.L. Bordewijk: Inter-reciprocity applied to electrical
networks. Applied Science Research, Netherlands 6B (1956) 1-74.

[Brameller+John+Scott69] A. Brameller,M. John and M. Scott: Prac-
tical Diakoptics for Electrical Networks (Chapman and Hall, Lon-
don, England, 1969).

[Branin62] F.H.Branin Jr.: The relationship between Kron’s method
and the classical methods of network analysis. Matrix and Tensor
Quarterly 12 (1962) 69-105.

[Brualdi74] R.A. Brualdi: Matroids induced by directed graphs - a
survey. In: Recent Advances in Graph Theory (Proceedings of the
Symposium, Prague, Academia Praha, June 1974) 115-134.

[Bruno+Weinberg71] J. Bruno and L. Weinberg: The principal minors
of a matroid. Linear Algebra and Its Applications 4 (1971) 17-54.

[Catlin+Grossman+Hobbs+Lai92] P.A.Catlin, J.W.Grossman,
A.M.Hobbs and H.J.Lai: Fractional arboricity, strength and
principal partitions in graphs and matroids. Discrete Applied
Mathematics 40 (1992) 285-302.

[Cayley1889] A. Cayley: A theorem on trees. Quarterly Journal of
Pure and Applied Mathematics 23 (1889) 376-378.

[Choquet55] G. Choquet: Theory of capacities. Annales de l’Institut
Fourier 5 (1955) 131-295.

[Chua+Lin75] L.O.Chua and P.M.Lin: Computer - Aided Analysis of
Electronic Circuits: Algorithms and Computational Techniques
(Prentice Hall, 1975).

[Chua+Desoer+Kuh87] L.O.Chua, C.A.Desoer and E.S.Kuh: Linear
and Nonlinear Circuits (McGraw-Hill, New York, 1987).

BIBLIOGRAPHY 119

[Cormen+Leiserson+Rivest90] T.H.Cormen, C.E.Leiserson and
R.L.Rivest: Introduction to Algorithms (MIT Press, Cambridge,
Mass.,1990).

[Crapo+Rota70] H.H. Crapo and G.C. Rota: On the Foundations
of Combinatorial Theory - Combinatorial Geometry (MIT Press,
Cambridge, MA, 1970).

[Cunningham84] W.H. Cunningham: Testing membership in matroid
polyhedra. Journal of Combinatorial Theory B36 (1984) 161-188.

[Cunningham85] W.H. Cunningham: On submodular function mini-
mization. Combinatorica 5 (1985) 185-192.

[Desoer+Kuh69] C.A.Desoer and E.S.Kuh: Basic Circuit Theory
(McGraw-Hill, New York, 1969).

[Dilworth44] R.P. Dilworth: Dependence relations in a semimodular
lattice. Duke Mathematical Journal 11 (1944) 575-587.

[Dinic70] E.A. Dinic: Algorithm for solution of a problem of maximum
flow in a network with power estimation. Soviet Mathematics Dok-
lady 11 (1970) 1277-1280.

[Director+Rohrer69] S.W. Director and R.A. Rohrer: The Generalized
Adjoint Network and Network Sensitivities. IEEE Transactions on
Circuit Theory CT-16 (1969) 318-323.

[Dulmage+Mendelsohn59] A.L. Dulmage and N.S. Mendelsohn: A
structure theory of bipartite graphs of finite exterior dimension.
Transactions of the Royal Society of Canada, Third Series, Section
III, 53 (1959) 1-13.

[Edmonds65a] J. Edmonds: Minimum partition of a matroid into in-
dependent subsets. Journal of Research of the National Bureau of
Standards 69B (1965) 67-72.

[Edmonds65b] J. Edmonds: Lehman’s switching game and a theorem
of Tutte and Nash-Williams. ibid. 69B (1965) 73-77.

[Edmonds68] J. Edmonds: Matroid partition. In: Mathematics of the
Decision Sciences, Part I (Lectures in Applied Mathematics) 11
(1968) 335-345.

120 BIBLIOGRAPHY

[Edmonds70] J. Edmonds: Submodular functions, matroids, and cer-
tain polyhedra. Proceedings of the Calgary International Confer-
ence on Combinatorial Structures and Their Applications (R.Guy,
H.Hanani, N.Sauer and J.Schönheim, eds., Gordon and Breach,
New York, 1970), 69-87.

[Edmonds79] J. Edmonds: Matroid intersection. Annals of Discrete
Mathematics. 4 (1979) 39-49.

[Edmonds+Fulkerson65] J. Edmonds and D.R. Fulkerson: Transver-
sals and matroid partition. Journal of Research of the National
Bureau of Standards69B (1965) 147-157.

[Edmonds+Karp72] J.Edmonds and R.M. Karp: Theoretical improve-
ments in algorithmic efficiency for network flow problems. Journal
of ACM 19 (1972) 248-264.

[Faigle87] U. Faigle: Matroids in combinatorial optimization. In: Com-
binatorial Geometries (N. White, ed., Encyclopedia of Mathemat-
ics and Its Applications 29, Cambridge University Press, 1987)
161-210.

[Ford+Fulkerson56] L.R. Ford and D.R. Fulkerson: Maximal flow
through a network. Canadian Journal of Mathematics 8 (1956)
399-404.

[Ford+Fulkerson62] L.R. Ford and D.R. Fulkerson: Flows in Networks
(Princeton University Press, Princeton, N.J., 1962).

[Fourier1826] J. Fourier: Solution d’une question particulière du calcul
des inégalités. Oeuvres II (1826) 317-328.

[Frank82] A. Frank: An algorithm for submodular functions on graphs.
Annals of Discrete Mathematics 16 (1982) 189-212.

[Frank+Tardos88] A. Frank and É. Tardos: Generalized polymatroids
and submodular flows. Mathematical Programming 42 (1988) 489-
563.

[Frank94] A.Frank: On the edge connectivity algorithm of Nagamochi
and Ibaraki.Laboratoire Artemis,IMAG,Universite J.Fourier,
Grenoble,(March 1994).

BIBLIOGRAPHY 121

[Fujishige78a] S. Fujishige: Algorithms for solving the independent-
flow problems. Journal of the Operational Research Society of
Japan 21 (1978) 189-204.

[Fujishige78b] S. Fujishige: Polymatroid dependence structure of a set
of random variables. Information and Control 39 (1978) 55-72.

[Fujishige80a] S. Fujishige: Lexicographically optimal base of a poly-
matroid with respect to a weight vector. Mathematics of Opera-
tions Research 5 (1980) 186-196.

[Fujishige80b] S. Fujishige: Principal structures of submodular sys-
tems. Discrete Applied Mathematics 2 (1980) 77-79.

[Fujishige84] S. Fujishige: Submodular systems and related topics.
Mathematical Programming Study 22 (1984) 113-131.

[Fujishige91] S.Fujishige: Submodular functions and optimization (An-
nals of Discrete Maths 47) (North Holland,Amsterdam,New
York,Oxford,Tokyo,1991).

[Gale+Kuhn+Tucker51] D. Gale, H.W. Kuhn and A.W. Tucker: Lin-
ear Programming and the theory of games. In: Activity Analysis
of production and allocation (John Wiley, New York, 1951).

[Gale57] D. Gale: A theorem of flows in networks. Pacific Journal of
Mathematics 7 (1957) 1073-1082.

[Gale68] D. Gale: Optimal assignment in an ordered set: an applica-
tion of matroid theory. J. Combinatorial Theory 4 (1968) 176-180.

[Gantmacher59] F.R.Gantmacher: The Theory of Matrices. Volumes
I,II (translated from the Russian) (Chelsea, NewYork, 1959).

[Garey+Johnson79] M.R. Garey and D.S. Johnson: Computers and
Intractability - A Guide to the Theory of NP-Completeness (W.H.
Freeman and Co., San Francisco, 1979).

[Grötschel+Lovász+Schrijver81] M. Grötschel, L. Lovász and A.
Schrijver: The elllipsoid method and its consequences in com-
binatorial optimization. Combinatorica 1 (1981) 169-197.

122 BIBLIOGRAPHY

[Grötschel+Lovász+Schrijver88] M. Grötschel, L. Lovász and A.
Schrijver: Geometric Algorithms and Combinatorial Optimization
(Algorithms and Combinatorics 2) (Springer, Berlin, 1988).

[Hajj81] I.N.Hajj, P.Yang and T.N.Trick: Avoiding zero pivots in the
modified nodal approach. IEEE Transactions on Circuits and Sys-
tems CAS-28 (1981) 271-279.

[Hall35] P. Hall: On representatives of subsets. Journal of the London
Mathematical Society 10 (1935) 26-30.

[Harary69] Graph Theory (Addison-Wesley, Reading, MA, 1969).

[Hoffman+Kunze72] K.Hoffman and R.Kunze: Linear Algebra (2nd
ed.) (Prentice-Hall International, inc., Englewood Cliffs, 1972).
(Prentice-Hall of India, 1972).

[Hopcroft+Tarjan74] J. Hopcroft and R. Tarjan: Efficient planarity
testing. Journal of ACM 21 (1974) 549-568.

[Horn55] A. Horn: A characterization of unions of linearly independent
sets. Journal of the London Mathematical Society 30 (1955) 494-
496.

[Imai83] H. Imai: Network-flow algorithms for lower truncated
transversal polymatroids. Journal of the Operations Research So-
ciety of Japan 26 (1983) 186-211.

[Iri68] M. Iri: A min-max theorem for the ranks and term ranks of
a class of matrices – an algebraic solution to the problem of the
topological degrees of freedom of a network (in Japanese). Trans-
actions of the Institute of Electrical and Communication Engi-
neers of Japan 51A (1968) 180-187.

[Iri69] M. Iri: The maximum rank minimum term rank theorem for
the pivotal transformations of a matrix. Linear Algebra and Its
Applications 2 (1969) 427-446.

[Iri71] M. Iri: Combinatorial canonical form of a matrix with applica-
tions to the principal partition of a graph (in Japanese). Transac-
tions of the Institute of Electronics and Communication Engineers
of Japan 54A (1971) 30-37.

BIBLIOGRAPHY 123

[Iri79a] M. Iri: Survey of recent trends in applications of matroids.
Proceedings of IEEE International Symposium on Circuits and
Systems Tokyo (1979) 987.

[Iri79b] M. Iri: A review of recent work in Japan on Principal parti-
tions of matroids and their applications. Annals of the New York
Academy of Sciences 319 (1979) 306-319.

[Iri83] M. Iri: Applications of matroid theory. In: Mathematical Pro-
gramming – The State of the Art (A. Bachem, M. Grötschel and
B. Korte, eds., Springer, Berlin, 1983) 158-201.

[Iri84] M. Iri: Structural theory for the combinatorial systems charac-
terized by submodular functions. In: Progress in Combinatorial
Optimizations (W.R. Pulleyblank, ed., Academic Press, Toronto,
1984), 197-219.

[Iri+Fujishige81] M. Iri and S. Fujishige: Use of matroid theory in op-
erations research, circuits and system theory. International Jour-
nal of Systems Science 12 (1981) 27-54.

[Iri+Recski80] M. Iri and A. Recski: What does duality really mean?
International Journal of Circuit Theory and Its Applications 8
(1980) 317-324.

[Iri+Tomi76] M. Iri and N. Tomizawa: An algorithm for finding an
optimal ‘independent assignment’. Journal of the Operations Re-
search Society of Japan 19 (1976) 32-57.

[Iri+Tsunekawa+Murota82] M. Iri, J. Tsunekawa and K. Murota:
Graph theoretical approach to large-scale systems – Structural
solvability and block-triangularization. Transactions of Informa-
tion Processing Society of Japan 23 (1982) 88-95.

[Iwata01] S Iwata, L Fleischer, S Fujishige: A Combinatorial Strongly
Polynomial Algorithm for Minimizing Submodular Functions.
Journal of the ACM 48 (2001) 761 - 777. Journal of the ACM,
2001

[Jacobson74] N.Jacobson: Basic Algebra I&II(W.H.Freeman and
Co.,U.S.A,1974).

124 BIBLIOGRAPHY

[Kamath94] M.V. Kamath: Application of the partitioning approach to
a class of routing problems.. Ph.D. Thesis, Department of Com-
puter Science and Engineering, Indian Institute of Technology,
Bombay, 1994.

[Kirchhoff1847] G.Kirchhoff: Ueber die Auflösung der Gleichungen,
auf welche man bei der Untersuchungen der linearen Vertheilung
galvanischer Ströme geführt wird. Poggendorff Annalen der Physik
und Chemie LXXII, Leipzig, (1847) 497-508.

[Kishi+Kajitani68] G. Kishi and Y. Kajitani: Maximally distant trees
in a linear graph (in Japanese). Transactions of the Institute of
Electronics and Communication Engineers of Japan 51A (1968)
196-203.

[Kishi+Kajitani69] G. Kishi and Y. Kajitani: Maximally Distant
Trees and Principal Partition of a Linear Graph. IEEE Trans-
actions on Circuit Theory CT-16 (1969) 323-329.

[Kajitani+Sakurai+Okamoto] Y. Kajitani, Hidekazu Sakurai, Eiji
Okamoto : Metric in the set of labelled graphs and its applications
to network theory. preprint (undated), received (1982).

[König36] D.König: Theorie der Endlichen und Unendlichen Graphen
(Leipsig, 1936, Reprinted New York, Chelsea, 1950).

[Kozen92] D.C.Kozen: The Design and Analysis of Algorithms
(Springer-Verlag,New York, Berlin, London, Tokyo, 1992).

[Kron39] G. Kron: Tensor Analysis of Networks (J.Wiley, New York,
1939).

[Kron63] G. Kron: Diakoptics - Piecewise Solution of Large Scale Sys-
tems (McDonald,London,1963).

[Kuhn56] H.W. Kuhn: Solvability and consistency for linear equations
and inequalities. American Mathematical Monthly 63 (1956) 217-
232.

[Kung86] J.P.S. Kung: A Source Book in Matroid Theory (Birkhäuser,
Boston, 1986).

BIBLIOGRAPHY 125

[Laman70] G. Laman: On graphs and rigidity of plane skeletal struc-
tures. Engineering Mathematics 4 (1970) 331-340.

[Lawler76] E.L. Lawler: Combinatorial Optimization – Networks and
Matroids (Holt, Rinehart and Winston, New York, 1976).

[Lovász83] L. Lovász: Submodular functions and convexity. In: Math-
ematical Programmming – The State of the Art (A.Bachem. M.
Grötschel and B.Korte, eds., Springer, Berlin, 1983), 235-257.

[Lovász+Plummer86] L. Lovász and M. Plummer: Matching Theory
(Akadémia Kiadó, Budapest; North-Holland, Amsterdam, 1986).

[MacDuffee33] C.C.MacDuffee: The Theory of Matrices (Springer,
Berlin, 1933) (reprinted Chelsea, NewYork, 1946).

[MPM78] V.M.Malhotra, M.Pramod-Kumar and S.N.Maheshwari: An
O(V 3) algorithm for finding maximum flows in networks. Infor-
mation Processing Letters 7 (1978) 277-278.

[Mason81] J. H. Mason: Glueing matroids together: a study of Dil-
worth truncations and matroid analogues of exterior and symmet-
ric powers. In: Algebraic Methods in Graph Theory. Proceedings
of the Colloquium, Szeged, 1978; (L.Lovász and V.T. Sós, eds.,
North-Holland Amserdam, 1981) 519-561.

[McCalla88] W.J.McCalla: Fundamentals of computer-aided circuit
simulation (Kluwer Academic Publishers, Boston, 1988).

[McDiarmid73] C.J.H. McDiarmid: Independence structures and sub-
modular functions. Bulletin of the London Mathematical Society
5 (1973) 18-20.

[McDiarmid75] C.J.H. McDiarmid: Rado’s theorem for polymatroids.
Mathematical Proceedings of the Cambridge Philosophical Society
78 (1975) 263-281.

[Menger27] K. Menger: Zur allgemeinen Kurventheorie. Fundamenta
Mathematicae 10 (1927) 96-115.

[Minty60] G.J. Minty: Monotone Networks. Proceedings of the Royal
Society Ser.A 257 (1960) 194-212.

126 BIBLIOGRAPHY

[Minty66] G.J. Minty: On the axiomatic foundations of the theo-
ries of directed linear graphs, electrical networks and network-
programming. Journal of Mathematics and Mechanics 15 (1966)
405-520.

[Mirsky71] L. Mirsky: Transversal Theory (Academic Press, London,
1971).

[Murota87] K. Murota: Systems Analysis by Graphs and Matroids –
Structural Solvability and Controllability (Algorithms and Combi-
natorics 3) (Springer, 1987).

[Murota88] K. Murota: Note on the universal bases of a pair of poly-
matroids. Journal of the Operations Research Society of Japan 31
(1988) 565-572.

[Murota90] K. Murota: Principal structure of layered mixed matrices.
Discrete Applied Mathematics 27 (1990) 221-234.

[Murota+Iri85] K. Murota and M. Iri: Structural solvability of sys-
tems of equations – a mathematical formulation for distinguishing
accurate and inaccurate numbers in structural analysis of systems.
Japan Journal of Applied Mathematics 2 (1985) 247-271.

[Nagamochi+Ibaraki92a] H.Nagamochi and T.Ibaraki: Linear time al-
gorithms for finding a sparse k-connected spanning subgraph of a
k-connected graph.Algorithmica 7 (1992) 583-596.

[Nagamochi+Ibaraki92b] H.Nagamochi and T.Ibaraki: Computing
edge connectivity in multigraphs and capacitated graphs. SIAM
Journal of Discrete Maths 5 (1992) 54-66.

[Nagamochi+Ono+Ibaraki94] H.Nagamochi,T.Ono and T.Ibaraki:
Implementing an efficient minimum capacity cut algo-
rithm.Mathematical Programming 67(1994) 325-341.

[Nakamura+Iri81] M. Nakamura and M. Iri: A structural theory
for submodular functions, polymatroids and polymatoid intersec-
tions. Research Memorandum RMI 81-06, Department of Mathe-
matical Engineering and Instrumentation Physics, Faculty of En-
gineering, University of Tokyo, August 1981.

BIBLIOGRAPHY 127

[Narayanan74] H. Narayanan: Theory of Matroids and Network Anal-
ysis Ph.D. Thesis, Department of Electrical Engineering, Indian
Institute of Technology, Bombay, February 1974.

[Narayanan75] H. Narayanan: A topological formulation of Diakop-
tics and its applications. Research report, E.E. Department,I.I.T.
Bombay, May 1975.

[Narayanan78] H. Narayanan: A Topological Approach to Network
Analysis Monograph, Electrical Engineering Department, Indian
Institute of Technology, Bombay, August 1978.

[Narayanan79] H. Narayanan: A theorem on graphs and its applica-
tion to network analysis. Proceedings of IEEE International Sym-
posium on Circuits and Systems (1979) 1008-1011.

[Narayanan80] H. Narayanan: A topological approach to network de-
composition. Research Report, E.E. Department,I.I.T. Bombay,
July 1980.

[Narayanan85a] H. Narayanan: A theorem on complementary orthog-
onal spaces and its generalizations. Research report, E.E. Depart-
ment,I.I.T. Bombay, September 1985.

[Narayanan85b] H. Narayanan: Violations of port conditions in the in-
terconnection of multiports. International Journal of Circuit The-
ory and its Applications 13 (1985) 358-361.

[Narayanan85c] H. Narayanan: On the equivalence of Minty’s painting
theorem and Tellegen’s theorem. International Journal of Circuit
Theory and its Applications 13 (1985) 353-357.

[Narayanan86a] H. Narayanan: On the decomposition of vector spaces.
Linear algebra and its applications 76 (1986) 61-98.

[Narayanan86b] H. Narayanan: A unified construction of adjoint sys-
tems and networks. International Journal of Circuit Theory and
its Applications 14 (1986) 263-276.

[Narayanan87] H. Narayanan: Topological transformations of electri-
cal networks. International Journal of Circuit Theory and its Ap-
plications 15 (1987) 211-233.

128 BIBLIOGRAPHY

[Narayanan90] H. Narayanan: On the minimum hybrid rank of a graph
relative to a partition of its edges and its apppliction to electrical
network analysis. International Journal of Circuit Theory and its
Applications 18 (1990) 269-288.

[Narayanan91] H. Narayanan: The principal lattice of partitions of
a submodular function. Linear Algebra and its Applications 144
(1991) 179-216.

[Narayanan95a] H. Narayanan: A rounding technique for the polyma-
troid membership problem. Linear Algebra and its Applications
221 (1995) 41-57.

[Narayanan95b] H. Narayanan: Convolution and Dilworth truncation
of submodular functions. Special Issue on Decision Sciences, Jour-
nal of Indian Institute of Science, Bangalore 75 (1995) 25-47.

[Narayanan+Kamath94] H. Narayanan and M.V. Kamath: The prin-
cipal lattice of partitions of the exclusivity function in bipartite
graphs – theory and algorithms. Technical Report TR-151-94, De-
partment of Computer Science and Engineering, Indian Institute
of Technology, Bombay, 1994.

[Narayanan+Vartak81] H. Narayanan and M.N. Vartak: An elemen-
tary approach to the principal partition of a matroid. Transactions
of the Institute of Electronics and Communication Engineers of
Japan E64 (1981) 227-234.

[Narayanan+Roy+Patkar92] H. Narayanan, S. Roy and S. Patkar:
Min k-cut and the principal partition of a graph. Proceedings of
Second National Seminar on Theoretical Computer Science (India,
1992).

[Narayanan+Roy+Patkar96] H. Narayanan, S. Roy and S. Patkar:
Approximation algorithms for min-k-overlap using the PLP ap-
proach. Journal of Algorithms 21 (1996) 306-330.

[Narsingh Deo74] Narsingh Deo: Graph Theory with Applications to
Engineering and Computer Science (Prentice-Hall International
Inc., Englewood Cliffs, 1974) Also (Prentice-Hall of India Private
Limited, New Delhi, 1990).

BIBLIOGRAPHY 129

[Nash-Williams61] C. St. J.A. Nash-Williams: Edge-disjoint spanning
trees of finite graphs. Journal of the London Mathematical Society
36 (1961) 445-450.

[Nash-Williams64] C. St. J.A. Nash-Williams: Decomposition of finite
graphs into forests. Journal of the London Mathematical Society
39 (1964).

[Nash-Williams67] C. St. J.A. Nash-Williams: An application of ma-
troids to graph theory. In: Theory of Graphs Proceedings of the
International Symposium, (Rome, 1966) (P. Rosenstiehl, ed., Gor-
don & Breach, New York, 1967) 263-265.

[Ohtsuki+Ishizaki+Watanabe68] T. Ohtsuki, Y. Ishizaki and H.
Watanabe: Network analysis and topological degrees of freedom
(in Japanese). Transactions of the Institute of Electrical and Com-
munication Engineers of Japan 51A (1968) 238-245.

[Ohtsuki+Ishizaki+Watanabe70] T.Ohtsuki, Y.Ishizaki and
H.Watanabe: Topological Degrees of Freedom and Mixed
Analysis of Electrical Networks. IEEE Transactions on Circuit
Theory CT-17 (1970) 491-499.

[Ore56] O. Ore: Studies on directed graphs, I. Annals of Mathematics
63 (1956) 383-405.

[Ovalekar+Narayanan92] V.S. Ovalekar and H. Narayanan: Fast loop
matrix generation for hybrid analysis and a comparison of the
sparsity of the loop impedance and MNA impedance submatrices.
Proceedings of IEEE International Symposium on Circuits and
Systems (1992).

[Ozawa74] T. Ozawa: Common trees and partitions of two-graphs (in
Japanese). Transactions of the Institute of Electronic and Com-
munication Engineers of Japan 57A (1974) 383-390.

[Ozawa75] T. Ozawa: Solvability of linear electric networks. Memoirs
of the Faculty of Engineering, Kyoto University 37 (1975) 299-
315.

130 BIBLIOGRAPHY

[Ozawa76] T. Ozawa: Topological conditions for the solvability of ac-
tive linear networks. International Journal of Circuit Theory and
itsApplications 4 (1976) 125-136.

[Ozawa+Kajitani79] T. Ozawa and Y.Kajitani: Diagnosability of Lin-
ear Active Networks. IEEE Transactions on Circuits and Systems
CAS-26 (1979) 485-489.

[Papadimitriou+Steiglitz82] C.H.Papadimitriou and K.Steiglitz:
Combinatorial
Optimization - Algorithms and Complexity. (Prentice
Hall,Englewood Cliffs,N.J,1982).

[Patkar92] S. Patkar: Study of structure of graphs through the prin-
cipal lattice of partitions approach. Ph.D. Thesis, Department of
Computer Science and Engineering, Indian Institute of Technol-
ogy, Bombay, 1992.

[Patkar+Narayanan91] S. Patkar and H. Narayanan: Fast algorithm
for the principal partition of a graph. Proceedings of Eleventh
Annual Symposium on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS-11) LNCS-560 (1991)
288-306.

[Patkar+Narayanan92a] S. Patkar and H. Narayanan: Characteriza-
tion theorems for the matroids arising in the principal lattice
of partitions of the rank functions of a graph. Technical Report
TR.073-92, Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay, February 1992.

[Patkar+Narayanan92b] S. Patkar and H. Narayanan: Principal lat-
tice of partitions of submodular functions on graphs: Fast al-
gorithm for principal partition and generic rigidity. Proceedings
of the Third Annual International Symposium on Algorithms and
Computation (Nagoya, Japan 1992).

[Patkar+Narayanan92c] S. Patkar and H. Narayanan: Fast sequential
and randomized parallel algorithms for rigidity and approximate
min-k-cut. Proceedings of Twelfth Annual Symposium on FSTTCS
(New Delhi, 1992) (Springer Verlag, 1992).

BIBLIOGRAPHY 131

[Perfect68] H. Perfect: Applications of Menger’s graph theorem. Jour-
nal of Mathematical Analysis and Applcations 22 (1968) 96-111.

[Perfect69] H. Perfect: Independence spaces and combinatorial prob-
lems. Proceedings of the London Mathematical Society 19 (1969)
17-30.

[Pym+Perfect70] J.S.Pym and H.Perfect: Submodular functions and
independence structures. Journal of Mathematical Analysis and
Applications, 30 (1970) 1-31.

[Queyranne95] M.Queyranne: A combinatorial algorithm for minimiz-
ing symmetric submodular functions. Proceedings of the Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms (1995) 98-
101.

[Rado42] R. Rado: A theorem on independence relations. Quarterly
Journal of Mathematics, Oxford 13 (1942) 83-89.

[Randow76] R. von Randow: Introduction to the Theory of Matroids
(Springer, Berlin, 1976).

[Recski89] A. Recski: Matroid Theory and its Applications
in Electric Network Theory and in Statics. (Springer-
Verlag,Berlin,Heidelberg,New York,London,Paris,Tokyo,1989).

[Recski+Iri80] A. Recski and M. Iri: Network theory and transversal
matroids. Discrete Applied Mathematics 2 (1980) 311-326.

[Roy93] S. Roy: The principal lattice of partitions approach to parti-
tioning problems in VLSI. Ph.D. Thesis, Department of Electrical
Engineering, Indian Institute of Technology, Bombay, 1993.

[Roy+Narayanan91] S. Roy and H. Narayanan: A new approach to
the problem of PLA partitioning using the theory of the principal
lattice of partitions of a submodular function. Proceedings of the
Fourth Annual ASIC Conference and Exhibit (Rochester, 1991).

[Roy+Narayanan93a] S. Roy and H. Narayanan: Application of the
principal partition and principal lattice of partitions of a graph

132 BIBLIOGRAPHY

to the problem of decomposition of a finite state machine. Pro-
ceedings of the IEEE International Symposium of Circuits and
Systems (Chicago, Illinois, 1993).

[Roy+Narayanan93b] S. Roy and H. Narayanan: An alternative
derivation of the PLP based on a minimum cost rate theorem.
Technical Report VLSI-93-2, VLSI Design Centre, Department of
Computer Science and Engineering, Indian Institute of Technol-
ogy, Bombay, February 1993.

[Roy+Gaitonde+Narayanan90] S. Roy, D. Gaitonde and H.
Narayanan: BITSIM – A general purpose circuit simulator.
Journal of the Institute of Electrical and Telecommunication
Engineers 36 (1990) 265-273.

[Saran+Vazirani91] H.Saran and V.V. Vazirani: Finding a k-cut
within twice the optimal. Proceedings of the 32nd Annual IEEE
Symposium on the Foundations of Computer Science (1991).

[Schrijver86] A. Schrijver: Theory of Linear and Integer Programming
(John Wiley & Sons, New York, 1986).

[Schrijver00] A. Schrijver: A combinatorial algorithm minimizing sub-
modular functions in strongly polynomial time. Journal of Com-
binatorial Theory (B), 80 (2000), 346-365.

[Seshu+Reed61] S. Seshu and M.B. Reed: Linear Graphs and Electri-
cal Networks (Addison-Wesley, Reading, Mass., London, 1961).

[Sleator80] D.D.Sleator: An O(nm log n) algorithm for maximum net-
work flow. Technical Report STAN-CS-80-831, Stanford Univer-
sity (1980).

[Sleator+Tarjan 83] D.D.Sleator and R.E.Tarjan: Self-adjusting bi-
nary trees. Proceedings of the 15th ACM Symposium on Theory
of Computing (1983) 235-245.

[Sohoni92] M. Sohoni: The shape of polyhedra in combinatorial op-
timization. Ph.D. Thesis, Department of Computer Science and
Engineering, Indian Institute of Technology, Bombay, 1992.

BIBLIOGRAPHY 133

[Stoer+Wagner94] M.Stoer and F.Wagner:A simple min cut algo-
rithm.
Proceedings of the 1994 European Symposium on Algorithms
ESA94,LNCS855 (Springer, 1994) 141-147.

[Stoer+Witzgall70] J. Stoer and C. Witzgall: Convexity and Optimiza-
tion in Finite Dimensions I (Springer, Berlin, 1970).

134 BIBLIOGRAPHY

[Sugihara79] K. Sugihara: Studies on mathematical structures of line
drawings of polyhedra and their applications to scene analysis.
Research Electrotechnical Laboratory 800 (1979).

[Sugihara80] K. Sugihara: On redundant bracing in plane skeltal struc-
tures. Bulletin of the Electrotechnical Laboratory 44 (1980) 78-88.

[Sugihara82] K. Sugihara: Mathematical structures of line drawings of
polyhedra: toward man-machine communication by means of line
drawings. IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI-4 (1982) 458-469.

[Sugihara83] K. Sugihara: A unifying approach to descriptive geome-
try and mechanisms. Discrete Applied Mathematics 5 (1983) 313-
328.

[Sugihara84] K. Sugihara: An algebraic and combinatorial approach
to the analysis of line drawings of polyhedra. Discrete Applied
Mathematics 9 (1984) 77-104.

[Sugihara86] K. Sugihara: Machine Interpretion of Line Drawings
(The MIT Press, Cambridge, Massachusetts, 1986).

[Sugihara+Iri80] K. Sugihara and M. Iri: A mathematical approach to
the determination of the structure of concepts. Matrix and Tensor
Quarterly 30 (1980) 62-75.

[Tarjan72] R.E. Tarjan: Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing 1 (1972) 146-160.

[Tomizawa75] N. Tomizawa: Irreducible matroids and classes of r-
complete bases (in Japanese). Transactions of the Institute of
Electronics and Communication Engineers of Japan 58A (1975)
793-794.

[Tomizawa76] N. Tomizawa: Strongly irreducible matroids and prin-
cipal partition of a matroid into irreducible minors (in Japanese).
Transactions of the Institute of Electronics and Communication
Engineers of Japan 59A (1976) 83-91.

BIBLIOGRAPHY 135

[Tomizawa80a] N. Tomizawa: Theory of hyperspace (I) – supermodu-
lar functions and generalization of concept of ‘bases’ (in Japanese).
Papers of the Technical Group on Circuits and System Theory,
Institute of Electronics and Communication Engineers of Japan
CAS80-72 (1980).

[Tomizawa80b] N. Tomizawa: Theory of hyperspace (II) – geometry
of intervals and superemodular functions of higher order. ibid.,
CAS80-73 (1980).

[Tomizawa80c] N. Tomizawa: Theory of hyperspace (III) – Maximum
deficiency = minimum residue theorem and its application (in
Japanese). ibid., CAS80-74 (1980).

[Tomizawa80d] N. Tomizawa: Theory of hyperspace (IV) – principal
partitions of hypermatroids (in Japanese). ibid., CAS80-85 (1980).

[Tomizawa+Fujishige82] N. Tomizawa and S. Fujishige: Historical sur-
vey of extensions of the concept of principal partition and their
unifying generalization to hypermatroids. Systems Science Re-
search Report No.5, Department of Systems Science, Tokyo In-
stitute of Technology, April 1982 (also its abridgement in Pro-
ceedings of the 1982 IEEE International Symposium on Circuits
and Systems (Rome, 1982) 142-145).

[Tomi+Iri74] N. Tomizawa and M. Iri: An algorithm for determining
the rank of a triple matrix product AXB with applications to
the problem of discerning the existence of the unique solution in a
network (in Japanese). Transactions of the Institute of Electronics
and Communication Engineers of Japan 57A (1974) 834-841.

[Tutte58] W.T. Tutte: A homotopy theorem for matroids I,II. Trans-
actions of the American Mathematical Society 88 (1958) 144-174.

[Tutte59] W.T. Tutte: Matroids and graphs. Transactions of the
American Mathematical Society 90 (1959) 527-552.

[Tutte61] W.T. Tutte: On the problem of decomposing a graph into
n− connected factors. Journal of the London Mathematical Society
36 (1961) 221-230.

136 BIBLIOGRAPHY

[Tutte65] W.T. Tutte: Lectures on matroids. Journal of Research of
the National Bureau of Standards B69 (1965) 1-48.

[Tutte71] W.T. Tutte: Introduction to the Theory of Matroids (Amer-
ican Elsevier, New York, 1971).

[Van Leeuwen90] J.Van Leeuwen (editor): Handbook of Theoretical
Computer Science (Volume A)- Algorithms and Complexity. (El-
sevier,Amsterdam and M.I.T Press,Cambridge,1990).

[Van der Waerden37] B.L. van der Waerden: Moderne Algebra (2nd
ed.) (Springer, Berlin, 1937).

[von Neumann47] J. von Neumann: Discussion of a maximum prob-
lem. Unpublished working paper. Institute for Advanced Studies,
Princeton,New Jersey (1947). Reprinted in
John von Neumann, Collected Works, vol VI. (Pergamon Press,
Oxford, 1963).

[Welsh76] D.J.A. Welsh: Matroid Theory (Academic Press, Cam-
bridge, 1976).

[White86] N.L. White: Theory of Matroids (Cambridge University
Press, Cambridge, 1986).

[Whitney32] H. Whitney: Non-separable and planar graphs. Transac-
tions of the American Mathematical Society 34 (1932) 339-362.

[Whitney33a] H. Whitney: Planar graphs. Fundamenta Mathematicae
21 (1933) 73-84.

[Whitney33b] H. Whitney: On the classification of graphs. American
Journal of Mathematics 55 (1933) 236-244.

[Whitney33c] H. Whitney: 2-isomorphic graphs. American Journal of
Mathematics 55 (1933) 245-254.

[Whitney35] H. Whitney: On the abstract properties of linear depen-
dence. American Journal of Mathematics 57 (1935) 509-533.

