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  கலவி கைரயில;   கறபவர நாளசில
   ெமலல நிைனககிற பிணிபல - ெதளளிதின
   ஆராயந தைமவைடய கறபேவ நீெராழியப

  பாலண கரகிற ெறரிநத.

                                   -Nāladi
                                                                                    circa 800 A.D.

Learning is a shoreless sea; the learner's days are few;
Prolonged study is beset with a thousand ills;

With clear discrimination learn what's meet for you
Like swan that leaves the water, drinks the milk.
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Preface

This book has grown out of an attempt to understand the role that the
topology of an electrical network plays in its efficient analysis. The
approach taken is to transform the problem of solving a network with
a given topology, to that of solving another with a different topology
(and same devices), but with additional inputs and constraints. An
instance of this approach is network analysis by multiport decompo-
sition - breaking up a network into multiports, solving these in terms
of port variables and finally imposing the port connection conditions
and getting the complete solution. The motivation for our approach
is that of building more efficient circuit simulators, whether they are
to run singly or in parallel. Some of the ideas contained in the book
have already been implemented - BITSIM, the general purpose circuit
simulator built at the VLSI Design Centre, I.I.T. Bombay, is based on
the ‘topological hybrid analysis’ contained in this book and can further
be adapted to use topological decomposition ideas.

Many combinatorial optimization problems arise naturally when one
adopts the above approach, particularly the hybrid rank problem and
its generalizations. The theory required for the solution of these prob-
lems was developed by electrical engineers parallel to, and independent
of, developments taking place in the theory of matroids and submod-
ular functions. Consider, for instance, the work of Kishi and Kajitani,
Iri, Ohtsuki et al in the late 60’s on principal partition and its appli-
cations, independent of Edmonds’ work on matroid partitions (1965).
There is a strong case for electrical network topologists and submod-
ular function theorists being aware of each others’ fields. It is hoped
that the present book would fill this need.

The topological network analysis that we have considered is to be
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distinguished from the kind of work exemplified by ‘Kirchhoff’s Third
Law’ which has been discussed in many books published in the 60’s
(eg. the book by Seshu and Reed [Seshu+Reed61]). In the 70’s much
interesting work in this area was done by Iri, Tomizawa, Recski and
others using the ‘generality assumption’ for linear devices. Details
may be found, for instance, in Recski’s book [Recski89]. In the present
book devices play a very secondary role. Mostly we manipulate only
Kirchhoff’s Laws.

Submodular functions are presented in this book adopting the ‘ele-
mentary combinatorial’ as opposed to the ‘polyhedral’ approach. Three
things made us decide in favour of the former approach.

• It is hoped that the book would be read by designers of VLSI
algorithms. In order to be convincing, the algorithms presented
would have to be fast. So very general algorithms based on the
polyhedral approach are ruled out.

• The polyhedral approach is not very natural to the material on
Dilworth truncation.

• There is an excellent and comprehensive monograph, due to
S.Fujishige, on the polyhedral approach to submodular functions;
a book on polyhedral combinatorics including submodular func-
tions from A.Schrijver is long awaited.

In order to make the book useful to a wider audience, the material
on electrical networks and that on submodular functions are presented
independently of each other. A final chapter on the hybrid rank prob-
lem displays the link. An area which can benefit by algorithms based
on submodular functions is that of CAD for VLSI - particularly for
building partitioners. Some space has therefore been devoted to parti-
tioning in the chapter on Dilworth truncation.

The book is intended primarily for self study - hence the large num-
ber of problems with solutions. However, most of the material has
been tested in the class room. The network theory part has been used
for many years for an elective course on ‘Advanced Network Analysis’
- a third course on networks taken by senior undergraduates at the EE
Dept, I.I.T. Bombay. The submodular function part has been used
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for special topics courses on combinatorics taken by doctoral students
in Maths and Computer Science. This material can be covered in a
semester if the students have a prior background in elementary graphs
and matroids, leaving all the starred sections and relegating details
and problems to self study.

It is a pleasure to acknowledge the author’s indebtedness to his many
colleagues, teachers and friends and to express his heartfelt gratitude.

He was introduced to electrical network theory by Professors R.E.Bedford
and K.Shankar of the EE Dept., I.I.T. Bombay, and to graph theory by
Professor M.N.Vartak of the Dept. of Maths, I.I.T. Bombay. Professor
Masao Iri, formerly of the University of Tokyo, now of the University
of Chuo, has kept him abreast of the developments in applied matroid
theory during the last two decades and has also generously spared time
to comment on the viability of lines of research.

He has benefited through interaction with the following: Professors
S.D.Agashe,
P.R.Bryant,A.N.Chandorkar,M.Chandramouli,C.A.Desoer,A.Diwan,S.Fujishige,
P.L.Hammer,M.V.Hariharan,Y.Kajitani,M.V. Kamath,M.S.Kamath,E.L.Lawler,
K.V.V. Murthy,T.Ozawa,S.Patkar,S.K.Pillai,P.G.Poonacha,G.N.Revankar,S.Roy,
S.C.Sahasrabudhe,P.C.Sharma,M.Sohoni,V.Subbarao,N.J.Sudarshan,V.K.Tandon,
N.Tomizawa, P.P.Varaiya, J.M.Vasi.

The friends mentioned below have critically read parts of the manuscript:
S.Batterywala, A.Diwan, N.Jayanthi, S.Patkar, P.G.Poonacha and the
’96 batch students of the course ‘Advanced Network Analysis’. But for
Shabbir Batterywala’s assistance (technical, editorial, software consul-
tancy), publication of this book would have been delayed by many
months.

Mr Z.A.Shirgaonkar has done the typing in Latex and Mr R.S.Patwardhan
has drawn the figures.

The writing of this book was supported by a grant (HN/EE/TXT/95)
from the C.D.P., I.I.T. Bombay.

The author is grateful to his mother Lalitha Iyer, wife Jayanthi and
son Hari for their continued encouragement and support.
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Note to the Reader

This book appears too long because of two reasons:

• it is meant for self study - so contains a large number of exercises
and problems with solutions.

• it is aimed at three different types of readers:

– Electrical engineers interested in topological methods of net-
work analysis.

– Engineers interested in submodular function theory

– Researchers interested in the link between electrical net-
works and submodular functions.

To shorten the book for oneself it is not necessary to take recourse
to drastic physical measures. During first reading all starred sections,
starred exercises and problems may be omitted. If the reader belongs
to the first two categories mentioned above, she would already find
that only about two hundred pages have to be read.

Sections, exercises and problems have been starred to indicate that
they are not necessary for a first reading. Length of the solution is
a fair indicator of the level of difficulty of a problem - star does not
indicate level of difficulty. There are only a handful of routine (drill
type) exercises. Most of the others require some effort. Usually the
problems are harder than the exercises.

Many of the results, exercises, problems etc. in this book are well
known but cannot easily be credited to any one author. Such results
are marked with a ‘(k)’.

xi



xii

Electrical Engineers interested in topological methods

Such readers should first brush up on linear algebra (say first two
chapters of the book by Hoffman and Kunze [Hoffman+Kunze72]),
read a bit of graph theory (say the chapter on Kirchhoff’s laws in the
book by Chua et al [Chua+Desoer+Kuh87] and the first four chapters
of the book by Narsingh Deo [Narsingh Deo74]) and then read chapters
2 to 8. The chapter on graphs contains material on contraction and
restriction which is not easily available in textbooks on circuit theory,
but which is essential for an understanding of subsequent chapters. So
this chapter should be read carefully, particularly since it is written
tersely. The chapter on matroids is optional. The chapter on electrical
networks should be easy reading but scanning it is essential since it fixes
some notation used subsequently and also because it contains material
motivating subsequent chapters, e.g. multiport decomposition. The
next three chapters contain whatever the book has to say on topological
network analysis.

Engineers interested in submodular functions

Such readers should read Chapters 2 to 4 and Chapters 9 to 13 and
the first four sections of Chapter 14. If the reader is not interested in
matroids he may skip material (chapters, sections, exercises, examples)
dealing with them without serious loss of continuity. This would mean
he would have to be satisfied with bipartite graph based instances of
the general theory. The key chapter for such a reader is Chapter 9.
This is tersely written-so should be gone through carefully.

Researchers interested in the link between submodular func-
tions and electrical networks

The key chapter for such a reader is Chapter 14. To read the first four
sections of this chapter the reader has to be familiar with Chapters
5, 6, 7 from the electrical networks part and the unstarred sections of
the chapters on submodular functions. If he has some prior familiarity
with submodular functions and electrical networks it is possible to
directly begin reading the chapter picking up the required results on
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submodular functions as and when they are referred to in the text.
To read the last section of the chapter, familiarity with Chapter 8 is
required.

Comments on Notation

Sometimes, instead of numbering equations, key statements etc., we
have marked them with symbols such as (∗), (∗∗), (√). These marks
are used over and over again and have validity only within a local area
such as a paragraph, a proof or the solution to a problem.

In some cases, where there is no room for confusion, the same symbol
denotes different objects. For instance, usually B denotes a bipartite
graph. But in Chapter 4, B denotes a base of a matroid- elsewhere a
base is always denoted by b. The symbol E is used for the edge set of
a graph, in particular a bipartite graph. But E(X), X ⊆ V (G) denotes
the set of edges with both endpoints within X, while EL(X), X ⊆ VL,
in the case of a bipartite graph, denotes the set of all vertices adjacent
only to vertices in X.

We have often used brackets to write two statements in one.
Example: We say that set X is contained in Y (properly contained
in Y ), if every element of X is also a member of Y (every element of
X is a member of Y and X 6= Y ) and denote it by X ⊆ Y (X ⊂ Y ).
This is to be read as the following two statements.

i. We say that set X is contained in Y , if every element of X is
also a member of Y and denote it by X ⊆ Y.

ii. We say that set X is properly contained in Y , if every element
of X is a member of Y and X 6= Y and denote it by X ⊂ Y.
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List of Commonly Used Symbols

Sets, Partitions, Partial Orders

{e1, e2, . . . , en} set whose elements are e1, e2, . . . , en

{xi : i ∈ I} set whose members are xi, i ∈ I
(xi : i ∈ I) a family (used only in Chapters 2 and 11)

x ∈ X element x belongs to set X

x 6∈ X element x does not belong to set X

∀x or ∀ x for all elements x

∃x there exists an element x

X ⊆ Y set X is contained in set Y

X ⊂ Y set X is properly contained in set Y

X ∪ Y union of sets X and Y

X ∩ Y intersection of sets X and Y

X ⊎ Y disjoint union of sets X and Y
n
⋃

i=1

Xi union of the sets Xi

n
⊎

i=1

Xi disjoint union of the sets Xi

X − Y set of elements in X but not in Y

X̄ complement of X

X × Y cartesian product of sets X and Y

X ⊕ Y direct sum of sets X and Y

2S collection of subsets of S

| X | size of the subset X

(P,�) preorder on P

(P,≤) partial order on P

Π partition Π

ΠN partition that has N as a block and all

blocks except N as singletons

PX collection of all partitions of X

Π ≤ Π′ partition Π is finer than Π′
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Π ∨Π′ finest partition coarser than both Π and Π′

Π ∧Π′ coarsest partition finer than both Π and Π′
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Functions,Set Functions and Operations on Functions

f(·) function f(·)
f/Z(·), f(·) on S restriction of f(·) to Z ⊆ S

gf(X), g ◦ f(X) g(f(X))

(f1 ⊕ f2)(·) direct sum of functions f1(·) and f2(·)
ffus·Π(·), f(·) on 2S, fusion of f(·) relative to Π

i.e., ffus.Π(Xf)

≡ f(
⋃

T∈Xf

T ), Xf ⊆ Π

f/X(·), f(·) on 2S restriction of f(·) to 2X , X ⊆ S

(usually called) restriction of f(·) to X
f ⋄X(·), f(·) on 2S contraction of f(·) to X

f ⋄X(Y ) ≡ f((S −X) ∪ Y )− f(S −X)

fd(·), f(·) on 2S contramodular dual of f(·)
fd(X) ≡ f(S)− f(S −X)

f ∗(·), f(·) on 2S comodular dual of f(·)
( with respect to weight function α(·))
f ∗(X) ≡ α(X)− (f(S)− f(S −X))

Pf , f(·) on 2S polyhedron associated with f(·)
x ∈ Pf iff x(X) ≤ f(X) ∀X ⊆ S

P d
f , f(·) on 2S dual polyhedron associated with f(·)

x ∈ P d
f iff x(X) ≥ f(X) ∀X ⊆ S

Vectors and Matrices

F ,ℜ, C,ℜ+ field F , real field, complex field,
set of nonnegative reals

∑

xi summation of elements xi

f vector f

V vector space V
V⊥ vector space complementary orthogonal to V

x1 ⊕ x2 direct sum of x1 and x2 (vector obtained by
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adjoining components of vectors x1 and x2)

VS ⊕ VT , S ∩ T = ∅ direct sum of VS and VT (obtained by

collecting all possible direct sums of vectors

in VS and VT )
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dim(V), r(V) dimension of vector space V
d(V,V ′) r(V + V ′)− r(V ∩ V ′)

A(i, j) i, jth entry of matrix A

AT transpose of matrix A

A−1 inverse of matrix A

< f , g > dot product of vectors f , g

R(A) row space of A

C(A) column space of A

det(A) determinant of A

Graphs and Vector Spaces

G graph G
V (G) vertex set of G
E(G) edge set of G

t a tree

f a forest

t̄ cotree (E(G)− t) of G
f̄ coforest (E(G)− f) of G

L(e, f) f − circuit of e with respect to f
B(e, f) f − cutset of e with respect to f
r(G) rank of G (= number of edges in a

forest of G)
ν(G) nullity of G (= number of edges in a

coforest of G)
GopenT graph obtained from G by opening and

removing edges T

GshortT graph obtained from G by shorting and
removing edges T

G · T graph obtained from Gopen(E(G)− T ) by

removing isolated vertices,
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restriction of G to T
G × T graph obtained from Gshort(E(G)− T ) by

removing isolated vertices,

contraction of G to T
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G1
∼= G2 G1 is 2− isomorphic to G2

r(T ) r(G · T )

ν(T ) ν(G × T )

H hypergraph H
B(VL, VR, E) bipartite graph with left vertex set VL,

right vertex set VR and edge set E

A (usually) incidence matrix

Ar reduced incidence matrix

Qf fundamental cutset matrix of forest f

Bf fundamental circuit matrix of forest f

KCE Kirchhoff ′s current equations

KCL Kirchhoff ′s current Law

KV E Kirchhoff ′s voltage equations

KV L Kirchhoff ′s voltage Law

V i(G) solution space of KCE of G
Vv(G) solution space of KV E of G
V · T restriction of vector space V to T
V × T contraction of vector space V to T

ξ(T ) for V r(V · T )− r(V × T )

Flow Graphs

F (G) ≡ (G, c, s, t) flow graph on graph G with capacity
function c, source s, sink t

(A,B) cut(A,B)

c(A,B) capacity of cut(A,B)

f(A,B) flow across cut(A,B), from A to B

|f | value of flow f

F (B, cL, cR) flowgraph associated with bipartite graph B

with source to left vertex capacity cL, right
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vertex to sink capacity cR

and (left to right) bipartite graph edge capacity ∞
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Matroids

M≡ (S, I) matroidM
I collection of independent sets

M∗ dual of the matroidM
B (only in Chapter 4) base of a matroid

L(e, B) f − circuit of e with respect
to base B

B(e, B) f − bond of e with respect to base B
r(T ) rank of the subset T in the given matroid

r(M) rank of the underlying set of the matroid

ν(T ) rank of the subset T in the dual of the given matroid

ν(M) rank of the underlying set in the dual matroid

M(G) polygon matroid of the graph G (bases

are forests)

M∗(G) bond matroid of the graph G (bases

are coforests)

M(V) matroid whose bases are maximal independent

columns of a representative matrix of V
M∗(V) dual of M(V)

∫ (X) span (closure) of the subset X in the matroid

M· T restriction of M to T

M× T contraction of M to T

M1 ∨M2 union of matroidsM1 andM2

Electrical Networks

v voltage vector

i current vector

N electrical network

NAP electrical multiport with port set P and

remaining edge set A

E set of voltage sources in the network
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J set of current sources in the network

R resistance, also collection of resistors or

‘current controlled voltage′ elements in the network
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G conductance, also collection of

‘voltage controlled current′ elements

in the network

L inductance, also collection of inductors

in the network

L mutual inductance matrix

C capacitance, also collection of capacitors

in the network

vcvs voltage controlled voltage source

vccs voltage controlled current source

ccvs current controlled voltage source

cccs current controlled current source

D device characteristic

DAB (v/A, i/B), where v, i ∈ D
DA DAA

DAB ×DPQ {(v, i), v = vA ⊕ vP , i = iB ⊕ iQ

where (vA, iB) ∈ DAB, (vP , iQ) ∈ DPQ}
δAB {(vA, iB), vA is any vector on A, iB

is any vector on B}

Implicit Duality

KSP ↔ KP {fS : fS = fSP/S, fSP ∈ KSP s.t. fSP/P ∈ KP}
KS1 ↔ KS2 {f : f = f1/(S1 − S2)⊕ f2/(S2 − S1), f1 ∈ KS1,

f2 ∈ KS2 and f1/S1 ∩ S2 = f2/S1 ∩ S2}
KS1

⇀↽KS2 {f : f = f1/(S1 − S2)⊕ f2/(S2 − S1), f1 ∈ KS1,

f2 ∈ KS2 and f1/S1 ∩ S2 = −f2/S1 ∩ S2}
< ·, · > a q − bilinear operation, usually dot product
K∗ collection of vectors q − orthogonal to those in K

d(V,V ′) r(V + V ′)− r(V ∩ V ′)

Kp the collection of vectors polar to those in K
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Kd (only in Chapter 7) the collection of vectors

integrally dual to those in K
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Multiport Decomposition

(VE1P1 , · · · ,VEkPk
;VP ) k −multiport decomposition ofVE

(i.e., (
⊕

i

VEiPi
)↔ VP = VE)

((VEjPj
)k;VP ) (VE1P1, · · · ,VEkPk

;VP )

((VEjPj
)j∈I ;VPI

) (· · · VEjPj
· · · ;VPI

)

where j ∈ I ⊆ {1, · · · , k} and PI = ∪j∈IPj

(VEP , P ) vector space on E ⊎ P with ports P

(VE1Q1, · · · ,VEkQk
;VQP ) matched or skewed decomposition of (VEP , P )

Functions Associated with Graphs and Bipartite Graphs

V (X), X ⊆ E(G) set of endpoints of edges X in

graph G
Γ(X), X ⊆ V (G) set of vertices adjacent to vertices

in vertex subset X in graph G
ΓL(X), X ⊆ VL in B ≡ (VL, VR, E), set of vertices

adjacent to vertices in X

ΓR(X), X ⊆ VR in B ≡ (VL, VR, E), set of vertices

adjacent to vertices in X

E(X), X ⊆ V (G) set of edges with both endpoints

in vertex subset X in graph G
EL(X), X ⊆ VL in B ≡ (VL, VR, E) set of vertices

adjacent only to vertices in X

ER(X), X ⊆ VR in B ≡ (VL, VR, E) set of vertices

adjacent only to vertices in X

I(X), X ⊆ V (G) set of edges with atleast one

endpoint in vertex subset X in graph G
cut(X), X ⊆ V (G) set of edges with exactly one

endpoint in vertex subset X in graph G
w(·) usually a weight function

wL(·), wR(·) weight functions on the left vertex set
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and on the right vertex set respectively

of a bipartite graph
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Convolution and PP

f ∗ g(X) convolution of f(·) and g(·)
(minY ⊆X [f(Y ) + g(X − Y )])

Bλf,g
, f(·), g(·) on 2S collection of sets which minimize

λf(X) + g(S −X) over subsets of S

Bλ Bλf,g

Xλ,Xλ maximal and minimal members of Bλ
Π(λ) the partition of Xλ −Xλ induced by Bλ
Πpp the partition of S obtained by taking the

union of all the Π(λ)

(Πpp,≥π) partition partial order pair

associated with (f(·), g(·))
∅, E1, · · · , Et (usually) the principal sequence of (f(·), g(·))
λ1, · · · , λt (usually) decreasing sequence of critical values

(≥R) refined partial order associated with (f(·), g(·))

Truncation and PLP

f(Π)
∑

Ni∈Π

f(Ni)

ft(·) ft(∅) ≡ 0,

ft(X) ≡ minΠ∈PX
(
∑

Xi∈Π

f(Xi))

Lλf
, f(·) on 2S collection of all partitions of S that

minimize f − λ(·)
Lλ Lλf

Πλ,Πλ maximal and minimal member partitions in Lλ
λ1, · · · , λt (usually) decreasing sequence of critical

PLP values of f(·)
Πλ1 ,Πλ2, · · · ,Πλt

,Πλt principal sequence of partitions of f(·)
Π′

fus·Π,Π
′ ≥ Π partition of Π with Nfus as one of its blocks

iff the members of Nfus are the set of blocks of Π
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contained in a single block of Π′

(Πfus)exp.Π (Πfus, a partition of Π) a partition with N

as a block, iff N is the union of all blocks of

Π which are members of a single block of Πfus
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Chapter 1

Introduction

Topological Methods

The methods described in this book could be used to study the prop-
erties of electrical networks that are independent of the device charac-
teristic. We use only topological constraints, namely, KCL and KVL.
Our methods could, therefore, be called ‘network topological’. How-
ever, in the literature, ‘topological’ is used more loosely for all those
results which use topological ideas, e.g. Kirchhoff’s Third Law, where
the admittance of a resistive multiport is obtained in terms of prod-
ucts of admittances present in all the trees and certain special kinds
of subtrees of the network. These latter results, though important, are
not touched upon in this book. Here our aim has been to

• give a detailed description of ‘topological methods in the strict
sense’ for electrical networks,

• present applications:

– to circuit simulation and circuit partitioning

– to establish relations between the optimization problems
that arise naturally, while using these methods, to the cen-
tral problems in the theory of submodular functions.

1
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Applications

There are two kinds of applications possible for the approach taken in
this book:

i. To build better (faster, numerically more rugged, parallelizable)
circuit simulators. Typically, our methods will permit us to speak as
follows.

‘Solution of a network N containing arbitrary devices
is equivalent to solution of topologically derived networks
N1, · · · ,Nk under additional topological conditions.’

An obvious application would be for the (coarse grained) parallelization
of circuit simulation. We could have a number of machines M1, · · · ,Mk

which could run general/special purpose circuit simulation of the de-
rived networks N1, · · · ,Nk. The central processor could combine their
solutions using the additional topological conditions. Optimization
problems would arise naturally, e.g. ‘how to minimize the additional
topological conditions?’
There are more immediate applications possible. The most popular
general purpose simulator now running, SPICE, uses the modified
nodal analysis approach. In this approach the devices are divided
into two classes, generalized admittance type whose currents can be
written in terms of voltages appearing somewhere in the circuit, and
the remaining devices whose current variables will figure in the list of
unknowns. The final variables in terms of which the solution is carried
out would be the set of all nodal voltages and the above mentioned
current variables. The resulting coefficient matrix is very sparse but
suffers from the following defects:

• the matrix often has diagonal zeros;

• even for pure RLC circuits the coefficient matrix is not positive
definite;

• if the subnetwork containing the admittance devices is discon-
nected, then the corresponding principal submatrix is singular.
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These problems are not very severe if we resort to sparse LU meth-
ods [Hajj81]. However, it is generally accepted that for large enough
networks (≈ 5000 nodes) preconditioned conjugate gradient methods
would prove superior to sparse LU techniques. The main advantage of
the former is that if the matrix is close to a positive definite matrix,
then we can bound the number of iterations. The above defects make
MNA ill suited to conjugate gradient methods.

There is a simple way out - viz. to use hybrid analysis (partly loop
and partly nodal), where we partition elements into admittance type
and impedance type. The structure of the coefficient matrix that is
obtained in this latter case is well suited to solution obtained by the
conjugate gradient technique but could easily, for wrong choice of vari-
ables, be dense. A good way of making the matrices sparse is to use the
result that we call the ‘NAL − NBK theorem’ (see Section 6.4). Here
the network is decomposed into two derived networks whose solution
under additional topological (boundary) conditions is always equiva-
lent to the solution of the original network. We select NAL so that it
contains the admittance type elements and NBK so that it contains
the impedance type elements. We then write nodal equations for NAL

and generalized mesh type equations for NBK . The result is a sparse
matrix with good structure for using conjugate gradient methods - for
instance for RLC networks, after discretization, we would get a posi-
tive definite matrix and for most practical networks, a large submatrix
would be positive definite. A general purpose simulator BITSIM has
been built using these ideas [Roy+Gaitonde+Narayanan90].

The application to circuit partitioning arises as a biproduct when we
try to solve a version of the hybrid rank problem using the operation
of Dilworth truncation on submodular functions. Many problems in
the area of CAD for VLSI need the underlying graph/hypergraph to
be partitioned such that the ‘interaction’ between blocks is minimized.
For instance we may have to partition the vertex set of a graph so that
the number of lines going between blocks is a minimum. This kind of
problem is invariably NP-Hard. But, using the idea of principal lattice
of partitions (PLP), we can solve a relaxation of such problems exactly.
This solution can then be converted to an approximate solution of
the original problem [Narayanan91], [Roy+Narayanan91], [Patkar92],
[Roy93],[Roy+Narayanan93a] [Narayanan+Roy+Patkar96].
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ii. A second kind of application is to establish strong relationships
between electrical networks and combinatorial optimization, in partic-
ular, submodular function theory. There are a number of optimization
problems which arise when we view electrical networks from a topo-
logical point of view. These motivate, and are solved by, important
concepts such as convolution and Dilworth truncation of submodular
functions. The hybrid rank problem and its generalizations are impor-
tant instances. Other algorithmic problems (though not entirely topo-
logical) include the solvability of electrical networks under ‘generality’
conditions (see for instance [Recski+Iri80]). It is no longer possible
for electrical engineers to directly apply well established mathematical
concepts. They themselves often have to work out the required ideas.
The principal partition is a good instance of such an idea conceived
by electrical engineers. A nice way of developing submodular function
theory, it appears to the author, is to look for solutions to problems
that electrical networks throw up.

We now present three examples which illustrate the concepts that
we will be concerned with in network analysis.

The following informal rule should be kept in mind while reading
the examples (see Theorem 6.3.1 and also the remark on page 235).

Let N be an electrical network (not necessarily linear)
with the set of independent current sources EJ and the set
of independent voltage sources EE . We assume that the
independent source values do not affect the device charac-
teristic of the remaining devices. Then, the structure of the
constraints of the network, in any method of analysis, (as
far as variables other than voltage source currents and cur-
rent source voltages are concerned) is that corresponding to
setting the independent sources to zero, i.e., short circuiting
voltage sources and open circuiting current sources. In par-
ticular, for linear networks, the structure of the coefficient
matrix multiplying the unknown vector is that correspond-
ing to the network obtained by short circuiting the voltage
sources and open circuiting the current sources.

Example 1.0.1 The NAL −NBK method:
Consider the electrical network whose graph is given in Figure 1.1. We
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Figure 1.1: To illustrate the NAL −NBK Method
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assume that the devices associated with branches {1,2,3,4,5} (= A) are
independent of those associated with branches {6, 7, 8, 9, 10, 11} (= B).
Then we can show that computing the solution of the network in N
in Figure 1.1 is always equivalent to the simultaneous computation of
the solutions of the networks NAL,NBK, in the same figure, under the
boundary conditions

i11 in NAL = i11 in NBK .

v5 in NAL = v5 in NBK .

Here, in NAL, the devices in A are identical to the corresponding de-
vices in N . Similarly in NBK , devices in B are identical to the corre-
sponding devices in N . The subset L ⊆ B is a set of branches which,
when deleted, breaks all circuits intersecting both A and B. The sub-
set K ⊆ A is a set of branches which, when contracted, destroys all
circuits intersecting both A and B. The graph of NAL is obtained from
that of N by short circuiting the branches of B − L. We denote it by
G × (A ∪ L). In this case L = {11}. The graph of NBK is obtained
from that of N by open circuiting branches of A−K. We denote it by
G . (B ∪K). In this case K = {5}.

If the network is linear and A and B are of conductance and impedance
type respectively, then we can, if we choose, solve NAL by nodal anal-
ysis and NBK by loop analysis. So this method can be regarded as a
topological generalization of ‘Hybrid Analysis.’

If we so desire, we could try to choose NAL or NBK such that they
appear (when iL, vk are set to zero) in several electrically disconnected
pieces. So the method can be regarded as a technique of ‘Network Anal-
ysis by Decomposition’.

Now we mention some related combinatorial optimization problems.

i. Given a partition of the edges into A and B how to choose L,K
minimally - this is easy.

ii. Suppose the network permits arbitrary partitions into A and B
and we choose nodal variables for NAL and loop variables for
NBK. Which partition would give the coefficient matrix of least
size?
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It can be shown that the size of the coefficient matrix is r(G . A)+
ν(G×B), where r(G . A), ν(G×B) respectively denote the rank of
G . A and nullity of graph G×B. Minimization of this expression,
over all partitions {A,B} of the edge set E(G) of G, is the hybrid
rank problem which gave rise to the theory of principal partition.

1 2
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Figure 1.2: A Network to be decomposed into Multiports

Example 1.0.2 Multiport Decomposition:
Let N be an electrical network with the graph shown in Figure 1.2. We
are given that A ≡ {1, 2 · · · , 10} and B ≡ {11, · · · , 24} (with devices
in A and B decoupled). The problem is to split N into two multi-
ports NAP1,NBP2 and a ‘port connection diagram’ NP1P2 and solve N
by solving NAP1,NBP2 ,NP1P2 simultaneously. (In general this would
be a problem involving n multiports). It is desirable to choose P1, P2

minimally. It turns out that

| P1 |=| P2 |= r(G . A)− r(G × A) = r(G . B)− r(G × B).

(Here G . A is obtained by open circuiting edges in B, while G × A is
obtained by short circuiting edges in B). In this case this number is 1.
The multiports are shown in Figure 1.3.
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Figure 1.3: Decomposition into Multiports
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The general solution procedure using multiport decomposition is as
follows: Find the voltage-current relationship imposed on P1 by the
rest of the network in NAP1, and on P2, by the rest of the network in
NBP2 . This involves solution of NAP1 ,NBP2 in terms of some of the
current/voltage port variables of NAP1 and some of the current/voltage
port variables of NBP2 . The voltage-current relationships imposed on
P1, P2 (as described above) are treated as their device characteristics
in the network NP1P2 . When this is solved, we get the currents and
voltages of P1, P2. Networks NAP1 ,NBP2 have already been solved in
terms of these variables. So this completes the solution of N . Like
the NAL −NBK method (to which it is related), this is also a general
method independent of the type of network. As before, the technique is
more useful when the network is linear.

This method again may be used as a network decomposition tech-
nique (for parallelizing) at a different level. Suppose NAP1 (or NBP2)
splits into several subnetworks when some of the branches PO1 (PO2)
of P1(P2) are opened and others PS1(PS2) shorted. Then, by using
iPO1

(iPO2
), vPS1

(vPS2
), as variables in terms of which NAP1(NBP2) are

solved, we can make the analysis look like the simultaneous solution of
several subnetworks under boundary conditions. There is no restriction
on the type of network - we only need the subnetworks to be decoupled
in the device characteristic. The optimization problem that arises nat-
urally in this case is the following:

Given a partition of the edges of a network N into
E1, · · · , Ek, find a collection of multiports NE1P1 , · · · ,NEkPk

,
and a port connection diagram NP1,···,Pk

, whose combined
KCE and KVE are equivalent to those of N , with the size
of
⊎

Pi a minimum under these conditions.

This problem is solved in Chapter 8.

Remark: At an informal level multiport decomposition is an impor-
tant technique in classical network theory e.g. Thevenin-Norton Theo-
rem, extracting reactances in synthesis, extracting nonlinear elements
in nonlinear circuit theory, etc. However, for the kind of topological
theory to be discussed in the succeeding pages we need a formal defi-
nition of ports that will carry over to vector spaces from graphs. Oth-
erwise the minimization problems cannot be stated clearly, let alone
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be solved. In the example described above, it is clear that if we match
NAP1 and NBP2 along P1, P2 we do not get back N . A purely graph
theoretic definition of multiport decomposition would therefore not
permit the decomposition given in this particular example. Such a
definition would lead to optimization problems with additional con-
straints which have no relevance for network analysis. Further, even
after optimization according to such a definition, we would end up with
more ports than required.

N2

N6
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6

11

16

26
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a

21

N1

N3
N5

N4

Figure 1.4: Network N to Illustrate the Fusion-Fission Method

Example 1.0.3 Fusion-Fission method:
Consider the network in Figure 1.4. Six subnetworks have been con-
nected together to make up the network. Assume that the devices in
the subnetworks are decoupled. Clearly the networks in Figure 1.4 and
Figure 1.5 are equivalent, provided the current through the additional
unknown voltage source and the voltage across the additional unknown
current source are set equal to zero. But the network in Figure 1.5 is
equivalent to that in Figure 1.6 under the additional conditions

iv1 + iv2 + iv3 + i = 0

vi1 + vi2 + vi3 − v = 0
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Figure 1.5: A Network equivalent to N with Virtual Sources

As can be seen, the subnetworks of Figure 1.6 are decoupled except
for the common variables v and i and the additional conditions.
A natural optimization problem here is the following:

Given a partition of the edges of a graph into E1, · · ·Ek,
what is the minimum size set of node pair fusions and node
fissions by which all circuits passing through more than one
Ei are destroyed?

In the present example the optimal set of operations is to fuse nodes
a and b and cut node a into a1, a2 as in Figure 1.5. Artificial voltage
sources are introduced across the node pairs to be fused and artificial
current sources are introduced between two halves of a split node.

It can be shown that this problem generalizes the hybrid rank prob-
lem (see Section 14.4). Its solution involves the use of the Dilworth
truncation operation on an appropriate submodular function.

We now speak briefly of the mathematical methods needed to derive
the kind of results hinted at in the above examples.

The NAL − NBK method needs systematic use of the operations
of contraction and restriction both for graphs and vector spaces and
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Figure 1.6: Network N decomposed by the Fusion-Fission Method

the notion of duality of operations on vector spaces. These have been
discussed in detail in Chapter 3. The NAL − NBK method itself is
discussed in Chapter 6.

The multiport decomposition method requires the use of the ‘Im-
plicit Duality Theorem’. This result, which should be regarded as a
part of network theory folklore, has received too little attention in the
literature. We have tried to make amends by devoting a full chapter
to it. The optimization problem relevant to multiport decomposition
(‘port minimization’) is discussed in Chapter 8.

The fusion-fission method is a special case of the method of topo-
logical transformations discussed in Chapter 7. The solution of the
optimization problem that it gives rise to (minimization of the num-
ber of fusion and fission operations needed to electrically decouple the
blocks of a partition of the edge set) is given in Section 14.4. The solu-
tion uses the Dilworth truncation operation on submodular functions.

We next give a chapterwise outline of the book.

Chapter 2 is concerned with mathematical preliminaries such as
sets, families, vectors and matrices. Also given is a very brief descrip-
tion of inequality systems.
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Chapter 3 contains a very terse description of graphs and their
vector space representation. Only material that we need later on in
this book is included. Emphasis is placed on complementary orthogo-
nality (Tellegen’s Theorem) and the important minor operations linked
through duality. The duality described corresponds to complementary
orthogonality of vector spaces (and not to the vector space - functional
space relation).

Also included is a sketch of the basic algorithms relevant to this
book - such as bfs, dfs trees, construction of f-circuits, the shortest
path algorithm, algorithms for performing graph minor operations and
the basic join and meet operations on partitions. Some space is de-
voted to the flow maximization problem, particularly certain special
ones that are associated with a bipartite graph. (Many of the optimiza-
tion problems considered in this book reduce ultimately to (perhaps
repeated) flow maximization).

Chapter 4 gives a brief account of matroids. Important axiom sys-
tems such as the ones in terms of independence, circuit, rank, closure
etc. are presented and shown to be equivalent to each other. The mi-
nor operations and dual matroids are described. Finally the relation
between matroids and the greedy algorithm is presented. This chapter
is included for two reasons:

• Some of the notions presented in the previous chapter lead very
naturally to their extension to matroids

• matroids are perhaps the most important instance of submodular
functions which latter is our main preoccupation in the second
half of this book.

Chapter 5 contains a brief introduction to conventional electrical
network theory, with the aim of making the book self contained. The
intention here is also to indicate the author’s point of view to a reader
who is an electrical engineer. This chapter contains a rapid sketch of
the basic methods of network analysis including a very short descrip-
tion of the procedure followed in general purpose circuit simulators.
Also included is an informal account of multiport decomposition and
of some elementary results including Thevenin-Norton Theorem.
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Chapter 6 contains a description of topological hybrid analysis
indicated in Example 1.0.1. This chapter is a formalization of the
topological ideas behind Kron’s Diakopotics. The methods used in-
volve vector space minors. The main result is Theorem 6.4.1 which
has already been illustrated in the above mentioned example.

Chapter 7 contains a detailed description of the Implicit Duality
Theorem, its applications and its extensions to linear inequality and
linear integrality systems. The operation of generalized minor is intro-
duced and made use of in this chapter. The implicit duality theorem
was originally a theorem on ideal transformers and states that if we
connect 2-port transformers arbitrarily and expose k-ports, the result
would be a k-port ideal transformer. (An ideal transformer, by defi-
nition, has its possible port voltage vectors and possible port current
vectors as complementary orthogonal spaces.) We show that its power
extends beyond these original boundaries. One of the applications
described is for the construction of adjoints, another to topological
transformations of electrical networks. The latter are used to solve a
given network as though it has the topology of a different network,
paying a certain cost in terms of additional variables.

Multiport decomposition, from a topological point of view, is the
subject of Chapter 8. We make free use of the Implicit Duality Theo-
rem of the previous chapter. We indicate that multiport decomposition
is perhaps the most natural tool for network analysis by decomposition.
It can be shown that multiport decomposition generalizes topological
hybrid analysis (see Problem 8.5). We present a few algorithms for
minimizing the number of ports for a multiport decomposition corre-
sponding to a given partition of edges of a graph. Finally, we show that
this kind of decomposition can be used to construct reduced networks
which mimic some of the properties of the original network. In par-
ticular we show that any RLMC network can be reduced to a network
without zero eigen values (i.e., without trapped voltages or currents)
but with, otherwise, the same ‘dynamics’ as the original network.

The second half of the book is about submodular functions and the
link between them and electrical networks.
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Chapter 9 contains a compact description of submodular function
theory omitting the important operations of convolution and Dilworth
truncation. (The latter are developed in subsequent chapters). We
begin with the basic definition and some characteristic properties fol-
lowed by a number of examples of submodular functions which arise in
graphs, hypergraphs (represented by bipartite graphs), matrices etc.
Basic operations such as contraction, restriction, fusion, dualization
etc. are described next. These are immediately illustrated by exam-
ples from graphs and bipartite graphs. Some other operations, slightly
peripheral, are described next. A section is devoted to the important
cases of polymatroid and matroid rank functions. It is shown that
any submodular function is a ‘translate’ through a modular function
of a polymatroid rank function. The idea of connectedness is described
next. This corresponds to 2-connectedness of graphs. After this there
is a very brief but general description of polyhedra associated with set
functions in general and with submodular and supermodular functions
in particular. The important result due to Frank, usually called the
‘Sandwich Theorem’ is described in this section. The recent solution,
due to Stoer, Wagner and Frank, of the symmetric submodular func-
tion minimization problem is described in the next section.

Chapter 10 is devoted to the operation of (lower) convolution of
two submodular functions. We begin with purely formal properties
and follow it with a number of examples of results from the literature
which the operation of convolution unifies. Next we give the polyhedral
interpretation for convolution viz. it corresponds to the intersection of
the polyhedra of the interacting submodular functions. This is followed
by a section in which the operation of convolution is used to show that
every polymatroid rank function can be obtained by the fusion of an
appropriate matroid rank function.

In the next section, the principal partition (PP) of a submodular
function with respect to a strictly increasing polymatroid rank func-
tion is dealt with. We begin with the basic properties of PP which
give structural insight into many practical problems. An alternative
development of PP from the point of view of density of sets is next
presented. Finally the PP of naturally derived submodular functions
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is related to the PP of the original function.

In the next section, the refined partial order associated with the PP
is described. After this we present general algorithms for the construc-
tion of the PP of a submodular function with respect to a nonnegative
weight function. These use submodular function minimization as a
basic subroutine. We consider two important special cases of this al-
gorithm. The first, the weighted left adjacency function of a bipartite
graph, is described in this chapter. In this case the submodular func-
tion minimization reduces to a flow problem. The second is the PP of a
matroid rank function which is taken up in the next chapter. The last
(starred) section in this chapter describes a peculiar situation where,
performing certain operations on the original submodular function, we
get functions whose PP is related in a very simple way to the original
PP. This section is developed through problems.

Chapter 11 is on the matroid union operation. In the first section,
we give a sketch of submodular functions induced through a bipartite
graph and end the section with a proof that ‘union’ of matroids is a
matroid. Next we give Edmond’s algorithm for constructing the ma-
troid union. We use this algorithm to study the structure of the union
matroid - in particular the natural partition of its underlying set into
coloops and the complement, and the manner in which the base of the
union is built in terms of the bases of the individual matroids. Finally
we use the matroid union algorithm to construct the PP of the rank
function of a matroid with respect to the ‘| · |’ function.

In Chapter 12 we study the Dilworth truncation operation on a
submodular function. This chapter is written in a manner that em-
phasizes the structural analogies that exist between convolution and
Dilworth truncation. As in the case of convolution, we begin with for-
mal properties and follow it with examples of results from the literature
unified by the truncation operation.

In the next section, we describe the principal lattice of partitions
(PLP) of a submodular function. This notion is analogous to the PP
of a submodular function - whereas in the case of the PP there is a
nesting of special sets, in the case of the PLP the special partitions
get increasingly finer. We begin with basic properties of the PLP, each
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of which can be regarded as a ‘translation’ of a corresponding prop-
erty of PP. We then present an alternative development of the PLP in
terms of cost of partitioning. In the next section we use this idea for
building approximation algorithms for optimum cost partitioning (this
problem is of great practical relevance, particularly in CAD for large
scale integrated circuits). After this we describe the relation between
the PLP of a submodular function and that of derived functions. Here
again there is a strong analogy between the behaviours of PP and PLP.

In Chapter 13, we present algorithms for building the PLP of a
general submodular function. These algorithms are also analogous to
those of the PP. The core subroutine is one that builds a ‘(strong)
fusion’ set which uses minimization of an appropriately derived sub-
modular function. We specialize these algorithms to the important
special cases of the weighted adjacency and exclusivity functions as-
sociated with a bipartite graph. (The matroid rank function case is
handled in Section 14.3). Next we present some useful techniques for
improving the complexity of PLP algorithms for functions arising in
practice. Lastly, using the fact that the PP of the rank function of a
graph can be regarded, equivalently, as the PLP of the | V (·) | function
on the edge set, we have presented fast algorithms for the former.

The last chapter is on the hybrid rank problem for electrical net-
works. In this chapter, four different (nonequivalent) formulations of
this problem are given. The second, third and fourth formulations
can be regarded as generalizations of the first. Except in the case of
the fourth formulation, we have given fast algorithms for the solution
of the problems. This chapter is intended as the link between elec-
trical networks and submodular functions. Each of the formulations
has been shown to arise naturally in electrical network theory. The
first two formulations require convolution and the third requires Dil-
worth truncation for its solution. The fourth formulation gives rise to
an optimization problem over vector spaces which is left as an open
problem.
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Chapter 2

Mathematical Preliminaries

2.1 Sets

A set (or collection) is specified by the elements (or members) that
belong to it. If element x belongs to the set (does not belong to the
set) X, we write x ∈ X (x 6∈ X). Two sets are equal iff they have the
same members. The set with no elements is called the empty set and
is denoted by ∅. A set is finite if it has a finite number of elements.
Otherwise it is infinite. A set is often specified by actually listing
its members, e.g. {e1, e2, e3} is the set with members e1, e2, e3. More
usually it is specified by a property, e.g. the set of even numbers is
specified as {x : x is an integer and x is even } or as {x, x is an integer
and x is even }. The symbols ∀ and ∃ are used to denote ‘forall’ and
‘there exists’. Thus, ‘∀x’ or ‘∀ x’ should be read as ‘forall x’ and ‘∃x’
should be read as ‘there exists x’. A singleton set is one that has only
one element. The singleton set with the element x as its only member,
is denoted by {x}. In this book, very often, we abuse this notation and
write x in place of {x}, if we feel that the context makes the intended
object unambiguous.

We say that set X is contained in Y (properly contained in Y ),
if every element of X is also a member of Y (every element of X is a
member of Y and X 6= Y ) and denote it by X ⊆ Y (X ⊂ Y ).
The union of two sets X and Y denoted by X ∪ Y, is the set whose
members are either in X or in Y (or in both). The intersection of

19
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X and Y denoted by X ∩ Y, is the set whose members belong both to
X and to Y. When X and Y do not have common elements, they are
said to be disjoint. Union of disjoint sets X and Y is often denoted
by X ⊎ Y. Union of sets X1, · · · , Xn is denoted by

⋃n
i=1Xi or simply

by
⋃

Xi. When the Xi are pairwise disjoint, their union is denoted by
⊎n

i=1Xi or
⊎

Xi.
The difference of X relative to Y , denoted by X − Y, is the set of all
elements in X but not in Y . Let X ⊆ S. Then the complement of X
relative to S is the set S −X and is denoted by X̄ when the set S is
clear from the context.

A mapping f : X → Y, denoted by f(·), associates with each
element x ∈ X, the element f(x) in Y . The element f(x) is called
the image of x under f(·). We say f(·) maps X into Y . The sets
X, Y are called, respectively, the domain and codomain of f(·). We
denote by f(Z), Z ⊆ X, the subset of Y which has as members, the
images of elements in Z. The set f(X) is called the range of f(·).
The restriction of f(·) to Z ⊆ X, denoted by f/Z(·) is the mapping
from Z to Y defined by f/Z(x) ≡ f(x), x ∈ Z. A mapping that has
distinct images for distinct elements in the domain is said to be one
to one or injective. If the range of f(·) equals its codomain, we
say that f(·) is onto or surjective. If the mapping is one to one
onto we say it is bijective. Let f : X → Y, g : Y → Z. Then the
composition of g and f is the map, denoted by gf(·) or g ◦ f(·),
defined by gf(x) ≡ g(f(x)) ∀x ∈ X. The Cartesian product X ×Y
of setsX, Y is the collection of all ordered pairs (x, y), where x ∈ X and
y ∈ Y. The direct sum X⊕Y denotes the union of disjoint sets X, Y .
We use ‘direct sum’ loosely to indicate that structures on two disjoint
sets are ‘put together’. We give some examples where we anticipate
definitions which would be given later. The direct sum of vector
spaces V1,V2 on disjoint sets S1, S2 is the vector space V1⊕V2 on S1⊕S2

whose typical vectors are obtained by taking a vector x1 ≡ (a1, · · · , ak)
in V1 and a vector x2 ≡ (b1, · · · , bm) in V2 and putting them together
as x1 ⊕ x2 ≡ (a1, · · · , ak, b1, · · · , bm). When we have two graphs G1,G2

on disjoint edge sets E1, E2, G1 ⊕G2 would have edge set E1 ⊕E2 and
is obtained by ‘putting together’ G1 and G2. Usually the vertex sets
would also be disjoint. However, where the context permits, we may
relax the latter assumption and allow ‘hinging’ of vertices.
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We speak of a family of subsets as distinct from a collection of sub-
sets. The collection {{e1, e2}, {e1, e2}, {e1}} is identical to {{e1, e2}, {e1}}.
But often (e.g. in the definition of a hypergraph in Subsection 3.6.6)
we have to use copies of the same subset many times and distinguish
between copies. This we do by ‘indexing’ them. A family of subsets of
S may be defined to be a mapping from an index set I to the collection
of all subsets of S. For the purpose of this book, the index set I can
be taken to be {1, · · · , n}. So the family ({e1, e2}, {e1, e2}, {e1}) can be
thought of as the mapping φ(·) with

φ(1) ≡ {e1, e2}
φ(2) ≡ {e1, e2}
φ(3) ≡ {e1}.

(Note that a family is denoted using ordinary brackets while a set is
denoted using curly brackets).

2.2 Vectors and Matrices

In this section we define vectors, matrices and related notions. Most
present day books on linear algebra treat vectors as primitive elements
in a vector space and leave them undefined. We adopt a more old
fashioned approach which is convenient for the applications we have in
mind. The reader who wants a more leisurely treatment of the topics
in this section is referred to [Hoffman+Kunze72].

Let S be a finite set {e1, e2, . . . , en} and let F be a field. We will
confine ourselves to the field ℜ of real numbers, the field C of complex
numbers and the GF2 field on elements 0, 1 (0+0 = 0, 0+1 = 1, 1+0 =
1, 1 + 1 = 0, 1.1 = 1, 1.0 = 0, 0.1 = 0, 0.0 = 0). For a general definition
of a field see for instance [Jacobson74]. By a vector on S over F we
mean a mapping f of S into F .The field F is called the scalar field
and its elements are called scalars. The support of f is the subset
of S over which it takes nonzero values. The sum of two vectors f , g
on S over F is defined by (f + g)(ei) ≡ f(ei) + g(ei) ∀ei ∈ S. (For
convenience the sum of two vectors f on S,g on T over F is defined by
(f +g)(ei) ≡ f(ei)+g(ei) ∀ei ∈ S∩T , as agreeing with f on S−T , and
as agreeing with g on T − S). The scalar product of f by a scalar λ
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is a vector λf defined by (λf)(ei) ≡ λ(f(ei)) ∀ei ∈ S. A collection V
of vectors on S over F is a vector space iff it is closed under addition
and scalar product. We henceforth omit mention of underlying set and
field unless required.

A set of vectors {f1, f2, . . . , fn} is linearly dependent iff there exist
scalars λ1, . . . , λn not all zero such that λ1f1 + . . . + λnfn = 0. (Here
the 0 vector is one which takes value 0 on all elements of S). Vector
fn is a linear combination of f1, . . . , fn−1 iff fn = λ1f1 + . . . + λn−1fn−1

for some λ1, . . . , λn−1.

The set of all vectors linearly dependent on a collection C of vectors
can be shown to form a vector space which is said to be generated
by or spanned by C. Clearly if V is a vector space and C ⊆ V, the
subset of vectors generated by C is contained in V. A maximal linearly
independent set of vectors of V is called a basis of V.
In general maximal and minimal members of a collection of sets may
not be largest and smallest in terms of size.
Example: Consider the collection of sets {{1, 2, 3}, {4}, {5, 6}, {1, 2, 3, 5, 6}}.
The minimal members of this collection are {1, 2, 3}, {4}, {5, 6}, i.e.,
these do not contain proper subsets which are members of this collec-
tion. The maximal members of this collection are {4}, {1, 2, 3, 5, 6},
i.e., these are not proper subsets of other sets which are members of
this collection.

The following theorem is therefore remarkable.

Theorem 2.2.1 All bases of a vector space on a finite set have the
same cardinality.

The number of elements in a basis of V is called the dimension of
V, denoted by dim(V), or the rank of V, denoted by r(V). Using
Theorem 2.2.1 one can show that the size of a maximal independent
subset contained in a given set C of vectors is unique. This number is
called the rank of C. Equivalently, the rank of C is the dimension of the
vector space spanned by C. If V1,V2 are vector spaces and V1 ⊆ V2,
we say V1 is a subspace of V2.

A mapping A : {1, 2, . . . , m}×{1, 2, . . . , n} −→ F is called a m×n
matrix. It may be thought of as an m× n array with entries from F .
We denote A(i, j) often by the lower case aij with i as the row index
and j as the column index. We speak of the array (ai1, . . . , ain) as the
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ith row of A and of the array (a1j , . . . , anj) as the jth column of A.
Thus we may think of A as made up of m row vectors or of n column
vectors. Linear dependence, independence and linear combination for
row and column vectors are defined the same way as for vectors. We say
two matrices are row equivalent if the rows of each can be obtained
by linearly combining the rows of the other. Column equivalence is
defined similarly. The vector space spanned by the rows (columns) of A
is called its row space (column space) and denoted by R(A)(C(A)).
The dimension ofR(A)(C(A)) is called the row rank (column rank)
of A.

If A is an m × n matrix then the transpose of A denoted by
AT is an n × m matrix defined by AT (i, j) ≡ A(j, i). Clearly the
ith row of A becomes the ith column of AT and vice versa. If B is
also an m × n matrix the sum A + B is an m× n matrix defined by
(A + B)(i, j) ≡ A(i, j) + B(i, j). If D is an n× p matrix, the product
AD is an m × p matrix defined by AD(i, j) ≡ ∑n

k=1 aikdkj. Clearly if
AD is defined it does not follow that DA is defined. Even when it is
defined, in general AD 6= DA. The most basic property of this notion
of product is that it is associative i.e. A(DF) = (AD)F.

Matrix operations are often specified by partitioning. Here we
write a matrix in terms of submatrices (i.e., matrices obtained by
deleting some rows and columns of the original matrix). A matrix
may be partitioned along rows:

A =







A11

. . .
A21







or along columns:
A =

[

A11|A12

]

or both:

A =









A11 . . . A1k
...

...
...

Ap1 . . . Apk









.

When two partitioned matrices are multiplied we assume that the par-
titioning is compatible, i.e., for each triple (i, j, k) the number of
columns of Aik equals the number of rows of Bkj. Clearly this is
achieved if the original matrices A,B are compatible for product and
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each block of the column partition of A has the same size as the cor-
responding row partition of B. The following partitioning rules can
then be verified.

i.







A11

. . .
A21





C =







A11C
. . .

A21C







ii. C
[

A11|A12

]

=
[

CA11|CA12

]

iii.
[

A11|A12

]







C11

. . .
C12





 =
[

A11C11 + A12C12

]

.

In general if A is partitioned into submatrices Aik,B into submatrices
Bkj then the product C = AB would be naturally partitioned into
Cij ≡

∑

k AikBkj.

Matrices arise most naturally in linear equations such as Ax = b,
where A and b are known and x is an unknown vector. When b = 0 it
is easily verified that the set of all solutions of Ax = b, i.e.,of Ax = 0,
forms a vector space. This space will be called the solution space of
Ax = 0, or the null space of A. The nullity of A is the dimension
of the null space of A. We have the following theorem.

Theorem 2.2.2 If two matrices are row equivalent then their null
spaces are identical.

Corollary 2.2.1 If A,B are row equivalent matrices then a set of
columns of A is independent iff the corresponding set of columns of B
is independent.

The following are elementary row operations that can be performed
on the rows of a matrix:

i. interchanging rows,

ii. adding a multiple of one row to another,

iii. multiplying a row by a nonzero number.
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Each of these operations corresponds to premultiplication by a matrix.
Such matrices are called elementary matrices. It can be seen that
these are the matrices we obtain by performing the corresponding ele-
mentary row operations on the unit matrix of the same number of rows
as the given matrix. We can define elementary column operations sim-
ilarly. These would correspond to post multiplication by elementary
column matrices.

A matrix is said to be in Row Reduced Echelon form (RRE) iff
it satisfies the following:
Let r be the largest row index for which aij 6= 0 for some j. Then the
columns of the r×r unit matrix (the matrix with 1s along the diagonal
and zero elsewhere) e1, . . . , er appear as columns, say Ci1 , . . . ,Cir of
A with i1 < . . . < ir. Further if p < ik then akp = 0. We have the
following theorem.

Theorem 2.2.3 Every matrix can be reduced to a matrix in the RRE
form by a sequence of elementary row transformations and is therefore
row equivalent to such a matrix.

It is easily verified that for an RRE matrix row rank equals column
rank. Hence using Theorem 2.2.3 and Corollary 2.2.1 we have

Theorem 2.2.4 For any matrix, row rank equals column rank.

The rank of a matrix A, denoted by r(A), is its row rank (= column
rank).
Let the elements of S be ordered as (e1, . . . , en). Then for any vector f
on S we define Rf , the representative vector of f , as the one rowed
matrix (f(e1), . . . , f(en)). We will not usually distinguish between a
vector and its representative vector. When the rows of a matrix R are
representative vectors of some basis of a vector space V we say that
R is a representative matrix of V. When R,R1 both represent V
they can be obtained from each other by row operations. Hence by
Corollary 2.2.1 their column independence structure is identical. An
r × n representative matrix R, r ≤ n, is a standard representative
matrix iff R has an r × r submatrix which can be obtained by per-
mutations of the columns of the r × r unit matrix. For convenience
we will write a standard representative matrix in the form [I|R12] or
[R11|I]. (Here I denotes the unit matrix of appropriate size).

The dot product of two vectors f , g on S denoted by < f , g > over
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F is defined by < f , g >≡ ∑e∈S f(e).g(e). We say f , g are orthogonal
if their dot product is zero. If C is a collection of vectors on S then
C⊥ ≡ set of all vectors orthogonal to every vector in C. It can be
verified that C⊥ is a vector space. Let V be a vector space on S
with basis B. Since vectors orthogonal to each vector in B are also
orthogonal to linear combinations of these vectors we have B⊥ = V⊥.
If R is a representative matrix of V, it is clear that V⊥ is its null
space. Equivalently V⊥ is the solution space of Rx = 0. If R is a
standard representative matrix with R = [Ir×r|R12], then the solution
space of Rx = 0 can be shown to be the vector space generated by the

columns of







−R12

. . .
In−r×n−r





, where n = |S|.(Here Ik×k denotes the unit

matrix with k rows). Equivalently V⊥ has the representative matrix
[−RT

12|In−r×n−r]. The representative matrix of (V⊥)⊥ will then be R.
We then have the following

Theorem 2.2.5 i. if [Ir×r|R12] is a representative matrix of vector
space V on S then [−RT

12|In−r×n−r] is a representative matrix of
V⊥.

ii. r(V⊥) =|S| − r(V)

iii. (V⊥)⊥ = V. Hence two matrices are row equivalent iff their null
spaces are identical.

Consider the collection of all n × n matrices over F . We say that I
is an identity for this collection iff for every n × n matrix B we have
IB = BI = B. If I1, I2 are identity matrices we must have I1 = I2 = I.
The unit matrix (with 1s along the diagonal and 0s elsewhere) is clearly
an identity matrix. It is therefore the only identity matrix. Two n×n
matrices A,B are inverses of each other iff AB = BA = I. We say
A,B are invertible or nonsingular. If A has inverses B,C we must
have C = C(AB) = (CA)B = IB = B. Thus the inverse of a matrix
A, if it exists, is unique and is denoted by A−1. We then have the
following

Theorem 2.2.6 i. (AT )−1 = (A−1)T

ii. If A,D are n×n invertible matrices, then (AD)−1 = (D−1A−1).
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With a square matrix we associate an important number called its
determinant. Its definition requires some preparation.

A bijection of a finite set to itself is also called a permutation. A
permutation that interchanges two elements (i.e. maps each of them to
the other) but leaves all others unchanged is a transposition. Every
permutation can be obtained by repeated application of transpositions.
We then have the following

Theorem 2.2.7 If a permutation σ can be obtained by composition of
an even number of transpositions then every decomposition of σ into
transpositions will contain an even number of them.

By Theorem 2.2.7 we can define a permutation to be even (odd) iff it
can be decomposed into an even (odd) number of transpositions. The
sign of a permutation σ denoted by sgn(σ) is +1 if σ is even and −1
if σ is odd. It is easily seen, since the identity (= σσ−1) permutation is
even, that sgn(σ) = sgn(σ−1). The determinant of an n× n matrix
is defined by

det(A) ≡
∑

σ

sgn(σ)a1σ(1) . . . anσ(n),

where the summation is taken over all possible permutations of {1, 2, . . . , n}.
It is easily seen that determinant of the unit matrix is +1. We collect
some of the important properties of the determinant in the following

Theorem 2.2.8 i. det(A) = det(AT )

ii. Let

A =

[

a1

A2

]

,A′ =

[

a′
1

A2

]

,A” =

[

a1 + a′
1

A2

]

.

Then det(A”) = det(A) + det(A′).

iii. If A has two identical rows, or has two identical columns then
det(A) = 0.

iv. If E is an elementary matrix det(EA) = det(E)det(A). Since
every invertible matrix can be factored into elementary matrices,
it follows that det(AB) = det(A)det(B), for every pair of n× n
matrices A,B.

v. det(A) 6= 0 iff A is invertible.

Problem 2.1 Size of a basis: Prove
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i. Theorem 2.2.1

ii. If V1 is a subspace of vector space V2, dimV1 ≤ dimV2.

iii. If V1 ⊆ V2 and dimV1 = dimV2 then V1 = V2.

iv. an m × n matrix with m > n cannot have linearly independent
rows.

v. any vector in a vector space V can be written uniquely as a linear
combination of the vectors in a basis of V.

Problem 2.2 Ways of interpreting the matrix product: Define
product of matrices in the usual way i.e. C = AB is equivalent to
Cij =

∑

k aikbkj. Now show that it can be thought of as follows

i. Columns of C are linear combinations of columns of A using
entries of columns of B as coefficients.

ii. rows of C are linear combinations of rows of B using entries of
rows of A as coefficients.

Problem 2.3 Properties of matrix product: Prove, when A, B,
C are matrices and the products are defined

i. (AB)C = A(BC)

ii. (AB)T = BTAT

Problem 2.4 Partitioning rules: Prove

i. the partitioning rules.

ii.









A11 · · · A1k
...

...
Ar1 · · · Ark









T

=









AT
11 · · · AT

r1
...

...
AT

1k · · · AT
rk









Problem 2.5 Solution space and column dependence struc-
ture: Prove theorem 2.2.2 and Corollary 2.2.1.
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Problem 2.6 Algorithm for computing RRE: Give an algorithm
for converting any rectangular matrix into the RRE form. Give an
upper bound for the number of arithmetical steps in your algorithm.

Problem 2.7 Uniqueness of the RRE matrix: Show that no RRE
matrix is row equivalent to a distinct RRE matrix. Hence prove that
every matrix is row equivalent to a unique matrix in the RRE form.

Problem 2.8 RRE of special matrices:

i. If A is a matrix with linearly independent columns what is its
RRE form? If in addition A is square what is its RRE form?

ii. If A,B are square such that AB = I show that BA = I.

iii. Prove Theorem 2.2.6

Problem 2.9 Existence and nature of solution for linear equa-
tions: Consider the equation Ax = b.

i. Show that it has a solution

(a) iff r(A) = r(A|b).

(b) iff whenever λTA = 0, λTb is also zero.

ii. Show that a vector is a solution of the above equation iff it can
be written in the form xo + xp where xp is a particular solution
of the equation while xo is a vector in the null space of A (i.e. a
solution to the linear equation with b set equal to zero).

iii. Motivation for the matrix product: Why is the matrix prod-
uct defined as in Problem 2.2? (In the above equation suppose we
make the substitution x = By. What would the linear equation in
terms of y be?)

iv. Linear dependence and logical consequence: The above
equation may be regarded as a set of linear equations (one for
each row of A) each of which in turn could be thought of as a
statement. Show that a linear equation is a logical consequence
of others iff it is linearly dependent on the others.

Problem 2.10 Positive definite matrices:
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i. Construct an example where A, B are invertible but their sum is
not.

ii. A matrix K is positive semidefinite (positive definite) iff
xTKx ≥ 0 ∀x 6= 0 (xTKx > 0 ∀x 6= 0). Show that

(a) a matrix is invertible if it is positive definite;

(b) sum of two positive semidefinite matrices (positive definite
matrices) is positive semidefinite (positive definite);

(c) if K is a positive definite matrix,then AKAT is positive
semidefinite and if, further, rows of A are linearly indepen-
dent, then AKAT is positive definite;

(d) inverse of a symmetric positive definite matrix is also sym-
metric positive definite.

Problem 2.11 Projection of a vector on a vector space: Let x
be a vector on S and let V be a vector space on S. Show that x can be
uniquely decomposed as x = x1 + x2, where x1 ∈ V and x2 ∈ V⊥.The
vector x1 is called the projection of x on V along V⊥.

Problem 2.12 Parity of a Permutation: Show that if a permuta-
tion can be obtained by composing an odd number of transpositions it
cannot also be obtained by composing an even number of transpositions.

Problem 2.13 Graph of a permutation: Define the graph Gσ of a
permutation σ on {1, 2, · · ·n} as follows: V (Gσ) ≡ {1, 2, · · · , n}; draw
an edge with an arrow from i to j iff σ(i) = j.

i. Show that every vertex in this graph has precisely one arrow com-
ing in and one going out. Hence, conclude that each connected
component is a directed circuit.

ii. Show that if Gσ has an odd (even) number of even length circuits
then σ is odd (even).

Problem 2.14 Properties of the determinant: Prove Theorem
2.2.8.

Problem 2.15 Equivalence of definitions of a determinant: Show
that the usual definition of a determinant by expanding along a row or
column is equivalent to the definition using permutations.
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Problem 2.16 Laplace expansion of the determinant: Let A be
an n× n matrix. Show that

det(A) =
∑

sgn(σ) det

(

A

(

r1, · · · , rk

i1, · · · , ik

))

det

(

A

(

rk+1, · · · , rm

ik+1, · · · , im

))

,

(A

(

d1, · · · , dp

i1, · · · , ip

)

is the p×p matrix whose (s, t) entry is the (ds, it)

entry of A), where the summation is over all subsets {r1, · · · , rk} of
{1, · · · , n}
and σ ≡

(

r1, · · · , rk, rk+1 · · · rn

i1, · · · , ik, ik+1 · · · in

)

i.e., σ(rj) ≡ ij , j = 1, · · · , n.

Problem 2.17 Binet Cauchy Theorem: Let A be an m×n and B
an n×m matrix with m ≤ n. If an m×m submatrix of A is composed
of columns i1, · · · , im, the corresponding m×m submatrix of B is the
one with rows i1, · · · , im. Prove the Binet Cauchy Theorem: det(AB) =
∑

product of determinants of corresponding m ×m submatrices of A
and B.

2.3 Linear Inequality Systems

2.3.1 The Kuhn-Fourier Theorem

In this section we summarize basic results on inequality systems which
we need later on in the book. Proofs are mostly omitted. They
may be found in standard references such as [Stoer+Witzgall70] and
[Schrijver86]. This section follows the former reference.

A linear inequality system is a set of constraints of the following
kind on the vector x ∈ ℜn.

Ax = ao

Bx > bo

Cx ≥ co











(I)

Here, A,B,C are matrices, ao,bo, co are column vectors with appropri-
ate number of rows. We say x1 > x2(x1 ≥ x2) iff each component of x1

is greater than (greater than or equal to) the corresponding component
of x2.
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A solution of an inequality system is a vector which satisfies all the
inequality constraints of the system. A constraint which is satisfied by
every solution of an inequality system is said to be a consequence
of the system. In particular, we are concerned with constraints of the
kind dTx = do or > do or ≥ do. A legal linear combination of
the system (I) is obtained by linearly combining the equations and
inequalities with real coefficients - αi for the linear equations, and
non-negative real coefficients βj , γk for the ‘>’ linear inequalities and
‘≥’ linear inequalities respectively. The resulting constraint would be
a linear equation iff βj , γk are all zero. It would be a ‘>’ inequality
iff at least one of the βj ’s is nonzero. It would be a ‘≥’ inequality
iff all of βj are zero but at least one of the γk is nonzero. A legal
linear combination is thus a consequence of the system. A legal linear
combination, with at least one of the αi, βj, γk nonzero, that results in
the LHS becoming zero is called a legal linear dependence of the
system. Another important way of deriving consequence relations is
by weakening. This means to weaken ‘=’ to ‘≥’ and ‘>’ to ‘≥’ and
also in the case of ‘>’ and ‘≥’ to lower the right side value.

Example 2.3.1 Consider the system of linear inequalities:

x1 + 2x2 = 3

2x1 + x2 = 4

x1 + x2 > 1

2x1 + 3x2 > 2

x1 + 5x2 ≥ 2

−x1 − 2x2 ≥ 4.

The legal linear combination corresponding to α1 = 1, α2 = 1, β1 =
0, β2 = 0, γ1 = 0, γ2 = 0 is
3x1 + 3x2 = 7;
that corresponding to α1 = 1, α2 = 0, β1 = 1, β2 = 0, γ1 = 1, γ2 = 0 is
3x1 + 8x2 > 6;
that corresponding to α1 = 1, α2 = 0, β1 = 0, β2 = 0, γ1 = 1, γ2 = 0 is
2x1 + 7x2 ≥ 5.
The legal linear combination corresponding to α1 = 1, α2 = 0, β1 =
0, β2 = 0, γ1 = 0, γ2 = 1 is the zero relation
0x1 + 0x2 ≥ 7.
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Thus in this case, the system has a legal linear dependence that is
a contradiction.

We can now state the fundamental theorem of Kuhn and Fourier
[Fourier1826], [Kuhn56].

Theorem 2.3.1 ( Kuhn-Fourier Theorem) A linear inequality sys-
tem has a solution iff no legal linear dependence is a contradiction.

Sketch of the Proof of Theorem 2.3.1: First reduce the linear
equations to the RRE form. If a row arises with zero coefficients but
with nonzero right side at this stage, we have a legal linear dependence
that is a contradiction. Otherwise express some of the variables in
terms of the others. This substitution is now carried out also in the
inequalities. So henceforth, without loss of generality, we may assume
that we have only inequalities. If we prove the theorem for such a
reduced system, it can be extended to one which has equalities also.

Suppose each variable has either zero coefficient or the same sign in
all the inequalities of the system and further, if there are inequalities
with zero coefficients they are not contradictory.

In this case it is easy to see that the system has a solution whether
the coefficients of a particular variable are all zero or otherwise. If all
the coefficients are zero we are done - the theorem is clearly true. If
not, it is not possible to get a legal linear dependence without using
zero coefficients. So the theorem is again true in this case.

We now present an elimination procedure which terminates at the
above mentioned situation.
Let the inequalities be numbered (1), · · · , (r), (r + 1), · · · , (k). Let xn

be present with coefficient +1 in the inequalities (1), · · · , (r) and with
coefficient -1 in the inequalities (r + 1), · · · , (k). We create r(k − r)
inequalities without the variable xn by adding each of the first r in-
equalities to each of the last (k− r) inequalities. Note that if both the
inequalities are of the (≥) kind, the addition would result in another of
the (≥) kind and if one of them is of the (>) kind, the addition would
result in another of the (>) kind.

If the original system has a solution, it is clear that the reduced
system also has one. On the other hand, if the reduced system has a
solution (x′1, · · · , x′n−1) it is possible to find a value x′n of xn such that
(x′1, · · · , x′n−1, x

′
n) is a solution of the original system. We indicate how,
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below.
Let the inequalities added be

ai1x1 + · · ·+ xn ≥ bi

aj1x1 + · · · − xn > bj

(The cases where both are (≥), both are (>) or first inequality (>)
and second (≥) are similar.) The pair of inequalities can be written
equivalently as

aj1x1+· · ·+aj(n−1)xn−1−bj > xn ≥ bi−ai1x1−· · ·−ai(n−1)xn−1 (∗)

The extreme left of the above inequality (∗) is always derived from the
inequalities (r + 1) to (k) while the extreme right is always derived
from the (1) to (r) inequalities. When x′1, · · · , x′n−1 is substituted in
the above inequality, it would be satisfied for every pair of inequalities,
from (j + 1) to (k) on the extreme left and (1) to (j) on the extreme
right. After substitution, let the least of the extreme left term be
reached for inequality (p) and let the highest of the extreme right term
be reached for inequality (q). Since

ap1x
′
1 + · · ·+ ap(n−1)x

′
n−1 − bp > bq − aq1x

′
1 − · · · − aq(n−1)x

′
n−1

(this inequality results when (p) and (q) are added), we can find a value
x′n of xn which lies between left and right sides of the above inequality.
Clearly (x′1, · · · , x′n) is a solution of the original system.

If this procedure were repeated, we would reach a system where
there are inequalities with all the coefficients of zero value and where
the signs of the coefficients of a variable are all the same in all the
inequalities. If some of the inequalities which have all zero coefficients
are contradictory there is no solution possible and the theorem is true.
If none of such inequalities are contradictory the solution always exists
as mentioned before and there can be no legal linear combination that
is contradictory. Thus once again the theorem is true.

2

As an immediate consequence we can prove the celebrated ‘Farkas
Lemma’.
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Theorem 2.3.2 (Farkas Lemma) The homogeneous system

A x ≤ 0

has the consequence
dTx ≤ 0

iff the row vector dT is a nonnegative linear combination of the rows
of A.

Proof : By Kuhn-Fourier Theorem (Theorem 2.3.1), the system

ATy = d

y ≥ 0

has a solution iff
‘xTAT + βT I = 0, βT ≥ 0’ implies ‘xT d ≤ 0’;
i.e., iff ‘Ax ≤ 0’ implies ‘dT x ≤ 0.’

2

The analogue of ‘vector spaces’ for inequality systems is ‘cones’. A
cone is a collection of vectors closed under addition and non-negative
linear combination. It is easily verified that the solution set of Ax ≥ 0
is a cone. Such cones are called polyhedral. We say vectors x, y
(on the same set S) are polar iff < x,y > (i.e., their dot product) is
nonpositive. If K is a collection of vectors, the polar of K, denoted by
Kp is the collection of vectors polar to every vector in K. Thus, Farkas
Lemma states:
‘Let C be the polyhedral cone defined by Ax ≤ 0. A vector d belongs
to Cp iff dT is a nonnegative linear combination of the rows of A.’

2.3.2 Linear Programming

Let S be a linear inequality system with ‘≤’ and ‘=’ constraints (‘≥’
and ‘=’ constraints). The linear programming problem or linear
program is to finda solution x of S which maximizes a given linear
function cTx (minimizes a given linear function cTx). The linear func-
tion to be optimized is called the objective function. A solution of
S is called a feasible solution, while a solution which optimizes cTx
is called an optimal solution, of the linear programming problem.
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The value of a feasible solution is the value of the objective function
on it.

The following linear programming problems are said to be duals of
each other

Primal program

Maximize cT
1 x1 + cT

2 x2

(

A11 A12

) x1

x2
= b1

(

A21 A22

) x1

x2
≤ b2

x2 ≥ 0

Dual program

Minimize bT
1 y1 + bT

2 y2

(

AT
11 AT

21

) y1

y2
= c1

(

AT
12 AT

22

) y1

y2
≥ c2

y2 ≥ 0.

We now present the duality theorem of linear programming [von Neumann47],
[Gale+Kuhn+Tucker51].

Theorem 2.3.3 For dual pairs of linear programs the following state-
ments hold:

i. The value of each feasible solution of the minimization program
is greater than or equal to the value of each feasible solution of
the maximization program;

ii. if both programs have feasible solutions then both have optimal
solutions and the optimal values are equal;
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iii. if one program has an optimal solution then so does the other.

The usual proof uses Farkas Lemma, or more conveniently, Kuhn-
Fourier Theorem. We only sketch it.
Sketch of Proof: Part (i) follows by the solution of Exercise 2.1.
Now we write down the inequalities of the primal and dual programs
and another ‘≤’ inequality which is the opposite of the inequality in
part (i). Part (ii) would be proved if this system of inequalities has a
solution. We assume it has no solution and derive a contradiction by
using Kuhn-Fourier Theorem.

2

Exercise 2.1 Prove part (i) of Theorem 2.3.3.

A very useful corollary of Theorem 2.3.3 is the following:

Corollary 2.3.1 (Complementary Slackness)
Let










max cTx
Ax = b
x ≥ 0











and

{

minbT y
ATy ≥ c

}

be dual linear programs. Let x̂, ŷ be optimal solutions to the respective
programs. Then,

i. x̂i > 0 implies (AT )iŷ = ci,

ii. (AT )iŷ > ci implies x̂i = 0.

Proof : We have by part (ii) of Theorem 2.3.3 cT x̂ = ŷTb, equivalently

cT x̂− ŷTAx̂ = (cT − ŷTA)x̂ = 0.

The result now follows since (cT − ŷTA) ≥ 0 and x̂ ≥ 0.

2
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2.4 Solutions of Exercises

E 2.1: We use the linear programs given in the definition of dual linear
programs. We have

(

bT
1 bT

2

) y1

y2
≥





(

xT
1 xT

2

)

[

A11 A12

A21 A22

]T




y1

y2

≥
(

xT
1 xT

2

)

[

c1

c2

]

.

2.5 Solutions of Problems

Most of these problems can be found as standard results in undergrad-
uate texts on linear algebra (see for instance [Hoffman+Kunze72]).
We only give the solution to the last two problems. Here we follow
[MacDuffee33], [Gantmacher59] respectively.

P 2.16: We state the following simple lemma without proof.

Lemma 2.5.1 If α1, · · · , αt are permutations of {1, · · · , n} then
sgn(α1α2 · · ·αt) = (sgn(α1))(sgn(α2)) · · · (sgn(αt)) (where αiαj de-
notes composition of permutations αi, αj).

We have

∑

sgn(σ) det

(

A

(

r1, · · · , rk

i1, · · · , ik

))

det

(

A

(

rk+1, · · · , rm

ik+1, · · · , im

))

=

∑

sgn(σ)(
∑

sgn(α)(ar1α(i1) · · ·arkα(ik)))(
∑

sgn(β)(ark+1β(ik+1) · · ·arnβ(in))),

where α, β are permutations on the sets {i1, · · · , ik}, {ik+1, · · · , in} re-
spectively. Let α′ agree with α over {i1, · · · , ik} and over {ik+1, · · · , in},
with the identity permutation. Let β ′ agree with β over {ik+1, · · · , in}
and with the identity permutation over {i1, · · · , ik}. So

LHS =
∑

sgn(σ)sgn(α′)sgn(β ′)(ar1α(i1) · · ·arkα(ik)ark+1β(ik+1) · · ·arnβ(in))

=
∑

sgn(β ′α′σ)(ar1ασ(r1) · · ·arkασ(rk)ark+1βσ(rk+1) · · ·arnβσ(rn))

=
∑

sgn(µ)(ar1µ(r1) · · ·arkµ(rk)ark+1µ(rk+1) · · ·arnµ(rn)),

where µ ≡ β ′α′σ. Since the RHS is the usual definition of the determi-
nant of A, the proof is complete.
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P 2.17: Let aij, bij denote respectively the (i, j)th entry of A,B. Then
the matrix

AB =









∑n
i1=1 a1i1bi11 · · · ∑n

im=1 a1imbimm
...

...
∑n

i1=1 ami1bi11 · · ·
∑n

im=1 amimbimm









.

Now each column of AB can be thought of as the sum of n appropriate
columns - for instance the transpose of the first column is made up of
rows - a typical one being (a1i1bi11, · · · , ami1bi11). Using Theorem 2.2.8
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where A

(

1, · · · , m
i1, · · · , im

)

is the m×m matrix which has the first m

rows of A in the same order as in A but whose jth column is the ithj
column of A. So, again by Theorem 2.2.8,

det(AB) =
∑

k1,···,km

det

(

A

(

1, · · · , m
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))

(sgn(σ)) bσ(k1)1 · · · bσ(km)m,

where k1 < · · · < km, {k1, · · · , km} = {i1, · · · , im} and σ is the permu-
tation
(

k1, · · · , km

i1, · · · , im

)

, i.e.,

σ(kj) = ij .

So,

det(AB) =

∑
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(
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det

(

B

(

k1, · · · , km

1, · · · , m
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.
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Chapter 3

Graphs

3.1 Introduction

We give definitions of graphs and related notions below. Graphs should
be visualized as points joined by lines with or without arrows rather
than be thought of as formal objects. We would not hesitate to use
informal language in proofs.

3.2 Graphs: Basic Notions

3.2.1 Graphs and Subgraphs

A graph G is a triple (V (G), E(G), iG) where V (G) is a finite set of
vertices, E(G) is a finite set of edges and iG is an incidence func-
tion which associates with each edge a pair of vertices, not necessarily
distinct, called its end points or end vertices (i.e., iG : E(G) →
collection of subsets of V (G) of cardinality 2 or 1).
Vertices are also referred to as nodes or junctions while edges are
referred to also as arcs or branches.
We note

i. an edge may have a single end point - such edges are called
selfloops.

41
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ii. a vertex may have no edges incident on it - such vertices are said
to be isolated.

iii. the graph may be in several pieces.

e1 e2

e3 e4

e5 e6

e7
e8

e9

e10 e11

e12

e1
e2

e3

e4
e5

e6

e8e7

a

b
fc d

q

g

h j

k

a

b
c

d

h

f

g

Gu

Gd

Figure 3.1: Undirected and Directed Graphs

Figure 3.1 shows a typical graph Gu.

A directed graph G is a triple (V (G), E(G), aG) where V (G), E(G)
are the vertex set and the edge set respectively and aG associates with
each edge an ordered pair of vertices not necessarily distinct (i.e.,
aG : E(G) → V (G) × V (G)). The first element of the ordered pair
is the positive end point or tail of the arrow and the second element
is the negative end point or head of the arrow. For selfloops, posi-
tive and negative endpoints are the same. Directed graphs are usually
drawn as graphs with arrows in the edges. In Figure 3.1, Gd is a di-
rected graph.
We say a vertex v and an edge e are incident on each other iff v is an
end point of e. If e has end points u, v we say that u, v are adjacent
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to each other. Two edges e1, e2 are adjacent if they have a common
end point. The degree of a vertex is the number of edges incident on
it with selfloops counted twice.
A graph Gs is a subgraph of G iff Gs is a graph, V (Gs) ⊆ V (G), E(Gs) ⊆
E(G), and the endpoints of an edge in Gs are the same as its end points
in G.
Subgraph Gs is a proper subgraph of G iff it is a subgraph of G but
not identical to it. The subgraph of G on V1 is that subgraph of G
which has V1 as its vertex set and the set of edges of G with both end
points in V1 as the edge set. The subgraph of G on E1 has E1 ⊆ E(G)
as the edge set and the endpoints of edges in E1 as the vertex set. If G
is a directed graph the edges of a subgraph would retain the directions
they had in G (i.e., they would have positive and negative end points
as in G).

Exercise 3.1 (k) In any graph with atleast two nodes and no parallel
edges (edges with the same end points) or selfloops show that the degree
of some two vertices must be equal.

Exercise 3.2 (k) Show that

i. the sum of the degrees of vertices of any graph is equal to twice
the number of edges of the graph;

ii. the number of odd degree vertices in any graph must be even.

3.2.2 Connectedness

A vertex edge alternating sequence (alternating sequence for
short) of a graph G is a sequence in which

i. vertices and edges of G alternate,

ii. the first and last elements are vertices and

iii. whenever a vertex and an edge occur as adjacent elements they
are incident on each other in the graph.
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Example: For the graph Gu in Figure 3.1, (a, e1, b, e3, c, e6, q, e6, c, e4, d)
is an alternating sequence.
A path is a graph all of whose edges and vertices can be arranged in
an alternating sequence without repetitions.
It can be seen that the degree of precisely two of the vertices of the
path is one and the degree of all other vertices (if any) is two. The
two vertices of degree one must appear at either end of any alternating
sequence containing all nodes and edges of the path without repetition.
They are called terminal nodes. The path is said to be between
its terminal nodes. It is clear that there are only two such alternating
sequences that we can associate with a path. Each is the reverse of
the other. The two alternating sequences associated with the path in
Figure 3.2 are (v1, e1, v2, e2, v3, e3, v4) and (v4, e3, v3, e2, v2, e1, v1).

v1 v2 v3 v4

e1 e2 e3

Figure 3.2: A Path Graph

We say ‘go along the path from vi to vj ’ instead of ‘construct the
alternating sequence without repetitions having vi as the first element
and vj as the last element’. Such sequences are constructed by con-
sidering the alternating sequence associated with the path in which vi

precedes vj and taking the subsequence starting with vi and ending
with vj .
A directed graph may be a path if it satisfies the above conditions.
However, the term strongly directed path is used if the edges can
be arranged in a sequence so that the negative end point of each edge,
except the last is the positive end point of the succeeding edge.
A graph is said to be connected iff for any given pair of distinct ver-
tices there exists a path subgraph between them. The path graph in
Figure 3.2 is connected while the graph Gu in Figure 3.1 is discon-
nected.
A connected component of a graph G is a connected subgraph of G
that is not a proper subgraph of any connected subgraph of G (i.e., it
is a maximal connected subgraph). Connected components correspond
to ‘pieces’ of a disconnected graph.
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Exercise 3.3 (k) Let G be a connected graph. Show that there is a
vertex such that if the vertex and all edges incident on it are removed
the remaining graph is still connected.

3.2.3 Circuits and Cutsets

A connected graph with each vertex having degree two is called a
circuit graph or a polygon graph. (GL in Figure 3.3 is a circuit
graph). If G′ is a circuit subgraph of G then E(G ′) is a circuit of G.
A single edged circuit is called a selfloop.

GL GLD

Figure 3.3: A Circuit Graph and a Strongly Directed Circuit Graph

Each of the following is a characteristic property of circuit graphs
(i.e., each can be used to define the notion).
We omit the routine proofs.

i. A circuit graph has precisely two paths between any two of its
vertices.

ii. If we start from any vertex v of a circuit graph and follow any
path (i.e., follow an edge, reach an adjacent vertex, go along a
new edge incident on that vertex and so on) the first vertex to
be repeated would be v. Also during the traversal we would have
encountered all vertices and edges of the circuit graph.
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iii. Deletion of any edge (leaving the end points in place) of a circuit
graph reduces it to a path.

Exercise 3.4 Construct

i. a graph with all vertices of degree 2 that is not a circuit graph,

ii. a non circuit graph which is made up of a path and an additional
edge,

iii. a graph which has no circuits,

iv. a graph which has every edge as a circuit.

Exercise 3.5 Prove

Lemma 3.2.1 (k) Deletion of an edge (leaving end points in place)
of a circuit subgraph does not increase the number of connected com-
ponents in the graph.

Exercise 3.6 Prove

Theorem 3.2.1 (k) A graph contains a circuit if it contains two dis-
tinct paths between some two of its vertices.

Exercise 3.7 Prove

Theorem 3.2.2 (k) A graph contains a circuit if every one of its
vertices has degree ≥ 2.

A set T ⊆ E(G) is a crossing edge set of G if V (G) can be partitioned
into sets V1, V2 such that T = {e : e has an end point in V1 and in
V2}. (In Figure 3.4, C is a crossing edge set). We will call V1, V2 the
end vertex sets of T. Observe that while end vertex sets uniquely
determine a crossing edge set there may be more than one pair of end
vertex sets consistent with a given crossing edge set. A crossing edge
set that is minimal (i.e., does not properly contain another crossing
edge set) is called a cutset or a bond. A single edged cutset is a
coloop.

Exercise 3.8 Construct a graph which has (a) no cutsets (b) every
edge as a cutset.

Exercise 3.9 Construct a crossing edge set that is not a cutset (see
Figure 3.4).
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Exercise 3.10 (k) Show that a cutset is a minimal set of edges with
the property that when it is deleted leaving endpoints in place the num-
ber of components of the graph increases.

Exercise 3.11 Short (i.e., fuse end points of an edge and remove the
edge) all branches of a graph except a cutset. How does the resulting
graph look?

Exercise 3.12 Prove

Theorem 3.2.3 (k) A crossing edge set T is a cutset iff it satisfies
the following:

i. If the graph has more than one component then T must meet the
edges of only one component and

ii. if the end vertex sets of T are V1, V2 in that component, then the
subgraphs on V1 and V2 must be connected.

V1

V2

V1

V2

C Cd

Figure 3.4: A Crossing Edge Set and a Strongly Directed Crossing
Edge Set
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3.2.4 Trees and Forests

A graph that contains no circuits is called a forest graph (see graphs
Gt and Gf in Figure 3.5). A connected forest graph is also called a tree
graph (see graph Gt in Figure 3.5).

Gt

Gf

Figure 3.5: A Tree Graph Gt and a Forest Graph Gf

A forest of a graph G is the set of edges of a forest subgraph of G
that has V (G) as its vertex set and has as many connected components
as G has. A forest of a connected graph G is also called a tree of G. The
complement relative to E(G) of a forest (tree) is a coforest (cotree)
of G. The number of edges in a forest (coforest) of G is its rank
(nullity). Theorem 3.2.4 assures us that this notion is well defined.

Exercise 3.13 (k) Show that a tree graph on two or more nodes has

i. precisely one path between any two of its vertices

ii. at least two vertices of degree one.

Exercise 3.14 Prove

Theorem 3.2.4 (k) A tree graph on n nodes has (n − 1) branches.
Any connected graph on n nodes with (n− 1) edges is a tree graph.

Corollary 3.2.1 The forest subgraph on n nodes and p components
has (n− p) edges.
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Exercise 3.15 Prove

Theorem 3.2.5 (k) A subset of edges of a graph is a forest (coforest)
iff it is a maximal subset not containing any circuit (cutset).

Exercise 3.16 (k) Show that every forest (coforest) of a graph G in-
tersects every cutset (circuit) of G.
Exercise 3.17 Prove

Lemma 3.2.2 (k) A tree graph splits into two tree graphs if an edge
is opened (deleted leaving its end points in place).

Exercise 3.18 (k) Show that a tree graph yields another tree graph if
an edge is shorted (removed after fusing its end points).

Exercise 3.19 Prove

Theorem 3.2.6 (k) Let f be a forest of a graph G and let e be an
edge of G outside f . Then e ∪ f contains only one circuit of G.
Exercise 3.20 Prove

Theorem 3.2.7 (k) Let f be a coforest of a graph G and let e be an
edge of G outside f (i.e., e ∈ f). Then e ∪ f contains only one cutset
of G (i.e., only one cutset of G intersects f in e).

Exercise 3.21 (k) Show that every circuit is an f-circuit with respect
to some forest (i.e., intersects some coforest in a single edge).

Exercise 3.22 (k) Show that every cutset is an f-cutset with respect
to some forest (i.e., intersects some forest in a single edge).

Exercise 3.23 (k) Show that shorting an edge in a cutset of a graph
does not reduce the nullity of the graph.

3.2.5 Strongly Directedness

The definitions we have used thus far hold also in the case of directed
graphs. The subgraphs in each case retain the original orientation for
the edges. However, the prefix ‘strongly directed’ in each case implies
a stronger condition. We have already spoken of the strongly directed
path. A strongly directed circuit graph has its edges arranged in a
sequence so that the negative end point of each edge is the positive
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end point of the succeeding edge and the positive end point of the last
edge is the negative end point of the first (see GLd

in Figure 3.3). The
set of edges of such a graph would be a strongly directed circuit.

A strongly directed crossing edge set would have the positive
end points of all its edges set in the same end vertex set (see Cd in
Figure 3.4).

In this book we will invariably assume that the graph is directed but
our circuit subgraphs, paths etc. although they are directed graphs,
will, unless otherwise stated, not be strongly directed. When it is clear
from the context the prefix ‘directed’ will be omitted when we speak of
a graph. For simplicity we would write directed path, directed circuit,
directed crossing edge set instead of strongly directed path etc.

Exercise 3.24 Prove:
(Minty) Any edge of a directed graph is either in a directed circuit or

in a directed cutset but not both.

(For solution see Theorem 3.4.7).

3.2.6 Fundamental Circuits and Cutsets

Let f be a forest of G and let e /∈ f . It can be shown (Theorem 3.2.6)
that there is a unique circuit contained in e ∪ f . This circuit is called
the fundamental circuit (f - circuit) of e with respect to f and
is denoted by L(e, f). Let et ∈ f . It can be shown (Theorem 3.2.7)
that there is a unique cutset contained in et ∪ f̄ . This cutset is called
the fundamental cutset of et with respect to f and is denoted by
B(et, f).

Remark: The f-circuit L(e, f) is obtained by adding e to the unique
path in the forest subgraph on f between the end points of e. For the
subgraph on f , the edge et is a crossing edge set with end vertex sets
say V1, V2. Then the f-cutset B(et, f) is the crossing edge set of G with
end vertex sets V1, V2.
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3.2.7 Orientation

Let G be a directed graph. We associate orientations with circuit
subgraphs and crossing edge sets as follows:

An orientation of a circuit subgraph is an alternating sequence of
its vertices and edges, without repetitions except for the first vertex
being also the last (note that each edge is incident on the preceding
and succeeding vertices). Two orientations are equivalent if one can
be obtained by a cyclic shift of the other. Diagrammatically an ori-
entation may be represented by a circular arrow. It is easily seen that
there can be at most two orientations for a circuit graph. (A single
edge circuit subgraph has only one). These are obtained from each
other by reversing the sequence. When there are two non equivalent
orientations we call them opposite to each other. We say that an edge
of the circuit subgraph agrees with the orientation if its positive end
point immediately precedes itself in the orientation (or in an equivalent
orientation). Otherwise it is opposite to the orientation.
The orientation associated with a circuit subgraph would also be called
the orientation of the circuit.

Example: For the circuit subgraph of Figure 3.6 the orientations
(n1, e, n6, e6, n5, e5, n4, e4, n3, e3, n2, e2, n1), and (n6, e6, n5, e5,
n4, e4, n3, e3, n2, e2, n1, e, n6) are equivalent. This is the orientation
shown in the figure. It is opposite to the orientation (n1, e2, n2, e3,
n3, e4, n4, e5, n5, e6, n6, e, n1). The edge e agrees with this latter
orientation and is opposite to the former orientation.

An orientation of a crossing edge set is an ordering of its end vertex
sets V1, V2 as (V1, V2) or as (V2, V1). An edge e in the crossing edge set
with positive end point in V1 and negative end point in V2 agrees with
the orientation (V1, V2) and is opposite to the orientation (V2, V1). In
Figure 3.6 the orientation of the crossing edge set is (V1, V2).

Theorem 3.2.8 (k) Let f be a forest of a directed graph G. Let et ∈ f
and let ec ∈ f . Let the orientation of L(ec, f) and B(et, f) agree with
ec, et, respectively. Then L(ec, f) ∩ B(et, f) = ∅ or {ec, et}.
Further when the intersection is nonvoid et agrees with (opposes) the
orientation of L(ec, f) iff ec opposes (agrees with) the orientation of
B(et, f).



52 3. GRAPHS

e2

e3

e4

e5

e6

n1

n2 n3

n4

n5

V 2

V1

e4
e3e2

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

e

e

Figure 3.6: Circuit subgraph and Crossing Edge Set with Orientations

Proof : We confine ourselves to the case where G is connected since
even if it is disconnected we could concentrate on the component where
et is present.
If B(et, f) is deleted from G, two connected subgraphs G1,G2 result
whose vertex sets are the end vertex sets V1, V2, respectively of B(et, f).
Now ec could have both end points in V1, both end points in V2, or one
end point in V1 and another in V2. In the former two cases L(ec, f) ∩
B(et, f) = ∅. In the last case L(ec, f) must contain et. For, the path in
the tree subgraph on f between the endpoints of ec must use et since
that is the only edge in f with one endpoint in V1 and the other in V2.
Now L(ec, f) contains only one edge, namely ec from f and B(et, f)
contains only one edge, namely et from f . Hence in the third case

L(ec, f) ∩B(et, f) = {ec, et}.

Let us next assume that the intersection is nonvoid. Suppose that
ec has its positive end point a in V1 and negative end point b in V2.
Let (b, · · · , et, · · · , a, ec, b) be an orientation of the circuit. It is clear
that et would agree with this orientation if V2 contains its positive end
point and V1 its negative end point (see Figure 3.7). But in that case
ec would oppose the orientation of B(et, f) (which is (V2, V1), taken
to agree with the orientation of et). The other cases can be handled
similarly.
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Figure 3.7: Relation between f-circuit and f-cutset

3.2.8 Isomorphism

Let G1 ≡ (V1, E1, i1), G2 ≡ (V2, E2, i2), be two graphs. We say G1,
G2 are identical iff V1 = V2, E1 = E2 and i1 = i2. However, graphs
could be treated as essentially the same even if they satisfy weaker
conditions. We say G1, G2 are isomorphic to each other and denote
it by (abusing notation) G1 = G2 iff there exist bijections η : V1 → V2

and ǫ : E1 → E2 s.t. any edge e has end points a, b in G1 iff ǫ(e)
has endpoints η(a), η(b). If G1,G2 are directed graphs then we would
further require that an end point a of e, in G1, is positive (negative) iff
η(a) is the positive (negative) endpoint of ǫ(e). When we write G1 = G2

usually the bijections would be clear from the context. However, when
two graphs are isomorphic there would be many isomorphisms ((η, ǫ)
pairs) between them.

The graphs G,G′ in Figure 3.8 are isomorphic. The node and edge
bijections are specified by the (’). Clearly there is at least one other
(η, ǫ) pair between the graphs.
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Figure 3.8: Isomorphic Directed Graphs

3.2.9 Cyclically connectedness

A graph G is said to be cyclically connected iff given any pair of
vertices there is a circuit subgraph containing them.

a

bc

G1 G2

Figure 3.9: Cyclically Connected and Cyclically Disconnected Graphs
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Example: The graph G1 in Figure 3.9 is cyclically connected while G2

of the same figure is not cyclically connected since no circuit subgraph
contains both nodes a and b.
Whenever a connected graph is not cyclically connected there would
be two vertices a, b through which no circuit subgraph passes. If a, b
are not joined by an edge there would be a vertex c such that every
path between a and b passes through c. We then say c is a cut vertex
or hinge. The graph G2 of Figure 3.9 has c as a cut vertex.
It can be shown that a graph is cyclically connected iff any pair of
edges can be included in the same circuit.

In any graph it can be shown that if edges e1, e2 and e2, e3 be-
long to circuits C12, C23, then there exists a circuit C13 ⊆ C12 ∪ C23

s.t. e1, e3 ∈ C13. It follows that the edges of a graph can be parti-
tioned into blocks such that within each block every pair of distinct
edges can be included in some circuit and edges belonging to different
blocks cannot be included in the same circuit (each coloop would form
a block by itself). We will call such a block an elementary sepa-
rator of the graph. Unions of such blocks will be called separators.
The subgraphs on elementary separators will be called 2-connected
components.(Note that a coloop is a 2-connected component by it-
self). If two 2-connected components intersect they would do so at a
single vertex which would be a cut vertex. If two graphs have a single
common vertex, we would say that they are put together by hinging.

3.3 Graphs and Vector Spaces

There are several natural ‘electrical’ vectors that one may associate
with the vertex and edge sets of a directed graph G.

e.g. i. potential vectors on the vertex set,
ii. current vectors on the edge set,
iii. voltage (potential difference) vectors on the edge set.

Our concern will be with the latter two examples. We need a
few preliminary definitions. Henceforth, unless otherwise specified, by
graph we mean directed graph.

The Incidence Matrix



56 3. GRAPHS

The incidence matrix A of a graph G is defined as follows:
A has one row for each node and one column for each edge.

A(i, j) = +1(−1) if edge j has its arrow leaving (entering) node i.
0 if edge j is not incident on node i

or if edge j is a selfloop.

Example: The incidence matrix of the directed graph Gd in Figure
3.1 is
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e1 e2 e3 e4 e5 e6 e7 e8

A =

a
b
c
d
f
g
h



























+1 +1 0 0 0 0 0 0
−1 0 +1 +1 0 0 0 0

0 −1 −1 0 +1 0 0 0
0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 +1 +1
0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0



























(3.1)

Note that the selfloop e6 is represented by a zero column. This is
essential for mathematical convenience. The resulting loss of informa-
tion (as to which node it is incident at) is electrically unimportant.
The isolated node h corresponds to a zero row. Since the graph is
disconnected the columns and rows can be ordered so that the block
diagonal nature of the incidence matrix is evident.

Exercise 3.25 (k) Prove:
A matrix K is the incidence matrix of some graph G iff it is a 0, ±1
matrix and has either zero columns or columns with one +1 and one
−1 and remaining entries 0.

Exercise 3.26 (k) Prove:
The sum of the rows of A is 0. Hence the rank of A is less than or
equal to the number of its rows minus 1.

Exercise 3.27 (k) Prove:
If the graph is disconnected the sum of the rows of A corresponding to
any component would add up to 0. Hence, the rank of A is less than
or equal to the number of its rows less the number of components (=
r(G)).

Exercise 3.28 (k) Prove:
If f = λTA, then f(ei) = λ(a)− λ(b) where a is the positive end point
of ei and b, its negative end point. Thus if λ represents a potential
vector with λ(n) denoting the potential at n then f represents the cor-
responding potential difference vector.
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Exercise 3.29 Construct incidence matrices of various types of graphs
e.g. connected, disconnected, tree, circuit, complete graph Kn (every
pair of n vertices
joined by an edge), path.

Exercise 3.30 Show that the transpose of the incidence matrix of a
circuit graph, in which all edges are directed along the orientation of
the circuit, is a matrix of the same kind.

Exercise 3.31 (k) Show that an incidence matrix remains an inci-
dence matrix under the following operations:

i. deletion of a subset of the columns,

ii. replacing some rows by their sum.

3.3.1 The Circuit and Crossing Edge Vectors

A circuit vector of a graph G is a vector f on E(G) corresponding to
a circuit of G with a specified orientation:

f(ei) = +1(−1) if ei is in the circuit and agrees
with (opposes) the orientation of the circuit.

= 0 if ei is not in the circuit.

Example: The circuit vector associated with the circuit subgraph in
Figure 3.6

e e2 e3 e4 e5 e6

f =
[

−1 +1 −1 +1 −1 +1 0 . . . 0
]

(3.2)

Exercise 3.32 (k) Compare a circuit vector with a row of the inci-
dence matrix. Prove:
A row of the incidence matrix and a circuit vector will

i. have no nonzero entries common if the corresponding node is not
present in the circuit subgraph, or

ii. have exactly two nonzero entries common if the node is present
in the circuit subgraph. These entries would be ±1. One of these
entries would have opposite sign in the incidence matrix row and
the circuit vector and the other entry would be the same in both.
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Exercise 3.33 Prove

Theorem 3.3.1 (k) Every circuit vector of a graph G is orthogonal
to every row of the incidence matrix of G.
(This follows immediately from the statement of the previous exercise).
A crossing edge vector of a graph G is a vector f on E(G) corre-
sponding to a crossing edge set with a specified orientation (V1, V2):

f(ei) = +1(-1) if ei is in the crossing edge set and agrees
with (opposes) the orientation (V1, V2).

= 0 if ei is not in the crossing edge set.

If the crossing edge set is a cutset then the corresponding vector is a
cutset vector.

Example: The crossing edge vector associated with the crossing edge
set of Figure 3.6 is

e e2 e3 e4

f =
[

+1 −1 +1 +1 0 · · · 0
]

. (3.3)

Exercise 3.34 Prove

Theorem 3.3.2 (k) The crossing edge vector corresponding to the
crossing edge set of orientation (V1, V2) is obtained by summing the
rows of the incidence matrix corresponding to the nodes in V1.

Hence, a crossing edge vector of G is a voltage vector and is orthogonal
to every circuit vector of G. (This can also be proved directly).

Exercise 3.35 (k) When is a row of the incidence matrix also a cutset
vector? Can a cutset be a circuit? Can a cutset vector be a circuit
vector?

Exercise 3.36 (k) RRE of an Incidence Matrix:
Give a simple rule for finding the RRE of an incidence matrix.

3.3.2 Voltage and Current Vectors

For a graph G a current vector i is a vector onE(G) that is orthogonal
to the rows of the incidence matrix of G, equivalently, that satisfies
Kirchhoff’s current equations (KCE): Ax = 0 [Kirchhoff1847].
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A voltage vector v of G is a vector on E(G) that is linearly dependent
on the rows of the incidence matrix of G i.e.
vT = λTA for some vector λ.
The vector λ assigns a value to each node of G and is called a potential
vector. We say v is derived from the node potential vector λ.
Voltage vectors and current vectors form vector spaces denoted by
Vv(G),Vi(G), and called voltage space of G and current space of G
respectively.

Exercise 3.37 Prove
(Tellegen’s Theorem (weak form)) Any voltage vector of G is or-
thogonal to every current vector of G.
Remark: When the graph is disconnected with components G1 . . .Gp

it is clear that both the current and voltage space can be written in the
form ⊕p

i=1V(Gi). However, in order to write the space in this decom-
posed form it is not necessary that the Gi be disconnected. All that
is required is that there be no circuit containing edges from different
Gi (see the discussion on separators). We say that graphs G1,G2 are
2-isomorphic and denote it by G1

∼= G2 iff there exists a bijection
∈: E(G1)→ E(G2) through which an edge in G1 can be identified with
an edge in G2 so that Vv(G1) = Vv(G2).
Whitney [Whitney33c] has shown that two 2-isomorphic graphs can be
made isomorphic through the repeated use of the following operations:

i. Decompose the graphs into their 2-connected components.

ii. Divide one of the graphs into two subgraphs G ′ and G” which
have precisely two vertices, say a and b, in common. Split the
nodes into a1, a2 and b1, b2 so that the two subgraphs are now
disconnected with a1, b1, belonging to G′ and a2, b2 to G”. Let
G′e be the graph obtained from G ′ by adding an edge e between
a1, b1. Now reverse all arrows of edges of G ′ which lie in the 2-
connected component containing e in G′e and attach a1 to b2 and
a2 to b1.
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If c is a circuit vector corresponding to the circuit C with an orienta-
tion then the Kirchhoff’s Voltage Equation (KVE) [Kirchhoff1847]
corresponding to C is

cTx = 0

We have the following basic characterization of voltage vectors:

Theorem 3.3.3 (k) A vector v on E(G) is a voltage vector iff it sat-
isfies KVE corresponding to each circuit with an orientation.

Proof : By Theorem 3.3.1 we know that a circuit vector is orthog-
onal to every row of the incidence matrix. Hence, a circuit vector is
orthogonal to any vector that is linearly dependent on the rows of the
incidence matrix i.e. orthogonal to a voltage vector. Hence, every volt-
age vector satisfies KVE corresponding to any circuit with orientation.
Now let v be a vector that satisfies KVE corresponding to every circuit
with an orientation. We will construct a potential vector λ s.t. λTA =
vT. Take any node d as the datum node, i.e., λ(d) ≡ 0. Suppose λ(a) is
already defined and edge e has a as the positive (negative) end and b as
the opposite end. Then we take λ(b) ≡ λ(a)−v(e)(λ(b) ≡ λ(a)+v(e)).
In this manner every node in the same connected component is assigned
a λ value. A node that is reachable from d by two different paths will
not be assigned two different values as otherwise we can find a circuit
with orientation for which KVE is violated. Repeating this procedure
for each component yields a λ vector s.t. λTA = vT.

2

3.3.3 Voltage and Current Vector Spaces and Tel-
legen’s Theorem

In this subsection, we compute the rank of Vv(G) and Vi(G) and prove
that the spaces are complementary orthogonal (Tellegen’s Theorem
(strong form)).

Theorem 3.3.4 (k) Let G be a graph on n nodes with p connected
components. Then

i. Any set of (n−p) rows of A which omits one row per component
of G, is a basis of Vv(G).
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ii. r(Vv(G)) = n− p

Proof :
If G is made up of p connected components, by (if necessary) rearrang-
ing the rows and columns of A it can be put in the block diagonal
form with p blocks. Hence, any union of linearly independent vectors
from different Ai would be linearly independent. We need to show that
dropping any row of Ai results in a set of linearly independent vectors.
So let us, without loss of generality, assume that G is connected and
select any (n − 1) rows of A. Suppose these are linearly dependent.
Then there is a non trivial linear combination of these rows which is a
zero vector. From this set of rows we omit all the rows which are being
multiplied by zeros. The remaining set of rows is nonvoid. Consider
the corresponding set of vertices say V1. This set does not contain all
vertices of the graph. Since the graph is connected there must be an
edge e with one end point in V1 and the other outside. The submatrix
of A with rows V1 has only one nonzero entry in the column e. Hence,
by multiplying these rows by nonzero scalars and adding we cannot
get a zero row. This contradiction shows that any (n − 1) rows of A
must be linearly independent. Since the sum of rows of A is a zero
vector, dropping one row of A results in a basis of Vv(G) when G is
connected and hence any set of (n−p) rows of A which omits one row
per component of G is a basis of Vv(G). Hence, r(Vv(G)) = n− p.

2

A reduced incidence matrix Ar of a graph G is obtained by
omitting one row belonging to each component of G.
We know by Theorem 3.3.4 that the reduced incidence matrix is a
representative matrix for Vv(G). A standard representative matrix for
Vv(G) may be built as described below.

3.3.4 Fundamental cutset matrix of a forest f

We know by Theorem 3.2.7 that there is a unique cutset of a graph G
that intersects a forest f in an edge e. This we have called the funda-
mental cutset of e with respect to f and denoted it by B(e, f). We as-
sign this cutset an orientation agreeing with that of e. Let e1, e2, . . . , er
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be the edges in the forest f and let v1, . . . ,vr be the corresponding
cutset vectors. A matrix which has v1, . . . ,vr as rows is called the
fundamental cutset matrix Qf of f . This matrix is unique within
permutation of rows and columns. By reordering rows and columns, if
required, this matrix can be cast in the form

f̄ f

Qf ≡
[

Q11 I
]

(3.4)

It is clear that Qf has | f | (= (n − p)) rows which are linearly inde-
pendent. Since a cutset vector is linearly dependent on the rows of the
incidence matrix A (Theorem 3.3.2) and r(A) = n− p, it follows that
Qf is a standard representative matrix for Vv(G).
Example: Consider the graph of Figure 3.10.
Let f≡{e3 e4 e5 e6 e7} and let f̄ = {e1 e2}.
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e1 e2 e3 e4 e5 e6 e7

Qf =

















0 1 1 0 0 0 0
1 0 0 1 0 0 0
−1 −1 0 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1

















(3.5)

e3 e4

e5

e6
e7

e3 e4

e6 e7

e2 e1

e5e2 e1

Figure 3.10: f-cutsets and f-circuits

3.3.5 Fundamental circuit matrix of a forest f

We have already seen that addition of an edge e to a forest f creates a
unique circuit which we have called the fundamental circuit of e with
respect to f denoted by L(e, f). As before we assign this circuit an ori-
entation agreeing with that of e. Let e1, · · · , eν be edges in the coforest
f̄ . Let c1, · · · , cν be the corresponding circuit vectors. A matrix with
these vectors as rows is called the fundamental circuit matrix Bf

of f . This matrix is unique within permutation of rows and columns.
By reordering rows and columns, if required, this matrix can be cast
in the form

f̄ f
Bf ≡ [I B12]
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It is clear that Bf has | f̄ | rows which are linearly independent. Since
a circuit vector is orthogonal to all the rows of the incidence matrix,
it must be a current vector. Thus rows of Bf are current vectors.
Example: Consider the graph in Figure 3.10. Here f ≡ {e3, e4, e5, e6, e7}
and f̄ ≡ {e1, e2}.
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e1 e2 e3 e4 e5 e6 e7

Bf =

[

1 0 0 −1 +1 0 −1
0 1 −1 0 +1 −1 0

]

. (3.6)

Theorem 3.3.5 (k) Let G be a graph on e edges, n nodes and p con-
nected components. Then
(a) r(Vi(G)) = e− n + p
(b) ( Tellegen’s Theorem (strong form)) (Vv(G))⊥ = Vi(G).

Proof : The rows of a fundamental circuit matrix are current vectors
and e− n+ p in number. Hence, r(Vi(G)) ≥ e− n+ p.
On the other hand every voltage vector is orthogonal to every current
vector since a voltage vector is linearly dependent on the rows of A
while a current vector is orthogonal to these rows. Thus, (Vv(G))⊥ ⊇
Vi(G).
By Theorem 2.2.5, r(Vv(G)) + r(Vv(G))⊥ = e
We have already seen that r(Vv(G)) = n − p. Hence r(Vv(G))⊥ =
e−n+p and r(Vi(G)) ≤ e−n+p. We conclude that r(Vi(G)) = e−n+p
and thus Vi(G) = (Vv(G))⊥.

2

Corollary 3.3.1 (k) The rows of an f-circuit matrix of a graph G form
a basis for the current space of G.
Exercise 3.38 (k) Examine which potential vectors correspond to a
zero voltage vector.

Exercise 3.39 Consider the column space C(A) of A. Show that
(C(A))⊥ is one dimensional if the graph is connected. Hence show
that r(A) = n− 1.

Exercise 3.40 (k) The following is another proof for ‘r(A) = n−1 if
the graph is connected’. If the graph is connected r(A) ≤ n − 1 since
the sum of the rows is zero. But Qf has n− 1 independent rows which
are linear combinations of rows of A. Hence r(A) = n− 1.

Exercise 3.41 An elementary vector of a vector space is a nonzero
vector with minimal support (subset on which it takes nonzero values).
Prove
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Theorem 3.3.6 (k) The circuit vector (cutset vector) is an elemen-
tary current vector (elementary voltage vector) and every elementary
current vector (elementary voltage vector) is a scalar multiple of a cir-
cuit vector (cutset vector).

Exercise 3.42 Prove

Theorem 3.3.7 (k) A set of columns of A is linearly independent iff
the corresponding edges of the graph do not contain a circuit. A set
of columns of Bf is linearly independent iff the corresponding edges of
the graph do not contain a cutset.

Exercise 3.43 (k) Every standard representative matrix of Vv(G) (stan-
dard representative matrix of Vi(G)) is a fundamental cutset (funda-
mental circuit) matrix of G.
Exercise 3.44 An alternative proof of the strong form of Tel-
legen’s Theorem:
(k) Let Bf , Qf be the f-circuit and f-cutset matrix with respect to the
same forest. Prove:

i. BT
f Qf = 0

ii. If Bf = [I B12] then Qf = [−BT
12 I]. (Note that this implies

Theorem 3.2.8).

iii. Rows of Bf , Qf are current vectors (voltage vectors). Their
ranks add upto e(=| E(G) |). Hence, (Vi(G))⊥ = Vv(G).

Exercise 3.45 (k) Prove

Theorem 3.3.8 (k) The maximum number of independent KVE for
a graph is r(Vi(G)) (= e− n+ p).

3.4 Basic Operations on Graphs and Vec-

tor Spaces

In this section, we discuss basic operations on graphs (directed and
undirected) which correspond to open circuiting some edges and short
circuiting some others. These operations are related to two vector
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space operations: restriction and contraction. Since real vector spaces
are associated primarily with directed graphs, henceforth we deal only
with such graphs, but, omit the adjective ‘directed’.

3.4.1 Restriction and Contraction of Graphs

Let G be a graph on the set of edges E and let T ⊆ E.

Definition 3.4.1 The graph Gopen(E −T) is the subgraph of G with
T as the edge set and V (G) as the vertex set. Thus Gopen(E − T ) is
obtained by removing (deleting) edges in E−T leaving their end points
in place.
The restriction of G to T , denoted by G ·T, is the subgraph of G
obtained by deleting isolated vertices from Gopen(E − T ). Thus, G · T
is the subgraph of G on T .
If G is directed, Gopen(E − T ),G · T , would be directed with edges
retaining the original directions they had in G.
Definition 3.4.2 The graph Gshort (E−T) is built by first building
GopenT . Let V1, · · · , Vk be the vertex sets of the connected components
of GopenT . The set {V1, · · · , Vk} is the vertex set and T is the edge
set of Gshort (E − T ). An edge e ∈ T would have Vi, Vj as its end
points in Gshort (E − T ) iff the end points of e in G lie in Vi, Vj. If G
is directed, Vi, Vj would be the positive and negative endpoints of e in
Gshort (E − T ) provided the positive and negative end points of e in
G lie in Vi, Vj respectively.
(Thus, Gshort (E−T ) is obtained from G by short circuiting the edges
in (E − T ) (fusing their end points) and removing them).
The contraction of G to T, denoted by G × T , is obtained from
Gshort (E − T ) by deleting the isolated vertices of the latter.

Example: Consider the graph G of Figure 3.11.
Let T = {e1, e6, e11}. The graph GopenT is shown in the figure. Graph
G · (E − T ) is obtained by omitting isolated vertex v1 from GopenT .
Graph Gshort (E−T ) is also shown in the same figure. Graph G×T is
obtained by omitting the isolated vertex { v8, v9 } from Gshort (E−T ).

We denote (G×T1)·T2, T2 ⊆ T1 ⊆ E(G) by G×T1 ·T2 and (G·T1)×T2.
T2 ⊆ T1 ⊆ E(G) by G · T1 × T2. Graphs denoted by such expressions
are called minors of G. It can be seen that when a set A ⊆ E(G) is
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e1

e2 e3

e6

e7 e8

e9 e10

e12 e13

V1

V3

V4

V6

V7

V9

V8

V5

V2

e2 e3

V3

V4

e4 e5

e4 e5

e13e12

V8

V9

V1

V7

e9 e10

V6

V5

e8
e7

e11

e1

e6

V2, V3, V4

V8, V9

V5, V6, V7

e11

{    }
{ }

{ }

V1

G

GopenT

Gshort(E − T )

Figure 3.11: Minors of a Graph
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being shorted and a disjoint set B ⊆ E(G), is being opened then the
final graph does not depend on the order in which these operations are
carried out but only on the sets A and B. Now G × T (G · T ) differs
from Gshort (E−T ) (Gopen(E−T )) only in that the isolated vertices
are omitted. We thus have the following theorem where equality refers
to isomorphism.

Theorem 3.4.1 (k) Let G be a graph with T2 ⊆ T1 ⊆ E(G). Then

i. G × T1 × T2 = G × T2,

ii. G · T1 · T2 = G · T2,

iii. G × T1 · T2 = G · (E − (T1 − T2))× T2.

Proof : The theorem is immediate when we note that both graphs
are obtained by shorting and opening the same sets. In (i) E − T2 is
shorted while in (ii) E − T2 is opened. In (iii) E − T1 is shorted and
T1 − T2 is opened.

2

Exercise 3.46 (k) Simplification of Expression for minors:
Show that any minor of the form G×T1 ·T2×T3 . . . Tn, T1 ⊇ T2 ⊇ . . . ⊇
Tn

(the graph being obtained by starting from G and performing the oper-
ations from left to right in succession), can be simplified to a minor of
the form
G · T ′ × Tn or G × T ′ · Tn.

Exercise 3.47 Train yourself to visualize G1 ≡ Gshort (E − T ) (Put
components of GopenT inside surfaces which then become nodes of G1).
How many components does it have? When would a branch of G become
a selfloop of G1? When would a circuit free set of branches of G become
dependent in G1?

Exercise 3.48 Circuits of minors: Prove

Lemma 3.4.1 (k)

i. A subset C of T is a circuit of G · T iff C is a circuit of G.
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ii. A subset C of T is circuit of G×T iff C is a minimal intersection
of circuits of G with T (equivalently,iff C is an intersection of a
circuit of G with T but no proper subset of C is such an inter-
section).

Exercise 3.49 (k) Cutsets of minors: Prove

Lemma 3.4.2 (k)

i. A subset B of T is a cutset of G ·T iff it is a minimal intersection
of cutsets of G with T .

ii. A subset B of T is a cutset of G × T iff it is a cutset of G.

3.4.2 Restriction and Contraction of Vector Spaces

We now describe operations on vector spaces which are analogous to
the operations of opening and shorting edges in a graph.
Let V be a vector space on S and let T ⊆ S.

Definition 3.4.3 The restriction of V to T , denoted by V.T , is the
collection of vectors fT where fT is the restriction of some vector f of
V to T .
The contraction of V to T , denoted by V × T , is the collection of
vectors f ′T where f ′T is the restriction to T of some vector f of V such
that f/(S − T ) = 0 .

It is easily seen that V · T , V × T are vector spaces.

As in the case of graphs we denote (V × T1) · T2 by V × T1 · T2.
Such expressions denote vector spaces which are called minors of V.
To bring out the analogy between graph minor and vector space minor
operations we say we ‘open’ T when we restrict V to (S − T ) and say
we ‘short’ T when we contract V to (S − T ).
It turns out that the order in which we open and short disjoint sets of
elements is unimportant. More formally we have

Theorem 3.4.2 (k) Let T2 ⊆ T1 ⊆ S. Then

i. V · T1 · T2 = V · T2,
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ii. V × T1 × T2 = V × T2,

iii. V × T1 · T2 = V · (S − (T1 − T2))× T2.

Proof of (iii): We show that a vector in the LHS belongs to a vector
in the RHS.
Let fT2 ∈ V × T1 · T2.
Then there exists a vector fT1 ∈ V × T1 such that fT1/T2 = fT2 and a
vector f ∈ V with f/(S − T1) = 0 such that f/T1 = fT1 .
Now let f ′ denote f/(S − (T1 − T2)).
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Clearly f ′ ∈ V · (S − (T1 − T2)). Now f ′/(S − T1) = 0.
Hence, f ′/T2 ∈ V · (S − (T1 − T2))× T2.
Thus, V × T1 · T2 ⊆ V · (S − (T1 − T2))× T2.
The reverse containment is similarly proved.

2

Remark: To see the proof of the above theorem quickly, observe that
a typical vector of both LHS and RHS is obtained by restricting a
vector of V, that takes zero value on S − T1, to T2.

Exercise 3.50 (k) Prove:
Any minor of the form V × T1 · T2 × T3 . . . Tn, T1 ⊇ T2 ⊇ . . . ⊇ Tn, can
be simplified to a minor of the form

V · T ′ × Tn or V × T ′ · Tn.

3.4.3 Vector Space Duality

We now relate the minors of V to the minors of V⊥. We remind the
reader that V̂⊥, the complementary orthogonal space of V̂ is defined
to be on the same set as V̂. In the following results we see that the
contraction (restriction) of a vector space corresponds to the restriction
(contraction) of the orthogonal complement. We say that contraction
and restriction are (orthogonal) duals of each other.

Theorem 3.4.3 (k) Let V be a vector space on S and let T ⊆ S.
Then,

i. (V · T )⊥ = V⊥ × T.

ii. (V × T )⊥ = V⊥ · T.

Proof :
i. Let gT ∈ (V · T )⊥. For any f on S let fT denote f/T. Now if f ∈ V,
then fT ∈ V · T and < gT , fT > = 0.
Let g on S be defined by g/T ≡ gT , g/S − T ≡ 0. If f ∈ V we have

< f , g > = < fT , gT > + < fS−T , gS−T >

= 0+ < fS−T , 0S−T >

= 0.
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Thus g ∈ V⊥ and therefore, gT ∈ V⊥ × T .Hence, (V . T )⊥ ⊆ V⊥ × T .
Next let gT ∈ V⊥ × T .
Then there exists g ∈ V⊥ s.t. g/S − T = 0 and g/T = gT .
Let fT ∈ V · T . There exists f ∈ V s.t. f/T = fT .
Now 0 =< f , g >=< fT , gT > + < fS−T , 0S−T > =< fT , gT >.
Hence, gT ∈ (V · T )⊥.
We conclude that
V⊥ × T ⊆ (V · T )⊥. This proves that (V · T )⊥ = V⊥ × T.
ii. We have (V⊥ · T )⊥ = (V⊥)⊥ × T .
By Theorem 2.2.5
((V⊥ · T )⊥)⊥ = V⊥ · T and (V⊥)⊥ = V. Hence, V⊥ · T = (V × T )⊥.

2

The following corollary is immediate.

Corollary 3.4.1 (k) (V × P · T )⊥ = V⊥ · P × T, T ⊆ P ⊆ S.

3.4.4 Relation between Graph Minors and Vector
Space Minors

We now show that the analogy between vector space minors and graph
minors is more substantial than hitherto indicated - in fact the minors
of voltage and current spaces of a graph correspond to appropriate
graph minors.

Theorem 3.4.4 (k) Let G be a graph with edge set E. Let T ⊆ E.
Then

i. Vv(G · T ) = (Vv(G)) · T

ii. Vv(G × T ) = (Vv(G))× T

Proof : We remind the reader that by definition a voltage vector v is a
linear combination of the rows of the incidence matrix, the coefficients
of the linear combination being given by the entries in a potential
vector λ. We say v is derived from λ.
i. Let vT ∈ Vv(G · T )
Now Vv(G · T ) = Vv(Gopen(E − T )).
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Thus, vT ∈ Vv(Gopen(E−T )). The graph Gopen(E−T ) has the same
vertex set as G but the edges of (E − T ) have been removed.
Let vT be derived from the potential vector λ of Gopen(E − T ). Now
for any edge e ∈ T , vT (e) = λ(a)−λ(b), where a, b are the positive and
negative end points of e. However, λ is also a potential vector of G.
Let the voltage vector v of G be derived from λ. For the edge e ∈ T ,
we have, as before, v(e) = λ(a)−λ(b). Thus, vT = v/T and therefore,
vT ∈ (Vv(G)) · T. Hence Vv(G · T ) ⊆ (Vv(G)) · T .
The reverse containment is proved similarly.

ii. Let vT ∈ Vv(G × T ). Now Vv(G × T ) = Vv(Gshort (E − T )).
Thus, vT ∈ Vv(Gshort (E − T )).
The vertex set of Gshort (E − T ) is the set {V1, V2, . . . Vn} where Vi is
the vertex set of the ith component of GopenT. Let vT be derived from
the potential vector λ̂ in Gshort (E−T ). The vector λ̂ assigns to each
of the Vi the value λ̂(Vi). Now define a potential vector λ on the nodes
of G as follows: λ(n) ≡ λ̂(Vi), n ∈ Vi. Since {V1, . . . Vk} is a partition
of V (G), it is clear that λ is well defined. Let v be the voltage vector
derived from λ in G. Whenever e ∈ E−T we must have v(e) = 0 since
both end points must belong to the same Vi.
Next, whenever e ∈ T we have v(e) = λ(a) − λ(b) where a is the
positive end point of e and b, the negative endpoint. Let a ∈ Va,
b ∈ Vb,where Va, Vb ∈ V (Gshort (E − T )). Then the positive endpoint
of e in Gshort (E − T ) is Va and the negative end point, Vb.
By definition λ(a) − λ(b) = λ̂(Va) − λ̂(Vb).Thus v/T = vT . Hence,
vT ∈ (Vv(G)) × T . Thus, Vv(G × T ) ⊆ (Vv(G)) × T . The reverse
containment is proved similarly.

2

Using duality we can now prove

Theorem 3.4.5 (k) Let G be a directed graph on edge set E. Let
T ⊆ E. Then,

i. Vi(G . T ) = (Vi(G))× T.

ii. Vi(G × T ) = (Vi(G)) · T.

Proof :
i. Vi(G . T ) = (Vv(G . T ))⊥ by the strong form of Tellegen’s Theorem.
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By Theorem 3.4.4, Vv(G . T ) = (Vv(G)) · T.
Hence,

Vi(G . T ) = ((Vv(G)) · T )⊥

= (Vv(G))⊥ × T
= Vi(G)× T.

ii. The proof is similar.

2

Exercise 3.51 (k) For a connected directed graph G on node set {v1, . . . , vk}
if currents J1, J2 . . . , Jk enter nodes v1, v2, . . . , vk show that
there exists a vector i on E(G), s.t. Ai = J
iff ΣJi = 0.

Exercise 3.52 Prove Theorem 3.4.5 directly. (Hint: the result of the
preceding exercise would be useful in extending a current vector of G×T
to a current vector of G).

3.4.5 Representative Matrices of Minors

As defined earlier, the representative matrix R of a vector space
V on S has the vectors of a basis of V as its rows. Often the choice
of a suitable representative matrix would give us special advantages.
We describe how to construct a representative matrix which contains
representative matrices of V . T and V × (S − T ) as its submatrices.
We say in such a case that V . T and V × (S − T ) become ‘visible’ in
R.

Theorem 3.4.6 (k) Let V be a vector space on S. Let T ⊆ S. Let R
be a representative matrix as shown below

T S − T

R =

[

RTT RT2

0 R22

]

(3.7)

where the rows of RTT are linearly independent. Then RTT is a rep-
resentative matrix for V . T and R22, a representative matrix for
V × (S − T ).
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Proof : The rows of RTT are restrictions of vectors on S to T . Hence,
any linear combination of these rows will yield a vector of V . T. If fT
is any vector in V . T there exists a vector f in V s.t. f/T = fT . Now f
is a linear combination of the rows of R. Hence, f/T (= fT ) is a linear
combination of the rows of RTT . Further it is given that the rows of
RTT are linearly independent. It follows that RTT is a representative
matrix of V . T.
It is clear from the structure of R (the zero in the second set of rows)
that any linear combination of the rows of R22 belongs to V × (S−T ).
Further if f is any vector in V s.t. f/T = 0 then f must be a linear
combination only of the second set of rows of R. For, if the first set
of rows are involved in the linear combination, since rows of RTT are
linearly independent, f/T cannot be zero. We conclude that if f/(S−T )
is a vector in V × (S − T ), it is linearly dependent on the rows of R22.
Now rows of R are linearly independent. We conclude that R22 is a
representative matrix of V × T .

2

Remark:To build a representative matrix of V with the form as in
Theorem 3.4.6, we start from any representative matrix of V and per-
form row operations on it so that under the columns T we have a
matrix in the RRE form.

The following corollary is immediate

Corollary 3.4.2 (k)

r(V) = r(V . T ) + r(V × (S − T )) , T ⊆ S

Corollary 3.4.3 (k) Let G be a graph on E. Then

r(G) = r(G . T ) + r(G × (E − T )) , ∀ T ⊆ E

Proof : We observe that r(G) = number of edges in a forest of G =
r(Vv(G)). The result follows by Theorem 3.4.4.

2

In the representative matrix of Theorem 3.4.6 the submatrix RT2 con-
tains information about how T, S−T are linked by V. If RT2 is a zero
matrix then it is clear that V = VT ⊕VS−T where VT ,VS−T are vector
spaces on T, S − T.
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Definition 3.4.4 A subset T of S is a separator of V iff V × T =
V . T.
It is immediate that if T is a separator so is (S − T ). Thus, we might
say that T, (S − T ) are decoupled in this case. Now by definition
V . T ⊇ V×T. Hence, equality of the spaces follows if their dimensions
are the same. Hence, T is a separator iff r(V × T ) = r(V . T ).
The connectivity of V at T is denoted by ξ(T ) and defined as follows:

ξ(T ) ≡ r(V . T )− r(V × T )

It is easily seen that ξ(T ) = ξ(S − T ). Further, this number is zero if
T is a separator.

Exercise 3.53 (k)

i. Let
T1 T2 T3

R =







R11 R12 R13

R21 0 R23

0 0 R33





 (3.8)

Rows of R12 and

[

R11

R21

]

are given to be linearly independent.

Show that R33 is a representative matrix of V×T3, R12 of V . T2,
R21 of V . (T1 ∪ T2)× T1 as well as V × (T1 ∪ T3). T1 (and hence
these spaces must be the same).

ii. How would R look if V . (T1 ∪ T2) has T1, T2 as separators?

Exercise 3.54 (k) Let
T1 T2

R =







R11 0
R21 R22

0 R33





 . (3.9)

Suppose rows of
(

R11

R21

)

,

(

R22

R33

)

, are linearly independent. Show that the number

of rows of R22 = r(V . T2)− r(V × T2) (= r(V . T1)− r(V × T1)).
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Exercise 3.55 (k) Prove:
Let ξ′(·) be the ξ(·) function for V⊥. Then ξ′(T ) = ξ(T ), ∀ T ⊆ S.

Exercise 3.56 (k) Show that the union of a forest of G × T and a
forest of G . (E − T ) is a forest of G. Hence, (Corollary 3.4.3) r(G ×
T ) + r(G . (E − T )) = r(G).

Exercise 3.57 (k) Prove:
ν(G . T ) + ν(G × (S − T ) = ν(G).

Exercise 3.58 (k) Prove:
Let G be a graph on E. Then T ⊆ E is a separator of G (i.e., no circuit
intersects both T and E − T (Subsection 3.2.9) iff T is a separator of
Vv(G). Hence, T is a separator of G iff r(G . T ) = r(G × T ).

Exercise 3.59 Let T be a separator of G. Let G . T,G . (E − T ) have
α1, α2 forests respectively, β1, β2 circuits respectively and γ1, γ2 cutsets
respectively. How many forests, coforests, circuits and cutsets does G
have?

3.4.6 Minty’s Theorem

Tellegen’s Theorem is generally regarded as the most fundamental re-
sult in Electrical Network Theory. There is however, another funda-
mental result which can be proved to be formally equivalent to Telle-
gen’s Theorem [Narayanan85c] and whose utility is comparable to the
latter. This is Minty’s Theorem (strong form) [Minty60], which we
state and prove below.

Theorem 3.4.7 (Minty’s Theorem (strong form)) Let G be a di-
rected graph.
Let E(G) be partitioned into red,blue and green edges. Let e be a green
edge.
Then e either belongs to a circuit containing only blue and green edges
with all green edges of the same direction with respect to the orienta-
tion of the circuit or e belongs to a cutset containing only red and
green edges with all green edges of the same direction with respect to
the orientation of the cutset but not both.

Proof: We first prove the weak form:
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‘in a graph each edge is present in a directed circuit or
in a directed cutset but not both’

Proof of weak form: We claim that a directed circuit and a directed
cutset of the same graph cannot intersect. For, suppose otherwise.
Let the directed cutset have the orientation (V1, V2). The directed
circuit subgraph must necessarily have vertices in V1 as well as in V2 in
order that the intersection be nonvoid. But if we traverse the circuit
subgraph starting from the node in V1 we would at some stage crossover
into V2 by an edge e12 and later return to V1 by an edge e21. Now e12, e21
have the same orientation with respect to the circuit which means that
if one of them has positive end point in V1 and negative end point in
V2 the other must have the positive and negative end points in V2, V1,
respectively. But this contradicts the fact that they both belong to the
same directed cutset with orientation (V1, V2).

Next we show that any edge emust belong either to a directed circuit
or to a directed cutset. To see this, start from the negative end point n2

of the edge and reach as many nodes of the graph as possible through
directed paths. If through one of these paths we reach the positive end
point n1 of e we can complete the directed circuit using e. Suppose
n1 is not reachable through directed paths from n2. Let the set of all
nodes reachable by directed paths from n2 be enclosed in a surface.
This surface cannot contain n1 and has at least one edge, namely e
with one end inside the surface and one outside. It is clear that all
such edges must be directed into the surface as otherwise the surface
can be enlarged by including more reachable nodes. This collection
of edges is a directed crossing edge set and contains a directed cutset
which has e as a member (see Exercise 3.60). This completes the proof
of the weak form.

Proof of strong form: We open the red edges r and short the blue
edges b to obtain from G, the graph Gg on the green edge set g ,i.e.,
Gg = G×(E(G)−b) ·g. In this graph the weak form holds. Suppose the
edge e is part of a directed cutset in Gg. Then this is still a directed
cutset containing only green edges in G · (E(G)−r). (By Lemma 3.4.2,
a set C ⊆ T ⊆ E(G) is a cutset of G × T iff it is a cutset of G). It
would be a part of a red and green cutset in G when red edges are
introduced between existing nodes. On the other hand, suppose the
edge e is part of a directed circuit in Gg. Then this is still a directed
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circuit containing only green edges in G × (E(G) − b). (By Lemma
3.4.1, a set C ⊆ T ⊆ E(G) is a circuit of G ·T iff it is a circuit of G). It
would be a part of a blue and green circuit in G when blue edges are
introduced by splitting existing nodes.
Thus, the strong form is proved.

2

Exercise 3.60 (k) Let e be a member of a directed crossing edge set
C. Show that there exists a directed cutset C1 s.t. e ∈ C1 ⊆ C.

Exercise 3.61 (k) A Generalization: Prove:
Let V be a vector space on S over the real field and let e ∈ S. Then e is
in the support of a nonzero nonnegative vector f in V or in the support
of a nonzero nonnegative vector g in V⊥ but not in both.

Exercise 3.62 (k) Partition into strongly connected compo-
nents: Prove:
The edges of a directed graph can be partitioned into two sets - those
that can be included in directed circuits and those which can be included
in directed cutsets.

i. Hence show that
the vertex set of a directed graph can be partitioned into blocks
so that any pair of vertices in each block are reachable from each
other; partial order can be imposed on the blocks s.t. Bi ≥ Bj iff
a vertex of Bj can be reached from a vertex of Bi.

ii. Give a good algorithm for building the partition as well as the
partial order.

3.5 Problems

Problems on Graphs

Problem 3.1 (k) If a graph has no odd degree vertices,then it is possi-
ble to start from any vertex and travel along all edges without repeating
any edge and to return to the starting vertex. (Repetition of nodes is
allowed).
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Problem 3.2 (k) Any graph on 6 nodes has either 3 nodes which are
pairwise adjacent or 3 nodes which are pairwise non-adjacent.

Problem 3.3 (k) A graph is made up of parallel but oppositely directed
edges only. Let T,E − T be a partition of the edges of G such that

i. if e ∈ T then the parallel oppositely directed edge e′ ∈ T .

ii. it is possible to remove from each parallel pair of edges in T (E−
T ) one of the edges so that the graph is still strongly connected.

Show that it is possible to remove one edge from each parallel pair of
edges in G so that the graph remains strongly connected.

Problem 3.4 (k) We denote by Kn the graph on n nodes with a single
edge between every pair of nodes and by Km,n the bipartite graph (i.e.,no
edges between left vertices and no edges between right vertices) on m
left vertices and n right vertices, with edges between every pair of right
and left vertices.

i. How many edges do Kn,Km,n have?

ii. Show that every circuit of Km,n has an even number of edges.

iii. Show that Kn has nn−2 trees.

iv. A vertex colouring is an assignment of colours to vertices of the
graph so that no two of them which have the same colour are
adjacent. What is the minimum number of colours required for
Kn,Km,n?

Problems on Circuits

Problem 3.5 [Whitney35] Circuit Matroid: Show that the collec-
tion C of circuits of a graph satisfy the matroid circuit axioms:

i. If C1, C2 ∈ C then C1 cannot properly contain C2.

ii. If ec ∈ C1 ∩ C2, ed ∈ C1 − C2, then there exists C3 ∈ C and
C3 ⊆ C1 ∪ C2 s.t. ec /∈ C3 but ed does.
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Problem 3.6 (k) Circuit Characterization:

i. A subset of edges C is a circuit of a graph iff it is a minimal set
of edges not intersecting any cutset in a single branch.

ii. Same as (i) except ‘single branch’ is replaced by ‘odd number of
branches’.

iii. C is a circuit of a graph iff it is a minimal set of branches not
contained in any forest (intersecting every coforest).

Problem 3.7 (k) Cyclically Connected in terms of Edges: A
graph in which any two vertices can be included in a circuit subgraph
is said to be cyclically connected. In such a graph any two edges can
also be so included.

Problem 3.8 (k) Cut Vertex: A graph with no coloops is cyclically
connected iff it has no cut vertex (a vertex whose removal along with
its incident edges disconnects the graph).

Problems on Cutsets

Problem 3.9 (k) Cutset Matroid: Show that the collection of cut-
sets of a graph satisfies the circuit axioms of a matroid.

Problem 3.10 (k) Cutset Characterization:

i. A subset of edges C is a cutset of a graph iff it is a minimal set
of edges not intersecting any circuit in a single edge (in an odd
number of edges).

ii. C is a cutset of a graph iff it is a minimal set of branches not
contained in any coforest (intersecting every forest).

Problem 3.11 (k) Show that every crossing edge set is a disjoint
union of cutsets.

Problem 3.12 (k) Cyclically Connected in terms of Edges in
Cutsets: In a cyclically connected graph any two edges can be included
in a cutset.



84 3. GRAPHS

Problems on Graphs and Vector Spaces

Problem 3.13 (k) Show directly that KCE of a tree graph has only
the trivial solution. What is the structure for which KVE has only the
trivial solution?

Problem 3.14 Rank of Incidence Matrix of a Tree Graph:
Give three proofs for ‘rank of incidence matrix of a tree graph = number
of edges of the graph’ using

i. the determinant of a reduced incidence matrix

ii. current injection

iii. by assuming branches to be voltage sources and evaluating node
potentials.

Problem 3.15 (k) Nontrivial KCE Solution and Coforest:
Prove directly that the support of every nonzero solution to KCE meets
every coforest. Hence, the rows of an f-circuit matrix of G span V i(G).
Hence, r(V i(G)) = e− (v − p).

Problem 3.16 (k) Nontivial KVE Solution and Forest:
Prove directly that the support of every nonzero solution to KVE meets
every forest. Hence, the rows of an f-cutset matrix of G span Vv(G).
Hence, r(Vv(G)) = (v − p).

Problem 3.17 (k) Determinants of Submatrices of Incidence
Matrix:
The determinant of every submatrix of the incidence matrix A is 0,
±1. Hence, this property also holds for every Qf and Bf .

Problem 3.18 Interpreting Current Equations:
Let A be an incidence matrix.

i. Find one solution to Ax = b, if it exists, by inspection (giving a
current injection interpretation).

ii. Find one solution to ATy = v by inspection (using voltage sources
as branches).
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Problem 3.19 i. Let A be the incidence matrix of G. If Ax = b
is equivalent to Qfx = b̂, relate b̂ to b. Using current injection

give a simple rule for obtaining b̂ from b.

ii. If Qf1x = b1, and Qf2x = b2 are equivalent give a simple rule
for obtaining b1 from b2.

iii. If Bf1y = d1, and Bf2y = d2 are equivalent give a simple rule
for obtaining d1 from d2.

Problem 3.20 If two circuit (cutset) vectors figure in the same f-
circuit (f-cutset) matrix show that the signs of the overlapping portion
fully agree or fully oppose. So overlapping f-circuits (f-cutsets) fully
agree or fully oppose in their orientations.

Problem 3.21 (k) Give simple rules for computing AAT ,BfB
T
f ,QfQ

T
f .

Show that the number of nonzero entries of AAT is 2e+n if the graph
has no parallel edges. Show that BfB

T
f ,QfQ

T
f may not have any zero

entries. Hence observe that nodal analysis is preferable to fundamental
loop analysis and fundamental cutset analysis from the point of view
of using Gaussian elimination.
(Consider the case where a single edge lies in every circuit (cutset)
corresponding to rows of Bf(Qf )).

Problem 3.22 Under what conditions can two circuit (cutset) vectors
of a given graph be a part of the same f-circuit (f-cutset) matrix?

Problem 3.23 (k) Construct good algorithms for building f-circuit
and f-cutset vectors for a given forest (use dfs or bfs described in Sub-
sections 3.6.1, 3.6.2). Compute the complexity.

Problem 3.24 Special Technique for Building a Representa-
tive Matrix of V i(G):
Prove that the following algorithm works for building a representative
matrix of V i(G):
Let G1 be a subgraph of G,
G2 be a subgraph of G s.t. E(G1) ∩ E(G2) is a forest of G1,
...
Gk be a subgraph of G s.t. E(Gk) ∩

[

⋃k−1
i=1 E(Gi)

]

is a forest of the sub-
graph
G ·

(

⋃k−1
i=1 E(Gi)

)

and let
⋃

E(Gi) = E(G).
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Build representative matrices Rj for V i(Gj), j = 1, 2, · · ·k. Extend the
rows of Rj to size E(G) by padding with 0s. Call the resulting matrix

R̂j. Then R is a representative matrix for V i(G), where

R =









R̂1
...

R̂k









.

Problem 3.25 Equivalence of Minty’s and Tellegen’s Theo-
rems:
Prove that Minty’s Theorem (strong form) and Tellegen’s Theorem
(strong form) are formally equivalent.

Problems on Basic Operations of Graphs

Problem 3.26 (k) Let G be graph. Let K ⊆ E(G). Then

i. K is a forest of G · T iff it is a maximal intersection of forests of
G with T .

ii. K is a forest of G × T iff it is a minimal intersection of forests
of G with T .

iii. K is a forest of G × T iff K∪ (a forest of G · (S − T )) is a forest
of G.

iv. K is a coforest of G · T iff K∪ (a coforest of G × (S − T )) is a
coforest of G.

Problem 3.27 Relation between Forests Built According to
Priority and Graph Minors: Let A1, · · ·An be pairwise disjoint
subsets of G.

i. A forest f of G contains edges from these sets in the same priority
iff it is the union of forests from G · A1, G · (A1 ∪ A2) × A2,
G · (A1 ∪A2 ∪A3)× A3, · · · G × An.

ii. Suppose the graph has only such forests what can you conclude?
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iii. What can you conclude if the priority sequence Ai, i = 1, · · ·n
and Aσ(i)i = 1, · · ·n for every permutation σ of 1, · · ·n yield the
same forests?

Problem 3.28 (k) Show how to build an f-circuit (f-cutset) matrix of
G in which f-circuit (f-cutset) matrices of G ·T and G×(E−T ) become
‘visible’ (appear as submatrices). Let T2 ⊆ T1 ⊆ E(G). Repeat the
above so that the corresponding matrix of G × T1 · T2 is ‘visible’.

Problem 3.29 (k) Suppose in an electrical network on graph G the
subset T is composed of current (voltage) sources. How will you check
that they do not violate KCL (KVL)?

3.6 Graph Algorithms

In this section we sketch some of the basic graph algorithms which we
take for granted in the remaining part of the book. The algorithms we
consider are

• construction of trees and forests of various kinds for the graph
(bfs, dfs, minimum spanning)

• finding the connected components of the graph

• construction of the shortest path between two vertices of the
graph

• construction of restrictions and contractions of the graph

• bipartite graph based algorithms such as for dealing with parti-
tions

• flow maximization in networks

The account in this section is very brief and informal. For more details
the readers are referred to [Aho+Hopcroft+Ullman74] [Kozen92]
[Cormen+Leiserson+Rivest90].

For each of the above algorithms we compute or mention the ‘asymp-
totic worst case complexity’ of the algorithm. Our interest is primarily
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in computing an upper bound for the worst case running time of the
algorithm and sometimes also for the worst case storage space required
for the algorithm. A memory unit, for us, contains a single elementary
symbol (a number - integer or floating point, or an alphabet). Access-
ing or modifying such a location would be assumed to cost unit time.
Operations such as comparison, addition, multiplication and division
are all assumed to cost unit time. Here as well as in the rest of the
book we use the ‘big Oh’ notation:
Let f, g : N p → N where N denotes the set of nonnegative integers
and p is a positive integer. We say f is O(g) iff there exists a positive
integer k s.t. f(n) ≤ kg(n) for all n outside a finite subset of N p.

The time and space complexity of an algorithm to solve the prob-
lem (the number of elementary steps it takes and the number of bits
of memory it requires) would be computed in terms of the size of the
problem instance. The size normally refers to the number of bits
(within independently specified multiplying constant) required to rep-
resent the instance of the problem in a computer. It could be specified
in terms of several parameters. For example, in the case of a directed
graph with capacitated edges the size would be in terms of number of
vertices, number of edges and the maximum number of bits required
to represent the capacity of an edge. In general, the size of a set
would be its cardinality while the size of a number would be the
number of bits required to represent it. Thus, if n is a positive inte-
ger, log n would be its size – the base being any convenient positive
integer. All the algorithms we study in this book are polynomial time
(and space) algorithms, i.e., their worst case complexity can be writ-
ten in the form O(f(n1, · · · , np)) where f(·) is a polynomial in the ni.
Further, in almost all cases, the polynomials would have low degree
(≤ 5).

Very rarely we have used words such as NP-complete and NP-Hard.
Informally, a problem is in P if the ‘answer to it’ (i.e., the answer to
every one of its instances) can be computed in polynomial time (i.e.,
in time polynomial in the size of the instance) and is in NP if the cor-
rectness of the candidate answer to every instance of it can be verified
in polynomial time. It is clear that P ⊆ NP. However, although it is
widely believed that P 6= NP, a proof for this statement has not been
obtained so far. An NP-Hard problem is one which has the prop-
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erty that if its answer can be computed in polynomial time, then we
can infer that the answer to every problem in NP can be computed in
polynomial time. An NP-Hard problem need not necessarily be in NP.
If it is in NP, then it is said to be NP-complete. The reader inter-
ested in formal definitions as well as in additional details is referred to
[Garey+Johnson79], [Van Leeuwen90].

Exercise 3.63 A decision problem is one for which the answer is (yes
or no). Convert the problem ‘find the shortest path between v1 and v2

in a graph’ into a ‘short’ sequence of decision problems.

For most of our algorithms elementary data structures such as
arrays, stacks, queues are adequate. Where more sophisticated data
structures (such as Fibonacci Heaps) are used, we mention them by
name and their specific property (such as time for retrieval, time for
insertion etc.) that is needed in the context. Details are skipped and
may be found in [Kozen92].

Storing a graph: A graph can be stored in the form of a sequence
whose ith (composite) element contains the information about the ith

edge (names of end points; if edge is directed the names of positive
and negative end points). This sequence can be converted into another
whose ith element contains the information about the ith node (names
of incident edges, their other end points; if the graph is directed, the
names of out-directed and in-directed edges and their other end points.)
We will assume that we can retrieve incidence information about the
ith edge in O(1) time and about the (ith node) in O(degree of node i)
time. The conversion from one kind of representation to the other can
clearly be done in O(m+ n) time where m is the number of edges and
n is the number of vertices.

Sorting and Searching: For sorting a set of indexed elements in or-
der of increasing indices, there are available, algorithms of complexity
O(n logn), where n is the number of elements [Aho+Hopcroft+Ullman74].
We use such algorithms without naming them. In such a sorted list of
elements to search for a given indexed element takes O(logn) steps by
using binary search.
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3.6.1 Breadth First Search

A breadth first search (bfs) tree or forest for the given graph G
is built as follows:
Start from any vertex vo and scan edges incident on it.
Select these edges and put the vertices v1, v2 · · · vko which are adjacent
to vo in a queue in the order in which the edges between them and vo

were scanned.
Mark vo as belonging to component 1 and level 0. Mark v1, · · · , vko,
as belonging to component 1 and level 1 and as children of vo. Mark
the vertex vo additionally as a parent of its children (against each of
its children).
Suppose at any stage we have the queue vi1, · · · , vik and a set Mi of
marked vertices.
Start from the left end (first) of the queue, scan the edges incident
on it and select those edges whose other ends are unmarked. If a
selected edge is between vij and the unmarked vertex vum then the
former (latter) is the parent (child) of the latter (former).
Put the children of vi1 in the queue after vik and delete vi1 from the
queue.
Mark these vertices as belonging to the level next to that of vi1 and to
the same component as vi1 and as children of vi1 (against vi1). Mark
the vertex vi1 as a parent of its children (against its children).
Continue.
When the graph is disconnected it can happen that the queue is empty
but all vertices have not yet been marked. In this case continue the
algorithm by picking an unmarked vertex.
Mark it as of level 0 but as of component number one more than that
of the previous vertex. Continue.
STOP when all vertices of the graph have been marked.

At the conclusion of the above algorithm we have a breadth first
search forest made up of the selected edges and a partition of the ver-
tex set of the graph whose blocks are the vertex sets of the components
of the graph. The starting vertices in each component are called roots.
The level number of each vertex gives its distance from the root (tak-
ing the length of each edge to be one). The path in the forest from a
given vertex in a component to the root in the component is obtained
by travelling from the vertex to its parent and so on back to the root.
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In a directed graph a bfs starting from any vertex would yield all
vertices reachable from it through directed paths. In this case, while
processing a vertex, one selects only the outward directed edges.

The complexity of the bfs algorithm is O(m + n) where m
is the number of edges and n is the number of vertices. (Each edge
is ‘touched’ atmost twice. Each vertex other than the root is touched
when an edge incident on it is touched or when it is a new root. Except
where the root formation is involved the labour involved in touching
a vertex can always be absorbed in that of touching an edge. Each
touching involves a fixed number of operations).

The complexity of computing all the reachable vertices from
a given vertex or a set of vertices of a directed graph through bfs is
clearly also O(m+ n).

3.6.2 Depth First Search

A depth first search (dfs) tree or forest for the given graph G is
built as follows:
Start from any vertex vo and scan the edges incident on it.
Select the first nonselfloop edge. Let v1 be its other end point. Put
vo, v1 in a stack. (A stack is a sequence of data elements in which
the last (i.e., latest) element would be processed first). Mark vo as be-
longing to component 1 and as having dfs number 0, v1 as belonging
to component 1 and as having dfs number 1. Mark vo as the parent
of v1 (against v1) and v1 as a child of vo (against vo).
Suppose at any stage, we have the stack vi1, · · · , vik and a set Mi of
marked vertices.
Start from the top of the stack, i.e., from vik and scan the edges in-
cident on it. Let e be the first edge whose other end point vi+1 is
unmarked. Select e. Mark vi+1 as of dfs number one more than that
of the highest dfs number of a vertex in Mi and of component number
same as that of vik. Mark (against vi+1) vik as its parent and (against
vik) vi+1 as one of its children. Add vi+1 to the top of the stack and
repeat the process.
Suppose vik has no edges incident whose other end points are un-
marked. Then delete vik from the stack (so that vi(k−1) goes to the
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top of the stack).
Continue.
STOP when all vertices in the graph have been marked.
When the graph is disconnected it can happen that the stack is empty
but all vertices have not yet been marked. In this case continue the
algorithm by picking an unmarked vertex. Give it a dfs number 0 but
component number one more than that of the previous vertex.

At the conclusion of the above algorithm we have a depth first search
forest made up of the selected edges and a partition of the vertex set
of the graph whose blocks are the vertex sets of the components of the
graph. The starting vertices in each component are called roots. The
path in the forest from a given vertex in a component to the root in the
component is obtained by travelling from the vertex to its parent and
so on back to the root. The time complexity of the dfs algorithm
can be seen to be O(m + n) where m is the number of edges and n,
the number of vertices in the graph.

Exercise 3.64 (k) Let e be an edge outside a dfs tree of the graph.
Let v1, v2 be the end points of e with dfs numbering a, b respectively. If
b > a show that v1 is necessarily an ancestor of v2 (ancestor ≡ parent’s
parent’s ... parent).

The dfs tree can be used to detect 2-connected components of the
graph in O(m + n) time [Aho+Hopcroft+Ullman74]. It can be used
to construct the planar embedding of a planar graph in O(n) time
[Hopcroft+Tarjan74], [Kozen92]. There is a directed version of the
dfs tree using which a directed graph can be decomposed into strongly
connected components (maximal subsets of vertices which are mutually
reachable by directed paths). Using the directed dfs tree this can be
done in O(m+ n) time [Aho+Hopcroft+Ullman74].

Fundamental circuits: Let t be a forest of graph G and let e ∈
(E(G)− t). To construct L(e, t) we may proceed as follows: Do a dfs
of G . t starting from any of its vertices. This would give a dfs number
to every vertex in G . t.
Let v1, v2 be the end points of e. From v1, v2 proceed towards the
root by moving from child to parent until you meet the first common
ancestor v3 of v1 and v2. This can be done as follows: Suppose v1 has
a higher dfs number than v2. Move from v1 to root until you reach
the first v′1 whose dfs number is less or equal to that of v2. Now repeat
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the procedure with v2, v
′
1 and so on alternately until the first common

vertex is reached. This would be v3. Then L(e, t) ≡ {e} ∪ { edges in
paths from v1 to v3 and v2 to v3}.
To build the circuit vector corresponding to L(e, t) proceed as follows:
Let v1 be the positive end point and v2, the negative end point of e.
The path from v2 to v1 in the tree is the path from v2 to v3 followed by
the path from v3 to v1. The circuit vector has value +1 at e, 0 outside
L(e, t) and +1 (−1) at ej, if it is along (against) the path from v2 to
v1 in the tree. Complexity of building the L(e, t) is O(| L(e, t) |) and
that of building all the L(ei, t) is O(

∑ | L(e, t) |).
Exercise 3.65 How would you build the f-circuit for a bfs tree?

3.6.3 Minimum Spanning Tree

We are given a connected undirected graph G with real weights (w(·))
on its edges. The problem is to find a spanning tree of least total
weight (total weight = sum of weights of edges in the tree). We give
Prim’s algorithm for this purpose:
Choose an arbitrary vertex vo. Among the edges incident on vo select
one of least weight.
Suppose at some stage, X is the set of edges selected and V (X), the set
of their end points. If V (X) 6= V (G), select an edge e of least weight
among those which have only one end point in V (X).
Now replace X by X ∪ e and repeat.
Stop when V (X) = V (G).
The selected edges constitute a minimum spanning tree.

Exercise 3.66 Justify Prim’s algorithm for minimum spanning tree.

Complexity: Let n be the number of vertices and m, the number
of edges of the graph. The algorithm has n stages. At each stage
we have to find the minimum weight edge among the set of edges
with one end point in V (X). Such edges cannot be more than m in
number. So finding the minimum is O(m) and the overall complexity
is O(mn). However, this complexity can be drastically improved if we
store the vertices in (V (G) − V (X)) in a Fibonacci Heap. This data
structure permits the extraction of the minimum valued element in
O(logn) amortized time (where n is the number of elements in the
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heap), changing the value of an element in O(1) amortized time and
deleting the minimum element inO(logn) amortized time. (Loosely, an
operation being of amortized time O(f(n)) implies that, if the entire
running of the algorithm involves performing the operation k times,
then the time for performing these operations is O(kf(n)).

For each vertex v in (V (G) − V (X)) the value is the minimum
of the weights of the edges connecting it to V (X). To pick a vertex of
least value we have to use O(logn) amortized time. Suppose v has been
added to V (X) and X replaced by X∪e, where e has v as one its ends.
Now the value of a vertex v′ in (V (G)− (V (X)∪ e)) has to be updated
only if there is an edge between v and v′. Throughout the algorithm this
updating has to be done only once per edge and each such operation
takes O(1) amortized time. So overall the updating takes O(m) time.
The extraction of the minimum valued element takes O(n logn) time
over all the n stages. At each stage the minimum element has to
be deleted from the heap. This takes O(logn) amortized time and
O(n logn) time overall. Hence, the running time of the algorithm is
O(m+n logn). (Note that the above analysis shows that, without the
use of the Heap, the complexity of Prim’s algorithm is O(n2)).

3.6.4 Shortest Paths from a Single Vertex

We are given a graph G, without parallel edges, in which each edge e
has a nonnegative length l(v1, v2), where v1, v2 are the end points of
e. If v1 = v2, then l(v1, v2) ≡ 0. The length of a path is defined to
be the sum of the lengths of the edges in the path.
The problem is to find shortest paths from a given vertex (called the
source) to every vertex in the same connected component of the graph.
We give Dijkstra’s Algorithm for this problem.
Start from the source vertex vo and assign to each adjacent vertex vi, a
current distance dc(vi) ≡ l(vo, vi). Mark, against each vi, the vertex
vo as its foster parent. (We will call vi, the foster children of vo).
Let v1 be the adjacent vertex to vo with the least value of dc(vi). De-
clare the final distance of v1, df(v1) ≡ dc(v1). Mark, against v1, the
vertex vo as its parent. (We will call v1, a child of vo).
(At this stage we have processed vo and marked its adjacent ver-
tices).
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Assign a current distance ∞ to each unmarked vertex.
Suppose X ⊆ V (G) denotes the processed set of vertices at some stage.
For each neighbour vj ∈ (V (G)−X) of last added vertex vk,

Check if dc(vj) > df(vk) + l(vk, vj).
If Yes, then

Mark, against vj , the vertex vk as its foster parent
(deleting any earlier mark, if present). (We will call vj, a foster

child of vk).
Set dc(vj) ≡ df(vk) + l(vk, vj).

Find a vertex vq ∈ (V (G)−X) with the least current distance dc(vq).
Declare vq to have been processed and its final distance df(vq) from vo

to be dc(vq). Mark, against vq, its foster parent uq as its parent (we
will call vq a child of uq).
Add vq to X. Repeat the procedure with X ∪ vq in place of X.
STOP when all vertices in the connected component of vo are pro-
cessed.

To find a shortest path from a processed vertex vj to vo, we travel
back from vj to its parent and so on, from child to parent, until we
reach vo.

Justification: To justify the above algorithm, we need to show that
the shortest distance from vo to vq (the vertex with the least current
distance in V (G)−X) is indeed df(vq). First, we observe that a finite
dc(v), and therefore df(v), for any vertex v is the length of some path
from vo to v. By induction, we may assume that for every vertex vin

in X, df(vin) = length of the shortest path from vo to vin. Note that
this is justified when X = {vo}. Suppose df(vq) is greater than the
length of a shortest path P (vo, vq) from vo to vq. Let P (vo, vq) leave X
for the first time at v3 and let the next vertex be vout ∈ (V (G) − X).
If vout = vq, we must have
df(vq) ≤ df(v3) + l(v3, vq) = length of P (vo, vq).
This is a contradiction. So vout 6= vq. Now
dc(vout) ≤ (df(v3) + l(v3, vout)) ≤ length of P (vo, vq).
Hence, dc(vout) < dc(vq) = df(vq), which contradicts the definition
of vq. We conclude that df(vq) must be the length of the shortest path
from vo to vq.

Complexity: Let n be the number of vertices and m, the number of
edges of the graph. This algorithm has n stages. At each stage we have
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to compute dc(vj) for vertices vj adjacent to the last added vertex. This
computation cannot exceed O(m) over all the stages. Further at each
stage we have to find the minimum of dc(vi) for each vi in (V (G)−X).
This is O(n). So we have an overall complexity of O(n2 + m). Now
m ≤ n2. So the time complexity reduces to O(n2).
We note that the complexity of this algorithm reduces to O(m+n logn)
if the elements in V (G) − X are stored in a Fibonacci Heap (see
[Kozen92]).

3.6.5 Restrictions and Contractions of Graphs

Let G be a graph and let T ⊆ E(G). To build G . T , we merely pick
out the edge - end point list corresponding to T. This has complexity
O(| T |). (Note that the edges of T still bear their original index as in
the sequence of edges of G).
To build G×T we first build GopenT. The graph GopenT has G . (E(G)−
T ) + remaining vertices of G as isolated vertices. Next we find the con-
nected components of GopenT. Let the vertex sets of the components
be X1, · · · , Xk. For each Xi, whenever v ∈ Xi, mark it as belonging to
Xi (some one vertex of Xi can represent Xi). Changing the names of
endpoints amounts to directing a pointer from vertices to the Xi that
they belong to. Now in the edge - end point list of T , for each edge
e, if v1, v2 are its (positive and negative) endpoints, and if v1 ∈ Xi,
v2 ∈ Xj, then replace v1 by Xi and v2 by Xj (GshortT has vertex set
(X1, · · · , Xk)).
The complexity of building GopenT is O(n+ | E − T |), where n is
the number of vertices of G, that of finding its components is O(n+ |
E−T |) (using dfs say). Changing the names of endpoints amounts to
directing a pointer from vertices to the Xi that they belong to. This
has already been done. So the overall complexity is O(n + m) where
m =| E(G) | .

Elsewhere, we describe methods of network analysis (by decompo-
sition) which require the construction of the graphs G . E1, · · · ,G . Ek

or G ×E1, · · · ,G ×Ek, where {E1, · · · , Ek} is a partition of E(G). The
complexity of building ⊕iG . Ei is clearly O(n + m), while that of
building ⊕iG × Ei is O(k(n+m)).
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3.6.6 Hypergraphs represented by Bipartite Graphs

Hypergraphs are becoming increasingly important for modeling many
engineering situations. By definition, a hypergraph H is a pair
(V (H), E(H)), where V (H) is the set of vertices of H and E(H), a
family of subsets of V (H) called the hyperedges ofH. (We remind the
reader that in a family, the same member subset could be repeated with
distinct indices yielding distinct members of the family). The reader
would observe that undirected graphs are a special case of hypergraphs
(with the hyperedges having cardinality 1 or 2). The most convenient
way of representing a hypergraph is through a bipartite graph B ≡
(VL, VR, E) - a graph which has a left vertex set VL, a (disjoint)
right vertex set VR and the set of edges E each having one end in
VL and the other in VR. We could represent H by BH ≡ (VL, VR, E)
identifying V (H) with VL, E(H) with VR with an edge in the bipartite
graph between v ∈ VL and e ∈ VR iff v is a member of the hyperedge
e of H.

We can define connectedness forH in a manner similar to the way
the notion is defined for graphs. H is connected iff for any pair of ver-
tices v1, vf there exists an alternating sequence v1, e1, v2, e2, · · · , ef , vf ,
where the vi are vertices and ei, edges s.t. each edge has both the pre-
ceding and succeeding vertices as members. It is easily seen that H
is connected iff BH is connected. Hence, checking connectedness of H
can be done in O(| VL | + | VR | + | E |) time. Since everything about
a hypergraph is captured by a bipartite graph we confine our attention
to bipartite graphs in this book. The reader interested in ‘standard’
hypergraph theory is referred to [Berge73].

3.6.7 Preorders and Partial Orders

A preorder is an ordered pair (P,�) where P is a set and ‘ �’ is a
binary relation on P that satisfies the following:
x � x, ∀ x ∈ P ;
x � y, y � z ⇒ x � z , ∀ x, y, z ∈ P.
We can take the elements of P to be vertices and join x and y by an
edge directed from y to x if x � y. Let Gp be the resulting directed
graph on the vertex set P . Then the vertex sets of the strongly con-



98 3. GRAPHS

nected components of GP are the equivalence classes of the preorder
(x, y belong to an equivalence class iff x � y and y � x).
Let P be the collection of equivalence classes. If X1, X2 ∈ P, we define
X1 ≤ X2 iff in the graph Gp, a vertex in X1 can be reached from a
vertex in X2. It is easily seen that this defines a partial order (Xi ≤
Xi;Xi ≤ Xj andXj ≤ Xi iff Xi = Xj;Xi ≤ Xj, Xj ≤ Xk ⇒ Xi ≤ Xk).
This partial order (P,≤) is said to be induced by (P,�). By using
a directed dfs forest on the graph GP representing the preorder (P,�)
we can get a graph representation of the induced partial order in time
O(m + n) where m is the number of edges and n is the number of
vertices in GP [Aho+Hopcroft+Ullman74].

A partial order can be represented more economically by using a
Hasse Diagram. Here a directed edge goes from a vertex y to a vertex
x iff y covers x, i.e., x ≤ y, x 6= y and there is no z s.t. z 6= x and
z 6= y and x ≤ z ≤ y. An ideal I of (P,≤) is a collection of elements of
P with the property that if x ∈ I and y ≤ x then y ∈ I. The principal
ideal Ix in (P,≤) of an element x ∈ P is the collection of all elements
y ∈ P s.t. y ≤ x. Clearly an ideal is the union of the principal ideals of
its elements. A dual ideal Id is a subset of P with the property that
if x ∈ I and x ≤ z then z ∈ Id. Ideals and dual ideals of preorders
are defined similarly. The dual of a partial order (P,≤) is the partial
order (P,≥), where x ≥ y iff y ≤ x. We define the dual of a preorder
in the same manner. We use ≤ and ≥ interchangeably (writing y ≤ x
or x ≥ y) while speaking of a partial order or a preorder.

Preorders and partial orders are used repeatedly in this book (see
for instance Chapter 10).

Lattices

Let (P,≤) be a partial order. An upper bound of e1, e2 ∈ P is an
element e3 ∈ P s.t. e1 ≤ e3 and e2 ≤ e3.
A lower bound of e1 and e2 would be an element e4 ∈ P s.t. e4 ≤ e1
and e4 ≤ e2.
A least upper bound (l.u.b.) of e1, e2 would be an upper bound
eu s.t. whenever e3 is an upper bound of e1, e2 we have e3 ≥ eu. A
greatest lower bound (g.l.b.) of e1, e2 would be a lower bound el

s.t. whenever e4 is a lower bound of e1, e2 we have e4 ≤ el. It is easy
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to see that if l.u.b. (g.l.b.) of e1, e2 exists, then it must be unique.
We denote the l.u.b. of e1, e2 by e1 ∨ e2 and call it the join of e1 and
e2. The g.l.b. of e1, e2 is denoted by e1 ∧ e2 and called the meet of e1
and e2. If every pair of elements in P has a g.l.b. and an l.u.b. we say
that (P,≤) is a lattice. A lattice can be defined independently of a
partial order taking two operations ‘∨’ and ‘∧’ as primitives satisfying
the properties given below:
(idempotency) x ∨ x = x ∀ x ∈ P; x ∧ x = x ∀ x ∈ P.
(commutativity) x∨ y = y ∨ x ∀ x, y ∈ P; x∧ y = y ∧ x ∀ x, y ∈ P.
(associativity) (x ∨ y) ∨ z = x ∨ (y ∨ z) ∀ x, y, z ∈ P.

(x ∧ y) ∧ z = x ∧ (y ∧ z) ∀ x, y, z ∈ P.
(absorption) x ∧ (x ∨ y) = x ∨ (x ∧ y) = x ∀ x, y ∈ P.
The reader may verify that these properties are indeed satisfied by
g.l.b. and l.u.b. operations if we start from a partial order.
A lattice that satisfies the following additional property is called a dis-
tributive lattice.
(distributivity) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ∀ x, y, z ∈ P;

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ∀ x, y, z ∈ P.
e.g. The collection of all subsets of a given set with union as the join op-
eration and intersection as the meet operation is a distributive lattice.
(For a comprehensive treatment of lattice theory see [Birkhoff67]).

Exercise 3.67 Show that the collection of ideals of a partial order
form a distributive lattice under union and intersection.

3.6.8 Partitions

Let S be a finite set. A collection {S1, · · · , Sk} of nonvoid subsets of
S is a partition of S iff

⋃

i Si = S and Si ∩ Sj = ∅ whenever i, j are
distinct. If {S1, · · · , Sk} is a partition of S then the Si are referred to
as its blocks.
Let PS denote the collection of all partitions of S. We may define a
partial order (P,≤) on PS as follows: Let Π1,Π2 ∈ PS. Then Π1 ≤ Π2

(equivalently Π2 ≥ Π1) iff each block of Π1 is contained in a block of
Π2. We say Π1 is finer than Π2 or Π2 is coarser than Π1. If Πa,Πb

are two partitions of S, the join of Πa and Πb, denoted by Πa ∨Πb, is
the finest partition of S that is coarser than both Πa and Πb and the
meet of Πa and Πb denoted by Πa ∧ Πb, is the coarsest partition of S
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that is finer than both Πa and Πb. It can be seen that these notions are
well defined: To obtain the meet of Πa and Πb we take the intersection
of each block of Πa with each block of Πb and throw away the empty
intersections. Observe that any element of S lies in precisely one such
intersection. Clearly, the resulting partition Πab is finer than both Πa

and Πb. Suppose Πc is finer than both Πa and Πb. Let Nc be a block
of Πc. Then Nc is contained in some block Na of Πa and some block
Nb of Πb. So Nc ⊆ Na ∩ Nb and hence Nc is contained in some block
of Πab. This proves that Πab is the meet of Πa and Πb and therefore,
that the ‘meet’ is well defined. Next let Π,Π′ be two partitions coarser
than Πa and Πb. It is then easy to see that Π∧Π′ is also coarser than
Πa and Πb. Hence there is a unique finest partition of S coarser than
Πa and Πb. Thus, the ‘join’ is well defined.

Storing partitions: We can store a partition by marking against an
element of S, the name of the block to which it belongs.

Building Πa ∧ Πb: When Πa,Πb are stored, each element of S would
have against it two names - a block of Πa and a block of Πb; a pair of
names of intersecting blocks of Πa,Πb can be taken to be the name of
a block of Πa ∧Πb. Thus forming Πa ∧Πb from Πa,Πb is O(| S |).
Building Πa∨Πb: We first build a bipartite graph B with blocks of Πa

as VL, blocks of Πb as VR with an edge between Na ∈ VL and Nb ∈ VR

iff Na ∩ Nb 6= ∅. It can be seen that this bipartite graph can be built
in O(| S |) time (For each element of S, check which blocks of Πa,Πb

it belongs to). We find the connected components of this bipartite
graph. This can be done in O(m+ n) time where m is the number of
edges and n, the number of vertices in the bipartite graph. But both
m and n do not exceed | S | . So O(m+ n) = O(| S |). Now we collect
blocks of Πa (or Πb) belonging to the same connected component of
B. Their union would make up a block of Πa ∨ Πb. (For, this block is
a union of some blocks K of Πa as well as a union of some blocks of
Πb. Union of any proper subset of blocks of K would cut some block
of Πb). This involves changing the name marked against an element
u ∈ S - instead of say Na, it would be Nv, which is the name of the
connected component of B in which Na is a vertex. Thus, building
Πa ∨Πb is O(| S |).
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3.6.9 The Max-Flow Problem

In this subsection we outline the max-flow problem and a simple solu-
tion for it. We also indicate the directions in which more sophisticated
solutions lie. In subsequent chapters we use max-flow repeatedly to
model various minimization problems. Other than the flexibility in
modeling that it offers, the practical advantage of using the concept of
max-flow lies in the availability of efficient algorithms.

Let G be a directed graph. The flow graph (or flow network) F (G)
is the tuple (G, c, s,t) where c : E(G) → ℜ+ is a real nonnegative
capacity function on the edges of G and s and t are two vertices of G
named source and sink, respectively. A flow f associated with F (G)
is a vector on E(G) satisfying the following conditions:

i. f satisfies KCE at all nodes except s and t, i.e., at each vertex v
other than s, t, the net outward flow

∑

i

f(eouti)−
∑

j

f(einj) = 0

where eouti(einj) are the edges incident at v and directed out of
(directed into) v.

ii. the net outward flow at s is nonnegative, and at t, is non-positive.

iii. 0 ≤ f(e) ≤ c(e) ∀ e ∈ E(G).

(Often a flow is defined to be a vector satisfying (i) and (ii) above while
a feasible flow would be one that satisfies all three conditions). An
edge e with f(e) = c(e) is said to be saturated with respect to f. The
value of the flow f, denoted by | f |, is the net outward flow at s. A flow
of maximum value is called a max-flow. An s,t-cut (cut for short) is
an ordered pair (A,B), where A,B are disjoint complementary subsets
of V (G) s.t. s ∈ A and t ∈ B. The capacity of the cut (A,B), denoted
by c(A,B) is the sum of the capacities of edges with positive end in A
and negative end in B. A cut of minimum capacity is called a min-
cut. The flow across (A,B) denoted by f(A,B), is the sum of the
flows in the ‘forward’ edges going from A to B minus the sum of the
flows in the ‘backward’ edges going from B to A.



102 3. GRAPHS

f

(4 , 6)

(1 , 4)

(5
 , 5

)

(4 , 4)

(2 , 4)

(6 , 7)

(1 , 5)

(3 ,3)(3 , 5)

(0 , 5)

(2 , 5)

(0 , 4)

S

t

(0 , 4)

BA

a

b

gc

d

Figure 3.12: A Flow Graph with a max-flow and a min-cut

Example: Figure 3.12 shows a flow graph. Alongside each directed
edge is an ordered pair with the second component indicating the ca-
pacity of the edge. A feasible flow f is defined on this flow graph with
f(e) being the first component of the ordered pair alongside e. The
reader may verify that the net flow leaving any node other than the
source s and the sink t is zero. At s there is a net positive outward
flow (= 7) and at t there is a net negative outward flow (= −7). Let
A ≡ {s, a, b, c, d} and let B ≡ {g, f, t}. Then (A,B) is an s, t cut. It
can be verified that f(A,B) = 4+3−0 = 7. Observe that the forward
edges (c, g) and (d, f) of the cut (A,B) are saturated while the back-
ward edge (g, d) carries zero flow. It is clear that in the present case
f(A,B) = c(A,B). From the arguments given below it would follow
that the given flow has the maximum value, i.e, is a max-flow and that
the cut (A,B) is a min-cut, i.e., has minimum capacity.

Clearly the flow across an s,t-cut (A,B) cannot exceed the capacity
of (A,B), i.e., f(A,B) ≤ c(A,B). Let (A,B) be an s,t-cut. If we add
the outward flows at all nodes inside A we would get the value f(A,B)
(flow of each edge with both ends within A is added once with a (+)
sign and another time with a (−) sign and hence cancels) as well as | f |
(at all nodes other than s the net outward flow is zero). We conclude
that | f |= f(A,B).
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Let f be a flow in F (G). Let P be a path oriented from s to t.
Suppose it is possible to change the flow in the edges of P , without
violating capacity constraints, as follows: the flow in each edge e of P is
increased (decreased) by δ > 0 if e supports (opposes) the orientation
of P.
Such a path is called an augmenting path for the flow f. Observe
that this process does not disturb the KCE at any node except s, t. At
s, the net outward flow goes up by δ, while at t, the net inward flow
goes up by δ. Thus, if f ′ is the modified flow, | f ′ |=| f | +δ. This is the
essential idea behind flow maximization algorithms.

It is convenient to describe max-flow algorithms and related re-
sults in terms of the residual graph Gf associated with the flow f .
The graph Gf has the vertex set V (G). Whenever e ∈ E(G) and
f(e) < c(e), Gf has an edge e+ between the same end points and in
the same direction as e; and if 0 < f(e), Gf has an edge e− in the
opposite direction as e. Note that both e+ and e− may be present in
Gf . The edge e+ has the residual capacity rf (e+) ≡ c(e)− f(e)
and the edge e− has the residual capacity rf(e−) ≡ f(e).
We note that a directed path P from s to t in the residual graph Gf

corresponds to an augmenting path in F (G) with respect to f . Hence-
forth we would call such a path P in Gf also, an augmenting path
of f . The maximum amount by which the flow can be increased using
this augmenting path is clearly the minimum of the residual capacities
of the edges of P. This value we would call the bottle neck capacity
of P.

We now present a simple algorithm for flow maximization. This
algorithm is due to Edmonds and Karp [Edmonds+Karp72].

ALGORITHM 3.1 Algorithm Max-Flow
INPUT A flow graph F (G) ≡ (G, c, s, t).

OUTPUT(i) A maximum valued flow fmax for F (G).
(ii) A min-cut (A,B) s.t. | fmax |≡ c(A,B).

Initialize Let f be any flow of F (G) ( f could be the zero flow for
instance).
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STEP 1 Draw the residual graph Gf . Do a directed bfs starting from
s.

STEP 2 If t is reached, we also have a shortest augmenting path
P . Compute the bottle neck capacity δ of P. Increase the
flow along P by δ. Let f ′ be the new flow. Set f ≡ f ′ and
GOTO STEP 1.

If t is not reached, let A be the set of all vertices reached
from s and let B ≡ V (G)− A. Declare fmax ≡ f , min-cut to
be (A,B).

STOP.

Justification of Algorithm 3.1

We need the following

Theorem 3.6.1 (Max-Flow Min-Cut Theorem [Ford+Fulkerson56],
[Ford+Fulkerson62])

i. The flow reaches its maximum value iff there exists no augment-
ing path.

ii. The maximum value of a flow in F (G) is the minimum value of
the capacity of a cut.

Proof : If a flow has maximum value it clearly cannot permit the
existence of an augmenting path. If there exists no augmenting path
the directed bfs from s in the residual graph will not reach t. Let A be
the set of all vertices reached from s and let B be the complement of A.
All edges with one end in A and the other in B must be directed into A
as otherwise the set of reachable vertices can be enlarged. Now consider
the corresponding edges of F (G). Each one of these edges, if forward
(away from A), must have reached full capacity, i.e., be saturated and
if backward (into A), must have zero flow. But then, for this cut,
f(A,B) = c(A,B). Since for any flow f and any cut (A′, B′), we have
| f |= f(A′, B′) ≤ c(A′, B′), we conclude that f is a maximum flow.
This completes the proof of (i).
Since | f |= c(A,B) and | f |≤ c(A′, B′) for any cut (A′, B′), it is clear
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that c(A,B) is the minimum capacity of a cut of F (G). This proves
(ii).

2

The integral capacity case: We can justify the above algorithm for
the case where capacities are integral quite simply. Let M be the
capacity of the cut ({s}, V (G) − s). The bottle neck capacity of any
augmenting path is integral. Whenever we find an augmenting path
we would increase the flow by an integer and Theorem 3.6.1 assures
us that if we are unable to find an augmenting path we have reached
max-flow. Thus, in atmost M augmentations we reach maximum flow.
This justification also proves the following corollary.

Corollary 3.6.1 If the capacity function of a flow graph is integral,
then there exists a max-flow in the flow graph which is integral.

Complexity

We consider the integral capacity case. Each augmentation involves
a directed bfs. This is O(m) in the present case. Hence, the overall
complexity of Algorithm Max-Flow is O(Mm), where m ≡| E(G) | .

It is not obvious that Algorithm Max-Flow would terminate for
real capacities. However, it can be shown that it does. Since the
augmenting path is constructed through a bfs it is clear that it has
minimum length. Edmonds and Karp [Edmonds+Karp72] have shown
that if the shortest augmenting path is chosen every time, there are
atmost mn augmentations. So the overall complexity of Algorithm
Max-Flow is O(m2n).

Exercise 3.68 [Edmonds+Karp72] In Algorithm Max-Flow, if the short-
est augmenting path is chosen every time, show that there are atmost
mn augmentations.

We mention a few other algorithms which are faster. These are
based on Dinic’s Algorithm [Dinic70]. This algorithm proceeds in
phases, in each of which, flow is pushed along a maximal set of short-
est paths. Each phase takes O(mn) effort. The total number of phases
is bounded by the length L of the longest s − t path in G (Clearly
L ≤ n). So the overall complexity is O(Lmn) .
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The MPM Algorithm [MPM78] has the same number of phases as
Dinic’s Algorithm. But each phase is O(n2). So the overall complexity
is O(Ln2).
The Sleator Algorithm [Sleator80], [Sleator+Tarjan 83] computes each
phase in O(m logn) time and has an overall complexity O(Lm logn).
(Usually the above complexities are stated with n in place of L). For
a comprehensive treatment of flow algorithms the reader is referred to
[Ahuja+Magnanti+Orlin93].

The Nearest Source Side and Sink Side Min-Cuts

When combinatorial problems are modelled as max-flow problems, usu-
ally the cuts with minimum capacity have physical significance. Of
particular interest would be minimum capacity cuts (A,B) where A or
B is minimal. Below we show that these cuts are unique. Further, we
show that computing them, after a max-flow has been found, is easy.
We begin with a simple lemma.

Lemma 3.6.1 (k) Let (A1, B1), (A2, B2) be two minimum capacity cuts.
Then (A1 ∪A2, B1 ∩B2) and (A1 ∩A2, B1 ∪B2) are also minimum ca-
pacity cuts.

Proof : Let f(A) ≡ sum of the capacity of edges with one end in A
and directed away from A,A ⊆ V (G).
Later, in Chapter 9 (see Exercise 9.1, Examples 9.2.5,9.2.6) we show
that f(·) is submodular, i.e.,

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) ∀ X, Y ⊆ V (G).

Now if X, Y minimize f(·), the only way the above inequality can be
satisfied is for f(·) to take the minimum value on X ∪ Y,X ∩ Y also.
This proves the lemma.

2

The following corollary is now immediate.

Corollary 3.6.2 Let F (G) ≡ (G, c, s, t). Then F (G) has a unique
min-cut (A,B) in which A is minimal (B is minimal).

We will call the min-cut (A,B) nearest source side (sink side)
min-cut iff A is minimal (B is minimal). To find the nearest source
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side (sink side) min cut we proceed as follows
Algorithm Source (Sink) Side Min-Cut: First maximize flow and
let f be the max-flow output by the algorithm. Draw the residual graph
Gf . Do a directed bfs in Gf starting from s and proceeding forward.
Let As be the set of all vertices reachable from s. Then (As, V (G)−As)
is the desired nearest source side min-cut.
Let G−f denote the directed graph obtained from Gf by reversing all
arrows. The nearest sink side min-cut is obtained by doing a directed
bfs starting from t in G−f . Let Bt be the set of all vertices reachable
in G−f from t. Then (V (G) − Bt, Bt) is the desired nearest sink side
min-cut.

In order to justify the above algorithms we first observe that when
we maximize flow for each min-cut (A,B) we would have f(A,B) =
c(A,B). Thus, if (A,B) is a min-cut, all the forward edges from A to
B would be saturated and all the backward edges from A to B would
have zero flow. Therefore, in the residual graph Gf all edges across the
cut would be directed into A. Now s ∈ A and doing a bfs starting from
s we cannot go outside A. Hence, if (A,B) is a min-cut As ⊆ A, where
As is the set of all vertices reachable from s in Gf . But (As, V (G)−As)
is a min-cut. Hence, (As, V (G)−As) is the nearest source side min-cut.
The justification for the sink side min-cut algorithm is similar. (Note
that the above justification provides an alternative proof that min-cuts
(A,B), where A or B is minimal, are unique).

The complexity of the above algorithms is O(m). So if they are
added to the max-flow algorithms the overall complexity would not
increase.

3.6.10 Flow Graphs Associated with Bipartite Graphs

Many optimization problems considered in this book are based on bi-
partite graphs. Usually they reduce to max- flow problems on a flow
graph derived from the bipartite graph in a simple manner. We give
below a brief account of the situation and standardize notation.

LetB ≡ (VL, VR, E) be a bipartite graph. The flow graph F (B, cL, cR)
associated with B with capacity cL(·)⊕cR(·) is defined as follows:
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cL(·), cR(·) are nonegative real functions on VL, VR respectively. (They
may therefore be treated as weight vectors). Each edge e ∈ E is di-
rected from VL to VR and given a capacity ∞. Additional vertices
(source) s and (sink) t are introduced. Directed edges (s, vL), (vR, t)
are added for each vL ∈ VL and each vR ∈ VR. The capacity of the
edge (s, vL) is cL(vL), vL ∈ VL and the capacity of the edge (vR, t) is
cR(vR), vR ∈ VR. Figure 3.13 illustrates the construction of this flow
graph.
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Figure 3.13: The Flow Graph associated with B

Let Γ(X) denote the set of vertices adjacent to the vertex subset
X ⊆ VL ⊎ VR in the bipartite graph B. Let cL(Z) (cR(Z)) denote the
sum of the values of cL(·) (cR(·)) on elements of Z. The cut corre-
sponding to X ⊆ VL is the cut (s⊎X ⊎ Γ(X), t⊎ (VL−X)⊎ (VR −
Γ(X))) (see Figure 3.14). We now have the following simple theorem
which brings out the utility of the flow formulation.

Theorem 3.6.2 (k) Let B, cL(·), cR(·), F (B, cL, cR) be as defined above.

i. The capacity of the cut corresponding to X, X ⊆ VL, is cL(VL −
X) + cR(Γ(X)).

ii. Z ⊆ VL minimizes the expression cL(VL−X)+cR(Γ(X)), X ⊆ VL,
iff the cut corresponding to Z is a min-cut of F (B, cL, cR).
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Figure 3.14: The Cut corresponding to X in the Flow Graph associated
with B

iii. There is a unique maximal subset Zmax and a unique minimal set
Zmin which minimize the above expression. Let cR(·) be strictly
positive. Then the cuts corresponding to Zmax, Zmin are respec-
tively the nearest sink side and the nearest source side min-cuts
of F (B, cL, cR).

Proof :
i. This is immediate (see Figure 3.14).

ii. We will first show that there exist min-cuts which are cuts corre-
sponding to some X1 ⊆ VL.

Let (s⊎X1⊎Y, t⊎(VL−X1)⊎(VR−Y )) be a min-cut of F (B, cL, cR),
where X1 ⊆ VL, Y ⊆ VR. Since this is a min-cut, no infinite capacity
edge must pass from s⊎X1⊎Y to its complement. This means that any
edge leaving X1 must terminate in Y , i.e., Γ(X1) ⊆ Y. The capacity of
the cut is cL(VL−X1)+cR(Y ). Now consider the cut (s⊎X1⊎Γ(X1), t⊎
(VL −X1) ⊎ (VR − Γ(X1))). The capacity of this cut is cL(VL −X1) +
cR(Γ(X1)) ≤ cL(VL − X1) + cR(Y ), (cL, cR are nonnegative vectors).
Thus the cut corresponding to X1, is a min cut.
Let Z minimize the expression cL(VL − X) + cR(Γ(X)), X ⊆ VL, and
let the cut corresponding to Z ′ ⊆ VL be a min-cut of F (B, cL, cR).
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The capacity of this cut is cL(VL − Z ′) + cR(Γ(Z ′)). So cL(VL − Z) +
cR(Γ(Z)) ≤ cL(VL−Z ′)+ cR(Γ(Z ′)). However the LHS is the capacity
of the cut corresponding to Z. Since the cut corresponding to Z ′ is a
min cut we must have cL(VL − Z) + cR(Γ(Z))
≥ cL(VL − Z ′) + cR(Γ(Z ′)). We conclude that the two capacities are
equal. Therefore Z ′ minimizes cL(VL − X) + cR(Γ(X)), X ⊆ VL, and
the cut corresponding to Z is a min-cut.

iii. The nearest source side min-cut can be seen to be corresponding to
some subset X1 of VL even if cR(·) is nonnegative, but, not necessarily,
strictly positive.
Now let cR(·) be strictly positive.
The nearest sink side min-cut is obtained by travelling backward from
t through all unsaturated arcs to reach TR ⊆ VR and then backwards
to Γ(TR) ⊆ VL. The cut that we obtain by this process is (s ⊎ X2 ⊎
(VR − TR), t ⊎ Γ(TR) ⊎ TR) where X2 ≡ VL − Γ(TR). It is clear that
Γ(X2) ⊆ VR−TR. Suppose Γ(X2) ⊂ VR−TR. Then the capacity of the
cut corresponding to X2 = cL(VL −X2) + cR(Γ(X2))
< cL(VL−X2)+ cR(VR−TR), since cR is strictly positive. The RHS of
the above inequality is the capacity of the min-cut (s⊎X2⊎(VR−TR), t⊎
Γ(TR) ⊎ TR) - a contradiction. We conclude that Γ(X2) = VR − TR, so
that the nearest sink side min-cut corresponds to X2.

We know thatX1, X2 minimize the expression cL(VL−X)+cR(Γ(X)),
X ⊆ VL. Let A ⊂ s ⊎ X1 ⊎ Γ(X1) and let B be the complement of
A with respect to VL ⊎ VR ⊎ {s, t}. Then (A,B) cannot be a min-cut
(using the justification for the Algorithm Source Side Min Cut). Also
s ⊎ X1 ⊎ Γ(X1) is the unique set with the above property. It follows
that X1 is the unique minimal set s.t.
(s⊎X1⊎Γ(X1), t⊎(VL−X1)⊎(VR−Γ(X1))) is a min-cut. Hence, X1 is
the minimal set that minimizes cL(VL−X)+cR(Γ(X)). The proof that
X2 is the maximal set that minimizes the above expression is similar.

2

Remark: The expression that was minimized in the above proof is
a submodular function. We shall see later, in Chapter 9, that such
functions always have a unique minimal and a unique maximal set
minimizing them.
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Complexity of Max-Flow Algorithms for Bipartite Graph Case

Finally we make some observations on the complexity of the max flow
algorithms when the flow graph is associated with a bipartite graph.
We note that, in this case, the longest undirected path from s to
t is O(min(| VL |, | VR |)) , since every path from s to t has to alternate
between vertices of VL, VR. So the number of phases for Dinic’s (and
related) algorithms would be O(min(| VL |, | VR |)). Therefore the
overall complexities of the algorithms for this case would be

Dinic′s − O(mn(min(| VL |, | VR |)))
MPM − O(n2(min(| VL |, | VR |)))
Sleator − O(m logn(min(| VL |, | VR |))).

Here, n,m refer to the total number of vertices and edges respectively
in the flow graph. So
n =| VL | + | VR | +2 and m =| E | + | VL | + | VR | .
Exercise 3.69 [Menger27] In any graph, show that the number of arc
disjoint paths, between any pair of vertices s and t, is the number of
branches in a min-cut separating s and t.

3.7 Duality

Duality is a useful concept often met with in mathematics, e.g. dual-
ity of vector spaces and spaces of functionals, duality of partial orders,
duality of functions and Fourier transforms etc. When we encounter
it we need to know why it arises and how to use it. The duality that
one normally deals with in electrical network theory, arises because the
voltage and current spaces of graphs are complementary orthogonal.
(For other examples of duality that one encounters within electrical
network theory see [Iri+Recski80]). In this section we discuss infor-
mally how to dualize statements about graphs, vector spaces (and
therefore, implicitly, electrical networks) and also as to when we may
expect the dual of a true statement to be true.

Let V be a vector space on S. We associate with V

i. a set of operations each of which converts V to a vector space on
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a subset of S - a typical operation is (S − T1, T1 − T2)(·), T2 ⊆
T1 ⊆ S, where

(S − T1, T1 − T2)(V) ≡ V . T1 × T2;

ii. classes of objects:

• class of forests

• class of coforests

• class of circuits

• class of cutsets

• primal vectors (vectors in V)

• dual vectors (vectors in V⊥).

Remark: For convenience we generalize the usual definitions of forest,
coforest, circuit, cutset etc. to vector spaces. The reader may verify
that, if V were replaced by Vv(G), these definitions do reduce to the
usual definitions in terms of graphs. A forest of V is a maximally
independent subset of columns of a representative matrix of V, a co-
forest of V is the complement, relative to the set of columns of the
representative matrix, of a forest, a circuit of V is a minimal set that
is not contained in any forest of V, while a cutset of V is a minimal
set that is not contained in any coforest of V. The classes of coforests,
circuits and cutsets are used for convenience. Actually any one of the
four classes can be treated as primitive and the rest expressed in terms
of it.

Now we list the results which ‘cause’ duality.

i. (V⊥)⊥ = V , equivalently, x is a primal vector for V iff it is a dual
vector for V⊥.

ii. (V . T1×T2)
⊥ = V⊥×T1 ·T2 = V⊥ · (S− (T1−T2))×T2, i.e., the

operation (S− T1, T1− T2)(·) holds the same place relative to V,
that the operation (T1 − T2, S − T1)(·) holds, relative to V⊥. We
say (S − T1, T1 − T2)(·) is dual to (T1 − T2, S − T1)(·).

iii. (later we add one more operation which includes all the above,
namely, that of generalized minor)

(VS ↔ VP )⊥ = V⊥
S ↔ V⊥

P , P ⊆ S.
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iv. T is a forest (coforest) of V iff T is a coforest (forest) of V⊥.

v. C is a circuit (cutset) of V iff C is a cutset (circuit) of V⊥.

Let us consider how to ‘dualize’ a statement about a vector space
and the associated set of operations and classes of objects. Our pro-
cedure requires that the statement to be dualized be in terms of the
primitive objects and operations, associated with a vector space, that
we described above. Consider the statement
i. ‘A subset is a circuit of V × T iff it is a minimal intersection of a
circuit of V with T ’.
The first step is to write the statement in terms of V⊥ :
‘A subset is a circuit of V⊥ × T iff it is a minimal intersection of a
circuit of V⊥ with T ’.
Next we try to express the sets of objects involved in terms of the ap-
propriate complementary orthogonal space. Thus ‘circuit of V⊥ × T ’
becomes ‘cutset of (V⊥× T )⊥ ’ and ‘circuit of V⊥ ’ becomes ‘cutset of
(V⊥)⊥ ’ we thus obtain the dual of (i):
id. ‘A subset is a cutset of V . T iff it is a minimal intersection of a
cutset of V with T ’.

The above procedure will yield a true (false) dual statement if we
start with a true (false) statement. However, as we mentioned before,
the statement that we start with must involve only the ‘primitives’ viz.
the sets of operations and the classes of objects.

Next let us consider the case of (directed) graphs. We associate with
a graph, a vector space, namely, its voltage space. Given a statement
about graphs we first see whether it can be written entirely in terms
of its voltage space. If so, then we dualize it and interpret the dual
statement in terms of graphs. For instance consider the statement
ii. ‘A subset is a circuit of G × T iff it is a minimal intersection of a
circuit of G with T ’.
This statement can be written entirely in terms of Vv(G). If we substi-
tute V in place of Vv(G) in this latter statement, we get the statement
(i) above. Its dual is (id). Now we resubstitute Vv(G) in place of V.
This gives us
‘A subset is a cutset of Vv(G) · T iff it is a minimal intersection of a
cutset of Vv(G) with T ’.
Interpreting this statement in terms of G gives us
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iid. ‘ A subset is a cutset of G . T iff it is a minimal intersection of a
cutset of G with T ’.
The above procedure could fail in the beginning when we try to write
the statement about G as a statement about Vv(G) or when we replace
Vv(G) by a general V (all Vv(G) satisfy properties that all V do not).
It could also fail when we replace V by Vv(G) in the dual statement.

Here are a couple of examples of statements which cannot be dual-
ized by our procedure.

i. ‘Let G be a connected graph and let f be a forest of G. Then there
exists a unique path between any given pair of vertices using the edges
of f alone ’.
The procedure fails because ‘path’ and ‘vertices’ cannot be extended
to vector spaces.

ii. ‘There exists a graph G that has the given sets of edges C1, · · · , Cn

as circuits’.
We can extend this to Vv(G), thence to V , and dualize the statement
involving V . This statement would be:
‘There exists a vector space V that has the given sets of edges C1, · · · , Cn

as cutsets’.
The procedure can fail if we replace V by Vv(G) since the latter state-
ment may be false.

Exercise 3.70 What are the duals of the following?

i. rank function of a graph

ii. r(·) where r(T ) ≡ dim(V . T )

iii. ξ(·), where ξ(T ) ≡ dim(V . T )− dim(V × T )

iv. Closed sets of a graph (a subset of edges is closed if its rank is
less than that of any proper superset)

v. selfloops

vi. coloops

vii. separators of V

viii. separators (2 connected components) of a graph.
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Exercise 3.71 Dualize the following statements. Assuming the truth
of the original statement, comment on the truth of the dual.

i. A coforest is a minimal set that intersects every circuit.

ii. A circuit is a minimal set that intersects every coforest.

iii. Every ring sum of circuits of G is a disjoint union of circuits.
(C1 +r · · ·+r Cn is the set of all elements which occur in an odd
number of the Ci).

iv. Let C1, C2 be circuits of G and let ec ∈ C1∩C2 and e1 ∈ C1−C2.
Then there exists a circuit C3 of G s.t. e1 ∈ C3 ⊆ C1 ∪ C2 − ec.

v. Let G be a graph and let E(G) be partitioned into E1, · · · , En. Let
f be a forest of G which has as many edges as possible of E1, then
as many as possible of E2 · · · upto En. Then f ∩Ej is a forest of
G . (

⋃j
i=1Ei)× Ej , j = 1, · · · , k.

vi. Let G be a graph. Let E ≡ E(G) be partitioned into sets A,B.
Then L ⊆ B is a minimal set such that G . (E − L) has A as a
separator iff

(a) r(G × (A ∪ L)) = r(G . A).

(b) L has no self loops in G × (A ∪ L).

vii. Let V be a vector space on S and let S be partitioned into A,B.
Let K ⊆ A be s.t. V × (E −K) has B as a separator. If x on S
is s.t. x/A ∈ V . A, x/B ∪K ∈ V . (B ∪K), then x ∈ V .

Remark: i. We have described a ‘sufficient’ procedure for dualiza-
tion. If the procedure fails we cannot be sure that the ‘dual’ statement
is necessarily false. The procedure is, however, applicable wherever
duality is found - we merely have to use the appropriate dual objects
and operations.

ii. If we restrict ourselves to the class of planar graphs we have the
interesting result that there exists a graph G∗ s.t. Vi(G) = Vv(G∗). In
this case a wider range of statements can be dualized. In particular
there is the notion of ‘mesh’ or ‘window’ that is dual to that of a vertex.
In this book we do not exploit ‘planar duality’.
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3.8 Notes

Graph theory means different things to different authors. The kind of
graph theory that electrical networks need was developed systemati-
cally (for quite different reasons) by Whitney [Whitney32], [Whitney33a],
[Whitney33b], [Whitney33c]. In this chapter the emphasis has been
on the topics of direct use to us later on in the book. We have fol-
lowed, in the main, [Seshu+Reed61] and [Tutte65] for the sections
dealing with graphs, their representations and operations on graphs
and vector spaces. For the section on graph algorithms we have used
[Aho+Hopcroft+Ullman74] and [Kozen92]. For a recent survey of
graph algorithms, the reader is referred to
[Van Leeuwen90].

3.9 Solutions of Exercises

E 3.1: If the graph is disconnected concentrate on one component of
it. For this component there are (n− 1) possible values for the degree
of a node and n vertices if n > 1.

E 3.2:
i. If we add all the degrees (counting self loops twice) each edge is
being counted twice.

ii. The sum of all degrees is even. So is the sum of all even degrees.
So the sum of odd degrees is even and therefore the number of odd
degree vertices is even.

E 3.3: (Sketch) Start from any vertex vo and go to a farthest vertex.
If this vertex is deleted there would still be paths from vo to remaining
vertices.

E 3.4:
i. circuit graphs disconnected from each other;
ii. add the edge between a non-terminal vertex and another vertex of
the path;
iii. a single edge with two end points;
iv. a graph with only self loop edges.

E 3.5: Consider the graph obtained after deleting the edge e. If v1, v2
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are two vertices of this graph, there must have been a path P1 between
them in the original graph. If this path had no common vertex with
the circuit subgraph it would be present in the new graph also. So let
us assume that it has some common vertices with the circuit subgraph.
If we go along the path from v1 to v2 we will encounter a vertex of the
circuit graph for the first time (say the vertex a) and a vertex of the
circuit graph for the last time (say b). In the circuit subgraph there is
a path P2 between a and b which does not have e as an edge. If we
replace the segment in P1 between a and b by P2, we would get a path
P3 in the new graph between v1 and v2.

E 3.6: Let P1, P2 be the two paths between nodes a, b. We start from
node a and go along P1, P2 towards b until we reach a vertex say c
after which the two paths have different edges. (Note that the vertex
c could be a itself). From c we follow P1 towards b until we reach a
vertex say d which belongs also to P2. Such a vertex must exist since b
belongs both to P1 and to P2. From d we travel back towards a along
P2. The segments c to d along P1 and d to c along P2 would constitute
a circuit subgraph since it would be connected and every vertex would
have degree 2.

E 3.7: If the graph has a self loop then that is the desired circuit.
Otherwise we start from any vertex a and travel outward without re-
peating edges. Since every vertex has degree ≥ 2 if we enter a vertex
for the first time we can also leave it by a new edge. Since the graph is
finite we must meet some vertex again. We stop as soon as this hap-
pens for the first time. Let c be this vertex. The segment (composed
of edges and vertices) starting from c and ending back at c is a circuit
subgraph.

E 3.8: (a) A graph made up of self loops only.
(b) A single edge with two end points.

E 3.10: A cutset is a set of crossing edges. Hence, it contains a minimal
set of edges which when deleted increases the number of components of
the graph. Consider any edge set C with the given property. It should
be possible to partition the vertices of the graph into two subsets so
that all edges between the two subsets are in C since deletion of C
increases the number of components of the graph. Thus, we have two
collections of subsets each member of which contains a member of the
other. Hence, minimal members of both collections must be identical.
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E 3.11: All edges are parallel. There may be isolated vertices.

E 3.12:
i. Deletion of T must increase the number of components. Minimality
implies that only one of the components should be split.

ii. if the subgraphs on V1, V2 are not connected deletion of T would
increase the number of components by more than one. On the other
hand, if subgraphs on V1, V2 are connected the set of edges between
them must constitute a cutset because their deletion increases the
number of components and deletion of a proper subset will leave a
connected subgraph with vertex set V1 ∪ V2.
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E 3.13:
i. There must be at least one path because of connectedness. More
than one path would imply the presence of a circuit by Theorem 3.2.1.

ii. The tree graph cannot have only nodes of degree greater or equal
to two as otherwise by Theorem 3.2.2 it will contain a circuit. Hence,
it has a node a of degree less than two. Now if it has more than one
node, because of connectedness, a has degree one. If we start from a
and proceed away from it we must ultimately reach a node b of degree
one since the graph is finite and repetition of a node would imply two
distinct paths between some two nodes.

E 3.14: Proof of Theorem 3.2.4: The trivial single node graph
with no edges is a tree graph. The graph on two nodes with an edge
between them is also a tree graph. It is clear that in these cases the
statement of the theorem is true. Suppose it is true for all tree graphs
on (n − 1) nodes. Let t be a tree graph of n nodes. This graph, by
Theorem 3.2.2, has a vertex v of degree less than two. If n > 1, since t
is connected, this vertex has degree 1. If we delete this vertex and the
single edge incident on it, it is clear that the remaining graph t′ has no
circuits. It must also be connected. For, if nodes v1, v2 have no path
in t′, the path between them in t uses v as a nonterminal node which
therefore has degree ≥ 2 in t-a contradiction. Thus t′ is a tree graph
on (n− 1) nodes. By induction it has (n− 2) edges. So t has (n− 1)
edges. On the other hand, let G be a connected graph on n nodes with
(n − 1) edges. If it contains a circuit, by Lemma 3.2.1 we can delete
an edge of the circuit without destroying connectedness of the graph.
Repeating this procedure would ultimately give us a graph on n nodes
that is connected but has no circuits. But this would be a tree graph
with (n− 1) edges. We conclude that G must itself be a tree graph.
Proof of Corollary 3.2.1: The number of edges =

∑p
i=1(ni − 1),

where ni is the number of nodes of the ith component.

E 3.15: We will only show that maximality implies the subset is
a forest (coforest). Suppose the set is maximal with respect to not
containing a circuit. Then it must intersect each component of the
graph in a tree. For, if not, atleast one more edge can be added without
the formation of a circuit. This proves the set is a forest.
Next suppose a set L is maximal with respect to not containing a
cutset. Removal of such a set from the graph would leave at least a



120 3. GRAPHS

forest of the graph. However, it cannot leave more edges than a forest
for in that case the remaining graph contains a circuit. Let e be in this
circuit. Deletion of L ∪ e cannot disconnect the graph and so L ∪ e
contains no cutset – this contradicts the maximality. So removal of L
leaves precisely a forest.

E 3.16: Deletion of the edges in a cutset increases the number of com-
ponents in the graph. Hence, every forest must intersect the cutset
(otherwise the corresponding forest subgraph would remain when the
cutset is deleted and would ensure that the number of components re-
mains the same).
Removal of edges of a coforest must destroy every circuit as other-
wise the corresponding forest would contain a circuit. So a coforest
intersects every circuit of the graph.

E 3.17: Proof of Lemma 3.2.2: Let a, b be the end points of the
edge e being deleted. Let Va, Vb be the set of all vertices which can
be reached from a, b respectively, by paths in the tree graph which
do not use e. Suppose node v is not in Va or Vb. But the connected
component containing v cannot meet Va or Vb (otherwise v can be
reached from a or b by a path) and hence, even if e is put back v
cannot be connected to Va ∪ Vb by a path. But this would make the
tree graph disconnected. We conclude that Va ∪ Vb is the vertex set of
the tree graph. The subgraphs on Va, Vb are connected and contain no
circuits and are therefore tree graphs.

E 3.18: Let a, b be the end points of the edge e being contracted. It
is clear that the graph after contraction of an edge e is connected. If it
contains a circuit graph this latter must contain the fused node {a, b}.
But if so there exists a path in the original tree graph between a, b
which does not use e. This is a contradiction.

E 3.19: Proof of Theorem 3.2.6: Let fG denote the subgraph
of G on f . By the definition of a forest subgraph, between the end
points of e say n1, n2 there must be a path, say P in fG. Addition
of e to fG creates precisely two paths between n1, n2, namely, P and
the subgraph on e. The path P has n1, n2 of degree 1 and remaining
vertices of degree two. Hence addition of e to P will create a connected
subgraph in which every vertex has degree two. Now this must be the
only circuit subgraph created when e is added to f. For if there are two
such subgraphs, e must be a part of both of them since f contains no
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circuit. Hence they and therefore, fG must have distinct paths between
n1, n2 which do not use e. But then by Theorem 3.2.1 there must be
a circuit subgraph in fG - a contradiction.

E 3.20: Proof of Theorem 3.2.7: We will prove the result for a con-
nected graph first. Deletion of an edge of a tree graph must increase
its connected components by one by Lemma 3.2.2. Deletion of e ∪ f̄
from the given graph G is equivalent to first deleting f̄ and then, in
the resulting tree subgraph fG on f , deleting e. Therefore, the number
of connected components must increase precisely by one when e∪ f̄ is
deleted. Let a, b be the endpoints of e and let Va, Vb be the vertex sets
of the tree subgraphs (which do not however correspond to trees of G)
that result when the edge e is deleted from fG, equivalently, when e∪ f̄
is deleted from G. Any crossing edge set that e∪ f̄ contains must have
Va, Vb as end vertex sets. There is only one such. We conclude that
e ∪ f̄ contains only one crossing edge set. This must be a cutset since
the subgraphs on Va, Vb are connected.
If the graph were disconnected, when e∪ f̄ is deleted, only one compo-
nent say Ge which contains e would be split. Since any cutset contained
in e ∪ f̄ is contained in Ge we could argue with Ge in place of G and
the subset of f in Ge in place of f . So the theorem would be true in
this case also.

E 3.21: Let C be a circuit. Let e ∈ C. Then C − e does not contain
a circuit and can be grown to a forest of G. C is an f-circuit of this
forest.

E 3.22: Let B be a cutset with e ∈ B. By minimality, deletion of
B − e will not increase the number of components of the graph, i.e.,
there is a forest remaining when B − e is deleted. So B − e can be
included in a coforest and B is an f-cutset of the corresponding forest.

E 3.23: Let f̂ be a forest subgraph of the given graph containing edge
e of cutset C.This is possible since e is not a self loop. Contraction
of this edge would convert f̂ to a forest subgraph f of the new graph.
The number of edges in the coforest would not have changed.

E 3.25: Given such a matrix associate a vertex with each row and
an edge with each column. The edge has an arrow leaving the vertex
(row) where its column has a +1 and entering the vertex (row) where
its column has a −1. If the column has only zeros the corresponding
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edge is a self loop incident on any of the vertices.

E 3.31: The matrix retains the property given in Exercise 3.25 when
these operations are performed.

E 3.35:
i. When the vertex v is not a cutvertex (i.e., a vertex which lies
in every path between some two vertices a, b of the graph which are
distinct from itself). In this case deletion of the edges incident at the
vertex would break up the graph into atleast three components viz. v
alone, component containing a and component containing b.

ii. Consider a graph made up of only two parallel edges.

iii. No. It then has to be orthogonal to itself. Over the real field this
would imply that it has null support.

E 3.36: Scan the columns from left. Pick the first column correspond-
ing to a non-selfloop edge. If k columns (edges) have been picked, pick
the next column to be corresponding to the first edge which does not
form a circuit with previously picked edges. Continue until all columns
are exhausted. This gives us a forest of the graph. The f-cutset matrix
of this forest with columns in the same order as before and rows such
that an identity matrix appears corresponding to the forest would con-
stitute the first set of rows of the RRE matrix. The second set of rows
would be zero rows equal in number to the number of components.

E 3.38: If the graph is connected all nodes must have the same poten-
tial in order that the voltages of all branches are zero. (Otherwise we
can collect all nodes of a particular voltage inside a surface. At least
one branch has only one endpoint within this surface. This branch
would be assigned a nonzero voltage by the voltage vector). If the
graph is disconnected all nodes of the same component must have the
same potential by the above argument.

E 3.39: We use the above solution. If the graph is connected we
see that λTA = 0 iff λ has all entries the same, i.e., iff λ belongs
to the one dimensional vector space spanned by (1 1 · · · 1). But this
means (C(A))⊥ has dimension one. Hence dim(C(A)) = n − 1, i.e.,
r(A) = n− 1.

E 3.41: Let i be a nonzero current vector. Let T be the support of
i. The subgraph G . T of G must have each vertex of degree at least
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two (otherwise the corresponding row of A cannot be orthogonal to
i). Hence G . T contains a circuit by Theorem 3.2.2. Thus support
of i contains a circuit. Next every circuit vector is a current vector
(Theorem 3.3.1). It follows that its support cannot properly contain
the support of another nonzero current vector since a circuit cannot
properly contain another circuit.
Next let i be an elementary current vector. Clearly its support must
be a circuit C. Let iC be the corresponding circuit vector. Now by
selecting a suitable scalar α, the current vector i + αiC can be made
to have a support properly contained in C. But this implies that the
support of i + αiC is void, i.e., i = −αiC as needed.
Now regarding the cutset vector. Let v be a voltage vector. We know
that it must be derived from a potential vector. Let V1 be the set
of all nodes having some fixed potential (among the values taken by
the potential vector). Then the crossing edge set corresponding to
(V1, E − V1) must be a subset of the support of v. Thus, the support
of v must contain a cutset. Now every cutset vector is a voltage vector
(Theorem 3.3.2). It follows that its support cannot properly contain
the support of another nonzero voltage vector since a cutset cannot
properly contain another cutset.
Next let v be an elementary voltage vector. Proceeding analogously to
the current vector case we can show that v must be a scalar multiple
of a cutset vector, as required.

E 3.42: A set of columns T of A are linearly dependent iff there exists
a vector i with support T such that Ai = 0. By definition i is a current
vector. By Theorem 3.3.6 we know that T must contain a circuit of G.
Further, if T contains a circuit of G the corresponding circuit vector of
G is a current vector from which it follows that the set of columns T
of A are linearly dependent.
The rows of Bf constitute a basis for V i(G). By the strong form of
Tellegen’s Theorem we know that Vv(G) = (V i(G))⊥. Hence, v is a
voltage vector iff Bfv = 0. The rest of the argument parallels that of
the linear dependence of columns of A.

E 3.43: An f-cutset matrix Qf of G is a representative matrix of Vv(G)
since by Theorem 3.3.2 its rows are linearly dependent on the rows of
the incidence matrix and its rank equals the rank of A. Now we know
that (Theorem 3.3.7) the columns of A are linearly independent iff the
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corresponding edges do not contain a circuit. This must also be true of
any representative matrix Qf of Vv(G) since A and Qf have the same
column dependence structure. Let Q′ be any standard representative
matrix of Vv(G). Let us assume without loss of generality that

T E − T

Q′ =
(

I Q′
12

)

. (3.10)

The columns corresponding to T are linearly independent and (n−p)
in number. Hence, T must be a forest of G. Let QT be the f-cutset
matrix with respect to T . Then QT =

(

I Q12

)

for some Q12. But

Q′ and QT are row equivalent to each other. So we conclude that
Q12 = Q′

12 and Q′ = QT . The f-circuit case proof is similar.

E 3.45: Proof of Theorem 3.3.8: Each KVE has the form cTv = 0,
where c is a circuit vector.
Now every circuit vector is a current vector. So the size of a maximal
independent set of circuit vectors cannot exceed r(Vi(G)). However,
the rows of Bf constitute an independent set of circuit vectors of this
size. The result follows.

E 3.48:
i. is immediate.

ii. (Sketch) If we start from any node of a circuit subgraph of G (that
intersects T ) and go around it, this would also describe an alternating
sequence (without edge repetition) of G × T starting and ending at
the same vertex. This subgraph of G × T has each vertex of degree
≥ 2 and so contains a circuit of G × T. On the other hand given any
circuit subgraph of G × T we can trace a closed alternating sequence
around it which can be expanded to a closed alternating sequence of
G corresponding to a circuit subgraph. So every circuit of G ×T is the
intersection of some circuit of G with T.

E 3.49: (Sketch) Assume without loss of generality that G is con-
nected. Any cutset of G that intersects T would, when removed, in-
crease the number of components of G . T. Hence, it contains a cutset
BT of G . T. Any cutset of G . T corresponds to vertex sets V1, V2

between which it lies (the subgraphs of G . T on V1, V2 are connected).
Now let V1 be grown to as large a vertex subset of V ′

1 of (V (G) − V2)
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as possible using paths that do not intersect BT . Next let V2 be grown
to as large a vertex subset of V ′

2 of (V (G)−V ′
1) as possible using paths

that do not intersect BT . The cutset of G defined by V ′
2 , (V (G) − V ′

2)
intersects T in BT .
Next consider any cutset CT of G × T. This corresponds to a partition
V1T , V2T of V (G × T ). Now V1T , V2T are composed of supernodes of G
which are the vertex sets of components of (GopenT ). The union of
these supernodes yields a partition V1, V2 of V (G). Clearly CT is the
set of edges between V1, V2. The subgraphs of G × T on V1T , V2T are
connected. So the subgraphs of G on V1, V2 are also connected. So
CT is a cutset of G. Any cutset of G made up only of edges in T can
similarly be shown to be a cutset of G × T.
E 3.51: Ai = J has a solution iff λT A = 0 ⇒ λTJ = 0. If the graph
is connected λTA = 0⇒ all components of λ are identical.

E 3.52:
i. A vector satisfies KC Equations of G . T iff when padded with 0s
corresponding to edges in E(G)−T it satisfies the KC Equations of G.
Hence, Vi(G . T ) = (Vi(G))× T.
ii. Let iT ∈ Vi(G × T ). In the graph G this vector satisfies generalized
KCE at supernodes which are vertex sets of components of GopenT.
The previous exercise implies that we can extend this vector to edges
within each of these components. Thus there is a vector i ∈ Vi(G)
s.t. i/T ∈ Vi(G × T ). Thus, Vi(G × T ) ⊆ (Vi(G)) · T. Any vector
that satisfies KCE of G would satisfy generalized KCE at supernodes.
Hence, if i ∈ Vi(G) then i/T ∈ Vi(G×T ). Hence, (Vi(G))·T ⊆ Vi(G×T ).

E 3.53:
i. From Theorem 3.4.6, R33 is a representative matrix of V × T3 and

T1 T2

[

R11 R12

R21 0

]

(3.11)

is a representative matrix of V · (T1 ∪ T2).
Now R21,R12 are given to have linearly independent rows. So R21,R12

are representive matrices of V·(T1∪T2)×T1 and V·(T1∪T2)·T2(= V·T2)
respectively. Next

T1 T3
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[

R21 R23

0 R33

]

(3.12)

must be a representive matrix of V×(T1∪T3). So R21 is a representative
matrix of V × (T1 ∪ T3) · T1.

ii. If R11 is a zero matrix, then V · (T1 ∪ T2) would have T1, T2 as
separators.

E 3.54: R33 is a representative matrix of V × T2 while

[

R22

R33

]

is a

representative matrix of V . T2. The result follows.

E 3.55:

ξ′(T ) = r(V⊥ · T )− r(V⊥ × T )

= | T | −r(V × T )− | T | +r(V · T )

(by Theorem 3.4.3).

E 3.56: We shall show that the union of a forest f1 of Gshort(E − T )
and a forest f2 of GopenT yields a forest of G. GopenT has a number of
connected components. The forest f2 intersects each of these compo-
nents in a tree. The vertex sets (supernodes) Vi of these components
Gi figure as nodes of Gshort(E − T ). If f1 ∪ f2 contains a circuit of G
it cannot be contained entirely in GopenT . The corresponding circuit
subgraph can be traced as a closed path starting from some vertex
in Vi going through other sets Vj and returning to Vi. When the Vi

are fused to single nodes this subgraph would still contain two distinct
paths between any pair of its vertices (which are supernodes in the old
graph G). Thus, f1 would contain a circuit of Gshort(E − T ) which is
a contradiction. Hence, f1 ∪ f2 contains no circuit of G. On the other
hand we can travel from any vertex v1 in G to any other vertex vf in
the same component using only edges of f1 ∪ f2. This is because a
connected component of G would reduce to a connected component of
Gshort(E − T ). So v1, vf would be present in supernodes say V1, Vf

which are nodes of Gshort(E − T ) and which have a path between
them using only the edges of f1. This path P2 can be exploded into a
path P12 using only edges of f1 ∪ f2 in G as follows:

The path P2 can be thought of as a sequence

v1, v11, e1, v2, v22, e2 · · · ef , v
′
f , vf
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where v1, v11 belong to the same component and in general vj , vjj

belong to the same component of GopenT . So would (for notational
convenience) v′f , vf . Now we can travel from v1 to v11, v2 to v22, vj to
vjj etc. using edges of f2. Addition of these intermediate edges and
vertices yields the path P12. Thus, f1 ∪ f2 contains no circuits and
contains a tree of each component of G.
E 3.57: Immediate from the above.

E 3.58: Consider the incidence matrix A of G. A set of columns of A
are linearly independent iff the corresponding edges do not contain a
circuit. Thus, T is a separator of G iff there is no minimal dependent
set of columns of A intersecting both T and (E − T ).
Let

T E − T

R =

[

RTT RT2

0 R22

]

(3.13)

be a representative matrix of Vv(G). This matrix and the incidence
matrix are row equivalent and therefore have the same column depen-
dence structure. If the rows of RT2 are linearly dependent on the rows
of R22, we can perform reversible row operations using the rows of the
latter so that rows of RT2 are made zero.If RT2 is the zero matrix it
is clear that no minimal dependent set of columns can intersect both
T and E − T ,where E ≡ E(G). If rows of RT2 are not linearly de-
pendent on those of R22, then r((Vv(G)) · T ) > r((Vv(G))× T ). Now,
let f1, f2 be forests of G . T,G . (E − T ), respectively. The union of
these two forests contains more edges than the rank of G and therefore,
contains a circuit. But f1, f2 do not individually contain circuits. We
conclude that there must exist a circuit that intersects both f1 and f2.
Thus, we see that T is a separator of G iff rows of RT2 are linearly
dependent on the rows of R22 i.e., iff T is a separator of Vv(G), i.e.,
iff r((Vv(G)) · T ) = r((Vv(G))× T ). The last statement is equivalent
to saying r(G . T ) = r(G × T ).

E 3.59: The graph G has α1α2 forests as well as coforests, β1 + β2

circuits, γ1 + γ2 cutsets. This is because every forest of G, when T is
a separator, is a union of a forest of G . T and a forest of G . (E − T ).
Further, each circuit of G is either a circuit of G . T or a circuit of
G . (E − T ).
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E 3.60: Let the directed crossing edge set have the orientation (V1, V2).
The tail of the edge e lies in a component of the subgraph on V1.Let
V ′ be the vertex set of this component.Consider the directed crossing
edge set defined by (V ′, V (G) − V ′). The head of the edge e lies in
a component of the subgraph on V (G) − V ′.Let V ” be the vertex set
of this component.Consider the crossing edge set defined by (V (G) −
V ”, V ”).This has e as a member. It can be seen that it is a directed
cutset.

E 3.61: We use Kuhn-Fourier Theorem. Let V be the solution space of
Ax = 0. Suppose V has no nonnegative vector whose support contains
e. Then the following system of inequalities has no solution

Ax = 0

x(e) > 0

x ≥ 0.

By Kuhn-Fourier Theorem there exists a vector λ, a scalar α > 0 and
a vector σ ≥ 0 s.t. λTA + αχe + σT = 0. Thus, −λTA = (σT + αχe).
The vector σT + αχe lies in the space V⊥ and has e in its support.

E 3.62:
ii. From each vertex obtain the set of all reachable vertices (do a bfs).
This takes O(| V || E |) time. Sort each of these sets and obtain
a list in increasing order of indices. This takes O(| V |2 log | V |)
time. For each pair (v1, v2) check if v2 is reachable from v1 and if v1 is
reachable from v2. This takes O(| V |2) time. So overall complexity is
O(| V | (max(| E |, | V | log | V |))).
E 3.63: We assume that the length of an edge is an integer. We first
find an upper bound u and a lower bound l for the length of this path.
The upper bound could be the sum of all the lengths and the lower
bound could be the minimum length of an edge. Narrow down to the
correct value of the distance between v1 and v2 by asking question of
the type ‘is there a path between v1 and v2 of length ≤ di’. The value
of di in this question could be chosen by binary search between u and
l: d1 = (l + u−l

2
), if yes d2 = (l + u−l

4
), if no d2 = (u − u−l

4
) and so

on. (Whenever any of these numbers is a fraction we take the nearest
integer). Clearly the number of such di is O(log(u− l)).
Suppose d is the length of the shortest path. To find the edges of the
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shortest path we ask, for each edge e between v1 and v11 say, if there is
a path of length d−d(e) between v11 and v2. If yes (and it must be yes
for one such edge) then e belongs to the path and we now try to find a
path of length d−d(e) between v11 and v2. By this process the shortest
path can be found by framing O(| E(G) |) decision problems. Overall
the total number of decision problems is O(log(u− l)+ | E(G) |).
E 3.64: Observe that in the stack at any stage the top vertex has the
highest dfs numbering and we cannot get below it unless it has been
deleted from the stack. Once a vertex has been deleted from the stack
it can never reappear. If v1 is not an ancestor of v2 then they have a
common ancestor v3 of highest dfs number. Since v1 has a lower dfs
number than v2 it would have been deleted from the stack before we
went back to v3 and travelled down to v2. But then the edge e would
have been scanned when we were processing v1 for the last time. At
that time the other end of e would have been unmarked and e would
then have been included in the dfs tree. This is a contradiction.

E 3.65: The technique described for building f-circuits using dfs would
work for any rooted tree (a tree in which each node has a single parent).
In the case of bfs we walk from v1 and v2 towards the root by first
equalising levels (if v1 has a higher level number we first reach an
ancestor v′1 of the same level as v2). Thereafter we move alternately
one step at a time in the paths v1 to root and v2 to root until the first
common ancestor is reached.

E 3.66: Let the sequence of edges generated by Prim’s algorithm in
building talg be e1, e2, . . . , ek. Let t be a min spanning tree which has the
longest unbroken first segment e1, e2, . . . , er in common with talg. We
will show that r = k. Suppose r < k. Now er+1 was selected during
the execution of the algorithm as the edge of least weight with one
end in the current set of vertices V ({e1, e2, . . . , er}) and another in the
complement. Consider the f-circuit L(er+1, t). The edges of L(er+1, t)−
er+1 constitute a path between the endpoints of er+1. Atleast one of
them, say ê, has only one endpoint in V ({e1, e2, . . . , er}) and has weight
not less than that of er+1. Now t− ê∪er+1 is a tree with weight greater
than that of t and a greater first segment overlap with talg. This is a
contradiction.

Suppose t is a minimum spanning tree whose total weight is less
than that of the tree talg generated by the algorithm. Let t be the
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nearest such tree to talg (i.e., | talg− t | is minimum). Let e ∈ (talg− t).
Consider the f-circuit L(e, t). If w(e) ≤ w(ej) for some ej ∈ (L(e, t)−e),
then we could replace t by the tree t ∪ e − ej without increasing its
weight. This would contradict the fact that t is the nearest minimum
spanning tree to talg. Hence w(e) > w(ej) for each ej in (L(e, t) − e).
However, e was selected, during some stage of the algorithm, as the
edge of least weight with one end in the current set of vertices Ve.
The edges of (L(e, t)− e) constitute a path between the end points of
e. At least one of them, therefore, has only one end point in Ve and,
therefore, has weight not less than that of e. This contradiction proves
that talg − t is void. Since both talg and t have the same number of
edges we conclude that talg = t.

E 3.68: Construct a ‘level graph’ containing all the edges of a bfs tree
in the residual graph from s to t and any other edge of that graph that
travels from a lower to a higher level. (The level of a node is the bfs
number of the node). Clearly only such edges can figure in a shortest
path from s to t. Whenever we augment the flow using a shortest path
upto its bottleneck capacity, atleast one of the edges, say e, of the
residual graph will drop out of the level graph.
In the residual graph an oppositely directed edge to e would remain.
But this edge cannot figure in the level graph unless the length of the
shortest path changes (increases), since it would be travelling from a
higher to a lower level. An edge that has dropped out cannot return
until the length of the shortest path changes. It follows that there
can be at most m augmentations at a particular length of the shortest
path from s to t. The length of the shortest path cannot decrease and
also cannot exceed the number of nodes in the graph. Hence the total
number of augmentations cannot exceed mn.

E 3.69: (Sketch) Replace each edge by two oppositely directed edges
of capacity 1. Treat s as source and t as sink. Maximize flow from
source to sink. Each unit of flow travels along a path whose edges (since
their capacity is 1) cannot be used by another unit of flow. Hence, the
maximum flow ≤ maximum number of arc disjoint paths. The reverse
inequality is obvious. In any cut of the flow graph the forward arcs
(each of capacity 1) would correspond to arcs in the corresponding cut
of the original graph. The result follows.

E 3.70:
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i. r(T ) = size of the maximum circuit free set contained in T. So the
dual function at T would give the size of the maximum cutset free set
contained in T , i.e., the dual is ν(·), the nullity function (ν(T ) =| T |
−r(G × T )).
ii. Let r∗(·) be the dual. Then

r∗(T ) ≡ dim(V⊥ · T ) =| T | − dim(V × T )

iii. Let ξ∗(·) be the dual. Then

ξ∗(T ) ≡ dim(V⊥ · T )− dim(V⊥ × T ) = | T | −dim(V × T )− | T | +dim(V . T )

= ξ(T ).

Thus, ξ(·) is self dual.
iv. Closed sets are complements of unions of cutsets. So the duals are
complements of unions of circuits.
v. Selfloop is a single edged circuit. The dual is a single edged cutset,
i.e., a coloop.
vi. the dual is the selfloop.
vii. A separator T satisfies r(V . T )− r(V ×T ) = 0, i.e., ξ(T ) = 0. Its
dual would satisfy ξ∗(T ) = 0. But we saw that ξ(T ) = ξ∗(T ). So the
dual of ‘separator’ is ‘separator’.
viii. A separator T satisfies r(G . T )− r(G × T ) = 0, i.e.,

r((Vv(G)) · T )− r((Vv(G))× T = 0.

If we go through the procedure of dualization we must replace Vv(G)
by V ,V by V⊥. This would yield

r(V⊥ · T )− r(V⊥ × T ) = 0.

As we have seen before this is equivalent to

r(V . T )− r(V × T ) = 0.

Substituting Vv(G) in place of V and interpreting in terms of G we get

r(G . T )− r(G × T ) = 0

Thus separator of a graph is self dual.

E 3.71:
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i. replace ‘coforest’ by ‘forest’, ‘circuit’ by ‘cutset’.

ii. as above.

iii. replace ‘circuits’ by ‘cutsets’.

iv. replace ‘circuit’ by ‘cutset’.

v. replace ‘forest’ by ‘coforest’, interchange ‘dot’ and ‘cross’ opera-
tions.

vi. replace ‘r(·)’ by ‘ν(·)’, interchange ‘dot’ and ‘cross’ operations,
replace ‘self loops’ by ‘coloops’

vii. interchange ‘dot’ and‘cross’, V and V⊥.

The dual is true if the original is true (and the original is in fact true)
in each of the above cases.

3.10 Solutions of Problems

P 3.1: (Sketch) Break the graph up into disjoint union of circuit sub-
graphs. This is possible since when a circuit is deleted the remaining
graph still has only even degree vertices. Within each circuit subgraph
we can start from any vertex, go through all vertices and come back to
it. By induction, when one circuit is deleted, in the remaining graph
within each component we can start from any vertex go through all
vertices and come back to it. Now start from a vertex of the (deleted)
circuit subgraph, go around it until a vertex of one of the components
of the remaining graph is met. Complete a closed traversal of the
component, come back to the vertex of the circuit subgraph and pro-
ceed along the circuit subgraph until the next vertex of a component is
met. Continue until you come back to the starting vertex of the circuit
subgraph.

P 3.5:
i. is easy to see.

ii. Start from the two end points of ed ∈ C1 − C2, proceed outward
until you first reach vertices a, b of the subgraph on C2 (a, b could even
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be the end points of ec). Vertices a, b must be distinct as otherwise
C1 ∩ C2 = ∅. Now in the subgraph on C2 there are precisely two
distinct paths between a, b. Only one of them contains ec. If we follow
the other path we would have constructed the desired circuit subgraph
corresponding to C3.

P 3.9: We use the notation of the Circuit Axioms in Problem 3.5. It
is easy to see that axiom (i) is satisfied.
Axiom (ii): If (V1, V2) defines C1 and (V ′

1 , V
′
2) defines C2, then ec lies

between V1 ∩ V ′
1 and V2 ∩ V ′

2 while ed lies entirely within V ′
1 or entirely

within V ′
2 . Delete C1 ∪ C2. The graph is broken up into atleast three

pieces (atleast three of the sets V1 ∩ V ′
1 , V1 ∩ V ′

2 , V2 ∩ V ′
1 , V2 ∩ V ′

2

must be nonvoid). Now add back ec . The graph would still have
atleast two pieces. Consider the crossing edge set corresponding to
((V1 ∩ V ′

1) ∪ (V2 ∩ V ′
2), (V1 ∩ V ′

2) ∪ (V2 ∩ V ′
1)). This crossing edge set

contains ed and is itself contained in C1 ∪C2. Now every crossing edge
set is a disjoint union of cutsets (Problem 3.11). So there exists a
cutset C3 s.t. ed ∈ C3 ⊆ C1 ∪ C2 − ec.

P 3.11: Let G be connected. Let (V1, V2) define the crossing edge
set. Let the subgraph on V1 have components whose vertex sets are
V11, · · · , V1k and V2 be similarly partitioned into V21, · · · , V2t. When
k = t = 1 the result is clear since the crossing edge set is a cut-
set.Otherwise we can break up the crossing edge set into crossing edge
sets corresponding to (V11, (V2 ∪ V1)− V11), · · · , (V1k, (V2 ∪ V1)− V1k).
So without loss of generality we assume k = 1. In this case the cross-
ing edge set can be broken up into cutsets corresponding to (V21, (V2∪
V1)−V21), · · · , (V2t, (V2∪V1)−V2t). (The subgraph on V21 is connected
and the subgraph on (V2 ∪ V1 − V21) is connected because the graph G
is connected and the subgraph on V11 is connected).

P 3.13:
i. By KCE at a node of degree 1, the branch incident at it must carry
zero current. So the vertex and the branch can be deleted without
affecting KCE at any other node. What is left is a tree graph on a
smaller set of nodes so the argument can be repeated.

ii. All selfloops. This is the structure that results when a tree of the
(connected) graph is contracted. (Observe that the tree graph results
when the cotree is deleted (opened)).
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P 3.14: (a) At least one of the non datum nodes has degree 1. This
node and the corresponding terminal branch would give us a row and a
column which contain only one nonzero entry (±1, where they meet).
Deletion of this node and edge would give us a tree graph on nodes
whose size is one less than before. Its determinant could be taken, by
induction, to be ±1. So the original determinant is also ±1.
(b) For every injecting current vector corresponding to all the non
datum nodes, if one can fix the currents in the branches uniquely we
are done. The current at a tree branch that is terminal (incident at
a vertex of degree 1) could be taken as a part of the injecting current
source. We are now left with a new tree graph on less number of nodes
for which (by induction) we may assume that branch currents are fixed
uniquely by injecting currents.
(c) We have λT (Ar) = vT . So if λT is uniquely fixed for a given vT

we are done. Starting from the datum node we travel to a given node
along voltage sources (This is possible since the graph is connected).
Their algebraic sum gives the unique node voltage.

P 3.15: Suppose the support is contained in a forest. Then there is a
nontrivial solution to the KCE of a forest graph which is impossible by
Problem 3.13 (one can also argue in terms of f-cutsets of this forest).

P 3.16: Suppose the support of the voltage vector meets only the
coforest. So we have all the forest voltages zero. But each coforest
edge forms an f-circuit with the forest. So its voltage is the algebraic
sum of the voltages of the circuit branches in the forest. This would
give the coforest edge voltage to be zero. So the voltage vector would
be a zero vector.

P 3.17: Use solution of Problem 3.14 (a). Now Ar = ArtQf , where
Qf is the f-cutset matrix corresponding to tree t.From this and from
Problem 3.14 conclude that determinant of every full submatrix of Qf

is 0,±1. For proving the property for subdeterminants use appropri-
ate trees. (Note that, if a subdeterminant is nonzero, corresponding
columns say t ∩ t′, together with some other edges form a tree t′.
The determinant corresponding to t′ is ±1. But this is also equal to
±1(subdet corresponding to t∩ t′ ) × (subdet (t′− t)). Since both the
factors are clearly integers, the result follows.

P 3.18: See solution of Problem 3.14.
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P 3.19: (a) The vector b gives the injected currents at the nodes. Let

Ax = b be equivalent to Qfx ≡
(

I Q12

) x1

x2
= b̂. One possible

solution of the latter equations has all entries in x2 zero and x1 = b̂.
This is also a solution of the former equations. So b̂ is the vector of
forest branch currents (the forest being the one corresponding to Qf)

when the node injection currents are given by b. To compute b̂ by
inspection proceed as follows: (a) select some node as datum node in
each component. (b) for each node v draw a path Pv in the forest
graph to the datum node of the component. Associate with Pv the
value of b at v. (c) if e is a branch of the forest the value of b̂ at e is
the algebraic sum of the b(v) where e lies in Pv. (If e agrees with Pv

add b(v), if it opposes subtract b(v) and if e does not lie in Pv ignore
b(v)).

ii. Start with the graph G . f1. To this add a copy f2
′ of f2. Now

associate each branch e′ of f2
′ with a current source of value equal to

b2(e
′). Find the currents in branches of f1 by constructing f-circuits of

branches in f2
′ and taking the value of b1(e) to be the algebraic sum

of b2(e
′) where e lies in the f-circuit of e′.

P 3.20: Consequence of total unimodularity of Qf ,Bf , i.e., every
subdeterminant has value 0,±1 (see Problem 3.17).

P 3.21: AAT : The (i, j) entry is the negative of the number of edges
between i, j, if i 6= j, and equal to the number of edges incident at i, if
i = j.
Bf Bf

T : The (i, j) entry is (number of edges which lie in ith and
jth f-circuits with same orientation relative to f-circuit orientation)
- (number of edges which lie in ith and jth f-circuits with opposite
orientation).
Qf Qf

T : similar to Bf Bf
T case.

P 3.22: (sketch) Let C1,C2 be the circuits (cutsets). The correspond-
ing circuit (cutset) vectors can be a part of the same f-circuit (f-cutset)
matrix iff G . (C1 ∪C2) (G × (C1 ∪C2)) has nullity 2 (rank 2). These
ideas follow by noting that if C1,C2 correspond to f-circuit vectors of
some forest then the submatrix of the f-circuit matrix of that forest
composed of these two vectors and columns C1 ∪ C2 must be a rep-
resentative matrix of Vi(G . (C1 ∪C2)) (using Theorem 3.4.6 and the
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fact that Vi(G . T ) = (Vi(G))×T ). The cutset case arguments are dual
to the above.

P 3.23: See Subsection 3.6.2 for a good algorithm for building the
f-circuit.Building all f-circuits of a tree has been shown there to be
O(
∑ | L(e, t) |). For building the f-cutset, with respect to a tree t,

of a branch et, find the sets of all nodes reachable from either of the
end points of et in the graph G · t by doing a bfs. If these sets are
V1, V2 respectively then the desired f-cutset is defined by (V1, V2). The
complexity of this algorithm is O(|V (G)|). However building all f-
cutsets of a tree is clearly equivalent to building all f-circuits of the
same tree (see Exercise 3.44).

P 3.24: (Sketch) If G ′ is a subgraph of G then let V̂i(G′) denote the
vectors obtained from those of Vi(G′) by adjoining zeros correspond-
ing to edges outside G ′. Clearly V̂i(Gj) ⊆ Vi(G). Now, by construc-
tion, there exists a coforest of G . (

⋃j−1
t=1 E(Gt)) that does not intersect

E(Gj), j = 2, · · · , k. Assume by induction that V̂i(G . (
⋃j−1

t=1 E(Gt)))

has R′
j−1 ≡









R̂1
...

R̂j−1









as a representative matrix. The rows of R̂j

are linearly independent of these rows since the columns correspond-
ing to the above coforest are independent in R′

j−1 and have zero en-

tries in R̂j . So if we show that R′
j has the correct number of rows

(= ν(G . (
⋃j

t=1 E(Gt)))) we are done.We have,

ν(G . (
j
⋃

t=1

E(Gt))) = ν(G . (
j−1
⋃

t=1

E(Gt)))+ν(G . (
j
⋃

t=1

E(Gt))×(E(Gj)−(
j−1
⋃

t=1

E(Gt))))

(using Corollary 3.4.3).
Now

ν(G . (
j
⋃

t=1

E(Gt))×(E(Gj)−(
j−1
⋃

t=1

E(Gt)))) = ν(Gj×(E(Gj)−(
j−1
⋃

t=1

E(Gt))))

(since,as far as E(Gj) is concerned, contracting all of (
⋃j−1

t=1 E(Gt)) is the

same as contracting the forest E(Gj)∩
[

⋃j−1
i=1 E(Gi)

]

of G . (⋃j−1
t=1 E(Gt))).

But

ν(Gj×(E(Gj)−(
j−1
⋃

t=1

E(Gt)))) = ν(Gj)−ν(Gj ·(E(Gj)∩(
j−1
⋃

t=1

E(Gt)))) = ν(Gj)
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(since E(Gj) ∩
[

⋃j−1
i=1 E(Gi)

]

is a subforest of Gj). This proves the re-
quired result.

P 3.25: See [Narayanan85c].

P 3.26: (Sketch)
i. Every forest of G intersects T in a subforest of G . T and every forest
of G . T can be grown to a forest of G.
ii. Union of a forest of G . (E − T ) and a forest of G × T is a forest of
G. The result now follows from the previous part.

iii. ‘Only if’ is clear. Suppose K∪ (a forest fE−T of G . (E − T )) is a
forest of G. When edges of fE−T are contracted K would not contain a
circuit. The remaining edges of (E − T ) would have become selfloops
by then. So K must also be a subforest of G ×T. But | K |= r(G ×T ).
So K is a forest of G × T.
iv. Arguments similar to the previous part.

P 3.27: (Sketch)
i. We know that union of a forest of G . A1 and a forest of G×(E−A1)
is a forest of G and if a forest of G contains a forest of G . A1 then its
intersection with (E − A1) is a forest of G × (E − A1). So the given
statement is true for n = 2. If it is true for n = k − 1 then by working
with G . (A1 ∪ · · · ∪ Ak−1) and G × Ak we see that it must be true for
n = k also.

ii. If the graph has only such forests A1, · · · , An become separators.
Proof by induction.

iii. If this is true for each σ then A1, · · · , An become separators.

P 3.28: (Sketch for the second part) Select a forest with priority
E − T1, T2, T1 − T2. Now use ideas of Exercise 3.53.

P 3.29: We need to check that there is no violation of KCL (KVL)
in any cutset (circuit) contained in T. So check if there is violation of
KCL in G × T and violation of KVL in G . T.
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Chapter 4

Matroids

4.1 Introduction

Matroids are important combinatorial structures both from the point
of view of theory and from that of applications. One of the subjects
to which applications were found early was electrical network theory
[Seshu+Reed61]. In this chapter we give a brief sketch of the theory
with electrical networks in mind. Additional material on the matroid
union theorem and related results is presented in Chapter 11.

4.2 Axiom Systems for Matroids

A matroid can be defined in several equivalent ways. Each of these is
based on an axiom system. The primitive objects of each axiom system
can be identified with either the primitive or some derived objects of
every other axiom system. We restrict ourselves to finite underlying
sets. The words maximal and minimal are used in the statements of
the axioms below. The reader might like to look at the example in
page 22.

139
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4.2.1 Independence and Base Axioms

Independent sets of a matroid correspond to subtrees (or, dually, sub-
cotrees) of graphs and to independent sets of columns of matrices.

I. Independence Axioms: A matroid M on S is a pair (S, I),
where S is a finite set and I is a family of subsets of S called inde-
pendent sets, satisfying the following:
o. ∅ ∈ I. i. if I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.
ii. maximally independent sets contained in a subset of S have the
same cardinality.

A base of the matroid M ≡ (S, I), is a maximally independent
subset of M contained in S. The complement of a base relative to S
is called a cobase ofM.

Remark: In this chapter a base is usually denoted by the symbol
B. In subsequent chapters, however, in order to avoid confusion with
‘bipartite graph’ we denote a base by b.

Example 4.2.1 (k) Let G be a graph. Let It be the collection of sub-
forests of G and let Ic be the collection of subcoforests of G. Then
(E(G), It), (E(G), Ic) are matroids. Further, the bases of each matroid
are cobases of the other. The matroid (E(G), It) is called the polygon
matroid of G, denoted by M(G) and the matroid (E(G), Ic) is called
the bond matroid of G, denoted by M∗(G).

Example 4.2.2 (k) Let V be a vector space on S and let R,R∗ be
representative matrices of V,V⊥, respectively. We note that column
dependence structure of all representative matrices of a vector space
is the same. Let I be the collection of independent column sets of R
(identified with corresponding subsets of S) and let I∗ be the collection
of independent column sets of R∗. Then (S, I), (S, I∗) are matroids.
Further, bases of each matroid are cobases of the other. We say that
(S, I) ((S, I∗)) is the matroid (dual matroid) associated with V and
denote it by M(V) (M∗(V)).

Example 4.2.3 [Edmonds68][Nash-Williams67] Let G be a graph and
let k be a positive integer. Let I∪ be the collection of unions of k
subforests of G. Then (E(G), I∪) is a matroid.

Example 4.2.4 [Edmonds+Fulkerson65] Let G be a graph. A match-
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ing of G is a subset of edges no two of which have a common end point.
We say that a set of vertices and a matching meet iff the former is
a subset of the end points of the edges in the matching. Let Im be the
collection of subsets of vertices each of which meets a matching. Then
(V (G), Im) is a matroid.

Exercise 4.1 Show that the structures in the above examples are in-
deed matroids (i.e., satisfy independence axioms).

As we know, a circuit of a graph is not contained in any forest and
is the minimal such subset of edges (see Problem 3.6). This motivates
us to define a circuit of a matroid (S, I) to be a minimal subset of S
not contained in any independent set, equivalently, we could say that
a circuit is a minimal dependent (or non-independent) subset of the
matroid.

Let B1, B2 be two bases of the matroidM≡ (S, I). Let e ∈ B2−B1.
Then B1 ∪ e is not independent and, therefore, contains a circuit (a
minimal dependent set). We claim that this circuit is unique. For,
suppose C1, C2 are two circuits contained in B1∪e. Clearly e ∈ C1∩C2.
Now {e} ⊆ B2 and hence {e} is not a circuit. Consider a maximally
independent subset of C1 ∪C2 containing e. If C1, C2 are distinct, the
cardinality of this set cannot exceed | C1 ∪ C2 | −2. On the other
hand C1 ∪ C2 − e is independent. Thus maximally independent sets
contained in C1 ∪ C2 do not always have the same cardinality. This
violates the second characteristic property of independent sets in the
Axiom system above for a matroid. We conclude that C1 = C2. (We
refer to the unique circuit contained in e ∪ B1 as the fundamental
circuit (f-circuit) of e with respect toB1 and denote it by L(e, B1).
)
Now L(e, B1) has a nonvoid intersection with B1 since {e} is not a
circuit. Let e′ ∈ L(e, B1) ∩ B1. Let B1

′ ≡ e ∪ (B1 − e′). Clearly B1
′

contains no circuit and has the same cardinality as B1. It follows that
B1

′ is a base of M. On the other hand if e” ∈ B1 then (B1 − e”) ∪ e
is independent only if e” ∈ L(e, B1). We therefore have the following
theorem.

Theorem 4.2.1 (k) Let B1, B2 be bases of a matroid M on S. Let
e ∈ B2 −B1. Then,

i. e ∪ B1 contains a unique circuit L(e, B1). This has a nonvoid
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intersection with B1.

ii. If e′ ∈ B1, then (B1 − e′) ∪ e1 is a base of M iff e′ ∈ L(e, B1).

Next let B1, B2 be as above and let e1 ∈ B1 − B2. In the set
B1 ∪ B2 − e1, we have B2 as a maximally independent set. Since
| B1 |=| B2 |, clearly B1 − e1 is not maximally independent in this
set. Hence, there exists an element e2 ∈ B2 − B1 s.t. (B1 − e1) ∪ e2 is
independent and, therefore, a base ofM. (From Theorem 4.2.1 above
it is clear that only those elements e2 would qualify for which e1 ∈
L(e2, B1)). We therefore have the following.

Theorem 4.2.2 (k) Let B1, B2 be bases of M and let e1 ∈ B1 − B2.
Then there exists e2 ∈ B2 − B1, such that (B1 − e1) ∪ e2 is a base of
M.

Theorems 4.2.1 and 4.2.2 can be used to generate axiom systems for
matroids. We state these below:

II. Base Axioms: A matroid M on S is a pair (S, I) where I is a
collection of subsets of S satisfying
o. ∅ ∈ I. i. If I1 ∈ I and I2 ⊆ I1 then I2 ∈ I.
ii. If B1, B2 are maximally independent sets (bases) ofM and if e2 ∈
B2−B1, then there exists e1 ∈ B1−B2 s.t. (B1−e1)∪e2 is maximally
independent inM.
Condition (ii) above can be replaced by (ii’) below.
ii’. If B1, B2 are maximally independent sets of M and if e1 ∈ B1 −
B2 then there exists e2 ∈ B2 − B1 s.t. (B1 − e1) ∪ e2 is maximally
independent inM.

Exercise 4.2 (k) Show that a collection I of subsets of S that satisfies
Base Axioms satisfies the Independence Axioms.

4.2.2 Rank Axioms

Let M be a matroid on S. The rank of a subset T ⊆ S is defined
to be the size of the maximally independent set contained in T. We
know that this number is well defined since all maximally independent
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subsets of T have the same cardinality. We denote rank of T by r(T ).
The number r(S) is often called the rank ofM and is also denoted by
r(M).

It is clear that r(·) takes value 0 on ∅ and that it is an integral,
increasing function on subsets of S. Also r(X ∪ e)− r(X) ≤ 1 ∀ X ⊆
S, e ∈ S. We then have the following:

Theorem 4.2.3 (k) Let r(·) be the rank function of a matroid on S.
Let X ⊆ S and let e1, e2 ∈ S.

i. If r(X ∪ e1) = r(X ∪ e2) = r(X), then r(X ∪ e1 ∪ e2) = r(X).

ii. r(X ∪ e)− r(X) ≥ r(Y ∪ e)− r(Y ) whenever X ⊆ Y ⊆ S − e.

iii. r(·) is submodular, i.e.,

r(T1) + r(T2) ≥ r(T1 ∪ T2) + r(T1 ∩ T2) ∀ T1, T2 ⊆ S.

Proof :
i. Let Bx be a maximally independent subset of X. Clearly Bx is also
a maximally independent subset of X∪e1 as well as of X∪e2. Suppose
it is not a maximally independent subset of X ∪ e1 ∪ e2. Then Bx ∪ e1
or Bx ∪ e2 must be independent. But this would violate the conditions
of the theorem.

ii. Select any maximally independent subset Bx of X and grow it into
a maximally independent subset By of Y . Now r(X ∪ e) − r(X) ≥ 0
and r(Y ∪ e) − r(Y ) can be 0 or 1. So we need only consider the
case where r(Y ∪ e) − r(Y ) = 1. In this case By is not maximally
independent in Y ∪ e. So By ∪ e must be independent. But then so
must Bx ∪ e be independent (by the first characteristic property of
independent sets) and r(X ∪ e)− r(X) = 1. Thus in all cases we have
r(X ∪ e)− r(X) ≥ r(Y ∪ e)− r(Y ).

iii. Let T2 − T1 = {e1, · · · , ek}. We then have

r(T2)− r(T1 ∩ T2) = r((T1 ∩ T2) ∪ e1)− r(T1 ∩ T2)

+ r((T1 ∩ T2) ∪ e1 ∪ e2)− r((T1 ∩ T2) ∪ e1) + · · ·
+ r((T1 ∩ T2) ∪ e1 · · · ∪ ek)− r((T1 ∩ T2) ∪ e1 ∪ · · · ∪ ek−1)

≥ r(T1 ∪ e1)− r(T1) + · · ·
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+ r(T1 ∪ e1 ∪ · · · ∪ ek)− r(T1 ∪ e1 ∪ · · · ∪ ek−1)

≥ r(T1 ∪ T2)− r(T1).

2

Example 4.2.5 In the case of the polygon matroid M(G) associated
with graph G (independent set ≡ subforest), the rank function of the
matroid is the same as the rank function of the graph. For the bond
matroid M∗(G) associated with G, the rank function of the matroid is
the same as the nullity function of the graph.

Submodular functions play a key role in subsequent developments
in this book. Matroid rank functions are an important example of
submodular functions. One can choose rank functions as a starting
point for the description of matroids.

III. Rank Axioms: Let S be a finite set and let r(·) be an integer
valued submodular function on subsets of S satisfying in addition

r(∅) = 0

0 ≤ r(X ∪ e)− r(X) ≤ 1 ∀ X ⊆ S, e ∈ S.
We call r(·) a matroid rank function.

Exercise 4.3 Show that in Theorem 4.2.3 (ii) and (iii) are equivalent
and, if r(·) takes lower values on a subset of a given set than on the
set, then (i) is implied by either.

Exercise 4.4 (k) Let r(·) be a matroid rank function on subsets of S.
Let I be the collection of all subsets X of S for which r(X) =| X | .
Let members of I be called independent. Show that the pair (S, I) is
a matroid (satisfying the Independence Axioms).

4.2.3 Circuit Axioms

Circuits of matroids satisfy the conditions given in the following the-
orem. These conditions can be used to define an axiom system for
matroids using circuits as primitive objects.

Theorem 4.2.4 (k) Let M ≡ (S, I) be a matroid and let C1, C2 be
circuits ofM with ec ∈ C1 ∩C2 and e1 ∈ C1−C2. Then there exists a
circuit C3 ⊆ C1 ∪ C2 − ec s.t. e1 ∈ C3.
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We need the following lemma for the proof of the theorem.

Lemma 4.2.1 (k) Let M, C1, C2 be as in Theorem 4.2.4. Then there
exists a circuit C ′

3 ⊆ C1 ∪ C2 − ec.

Proof of Lemma 4.2.1: We use the Independence Axioms. Let Bc

be a maximally independent set contained in C1 ∪ C2 and containing
C1−e1. Now C1 6⊆ Bc and C2 6⊆ Bc. Hence, e1 6∈ Bc and C2−C1 6⊆ Bc.
Also C2 has at least one element not belonging to the other circuit.
Hence, | Bc |≤| C1 ∪ C2 | −2.
Next, let B be a maximally independent set contained in C1 ∪C2 and
containing C2 − ec. Clearly ec 6∈ B. Now | B |=| Bc |≤| C1 ∪ C2 | −2.
Hence there exists an element e′1 ∈ C1−B−ec. Now e′1∪B is dependent
and therefore contains a circuit. This circuit does not contain ec and
may be taken as the desired circuit C ′

3.

2

Proof of Theorem 4.2.4: The result is clearly true when the union
of the two circuits has size 3 or, trivially, when it is 2. Let us suppose
that the result is true when the size of the union of the two circuits is
less than n.
Now let | C1 ∪ C2 |= n, ec ∈ C1 ∩ C2 and e1 ∈ C1 − C2. There exists a
circuit C ′

3 ⊆ C1 ∪C2− ec, by Lemma 4.2.1. If e1 ∈ C ′
3 we are done. So

let us assume that e1 6∈ C ′
3.

We have, C ′
3 6⊆ C1. and C ′

3 ⊆ C1 ∪ C2. So C ′
3 ∩ C2 6⊆ C1 ∩ C2. Let

e2 ∈ C ′
3 ∩ C2 − C1 ∩ C2.

Consider C2 ∪ C ′
3. Now e1 6∈ C2 ∪ C ′

3 so that | C2 ∪ C ′
3 |< n. Further

e2 ∈ C ′
3 ∩C2 and ec ∈ C2 −C ′

3. By the induction hypothesis there is a
circuit C ′

2 ⊆ C2 ∪ C ′
3 − e2 s.t. ec ∈ C ′

2.
Consider C1 ∪ C ′

2. We have ec ∈ C ′
2 ∩ C1 and e1 ∈ C1 − C ′

2. Further
e2 6∈ C1∪C ′

2 so that | C1∪C ′
2 |< n. Hence, by the induction hypothesis,

there exists a circuit C3 ⊆ C1 ∪ C ′
2 − ec s.t. e1 ∈ C3.

2

Example 4.2.6 (k) In the case of the polygon matroid M(G) asso-
ciated with graph G (independent set ≡ subforest), a circuit of the
matroid is the same as a circuit of the graph. For the bond matroid
M∗(G) associated with G (independent set ≡ subcoforest), a circuit of
the matroid is the same as a cutset of the graph. For the matroid asso-
ciated with the columns of a matrix, a circuit is a minimal dependent



146 4. MATROIDS

set of columns.

IV. Circuit Axioms: Let S be a finite set. A matroid M is a pair
(S, C) where C is a family of subsets of S called circuits satisfying
i. No member of C is a proper subset of another.
ii. Let C1, C2 ∈ C and let ec ∈ C1 ∩ C2 and e1 ∈ C1 − C2. Then there
exists C3 ∈ C s.t. C3 ⊆ C1 ∪ C2 − ec and e1 ∈ C3.

Exercise 4.5 (k) Let M≡ (S, C) satisfy the circuit axioms. Let I be
the class of subsets of S that do not contain a member of C. Show that
(S, I) satisfies the independence axioms.

4.2.4 Closure Axioms

The span of a set of vectors X is the collection of all linear combi-
nations of vectors in X. Sets of vectors X and Y are said to cospan
each other, if each is contained in the span of the other. The span of
X is also spoken of as the vector space generated by X. Suppose
Y ⊇ X. Then the span of X relative to Y is the collection of all
linear combinations of vectors in X which lie in Y. We generalize this
notion to matroids as follows:
Let M ≡ (S, I) be a matroid and let r(·) be its rank function (i.e.,
r(X) is the size of the maximally independent set contained in X).
The span or closure of X ⊆ S, denoted ∫ (X), is the maximal super-
set of X that has the same rank as X. As in the case of vectors, subsets
X and Y are said to cospan each other in M if each is contained in
the span of the other. A subset is closed if it is equal to its closure.
Closed sets of matroids are also called its flats.
Suppose Y1, Y2 ⊇ X and r(Y1) = r(Y2) = r(X). Then it follows by
submodularity that r(Y1 ∪ Y2) = r(Y1 ∩ Y2) = r(X). Thus, there is a
unique maximal superset of X which has rank r(X). Hence, the notion
of span is well defined.
Suppose e ∈ ∫ (X)−X. Then it is clear that r(e ∪X) = r(X). Thus,
there is a maximally independent set Bx ⊆ X s.t. Bx∪e is dependent.
The circuit L(e, Bx) has only the element e outside X. On the other
hand if C is a circuit s.t. C−X = {e′}, then C− e′ can be grown to a
maximally independent set B contained in e′ ∪X. Clearly e′ ∪B ⊇ C
and therefore, e′ 6∈ B. Hence, B ⊆ X and r(X) = r(X ∪ e′).
We thus see that



4.2. AXIOM SYSTEMS FOR MATROIDS 147

Lemma 4.2.2 (k) An element ei ∈ (∫ (X)−X) iff there exists a circuit
Ci s.t. {ei} = Ci −X.
Example 4.2.7 (k) We have already described the closure (span) op-
erator for vectors.
In the case of the polygon matroid M(G) associated with graph G (in-
dependent set ≡ subforest), the closure of a set of edges T is obtained
by first building the subgraph GT on T and then adding all the edges of
G with both end points in the same component of G . T. The edge set
of this new graph is ∫ (T ).
In the case of the bond matroidM∗(G) associated with G (independent
set ≡ subcoforest), the closure of T ⊆ E(G) is obtained as follows:
Delete T from G. Let Ta be the set of coloops of G . (E − T ). Then in
the matroid M∗(G), ∫ (T ) = T ∪ Ta.

It can be verified that the ‘closure (span) operator’ satisfies the follow-
ing properties:
(S1) X ⊆ ∫ (X) ∀ X ⊆ S;
(S2) Y ⊇ X ⇒ ∫ (Y ) ⊇ ∫ (X) ∀ X, Y ⊆ S;
(S3) ∫ (X) = ∫ (∫ (X)) ∀ X ⊆ S;
(S4) if y 6∈ ∫ (X), but y ∈ ∫ (X∪x), then x ∈ ∫ (X∪y) ∀X ⊆ S, ∀ x, y ∈
S.

Exercise 4.6 (k) Prove property (S4) for the span operator of a ma-
troid.

These properties can be used to construct an axiom system for matroids
in terms of the notion of span or closure.

V. Closure Axioms: Let S be a finite set and let ∫ : 2S → 2S. Then
∫ (·) is a matroid closure operator iff it satisfies the properties (S1),
(S2), (S3), (S4).
We then have the following theorem.

Theorem 4.2.5 (k) Let ∫ (·) be a matroid closure operator on subsets
of a set S. Let I be the collection of subsets of S defined by

X ∈ I ⇒ e 6∈ ∫ (X − e) ∀ e ∈ X.

Then (S, I) satisfies the Independence Axioms of a matroid.

The proof of this theorem is contained in the solution to the following
exercises.
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Exercise 4.7 (k) Let I be defined as in Theorem 4.2.5. Show that
Y ∈ I and X ⊆ Y ⇒ X ∈ I.
Exercise 4.8 (k) Let I be as in Theorem 4.2.5. Show that, if T ⊆ S,
and X is a maximal subset of T that is also a member of I, then
∫ (X) = ∫ (T ).

Exercise 4.9 (k) Let I be as in Theorem 4.2.5. Let B1, B2 be maximal
members of I. Let e1 ∈ B1. Show that there exists e2 ∈ B2 s.t. (B1 −
e1) ∪ e2 is a maximal member of I.

4.3 Dual of a Matroid

Matroids occur naturally in pairs. Consider a vector space V on S.
Let R be a standard representative matrix of V. If

B S − B

R ≡
[

I
... K

]

, (4.1)

then we know that

B S − B

R∗ ≡
[

−KT ... I
]

, (4.2)

is a representative matrix of V⊥. Let M(V) denote the matroid on S
whose independent sets are independent column sets of a representative
matrix of V (note that column dependence structure of all represen-
tative matrices of V is identical). Then it is clear that the bases of
M(V⊥) are cobases ofM(V) and vice versa. This situation holds also
for arbitrary matroids and the pairs of matroids are said to be dual to
each other.

Theorem 4.3.1 (k) Let M ≡ (S, I) be a matroid. Then, M∗ ≡
(S, I∗), where X ∈ I∗ iff S −X contains a base of M, is a matroid.

Proof : It is clear that if X ⊆ Y and Y ∈ I∗, then X ∈ I∗. So
we need only verify thatM∗ satisfies the Base Axioms with condition
(ii’). Let B∗

1 , B
∗
2 be two maximal members of I∗. Let e1 ∈ B∗

1 − B∗
2 .

Now, by the definition of M∗, B1 ≡ S − B∗
1 , B2 ≡ S − B∗

2 are bases
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of M and e1 ∈ B2 − B1. Hence, by condition (ii) of Base Axioms,
there exists e2 ∈ B1 − B2 s.t. (B1 − e2) ∪ e1 is a base of M. But then
e2 ∈ B∗

2 −B∗
1 and S− ((B1− e2)∪ e1) is a maximal member of I∗, i.e.,

(B∗
1 − e1)∪ e2 is a maximal member of I∗. ThusM∗ ≡ (S, I∗) satisfies

the Base Axioms with condition (ii’) and hence is a matroid.

2

Let M ≡ (S, I) be a matroid. Then the dual matroid of M
denoted byM∗, is the pair (S, I∗) where X ∈ I∗ iff S −X contains a
base ofM.
It is clear that (M∗)∗ =M.

Example 4.3.1 (k) If V is a vector space on S then (M(V))∗ =
M(V⊥). IfM(G) is the polygon matroid associated with graph G, then
we know that M(G) = M(Vv(G)) and (M(G))∗ = M((Vv(G))⊥) =
M(V i(G)). Thus matroid (M(G))∗ is the bond matroid associated with
G, for which the independent subsets are subcoforests. When the graph
G is planar there exists a graph G∗ s.t. Vv(G∗) = V i(G). It would follow
that M(G∗) = (M(G))∗.
Exercise 4.10 (k) Give an informal algorithm for the construction of
G∗, where G is a planar graph, whose embedding on a plane is given.

The circuit of the matroid M∗ is called a bond of M. The following
theorem gives some characterizations of a bond.

Theorem 4.3.2 (k) LetM≡ (S, I) be a matroid. A subset K ⊆ S is
a bond ofM iff any of the following equivalent conditions are satisfied:

i. K is a circuit of M∗.

ii. K is a minimal set that intersects every base of M.

iii. K is a minimal set that meets no circuit ofM in a single element.

We need the following lemma to prove the theorem.

Lemma 4.3.1 (k) Let L be independent in M ≡ (S, I) and let K be
independent inM∗. Further let L∩K = ∅. Then there exists a base of
M that contains L and does not intersect K.

Proof of Lemma 4.3.1 By the definition of independence in M∗,
S − K contains a base B of M. Now L is independent in M and is
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contained in S−K. So there exists a subset B′, that is maximally inde-
pendent inM under the condition that it contains L and is contained
in S − K. Now | B′ |=| B | (condition (ii) of Independence axioms).
Hence B′ is the desired base ofM.

2

Proof of Theorem 4.3.2: Condition (i) is the definition of a bond.
We will show that (ii) and (iii) are equivalent to (i).

(i) ⇔ (ii): K is a minimal set that is not contained in any base of
M∗, equivalently, that intersects every base of M (since bases of M
are complements of bases ofM∗).

(i) ⇔ (iii): Suppose K is a circuit of M∗. Let T ⊂ K. Then T is
independent inM∗. Let B∗

T be a base ofM∗ that contains T. Let BT

be the complement of B∗
T . Clearly BT is a base ofM and BT ∩ T = ∅.

Let e ∈ T. Consider the circuit L(e, BT ) of M (the unique circuit of
M contained in e ∪ BT ). This circuit intersects T in {e}. Thus every
proper subset of K meets some circuit ofM in a single element.
Next, supposeK meets a circuit C ofM. Let e ∈ C∩K.We have, K−e
independent inM∗ and C−e independent inM. If (C−e)∩(K−e) = ∅,
by Lemma 4.3.1, there exists a base B of M that contains C − e but
does not intersect K − e. Now e ∈ B or e ∈ (S − B). In the former
case C ⊆ B and in the latter K ⊆ (S − B) which contradicts the
independence of B inM and S −B inM∗ respectively. We conclude
that C − e and K − e must intersect. Thus, | C ∩K |> 1.
Thus, K is a minimal set that meets no circuit ofM in a single element.

Next, let K be a subset of S that has the property P of meeting no
circuit of M in a single element. Then, K cannot be contained in a
cobase ofM, since, if e ∈ S−B, where B is a base ofM, then L(e, B)
meets (S − B) in e. Hence, K contains a circuit of M∗. So if K is a
minimal subset having the property P, then K contains a circuit K1

of M∗. We have already seen that the circuit K1 of M∗ must have
the property P. So if K1 ⊂ K there would be a contradiction. We
conclude that K1 = K, i.e., K is a circuit ofM∗.

2

We next relate the rank function of a matroid to that of its dual.

Theorem 4.3.3 (k) Let M ≡ (S, I) be a matroid and let M∗ ≡
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(S, I∗) be its dual. Let r(·), r∗(·) be the rank functions of M and M∗

respectively. Then

r∗(X) =| X | −(r(S)− r(S −X))

Proof : We have, r∗(X) ≡ size of a maximal subset of X that is
a member of I∗. Now T ∈ I∗ iff there exists a base of M that is
contained in S − T. Thus,

r∗(X) = size of a maximal subset of X whose complement contains
a base of M

= size of the complement relative to X of a minimal subset of X
that is the intersection of a base ofM with X.

Now a base of M has minimal intersection with X iff it has maximal
intersection with (S −X). Hence, the size of a minimal intersection of
a base of M with X = r(S)− r(S −X). Therefore, r∗(X) is the size
of the complement of a set of size (r(S)− r(S −X)) relative to X. It
follows that, r∗(X) =| X | −(r(S)− r(S −X)).

2

We know that, if B is a base ofM and e 6∈ B, then e∪B contains a
unique circuit L(e, B) called the fundamental circuit of e with respect
to B in the matroid M. Let et ∈ B. Now (S − B) is a base of M∗.
Consider the fundamental circuit of et with respect to (S − B) in the
matroidM∗. This is a bond ofM and meets B in et. We call this bond,
the fundamental bond of et with respect to B in the matroid
M and denote it by B(et, B). We then have the following theorem.

Theorem 4.3.4 (k) Let B be a base of a matroidM on S. Let et ∈ B
and let ec ∈ S − B. Then

i. B ∪ ec − et is a base of M iff
ec ∈ B(et, B) or, equivalently, et ∈ L(ec, B) and hence

ii. ec ∈ B(et, B) iff et ∈ L(ec, B).

Proof :
i. We know that B ∪ ec contains a unique circuit L(ec, B). If et ∈
L(ec, B), then B ∪ ec − et is independent inM and has the same size
as B and, therefore, is a base of M. If et 6∈ L(ec, B), then B ∪ ec − et
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contains L(ec, B) and is therefore not a base of M. Thus, B ∪ ec − et

is a base ofM iff et ∈ L(ec, B).
On the other hand, working with the dual matroid, (S − B) ∪ et − ec

is a base of M∗ iff ec belongs to the fundamental circuit of et with
respect to S − B in M∗. Equivalently, B ∪ ec − et is a base of M iff
ec ∈ B(et, B).

ii. We have, from the above, that B ∪ ec − et is a base of M iff
et ∈ L(ec, B) and also iff ec ∈ B(et, B). The result follows.

2

Let us next consider the closure operators of a matroid and its dual.
We have the following

Theorem 4.3.5 (k) Let M be a matroid on S. Let ∫ (·), ∫ ∗(·) be the
closure operators of M,M∗ respectively. Let T ⊆ S and let B,B′ be
bases of M that intersect T maximally and minimally, respectively,
among all bases of M. Then

i. e ∈ ∫ (T ) iff e ∈ T or e ∪ (B ∩ T ) is dependent in M.

ii. e ∈ ∫ (T ) iff e ∈ T or e ∈ S −B and (L(e, B)) ∩B ⊆ T.

iii. e ∈ ∫ ∗(T ) iff e ∈ T or e ∈ B′ and (B(e, B′)) ∩ (S − B′) ⊆ T,
where the fundamental circuit and bond are taken with respect to
M.

Proof : Let BT ≡ B ∩ T,B′
T ≡ B′ ∩ T. We will throughout consider

the case where e 6∈ T .
i. We have, e ∈ ∫ (T ) iff there exists a circuit C s.t. e ∈ C and
C − e ⊆ T (Lemma 4.2.2). Now, if e ∪ BT is dependent, there exists
a circuit contained in it. This circuit has e as a member, since BT is
independent. Hence, e ∈ ∫ (T ).
Next, if e ∈ ∫ (T ), we have, r(BT ) = r(T ) = r(T ∪ e) ≥ r(BT ∪ e).
We conclude (since r(·) is increasing), that r(BT ) = r(BT ∪ e). Hence
BT ∪ e is dependent.

ii. Let e ∈ ∫ (T ). Then by (i) above, e ∪ BT is dependent in M. So it
contains a circuit which has e as a member. This must be the unique
circuit L(e, B) contained in e ∪ B. Hence, L(e, B) ∩B ⊆ T.
Next suppose L(e, B)∩B ⊆ T, i.e., L(e, B)∩B ⊆ BT . But this means
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that e∪BT contains the circuit L(e, B). So e∪BT is dependent inM.
So by (i) e ∈ ∫ (T ).

iii. We first observe that B′ has a minimal intersection among all bases
ofM with T iff S −B′ has a maximal intersection among all bases of
M∗ with T . So by (ii) above, it follows that e ∈ ∫ ∗(T ) iff e ∈ T or
e ∈ (S − (S − B′)) and L∗(e, (S − B′)) ∩ (S − B′) ⊆ T,
where L∗(e, (S − B′)) is the fundamental circuit of e with respect to
(S −B′) in the matroidM∗.
Now L∗(e, (S −B′)) = B(e, B′). So e ∈ ∫ ∗(T ) iff e ∈ T or e ∈ B′ and
(B(e, B′)) ∩ (S −B′) ⊆ T.

2

Exercise 4.11 (k) Let G be a graph and let v ∈ Vv(G) and let i ∈
Vi(G). Let T ⊆ E ≡ E(G). Suppose only v/T, i/T are known about
v and i. Let ∫ (·), ∫ ∗(·) be the closure operators of M(G),M∗(G) re-
spectively. Show that v(e) (i(e)) can be uniquely determined iff e ∈
∫ (T ) (e ∈ ∫ ∗(T )).

Exercise 4.12 (k) Let f, g : ℜ → ℜ and let f(·) be increasing. Con-
sider the functions | · |, r(·) on subsets of S where | X | is the size of X
and r(·) is the rank function of a matroidM. Show that f(| · |)−g(r(·))
reaches a maximum on a closed subset of M.

4.4 Minors of Matroids

In this section we generalize the notion of minors of graphs and vector
spaces to matroids.

Let M ≡ (S, I) be a matroid. Let T ⊆ S. The restriction (or
reduction) ofM to T , denoted byM·T, is the matroid (T, IT ) where
IT is the collection of all subsets of T which are members of I. The
contraction ofM to T, denoted byM×T, is the pair (T, I ′T ) in which
X ∈ I ′ iff X ∪BS−T ∈ I whenever BS−T is a base ofM· (S− T ). We
show below thatM×T is also a matroid. A minor ofM is a matroid
of the form (M× T1) · T2 or (M· T1)× T2, T2 ⊆ T1 ⊆ S. Since there is
no room for confusion we omit the bracket while denoting minors.
It is clear from the definition thatM·T is a matroid. We prove below
thatM× T is also a matroid.
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Lemma 4.4.1 (k) Let M be a matroid on S and let X ⊆ T ⊆ S.
Suppose B1

S−T , B
2
S−T are two bases of M · (S − T ) and X ∪ B1

S−T is
independent in M. Then X ∪B2

S−T is also independent in M.

Proof : Suppose the lemma fails. Then there exist two bases B1
S−T , B

2
S−T

of
M· (S−T ) s.t. X ∪B1

S−T is independent, X ∪B2
S−T is dependent and

| B1
S−T − B2

S−T | is a minimum for these conditions. Let e ∈ B2
S−T −

B1
S−T . Then

e ∪ B1
S−T contains the unique circuit L(e, B1

S−T ) of M · (S − T ). Now
L(e, B1

S−T )
has some element e′ ∈ (B1

S−T −B2
S−T ). Hence, B3

S−T = (B1
S−T − e′)∪ e

is a
base ofM · (S − T ), using Theorem 4.2.2.
Let B1 be a base ofM containing X∪B1

S−T . We know that e∪B1 con-
tains the unique circuit L(e, B1). Now by the definition ofM· (S−T )
it follows that circuits ofM·(S−T ) are the same as circuits ofM con-
tained in (S−T ). Hence, L(e, B1) = L(e, B1

S−T ) and B3 ≡ (B1−e′)∪e
is a base ofM. Now X ∪B3

S−T ⊆ B3 and therefore, X ∪B3
S−T is inde-

pendent inM. But | B3
S−T −B2

S−T |<| B1
S−T −B2

S−T |, a contradiction.
We conclude that X ∪ B2

S−T is independent inM.

2

To prove that M× T ≡ (S, I ′T ) is a matroid, we will verify that
it satisfies the Independence Axioms. If Y ∈ I ′T and X ⊆ Y it is
clear from the definition of I ′T that X ∈ I ′T . Let T1 ⊆ T and let
X1, X2 be maximal members of I ′T contained in T1. Then X1, X2 are
maximal with respect to the property that X1, X2 ⊆ T1 and X1⊎BS−T ,
X2 ⊎BS−T are independent inM, for each base BS−T ofM· (S − T ).
Lemma 4.4.1 assures us that it is sufficient that they be independent
for every base BS−T of M · (S − T ). Hence, X1 ⊎ BS−T , X2 ⊎ BS−T

are maximally independent subsets of T1 ⊎ (S − T ) in M. Thus, |
X1 ⊎BS−T |=| X2 ⊎BS−T | and therefore, | X1 |=| X2 | as required.

Exercise 4.13 (k) Let M be a matroid on S and let T ⊆ S. Show
that

i. the union of a base ofM×T and a base ofM· (S−T ) is a base
of M.
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ii. r(M× T ) + r(M· (S − T )) = r(M).

We now study the relation between primitive notions (such as bases,
circuits, bonds) associated with a matroid and those associated with
restrictions and contractions of a matroid. We begin with bases.

Theorem 4.4.1 (k) Let M be a matroid on S. Let T ⊆ S. Then

i. BT is a base of M · T iff it is a maximal intersection of a base
of M with T.

ii. B′
T is a base of M× T iff it is a minimal intersection of a base

of M with T.

Proof :
i. BT is a maximal intersection of a base ofM with T iff it is a maximal
subset of T that is independent inM, i.e., iff BT is a base ofM · T.
ii. By the definition of M× T and Lemma 4.4.1 (see Exercise 4.13)
B′

T is a base of M× T iff B′
T ∪ BS−T is a base of M for some base

BS−T of M · (S − T ), i.e., iff a base B of M intersects T in B′
T and

intersects (S − T ) maximally among all bases of M, i.e., iff a base of
B ofM intersects T in B′

T and this intersection is minimal among all
bases ofM.

2

We next characterize circuits of minors.

Theorem 4.4.2 (k) Let M be a matroid on S and let T ⊆ S. Then

i. CT is a circuit of M· T iff it is a circuit of M contained in T.

ii. CT is circuit of M× T iff it is a minimal nonvoid intersection
of a circuit of M with T.

Proof :
i. Independent sets of M · T are just the independent sets of M
contained in T. Hence, CT is a minimal dependent set ofM·T iff it is
a minimal dependent set of M contained in T.

ii. Let CT be a circuit ofM× T. Let BS−T be a base ofM· T. Then
CT ∪ BS−T is a dependent set in M, by the definition of M× T and
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Lemma 4.4.1. Hence, CT ∪ BS−T contains a circuit which however
cannot be contained in BS−T (BS−T is independent in M). Hence,
there exists a circuit C ofM s.t. CT ⊇ C ∩ T.

Next consider a circuit C of M that has nonvoid intersection with
T. Now C − T is independent in M and, therefore, in M · (S − T ).
Hence, there exists a base BS−T of M · (S − T ) that contains C − T.
Now (C ∩ T ) ∪ (BS−T ) contains C and is therefore dependent in M.
Hence, C∩T is dependent inM×T , by the definition of independence
inM× T and using Lemma 4.4.1. Hence, C ∩ T contains a circuit of
M× T.

Let ℓ1 be the collection of circuits ofM×T and ℓ2, the collection of
minimal nonvoid intersections of circuits ofM with T. If C ∈ ℓ1(C ∈
ℓ2) no proper subset of C belongs to ℓ1 (belongs to ℓ2). We have fur-
ther shown that each member of
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ℓ1(ℓ2) contains a member of ℓ2(ℓ1). It follows therefore that ℓ1 = ℓ2.

2

Next we consider the closure operators of minors.

Theorem 4.4.3 (k) Let M be a matroid on S and let T ⊆ S. Let
∫ (·), ∫r(·), ∫c(·) be the closure operators respectively ofM,M·T,M×T.
Let P ⊆ T. Then

i. ∫r(P ) = (∫ (P )) ∩ T.

ii. ∫c(P ) = (∫ (P ∪ (S − T ))) ∩ T.

Proof :
i. We know by Lemma 4.2.2 that e ∈ ∫r(P ) iff e ∈ P or there exists a
circuit C ofM · T s.t. e ∈ C and (C − e) ⊆ P. Now circuits ofM · T
are identical to circuits ofM contained in T. So e ∈ ∫r(P ) iff e ∈ P or
there exists a circuit C of M s.t. C ⊆ T, e ∈ C and (C − e) ⊆ P. So
e ∈ ∫r(P ) iff e ∈ T and e ∈ ∫ (P ). This proves the required result.

ii. We have, e ∈ ∫c(P ) iff e ∈ P or there exists a circuit CT ofM×T s.t.
e ∈ CT and (CT −e) ⊆ P . If CT is a circuit ofM×T , then there exists
a circuit C ofM s.t. C∩T = CT . Now e ∈ C and (C−e) ⊆ P∪(S−T ).
Hence, e ∈ ∫ (P∪(S−T )), i.e., e ∈ (∫ (P∪(S−T )))∩T. Hence, e ∈ ∫c(P )
implies e ∈ (∫ (P ∪ (S − T ))) ∩ T.

Next let e ∈ (∫ (P ∪ (S−T )))∩T. Then either e ∈ P or there exists
a circuit C ofM s.t. e ∈ C∩T, (C−e) ⊆ P ∪(S−T ). We consider the
latter (nontrivial) situation. Let us suppose that C ∩ T is a minimal
subset under the conditions that C is a circuit of M and e ∈ C ∩ T.
We claim that C ∩ T is a circuit of M× T. Suppose otherwise. Then
there exists a circuit CT ofM×T that is a proper subset of C ∩T. (In
fact, by the minimality of C∩T , e 6∈ CT ). Let CT = C ′∩T where C ′ is
a circuit ofM and let e′ ∈ CT . Now e ∈ C−C ′, e′ ∈ C ∩C ′. Hence, by
Theorem 4.2.4, there exists a circuit C3 ⊆ C ∪C ′ s.t. C3 ⊆ C ∪C ′− e′
and e ∈ C3. But C3 ∩ T ⊂ C ∩ T and e ∈ C3 ∩ T. This contradicts the
minimality of C ∩ T. We conclude therefore, that C ∩ T is a circuit of
M× T. We thus have that e belongs to the circuit C ∩ T of M× T
and C ∩ T − e ⊆ P. Hence, e ∈ ∫c(P ).

2
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The next result speaks of the rank function of minors. We omit the
routine proof. (It is discussed in detail in a selfcontained manner in
Exercise 9.11).

Theorem 4.4.4 (k) LetM be a matroid on S. Let T ⊆ S. Let r(·), rr(·), rc(·)
be the rank functions of M,M· T,M× T respectively. Then

i. rr(X) = r(X), X ⊆ T,

ii. rc(X) = r(X ∪ (S − T ))− r(S − T ), X ⊆ T.

Lastly we relate the minors of the dual matroid to the duals of the
minors of the original matroid.

Theorem 4.4.5 (k) Let M be a matroid on S. Let T ⊆ S. Then

i. (M× T )∗ =M∗ · T,

ii. (M · T )∗ =M∗ × T.

Proof :
i. We observe that BT is a base ofM×T iff it is a minimal intersection
of a base of M with T , i.e., iff it is the complement of a maximal
intersection of a cobase of M with T , i.e., iff it is the complement
of a maximal intersection of a base of M∗ with T i.e., iff it is the
complement of a base ofM∗ · T.
ii. We have, by the definition of dual, a matroid is the dual of its dual.
Hence, by (i) above, (M∗ × T )∗ = (M∗)∗ · T =M · T

i.e., M∗ × T = (M∗ × T )∗∗ = (M · T )∗.

2

Exercise 4.14 (k) Let M be a matroid on S. Let P ⊆ Q ⊆ S. Show
that

i. (M ·Q · P )∗ =M∗ ×Q× P,

ii. (M×Q · P )∗ =M∗ ·Q× P.

Exercise 4.15 (k) Let M be a matroid on S and let T ⊆ S. Then,
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i. CT is a bond of M× T iff it is a bond of M contained in T,

ii. CT is a bond ofM· T iff it is a minimal nonvoid intersection of
a bond of M with T.

Exercise 4.16 (k) Let G be a graph on edge set E. LetM(G),M∗(G)
be the polygon and bond matroids associated with G. Let T ⊆ E. Then

i. M(G . T ) = (M(G)) · T,

ii. M(G × T ) = (M(G))× T,

iii. M∗(G . T ) = (M∗(G))× T,

iv. M∗(G × T ) = (M∗(G)) · T.
Exercise 4.17 (k) Let V be a vector space on S. LetM(V), (M∗(V))
be the matroid (dual matroid) associated with V. Let T ⊆ E. Show that

i. M(V . T ) = (M(V)) · T.

ii. M(V × T ) = (M(V))× T.

iii. M∗(V . T ) = (M∗(V))× T.

iv. M∗(V × T ) = (M∗(V)) · T.
Exercise 4.18 (k) Let G be a graph on E and let T ⊆ E. Use Exercise
4.16 to show that

i. C is a circuit of G . T (cutset of G . T ) iff it is a circuit of G
contained in T (it is a minimal nonvoid intersection of a cutset
of G with T ) and

ii. C is a circuit of G×T (cutset of G×T ) iff it is a minimal nonvoid
intersection of a circuit of G with T (it is a cutset of G contained
in T ).

A minor of a general form could be obtained from the original ma-
troid by a sequence of restrictions and contractions. As in the case of
graphs we can simplify these operations to a single contraction followed
by a single restriction or vice versa. The following result is needed for
such simplification.
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Theorem 4.4.6 (k) Let M be a matroid on S and let P ⊆ Q ⊆ S.
Then,

i. M ·Q · P =M · P.

ii. M×Q× P =M× P.

iii. M×Q · P =M · (S − (Q− P ))× P.

Proof :
i. Immediate from the definition of restriction.

ii. We have, by Theorem 4.4.5,
(M∗·P )∗ = (M∗·Q·P )∗ = (M∗·Q)∗×P = (M∗)∗×Q×P =M×Q×P
But (M∗ · P )∗ = (M∗)∗ × P =M× P.
We conclude thatM×Q× P =M× P.
iii. Let X be an independent set ofM×Q ·P. Then, by the definition
of restriction, X ⊆ P and X is independent inM×Q. Let BS−Q be a
base ofM· (S −Q). Then by the definition of contraction, X ∪BS−Q

is independent in M. By the definition of restriction X ∪ BS−Q must
be independent in M · (S − (Q − P )). Now BS−Q is a base of M ·
(S − Q) = M · (S − (Q − P )) · (S − Q). Hence, X is independent in
M · (S − (Q− P ))× P (note that (S − Q) ⊎ P = S − (Q − P ) since
P ⊆ Q). It is easy to see that the above sequence of implications can
be reversed. Hence, if X is independent inM· (S− (Q−P ))×P then
X is also independent inM×Q · P. Thus,

M×Q · P =M · (S − (Q− P ))× P

2

Exercise 4.19 (k) Let M be a matroid on S and let S ⊇ T1 ⊇ T2 ⊇
· · · ⊇ Tn. Show thatM×T1 ·T2×T3 · · · ·Tn can be written in the form
M× P · Tn for a suitable P ⊇ Tn.

4.5 Connectedness in Matroids

Connectedness for matroids is defined analogous to 2-connectedness
for graphs. LetM be a matroid on S. We say T ⊆ S is a separator of
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M iff no circuit ofM has a nonvoid intersection with both T as well as
(S−T ). A separator that contains no other separator as a proper subset
is called an elementary separator. The matroid M is connected
iff its underlying set is an elementary separator. The structure of
a matroid can be studied conveniently by studying the restrictions
(equivalently, contractions) on elementary separators. If V is a vector
space andM(V) is the matroid associated with it, then the separators
of V are the same as the separators ofM(V). In this section we study
connectedness in terms of the various primitive notions associated with
a matroid.

Theorem 4.5.1 (k) Let M be a matroid on S. Let T ⊆ S. Then T is
a separator of M iff the following equivalent conditions are satisfied

i. No circuit of M intersects both T and S − T.

ii. M× T =M · T.

iii. r(M× T ) = r(M· T ).

iv. r(M∗ × T ) = r(M∗ · T ).

v. No bond of M intersects both T and S − T.

Proof : By definition, T is a separator of M iff no circuit of M
intersects both T and S − T.
(i) and (ii) are equivalent:
Let no circuit ofM intersect both T and S − T.
Let B1, B2 be two bases of M s.t. B1 ∩ T,B2 ∩ T respectively have
minimal and maximal intersections with T among all bases ofM. Let
e ∈ (B2 − B1) ∩ T. Then L(e, B1) does not intersect (S − T ). Let
e′ ∈ L(e, B1)− B2. Clearly e′ ∈ T and B11 ≡ (B1 − e′) ∪ e is a base of
M. This base has more elements in common with B2 than B1. Further
| B11 ∩ T |=| B1 ∩ T | . Repeating this procedure we would ultimately
reach a base B1n s.t. B1n∩T ⊇ B2∩T and | B1n∩T |=| B1∩T | . This
shows that | B1 ∩ T |=| B2 ∩ T | . Thus, bases of M · T and M× T
are identical and hence M · T =M× T.
Next letM·T =M×T. Suppose there exists a circuit C that intersects
both T and S − T . Grow C ∩ T into a base BT of M · T (=M× T )
and C ∩ (S − T ) into a base BS−T ofM · (S − T ). Now since BT is a
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base ofM× T we must have BT ⊎BS−T as a base ofM, by Exercise
4.13. This is a contradiction, since the union contains the circuit C.
We conclude that there exists no circuit that intersects both T and
S − T.
(ii) and (iii) are equivalent:
(Note that r(M) denotes the size of a base of M and not the rank
function ofM). We need only show that ‘r(M·T ) = r(M×T )’ implies
‘M· T =M× T ’, since the reverse implication is trivial. Let B′

T be a
base of M× T. Then B′

T is an independent set of M contained in T.
Hence B′

T is independent inM·T. But r(M·T ) = r(M×T ) =| B′
T | .

Hence, B′
T is a base of M · T. Conversely let BT be a base of M · T.

Then BT is a maximal intersection of a base of M with T . Hence, it
contains a minimal intersection of a base ofM with T, i.e., BT contains
a base B′

T of M× T. Since r(M · T ) = r(M× T ) we conclude that
| BT |=| B′

T | and BT = B′
T . Hence, BT is a base ofM× T.

Thus, M · T =M× T.
(iii) and (iv) are equivalent:
We have r(M· T ) = r(M× T ) iff | T | −r(M· T ) =| T | −r(M× T ),
i.e., iff r(M∗ × T ) = r(M∗ · T ).

(iv) and (v) are equivalent:
Since (ii) and (iii) above are equivalent, we conclude that r(M∗×T ) =
r(M∗ · T ) iff T is a separator of M∗. But T is a separator of M∗ iff
no circuit ofM∗ intersects both T and (S − T ), i.e., iff no bond ofM
intersects both T and (S − T ).

2

Exercise 4.20 (k) Let V be a vector space on S. LetM(V) on S be the
matroid associated with V (independent sets correspond to independent
columns of a representative matrix of V). A subset T ⊆ S is a separator
of M(V) iff it is a separator of V.

4.5.1 Duality for Matroids

The mode of construction of dual statements involving matroids is very
similar to the case of vector spaces (Section 3.7). For completeness we
describe the basic notions and the procedure of dualization briefly.
Let M be a matroid on S. We associate withM
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i. A set of operations each of which converts M to a matroid on a
subset of S. A typical operation is (S−T1, T1−T2)(·), T2 ⊆ T1 ⊆
S, where

(S − T1, T1 − T2)(M) ≡M · T1 × T2.

ii. Classes of objects:

(a) class of bases

(b) class of cobases

(c) class of circuits

(d) class of bonds (circuits ofM∗)

(Actually any one of the four classes, circuits, bonds, bases and
cobases can be taken to be primitive and the others expressed in
terms of it. We have included all four classes for convenience).

Here is a list of results which ‘cause’ duality:

i. (M∗)∗ =M.

ii. (M·T1×T2)
∗ =M∗×T1·T2 =M∗×(S−(T1−T2))·T2,T2 ⊆ T1 ⊆ S

i.e., the operation (S−T1, T1−T2)(·) holds the same place relative
toM that the operation (T1−T2, S−T1)(·) holds relative toM∗.
We say
(S − T1, T1 − T2)(·) is dual to (T1 − T2, S − T1)(·).

iii. (Definition) T is a base ofM iff T is a cobase ofM∗.

iv. (Definition) C is a circuit ofM iff C is a bond ofM∗.

Below we dualize a statement about a matroid and the associated
set of operations and classes of objects. Consider the statement
i. ‘A subset is a circuit of M× T iff it is a minimal intersection of a
circuit of M with T ’.
The first step is to write the statement in terms ofM∗

‘A subset is a circuit of M∗ × T iff it is a minimal intersection of a
circuit of M∗ with T.’
Next we try to express the sets of objects involved in terms of the
appropriate dual matroid. Thus, ‘circuit of M∗ × T ’ becomes ‘bond
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of (M∗ × T )∗’ and ‘circuit ofM∗’ becomes ‘bond of (M∗)∗’. We thus
obtain the dual of (i):
id. ‘A subset is a bond of M · T iff it is a minimal intersection of a
bond ofM with T.’

4.6 Matroids and the Greedy Algorithm

A common class of optimization problems is characterized by the fact
that if one performs ‘local optimization’ at every step of the algorithm,
then, at the end of the algorithm, we have a global optimum. An
algorithm which performs local optimization at every step and does no
back tracking is called a greedy algorithm. Loosely, matroids can
be characterized as those structures for which the greedy algorithms
works. We make this statement more precise in this section.

Example 4.6.1 (k) We describe some problems for which the greedy
algorithm works.
i. Generate a forest of a graph.

Start with any nonselfloop branch, add additional branches always
avoiding circuit formation. When you can proceed no further the final
set of branches is a forest.

ii. Given a weight for each branch, generate the heaviest (lightest)
forest of the graph.

(Heaviest forest case) Start with the heaviest edge. If at any stage
T is the constructed set, add to T the heaviest edge e outside it under
the condition that e∪T contains no circuit. The algorithm terminates
with the heaviest forest of the graph.
(The reader might like to compare the above with Prim’s Algorithm
given in Subsection 3.6.3).

Example 4.6.2 Here is a problem for which the greedy strategy fails:
Let F = {{1, 2}, {1, 2, 3}, {2, 3, 4, 5}, {6}, {7, 8}}
Find a maximum size subset of {1, 2, 3, 4, 5, 6, 7, 8} that is a member of
F .

Suppose we start with {6} and check if there is a member of F
properly containing the set, we would find there is no such member.
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However, {6} is not the maximum size subset that is a member of F
(the required subset is {2, 3, 4, 5}).

Our main result relates matroids to the greedy algorithm. We need
some preliminary definitions.

Let S be a finite set and let I be a collection of subsets of S such
that ‘Y ∈ I, X ⊆ Y ’ implies ‘X ∈ I.’ Let w(·) be a real weight function
on S. Let the weight of a subset X of S, denoted by w(X), be defined
by w(X) ≡ ∑

e∈X w(e), X ⊆ S. Let us call a maximal member of I, a
base of I. Let X1, X2 be two bases of I. Let X1 ≡ {a1, · · · , ak}, X2 ≡
{e1, · · · , em} and further let w(a1) ≥ · · · ≥ w(ak) and let w(e1) ≥ · · · ≥
w(em). We define a preorder on the maximal members of I as follows:
X1 � X2 iff w(ai) > w(ei) whenever i is the least index s.t. w(ai) 6=
w(ei). If X0 is a base of I s.t. X0 � Xj , whenever Xj is a base of I,
we say that X0 is a lexicographically optimum base of I relative
to w(·).

Assume that we have an oracle (I−oracle) which tells us whether a
given subset of S belongs to I. Then it is clear that with | S | queries
to the I−oracle one can determine a lexicographically optimum base
of I relative to w(·) :
Let S ≡ {e1, · · · , en}. Without loss of generality let us assume that
w(e1) ≥ · · · ≥ w(en). Let ei1 be the heaviest element s.t. {ei1} ∈ I.
Begin with the set {ei1}. Suppose at some stage we have constructed
a member T ∈ I. Let ek be the lightest element of T. To grow T fur-
ther we look for the heaviest element ej in {ek+1, · · · , en} for which
T ∪ej ∈ I. If no such ej exists T is the lexicographically optimum base
of I.

Clearly the above algorithm can be called ‘greedy’ since the set is
grown to its full size by doing only local optimization with no back
tracking.

Theorem 4.6.1 (k) Let S be a finite set and I, a collection of subsets
of S s.t. X ⊆ Y, Y ∈ I implies X ∈ I,

i. [Gale68] Let w(·) be a weight function on S. If M ≡ (S, I) is
a matroid with I as the collection of independent subsets of M,
then a base of M, relative to w(·), is lexicographically optimum
iff it is a base of maximum weight.
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ii. If, for every weight function, the lexicographically optimum base
of I is also the base with maximum weight, then (S, I) is a ma-
troid.

Proof :
i. Only if: Let X be a lexicographically optimum base ofM relative
to w(·) and let Y be a base of maximum weight s.t. | Y ∩ X | is
the maximum possible. Let X ≡ {a1, · · · , ak}, Y ≡ {e1, · · · , ek} with
w(ai) ≥ w(aj), i ≤ j and w(ei) ≥ w(ej), i ≤ j. Let X 6= Y. Let r be
the highest index for which {a1, · · · , ar} = {e1, · · · , er}. (If a1 6= e1, we
take r to be zero.)
Now ar+1 6= er+1.We have X � Y. Hence, w(ar+1) ≥ w(er+1). Consider
the fundamental circuit L(ar+1, Y ). There exists an element ei ∈ (Y −
X) ∩ L(ar+1, Y ) s.t. Y ′ ≡ Y ∪ ar+1 − ei is a base ofM.
We have i ≥ r+1. Hence, w(ei) ≤ w(er+1) ≤ w(ar+1). Hence, w(Y ′) ≥
w(Y ). But this contradicts the fact that Y is the maximum weight
base nearest to X. We conclude therefore that X = Y.

if: Let Y ≡ {e1, · · · , ek},w(ei) ≥ w(ej), i ≤ j, be a base of M of
maximum weight and let X ≡ {a1, · · · , ak}, w(ai) ≥ w(aj), i ≤ j, be a
lexicographically optimum base of M. Suppose Y is not lexicograph-
ically optimum. Let r be the least index for which w(ar) > w(er).
(For i < r we must have w(ai) = w(ei)). Now {e1, · · · , er} cannot span
{a1, · · · , ar} as otherwise the base (Y−{e1, · · · , er})∪{a1, · · · , ar} would
have greater weight than Y . Let aj , j ≤ r, be an element that does not
belong to the span of {e1, · · · , er}. Consider L(aj , Y ). This set must
intersect {er+1, · · · , ek}. Let em belong to the intersection. Clearly
(aj ∪ Y ) − em is a base of M of greater weight than Y . This contra-
diction shows that w(ai) = w(ei), i ≤ k. Hence Y is a lexicographically
optimum base ofM.

ii. We will show that (S, I) satisfies the Independence Axioms. We
already have that X ⊆ Y, Y ∈ I implies X ∈ I. So we need only verify
that maximal members of I, contained in any subset T of S, have the
same size. Let B1, B2 be two such maximal members. Choose w(·) as
follows:
w(ei) = 0, ei 6∈ B1 ∪B2

w(ei) = 1, ei ∈ B1

w(ei) = α, ei ∈ B2 −B1.
Let | B1 |= n, | B2 −B1 |= p and let | B2 |= m. Suppose m > n. Then
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we can select α so that α < 1 but n < (m − p) + pα. In this case the
lexicographically optimum base clearly contains B1 (and no element
from B2 − B1). But we have w(B2) > w(B1), so that a base that
contains B1 (and does not intersect B2 − B1), cannot have maximum
weight. We can avoid this contradiction only if n = m.

2

Exercise 4.21 Let M be a matroid on S and let w(·) be a weight
function taking the values 1, 2, · · · , k. Let Tj ≡ w−1(k − j + 1). Show
that a base B of M has maximum weight iff B = B1 ⊎ · · · ⊎Bk where
Bj is a base of M· (⋃j

i=1 Ti)× Tj .

4.7 Notes

Matroids were introduced into combinatorics by H.Whitney in 1935
[Whitney35], when he described several equivalent axiom systems which
characterized the ‘abstract properties of linear independence’. One
such axiom system was also described by Van Der Waerden in his
book on Modern Algebra [Van der Waerden37]. Early work on the
lattice of flats of a matroid was done by Birkhoff [Birkhoff35]. In the
1940’s Rado and Dilworth made important contributions to this the-
ory [Rado42], [Dilworth44]. The subject received a big impetus when
Tutte solved the regular matroid and graphic matroid characterization
problems in 1959 [Tutte58], [Tutte59]. In mid 60’s important applica-
tions to combinatorial optimization were discovered by Edmonds and
Fulkerson [Edmonds+Fulkerson65], [Edmonds65a],
[Edmonds65b]. Since then, research in this area has remained very ac-
tive, both in theory and in applications. The reader who wishes to pur-
sue the subject further may refer to [Tutte65], [Tutte71], [Crapo+Rota70],
[Randow76], [Welsh76], [Aigner79], [White86]. Applications may be
found in [Papadimitriou+Steiglitz82],
[Lawler76], [Faigle87], [Recski89]. A good way of accessing the basic
papers of the subject is through [Kung86].
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4.8 Solutions of Exercises

E 4.1:
Example 4.2.1: This follows from the facts that

• maximal intersection of a forest (coforest) of G with T, T ⊆ E(G),
is a forest of G . T (coforest of G × T ),

• all forests of G . T have the same cardinality and that

• all coforests of G × T have the same cardinality.

Since forests and coforests are complements of each other, the bases of
either of (E(G), It), (E(G), Ic) are cobases of the other.

Example 4.2.2: This follows from the fact that maximally indepen-
dent subsets of columns of any submatrix of R (R∗) have the same
cardinality. Further if (I : K) is a standard representative matrix of V
then (−KT : I) is a standard representative matrix of V⊥. Since there
is a standard representative matrix corresponding to each maximally
independent subset of columns, we conclude that bases of either of
(S, I), (S, I∗) are cobases of the other.

Example 4.2.3: Let I12 be the collection of all sets of the form X∪Y ,
where X, Y are independent respectively in the matroidsM1,M2. We
will show that this collection satisfies the following property: If Z1,Z2

belong to I12 with |Z2| > |Z1|, then there exists e ∈ Z2−Z1 such that
e ∪ Z1 belongs to I12. From this it is easy to see that M12 ≡ (S, I12)
is a matroid and the exercise would follow immediately using Example
4.2.1. This theorem (as Theorem 11.2.6), is discussed in detail later.
The present proof follows the one in [Mirsky71].

Let Z1 = X1 ∪ Y1 and let Z2 = X2 ∪ Y2 with Xi, Yi respectively
independent in M1, M2. Further let the division of Z1 into X1 ∪ Y1

be such that the ‘cross sum’ |X1∩Y2|+ |X2∩Y1| is a minimum among
all such divisions. Now if |Z2| > |Z1|, we must have |X2| > |X1| or
|Y2| > |Y1|. Wlog let the latter be true. Then there exists e ∈ (Y2−Y1)
such that e∪ Y1 is independent inM1. Suppose e ∈ X1. But then the
division of Z1 = X1−e∪ (Y1∪e) is a lower cross sum than the division
X1 ∪ Y1, which is a contradiction.



4.8. SOLUTIONS OF EXERCISES 169

Hence it is not true that e ∈ X1 and therefore e ∈ (Z2 − Z1). Thus
we have e ∪ Z1 = X1 ∪ (Y1 ∪ e) as a member of I12 as required.

Example 4.2.4: (sketch) Let T ⊆ V (G) and let I1, I2 be two maximal
members of Im contained in T. There exist matchings M1,M2 which
meet I1, I2. Consider the subgraph of G on M1 ∪M2. (Note that the
vertex set of this subgraph may contain vertices outside T ). It can be
seen that each component of this subgraph is either a circuit graph or
a path graph. If | I2 |>| I1 | we must have the subset I2

′ of I2 in one
of these components of larger size than the subset I1

′ of I1 in the same
component. It is then possible to find a matching in this component
which meets I1

′ ∪ v for some v ∈ I2′ − I1′. Hence, I1 ∪ v ∈ Im. This is
a contradiction. We conclude that | I1 |=| I2 | .
E 4.2: Let I satisfy Base Axioms with condition (ii’) (the case where
condition (ii) is satisfied is easier). In order to show that it satisfies the
Independence Axioms we need only show that maximally independent
subsets contained in T ⊆ S have the same cardinality.

Case 1: T = S.
If B1, B2 are bases and e ∈ B1 − B2, we can find an e′ ∈ B2 − B1 s.t.
(B1 − e) ∪ e′ is a base. If we repeat this procedure we would finally
get a base Bk ⊆ B2 s.t. | Bk |=| B1 | . But one base cannot properly
contain another. So Bk = B2 and | B2 |=| B1 | .
Case 2: T ⊂ S.
Suppose X ≡ {x1, · · · , xk} and Y ≡ {y1, · · · , ym} are maximally inde-
pendent sets contained in T. Further let k < m. First grow X to a base
Bx and Y to a base By. Let

Bx ≡ {x1, · · · , xk, pk+1, · · · , pr}

By ≡ {y1, · · · , ym, qm+1, · · · , qr}
(Note that both pi and qj are outside T .) Since k < m, there is an
element pt ∈ Bx − By. Hence, there is an element z in By − Bx s.t.
(Bx − pt) ∪ z is a base. Now z cannot be one of the yi as otherwise
X would not be a maximally independent subset contained in T. So
z = qs say. We thus have a new base B′

x ≡ (Bx−pt)∪ qs. Observe that
(By −B′

x)∩ (S − T ) ⊂ (By −Bx)∩ (S − T ). Repeating this procedure
we would reach a base Bf

x s.t. Bf
x ∩ (S − T ) ⊃ By ∩ (S − T ).

Now if e ∈ Bf
x−By , then there must exist z′ ∈ By−Bf

x s.t. (Bf
x−e)∪z′
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is a base. But then z′ ∈ Y and X∪z′ is independent, which contradicts
the fact that X is a maximally independent subset of T.
We conclude therefore that | X |=| Y |, i.e., that maximally indepen-
dent subsets contained in T have the same cardinality.

E 4.4:
i. Let Y ∈ I and let X ⊆ Y. We need to show that X ∈ I.
We have r(∅) = 0 and r(A∪e) ≤ r(A)+1 ∀ A ∈ S. Hence, r(X) ≤| X |
and r(Y ) − r(X) ≤| Y | − | X | . Hence, if r(X) <| X |, we must
have r(Y ) <| Y |, a contradiction. We conclude that r(X) =| X |, i.e.,
X ∈ I.
ii. Let B1, B2 be two maximal members of I contained in a subset T
of S. We need to show that | B1 |=| B2 | .
For each ei ∈ T − B1 we have r(B1) ≤ r(B1 ∪ ei) <| B1 | +1, since
B1 is a maximal subset of T with the property that size and rank are
equal. Hence, r(B1 ∪ ei) = r(B1) ∀ ei ∈ T − B1. Now, if P,Q are sets
such that r(B1 ∪ P ) = r(B1 ∪Q) = r(B1) then

r(B1 ∪ P ) + r(B1 ∪Q) ≥ r(B1 ∪ P ∪Q) + r(B1 ∪ (P ∩Q)),

by submodularity of r(·). Since LHS equals 2r(B1) and RHS is greater
or equal to 2r(B1) (r(·) is an increasing function), It follows that

r(B1 ∪ P ∪Q) = r(B1 ∪ (P ∩Q)) = r(B1).

Thus by induction we can prove that

r(B1 ∪ e1 ∪ · · · ∪ ek) = r(B1),

where {e1, · · · , ek} = T − B1. Hence, r(B1) = r(T ).
Similarly we must have r(B2) = r(T ).
We conclude that | B1 |= r(B1) = r(B2) =| B2 | as required.

E 4.5: We will show that maximal subsets of T ⊆ S that do not
contain a circuit have the same cardinality.
Let B1, B2 be two such ‘maximally independent’ sets contained in T.
If B1 6= B2, clearly B1 6⊇ B2. Let e2 ∈ B2 −B1. Then e2 ∪B1 contains
a circuit.
We claim this circuit is unique. Otherwise if C1, C2 are two such circuits
since both have e2 as a member, by the circuit axioms there exists a
circuit C3 ⊆ C1 ∪ C2 − e2. This is a contradiction, since C3 ⊆ B1.
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Let L(e2, B1) be the unique circuit contained in e2 ∪ B1. Since {e2}
is not a circuit (it is contained in B2) we must have that L(e2, B1) ∩
B1 6= ∅. Further L(e2, B1) cannot be wholly contained in B2. Hence,
L(e2, B1) ∩ (B1 − B2) 6= ∅. Let e1 belong to this intersection. Then
B′

1 ≡ e2 ∪ B1 − e1 is independent.
We claim that B′

1 is also maximally independent. For, let e′ ∈ T −B′
1.

Clearly, if e′ = e1 we have e′ ∪ B′
1 containing L(e2, B1). Suppose e′ 6=

e1. Now e′ ∪ B1 contains a circuit L(e′, B1). If this circuit does not
contain e1 then L(e′, B1) ⊆ e′∪B′

1. So let e1 ∈ L(e′, B1). Now L(e2, B1)
and L(e′, B1) have a nonvoid intersection which contains e1. Hence,
L(e2, B1) ∪ L(e′, B1) − e1 contains a circuit. This circuit is contained
in e′ ∪ B′

1.
Thus, we see that e′ ∪B′

1 is dependent for all e′ ∈ T − B′
1.

Now we have a maximally independent subset B′
1 of T which has the

same cardinality as B1 but satisfies | B2−B′
1 |<| B2−B1 | . Repeating

this procedure we get a maximally independent subset Bk of T that has
the same cardinality as B1 but contains B2. But this means Bk = B2

and hence, | B1 |=| B2 | .
E 4.6: We have r(X) 6= r(X ∪ y). Hence, r(X ∪ y) = r(X) + 1. Since
y ∈ ∫ (X ∪ x) it follows that

r(X ∪ x) = r(X ∪ x ∪ y) ≥ r(X ∪ y) = r(X) + 1.

Further, r(X∪x) ≤ r(X)+1. Thus, x 6∈ ∫ (X) and r(X∪x) = r(X)+1.
Let B be a maximally independent set contained in X. Then B cannot
be maximally independent in X ∪ x since r(X ∪ x) =| B | +1. Hence,
B ∪ x must be a maximally independent subset of X ∪ x.
We know that B∪x∪y must be dependent, since r(X∪x∪y) =| B∪x | .
Hence there exists a (unique) circuit C ⊆ B ∪ x ∪ y that has y as a
member. If x 6∈ C we would have that r(B ∪ y) = r(B) and therefore,
by submodularity, r(X ∪ y) = r(X) which is a contradiction.
We conclude that x ∈ C. Noting that C − (X ∪ y) = {x} and using
Lemma 4.2.2 we see that x ∈ ∫ (X ∪ y) as required.

E 4.7: [Welsh76] It is clear that ∅ ∈ I. Let X ⊆ Y, Y ∈ I but X 6∈ I.
Since X 6∈ I there exists e ∈ X s.t. e ∈ ∫ (X−e). But then e ∈ ∫ (Y −e)
using (S2). Hence, Y 6∈ I, a contradiction.

E 4.8: [Welsh76] We will first show by contradiction that T−∫ (X) = ∅.
Let e ∈ T −∫ (X). We will show that X ∪ e ∈ I, i.e., if e′ ∈ X ∪ e then
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e′ 6∈ ∫ ((X ∪ e)− e′).
This is obviously true when e′ = e. Let e′ 6= e. Then e′ ∈ X. Suppose
e′ ∈ ∫ ((X − e′) ∪ e). We know that e′ 6∈ ∫ (X − e′) since X ∈ I.
Therefore, by (S4) e ∈ ∫ ((X−e′)∪e′) = ∫ (X), a contradiction. Hence,
we conclude that e′ 6∈ ∫ ((X ∪ e) − e′) and therefore that X ∪ e ∈ I.
But this contradicts the maximality of X. Hence, T − ∫ (X) = ∅, i.e.,
∫ (X) ⊇ T.
So by (S3) and (S2) we have ∫ (X) = ∫ (∫ (X)) ⊇ ∫ (T ). But X ⊆ T and
by (S2) ∫ (X) ⊆ ∫ (T ). Therefore, ∫ (X) = ∫ (T ).

E 4.9: By Exercise 4.8, ∫ (B1) = ∫ (B2) = S. Since B1 ∈ I, e1 6∈
∫ (B1 − e1). Hence, ∫ (B1 − e1) 6⊇ B2, as otherwise, using (S3) and
(S2), ∫ (B1 − e1) = ∫ (∫ (B1 − e1)) ⊇ ∫ (B2) = S. Hence, there exists
e2 ∈ B2 − ∫ (B1 − e1). But e2 ∈ ∫ ((B1 − e1) ∪ e1). So by (S4), e1 ∈
∫ ((B1 − e1) ∪ e2). Hence, by (S1), ∫ ((B1 − e1) ∪ e2) ⊇ (B1 − e1) ∪ e1.
Now by (S3) and (S2),

∫ ((B1 − e1) ∪ e2) = ∫ (∫ ((B1 − e1) ∪ e2)) ⊇ ∫ (B1) = S.

Next, by using arguments of Exercise 4.8, we have (B1 − e1) ∪ e2 ∈ I.
Since ∫ ((B1 − e1) ∪ e2) = S, (B1 − e1) ∪ e2 is a maximal member of I
as required.

E 4.10: We have the embedding of G on a plane, i.e., G is drawn on
a plane so that edges do not cross. This divides the plane into re-
gions or meshes including the outermost region. Give all the internal
meshes a clockwise orientation and the outermost region an anticlock-
wise orientation. Let B be the matrix whose rows are circuit vectors
corresponding to the meshes including the outermost mesh. Now each
edge lies in precisely two meshes and its direction agrees with the ori-
entation of one of the meshes and opposes the orientation of the other
mesh. From this we infer that in each column of B there is precisely
one +1, one -1 and the rest zero entries. So B is the incidence matrix
of another graph G2. This is the desired dual graph G∗.
Sketch of justification
Let v be the number of vertices, e be the number of edges, and p
the number of components of G. Then, by induction, one can show
that G has (e − v + p + 1) regions (including the outermost). By our
construction G∗ is connected and has (e − v + p + 1) vertices. So the
rank of B must be e− v+ p. Further each row is a circuit vector of G.
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Hence rows of B span V i(G). Thus Vv(G∗) = V i(G) as required.

E 4.11: Construct a forest f of G (i.e., a base ofM(G)) that has the
maximal intersection among all forests of G with T (i.e., build a forest
of G . T and extend it to a forest f of G). Let e ∈ E − f. Suppose
L(e, f) meets f within f ∩ T. Let ic be the circuit vector correspond-
ing to L(e, f). Now iTc v = 0. Hence, −ic(e)v(e) = (ic/f)T (vc/f) =
(ic/T )T (vc/T ). The RHS is known and hence v(e) is uniquely deter-
mined. Hence, by Theorem 4.3.5 if e ∈ ∫ (T ) then v(e) can be uniquely
determined.
Next suppose e 6∈ ∫ (T ). Then we know by the above theorem, that
e∪(f∩T ) is independent. Grow (f∩T )∪e into a forest f ′ of G. Choose
a voltage vector v′ as follows: v′/(f ∩ T ) = v/(f ∩ T ), v′(e) 6= v(e)
and v′(e′) = 0, ∀ e′ ∈ f ′ − (T ∪ e). Let [I|K] be the f-circuit ma-
trix of G relative to f ′ with the identity matrix corresponding to
E − f ′. Let v′

E−f ′ ≡ v′/E − f ′,v′
f ′ ≡ v′/f ′. Then, since [I|K]v′ = 0,

v′
E−f ′ = −Kv′

f ′. Thus, v′ can be assigned values on E − f ′ consistent
with the earlier assignment on f ′ so that it becomes a voltage vector
of G. Further v′ and v agree over f ∩T. So by the earlier argument we
have v/T = v′/T. It is thus clear that if e 6∈ ∫ (T ), then v(e) cannot be
uniquely determined from v/T. The argument for the current case is
similar (dual) working with coforests, f-cutsets and f-cutset matrices.

E 4.12: Suppose f(| X |)− g(r(X)) is a maximum among all subsets
of S. Let Y ≡ ∫ (X). Now Y ⊇ X and r(Y ) = r(X). Hence, since f(·)
is an increasing function

f(| Y |)− g(r(Y )) ≥ f(| X |)− g(r(X)).

This proves the required result.

E 4.13:
i. Let BT be a base ofM× T and let BS−T be a base ofM· (S − T ).
By the definition of M× T , BS−T ∪ BT is independent inM. Hence,
r(M× T ) ≤ r(M)− r(M · (S − T )).
Next, BS−T can be extended to a base B of M. By the definition of
M· (S−T ), we must have BS−T = B∩ (S−T ). Now (B∩T )∪BS−T is
independent inM. Hence by the definition ofM×T and Lemma 4.4.1,
B∩T must be independent inM×T. Hence, r(M×T ) ≥ r(M)−r(M·
(S−T )).We conclude therefore that r(M×T ) = r(M)−r(M·(S−T ))
and BS−T ∪ BT is a base of M.
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ii. This is immediate from the above.

E 4.14: Using Theorem 4.4.5 we get
i. (M·Q · P )∗ = (M ·Q)∗ × P = (M∗ ×Q)× P =M∗ ×Q× P
ii. (M×Q · P )∗ = (M×Q)∗ × P = (M∗ ·Q)× P =M∗ ·Q× P.
E 4.15:
i. The subset CT is a bond ofM×T iff it is a circuit of (M×T )∗, i.e.,
ofM∗ · T. Now a circuit ofM∗ · T is simply a circuit ofM∗ contained
in T , or equivalently, a bond ofM contained in T.

ii. The subset CT is a bondM· T iff it is a circuit of (M· T )∗, i.e., of
M∗×T. Now a circuit ofM∗×T is a minimal nonvoid intersection of
a circuit ofM∗ with T , i.e., a minimal nonvoid intersection of a bond
ofM with T.

E 4.16: From the chapter on graphs we know that forests of G . T are
maximal intersections of forests of G with T, forests of G ×T are mini-
mal intersections of forests of G with T, coforests of G . T are minimal
intersections of coforests of G with T , coforests of G × T are maximal
intersections of coforests of G with T. Now bases of the polygon ma-
troid associated with a graph are precisely the forests of the graph and
bases of the bond matroid associated with a graph are precisely the
coforests of the graph. The results now follow from the definitions of
contraction and restriction of a matroid.

E 4.17:

i. Let R ≡ (RT
...RS−T ) be a representative matrix of V. Then rows of

RT span rows of V . T. Hence the column dependence structure of RT

is the same as the column dependence structure of any representative
matrix of V · T. Now a set of columns of RT are independent iff they
are independent in R. Hence, M(V . T ) = (M(V)) · T.
ii. We have M(V⊥) =M∗(V) for any vector space.
SoM(V × T ) =M((V⊥)⊥ × T ) =M((V⊥ · T )⊥) = (M(V⊥ · T ))∗

NowM(V⊥ · T ) = (M(V⊥)) · T.
Hence,M(V × T ) = ((M(V⊥)) · T )∗ = (M(V⊥))∗ × T = (M(V))× T
as required.

iii. M∗(V . T ) ≡ (M(V . T ))∗ = ((M(V)) · T )∗, = (M(V))∗ × T,=
(M∗(V))× T.
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iv. M∗(V × T ) = (M(V × T ))∗ = ((M(V)) × T )∗ = (M(V))∗ · T =
(M∗(V)) · T.
E 4.18: Use the facts that
(a) A circuit of a graph is the same as a circuit of the polygon matroid
of the graph.
(b) A cutset of a graph is the same as a bond of the polygon matroid
of the graph.
Now use Theorem 4.4.2, Exercise 4.15 and Exercise 4.16.

E 4.19: Use Theorem 4.4.6 whenever there is a sequence ‘contrac-
tion, restriction, contraction’ and convert to ‘restriction, contraction,
contraction’. The latter simplifies to just two operations - restriction
followed by contraction. Do this repeatedly.

E 4.20: We have, by Exercise 4.17, M(V . T ) = (M(V)) · T and
M(V×T ) = (M(V))×T. Further T is a separator of V iff V . T = V×T
and T is a separator ofM(V) iff (M(V)) · T = (M(V))× T.
Hence, T ⊆ S is a separator ofM(V), if it is a separator of V.
On the other hand, since V . T ⊇ V × T , if V . T 6= V × T , we must
have r(V . T ) 6= r(V × T ). Hence, M(V . T ) 6= M(V × T ), i.e.,
(M(V)) · T 6= (M(V)) × T. So, if T is not a separator of V, it would
not be a separator ofM(V).

E 4.21: A maximum weight base is the same as a lexicographically
optimum base relative to w(·). A base B of the latter type would have
edges from the subsets of Ti in the priority sequence T1, · · · , Tk. Let
B = B1 ⊎ · · · ⊎ Bk where Bi ≡ B ∩ Ti. Clearly

⋃j
i=1Bi is a maximal

intersection of a base of M with
⋃j

i=1 Ti. Hence, by the definition of
restriction,

⋃j
i=1Bi is a base ofM·(⋃j

i=1 Ti). If j = 1, sinceM·T1×T1 =
M·T1 we have B1 as a base ofM·T1×T1. Let j > 1. In this case

⋃j
i=1Bi

is a maximal intersection of a base of M · (⋃j
i=1 Ti) with (

⋃j
i=1 Ti).

Therefore, Bj is a minimal intersection of a base ofM· (⋃j
i=1 Ti) with

Tj , i.e., Bj is a base of M· (⋃j
i=1 Ti)× Tj .

Conversely, let B = B1⊎· · ·⊎Bk, where Bj is a base ofM·(⋃j
i=1 Ti)×Tj .

Clearly B1 is a maximal intersection of a base ofM with T1. Suppose
⋃j−1

i=1 Bi is a maximal intersection of a base of M with
⋃j−1

i=1 Ti. Then
⋃j−1

i=1 Bi is a base of M · (⋃j−1
i=1 Ti) (by the definition of restriction).

Now we are given that Bj is a base of M · (⋃j
i=1 Ti) × Tj . It follows

that (Exercise 4.13) (
⋃j−1

i=1 Bi) ∪ Bj is a base of M · (⋃j
i=1 Ti). Thus,

⋃j
i=1Bi is a maximal intersection of a base of M with

⋃j
i=1 Ti. Thus,
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B contains elements of Ti in the priority sequence T1, · · · , Tk, i.e., it
is a lexicographically optimum base of M relative to w(·), i.e., it is a
maximum weight base of M.



Chapter 5

Electrical Networks

5.1 Introduction

In this chapter we give a brief introduction to electrical network analy-
sis. The aim is to make the book self contained and also to fix notations
and conventions. We begin by giving the multiterminal and 2-terminal
descriptions of an electrical network. We then give a list of the stan-
dard devices that are used in electrical networks. Next we give a short
description of the common methods of analysis with, in the case of
modified nodal analysis (MNA), a mention of its merits and demerits.
After this we give a sketch of the working of a general purpose simu-
lator. This sketch and the description of MNA are given so that one
may better appreciate the need for topological hybrid analysis, which is
dealt with in the next chapter. This is followed by an informal account
of state equations for networks assuming that the initial conditions of
all the capacitors and inductors can be assigned independently of each
other. (In Chapter 8 we show that using multiport decomposition we
can handle more general situations and also reduce the network with-
out losing information of its dynamics). We then give an informal
description of multiport decomposition for networks. As an applica-
tion of this idea we state and prove the ‘generalized Thevenin - Norton
Theorem’. Finally we discuss two elementary results of network theory
- substitution theorem and superposition theorem.

177
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5.2 In Terms of Multiterminal Devices

An electrical network is obtained by the interconnection of a collec-
tion of multiterminal devices. Each of the devices may have one or
more terminals. The behaviour of the devices can usually be described
independently of each other, but this is not always the case.

The multiterminal device behaviour is specified through a relation
of the form

f(
∫

v,v, v̇,
∫

i, i, i̇) = 0,

where
∫

v = (
∫

v1dt,
∫

v2dt . . . ,
∫

vkdt) and the other symbols have
similar meanings, v1, v2 . . . , vk are the terminal potentials of the device
and i1, i2 . . . , ik, the current entering these terminals (see Figure 5.1).

3i

V3

i2

V2

t3 t2

ik

i 1 V1

kV

as

t1

tk

Figure 5.1: A Multiterminal Device

The interconnection of these devices consists in identifying the ter-
minals of different devices with single nodes. This interconnection may
be represented by a bipartite graph B ≡ (VL, VR, E). Here,

VL is the set of nodes of the network
VR is the set of devices in the network
E is the collection of all terminals of all the devices in the network.

So if terminal tij of device di is incident on node nr of the network
we join node nr ∈ VL with node di ∈ VR by an edge tij directed towards
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di. Figure 5.2 shows an electrical network N made up of multiterminal
devices and the bipartite graph representing the interconnection of the
devices in the network.
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Figure 5.2: An Electrical Network N and its Bipartite Graph Repre-
sentation

Multiterminal Network Constraints

The constraints of the network are

i. the device characteristics:
These are the relations between the terminal voltages and ter-
minal currents of each of the devices. If a set of pairs of the
form (v(·), i(·)) make up the device characteristic D, we need the
condition

∑

ij(·) = 0 (net current entering the device through
all its terminals must add to zero). Further we also must have
((v(·) + k, i(·)) belonging to D for arbitrary k (i.e, every compo-
nent of v(·) shifted by the same constant k) whenever (v(·), i(·))
belongs to D, since we would like the device characteristic to be
insensitive to reference changes in potential.
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ii. the topological constraints:

(a) the potentials of all terminals, which are connected to the
same node, are to be the same.

(b) the sum of the currents entering all the terminals of a device
is zero and the sum of the currents leaving each node is zero.

5.3 In Terms of 2-Terminal Devices

It is possible to develop network theory using multiterminal devices
as the basis. There are advantages to doing this atleast in some spe-
cial situations. For historical reasons electrical network theory has
developed using only 2-terminal devices (which may be coupled in the
device characteristic). Since it can be shown that any n-terminal de-
vice is equivalent to (n − 1) coupled two terminal devices there is no
real loss of generality. Thus we have the second formulation:

An electrical network is obtained by interconnecting two ter-
minal devices which thus become the edges of a directed graph G.
Each two terminal device dj is represented by a directed edge j and is
associated with a voltage vj and a current ij .

We may call the tail of the arrow of the edge the ‘positive terminal’
and the head of the arrow the ‘negative terminal’ of the device. The
voltage vj associated with the jth edge is equal to (vj+ − vj−) where
vj+ is the positive terminal potential and vj−, the negative terminal
potential. Of course the actual value of vj+, vj− may not necessarily
be positive or negative. The current ij associated with the edge j is
the current flowing through the device in the direction of the arrow.

2-terminal Network Constraints

The network has the following constraints:

i. (device characteristic) f(
∫

v,v, v̇,
∫

i, i, i̇) = 0 (here v is the
voltage vector composed of the voltages of all the devices, and i
is the current vector composed of the currents of all the devices).

ii. (KCE) the net current leaving any node is zero.
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iii. (KVE) the algebraic sum of the voltages around any loop is zero,
equivalently, the voltage vector is derived from a node potential
vector (see Subsection 3.3.2).

I1

n1

v1

v4

Node for KCE                               Loop for KVE

4I

I 2

I 3

v2

 

v5

v3

Figure 5.3: KCE and KVE

Example: In Figure 5.3 the net current leaving node n1 is i1 + i2 −
i3 + i4. KCE sets this expression to zero. In the KVE part of the same
figure the algebraic sum of the voltages around the loop in the given
orientation is v1 + v2 + v3 − v4 − v5. KVE sets this expression to zero.

The KCE and KVE constraints can be stated equivalently as v(t) ∈
Vv(G), i(t) ∈ Vi(G), ∀t ∈ ℜ (see Subsection 3.3.2). These are the
topological constraints.

The problem of network analysis is to solve the network, i.e., to
find the set of all ordered pairs (v(·), i(·)) which satisfy the above men-
tioned device characteristic and topological constraints. This latter set
is called the solution set of the network.

5.4 Standard Devices

We now list a number of standard devices which are used in electrical
networks. Some of these devices are made up of more than one coupled
two terminal device. Both the voltage and current associated with a
two terminal device would have the same reference arrow with the
voltage being the ‘tail potential minus head potential’ and the current
being the value of current flowing in the direction of the arrow.
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i. Voltage Source: Characteristic ve(t) = e(t).
(Figure 5.4). A voltage source imposes no constraint on the cur-
rent through it. We will denote the collection of voltage sources
by E .

ii. Current Source: Characteristic ij(t) = j(t).
(Figure 5.4). A current source imposes no constraint on the
voltage across it. We will denote the collection of current sources
by J .

Current Source Voltage Source

e (t)j (t)ij  (t) ve (t)

Figure 5.4: The Sources

iii. Resistor: Characteristic vr = Rir.
R is a positive number (Figure 5.5).
We will denote the collection of resistors also by R. During the
discussion of methods of analysis we permit coupled resistors
with the characteristic vR = RiR. Here R is an arbitrary matrix.

iv. Inductor: Characteristic vL = Li̇L.
L is a positive number (Figure 5.5).
We denote the collection of inductors by L.

v. Coupled inductors: Characteristic vL = Li̇L. Here L is a
symmetric positive definite matrix (Figure 5.5).
We denote the collection of coupled (or ‘mutual’) inductors by
M.
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vC , iCvR , iRR C

A Resistor A Capacitor

vL , iL vl  , il vk , ikL

An Inductor Coupled Inductors

L

Figure 5.5: Passive Linear Devices

vi. Capacitor: Characteristic iC = Cv̇C

C is a positive number (Figure 5.5). We will denote the collection
of capacitors by C. During the discussion of methods of analysis
we permit coupled capacitors with the characteristic

iC = Cv̇C .

vii. Nonlinear resistors, inductors and capacitors:

A nonlinear resistor would have the general characteristic fR(vr, ir) =
0 (Figure 5.6). The resistors could be coupled, in which case the
characteristic would be

fR(vR, iR) = 0.

A nonlinear inductor would have the general characteristic

vL =
dψL

dt

fL(iL, ψL) = 0

(Figure 5.6).
Coupled nonlinear inductors would have a general character-
istic of the same form as above except that iL, ψL, fL(·, ·) would
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vR ,iR v ,i ,iL,iL vC C

A nonlinear
Inductor
A nonliniear A nonlinear

Resistor Capacitor

Figure 5.6: Nonlinear Devices

be vectors.
A nonlinear capacitor would have the general characteristic

iC =
dqC
dt

fC(vC , qC) = 0

(Figure 5.6).

viii. Ideal transformer: An ideal transformer can be thought of
as several coupled 2-terminal devices called ‘ports of the trans-
former’ with an overall characteristic

v ∈ V

i ∈ V⊥

where V,V⊥ are complementary orthogonal real vector spaces on
the set S of the ports (Figure 5.7). In the figure,

(v1, · · · , vk) = v

(i1, · · · , ik) = i

The reader may observe that the voltage and current constraints
imposed by KCE and KVE of a graph make it into a special
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1i i1 i ik k

1v ivk k, i 1
,

                g

Figure 5.7: Ideal Transformer

case of an ideal transformer. A 2-port (1 : n) ideal transformer
satisfies

nv1 − v2 = 0

i1 + ni2 = 0

v1, i1 are primary voltage and current; v2, i2 are secondary volt-
age and current. Clearly, (v1, v2) belongs to the space spanned
by (1, n) and (i1, i2) belongs to the complementary orthogonal
space spanned by (−n, 1).

v1 ,i1

i1

,iv2

i2

2

r

Figure 5.8: Gyrator

ix. Gyrator: Characteristic

v1 = −ri2
v2 = ri1

(Figure 5.8).
r is called the gyration resistance and the arrow associated
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with r is called the direction of gyration. The gyration resis-
tance is taken to be positive. However, if the direction of gyration
is opposite to that in the figure we will have

v1 = ri2

v2 = −ri1

x. Ideal Diode: Characteristic

v ≤ 0, i ≥ 0

v = 0, if i > 0

i = 0, if v < 0

(Figure 5.9).

v,i

Figure 5.9: Ideal Diode

xi. Controlled sources: These are not independent sources but
coupled resistors of special kinds. In each case there are two
coupled 2-terminal devices (Figure 5.10).
(a) vccs (Voltage controlled current source): Characteristic

i1 = 0

i2 = gv1

(b) vcvs (Voltage controlled voltage source): Characteristic

i1 = 0

v2 = αv1
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(c) ccvs (Current controlled voltage source): Characteristic

v1 = 0

v2 = ri1

(d) cccs (Current controlled current source): Characteris-
tic

v1 = 0

i2 = βi1.

i 2

i 2

   VCCS

v1
i 1 v1 i 12 1

i 1

VCVS

v  =ri

     CCVS CCCS

i1 i2

v1
i2=gv1 v1

    

v
2

2

=αv1

i =βi1

Figure 5.10: Controlled Sources

xii. Norators and nullators: These devices are pathological –
introduced primarily for notational convenience. A norator per-
mits every (v, i) pair to be associated with it, i.e., it imposes no
device characteristic constraint. A nullator imposes v = 0 and
i = 0. Norator is useful for topological purposes such as to specify
ports.

Exercise 5.1 (k) Our reference convention is that for a two terminal
device a single arrow is shown for both v(·) and i(·) associated with
the device with v(·) being the ‘voltage drop across’ the device in the
direction of the arrow and i(·) the ‘current through’ the device in the
direction of the arrow. Power absorbed (in watts) by the device at
some time t is defined to be the product v(t) i(t).
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i. Justify this definition on physical grounds.

ii. Show that the power absorbed by a positive resistor is always non-
negative, that by a negative resistor is always nonpositive and that
by sources can be positive, negative or zero.

Exercise 5.2 i. (k) Suppose a network contains a voltage source
circuit. If the network has a solution, then show that the current
through the voltage sources in the circuit cannot be determined
uniquely.

ii. (k) If the network contains a current source cutset and is known
to have a solution, then show that the voltage across the current
sources in the cutset cannot be determined uniquely.

Exercise 5.3 (k) Let the network contain only voltage sources vE = e,
current sources iJ = j and vR = R iR. Suppose (v1, i1) is a solution of

the network when voltage sources value is given by the vector e1 and the
current sources value by the vector j1. Let (v2, i2) correspond to (e2, j2).
Show that there is a solution of the network (αv1 + βv2, αi1 + βi2)
corresponding to (αe1 + βe2, αj1 + βj2).

Exercise 5.4 (k) We have defined four types of controlled sources,
cccs, ccvs, vcvs, vccs

i. Suppose, in a given physical network, currents and voltages as-
sociated with some device, say a resistor, control the current or
voltage associated with some other device. How would you model
this situation using our controlled sources?

ii. Show how to model cccs and vcvs using the other two controlled
sources.

Exercise 5.5 (k) Let a capacitor C carry an initial voltage vo in a
certain circuit. Show that

i. if the final voltage of the capacitor is vf the capacitor has lost
energy = 1

2
C(v2

o − v2
f ) joules.

ii. the maximum electrical energy that can be extracted from the ca-
pacitor equals 1

2
Cv2

o joules.
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Exercise 5.6 (k) Let a nonlinear capacitor be defined by i =
dq
dt

,

q = q̂(v). Show that the energy delivered by this capacitor depends only
on the initial and final voltage.

Exercise 5.7 (k) Let a set of coupled inductors with the characteristic
v = L i̇ carry an initial current vector io. Show that

i. if the final current of the set of inductors is if show that the
coupled system has gained energy = 1

2
[iTf Lif − iTo Lio] joules.

ii. the maximum electrical energy that can be extracted from the cou-
pled system equals 1

2
[iTo Lio] joules.

Exercise 5.8 (k) Let a nonlinear inductor be defined by v =
dψ
dt , ψ =

ψ̂(i). Show that the energy delivered by this inductor depends only on
the initial and final current.

Exercise 5.9 i. (k) Show that the power absorbed by an ideal trans-
former is always zero.

ii. (k) Let a resistor R be connected across the secondary of a (1 : n)
ideal transformer, i.e., v2 = vR, i2 = −iR. (Observe that the
current through the secondary has to be taken to be the negative
of the current through the resistor if the voltages are taken to be
the same). Find the relation between the primary voltage v1 and
the primary current i1.

iii. Repeat the above if the secondary were ‘terminated’ alternatively
by inductor L, capacitor C, current source j(.) and voltage source
e(.).

iv. Let an ideal transformer be defined by the current equations

[

K I
]iA

iB
= 0

Suppose we terminate the B ports by resistors with the charac-
teristic vR = RiR. What would be the relation between vA and
iA?
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Exercise 5.10 (k) Let a gyrator have the characteristic
[

v1

v2

]

=

[

0 r
−r 0

]

i1
i2

i. Show that the power absorbed by the gyrator is always zero.

ii. What would be the relation betwen v1 and i1 if across the sec-
ondary we connect a resistor, a capacitor, inductor, voltage source
or current source?

Exercise 5.11 (k) Show that the power absorbed by an ideal diode is
always zero.

Exercise 5.12 The ideal transformer, gyrator and diode all absorb
zero power. However, it can be claimed that the ideal transformer sat-
isfies this condition in a way much stronger than the other two. Why?

Exercise 5.13 [Belevitch68] Show that any multiport ideal transformer
can be realized by a suitable connection of 2-port ideal transformers.

5.5 Common Methods of Analysis

Next we describe some common methods of analysis. We observe that
all methods of analysis must use KCE, KVE and device characteristic
constraints. They differ from one another only in the manner in which
these constraints are imposed. Although the methods of analysis that
we describe are valid for both linear and nonlinear networks, we con-
fine ourselves to the former for two reasons: (i) notational simplicity
(ii) most general purpose circuit simulators convert nonlinear network
analysis to the analysis of a sequence of linear networks.

5.5.1 Nodal Analysis

This method is directly applicable when the network has only current
sources and conductance type devices, i.e., devices whose currents
can be expressed in terms of voltages of the same or other nonsource
devices.

STEPS
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i. Write KCE for the network using a reduced incidence matrix
(obtained by omitting one row of the incidence matrix per com-
ponent of the graph). Shift the current source terms to the right.

ii. Express non source device currents in terms of device voltages,
i.e., impose device characteristic constraints.

iii. Express device voltages in terms of node potentials, i.e., impose
KVE constraints.

The final equations have node potentials as unknowns.

Now we derive the nodal equations according to the above steps.
We assume there are two types of devices G and J . The reduced

incidence matrix is denoted by Ar. We have Ar = (ArG
...ArJ), where

the columns have been partitioned into those corresponding to G and
those corresponding to J .

We then have

STEP 1

ArGiG = −ArjiJ (KCE)

STEP 2 Let

iG = GvG (device characteristics)

Then,

ArGGvG = −ArJ iJ

STEP 3







vG

· · ·
vJ





 =







AT
rG

· · ·
AT

rJ





vn (KV constraints) (5.1)

Hence, (ArGGAT
rG)vn = −ArJ iJ .

The last equation is the set of nodal equations for the network.
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Necessity and Sufficiency of Nodal Equations

Solving the nodal equations would give us the collection of all node
potential vectors. Starting from such a node potential vector vn, we
can obtain vG,vJ by using the KV constraints of STEP 3. We can
then obtain i using the device characteristic constraints of STEP 2.
Since iJ is already specified, we have found a solution (v, i) of the
network consistent with a node potential vector vn. On the other
hand suppose we have a solution (v, i). It is clear that STEP 1, STEP
2 would be satisfied by it. Further v would satisfy the KV constraints
of STEP 3 for some vn. This latter vector would satisfy the nodal
equations of the network. Thus, the nodal equations are necessary
and sufficient for the solution of this type of network. By this we
mean (a) every solution of the network after transformation to node
potential vector must satisfy the nodal equations, and (b) from each
solution of nodal equations we can derive a unique solution of the
network. In particular if the nodal equations have no solution, neither
will the network have a solution. If they have nonunique solutions, the
network will have nonunique solutions.

Effect of Current Source Topology

It can be seen that if J does not contain a cutset of the graph G
then deletion of J does not disconnect the graph and ArG remains
the reduced incidence matrix of the resulting graph. So r(ArG) =
r(ArGArJ). If the matrix G is positive definite (in particular positive
diagonal) then the coefficient matrix ArGGAT

rG is positive definite. So
the network has a unique solution.

If J contains a cutset there are two possibilities:

i. The current sources violate KCE, i.e, there is a cutset composed
only of current sources and the sum of the currents in the cutset
from the positive end vertex set to the negative end vertex set is
nonzero. In this case the network has no solution.

ii. The current sources do not violate KCE. In this case the nodal
equations have nonunique solutions since r(ArG) < r(ArGArJ)
= number of rows of ArG.
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Sparsity when G is Positive Diagonal

The case where G is a positive diagonal matrix is particularly impor-
tant. In this case the entries of ArGGAT

rG can be written down by
inspection. The diagonal entries are the sum of the conductances inci-
dent on the corresponding nodes while the (i, j)th offdiagonal entry is
the negative of the conductance between i and j.

The total number of nonzero entries is equal to 2(number of con-
ductance edges) + number of nodes - (number of conductance edges
incident at the node omitted from the reduced incidence matrix + 1).
So the matrix is sparse if the number of nodes ≫ 2(number of edges).
This method can be modified to take care of the case where voltage
sources are also present.
Where the type of network permits it, nodal analysis is currently the
most popular method of network analysis because of the sparsity of
the coefficient matrix in the method.

5.5.2 Loop Analysis

This method is directly applicable when the network has only voltage
sources and resistance type devices, i.e., devices whose voltages can be
expressed in terms of currents of the same or other nonsource devices.

STEPS

i. Write KVE for the network using a representative matrix B of
Vi(G), where G is the graph of the network. Shift the voltage
source terms to the right.

ii. Express nonsource device voltages in terms of device currents,
i.e., impose device characteristic constraints.

iii. Express device currents in terms of ‘loop currents’, i.e., impose
KCE constraints.

The final equations have loop currents as unknowns.

Now we derive the loop equations according to the above steps. We
assume there are two types of devices R and E . The representative ma-
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trix B of Vi(G) is partitioned into (BR
...BE ) according to the branches

in R and E .
We then have

STEP 1

BRvR = −BEvE (KCE)

STEP 2 Let

vR = R iR (device characteristic)

Then,

BRRiR = −BEvE
STEP 3







iR
· · ·
iE





 =







BT
R

· · ·
BT
E





 il (KV constraint) (5.2)

Hence, (BRRBT
R)il = −BEvE .

The last equation is the set of loop equations for the network.
The vector il is called the vector of loop currents associated with the
matrix B. It is the coordinate vector of i in the basis corresponding to
the rows of B.

By an argument parallel to the one that we used for nodal equations
we can show that loop equations are necessary and sufficient for
the solution of the above type of network: (a) Every solution of the
network after transformation to loop current vector must satisfy the
loop equations. (b) from each solution of the loop equations we can
derive a unique solution of the network.

Effect of Voltage Source Topology

It can be shown that if E does not contain a circuit of the graph G
then contraction of E does not reduce the nullity of G. So r(BR) =



5.5. COMMON METHODS OF ANALYSIS 195

r(BR
...BE ). If the matrix R is positive definite (in particular positive

diagonal) then the coefficient matrix BRRBT
R is positive definite. So

the network has a unique solution.

If E contains a circuit there are two possibilities:
i. The voltage sources violate KVE, i.e., there is a circuit composed
only of voltage sources and the sum of the voltages of the sources along
the orientation of the circuit is nonzero. In this case the network has
no solution.

ii. The voltage sources do not violate KVE. In this case the loop
equations have nonunique solution since

r(BR) < r(BR : BE ) = number of rows of BR.

Sparsity when R is Positive Diagonal

The case where R is a positive diagonal matrix is particularly im-
portant. In this case the entries of BRRBT

R can be written down by
inspection. The diagonal entry (k, k) is the sum of the resistances cor-
responding to the support of the kth row of B. The offdiagonal entry
(k,m) is equal to the sum of the resistances whose edges have the same
sign in row k and row m minus the sum of the resistances whose edges
have opposite sign in row k and row m. It is easily seen that the total
number of nonzero entries in the matrix can be quite large if the matrix
B is chosen carelessly. For instance it can be shown that if B is an
f-circuit matrix and has a forest edge common to all the f-circuits then
BRRBT

R has in general no zero entries. When the graph is planar we
can choose B to be the mesh matrix. In this case B has the properties
of a reduced incidence matrix and BRRBT

R would be sparse. (Meshes
are the windows into which the network divides the plane when drawn
on it without crossing of edges. The mesh matrix has one row per
mesh except the outer most mesh which is omitted. All the meshes are
given the same orientation, either clockwise or anticlockwise).

The Method of Planar Slices

If the graph is not planar one can construct a number of planar sub-
graphs G1,G2 . . .Gk s.t. (a)

⋃

E(Gi) = E(G) (b) E(Gj+1)∩ (
⋃j

i=1E(Gi))
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is a forest of the graph G · (⋃j
i=1E(Gi)), j = 1, · · · , k − 1. It can be

shown that Vi(G) =
∑Vi(Gi) and ν(G) =

∑

ν(Gi). So we can select
B to be the matrix obtained by taking the collection of all the rows
of the mesh matrices of Gi. If the intersecting forests are chosen with
care the resulting B matrix yields a sparse BRRBT

R (see Problem 3.24
[Ovalekar+Narayanan92]).

Loop analysis can also be modified to handle circuits which have
both voltage and current sources. However, where there is a choice
between nodal and loop analysis the former is invariably preferred.
This is because it is difficult to achieve sparsity for the loop analysis
matrix comparable to that of the nodal analysis matrix. Even if the
network is planar (where we can use mesh analysis which will result in a
sparse coefficient matrix), since in practice ranks of network graphs are
lower than their nullities, the matrix size would come out to be larger
than the nodal analysis matrix. However, there is a case for using loop
analysis as a supplement to nodal analysis. This hybrid analysis is
sometimes preferable to modified nodal analysis which latter we
describe next. Hybrid analysis is described in the next chapter.

5.5.3 Modified Nodal Analysis

This is a very simple technique which is applicable to all kinds of net-
works. It coincides with nodal analysis where the latter is applicable.

STEP 1 Divide the network into current sources J , conductance type
branches G and the remaining branches T . Write nodal analysis equa-
tions for the network treating both J and T as current source branches.

STEP 2 For each device in T write down the device characteristic
equations.

STEP 3 In the device characteristic equations of STEP 2 write branch
voltages in terms of node potentials.

The unknowns of the resulting MNA equations are node voltages
vn and the currents iT .

Now we derive the MNA equations according to the above steps.

The reduced incidence matrix Ar of G is partitioned as (ArG
...ArT

...ArJ).
We then have
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STEP 1.1

(ArG
...ArT )iGiT = −ArJ iJ (KCE)

STEP 1.2 Let

iG = GvG (device characteristic)

Then

(ArGG
...ArT )vG

iT
= −ArJ iJ .

STEP 1.3
















vG

· · ·
vT

· · ·
vJ

















=

















AT
rG

· · ·
AT

rT

· · ·
AT

rJ

















vn (KV constraint) (5.3)

Hence,

(ArGGAT
rG

...ArT )

[

vn

iT

]

= −ArJ iJ .

STEP 2 Let the device characteristic of the branches in T be

(

M N
)

[

iT
vT

]

= sT .

STEP 3 We have

vT = AT
rTvn.

Hence,

(M
... (NAT

rT ))

[

iT
vn

]

= sT .

Thus, the MNA equations for the linear static case are

[

ArGGAT
rG ArT

NAT
rT M

] [

vn

iT

]

=

[

−ArJ iJ
sT

]

.
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Static Nonlinear Networks

Let the network be static but nonlinear with the device characteristic
equations given below:

iG = g(vG)

h(vT , iT ) = 0.

Then the MNA equations for static nonlinear case would be

ArGg(AT
rGvn) + ArT iT = −ArJ iJ

h(AT
rTvn, iT ) = 0

Dynamic Nonlinear Networks

Let the network be dynamic and nonlinear with the device character-
istic equations given below:

iG1 = g(vG1)

iC2 =
d

dt
C(vC2)

vT1 =
d

dt
ψT1

h1(ψT1, iT1) = 0

iT2 =
dqT2

dt
h2(qT2,vT2) = 0
(

M N
)iT3

vT3

= sT3

Note that g(·), C(·) etc. are arbitrary functions.

The MNA equations for this case would be

ArG1 g(AT
rG1vn) + ArC2

d

dt
(C(AT

rC2vn)) + ArT1 iT1 + ArT2 iT2

+ArT3 iT3 = −ArJ iJ

d

dt
ψT1 −AT

rT1 vn = 0
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h1(ψT1, iT1) = 0

dqT2

dt
− iT2 = 0

h2(qT2,A
T
rT2vn) = 0

(M
... (N AT

rT3))
iT3
vn

= sT3.

We have described the MNA equations for nonlinear static and dy-
namic circuits only for completeness. For the purpose of studying the
structure of network equations the static linear case is the most
important as would be clear by the end of this chapter. We therefore
make a few remarks on the MNA equations for this case.

Necessity and Sufficiency of MNA Equations

It is easy to show that the MNA equations are necessary and sufficient.
Given any solution (v(·), i(·)) we can transform it into appropriate
vn, iT which satisify the MNA equations. On the other hand given
any solution vn, iT of the MNA equations we can find a corresponding
solution (v(·), i(·)) of the network.

Sparsity of MNA Equations

During the last thirty years the problem of computing the solution of
sparse linear equations has been extensively studied. Although there
are hardly any theoretical results in this area, extremely efficient prac-
tical algorithms using heuristics are available. The great merit of MNA
equations is that they are very sparse. Below we indicate why.

In most practical networks the bulk of the elements would be of
the conductance type. So the sparsity of the matrix is controlled by
the submatrix ArGGAT

rG. The structure of this matrix has already
been described in the discussion on nodal analysis. The matrix (M N)
usually has about two entries per row. (Consider ordinary resistors,
controlled sources etc.). Under this assumption it is clear that the

matrix (NAT
rT

...M) has about four entries per row since AT
rT has at

most two entries per row. The coefficient matrix of the MNA equations
is therefore very sparse. This in combination with the generality and
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simplicity of the method has made it very popular. Indeed it is the
method used in the general purpose circuit simulator SPICE (see for
instance [McCalla88]).

Defects of MNA

We will speak now of some of the defects of this way of writing equa-
tions. It is often the case that T ∪J will contain a cutset of the graph.

In such a case r(ArG) < r(ArG
...ArT

...ArJ) = number of rows of ArR.
So the matrix ArGGAT

rG would be singular. If we convert the coeffi-
cient matrix into the upper triangular form using the order of the rows
as the order of pivoting (using a nonzero entry of a column to reduce
all entries underneath it to zero) we would encounter a zero pivot by
the time we reach the end of the rows of ArGGAT

rG. Zero diagonal
elements are very often found in the matrix M (for example when the
branch corresponds to a voltage source). Thus, it is often the case
that the rows have to be reordered (differently from the columns as
otherwise the undesirable features would still remain). This disturbs
the symmetry of the matrix and reduces the efficiency of the solution
technique.

If the set T is relatively large the coefficient matrix is unsuitable for
iterative methods of solution of linear equations such as the conjugate
gradient technique. These usually perform well when the matrix is
positive definite or failing that has a large (relative to the size of the
matrix) positive definite principal diagonal submatrix. MNA matrix
does not yield a positive definite matrix even where hybrid method
(which we shall describe later) yields one. One way of looking at this
situation is to observe that MNA sacrifices both structural advantages
and reduction of unknowns in order to gain sparsity. The variables vn

can be reduced when G ·G has more components than G since for each
component of G ·G one node can be taken as the pseudo datum. The
variables iT can be reduced when T contains cutsets, i.e., when G × T
is not made up only of selfloops. We will show later how to reduce
variables without sacrificing sparsity excessively by the use of hybrid
methods.
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5.5.4 Sparse Tableau Approach

Here KCE is written in the form Ari = 0. The KV constraints are
imposed by writing AT

r vn − v = 0. Device characteristic constraints
are put down as they are. The final sets of unknowns are i,v and vn.
The method relies heavily on sparse LU techniques since the number
of variables is very large.

5.6 Procedures used in Circuit Simula-

tors

In this book, among other things, we advocate certain techniques for
building better circuit simulators. It is therefore necessary that we give
a very brief description of how general purpose circuit simulators are
built.

5.6.1 Example to Illustrate Working of Circuit Sim-
ulators

Consider the following problem:
Solve numerically the differential equation

dx

dt
+ x2 = u(t) (5.4)

over a given interval [0, T ] with time steps 0, h, 2h · · · for a given h.
The function u(.) is given over the same interval.

STEP 1 Discretization
We first discretize the differential equation to yield a nonlinear alge-
braic equation. Let us discretize using the simplest practical multistep
method, namely the ‘Backward Euler’. Here we replace

dx

dt
at t = tn by

x(tn)− x(tn−1)

tn − tn−1
.

For the present problem we take tn ≡ nh and tn − tn−1 ≡ h. This
converts Equation 5.4 to the equation
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x(nh)− x((n− 1)h)

h
+ (x(nh))2 = u(nh) (5.5)

At this stage instead of a differential equation we have a difference
equation. Note that we are not looking for a closed form solution.

In this equation observe that x((n − 1)h) and u(nh) are known –
the former by prior computation and the latter since it is given. We
now have to solve this nonlinear algebraic equation numerically.

STEP 2 Newton Raphson Procedure
We use the Newton Raphson (NR) procedure on the nonlinear algebraic
equation. Suppose we have to solve f(x) = 0, where f(·) is a smooth
function of x. The NR procedure consists in guessing a solution x = x◦

and replacing f(x) = 0 by

f(x◦) + (df/dx)x=x◦(x1 − x◦) = 0.

The next guess would be x1. The procedure is repeated until the xis
differ from each other within some bound chosen according to some
criterion. To apply this procedure to Equation 5.5 we first simplify the
equation to the form

(x/h) + (x)2 − û = 0.

Here x(≡ x(nh)) is the unknown. All the known terms are concen-
trated in û. Using the NR procedure on the simplified equation we get,

since
df
dx
≡ 1

h
+ 2x,

x◦

h
+ (x◦)2 − û+ (

1

h
+ 2x◦)(x1 − x◦) = 0. (5.6)

Equation 5.6 can be seen to be a linear equation in which the unknown
is the next guess.

So the numerical solution of Equation 5.4 entails the solution of a
number (= number of time steps) of nonlinear equations. Each of these
nonlinear equations is solved by solving a number of linear equations
successively.

Remark: In the above discussion we have glossed over the usual dif-
ficulties that one encounters while using multistep methods (such as
instability and inaccuracy) and while using the NR procedure (such as
singularity of the Jacobian).
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5.6.2 Working of General Purpose Circuit Simu-
lators

A general nonlinear dynamic circuit can be thought of as being made
up of a number of nonlinear differential equations. To solve these
equations using the above technique we have to solve a number of sets
of nonlinear equations (one set per time point) which in turn are solved
by solving a number of sets of linear equations (one set per guess).

However, the discretization and NR procedures can be adapted to
electrical networks. The problem of solving a set of equations of the
kind exemplified by Equation 5.5 can be converted into the problem of
solving a nonlinear static circuit, while that of solving a set of equations
like Equation 5.6 can be converted into the problem of solving a linear
static circuit.

Adaptation of Discretization Procedures to Network Analysis

We will now show how to adapt discretization procedures for the anal-
ysis of nonlinear dynamic circuits.

Let N be an electrical network on graph G with device characteristic
equations:

fR(vR, iR) = 0

iC −
dqC

dt
= 0

fC(qC ,vC) = 0

vL −
dψL

dt
= 0

fL(ψL, iL) = 0

vE − e = 0

iJ − j = 0

The functions fR, fC , fL are nonlinear functions of arguments which
are ordered pairs of vectors. Note that the set of R elements includes
all non-source, nondynamic elements. The set of C elements are non-
linear capacitors which may be coupled, while L elements are coupled
nonlinear inductors. The topological constraints of this network are
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Ari = 0 (KCE)

Bv = 0 (KVE)

To illustrate the method of adaptation of discretization procedures
to network problems we use the Backward Euler discretization.

We assume that the interval of interest is [0, T ] and this interval
has been broken up into time steps each of value h. We replace

dx

dt
|t=nh by

x(nh)− x((n− 1)h)

h
.

Now v(nh), i(nh) must any way satisfy KVE, KCE respectively and
these vectors along with q(nh) and ψ(nh) must satisfy the device char-
acteristic under the above replacement of the derivative by an expres-
sion linear in the present and immediate past value of the variable. We
then have the following constraints on v(nh), i(nh),q(nh), ψ(nh):

fR(vR(nh), iR(nh)) = 0

iC(nh)− qC(nh)− qC((n− 1)h)

h
= 0

fC(qC(nh),vC(nh)) = 0

vL(nh)− ψL(nh)− ψL((n− 1)h)

h
= 0

fL(ψL(nh), iL(nh)) = 0

vE (nh) = e(nh)

iJ(nh) = j(nh)

The above is the transformed version of the device characteristic.

In addition we have the KCE and KVE

Ar(i(nh)) = 0

B(v(nh)) = 0

Consider the problem of solving for v(nh), i(nh) in terms of vari-
ables whose (time) argument is less than nh. This is equivalent to
solving an electrical network since we have KCE, KVE and de-
vice characteristic constraints. The latter are transformed nonlinear
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static versions of the original (nonlinear dynamic) device character-
istics. Notice that only the dynamic constraints are transformed into
static constraints. Variables such as qC , ψL are not eliminated but are
left as part of the statement of the (in general nonlinear) static con-
straints on vC(nh), iC(nh),vL(nh), iL(nh) etc. The static constraints
such as fR(vR, iR) = 0, vE = e, iJ = j which do not involve the past
are left unchanged. The KCE and KVE constraints remain the same.

So the ‘new’ network topology is identical to the original one.

                
j(t)

e(t)

R LC

Figure 5.11: A dynamic network for discretization

Exercise 5.14 Transform the network in Figure 5.11 to a static net-
work corresponding to the ‘Backward Euler’ discretization procedure.

Exercise 5.15 Discretization procedures based on higher order mul-
tistep algorithms are usually preferred for greater accuracy. We give
some of them below. Transform the network in Figure 5.11 correspond-
ing to each of them.

dx

dt
|t=nh =

2

h
(xn − xn−1)−

dx

dt
|t=(n−1)h (Trapezoidal)

dx

dt
|t=nh =

12

5h
(xn−xn−1)−(

8

5
)
dx

dt
|t=(n−1)h+(

1

5
)
dx

dt
|t=(n−2)h (Third Order A−M)

dx

dt
|t=nh =

3

2h
(xn −

4

3
xn−1 +

1

3
xn−2) (Second Order Gear)
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Adaptation of the NR Procedure to Electrical Networks

Let N be a static nonlinear network on graph G. Let the device char-
acteristic equations be

fR(vR, iR) = 0

vE − e = 0

iJ − j = 0

where fR is a nonlinear function of the ordered pair (vR, iR). The set
of R elements includes all the nonsource elements. The topological
constraints are:

Ari = 0 (KCE)

Bv = 0 (KV E)

We can view the above set of constraints as a set of nonlinear equa-
tions and apply the NR procedure. We exploit the fact that some of
the constraints are linear/affine. Thus, we have the constraints:

fR(vR, iR) = 0

fE (vE ) = 0

fJ (iJ ) = 0

fi(i) = 0

fv(v) = 0

(The last two constraints are KCE and KVE).

Let us start with a guess (v◦, i◦).
We then get a set of linear equations in which the unknown is the next
guess (v1, i1) by applying the NR procedure as follows:

i. the nonsource devices:

fR(v◦
R, i

◦
R) +

∂fR
∂vR

|◦(v1
R − v◦

R) +
∂fR
∂iR
|◦(i1R − i◦R) = 0

where, assuming that (fR)T = (f 1, · · · , fk)
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and (vR)T = (vR1 , · · · , vRk
),

∂fR

∂vR

|◦ denotes the Jacobian











∂f1

∂vR1
. . . ∂f1

∂vRk

...
∂fk

∂vR1
. . . ∂fk

∂vRk











at v◦
R, i

◦
R and

∂fR
∂iR
|◦ denotes a similar Jacobian with respect to iR.

Observe that fR(v◦
R, i

◦
R) − ∂fR

∂vR
|◦v◦

R − ∂fR
∂iR
|◦(i◦R) is an expression

whose value is known and can be shifted to the right.

ii. the voltage sources:
Observe that fE (vE ) = vE − e. So the constraint vE − e =
0 transforms, in the variable v1

E , to the constraint v◦
E − e +

(I)(v1
E − v◦

E ) = 0, i.e., v1
E − e = 0. Note that the Jacobian

∂fE
∂vE

is the identity matrix. This is to be expected since the original
expression vE − e is affine in vE , (i.e., sum of a linear function
of vE and a constant term).

iii. the current sources:
Observe that fJ (iJ ) = iJ − j. So as in the case of the voltage

sources we get i1J − j = 0. Thus, the next guesses v1
E , i

1
J have

to agree with source values even if v◦
E , i

◦
E do not.

iv. the KCE:
We have fi(i) = A i. So we get A i◦ + A(i1 − i◦) = 0,
i.e., Ai1 = 0.
Thus the next guess currents have to satisfy KCE of the original
network even if the first guess currents do not.

v. the KVE:
Here B v = 0 transforms to B v1 = 0. So the next guess voltages
satisfy KVE of the original network even if the first guess voltages
do not.

We thus see that the problem of obtaining the next guess v1, i1

from v◦, i◦ or of obtaining (vn, in) from (vn−1, in−1) is one of solving
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a linear static network in which the previous guess voltages and
currents appear as sources.

Remark: The adaptations of discretization procedures and the NR
procedure to network problems provide good examples of a theme com-
mon in network theory, namely, the conversion of a problem arising in
the course of the solution of a network into the problem of solving an
appropriately defined network with the same graph as that of the orig-
inal network. Other examples of this theme are the construction of a
‘phasor’ network for steady state sinusoidal analysis, of an ‘s-domain’
network for obtaining the L- transforms of the solution of a linear time
invariant network etc. In all these transformations the linear algebraic
homogeneous equations remain unaltered. Therefore KCE and KVE
remain unaltered - which is another way of saying that the graph of
the transformed network remains the same as before. In subsequent
chapters we talk of various network decomposition procedures which
are essentially topological, independent of the type of devices present.
These procedures remain invariant even if networks are transformed as
above.

Exercise 5.16 Transform the nonlinear network in Figure 5.12 to a
linear network corresponding to one iteration of the NR method.

                e0

R1

R2

v5

R3

j4

i 1

Figure 5.12: A Nonlinear Network for Application of the NR Procedure

The device characteristic of the nonlinear elements is as follows:

vR1 = i3R1
; v5 − ei1 = 0 .

Exercise 5.17 Transform the nonlinear flow graph in Figure 5.13 to a
linear flow graph (i.e., a flow graph with linear blocks) corresponding to
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one iteration of the NR method. Observe that the topological structure
of the flow graph does not change.

u1

u4

y1=e

y2=u2
2

y3=u3
3

y4=e

y2

y4

u u1 y3

u4

u3

u2

y
y1

Figure 5.13: A Flow Graph with Nonlinear Blocks

5.7 State Equations for Dynamic Networks

For theoretical studies on the temporal evolution of the solution of
a dynamic network it is often convenient to isolate the constraints on
the dynamic variables (the variables which appear under the derivative
sign). These isolated constraints would involve the dynamic variables,
their derivatives and source terms. The solution as far as these vari-
ables are concerned can then be studied independent of the remaining
variables. These latter variables are related through other constraints
to the dynamic variables and inputs. We discuss the problem of deriv-
ing such constraints from network constraints in a relatively informal
manner in this section. Our concern is not, however, to discuss meth-
ods of solution.

We will attempt to put the constraints in the form

ẋ = f(x,u) (state equations)

y = ŷ(x,u) (output equations)

Here x is composed of some or all of the dynamic variables of the
network and is called the state vector, the components of u are the
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inputs (sources) to the network and y is composed of the nondynamic
variables in the network. The right side of the above constraints would
sometimes involve higher derivatives of u.

We consider networks composed of linear capacitors, linear coupled
inductors, positive linear resistors and voltage and current sources. In
this section, for simplicity, we assume that there are no circuits com-
posed only of capacitors and voltage sources and no cutsets composed
only of inductors and current sources. The reasons for these assump-
tions will be clear shortly. In Section 8.5 we relax these assumptions.

The device characteristic of this network has the form:

vR −R iR = 0

iC − C
dvC

dt
= 0

vL − L
diL
dt

= 0

vE − e = 0

iJ − j = 0

Observe that vC and iL appear under the derivative sign. We will
make them the state variables. We begin with their device character-
istic equations namely,

C dvC

dt
= iC

LdiL
dt

= vL

We will express the right side variables in terms of vC , iL and the
source variables. To do this we replace the capacitors by ‘unknown
voltage sources’ vC and inductors by ‘unknown current sources’ iL and
solve the resulting static network.

We can state the constraints of this static network as follows:

vC = vC

iL = iL

vR − R iR = 0

vE = e



5.7. STATE EQUATIONS FOR DYNAMIC NETWORKS 211

iJ = j

Ari = 0 (KCE)

Bv = 0 (KV E)

We now have a circuit with positive linear resistors, voltage and
current sources. By our assumption these ‘new’ voltage sources do
not contain circuits and ‘new’ current sources do not contain cutsets.
It can be shown that such a network can be solved uniquely given
(arbitrary) values for vC and iL. Hence, we can write

iC = [KC KL]vC

iL
+ [KE ]e + [KJ ]j

vL = [MC ML]vC

iL
+ [ME ]e + [MJ ]j

and

y = [CC CL]vC

iL
+ [DE ]e + [DJ ]j

where y denotes other voltages and currents in the network and per-
haps their linear combinations.

Substitution of the above expressions for iC , vL in the RHS of the
device characteristics of the capacitors and of the inductors yields equa-
tions of the form:

C(v̇C) = fC(vC , iL, e, j)

L(i̇L) = fL(vC , iL, e, j)

Premultiplying these equations respectively by (C)−1 and (L)−1 yields
the state equations.

The above technique would work even if the nondynamic part of
the network had controlled sources provided we can assume that the
network can be solved uniquely after the capacitors have been replaced
by voltage sources vC and the inductors have been replaced by current
sources iL. To relax the assumption about C∪E containing no circuits
and L ∪ J containing no cutset we need some preparation. So we
postpone the discussion of this case (see Section 8.5).

Exercise 5.18 Write state equations for the network in Figure 5.14.
Use capacitor voltages and inductor currents as state variables.

Take C = 2F , R1 = 2Ω, R2 = 4Ω, R3 = 2Ω L = 4H.
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R1

e(t) R3

R

R

2

LC j(t)

Figure 5.14: A Dynamic Network

5.8 Multiports in Electrical Networks

The notion of ‘multiport’ is fundamental to electrical network theory.
Since the idea is intuitive and natural to this subject it is often difficult
to appreciate its essential character, namely, that it is a topological con-
cept. In this section we discuss electrical multiports in an informal way
and outline their usual applications. Conventionally, one introduces a
‘port’ into an existing network N by specifying a pair of terminals at
which connection can be made to another network with the provision
that current entering at one of the terminals into N equals the current
coming out of N at the other terminal.There may be many ports be-
tween one network and another.If we wish to study the effect of N on
the external network when such port connections are made, we may do
so by introducing norators, each between the two terminals of a port,
resulting in a multiport. Observe that the introduction of a norator
automatically ensures that the ‘current entering equals current leav-
ing’ condition is satisfied. For the present an electrical multiport
(‘multiport’ for short) is a network with some of its devices, which are
norators, specified as ports. In Chapter 8 the idea is studied more
formally in order to fully exploit it as a technique for solving electrical
networks by decomposition.
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n2 n1

NA

NB

N

NA

NB

n2

n1n2

vp

vp’

n1
n2

vp’

vp

ip’

ip
−ip’

n1

−ip

Figure 5.15: A Network and its Multiport Decomposition

5.8.1 An informal Description of Multiport De-

composition

Consider the network N of Figure 5.15

This network is made up of two subnetworks NA and NB which
have two common nodes. We will assume that the devices in NA and
NB are decoupled. Now it is clear that, topologically, the only way the
currents in NB can affect the currents in NA (and vice versa) is by the
KCE constraints at n1, n2. Since the net current entering NA (NB) at
n1 must be the negative of the current entering at n2, we may confine
ourselves only to the KCE constraints at n1. Similarly, topologically,
the only way the voltages in NB (NA) can affect the voltages in NA

(NB) is through the voltage v = vn1−vn2. Thus, the constraints on all
currents and voltages of N remain the same if we replace the network
by the decomposition in the same figure. In this figure the dotted lines
represent norators. The conditions vP = vP ′, iP = −iP ′ , are imposed
by the ‘port connection diagram’ which depicts the two norators in
parallel.

More generally let the KCE of network N be

[

A′
rA A′

rB

]iA

iB
= 0,
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where A ⊎ B is the set of edges of the network.

Suppose these are equivalent in the variables iA, iB to the following
set of constraints with additional variables iP , iP ′ (for elaboration of
‘equivalent in the variables’ see Exercise 5.21)

[ArA ArP ]iAiP = 0,

[ArB ArP ′]iBiP ′
= 0,

[I I]iPiP ′
= 0.

Let [A′
rA A′

rB], [ArA ArP ], [ArB ArP ′] be the reduced incidence
matrices of graphs G, GAP , GBP ′ respectively. Then one can show
(by using the ‘Implicit Duality Theorem’ of Chapter 7) that the KVE
constraints

[B′
A B′

B]
vA

vB
= 0

are equivalent in the variables vA,vB to

[BA BP ]vA

vP
= 0,

[BB BP ′]vB

vP ′
= 0,

[I −I]vP

vP ′
= 0,

where (B′
A B′

B), (BA BP ), (BB BP ′) are representative matrices of
the current spaces of G,GAP ,GBP ′ respectively.
Let devices in A and B be decoupled from each other. Let the ‘elec-
trical multiports’ NAP , NBP ′ (i.e., networks with norators in the ‘port’
edges of P , P ′ ) be defined on graphs, GAP , GBP ′ with devices in A in
NAP same as in N and devices in B in NBP ′ same as in N . It is then
clear that the KCE, KVE and device characteristics of the network N
with graph G are equivalent as far as the current and voltage variables
of the network N are concerned to those of the multiports NAP , NBP ′,
under the constraints imposed by the ‘port connection diagram’

[I I]iPiP ′
= 0,

[I −I]vP

vP ′
= 0.
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Observe that these constraints are imposed by a graph in which
each port edge of P is parallel to a corresponding port edge of P ′. In
general, the port connection diagram would be more complicated.
There are two main applications for multiport decomposition - network
simplification for theoretical purposes and network decomposition as a
method of analysis. Here we restrict ourselves to the former.
In the electrical multiport NBP ′ the device characteristic of B imposes,
through KCE and KVE, constraints on the voltage and current vectors
that can coexist in the norators P ′. These constraints are transferred
to the norators in P through the KCE and KVE of the port connection
diagram. The result is that we have a compact representation of the
effect in the network N of B upon A through the network NAP , where
P now has the ‘transferred’ device characteristic of B.
Suppose the devices in B have a uniform character, example - all lin-
ear or affine such as linear positive resistors and voltage and current
sources, all capacitors, all inductors etc. In such a case we will show, in
the next section, that the characteristic that B projects on the norators
P ′ in the multiport NBP ′ is particularly simple.

5.8.2 Thevenin-Norton Theorem

Let N ,NAP ,NBP ′ be as in the previous subsection. Let B be composed
of positive linear resistors, controlled sources, voltage sources and cur-
rent sources. The constraints of network NBP ′ would therefore have
the form

(ArB ArP ′)iBiP ′
= 0

(BB BP ′)vB

vP ′
= 0

(MBR NBR)iBR

vBR
= 0

v
BE − eB = 0

i
BJ − jB = 0.

Thus, these constraints have the form

[KB
... KP ′]xB

xP ′
= s, (5.7)
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where x denotes both voltages and currents. By invertible row trans-
formations we can reduce these equations to





KBB
... KBP ′

0
... KP ′P ′





xB

xP ′

=

[

ŝB

ŝP ′

]

, (5.8)

where the rows of KBB are linearly independent.
It can be shown that as far as the variables xP ′ are concerned the
constraints of Equation 5.8 are equivalent to KP ′P ′ xP′ = ŝP ′ (see
Exercise 5.21). Let us, for clarity, rewrite these constraints as

(

M N
)iP ′

vP ′

= ŝP ′

Now

iP ′ = −iP

vP ′ = vP

It is clear then that vP , iP must satisfy the constraints

(

−M N
)

(

iP
vP

)

= ŝP ′ .

Note that in the network NAP if the norators in P were replaced by
devices satisfying the characteristics above the constraints on voltages
and currents in A must remain as in the original network N .
Thus, the constraints on voltages and currents of A in the network N
are the same as those in NAP provided the norators of P were replaced
by devices with characteristic

(

−M N
)iP

vP

= ŝP ′. (5.9)

This could be called the Generalized Thevenin - Norton Theo-
rem. Observe that its validity does not depend on the type of devices
present in A nor on whether the network N has a unique solution or
even any solution. We have glossed over how to decompose into multi-
ports, how many ports to choose, what should be the graphs GAP , GBP ′

etc. These are topological issues. For the present we assume these to
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1

1’

ip1

ip1

ip2

ip2

vp1
vp2ip’1

ip’2

2

2’

NBP ′

Figure 5.16: 2-Port convention

be intuitively clear. Such questions are dealt with more carefully in
Chapter 8.

Remark: A word on the usual convention. Suppose NBP ′ is the 2-
port shown in the Figure 5.16. Usually it is drawn without the norators
P ′

1, P
′
2 but with the ‘entering’ current iP1, iP2 shown. It is understood

that these same currents leave at the primed terminals, but this is not
always shown.
Often one talks of the multiport immittance matrix of NBP ′ (corre-
sponding to B being composed of linear static devices and sources).
This would relate (vP1, vP2), to (iP1 , iP2) (not to (iP ′

1
, iP ′

2
)), as in

Equation 5.9. When devices in P1, P2 in NAP behave as in the above
equation they represent B ‘as seen’ at its ports by A.

Exercise 5.19 (k) Assume that the devices in B are linear positive
resistors, voltage sources eB and current sources jB.

i. Suppose that NBP ′ can be solved uniquely for arbitrary values of
iP ′, eB and jB. In this case show that the Equation 5.9 reduces
to

(

−R I
)iP

vP

= ŝP ′,

where R is a positive semidefinite matrix.
Further show that ŝP ′, is the voltage that appears across P ′ when
iP ′ is equal to zero.

ii. Examine the case when NBP ′ can be solved uniquely for arbitrary
values of vP ′, eB and jB.

Exercise 5.20 (k) Examine the case where B is composed only of
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i. capacitors and

ii. inductors.

Exercise 5.21 Show that, as far as the variables xP ′ are concerned
Equation 5.8 is equivalent to KP ′P ′ xP ′ = ŝP ′.

5.9 Some Elementary Results of Network

Theory

In this section we consider two elementary results of electrical network
theory: Substitution Theorem and Superposition Theorem. The for-
mer is very general and has very little power but is useful in simplifying
arguments. Superposition Theorem is fundamental to linear network
theory. Two other basic results perhaps deserve a place here: v-shift
and i-shift theorems. But we choose to study them in a more formal
setting later.

Substitution Theorem

In its present form this is a relatively weak result. For the result to be
applicable the network has to satisfy strong conditions.

Theorem 5.9.1 (Substitution Theorem) Let N be a network with
one of its branches, say ej decoupled from the remaining devices in the
device characteristic. Let the voltage (current) associated with branch
ej be known to be unique, equal to vj (ij). Let Ns be the network derived
from N by replacing the device in ej by a voltage source of value vj

(current source of value ij) and leaving all other device characteristic
constraints unaltered. If the solution of Ns is unique then so is that of
N and both the networks have identical solutions.

Proof : We consider only the voltage substitution case since current
substitution can be handled similarly. The constraints of the network
N imply that the voltage of branch ej is vj. Therefore, adding the
constraint
‘voltage of ej = vj ’
does not alter the constraints of network N .
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Now if we delete the device characteristic constraint of ej from this
set of constraints we get the constraints of Ns. These constraints are
therefore, implied by the constraints of N . If Ns has a unique solution
(v, i) it means that the constraints of Ns imply that the voltage vector
associated with the branches is necessarily v and that the current vec-
tor associated with the branches is necessarily i. But then it follows
that this fact is also implied by the constraints of N , i.e., that N has
the unique solution (v, i).

2

Superposition Theorem

Consider the set of equations

Ax = b.

If x1 is a vector solution to this equation when the right side is b1 and
x2 is a solution when the right side is b2, it is clear that αx1 + βx2 is
a solution when αb1 + βb2 is the right side. The same idea holds if
the equations were

(

A1 A2

)ẋ

x
= b

In this case (under the same assumptions as above) we would have

(

A1 A2

)αẋ1+βẋ2

αx1+βx2

= α
(

A1 A2

)ẋ1

x1

+ β
(

A1 A2

)ẋ2

x2

= αb1 + βb2.

Thus, αx1 + βx2 is a solution when αb1 + βb2 is the right side
provided x1,x2 are solutions respectively when b1,b2 are right sides.

The above ideas are clearly valid for linear static or dynamic net-
works since the constraints in these cases are composed of KCE, KVE
which are always linear and device characteristics which are given to
be linear. We therefore have

Theorem 5.9.2 (Superposition Theorem) In a network N with
voltage sources, current sources and linear static and dynamic devices,
if solution x1 coexists with source vector s1 and solution x2 coexists
with source vector s2 then solution αx1+βx2 coexists with source vector
αs1 + βs2.
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Usually the network might also be known to have a unique solution
for arbitrary source values (i.e., for arbitrary right sides). The most
common way of obtaining right sides is to start from a source distri-
bution (e1, e2 · · · ek, j1, · · · jk) and decompose it into (e1, 0 · · ·0, 0 · · ·0)
· · · (0, · · ·0, ek, 0 · · ·0), (0 · · ·0, j1 · · · 0) · · · (0 · · ·0, jk). The solution for
the original source distribution would then be the sum of the solutions
for the ‘decomposed’ distributions. The advantages of this kind of de-
composition is that when a voltage source is set to zero the effect is
to have a short circuit in its place. Usually the current in this short
circuit is not of immediate interest. So the end point of the device
may be fused and the device removed as far as the rest of the vari-
ables are concerned. Similarly, when a current source is set to zero
we can put an ‘open circuit branch’ in its place. If the voltage across
this branch is not of interest, it may be deleted. In linear dynamical
circuits uniqueness of solution would hold only if initial conditions are
known. While applying superposition theorem we could either fix the
intial conditions to be zero or linearly combine the initial conditions
the same way as we combine the sources.

5.10 Notes

The reader interested in a comprehensive introduction to electrical net-
work theory could refer to [Desoer+Kuh69] and [Chua+Desoer+Kuh87].
For numerical solution of networks convenient references are [Chua+Lin75],
[McCalla88]. The first systematic treatment of the link between graphs
and electrical networks was given in [Seshu+Reed61]. This is still an
excellent reference.

5.11 Solutions of Exercises

In the interest of brevity we only give outlines for most of the solutions.

E 5.1:
i. The electrical network divides the universe into an ‘external’ and
an ‘internal’ region. The network sets up a conservative field in the
external region. Suppose v(t) associated with a device is positive. If
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a positive current flows in the direction of the arrow, then, as far as
the external region is concerned, positive charges are falling though a
potential of v(t) volts and hence losing energy to the device. So the
power absorbed by the device must be positive, which agrees with the
fact that v(t)i(t) is positive.

ii. For a resistor we have, v · i = Ri2. This would be positive or
negative depending on the sign of R. Connect the given source parallel
to a resistor R. By Tellegen’s Theorem the sum of the powers absorbed
by all the devices in a network must be zero. So the source would
absorb negative or positive power depending on whether R is positive
or negative.

E 5.2:
i. If i is a possible current vector in the circuit, so would i+io be, where
io is the circuit vector corresponding to the voltage source circuit.

ii. Similar to the above. Use vo, the cutset vector corresponding to
the cutset of current sources.

E 5.3: See Theorem 5.9.2.

E 5.4:
i. If a voltage is controlling, put an ‘open circuit’ branch in parallel and
if a current is controlling, then put a ‘short circuit’ branch in series.

E 5.5:
i. Energy gained by the capacitor

=
∫ tf

to
v(t) i(t) dt =

∫ tf

to
c v(t) v̇(t) dt

=
∫ vf

vo

c v dv =
1

2
c v2 |vf

vo
.

E 5.6: Energy gained by the capacitor

=
∫ t

to
v(t) i(t) dt =

∫ tf

to

dq̂(v)

dt
v(t) dt

=
∫ tf

to

dq̂

dv

dv

dt
v(t) dt =

∫ vf

vo

dq̂

dv
v dv.

E 5.7:



222 5. ELECTRICAL NETWORKS

i. Energy gained by the coupled inductors

=
∫ tf

to
vT (t) i(t) dt =

∫ tf

to
i̇T (t)Li(t) dt (L is symmetric)

=
∫ tf

to

1

2

d

dt
(iT (t)Li(t)) dt

=
∫ iT

f
Lif

iTo Lio

1

2
d (iT (t)Li(t))

=
1

2
[iT (t)Li(t)]ifio .

ii. Since L is positive definite 1
2
iTf Lif is nonnegative.

E 5.8: Solution similar to that of Exercise 5.6.

E 5.9:
iv. We have

[

I K
] iB

iA
= 0

[

−KT I
] vB

vA
= 0

vR = vB and iR = −iB.
So iR = K iA and vA = KTvB = KT RKiA.

E 5.10:
ii. (Capacitor case) - We have, v2 = vC , i2 = −iC , iC = Cv̇C .
So v1 = −rCv̇C = (r2C)i̇1. So the behaviour is that of an inductor of
value r2C units.

(Voltage source case): v1 = ri2, v2 = −r i1, v2 = ve.
So i1 = −ve/r and v1 is unconstrained since i2 is unconstrained. Thus,
we have the behaviour of a current source.

E 5.13: Let R be the representative matrix of the current space (on
set S) of the ideal transformer. Let this matrix have r rows. Corre-
sponding to the jth column we build r 2-port transformers 1j, · · · , rj
with the ijth transformer corresponding to the ijth entry of the matrix
R and having turns ratio 1 : R(i, j).
We thus have r | S | 2-port ideal transformers each with its pair of
reference arrows.
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Next the primaries of all the transformers corresponding to the same
column are put in parallel (tails of arrows together and heads of arrows
together) and the secondaries correponding to the same row are put
in series forming a circuit (with the polarity of the secondary winding
of the ijth transformer consistent with the sign of R(i, j)). After these
connections are made we are left with | S | exposed ports one for each
column (each being the parallel combination of primaries correspond-
ing to the column). The voltage vectors that can exist on these ports
form precisely the space orthogonal to the rows of R.
To prove that the current vectors that can exist on these ports form the
complementary orthogonal space requires the use of Theorem 7.1.1.

E 5.14: (At time tn) resistor R would be unchanged, in place of
voltage source e(t) and current source j(t) we put voltage source e(tn)
and current source j(tn) respectively. The capacitor C is replaced by
the composite device

C(v(tn)− v(tn−1))

h
− i(tn) = 0.

This device is made up of a conductance of C
h

mhos in series with a
voltage source of value v(tn−1) volts (arrow of v(tn−1) along the arrow
of v(tn)). The inductor L is replaced by the composite device

L(i(tn)− i(tn−1))

h
− v(tn) = 0.

This device is made up of a resistance of L
h
Ω in parallel with a current

source of value i(tn−1) amps (arrow of i(tn−1) along the arrow of i(tn)).

E 5.15: Second Order Gear (At time (tn)) R, e(t), j(t) are replaced
by devices as in the ‘Backward Euler case’). Capacitor C is replaced
by the composite device

C(
3

2h
v(tn))− i(tn)− C(

3

2h
)(

4

3
v(tn−1)−

1

3
v(tn−2)) = 0.

This is equivalent to a composite device which has 3C
2h

mhos in series
with a voltage source of value (4

3
v(tn−1)− 1

3
v(tn−2)) volts with direction

of arrow same for both devices as well as the composite device.
Inductor L is replaced by the composite device

L(
3

2h
i(tn))− v(tn)− L(

3

2h
)(

4

3
i(tn−1)−

1

3
i(tn−2)) = 0.
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This is equivalent to a composite device which has 3L
2h

Ω in parallel with
a current source of value (4

3
i(tn−1) − 1

3
i(tn−2)) amps with direction of

arrow same for both devices as well as the composite device.

E 5.16: (At the jth iteration) To avoid confusion the value of the
variable x at the end of the (j − 1)th iteration is denoted by (x)j .
R1 is replaced by the composite device

((vR1)j+1 − (vR1)j)− 3(iR1)
2
j((iR1)j+1 − (iR1)j) + (vR1)j − (iR1)

3
j = 0.

The controlled source v5 is replaced by

((v5)j+1 − (v5)j)− (ei1)j((i1)j+1 − (i1)j) + (v5)j − (ei1)j = 0.

(Note that the unknowns have subscript (j + 1)).

E 5.19:
i. Suppose all internal sources in NBP ′ are set to zero. It is clear then
that the relation between iP ′,vP ′ would reduce to

(

M N
)iP ′

vP ′

= 0

since the right side of Equation 5.8 is zero. Since NBP ′ can be
solved uniquely for arbitrary values of iP ′, it follows that vP ′ can be
expressed uniquely in terms of iP ′ in the above equation. Hence N
must be invertible and we can write the equation equivalently as

(

R I
)iP ′

vP ′

= 0 or
(

−R I
)iP

vP

= 0.

By Tellegen’s Theorem

< vBP ′ , iBP ′ >= 0, i.e., < vB, iB >= − < vP ′, iP ′ > .

But when the sources in B are set to zero it contains only positive
resistors. Therefore < vB, iB >=

∑

vjij over all resistors which is
equal to

∑

Rj(ij)
2 over all resistors. Hence < vB, iB > ≥ 0. Thus, <

vP ′, iP ′ > ≤ 0 for all possible vectors iP ′. Equivalently (iTP ′)R(iP ′) ≥ 0
for all iP ′. We conclude that R is positive semidefinite.
Next consider the situation where iP ′ = 0, i.e., the ports of NBP ′ are
open circuited. We then get

(

−R I
)0

vP ′

= ŝP ′,



5.11. SOLUTIONS OF EXERCISES 225

i.e., vP ′ = ŝP ′.

ii. The arguments are identical for this case. We finally have

(

I −G
)iP

vP

= s̃P ′,

where G is positive semidefinite. Clearly s̃P ′ is equal to iP when
vP = 0.

E 5.20:
i. In this case we take the variables to be i, v̇ and consider the con-
straints on them. The KV constraints would be satisfied by v̇. The
constraints v

BE − eB = 0 would change to v̇
BE − ėB = 0. So if we

assume that x is made of i, v̇ the constraints on x would be as in
Equation 5.8. The constraints on iP ′ , v̇P ′ would be

(

M N
)iP ′

v̇P ′

= ŝP ′ .

The arguments of the previous problem would go through if we use v̇
in place of v in the present case. Thus, if we assume that v̇BP ′ , iBP ′

can be determined uniquely for arbitrary values of v̇P and of internal
sources ėB, jB then it would turn out that

(

−I C
)iP

v̇P

= ŝP

where C is positive semidefinite. When v̇P = 0, i.e., when vP is
constant, iP = −ŝP ′.

ii. The inductor case can be handled similarly except that we work

with di
dt

and v.

E 5.21: It is clear that if xB,xP ′ satisfy Equation 5.8 then xP ′ would
satisfy

KP ′P ′xP ′ = ŝP ′

On the other hand suppose x̃P ′ satisfies this latter equation. Then
one can find an x̃B that satisfies

(

KBB KBP ′

)xB

x̃P ′

= ŝB
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since the rows of KBB are given to be linearly independent. Thus,
whenever xB,xP ′ satisfies Equation 5.8, xP ′ satisfies the reduced equa-
tion and any solution to the reduced equation can be extended to a
solution of the ‘enlarged’ equation. This proves the required result.



Chapter 6

Topological Hybrid Analysis

6.1 Introduction

In this chapter we discuss a method of network decomposition that
is a topological generalization of hybrid analysis (i.e., analysis where
unknowns involve both voltages and currents). Our main result, The-
orem 6.4.1 of Section 6.4, states that solving a network is equivalent to
solving two derived subnetworks matching certain current and voltage
boundary conditions. In order to state the result precisely we need to
define electrical networks formally. This we do in Section 6.2. The
implications of the result would be clearer if we understand the effect
of sources on the structure of the constraints of a network. We discuss
three results on this topic in Section 6.3. Two of these viz. ‘v-shift’
and ‘i-shift’ are well known basic results. Issues concerned with op-
timal application of Theorem 6.4.1 to writing network equations are
discussed in Section 6.5. In that section we also discuss (in Subsection
6.5.3) the application of the method to the important special case of
linear electrical networks.

227
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6.2 Electrical Network: A Formal Descrip-

tion

In this section we give a formal description of a general electrical net-
work. The formality concerns the definition of a general device char-
acteristic and the notion of edges of the network being ‘decoupled’ in
the device characteristic. This exercise has to be carried out in order
to emphasize the topological nature of the results that follow in this
chapter.
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6.2.1 Static and Dynamic Electrical Networks

Definition 6.2.1 An electrical network N on the set of edges E is
an ordered pair (G,D) where G is a directed graph on the edge set E and
D is a device characteristic (to be defined below). A generalized
electrical network Ng on the set E is an ordered pair (V,D) where
V is a vector space on E and D is a device characteristic on E.

Definition 6.2.2 The device characteristic D may be static or
dynamic. A static device characteristic D on E is a collection
of ordered pairs (v, i) where v, i are vectors on E. A dynamic de-
vice characteristic D on E is a collection of ordered pairs (v(·), i(·)),
where v(·), i(·) are functions on ℜ s.t. v(t), i(t), t ∈ ℜ are vectors on
E. We speak of v(·) as the voltage part and i(·) as the current part of
an element (v(·), i(·)) of D.

A network is said to be static (dynamic) iff its device characteristic
is static (dynamic).

Common Devices Revisited

We now list the usual electrical devices and redefine them in the light
of our definition of device characteristic. For figures see Section 5.4.

i. Voltage source ≡ {(v(·), i(·)), v(t) = e(t) ∀t ∈ ℜ}

ii. Current source ≡ {(v(·), i(·)), i(t) = j(t) ∀t ∈ ℜ}.

iii. Linear resistor ≡ {(v(·), i(·)), v(t) = Ri(t) ∀t ∈ ℜ}.

iv. Nonlinear resistor ≡ {(v(·), i(·)), f(v(t), i(t)) = 0 ∀t ∈ ℜ}.

v. Linear capacitor ≡ {(v(·), i(·)), i(t) = Cv̇(t) ∀t ∈ ℜ}.

vi. Linear inductor ≡ {(v(·), i(·)), v(t) = Li̇(t) ∀t ∈ ℜ}.

vii. Linear coupled inductors ≡ {(v(·), i(·)), v(t) = Li̇(t) ∀t ∈ ℜ}.

viii. Nonlinear capacitor ≡ {(v(·), i(·)), i(t) = q̇(t), f(q(t), v(t)) =
0 ∀t ∈ ℜ}
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ix. Nonlinear coupled inductors≡ {(v(·), i(·)), v(t) = ψ̇(t), f(ψ(t), i(t)) =
0 ∀t ∈ ℜ}

x. Current controlled voltage source≡ {((v1(·), v2(·)), (i1(·), i2(·))),
v2(t)− r i1(t) = 0, v1(t) = 0 ∀t ∈ ℜ}.

xi. Norator ≡ {(v1(·), i1(·)) : v1(·), i1(·) real functions}.
xii. Nullator ≡ {(v1(·), i1(·)) : v1(·) = i1(·) = 0}.

The definitions of the other controlled sources are similar.

Example: Consider the static network Ns in Figure 6.1. The de-
vice characteristic of this network is the collection of ordered pairs
((v1, v2), (i1, i2)) s.t. v1 − R1i1 = 0, v2 − e2 = 0.
For the dynamic network Nd in Figure 6.1, the device characteristic is
the collection of pairs ((v1(·), v2(·)), (i1(·), i2(·))) s.t. v1 − L1i̇1 = 0,
i2 − C2v̇2 = 0.

i22

1 2

i1

L
1

C
2

eR
1

1 2
v v

Ns NdG

Figure 6.1: A Static and a Dynamic Network

Remark: A static network can be modelled as a dynamic network
using constant functions of time. So henceforth, we will speak only
of dynamic networks. But usually we would write (v, i) instead of
(v(·), i(·)) when we speak of a typical element of a device characteristic.

Definition 6.2.3 Solution of a dynamic network: Let N = (G,D).
An ordered pair (v(·), i(·)) of vector functions of time on E(G) is a so-
lution of N iff

v(t) ∈ Vv(G) ∀t ∈ ℜ
i(t) ∈ V i(G) ∀t ∈ ℜ

(v(·), i(·)) ∈ D.
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6.2.2 Device Decoupling

Usually an electrical network has a device characteristic in which the
constraints on sets of branches can be specified independently of each
other. (The interdependence of currents and voltages of different branches
arises in the solution through KCE and KVE). We introduce notation
which would allow us to speak of this ‘device decoupling’.

Definition 6.2.4 Let N ≡ (G,D) where G is a graph on E. Let
A,B ⊆ E. Then, the section (A,B) of D denoted by DAB is de-
fined as follows: DAB ≡ {(v/A, i/B), (v, i) ∈ D}. We denote D∅B by
DBi, DA∅ by DAv and DAA by DA. If (v, i) ∈ D we speak of v/A, i/B,
respectively as the voltage part and current part of the section (A,B)
of (v, i). When A = B we write section (A) in place of section (A,A).

Thus, the notion of section (A,B) allows us to focus attention on device
constraints of subset A as far as voltages are concerned and on subset
B as far as currents are concerned.

Definition 6.2.5 Let A,B, P,Q ⊆ E s.t. A ∩ P = ∅, B ∩ Q = ∅.
Then, the product of DAB and DPQ, denoted by DAB×DPQ, is defined
by DAB × DPQ ≡ {(v, i), v = vA ⊕ vP , i = iB ⊕ iQ, (vA, iB) ∈ DAB,
(vP , iQ) ∈ DPQ}.

Thus the elements of DAB × DPQ are obtained by taking elements
(vA, iB) of DAB and (vP , iQ) of DPQ, adjoining the voltage parts to
get the voltage part and adjoining the current parts to get the current
part of the corresponding element of the product. Suppose D = DAB×
DPQ. Then this means that the voltages in A and currents in B are
independent of the voltages and currents in P and Q respectively as
far as the device characteristic is concerned.

Definition 6.2.6 We say that (A,B) and (E−A,E−B) are decoupled
in the device characteristic iff D = DAB×D(E−A)(E−B). More generally
let A1, · · · , Ak (B1, · · · , Bk) be disjoint subsets of E whose union is E
(void sets allowed) and let D = DA1B1 × · · · × DAkBk

. Then we say
that (A1, B1) · · · (Ak, Bk) are decoupled in the device characteristic. If
Ai = Bi, i = 1, · · · , k, then we say that A1, · · · , Ak are decoupled in the
device characteristic.

The following example describes a situation where the devices are not
decoupled.
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Example: Consider a network composed entirely of a current con-
trolled current source. Let A be the singleton composed of the con-
trolling short circuit branch and E−A, the singleton composed of the
controlled current source branch.
DA ≡ {(0, i1), i1 ∈ ℜ}
DE−A ≡ {(v2, i2), i2 ∈ ℜ}
However, D = {((0, v2), (i1, βi1)), i1, v2 ∈ ℜ}. So D 6= DA × DE−A as
is to be expected since in D, i1, i2 are linked by β.

A common situation is where a branch has no voltage constraints
(e.g. a current source, the controlled element in a cccs or vccs) or has
no current constraints (e.g. a voltage source, the controlled element
in a ccvs or vcvs). We introduce special notation to speak of such
situations.

Definition 6.2.7 δAB ≡ {(vA, iB), vA is any vector on A, iB is any vector on B}.
δA ≡ δAA, δAv

≡ δA∅, δAi
≡ δ∅A.

We say A ⊆ E is voltage unconstrained in D iff D = δAv ×
D(E−A)E. A set B ⊆ E is current unconstrained in D iff D =
δBi ×DE(E−B).

A set A ⊆ E is a dummy set, a set of norators, a set of unknown
current sources or a set of unknown voltage sources iff D = DE−A×
δA, i.e., iff it is both voltage and current unconstrained.

As remarked before, voltage sources are current unconstrained and
current sources, voltage unconstrained. Dummy elements have to be
introduced in order to speak of port elements and also to describe
network decomposition methods. The following example illustrates
device characteristic decoupling.

Example: Consider the network in Figure 6.2. This network has a
graph whose edges are {e0, e1, · · · , e6} with e0 corresponding to J0, e1
to E1, e2 to R2 etc. We note that in the device characteristic {e0}, {e1},
{e2}, {e3}, {e4}, {e5, e6}, are decoupled. Calling these sets J , E , R2, R3, C, L
we have D = DJ × DE × DR2 × DR3 × DC × DL. Note however, that

DL cannot be further split since i̇L5 , i̇L6 are related to vL5 and vL6 .
However the current source is voltage unconstrained and the voltage
source is current unconstrained. So we have, DJ = DJ i × δJ v and
DE = DEv

× δE i
.
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J0

R3

R2

e1
L5

C4

L6

M

Figure 6.2: Decoupling in Device Characteristic

6.3 Some Basic Topological Results

In the following pages we present three basic topological results on
electrical network analysis. Two of these results viz. ‘v-shift’ and ‘i-
shift’ are very well known. The third result, which we present first,
should be regarded as part of network theory folklore.

6.3.1 Effect of Voltage Unconstrained and Cur-

rent Unconstrained Devices on the Topolog-
ical Constraints

The following result speaks of how presence of voltage sources and cur-
rent sources affects the network (i.e., device characteristic + topologi-
cal) constraints. Since voltage sources do not have current constraints
on them their current variables can be suppressed from constraints in-
volving other currents. A dual result is true for current sources. It
turns out that the suppression can be achieved by using G × (E − E)
for KC constraints and G · (E − J ) for KV constraints, where E ,J
stand for the voltage and current source edge sets. More formally we
have

Theorem 6.3.1 Let N ≡ (G,D), where G is a graph on E. Let
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A,B ⊆ E and let D = δAB×D(E−A)(E−B), i.e., devices in A are voltage
unconstrained and devices in B are current unconstrained. Then,
an ordered pair (v(·), i(·)) is a solution of N only if

i. i(t)/(E − B) is a current vector of G × (E − B) ∀t ∈ ℜ,

ii. v(t)/(E −A) is a voltage vector of G · (E − A) ∀t ∈ ℜ,

iii. (v(·)/(E − A), i(·))/(E − B)) ∈ D(E−A)(E−B).

Conversely if (vE−A, iE−B) ∈ D(E−A)(E−B) and if vE−A, iE−B satisfy
conditions (i) and (ii) above, there exists a solution (v(·), i(·)) of N
s.t. v/(E − A) = vE−A and i/(E − B) = iE−B.

Proof : Let (v(·), i(·)) be a solution of N ≡ (G,D). Then v(t) ∈
Vv(G), i(t) ∈ V i(G) ∀t ∈ ℜ. Hence, by Theorems 3.4.4 and 3.4.5 we
must have v(t)/(E−A), a voltage vector of G·(E−A) and i(t)/(E−B),
a current vector of G × (E−B). Condition (iii) is satisfied by the def-
inition of D(E−A)(E−B).
Now let the ordered pair (vE−A, iE−B) ∈ D(E−A)(E−B) and further sat-
isfy conditions (i) and (ii) of the statement of the theorem. By the
above mentioned theorems it is clear that there must exist (v(·), i(·))
s.t. v(t) is a voltage vector (i(t) is a current vector) of G ∀t ∈ ℜ
and s.t. v(·)/E − A = vE−A(·) and i(·)/E − B = iE−B(·). Since
D = δAB×D(E−A)(E−B) it is clear that (v(·), i(·)) ∈ D. Thus, (v(·), i(·))
is a solution of N as required.

2

An Application of Theorem 6.3.1

Suppose a static linear network is composed of current sources J , volt-
age sources E , and remaining devices R. Let the device characteristic
be

vR = R iR (6.1)

iJ = j (6.2)

vE = e. (6.3)
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Then, by Theorem 6.3.1, the topological constraints on the above
variables are as follows: vR ⊕ vE ∈ Vv(G · (E − J )), iR ⊕ iJ ∈
V i(G × (E − E)).

Let us write the constraints in the form of equations. We then have:
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where (BRBE ) is a representative matrix of V i(G · (E − J )) and
(AR AJ ) is the reduced incidence matrix of G × (E − E). Use of
Theorems 3.4.4 and 3.4.5 tells us that rows of BR must belong to and
span V i(G × (E − E) · R) while rows of AR must belong to and span
Vv(G × (E − E) · R). If we may assume that in the graph G voltage
sources do not form circuits and current sources do not form cutsets it
can be seen that
r(BR) = r(BRBE ) and r(AR) = r(ARAJ ).
In this case BR, AR would be the representative matrices of the corre-
sponding spaces and we can rewrite the equations shifting source terms
to the right as follows:







I −R
BR 0
0 AR













vR

iR





 =







0
−BEvE
−AJ iJ





 .

We see in this equation that the coefficient matrix of the unknowns
vR, iR is entirely dependent upon the section of the device character-
istic to the set R and to the graph obtained by shorting the voltage
sources and opening the current sources. This would be true whatever
be the method of analysis we use: nodal, loop, hybrid etc.

Remark: We may state the following general rule
The structure of the constraints in an arbitrary network, as far as cur-
rent variables other than the unconstrained variables are concerned,
corresponds to the graph obtained by setting the voltage sources to zero
(shorting them) and as far as the voltage variables other than the un-
constrained variables are concerned, corresponds to the graph obtained
by setting the current sources to zero (opening them). Norators may
be either shorted or opened.
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6.3.2 Voltage and Current shift

We next discuss the techniques of current shift (i-shift) and voltage
shift (v-shift). These are methods of altering the source structure in the
network leaving the other variables ‘unaffected’. We need to define the
notion of equivalence in order to make the term ‘unaffected’ precise.

Definition 6.3.1 Let N1 ≡ (G1,D1), N2 ≡ (G2,D2), where G1,G2 are
graphs on E1, E2 respectively. Let A,B ⊆ E1∩E2. We say that N1,N2

are equivalent in Av, Bi iff for any given solution (v1, i1) of N1

(solution (v2, i2) of N2) we can find a solution (v2, i2) of N2 (solution
(v1, i1) of N1) s.t. v1/A = v2/A and i1/B = i2/B. If A = B we simply
write ‘equivalent in A’.

The technique of i-shift is based on adding, without disturbing the
incidence relationships of existing edges (i.e., the addition is ‘soldering
iron type’) a circuit of current sources, all of the same value J and
all of the same direction with respect to the orientation of the circuit.
(The value J could be a function of the remaining variables). The
following theorem essentially states that this procedure does not affect
the remaining variables.

Theorem 6.3.2 Let N ≡ (G,D) be a network. N1 ≡ (G1,D1) be a
network obtained from N by adding (G being a restriction of G1) a
circuit of (controlled) current sources of value J , all of the same direc-
tion with respect to the orientation of the circuit. Let these additional
devices be voltage unconstrained (but the value J may be dependent on
the remaining variables). Then N and N1 are equivalent in E(G).
Proof : Let (v1, i1) be a solution of N1. We denote E(G) by E and
E(G1) by E1. Then v1/E ∈ (Vv(G1)) · E = Vv(G1 · E) = Vv(G). Now
i1/(E1 − E) is a vector with all entries equal to J . Let ic be a cir-
cuit vector of G1 with E1 − E as its support. From the conditions
of the theorem it is clear that we can assume ic to have all entries
equal to +1. It follows that i1 − Jic has zero entries in E1 − E and
further agrees with i1/E. Since i1, ic ∈ Vi(G1) so does i1 − Jic. Hence
i1/E ∈ Vi(G1)× E = Vi(G1 · E) = Vi(G).
Now (v1, i1) ∈ D1. By the definition ofD1 it is clear that (v1/E, i1/E) ∈
D. Thus, (v1/E, i1/E) is a solution of N .
Next let (v, i) be a solution of N . Since v ∈ Vv(G) = Vv(G1 · E)
there exists v1 ∈ (Vv(G1)) s.t. v1/E = v. By the definition of D1, if
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(v, i) ∈ D and if v1 is on E1 s.t. v1/E = v, then there exists some
(v1, i1) ∈ D1 s.t. i1/E = i and i1(e) = J ∀e ∈ E1 − E.

Now i1 − Jic where ic is the abovementioned circuit vector of G1,
takes zero value on E1 −E and agrees with i on E. Since i ∈ Vi(G) =
(Vi(G1))×E, we must have i1−Jic ∈ Vi(G1). We know that ic ∈ Vi(G1).
Hence i1 ∈ Vi(G1).
We thus see that there is a solution (v1, i1) of N1 s.t. v = v1/E and
i = i1/E. This proves that N and N1 are equivalent in E.

2

We illustrate the use of this theorem by an example.

Example:

e1 e2

e3

e4 e5

J

e1 e2

e3

e4 e5

J

e1 e2

e3

e4 e5

J

2
=JJ

J
2

(a) N1

a

b

c
d

add loop

d

J
2

J
2

a

c
b

(b) N2

d

a

c
b

(c) N3

delete loop

J

Figure 6.3: Current Shift

Consider the network N1 shown in Figure 6.3 (a). It has a current
source J which we wish to shift. In (b) we add a directed circuit of cur-
rent sources J2 to obtain a network N2. One of these current sources
is opposite and parallel to the source J . The networks in (a) and (b)



238 6. TOPOLOGICAL HYBRID ANALYSIS

are equivalent in the set of edges of N1.
Now we set J2 = J . We find that the two parallel but oppositely di-
rected sources constitute a directed current source circuit. So N2 could
be thought of as obtained from N3 in (c) by addition of this circuit.
Hence N3,N2 are equivalent in the set of edges of N3. It follows that
N1 and N3 are equivalent in the set of edges {e1, e2, e3, e4, e5} which is
equal to (set of edges of N1 − {J}).
The reader should verify for himself that the source current leaving
any node is the same before and after i-shift. Thus, in Figure 6.3, a
current J was originally leaving a and entering b. This happens also
after the shifting operation is carried out. After shifting the current
source we see that at node c, J enters and leaves so that there is no
net source current leaving.

Remark: Normally i-shift is performed as follows. We select a circuit
containing the given current source J . We then introduce an oppositely
directed current source in parallel with every branch of this circuit. We
next delete the two equal but oppositely directed sources. For instance
in the network N1 of Figure 6.3 we see that e4, J, e1 form a circuit.
Equal but oppositely directed current sources to J are introduced in
parallel with each of these branches. The branch that originally con-
tained J now has in parallel an oppositely directed source of equal
value. This combination is now deleted.
After i-shift we would be left with current sources in parallel with
devices of N1. When current sources appear in parallel with other de-
vices, we can combine them with these devices so that the graph of the
modified network has single edges in place of these parallel edges. For
example, a resistor R in parallel with current source J can be regarded
as a single device with characteristic v = R(i− J). When this is done
we note that the effect of i-shift on the graph of the network is sim-
ply to open the current source branches leaving the end-points in place.

The technique of voltage shift is based on adding by splitting nodes
(i.e., pliers type entry) a cutset of voltage sources all of the same value
eS and all of the same direction relative to the orientation of the cutset.
(The value eS could be a function of the remaining variables). The
following theorem essentially states that the procedure does not affect
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the remaining variables. The theorem is dual to Theorem 6.3.2. It is
obtained by making the following dual substitutions:

circuit ↔ cutset
graph restriction ↔ graph contraction
voltage vector ↔ current vector

The proof again can be obtained by making the same substitutions on
the proof of Theorem 6.3.2. We therefore omit it. (The reader should
note that the plan for deriving the dual of a result about electrical
networks is essentially the same as the one discussed in Section 3.7.
This is because any statement about electrical networks is a statement
about graphs and certain members of their voltage and current spaces.
Of course, as we stated in the above mentioned section, not every such
statement can be dualized.)

Theorem 6.3.3 Let N ≡ (G,D) be a network. Let N1 = (G1,D1) be
a network obtained from N by adding (G being a contraction of G1) a
cutset of (controlled) voltage sources of value eS, all of the same direc-
tion with respect to the orientation of the cutset. Let these additional
devices be current unconstrained (but the value eS may be dependent
on the remaining variables). Then N1 and N are equivalent in E(G).

We illustrate the use of this theorem by an example.

Example:

Consider the network N1 shown in Figure 6.4 (a). It has a voltage
source es which we wish to shift. In (b) we add a cutset of voltage
sources e2s to obtain a network N2. The entry of the cutset is ‘pliers
type’, i.e., by splitting nodes. Hence if we contract the branches in the
cutset we get back network N1. By the above theorem N1 and N2 are
equivalent in the set of edges of N1. One of the added voltage sources
is opposite and in series to the source es. The networks in (a) and (b)
are equivalent in the set of edges of N1. Now we set e2s = es. We
find that the two series but oppositely directed sources constitute a
directed voltage source cutset. So N2 could be thought of as obtained
from N3 in (c) by ‘pliers type’ addition of this cutset. Hence N3,N2

are equivalent in the set of edges of N3. It follows that N1 and N3 are
equivalent in the set of edges {e1, e2, e3, e4, e5} which is equal to (set of
edges of N1 − {e2s}).
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Figure 6.4: Voltage Shift
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Remark: Normally v-shift is performed as follows. We select a cutset
containing the given voltage source eS. We then introduce an oppo-
sitely directed voltage source in series with every branch of this cutset.
We next contract the two equal but oppositely directed sources. For
instance in the network N1 of Figure 6.4 we see that e5, eS, e1 form a
cutset. Equal but oppositely directed voltage sources to eS are intro-
duced in series with each of these branches. The branch that originally
contained eS now has in addition an oppositely directed source of equal
value. This combination is now contracted.
Usually, after v-shift, we would be left with voltage sources in series
with devices of N1. When voltage sources appear in series with other
devices we can combine them with these devices so that the graph of
the modified network has single edges in place of these series edges.
For example, a resistor R, in series with a voltage source eS, can be
regarded as a single device with characteristic v− eS = Ri. When this
is done we note that the effect of v-shift on the graph of the network
is simply to short the voltage sources (removing them after fusing the
end points).

Exercise 6.1 Let eS be a voltage source and let C be a cutset contain-
ing it.

i. Visualize the results of v-shifting eS into the remaining branches
of the cutset. What happens to the cutset in the process?

ii. Suppose a collection of voltage sources formed a cutset. How
would you detect such a cutset?

iii. How would you reduce the number of voltage sources without af-
fecting the solution as far as the rest of the network is concerned?

Exercise 6.2 Dualize the previous problem and solve the dual prob-
lem.

Exercise 6.3 Let G be a graph on E = R ⊎ E ⊎ J . Let E contain no
circuits and J , no cutsets. Let (BR BE ) be a representative matrix of
Vi(G . (E − J )) and (AR AJ) be a representative matrix of Vv(G ×
(E − E)). Show that
r(BR BE ) = r(BR) and r(AR AJ) = r(AR).
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Exercise 6.4 Let N ≡ (G,D) where E(G) = E and E = R ⊎ E ⊎ J .
Let D = DR × DE × DJ with DR being specified by vR = RiR or
iR = GvR,
DE being specified by vE = e and DJ by iJ = j.
Write nodal and loop type equations for this network assuming that E
does not contain circuits and that J does not contain cutsets. Show
in both cases that the coefficient matrix structure is controlled by the
graph G . (E − J )× R.

Exercise 6.5 State Theorem 6.3.2 formally using the device charac-
teristic notation.

Exercise 6.6 Let N ≡ (G,D) where G is a graph on E. Let D =
δAv
×DAi

×DE−A,
where DAi

≡ a collection of ordered pairs (φ, iA(.)),
where iA(t) ∈ Vi(G . A) ∀t ∈ ℜ.
Let N1 ≡ (G . (E −A),DE−A). Show that N and N1 are equivalent in
E − A.

Exercise 6.7 (Dual of the previous exercise)
Let N ≡ (G,D) where G is a graph on E. Let D = δAi

×DAv
×DE−A

where DAv
≡ a collection of ordered pairs (vA(.), φ)

where vA(t) ∈ Vv(G × A) ∀t ∈ ℜ.
Let N1 ≡ (G × (E−A),DE−A). Show that N and N1 are equivalent in
E − A.

Exercise 6.8 Let N ≡ (G,D), where G is a graph on E. Let D = δA×
DE−A. Show that the constraints as far as iE−A, vE−A are concerned,
are:

i. iE−A(t) ∈ Vi(G ×A), ∀t ∈ ℜ

ii. vE−A(t) ∈ Vv(G · A), ∀t ∈ ℜ

iii. (vE−A, iE−A) ∈ DE−A.

Exercise 6.9 Let D = DA × DE−A, where DA ≡ {(0A, 0A)}, i.e.,
devices in A have zero voltage across and zero current through (‘nul-
lators’). Show that, the network constraints on vE−A, iE−A are
iE−A(t) ∈ Vi(G . A)
vE−A(t) ∈ Vv(G ×A)
(vE−A, iE−A) ∈ DE−A.
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Exercise 6.10 Suppose E is a set of voltage source branches so that
G × (E − E) has A and B as separators. Show that E can be v-shifted
and absorbed in the device characteristic of the remaining elements so
that the resulting network has graph G × (E − E) = G × A ⊕ G × B,
hinging between the graphs being permitted.

Exercise 6.11 Suppose J is a set of current branches such that G . (E−
J ) has A and B as separators. Show that J can be i-shifted and ab-
sorbed in the device characteristic of the remaining elements so that
the resulting network has graph G . (E −J ) = G . A⊕G . B, hinging
between the graphs being permitted.

Exercise 6.12 Suppose all sources were shifted so as to ‘accompany’
nonsource branches. (A nonsource branch is said to be ‘accompanied’
if it appears composite with a series voltage source and a current source
in parallel with the series combination as in Figure 6.5). Show that the
graph of the resulting network is G . (E −J )× (E − (J ∪ E)).

D1

e1

j1
1v  , i1

Figure 6.5: Accompanied Device

Exercise 6.13 Show that norators can be both current and voltage
shifted while nullators cannot be current or voltage shifted.

Exercise 6.14 Let A be a set of norators, i.e., D = δA × DE−A. Let
G . (E − A) (G × (E − A)) have B1, · · · , Bk as separators. Let DB =
DB1 × · · ·×DBk

. Show that we can perform i-shift on A (v-shift on A)
so that the resulting network (in which the norator currents (norator
voltages) accompany the branches in E-A) is on the graph G . B1⊕· · ·⊕
G . Bn (G ×B1⊕ · · · ⊕ G ×Bn) and further show that in this network
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the only way in which the variables in the different Bi affect each other
is through the norator current variables (norator voltage variables).

6.4 A Theorem on Topological Hybrid Anal-

ysis

In this section we discuss a method of network decomposition that
is a topological generalization of hybrid analysis (i.e., analysis where
unknowns involve both voltages and currents). Our main result is
Theorem 6.4.1. This result states that the solution of a network N
is equivalent to the simultaneous solution of two derived networks
NAL and NBK under appropriate boundary conditions. This we prove
through a sequence of lemmas. We then discuss applications of this
result. Theorem 6.4.1 is a formalization of the topological intuition
behind G.Kron’s Diakoptics [Kron63] and its popular version due to
F.H. Branin [Branin62].

6.4.1 The Networks NAL and NBK

Definition 6.4.1 Let N ≡ (G,D) be a network. Let E(≡ E(G)) be
partitioned into {A,B} such that D = DA×DB (i.e., the devices in A
and B are decoupled from each other). Two networks NAL,NBK are
derived from N as follows:
Let L ⊆ B be such that G . (E − L) has A,B − L as separators. Let
K ⊆ A be such that G × (E − K) has A − K,B as separators. The
network NAL has graph G × (A∪L) and device characteristic DA× δL
while the network NBK has graph G . (B∪K) and device characteristic
DB × δk.

We illustrate the above construction through an example.
Example: Consider the network N in Figure 6.6. The partition A,B
is indicated in the figure. We will assume that A,B are decoupled in
the device characteristic. For instance, there are no controlled sources
with controlling branch in A and controlled branch in B.
From the figure A ≡ {1, 2, 3, 4, 5}, B ≡ {6, 7, 8, 9, 10, 11}. It can be
seen that when L ≡ {6} is opened A,B − L become separators and
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Figure 6.6: Networks N , NAL and NBK

when K ≡ {5} is contracted A − K,B become separators. Other
possible candidates for L are {7, 8}, {6, 7, 8}, {6, 7, 8, 9, 10, 11}. Note
that all candidates for L need not have the same size. Indeed all of B
can be L. As can be seen, {6}, {7, 8} are both minimal choices for L.
Other possible candidates for K are {3, 4}, {3, 4, 5}, {1, 2, 3, 4, 5}. All
candidates for K need not have the same size. Indeed all of A can be
K. As can be seen, {5}, {3, 4} are both minimal choices for K. The
network NAL is shown in Figure 6.6 with the choice L ≡ {6}. The
device(s) in L are norators but it is convenient to think of them as
unknown current sources. In NAL, the devices in A are the same as
in N . The network NBK is shown in the same figure with the choice
K = {5}. The device(s) in K are norators but it is convenient to think
of them as unknown voltage sources. In NBK , the devices in B are
the same as in N . Observe that L,K are common to NAL,NBK . As
will be seen, if we solve NAL,NBK simultaneously, matching iL and
matching vK in both networks we essentially solve N .
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The Main Theorem

We now state our main result [Narayanan75], [Narayanan79].

Theorem 6.4.1 (TheNAL−NBK Theorem) : The ordered pair (v(·), i(·))
is a solution of N iff there exist solutions (vAL(·), iAL(·)) of NAL and
(vBK(·), iBK(·)) of NBK s.t.

v(·)/A = vAL(·)/A,
v(·)/(B ∪K) = vBK(·)
i(·)/(A ∪ L) = iAL(·),

i(·)/B = iBK(·)/B.

We prove the theorem through a series of lemmas and their corollaries.

Lemma 6.4.1 : Let V be a vector space on S. Let S be partitioned
into P,Q, T s.t. V·(S−P ) has Q, T as separators. Then vector x ∈ V⊥

iff there exist vectors xPQ ∈ (V × (P ∪Q))⊥ and xPT ∈ (V × (P ∪T ))⊥

s.t.
xPQ/P = xPT/P and xPQ/Q⊕ xPT = x.

Proof : We select a representative matrix R for V in which V×(P∪Q)
and V × (P ∪Q) ·Q become visible:

R =







RQQ RQP 0
0 RPP 0
RTQ RTP RTT





 , (6.4)

rows of RQQ,RPP ,RTT being linearly independent.
Now V · (S−P ) has Q, T as separators. Therefore, RTQ may be taken,
without loss of generality, to be 0. Hence, if x ∈ V⊥ we have







RQQ RQP 0
0 RPP 0
0 RTP RTT













x/Q
x/P
x/T





 = 0. (6.5)

Now x satisfies the Equation 6.5 iff

[

RQQ RQP

0 RPP

] [

x/Q
x/P

]

= 0 (6.6)
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and
[

RPP 0
RTP RTT

] [

x/P
x/T

]

= 0. (6.7)

But from the structure of R it is seen that the coefficient matrix
for Equation 6.6 is the representative matrix for V × (P ∪ Q) and
the coefficient matrix for Equation 6.7 is the representative matrix for
V × (P ∪ T ). Hence, x ∈ V⊥ iff x/(P ∪ Q) ∈ (V × (P ∪ Q))⊥ and
x/(P ∪ T ) ∈ (V × (P ∪ T ))⊥. The lemma follows.

2

We now apply the above lemma to the voltage and current spaces
of graphs.

Corollary 6.4.1 Let G be a graph on E. Let E be partitioned into
A,B and let L ⊆ B s.t. G . (E − L) has A,B − L as separators.
Then i is a current vector of G iff there exist current vectors iAL, iB of
G × (A ∪ L),G × B, respectively such that

iAL/L = iB/L and

iAL/A⊕ iB = i.

Proof : We take V to be Vv(G), P to be L, Q to be A and T to be
B−L. We use the facts that (Vv(G))× (A∪L) = Vv(G × (A∪L)) and
(Vv(G))×B = Vv(G ×B) and the strong form of Tellegen’s Theorem.
The corollary then follows from Lemma 6.4.1.

2

Corollary 6.4.2 Let G be a graph on E. Let E be partitioned into
A,B and let K ⊆ A s.t. G × (E − K) has A − K,B as separators.
Then, v is a voltage vector of G iff there exist voltage vectors vA,vBK

of G . A, G . (B ∪ K) respectively such that vA/K = vBK/K and
vA ⊕ (vBK/B) = v.

Proof : Take V to be Vi(G), P to be K, Q to be A−K, T to be B. We
use the facts that Vi(G × (E −K)) = (Vi(G)) · (E −K), (Vi(G))× (A)
= Vi(G . A), (Vi(G))× (B∪K) = Vi(G . (B∪K)) and the strong form
of Tellegen’s Theorem. The corollary then follows from Lemma 6.4.1.

2
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We need another elementary lemma which follows directly from The-
orem 3.4.1.

Lemma 6.4.2 Let G be on E and let E be partitioned into A,B. Let
L ⊆ B, K ⊆ A. Then

i. G . (E − L) has A, (B − L) as separators iff
G × (A ∪ L) · A ∼= G . A
(i.e., both the graphs have the same current and voltage space)
and

ii. G × (E −K) has A−K,B as separators iff
G . (B ∪K)× B ∼= G ×B.

Proof of Theorem 6.4.1: Throughout this proof we write x in place
of x(·) and x ∈ V in place of x(t) ∈ V ∀t ∈ ℜ.
An ordered pair (v, i) is a solution of N only if

(v/A, i/A) ∈ DA, (v/B, i/B) ∈ DB,v/A ∈ Vv(G . A),

v/(B ∪K) ∈ Vv(G . (B ∪K)), i/(A ∪ L) ∈ Vi(G × (A ∪ L)),

and i/B ∈ Vi(G × B).

(Using Theorems 3.4.4 and 3.4.5).
Now by Lemma 6.4.2 we have,

Vv(G . A) = Vv(G × (A ∪ L) ·A) (6.8)

Vi(G × B) = Vi(G . (B ∪K)× B). (6.9)

By Theorems 3.4.4 and 3.4.5 we have

Vv(G × (A ∪ L) ·A) = (Vv(G × (A ∪ L))) ·A (6.10)

Vi(G . (B ∪K)× B) = (Vi(G . (B ∪K))) · B. (6.11)

Thus v/A ∈ Vv(G . A) iff there exists vAL ∈ Vv(G × (A ∪ L)) s.t.
vAL/A = v/A.
Further i/B ∈ Vi(G × B) iff there exists iBK ∈ Vi(G . (B ∪K)) s.t.
iBK/B = i/B.
We thus see that
(v/A, i/A) ∈ DA, v/A ∈ Vv(G . A) and i/A ∪ L ∈ Vi(G × (A ∪ L))
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iff there exists (vAL, iAL) ∈ DA × δL
s.t. vAL ∈ Vv(G × (A ∪ L)), iAL ∈ Vi(G × (A ∪ L)) and
v/A = vAL/A, i/A ∪ L = iAL, i.e.,
iff there exists a solution (vAL, iAL) of NAL with

v/A = vAL/A, i/A ∪ L = iAL. (6.12)

Similarly we see that
(v/B, i/B) ∈ DB, v/B ∪K ∈ Vv(G . (B ∪K)), i/B ∈ Vi(G × B)
iff there exists a solution (vBK , iBK) of NBK with

v/B ∪K = vBK , i/B = iBK/B. (6.13)

Thus (v, i) is a solution ofN only if there exist solutions (vAL, iAL), (vBK , iBK)
of NAL,NBK respectively which satisfy Equations 6.12 and 6.13.

Conversely let (vAL, iAL), (vBK , iBK) be solutions of NAL,NBK re-
spectively s.t.

vAL/K = vBK/K

iAL/L = iBK/L.

Observe that E is partitioned into A,B − L,L s.t. G . (E − L) has
A,B − L as separators and also partitioned into K,A−K,B s.t. G ×
(E −K) has A−K,B as separators. We then have

vAL/A ∈ Vv(G × (A ∪ L) ·A) (= Vv(G . A))

iBK/B ∈ Vi(G.(B ∪K)×B) (= Vi(G × B))

(using Lemma 6.4.2).
By Corollary 6.4.2 it follows that
v ≡ vAL/A ⊕ vBK belongs to Vv(G) and by Corollary 6.4.1 it follows
that
i ≡ iBK/B ⊕ iAL belongs to Vi(G).
Since (vAL, iAL) ∈ DA × δL and (vBK , iBK) ∈ DB × δk it follows that
(vAL/A⊕ vBK/B, iAL/A⊕ iBK/B) ∈ DA ×DB.
Hence, (v, i) is a solution of N such that Equations 6.12 and 6.13 hold.

2

Exercise 6.15 State and prove the dual of Lemma 6.4.1.
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Exercise 6.16 Theorem 6.4.1 involves matching both boundary volt-
ages and boundary currents. Is it possible to get a similar topological
result where the solution of N is stated to be equivalent to the solution
of derived networks with (i) only boundary voltages matched (ii) only
boundary currents matched?

6.5 Structure of Constraints and Optimiza-

tion

In this section we consider issues relevant to the application of the
NAL−NBK method. We begin by showing that the essential structure
of the constraints in this method is controlled by the graphs G . A
and G ×B. Next we consider the problem of selecting minimal L and
K. For linear networks we show that the solution of the network N
can be achieved essentially by solving (1 + ξ(A,B)) times a network
with the same device characteristic but with graph G . A⊕G ×B. We
then discuss how to use this method to write hybrid equations for the
network in a way which, without compromising on sparsity, exploits
the advantages of good structure.

6.5.1 Essential Structure of the Constraints

We remind the reader that if a device is voltage (current) unconstrained
then as far as KVE (KCE) is concerned we may open (short) the
corresponding branch (Theorem 6.3.1).
The constraints for variables vA, iA, iL in NAL are

(vA, iA) ∈ DA, (6.14)

(ArA
...ArL)iAiL

= 0 (KCE for G × (A ∪ L)) (6.15)

(ArA
T )vnA − vA = 0. (KV L for G × (A ∪ L) · A),(6.16)

where (ArA
...ArL) is a reduced incidence matrix of G× (A∪L). Clearly

the rows of matrix ArA span Vv(G×(A ∪ L))·A (= Vv(G×(A ∪ L)·A)).
We show later that if L is chosen minimally then r(G × (A ∪ L)) =
r(G × (A ∪ L) · A). So in this case ArA is a reduced incidence matrix
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for G × (A ∪ L) · A. Thus, if we were to shift the terms corresponding
to iL to the right, the structure of the constraints, as far as LHS is
concerned is controlled by G× (A ∪ L) ·A, i.e., by G . A (using Lemma
6.4.2).
The constraints for variables vB, iB,vK in NBK are

(vB, iB) ∈ DB, (6.17)

(BB
...BK)vB

vK
= 0 (KV E for G . (B ∪K)) (6.18)

BB
T ilB − iB = 0. (KCL for G . (B ∪K)× B) (6.19)

The rows of matrix BB span Vi(G . (B ∪K))·B (= Vi(G . (B ∪K)×B))
We show later that ifK is chosen minimally ν(G . (B ∪K)) = ν(G . (B ∪K)×B).
So in this case, BB is a representative matrix for Vi(G . (B ∪K)×B).
Thus, if we were to shift the terms corresponding to vK to the right the
structure of the constraints, as far as LHS is concerned, is controlled
by G . (B ∪K)×B, i.e., by G × B (using Lemma 6.4.2).

6.5.2 Selection of Minimal L and K

In the following pages we give simple necessary and sufficient conditions
for the choice of minimal L andK in order that G . (E−L) has A,B−L
as separators and G × (E−K) has B,A−K as separators. We do not
attempt to (globally) minimize the size of L and K. As we shall show
later this problem is not relevant to our development.

Theorem 6.5.1 Let G . (E − L) have A,B − L as separators.
The subset L of B is minimal with respect to the property that G . (E−
L) has A,B − L as separators iff both the following conditions are
satisfied.

i. G × (A ∪ L) has no self loops in L, (∗)

ii. r(G × (A ∪ L)) = r(G . A). (∗∗)

Proof : By Lemma 6.4.2, the minimality of L can equivalently be
characterized with respect to the property that G×(A ∪ L)·A ∼= G . A.

Necessity
i. If e ∈ L and is a self loop of G × (A ∪ L) then
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G× (A ∪ L)× (A∪ (L−e)) = G× (A ∪ L) · (A∪ (L−e)). Now the LHS
is 2-isomorphic to G × (A ∪ (L− e)). Hence, G × (A ∪ (L− e)) · A ∼=
G × (A ∪ L) · A ∼= G . A. Thus, L is not minimal.

ii. Suppose r(G × (A ∪ L)) > r(G . A). Then, r(G × (A ∪ L)) >
r(G×(A ∪ L)·A) and L contains a cutset C of G×(A ∪ L) and therefore
of G. Let e ∈ C. If we open the branches L − e from the graph G, it
is clear that C ∩ (A ∪ e) must contain a cutset of G . (E − (L − e)),
i.e., e is a coloop of G . (E − (L− e)). We claim that A,B − (L − e)
are separators of this graph. Suppose otherwise. Let T be a circuit
of G . (E − (L − e)) which has nonvoid intersection with both A and
B− (L− e). Since e is a coloop of this graph, e 6∈ T . Then this circuit
would remain in the graph G . (E−L) (∼= G . (E− (L− e)) · (E −L)),
which contradicts the fact that A is a separator of the latter graph.
We conclude that there is no such circuit in G . (E − (L − e)) and
therefore (A,B − (L− e)) are separators of this graph. Thus, L is not
minimal.

Sufficiency
Suppose the conditions (∗) and (∗∗) are satisfied and yet L is not
minimal. Then there exists T ⊂ L s.t. G × (A ∪ (L− T )) · A ∼= G . A.
Now, r(G× (A ∪ L)) = r(G× (A∪ (L−T )))+r(G× (A ∪ L) ·T ). Since
L has no self loops in G×(A ∪ L), we must have r(G×(A ∪ L) ·T ) ≥ 1.
But this means that r(G× (A∪ (L−T ))) < r(G× (A ∪ L)) = r(G . A).
But then r(G × (A∪ (L− T )) ·A) ≤ r(G × (A∪ (L− T ))) < r(G . A).
We conclude that G×(A∪(L−T )) ·A cannot be 2-isomorphic to G . A.

2

The conditions for minimality of K and the proof of these conditions
are dual to those for the minimality of L, i.e., we make the following
interchanges line by line: contraction with restriction, circuit with cut-
set, self loop with coloop, rank with nullity. We therefore, omit the
proof of the following result.

Theorem 6.5.2 The subset K of A is minimal with respect to the
property that G × (E −K) has B −K,A as separators iff

i. G . (B ∪K) has no coloops in K,

ii. ν(G . (B ∪K)) = ν(G × B).
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Algorithms for Minimal L and K

We now give efficient algorithms for the construction of minimal L and
K. We first give an algorithm which is easy to justify. Then refine it
to a linear time algorithm.

ALGORITHM 6.1 First Algorithm for Min L,K
INPUT Graph G with partition A,E − A of edge set E.

OUTPUTMinimal sets L and K.

STEP 1 Select forest fA of G . A. Extend it to a forest f of G.

STEP 2 Take L to be the subset of all coforest edges in B in whose
f-circuits some edges of fA lie. Take K to be the subset of
all forest edges in A in whose f-cutsets some edges of B − f
lie (equivalently which lie in f-circuits of L).

STOP

Justification for the Algorithm

The f-cutset matrix with respect to the forest f in the above algorithm
has the following structure:

fA −K K f̄A fB L f̄B − L

Qf =







I 0 QAA 0 0 0
0 I QKA 0 QKL 0
0 0 0 I QBL QBB





 (6.20)

We denote the intersection of E − f with A,B by f̄A, f̄B respectively.
For convenience we have shortened the notation for the submatrix de-
noted by QAA,QBB. The indices for these submatrices should really be
(fA−K)f̄A and (fB)(f̄B−L). Note that QBA = 0, since fA is a forest of
G . A. Note also that the matrix QKL has no zero columns. Otherwise
the corresponding element e will not be in the f-cutset of any of the
branches in K (equivalently the f-circuit of e would not intersect fA).
Similarly QKL has no zero rows. Otherwise the corresponding branch
in K will not lie in the f-circuit of any branch in L. An application of
Theorem 3.4.6 tells us that (Vv(G)) · (E−L) (= Vv(G . (E−L))) has a
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representative matrix which can be obtained from Qf by deleting the
columns L. An examination of the representative matrix reveals that
A,B − L are separators for this space (equivalently for (G . (E − L)).
Further, (Vv(G)) × (E − K) (= Vv(G × (E − K))) has a representa-
tive matrix which can be obtained from Qf by deleting the rows and
columns corresponding to K. An examination of this representative
matrix reveals that A−K,B are separators for this space (equivalently
for (G × (E −K)).
We next prove minimality of L and K. Another application of Theo-
rem 3.4.6 gives the following matrix Q1 as the representative matrix
for Vv(G × (A ∪ L))

fA −K K f̄A L

Q1 =

[

I 0 QAA 0
0 I QKA QKL

]

(6.21)

Since QKL has no zero columns, no edge in L is a self loop in G ×
(A ∪ L). Deletion of columns L gives the representative matrix for
Vv(G × (A ∪ L) · A)(= Vv(G . A)). It is clear that this latter matrix
and Q1 have the same rank (because of the presence of the identity
matrix). Similarly we can see that the following matrix Q2 is the
representative matrix for Vv(G . (B ∪K)).

K fB L f̄B − L

Q2 =

[

I 0 QKL 0
0 I QBL QBB

]

(6.22)

Since QKL has no zero rows, no edge in K is a coloop in G . (B ∪K).
Deletion of the rows and columns corresponding to K gives the repre-
sentative matrix for Vv(G . ((B ∪K))×B)(= Vv(G×B)). This matrix
and Q2 have the same nullity because of the complement of the iden-
tity matrix columns being the same. We thus see that L and K satisfy
the conditions of minimality in Theorems 6.5.1 and 6.5.2.

We next refine the above algorithm.

ALGORITHM 6.2 Fast Algorithm for Min L,K.
INPUT Graph G with partition A,E − A of edge set E.
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OUTPUTMinimal sets L and K.

STEP 1 Select a forest fA of G . A. Extend it to a forest f of G.

STEP 2 Let fB ≡ f ∩ B. Construct G × (E − fB). Take L to be the
subset of non selfloops contained in B in this graph.

STEP 3 Construct G . (fA ∪ B). Take K to be the subset of
noncoloops contained in A in this graph.

STOP

Justification for Algorithm 6.2

In both the Algorithms 6.1 and 6.2 the sets fA, fB are constructed
identically. We will show that the sets L,K selected according to
Algorithm 6.1 are identical to the corresponding sets selected according
to Algorithm 6.2. Select L,K according to Algorithm 6.1. To avoid
confusion let us call these sets L′, K ′. In the graph G × (E − fB), fA

is a forest. Now the f-cutsets of branches in K remain as f-cutsets in
G × (E − fB). The union of these f-cutsets intersects B − fB in L′.
No branch in L′ can therefore be a selfloop. The remaining branches
in B − fB lie in no f-cutset. Hence, they must be selfloops. Thus,
L′ would also be output as the set L by Algorithm 6.2. In the graph
G . (fA ∪B), f is still a forest. The f-circuits of branches in L′ remain
as such in G . (fA ∪ B). The union of these f-circuits intersects fA

in K ′. No branch in K ′ can, therefore, be a coloop. The remaining
branches in fA lie in no f-circuit. Hence, they must be coloops. Thus,
the set K ′ would also be output as the set K by Algorithm 6.2.

Complexity of Algorithm 6.2

Building the forest f is O(| V | + | E |). Building graphs G×(E−fB),
G . (fA ∪ B) is O(| V | + | E |). Selection of self loops and coloops in
these graphs in O(| E |). Thus the overall complexity is O(| V | + |
E |).
Our algorithms help us to find minimal L and K but the sets may
not be minimum in size. It is, however, not necessary to find such
minimum sets for, as we show below, as long as L and K are minimal,
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we can work, in place of i(·)/L, v(·)/K, with QL(i(·)/L), BK(v(·)/K),
where QL, BK are representative matrices of
Vv(G × (A ∪ L) · L),Vi(G . (B ∪K) ×K respectively. This will allow
us to reduce
the number of current and voltage ‘boundary’ variables to ξ(A,B) ≡
r(G . A)−r(G×A) = r(Vv(G×(A ∪ L) ·L)) = r(Vi(G . (B ∪K)×K)).

Theorem 6.5.3 In Theorem 6.4.1 the conditions

v(·)/A = vAL(·)/A,
v(·)/(B ∪K) = vBK(·)
i(·)/(A ∪ L) = iAL(·),

i(·)/B = iBK(·)/B.
can be replaced by

v(·)/A = vAL(·)/A,
v(·)/B = vBK(·)/B
i(·)/A = iAL(·)/A,
i(·)/B = iBK(·)/B

QL(i(·)/L) = QL(iAL(·)/L)

BK(v(·)/K) = BK(vBK(·)/K),

where QL is a representative matrix of Vv(G × (A ∪ L) · L), BK is a
representative matrix of Vi(G . (B ∪K)×K).

Proof : Consider the constraints of NAL as far as vA, iA, iL are con-
cerned in Subsection 6.5.1. We notice that the only constraints involv-
ing iL are the KCE of G × (A ∪ L):

(

ArAArL

)

[

iA
iL

]

= 0.

It is clear that iL can be replaced by iL
′ so long as ArLiL = ArLiL

′.
The rows of ArL span Vv(G × (A ∪ L) ·L). This proves the part of the
statement concerning iL. Similarly the constraints of NBK as far as
vB, iB,vK are concerned (in the same subsection) involve vK only in
the KVE of G . (B ∪K):

(

BKBB

)

[

vK

vB

]

= 0.
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It is clear that vK can be replaced by vK
′ so long as BKvK = BKvK

′.
The rows of BK span Vi(G . (B ∪K) × K). This proves the part of
the statement concerning vK .

2

6.5.3 Solution of Linear Networks by Topological
Hybrid Analysis

The NAL,NBK Theorem can be used to alter the topology of the net-
work during analysis at a certain cost. Below we show that by using
this method a linear network N can be solved as though it has the
topology G . A⊕G×B but at the cost of solving it (1+ξ(A,B)) times,
where ξ(A,B) ≡ r(G . A)− r(G ×A).

Let L andK be chosen minimally. In the networkNAL the devices in
L are norators. However, we are interested in the variables iL. Hence,
we write down the constraints for vA, iA, iL in NAL using the notation
of Subsection 6.5.1. By Theorem 6.3.1 these are

(

ArA ArL

)

[

iA
iL

]

= 0. (6.23)

(

MA NA

)

[

iA
vA

]

= sA (6.24)

ArA
TvnA − vA = 0. (6.25)

Let ArLt be the submatrix of ArL composed of a maximal linearly
independent subset of columns of ArL (i.e., Lt is a forest of G×(A ∪ L)·
L). Then ArL = ArLtPL for some matrix PL.
So ArLiL = ArLt(PLiL). Let i′Lt

≡ PLiL. Hence the above KCE
conditions can be rewritten as

(

ArA ArLt

)

[

iA
i′Lt

]

= 0.

We assume that the network can be solved uniquely for arbitrary values
of iL and therefore of i′Lt

. We can solve this network repeatedly for the
following conditions:
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i. Keep the sources sA active, set all i′Lt
to zero

ii. Set the sources sA to zero and let i′Lt
take values as the columns

of the unit matrix of size | Lt |.

Thus by solving the network for (1+ | Lt |) source conditions we can
write

[

vA

iA

]

=

[

HvA

HiA

]

i′Lt
+

[

vA
o

iA
o

]

(6.26)

We write the constraints for NBK as far as the variables vB, iB, vK

are concerned in the form (once again using the notation of Subsection
6.5.1)

(

MB NB

)

[

iB
vB

]

= sB, (6.27)

BB
T ilB − iB = 0, (6.28)

(

BB BK

)

[

vB

vK

]

= 0, (6.29)

Let BKc be composed of a maximal linearly independent subset of
columns of BK (i.e., Kc is a coforest of G . (B ∪K)×K).
Let BK = BKcPK . So BKvK = BKc(PkvK). Let v′

Kc
≡ PkvK . Then

the above KVE conditions can be rewritten as

(

BB BKc

)

[

vB

v′
Kc

]

= 0.

We assume that the network can be solved uniquely for arbitrary values
of vK and therefore of v′

Kc
. We can solve this network repeatedly for

the following conditions:

i. Keep the sources sB active, set all v′
Kc

to zero

ii. Set the sources sB to zero and let v′
Kc

take values as the columns
of the unit matrix of size | Kc |.

Thus by solving the network for (1+ | Kc |) source conditions we can
write
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[

vB

iB

]

=

[

HvB

HiB

]

v′
Kc

+

[

vB
o

iB
o

]

(6.30)

From Equations 6.26, 6.30 we can extract the following:

vK = HvKi′Lt
+ vK

o (6.31)

iL = HiLv
′
Kc

+ iL
o (6.32)

From which we get by premultiplication respectively by BK and ArL

BKvK = BKHvKi′Lt
+ BKvK

o (6.33)

ArLiL = ArLHiLv
′
Kc

+ ArLiL
o (6.34)

But

BKvK = BKc
v′

Kc

and

ArLiL = ArLt
i′Lt
.

So we get
(

BKc −BKHvK

−ArLHiL ArLt

)[

v′
Kc

i′Lt

]

=

(

BKvK
o

ArLiL
o

)

(6.35)

If the given network has a unique solution the above equations also
have a unique solution from which we get values of v′

Kc
and i′Lt

. Sub-
stitution of these values in Equations 6.26 and 6.30 yields the solution
(v,i). Observe that, provided L,K have been chosen minimally,

| Lt | = r(G × (A ∪ L) · L) (6.36)

= r(G × (A ∪ L))− r(G × (A ∪ L)×A)

= r(G . A)− r(G × A)

= ξ(A,B)

and

| Kc | = ν(G . (B ∪K)×K) (6.37)

= ν(G . (B ∪K))− ν(G . (B ∪K) · B)

= ν(G × B)− ν(G . B)

= r(G . A)− r(G × A)

= ξ(A,B).
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Thus, by the above method we need to solve the linear network on
graph G . A ⊕ G × B for (ξ(A,B) + 1) source conditions.(The effort
required to solve Equation 6.35 can usually be neglected in comparison,
since ξ(A,B) would be much smaller than r(G · A), ν(G × B) if A,B
have been properly chosen.) The value ξ(A,B) represents the number
of essential linkages between A and B.

6.5.4 Decomposition procedure for NAL,NBK

shift i
’ 1

2

1

e4
e5

e7
e8

e9

e6
i’  = i1 + i3

i’  = i2 + i3

i3

i2

i1

e4
e5

e7
e8

e9

e6

shift i3 across i 1, i2

e7

e8

i’1

e9

e6

e4
e5

i’1

2i’

e4
e5

e7

e8

i’1

i’1

hinge

i’2

e6e9
cut hinge

Figure 6.7: To illustrate decomposition of NAL

In practice the partition A,B would have been chosen so that G . A⊕
G ×B has several 2-connected components which are decoupled in the
device characteristic of the network. However, this structure is re-
vealed only when the ‘artificial’ sources in iL,vK are set to zero. It is
better therefore, that these sources are (current or voltage) shifted in
such a way that the 2-connected components of the resulting network
correspond to the 2-connected components of G . A⊕ G ×B.
When a connected network has more than one 2-connected compo-
nents which are decoupled in the device characteristic, it is equivalent
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as far as branch voltages and currents are concerned to the network
obtained by cutting it at the hinges separating the 2-connected com-
ponents. While writing equations it is better to separate them in this
manner. This would ensure that the constraints appear in decoupled
blocks.
The following procedure allows us to convert the problem of solving
NAL,NBK to one of solving subnetworks each on a 2-connected com-
ponent of G . A or G×B. Observe that the procedure does not depend
on the type of devices in the network.

STEP 1: Select a forest Lt of G × (A ∪ L) · L. Current shift the
unknown current sources in L − Lt in the network NAL into Lt. The
resulting current sources i′Lt

are appropriate linear combinations of the
current sources iL.
STEP 2: Current shift each of the current sources i′Lt

across edges
of paths within G . A such that every shifted source is across vertices
within the same 2-connected component. Cut the network at the hinges
so that the resulting network has as its connected components, the 2-
connected components of G . A.
We thus have a number of networks on the 2-connected components
of G . A. Figure 6.7 illustrates the procedure. The unknown current
sources i1, i2, i3 make up iL.

STEP 3: Select a coforest Kc of G . (B ∪K) ×K. The branches in
K − Kc form a forest of G . (B ∪K) ×K. The fundamental cutsets
of this forest remain as cutsets even in G . (B ∪K). In each of these
cutsets do the following: If e ∈ K − Kc, shift ve into the remaining
branches of the cutset while contracting e. Thus, v-shift all the un-
known voltage sources of K − Kc in the network NBK into Kc. The
resulting voltage sources v′

Kc
are an appropriate linear combination of

the voltage sources vK .
STEP 4: Voltage shift each of the voltage sources v′

Kc
so that they

move to positions in series with edges of G × B. Every shifted source
now lies entirely within a 2-connected component of G × B. Cut the
network at the hinges so that these 2-connected components of G ×B
become connected components of the resulting network. The resulting
network can therefore be thought of as a number of networks on the
2-connected components of G × B. Figure 6.8 illustrates the proce-
dure. The unknown voltage sources v1, v2, v3 make up vK . Thus, at
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Figure 6.8: To illustrate decomposition of NBK

the end of the procedure we have networks on 2-connected components
of G . A⊕ G ×B linked by the variables in i′Lt

,v′
Kc

.

6.5.5 Hybrid Analysis Equations for Linear Net-
works

An immediate application of the NAL − NBK method is in the con-
venient formulation of hybrid analysis equations. We assume DA,DB

have the form

iA −GvA = sA (6.38)

vB −RiB = sB (6.39)

We now write nodal type equations forNAL and loop type equations for
NBK . First using the equations for the variables vA, iA, iL in Subsection
6.5.1 we get

ArAiA + ArLiL = 0 ( KCE for G × (A ∪ L))(6.40)

ArAGvA + ArAsA + ArLiL = 0 (by device characteristic)(6.41)
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ArAGArA
TvnA

+ ArLiL = −ArAsA (by KV L for G . A)(6.42)

Next using the equations for the variables vB, iB,vK in the above men-
tioned subsection, we get

BBvB + BKvK = 0 ( KV E for G . (B ∪K)) (6.43)

BBRiB + BBsB + BKvK = 0 (by device characteristic) (6.44)

BBRBB
T ilB + BKvK = −BBsB (by KCL for G × B) (6.45)

Next we need to match iL from both networks and vK from both
networks. This is done by writing iL in NBK in terms of ilB and sub-
stituting this expression in place of iL in NAL. Similarly vK is written
in terms of vnA

in NAL and substituted in NBK .
Let ArK be the submatrix made up of columns of ArA correspond-
ing to K and let BL be the submatrix made up of columns of BB

corresponding to L. We then have

vK = (ArK)TvnA

iL = BT
LilB .

Thus, the final hybrid analysis equations for N are:
[

ArAGArA
T ArLB

T
L

BKArK
T BBRBB

T

] [

vnA

ilB

]

=

[

−ArAsA

−BBsB

]

(6.46)

We now briefly discuss the structure of the hybrid analysis equations.

Positive Definiteness of the Coefficient Matrix

Theorem 6.5.4 : If G, R are positive definite and L,K are chosen
minimally, then the coefficient matrix of the hybrid analysis equations
is positive definite.

To prove the theorem we need a couple of preliminary lemmas.

Lemma 6.5.1

(ArLBL
T )T = −(BKArK

T ),

where (ArAArL), (BBBK) are representative matrices respectively of
Vv(G × (A ∪ L)) and Vi(G . (B ∪K)) and ArK ,ArL are submatrices
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of (ArAArL) composed of columns corresponding to K,L respectively
and BL,BK are submatrices of (BB BK) corresponding to L,K respec-
tively.

Proof : We observe that rows of (ArL ArK) span

(Vv(G × (A ∪ L))) · (K ∪ L) = Vv(G × (A ∪ L) · (K ∪ L))

and the rows of (BLBK) span

(Vi(G . (B ∪K))) · (K ∪ L) = Vi(G . (B ∪K)× (K ∪ L)).

Now,

G × (A ∪ L) · (K ∪ L) ∼= G . (B ∪K)× (K ∪ L).

Hence, by Tellegen’s Theorem we have

(

ArL ArK

)

(

BL
T

BK
T

)

= 0, (6.47)

i.e., ArLBL
T = −ArKBK

T = −(BKArK
T )T .

2

We also need the following elementary lemma whose simple proof is
omitted.

Lemma 6.5.2 Let Y,Z be positive definite. Then

[

Y H
−HT Z

]

is

positive definite.

Proof of the Theorem 6.5.4 : The rows of ArA span

(Vv(G × (A ∪ L))) ·A (= Vv(G × (A ∪ L) ·A)).

The rows are linearly independent since the number of rows equals
r(G × (A ∪ L)) which by minimality of L is equal to r(G × (A ∪ L) ·A)
(by Theorems 6.5.1 and 6.5.2). By a similar argument we see that BB

is a representative matrix of Vi(G . (B ∪K) × B) and, therefore, has
linearly independent rows. Since G, R are given to be positive definite,
it follows that ArAGArA

T , BBRBB
T are positive definite (see Problem

2.10).
The theorem follows by Lemma 6.5.2.
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2

For iterative methods of solution of linear equations (such as the
conjugate gradient method) the coefficient matrix has to be positive
definite in order that convergence be guaranteed. In practice these
methods work well even if only a large principal diagonal submatrix
is positive definite. The coefficient matrix that one obtains in hybrid
analysis appears to satisfy these conditions to the extent that the net-
work permits.(Compare remarks on the MNA coefficient matrix in A
modification of the conjugate gradient method works very well for hy-
brid analysis equations.
COMMENT a para here about mcg. Subsection 5.5.3).

The zero-nonzero structure of the coefficient matrix

The zero-nonzero structure of the hybrid analysis matrix is largely de-
pendent on the zero-nonzero matrix structure of the matrices (ArAGArA

T )
and BBRBB

T . If G . A is in several 2-connected components which are
decoupled in the device characteristic we should first use the procedure
described earlier of shifting the sources so that we have a number of
subnetworks each on one of these 2-connected components. For each of
these graphs we construct the reduced incidence matrix omitting one
node as the datum node and write KCE using the shifted sources. The
coefficient matrix of the KCE would have the form









ArA1 · · · 0 A1L

. . .
...

0 · · · ArAk AkL









and (ArAGArA
T ) would appear as a block diagonal matrix. Each block

would be the coefficient matrix for nodal analysis of the corresponding
2-connected component and would have good sparsity. If G × B is
in several 2-connected components which are decoupled in the device
characteristic we can similarly choose (BB BK) so that it has the form









BB1 · · · 0 B1K

. . .
...

0 · · · BBk BkK









.
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The matrix BBRBB
T would appear in the block diagonal form. In

this case however, the sparsity depends on the choice of the repre-
sentative matrix [BBi BiK ]. If the individual 2-connected compo-
nents were planar then mesh matrix is the best choice. Otherwise one
could use a technique of planar slicing which seems to perform well
[Ovalekar+Narayanan92] (see Problem 3.24).

6.5.6 The Hybrid Rank

A natural question that arises in connection with hybrid analysis is the
following:
‘When would the size of the coefficient matrix be the minimum? ’
We have seen that the number of rows of ArA is r(G . A) while that
of BB is ν(G × B). Thus, we have to look for a partition (A,B) that
minimises r(G . A)+ν(G ×B). This is the principal partition problem
that is dealt with in detail later in Chapter 10 and Section 14.2 of
Chapter 14. ( The minimum value is called the hybrid rank of G).
Here we only mention a couple of interesting facts.

i. Call two forests of G maximally distant if the size of their union
is the largest possible. Let this maximum size be r2(G). Then

min
A⊆E,B=E−A

(r(G . A) + ν(G ×B)) = r2(G)− r(G).

ii. If (A′, B′), (A”, B”) both corresponds to the hybrid rank so do
(A′ ∪ A”, B′ ∩ B”) and (A′ ∩ A”, B′ ∪B”).

Thus, there is a unique (A,B) which maximizes size of A and minimizes
size of B and a unique (A,B) which takes extreme value in the other
direction.

There is a variation of the hybrid rank problem which is also relevant
here. Suppose the devices in the network are partitioned into blocks
within each of which there is device characteristic coupling. Suppose
further that in each of the blocks the characteristic is available in both
the conductance and the resistance form, i.e., vB − RbiB = sb or
GbvB−iB = ŝb. When we partition the devices into A and B, we would
not like to split the blocks of the above partition. So the problem to
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be solved becomes ‘minimize r(G . A) + ν(G ×B) under the condition
that A and B are unions of blocks of a given partition Π of E(G)’. It
turns out this is the hybrid rank problem (equivalently the membership
problem) for polymatroids. It is possible to solve this problem by a
variation of the techniques used for solving the original hybrid rank
problem (see Section 14.3).

Exercise 6.17 When hybrid analysis is used as a technique of network
decomposition we usually concentrate on getting a good structure for
G . A or for G ×B but not necessarily for both. For both the networks
with graphs in Figure 6.9 assume that branches have the characteris-
tic G(v − e) − (i − j) = 0, where G is an invertible diagonal matrix.
For the first of these graphs take the dotted branches to be B and for
the second of these graphs take them to be A. Now write by inspec-
tion hybrid equations for the two problems which reveal the fact that
G . A (G × B) has three 2-connected components.

1 2

3

a b

c

d

f

g

h

B={1,2,3}

a

b c

1

2

3

A={1,2,3}

G1 G2

Figure 6.9: Diakoptics and Codiakoptics

Exercise 6.18 Let

A =

(

A11 A12

A21 A22

)

Suppose A11 is invertible. Obtain the inverse of A in terms of A−1
11

and any other appropriate matrix. (This is one of the ‘Householder
inverses’).
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Exercise 6.19 Let

A =











A11 A12 A13 0
A21 A22 A23 0
0 A32 A33 A34

0 A42 A43 A44











Suppose
(

A11 A12

A21 A22

)

and

(

A33 A34

A43 A44

)

are invertible. Obtain the inverse of A in terms of the inverses of these
matrices.

Exercise 6.20 Let A = B+CD and let A,B be invertible. Obtain the
inverse of A in terms of the inverse of B. Relate this to the previous
problem.

Exercise 6.21 i. Show that the second condition of Theorem 6.5.1
is equivalent to ‘L contains no cutsets in G × (A ∪ L)’.

ii. Derive an equivalent condition to the second condition of Theo-
rem 6.5.2 that is dual to the above.

Exercise 6.22 We use the notation of Theorem 6.4.1.

i. If L contains no cutsets of G show that

r(G × (A ∪ L) · L) = r(G . A)− r(G × A) = ξ(A,B).

ii. If K contains no circuits of G show that ν(G . (B ∪K)×K) =
ξ(A,B).

iii. In addition to the above if L contains no circuits of G × (A ∪ L)
and K contains no cutsets of G . (B ∪K), show that L and K
are disjoint forests (coforests) of

G × (A ∪ L) · (K ∪ L) (= G . (B ∪K)× (K ∪ L))



6.6. NOTES 269

6.6 Notes

Most of the material in this chapter is taken from [Narayanan78]. The
work arose in an attempt to understand Kron’s Diakoptics [Kron63]
from a topological point of view. In a sense these ideas are contained
already in Branin’s interpretation (hybrid analysis) of Kron’s work
[Branin62]. Our work, however, is in a different direction from that of
Amari [Amari62], who has given an algebraic topological interpreta-
tion of Kron’s work. In the literature there is sometimes an attempt
made to derive hybrid analysis using Substitution Theorem. This is
impossible, since that theorem needs a guarantee that the network be
uniquely solvable after substitution. In fact, provided the device char-
acteristics can be partitioned into conductance type and resistance type
devices, hybrid analysis equations are valid equations for the network,
irrespective of whether the network has a unique solution or even has
a solution at all.

6.7 Solutions of Exercises

E 6.1: i. The cutset would disappear since one of its branches, viz.
the voltage source, would get shorted during v-shift.

ii. Contract all branches other than voltage sources. A cutset in the
resulting graph would be a cutset in the original graph.

iii. In the above contracted graph G1, the branches incident at each
node would be a crossing edge set. Take any one such set. Observe
that this is also a crossing edge set of the original graph. Do a v-
shift in the original graph of one of its branches (each of which is a
voltage source) into the others in the crossing edge set.Contract the
shifted voltage source in the graph G1 to get a graph G2. Repeat this
procedure until only a collection of self loops is left in the contracted
graph.During this process the original graph would have some of its
voltage sources shorted so that no purely voltage source cutsets are
left.The new network and the old are equivalent as far as the devices
other than the contracted voltage sources are concerned.

E 6.2: ((ii) Suppose a collection of current sources formed a circuit.
How would you detect such a circuit?(iii) How would you reduce the
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number of current sources without affecting the solution as far as the
rest of the network is concerned?)

ii. Open all branches other than current sources. A circuit in the
resulting graph would be a circuit in the original graph.

iii. In the above reduced graph G1 consider any circuit. Observe that
this is also a circuit of the original graph. Do an i-shift (in the original
graph) of one of its branches (each of which is a current source) into the
others in the circuit. Open the shifted current source in the graph G1 to
get a graph G2. Repeat this procedure until only a collection of coloops
is left in the reduced graph.During this process the original graph would
have some of its current sources opened so that no purely current source
circuits are left.The new network and the old are equivalent as far as
the devices other than the deleted current sources are concerned.

E 6.3: The set E contains no circuits of G. So it contains no circuits
of G . (E − J ) either. Now the column dependence structure of all
representative matrices of a vector space is the same. Hence, for rank
computations we may select the matrix (BRBE ) to be an f-circuit
matrix of G . (E−J ). The set E contains no circuit and hence can be
included in some forest. We select one f-circuit matrix with respect to
such a forest. Now BR contains an identity submatrix with the same
number of rows.
So, r(BR BE ) = r(BR). The proof is dual to the above for ‘r(AR AJ) =
r(AR)’.

E 6.4: Let (AR AJ) be a reduced incidence matrix for G×(E−E). We
remind the reader that the reduced incidence matrix is obtained from
the incidence matrix by omitting one row per component. Since J
contains no cutset of G the rows of AR must be linearly independent.
It is then clear that AR is the reduced incidence matrix for G×(E−E)·R
= G . (E − J ) × R. We can select a representative matrix AER

for
Vv(G . (E −J )) as follows:

E R

AER
=

[

I QER

0 AR

]

. (6.48)

Here (I QER
) is obtained by selecting a forest of G . (E−J ) containing

E and taking f-cutset vectors corresponding to the edges in E . The
above is a representative matrix because
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i. its rows are linearly independent and belong to Vv(G . (E −J ))
(note that AR is a representative matrix for Vv(G . (E−J )×R)
= (Vv(G . (E −J )))× R

ii. the number of rows = r(G . (E −J )× R) + r(G . (E − J ) · E)
= r(G . (E − J )).

By Theorem 6.3.1 the constraints on vR, iR,vE , iJ are

[

AR AJ

]

[

iR
iJ

]

= 0 (KCE for G × (E − E))
[

vE
vR

]

=

[

I 0
QT
ER

AT
R

] [

vE
vn

]

(KV L for G . (E −J )).

Next vE = e, iJ = j and GvR − iR = 0, where G = R−1.
Hence we have

AR iR = −AJ j

ARGvR = −AJ j

ARG[QT
ER

AT
R]

[

vE
vn

]

= −AJ j

(ARGAR
T )vn = −AJ j−ARGQT

ER
e.

As required we observe that the coefficient matrix structure is con-
trolled by AR which is the reduced incidence matrix of G . (E−J )×R.
The loop type equations are written dual to the above. The important
step is to write a representative matrix B̂JR for G × (E − E) in form
shown below:

J R

B̂JR =

[

I BJR

0 BR

]

. (6.49)

Here BR is a representative matrix for
(Vi(G × (E−E)))×R = Vi(G × (E−E) ·R) = Vi(G . (E−J )×R)).
The rows of (I BJR) are obtained by selecting a forest of G × (E − E)
that does not intersect J and taking f-circuit vectors corresponding
to the edges in J . The final equations we get are (BR R BR

T )il
=−BEE −BRRBT

JR j.
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Once again the coefficient matrix structure is controlled by BR which
is a representative matrix for Vi(G . (E −J )× R).

E 6.5: Let N ≡ (G,D) be a network.
Let N1 ≡ (G1,D1) be defined as follows:

i. Let E1 ≡ E(G1), E ≡ E(G) such that E ⊆ E1 and G1 · E = G,

ii. E1−E is a circuit of G1 and its edges have the the same direction
relative to the orientation of the circuit,

iii. D1 = δ(E1−E)v × DEv(E1)i (i.e., elements of E1 − E are voltage
unconstrained).

iv. (v1, i1) ∈ D1 only if (v1/E, i1/E) ∈ D and i1/(E1 − E) has all
its entries equal to J .

Then N and N1 are equivalent in E.

E 6.6: The proof is identical to that of Theorem 6.3.2 except that in
place of Jic we use a vector î = 0E−A + iA .

E 6.7: Dual to the above.

E 6.8: Let v, i be a solution of N . We see that (v/(E−A), i/(E−A))
satisfy constraints (i), (ii) and (iii). On the other hand let (vE−A, iE−A)
satisfy constraints (i), (ii) and (iii). Then there exist v(·) s.t. v(t) ∈
Vv(G), ∀t ∈ ℜ and v/E −A = vE−A and there exist i(·) s.t. i(t) ∈
vi(G), ∀t ∈ ℜ and i/E − A = iE−A. Since (vE−A, iE−A) ∈ DE−A and
D = δA × DE−A, we conclude that v, i ∈ D. Thus, if (vE−A, iE−A)
satisfy (i), (ii) and (iii). there exists a solution v, i of N s.t.

vE−A = v/(E −A)

iE−A = i/(E − A).

E 6.9: The result follows from the facts that

D ≡ DA ×DE−A,DA ≡ {(0A, 0A)}

Vi(G . A) = (Vi(G))× A
Vv(G × A) = (Vv(G))× A.
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E 6.10: When we v-shift a source and put it in series with existing
devices, absorbing it into their characteristics, the effect on the graph
is that the branch is contracted fusing its endpoints. So if G × (E−E)
has separators A,B, these sets would appear as separators after v-shift.

E 6.11: Dual to the previous problem.

E 6.12: Combination of the previous two problems.

E 6.13: In order to i-shift (v-shift) a device all that is needed is
that the device be voltage unconstrained (current unconstrained). So
norators can be both v-shifted as well as i-shifted. Nullators, however,
have both voltage and current constraints. So they cannot be v- or
i-shifted.

E 6.14: Norators can be both v- as well as i-shifted. When i-shifted
a norator D1 can be thought of as an ‘unknown’ current source of
value iD1 . After i-shifting this parameter can be absorbed into the
characteristic of the device in parallel e.g. if the characteristic of the
device is f(i, v) = 0, the characteristic of the parallel combination
would be f(i− iD1, v) = 0 if we assume that the original device and iD1

have the same direction. (In the second characteristic i, v represent the
current and voltage associated with the combined device). We have
seen that i-shifting a device results in graph restriction. So if G . (E−A)
has B1, · · ·Bk as separators and if DB = DB1 × · · · × DBk

, we have a
set of networks on G . B1 ⊕ · · · ⊕ G . Bk with only the parameters
iD1 , · · · , iDn

(the currents of norators in A) linking the networks in the
device characteristic. The discussion for v-shift is dual to the above.

E 6.15: The statement of the dual of Lemma 6.4.1

Lemma 6.7.1 : Let V be a vector space on S. Let S be partitioned
into P,Q, T s.t. V × (S − P ) has Q, T as separators. Then a vector
x ∈ V iff there exist vectors xPQ ∈ V · (P ∪Q) and xPT ∈ V · (P ∪ T )
s.t.
xPQ/P = xPT/P and xPQ/Q⊕ xPT = x.

The proof is by use of vector space duality: Replace V in the statement
of Lemma 6.4.1 throughout by V⊥. Next write V⊥ · (S − P ) as (V ×
(S − P ))⊥, (V⊥ × (P ∪Q))⊥ as (V · (P ∪Q)) and (V⊥ × (P ∪ T ))⊥ as
(V · (P ∪ T )). Observe that the separators of a vector space and of its
orthogonal complement are identical, that the orthogonal complement
of the orthogonal complement is the original vector space and rewrite
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the statement in terms of V .

E 6.16: Matching only boundary voltages or only boundary currents
would affect only KVL or only KCL constraints. So such a result is
impossible unless device characteristics were used.

E 6.17: Outline (Figure 6.9(a)) Treat branches 1, 2, 3 as current
sources and i-shift them so that 1 goes across (a, c), (c, g), 2 goes
across (b, c), (c, d) and 3 goes across (f, c), (c, h). Cut the network at
the hinge so that we have three networks for each of which write nodal
equations in terms of actual sources in branches other than 1, 2, 3 and
the ‘new’ current sources i1, i2, i3. Now write the additional equations

i1 = g1(v1 − e1) + j1 = g1(v
1
a − v1

c + v3
c − v3

g − e1) + j1

i2 = g2(v2 − e2) + j2 = g2(v
1
b − v1

c + v2
c − v2

d − e2) + j2

i3 = g3(v3 − e3) + j3 = g3(v
2
f − v2

c + v3
c − v3

h − e3) + j3

If c had been taken as the datum node in each of the three ‘split’
networks then v1

c , v
2
c , v

3
c can be taken to be zero. Here superscripts

1, 2, 3 refer to the three ‘split’ networks.

E 6.18: Let
(

A11 A12

A21 A22

)

x1

x2
=

(

b1

b2

)

, (∗)

where the RHS is arbitrary . If
(

x1

x2

)

=
(

K
)

(

b1

b2

)

, (∗∗)

then K must be the inverse of A.
From the first set of rows of (∗) we get

x1 = A−1
11 (b1 −A12x2)

Substituting in the second set of rows of (∗) we get

A22x2 = b2 −A21A
−1
11 (b1 −A12x2)

Let A′
22 ≡ (A22 −A21A

−1
11 A12). Then

x2 = (A′
22)

−1(b2 −A21A
−1
11 b1)

and
x1 = A−1

11 (b1 −A12(A
′
22)

−1(b2 −A21A
−1
11 b1)).
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(Note that the invertibility of A′
22 follows from the invertibility of A

and A11). Now we rewrite these equations in the form (∗∗), which
yields K.

E 6.19: Similar to the solution above.

E 6.20: Consider the solution of the equation

Bx + Cy = b

−Dx + y = 0

Now if we obtain x = Kb then K must be the inverse of A. To obtain
K we use the method of solution of Exercise 6.18.
To see that the previous problem is a special case of this take

B ≡











A11 A12 0 0
A21 A22 0 0
0 0 A33 A34

0 0 A43 A44











D ≡
[

0 A′
3

A′
2 0

]

,

where rows of A′
3,A

′
2 span, respectively, rows of

(

A13

A23

)

,

(

A32

A42

)

.

Since by linearly combining rows of D we can get A′ ≡











0 A13

0 A23

A32 0
A42 0











So we can find C s.t. CD ≡ A′. (It is preferable that C be found by
inspection where possible. It is not essential that rows of D be linearly
independent).

E 6.21:
i. L contains no cutsets in G × (A ∪ L) iff L can be included in a
coforest of G × (A ∪ L), i.e., iff r(G × (A ∪ L) · A) = r(G × (A ∪ L)).
(In the present case

G × (A ∪ L) ·A ∼= G . (E − L)×A ∼= G . (E − L) · A ∼= G . A)

ii. K contains no circuits in G . (B ∪K) iff K can be included in a
forest of G . (B ∪K), i.e., iff ν(G . (B ∪K)× B) = ν(G . (B ∪K)).
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(In the present case

G . (B ∪K)× B ∼= G × (E −K) · B ∼= G × (E −K)×B ∼= G ×B)

E 6.22: i. We have

G × (A ∪ L) ·A ∼= G . A by definition of L

Now

r(G × (A ∪ L)) = r(G × (A ∪ L)× A) + r(G × (A ∪ L) · L)

Now if L contains no cutsets in G, it has no cutsets in G × (A ∪ L).
Hence,

r(G × (A ∪ L)) = r(G × (A ∪ L) · A) = r(G . A)

The result follows.

ii. This is dual to the above.

iii. If L contains no circuit of G × (A ∪ L) then L is a subforest of
G × (A ∪ L) · (K ∪L). Dually K is a subcoforest of G . (B ∪K)× (K ∪
L)(= G × (A ∪ L) · (K ∪ L)). We conclude that L is a forest and K is
a coforest of G × (A ∪ L) · (K ∪ L).
Next G × (A ∪ L) · A ∼= G . A (by definition of L). Since K contains
no circuits of G it also contains no circuits in G . A and, therefore,
in G × (A ∪ L) and G × (A ∪ L) · (K ∪ L). Thus K is a subforest of
G × (A ∪ L) · (K ∪ L). Dually L is a subcoforest of G . (B ∪K) ×
(K ∪L)(∼= G × (A ∪ L) ·K ∪L)). So K is a forest and L, a coforest of
G × (A ∪ L) · (K ∪ L). The required result now follows.



Chapter 7

The Implicit Duality
Theorem and Its
Applications

In this chapter we discuss a useful result for constructing complemen-
tary orthogonal spaces to implicitly defined vector spaces. The result
has wide applications in Network and Systems theory. Its form per-
mits generalization to other situations such as inequality and integral-
ity systems. In the first half of this chapter we discuss the vector space
version of the theorem and its applications. Later, for completeness,
we discuss the polarity and integrality versions of the result.

7.1 The Vector Space Version

The Implicit Duality Theorem is, in a sense, a generalization of the fact
that contraction and restriction of vector spaces are dual operations.
The result is stated in terms of the notion of a generalized minor,
defined below. Also, keeping in mind the other versions of the theorem
we introduce appropriate notation.

Definition 7.1.1 [Narayanan87] Let S, P be disjoint finite sets. Let
KSP ,KP be collections of vectors defined on S⊎P , P , respectively. The
generalized minor of KSP through KP , denoted by KSP ↔ KP is

277
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defined by
KSP ↔ KP ≡ {fS : fS = fSP/S, where fSP ∈ KSP s.t. fSP/P ∈ KP}.
If KSP ↔ KP = KS we say that KSP is an extension of KS through
KP .

Remark: i. Throughout this chapter S, P would denote disjoint sets.
All sets dealt with would be finite unless otherwise stated.

ii. For the dot product and inner product operations we use the same
symbol
‘< ·, · >’ - but in most cases we deal with the dot product. If inner
product is intended this is mentioned. In Section 7.2 the ‘q-bilinear’
operation (a generalization of dot product and inner product) is defined
and denoted also by < ·, · >. This should however cause no confusion
since discussion on this operation in the general sense is confined to
that section.

iii. We abuse the notation in the following sense: even when we refer
to two different dot product operations say one on V1 × V1 and the
other on V2 × V2, where V1,V2 are spaces on different sets, we would
use the same symbol < ·, · >. When f1 is on S1 and f2 is on S2 then
we take the dot product of f1 with f2, also denoted by < f1, f2 >, to be

∑

e∈S1∩S2

f1(e)f2(e).

By definition, the dot product is zero when S1 ∩ S2 = ∅.
For notational convenience we generalize the usual ideas of addi-

tion of vectors and of collections of vectors below. We also extend
the definition of contraction and restriction to arbitrary collections of
vectors.

Let us define addition of vectors fS1 , fS2 on distinct sets by

(fS1 + fS2)(e) = fS1(e) + fS2(e), e ∈ S1 ∩ S2

= fS1(e), e ∈ S1 − S2

= fS2(e), e ∈ S2 − S1.

When S1, S2 are disjoint sets we usually write (fS1 ⊕ fS2) in place of
(fS1 + fS2).
Addition of collections of vectors KS1,KS2 is denoted as usual by
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KS1 +KS2 and is defined by

KS1 +KS2 ≡ {fS1 + fS2 : fS1 ∈ KS1 , fS2 ∈ KS2}.

Once again, if S1, S2 are disjoint sets we usually write KS1 ⊕ KS2 in
place of KS1 +KS2 . For convenience we define KS1 −KS2 by

KS1 −KS2 ≡ {fS1 − fS2 : fS1 ∈ KS1 , fS2 ∈ KS2}.

It is clear that if KS1 ,KS2 are vector spaces on S1, S2 respectively then
KS1 −KS2 is equal to KS1 +KS2 and is a vector space on S1 ∪ S2.
On the other hand, if KS1 ,KS2 are cones on S1, S2 respectively (a cone
is a collection of vectors such that nonnegative linear combinations of
vectors in the collection remain in the collection) then KS1 + KS2,
KS1 −KS2 are distinct but are still cones on S1 ∪ S2.
For any collection KS1 of vectors S1 and T ⊆ S1, let

KS1 · T ≡ {fT : fT = f/T, where f ∈ KS1}

and let

KS1 × T = {fT : fT = f/T, where f ∈ KS1 and f/(S1 −T)(·) = 0}.

We then have the following simple lemma whose routine proof we omit.

Lemma 7.1.1 Let KSP ,KP be collection of vectors on S⊎P, P respec-
tively. Then, KSP ↔ KP = (KSP −KP )× S.

7.1.1 The Implicit Duality Theorem: Orthogonal-

ity Case

Let KP be a vector space whose representative matrix RP is as follows:

P1 P2

RP ≡
(

I
... 0

)

,

where P1 ⊎ P2 = P . It is then clear that

KSP ↔ KP = KSP · (S ∪ P 2)× S
= KSP × (S ∪ P 1) · S.
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Further K⊥
P has the representative matrix

P1 P2

QP ≡
(

0
... I

)

.

Hence, in this case

K⊥
SP ↔ K⊥

P = K⊥
SP · (S ∪ P 1)× S = (KSP ↔ KP )⊥

(using Corollary 3.4.1).
We now show that this result is true for arbitrary vector spaces.

Theorem 7.1.1 (The Implicit Duality Theorem) Let VSP ,VP be vec-
tor spaces on S ⊎ P, P respectively. Then,

(VSP ↔ VP )⊥ = V⊥
SP ↔ V⊥

P .

We need the following lemma for the proof of this theorem.

Lemma 7.1.2 A z = b has a solution iff (ATσ = 0) ⇒ (bTσ = 0).

Proof of the Lemma:
Let VA be the space spanned by the columns of A. Since (V⊥

A )⊥ = VA

(Theorem 2.2.5), a vector b belongs to VA iff it is orthogonal to all
vectors in V⊥

A , i.e., iff (ATσ = 0)⇒ (bTσ = 0).

2

Proof of Theorem 7.1.1: Let

(
S

AS

P

AP ), (
P

ÂP )

be the representative matrices of VSP , VP respectively. A vector xS

belongs to VSP ↔ VP iff there exist vectors λ1, λ2 s.t.

[

AS
T 0

AP
T ÂT

P

] [

λ1

λ2

]

=

[

xS

0

]

.

By lemma 7.1.2, this happens
iff

(

AS AP

0 ÂP

)[

yS

yP

]

=

(

0
0

)

⇒ (xT
SyS = 0)
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i.e., iff
(yS ∈ (V⊥

SP ↔ V⊥
P ))⇒ (xT

SyS = 0).

Thus, VSP ↔ VP = (V⊥
SP ↔ V⊥

P )⊥. It is clear that (V⊥
SP ↔ V⊥

P ) is a
vector space.
By Theorem 2.2.5

V⊥
SP ↔ V⊥

P = (V⊥
SP ↔ V⊥

P )⊥⊥ = (VSP ↔ VP )⊥.

2

Remark: The fact that vectors in V⊥
SP ↔ V⊥

P and VSP ↔ VP are
orthogonal is easy to see but of limited value. For almost all applica-
tions it is necessary to show that the two spaces are complementary
orthogonal.

Example: Suppose spaces V and V ′ are solution spaces respectively
of

[A1|A2]

[

x1

x2

]

= 0, [B1|B2]

[

y1

y2

]

= 0.

If the two spaces are complementary orthogonal and if we know that
x1 = Kx2, we can conclude that y2 = −KTy1. This conclusion cannot
be reached if we only knew that the two spaces are merely orthogonal.

Complementary orthogonality of the concerned spaces is critical in
the derivation of adjoints (see Subsection 7.3.4).

We observe that the proof of the Implicit Duality Theorem depends
on two facts:

• The spaces that we deal with satisfy (V⊥)⊥ = V, and

• they have finite bases or, more generally, are finitely generated.

In order to generalize Theorem 7.1.1 we could look for situations where
the above two conditions hold. Lemma 7.1.2 has a conical version
(Farkas Lemma) and an integral version (a variation of Van der Waer-
den’s Theorem). In both these cases the collections of vectors of in-
terest are finitely generated. So our initial proofs assume this. For
completeness we later give a proof which works even when ‘finitely
generated’ is not assumed (Problem 7.14).



282 7. THE IMPLICIT DUALITY THEOREM

For the following exercises take VK ,VKL, where K,L are disjoint
sets, to be vector spaces on K,K ⊎ L respectively.

Exercise 7.1 If S1 ∩ S2 = ∅, and V1,V2 denote the vector spaces
VS1 ,VS2, show that
i. (V1 ⊕ V2)

⊥ = V⊥
1 ⊕ V⊥

2 ,
ii. (V1 ⊕ V2)↔ V2 = V1.

Exercise 7.2 Let V1,V2 be vector spaces on S ⊎ P and let VP ,V2
P be

vector spaces on P . Show that
i. (V1 + V2)↔ VP ⊇ (V1 ↔ VP ) + (V2 ↔ VP )
ii. (V1 ∩ V2)↔ VP ⊆ (V1 ↔ VP ) ∩ (V2 ↔ VP )
iii. (V1 ↔ (VP + V2

P )) ⊇ (V1 ↔ VP ) + (V1 ↔ V2
P )

iv. (V1 ↔ (VP ∩ V2
P )) ⊆ (V1 ↔ VP ) ∩ (V2 ↔ V2

P )
v. (V1 ↔ VP )⊥ = (V1 − VP )⊥ · S,
where (V1 − VP ) is a vector space on S ⊎ P .

Exercise 7.3 Changes in the spaces which leave the general-
ized minor unaltered:
Show that
i. VSP ↔ VP = VSP ↔ (VP ∩ (VSP · P ))
ii. VSP ↔ VP = (VSP ∩ (VSP · S ⊕ VP ))↔ VP

iii. Let V̂P be a vector space on P s.t. V̂P −VSP ×P = VP −VSP ×P.
Then VSP ↔ V̂P = VSP ↔ VP .

Exercise 7.4 Duality of contraction and restriction:
Let Q ⊆ T ⊆ S1. Prove using the Implicit Duality Theorem
i. (V · T )⊥ = V⊥ × T
ii. (V × T )⊥ = V⊥ · T
iii. (V × T ·Q)⊥ = V⊥ · T ×Q.
Exercise 7.5 When can a space be a generalized minor of an-
other? Let VSP ,VS be vector spaces on S ⊎ P, S respectively. Then
there exists a vector space VP on P s.t. VSP ↔ VP = VS

iff VSP × S ⊆ VS ⊆ VSP · S.

7.1.2 Matched and Skewed Sums

For applications such as the decomposition of multiports it would be
useful to have an extension of the ‘↔’ notation to the situation where
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one of the underlying sets is not contained in the other.

Definition 7.1.2 Let KS1 ,KS2 be collections of vectors on sets S1, S2

respectively. Then the matched sum KS1 ↔ KS2 is defined by

KS1 ↔ KS2 ≡ {f : f = f1/(S1 − S2)⊕ f2/(S2 − S1), where f1 ∈ KS1, f2 ∈ KS2

and f1/S1 ∩ S2 = f2/S1 ∩ S2}.

The skewed sum KS1
⇀↽KS2 is defined by

KS1
⇀↽KS2 ≡ {f : f = f1/(S1 − S2)⊕ f2/(S2 − S1), where f1 ∈ KS1 , f2 ∈ KS2

and f1/S1 ∩ S2 = −f2/S1 ∩ S2}.

The reader may verify that if S1, S2 are disjoint, the matched sum
and skewed sum both correspond to direct sum. If S2 ⊆ S1, they
correspond to generalised minor.

We now have the following useful corollary to the Implicit Duality
Theorem.

Corollary 7.1.1 Let VS1 ,VS2 be vector spaces on sets S1, S2 respec-
tively and let < ·, · > be the usual dot product operation. Then,
(VS1 ↔ VS2)

⊥ = (V⊥
S1
⇀↽V⊥

S2
).

Proof : Let P1, P2 be disjoint copies of S1 ∩ S2, with e ∈ S1 ∩ S2

corresponding to e1 in P1 and e2 in P2. Let S1
′ ≡ (S1 − S2) ∪ P1 and

let S2
′ ≡ (S2 − S1) ∪ P2. Let V ′

S1
,V ′

S2
be copies of VS1 ,VS2 built on

S1
′, S2

′ respectively as follows:

V ′
S1
≡ {f ′ : f ′/S1−S2 = f/S1−S2, f ′(e1) = f(e), ∀e ∈ S1∩S2, for some f ∈ VS1}

and V ′
S2

is defined similarly with respect to VS2 . Let V12 be the vector
space on P1 ⊎ P2 with the representative matrix

P1 P2

[

I I
]

in which each row has a +1 in the columns of elements corresponding
to one element of S1 ∩ S2. It is now clear that

VS1 ↔ VS2 = (V ′
S1
⊕ V ′

S2
)↔ V12
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and therefore,

(VS1 ↔ VS2)
⊥ = ((V ′

S1
⊕ V ′

S2
)↔ V12)

⊥

The RHS of the above equation, by Theorem 7.1.1, reduces to
(V ′

S1
⊕ V ′

S2
)⊥ ↔ V⊥

12. Since

(V ′
S1
⊕ V ′

S2
)⊥ = (V ′

S1
)⊥ ⊕ (V ′

S2
)⊥,

this reduces to
((V ′

S1
)⊥ ⊕ (V ′

S2
)⊥)↔ V⊥

12.

Thus, a vector g on (S1 − S2) ∪ (S2 − S1) belongs to the RHS iff
there exist vectors g1

′ ∈ (V ′
S1

)⊥, g2
′ ∈ (V ′

S2
)⊥, s.t. g1

′/(S1 − S2) =

g/(S1 − S2), g2
′/(S2 − S1) = g/(S2 − S1) and g1

′/P1 ⊕ g2
′/P2 ∈ V⊥

12.
Now the last condition is equivalent to g1

′(e1) = −g2
′(e2) ∀e ∈ S1∩S2,

since V⊥
12 has the representative matrix

P1 P2

[

I −I
]

.

Now (V ′
S1

)⊥, (V ′
S2

)⊥ are copies of V⊥
S1

and V⊥
S2
. Thus,

(V ′⊥
S1
⊕ V ′⊥

S2
)↔ (V12)

⊥ = (V⊥
S1
⇀↽V⊥

S2
)

and the corollary follows.

2

Exercise 7.6 Let VAB denote a vector space on A⊎B, and VA1A2···AK,
a vector space on A1 ⊎A2 · · · ⊎Ak. Show that
i. Restricted associativity:

(VST ↔ VTP )↔ VPQ = VST ↔ (VTP ↔ VPQ)

= (VST ⊕ VPQ)↔ VTP ,

if S, T, P,Q are pairwise disjoint and repeat for skewed sum;
ii.

(VS1T1 ↔ VT1P1)⊕ (VS2T2 ↔ VT2P2) = (VS1T1 ⊕ VS2T2)↔ (VT1P1 ⊕ VT2P2)

= (VS1T1 ⊕ VT2P2)↔ (VS2T2 ⊕ VT1P1),
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if S1, T1, S2, T2, P1, P2 are pairwise disjoint and repeat for skewed sum;
iii.

(VS1T1⊕· · ·⊕VSnTn
)↔ VT1T2···Tn

= (VS1T1 ↔ VT1T2···Tn
)↔ (VS2T2⊕· · ·⊕VSnTn

),

where the Si, Ti are all pairwise disjoint, and repeat for skewed sum.

Exercise 7.7 Compatibility:
An ordered pair (VS1T ,VS2T ), where S1, S2, T are pairwise disjoint and
VS1T ,VS2T are vector spaces, is said to be compatible iff

VS1T · T ⊇ VS2T · T

and VS1T × T ⊆ VS2T × T.
Show that
i. (VS1T ,VS2T ) is compatible iff (V⊥

S1T ,V⊥
S2T ) is;

ii. if (VS1T ,VS2T ) is compatible, then VS1T ↔ (VS1T ↔ VS2T ) = VS2T ;
iii. if (VS1T ,VS2T ) is compatible then VS1T⇀↽(VS1T⇀↽VS2T ) = VS2T .

7.2 *Quasi Orthogonality

It is convenient to focus attention on the essential properties of ‘dot
product’ and ‘orthogonality’ which are needed for a result like Theorem
7.1.1 to hold. This would help us in generating other versions of the
theorem. We do this through our definition of a ‘q-bilinear operation’
and ‘q-orthogonality’.

For the following discussion < ·, · > would be a quasi bilinear
(q-bilinear for short) operation.

Definition 7.2.1 Let X be a vector space over the scalar field F . A
q-bilinear operation < ·, · > on the collection of all ordered pairs of
vectors in X takes values in F and satisfies the following conditions:

i. < α f + β g,h >= α < f ,h > +β < g, h >

ii. < h, f + g >=< h, f > + < h, g >

for all vectors f , g, h in X and scalars α, β.
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Remark:
i. The reader would notice that the second condition in the above
definition differs from the usual inner product as well as dot product
definitions, being weaker. We need a definition which includes these
operations as special cases. Further, this weaker condition is adequate
for our purposes.

ii. Note that the definition implies that < f , 0 >=< 0, f >= 0.

iii. In this section, unless otherwise stated, < ·, · > would always
denote a q-bilinear operation.

Definition 7.2.2 Let X be a vector space over the field F . Let < ·, · >
be a q-bilinear operation on ordered pairs of vectors in X . Let A be
a proper subset of F closed under addition and further let it satisfy
(i) 0 ∈ A, (ii) < f , g >∈ A ⇒< g, f >∈ A for all vectors g, f ∈ X .
Vectors f , g ∈ X are orthogonal iff < f , g >=< g, f >= 0 and q-
orthogonal iff < f , g >∈ A.

We mention some examples of q-orthogonality.

• Clearly orthogonality is a special case of q-orthogonality. Here
A ≡ {0}.

• We say two real vectors x,y are polar iff their dot product is non-
positive. So polarity is a special case of q-orthogonality taking
A to be the set of all nonpositive real numbers.

• We say two real vectors x,y are integrally dual iff their dot prod-
uct is an integer. In this case we takeA to be the set of all integers
so that integral duality becomes a special case of q-orthogonality.

The vector 0 is easily seen to be orthogonal to all vectors in X and
is therefore also q-orthogonal to them.
For a collection K ⊆ X ,K⊥ would denote the collection of all vectors
orthogonal to every vector in K, and K∗ would denote the collection
of all vectors q-orthogonal to every vector in K. We now have the
following simple lemma.

Lemma 7.2.1 Let V be a subspace of X . Then

V∗ = V⊥.
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Proof : Let f ∈ V and g ∈ V∗ s.t. < f , g >= α 6= 0. Let β ∈ F − A.
Now βα−1f ∈ V. Further < (βα−1)f , g >= βα−1α = β 6∈ A. Thus, g 6∈
V∗, which is a contradiction. We conclude that α = 0 and therefore,
g ∈ V⊥.

2

Let us say that a collection of vectors K ⊆ X is closed under q-
orthogonality iff (K∗)∗ = K. We then have

Lemma 7.2.2 Let K1,K2 ⊆ X with 0 ∈ K1 ∩ K2. Then

i. (K1 +K2)
∗ = K1

∗ ∩ K2
∗,

ii. If K1,K2,K1
∗ +K2

∗ are closed under q-orthogonality, then

(K1 ∩ K2)
∗ = K1

∗ +K2
∗.

Proof :
i. Let g ∈ (K1 + K2)

∗. Since 0 ∈ K1 ∩ K2, we must have g ∈ K1
∗ as

well as g ∈ K2
∗. Next let g′ ∈ K1

∗∩K2
∗. Let f1 ∈ K1, f2 ∈ K2. We have

< f1 + f2, g′ >=< f1, g′ > + < f2, g′ > . Now < f1, g′ >,< f2, g′ >∈
A. Since A is closed under addition it follows that < f1 + f2, g′ >∈ A.
Thus, g′ is q-orthogonal to every vector in K1 +K2. We conclude

(K1 +K2)
∗ = K1

∗ ∩ K2
∗.

ii. We have

(K1
∗ +K2

∗)∗ = (K1
∗)∗ ∩ (K2

∗)∗

= K1 ∩ K2.

Hence, ((K1
∗ +K2

∗)∗)∗ = (K1 ∩ K2)
∗

i.e., (K1 ∩ K2)
∗ = K1

∗ + K2
∗, since (K1

∗ + K2
∗) is closed under q-

orthogonality.

2

Lemma 7.2.3 Let K1,K2 ⊆ X . Then the following hold.

i. K1
∗∗ ⊇ K1.

ii. If K1 ⊇ K2 then K1
∗ ⊆ K2

∗.
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iii. K1
∗ is closed under q-orthogonality.

iv. If K1,K2 are closed then K1∩K2 is closed under q-orthogonality.

Proof :
i.,ii. are immediate from the definition of q-orthogonality.

iii. We have (K1
∗)∗∗ ⊇ K1

∗.
Next ((K1

∗)∗)∗ = (K1
∗∗)∗ ⊆ K1

∗, since K1
∗∗ ⊇ K1. The result follows.

iv. (K1 ∩ K2)
∗ ⊇ K1

∗,
(K1 ∩ K2)

∗ ⊇ K2
∗, since K1 ∩ K2 ⊆ K1,K2.

Hence, ((K1 ∩K2)
∗)∗ ⊆ (K1

∗)∗ ∩ (K2
∗)∗ = K1 ∩K2. But for any K, we

must have K∗∗ ⊇ K. Hence, (K1∩K2)
∗∗ ⊇ K1∩K2. The result follows.

2

In the following lemma xP denotes a vector on P.

Lemma 7.2.4 Let KS be a collection of vectors on S and let T ⊆ S.
Then (KS · T )∗ = KS

∗ × T , if, for all fT , fS−T , gT , gS−T , we have
< fT ⊕ fS−T , gT ⊕ gS−T > = < fT , gT > + < fS−T , gS−T > .

Proof : Let gT ∈ (KS · T )∗. Let fS ∈ KS. Then
< fS, gT ⊕ 0S−T >=< fT ⊕ fS−T , gT ⊕ 0S−T > = < fT , gT >∈ A.
Hence, gT ∈ KS

∗ × T.
On the other hand let gT ∈ KS

∗ × T. Then gT ⊕ 0S−T ∈ KS
∗. If

fT ∈ KS · T, there exists fS−T s.t. fT ⊕ fS−T ∈ KS. We then have
< fT , gT >
=< fT ⊕ fS−T , gT ⊕ 0S−T >∈ A. Hence, gT ∈ (KS · T )∗.

2

7.3 Applications of the Implicit Duality

Theorem

In this section we list applications of the Implicit Duality Theorem.
Some of these are discussed in more detail in subsequent chapters.
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7.3.1 Ideal Transformer Connections

An ideal transformer on a set of ports S is a pair (VS,V⊥
S ) of comple-

mentary orthogonal spaces on S. The constraints of the transformer
are: vS ∈ VS, iS ∈ V⊥

S where vS, iS are the port voltage and cur-
rent vectors. For example, the two port ideal transformer satisfies:
v1 = nv2, i1 = − 1

n
i2. Thus, the voltage space has the representative

matrix (n : 1) and the current space has the representative matrix
(1 : −n). The two spaces are clearly complementary orthogonal. It is
a well known fact in network theory that

(⊣⊢) if a set of 2-port transformers are connected to-
gether in an arbitrary manner and some ports exposed then
on the exposed set of ports the permissible voltage and cur-
rent vectors form complementary orthogonal spaces

(see for instance [Belevitch68]). Usually, however, only one half of this
fact is proved, namely, that the current and voltage vectors are orthog-
onal. We prove the result using the Implicit Duality Theorem.
First we observe that if G is a graph then, by Tellegen’s Theorem,
(Vv(G),Vi(G)) constitutes an ideal transformer. Next, if (VSQ,V⊥

SQ), (VQ,V⊥
Q)

are ideal transformers with VSQ,VQ denoting vector spaces on S⊎Q, Q
respectively, then equivalent to the Implicit Duality Theorem is the
statement that (VSQ ↔ VQ,V⊥

SQ ↔ V⊥
Q) is an ideal transformer. For

the following discussion we take
Q ≡ E(G), S ⊎Q ≡ ⊎Pj, i.e., S ≡ (

⊎

Pj −Q).
Now let the jth ideal transformer be (VPj

,V⊥
Pj

) and let the Pj’s be all
disjoint. This disconnected set of transformers constitutes the ideal
transformer (

⊕

j VPj
,
⊕

j V⊥
Pj

). Let the set of ports which are connected
together according to the graph G be Q. The set of exposed ports
is
⊎

Pj − Q. If the ports Q form the edges of a graph G, then on
the set P we are imposing the constraints of the ideal transformer
(Vv(G),Vi(G)). The voltage vectors that can exist on ports

⊎

Pj − Q
are precisely those in (

⊕

j VPj
) ↔ Vv(G) and the current vectors that

exist on ports
⊎

Pj − Q are precisely those in (
⊕

j V⊥
Pj

) ↔ Vi(G). By
the Implicit Duality Theorem the last two spaces are complementary
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orthogonal. Equivalently,


(
⊕

j
VPj

)↔ Vv(G) , (
⊕

j

V⊥
Pj

)↔ Vi(G)




is an ideal transformer.

Further, the fact (⊣⊢) implies the Implicit Duality Theorem and is
therefore, equivalent to it. For, by connecting 2-port ideal transformers
and exposing ports appropriately it can be seen that any ideal trans-
former can be built (see for instance Exercise 7.8). Thus, (VSP ,V⊥

SP ),
(VP ,V⊥

P ) can be built this way. By plugging the ‘P ports’ of the first
ideal transformer with the second (using (⊣⊢) again) we get another
ideal transformer namely (VSP ↔ VP , V⊥

SP ↔ V⊥
P ). We conclude that

V⊥
SP ↔ V⊥

P = (VSP ↔ VP )⊥.

Exercise 7.8 To create a ‘graph’ using ideal transformers: Us-
ing only 1:1 2-port ideal transformers show how to build an ideal trans-
former (Vv(G),Vi(G)) where G is a specified graph.

Exercise 7.9 Ideal transformers cannot be connected incon-
sistently: Our discussion implies that ideal transformers cannot be
connected inconsistently. What would happen if we connect two 2-port
transformers of different turns ratio in parallel?

Exercise 7.10 Effect of an ideal transformer on remaining edges:
Consider an electrical network with graph G. Let P ⊆ E(G) be the
ports of an ideal transformer (VP ,V⊥

P ). What would be the voltage and
current constraints on (E(G) − P )? Equivalently what is the ideal
transformer to whose ports the remaining devices of the network are
connected?

7.3.2 Multiport Decomposition

An electrical network can often be conveniently visualized as being
made up of a number of multiports whose ports are connected to-
gether according to a connection diagram. In the literature it is often
not clear that this is essentially a topological notion. We dwell at
greater length on this important concept in a separate chapter. Here
we merely outline the basic idea.
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Figure 7.1: Multiport Decomposition of a Graph

Let G be the graph of the electrical network. Let E ≡ E(G) be par-
titioned into E1, · · · , Ek. Let P , a set disjoint from E, be partitioned
into P1, · · · , Pk. Let VEiPi

be a vector space on Ei ∪ Pi, i = 1, · · · , k
and let VP be a vector space on P . Then, (VE1P1 , · · · ,VEkPk

;VP ) is a
multiport decomposition of Vv(G) iff

(
⊕

VEiPi
)↔ VP = Vv(G).

Usually the spaces VEiPi
would be voltage spaces of graphs GEiPi

re-
spectively (this is not necessary as we point out in the next chapter). In
such a case, we have voltage vectors vE1P1 , · · · ,vEkPk

of GE1P1, · · · ,GEkPk

respectively. s.t. vE1P1/P1 ⊕ · · · ⊕ vEkPk
/Pk belongs to VP (i.e., their

port voltages match) iff vE1P1/E1 ⊕ · · · ⊕ vEkPk
/Ek belongs to Vv(G).

Let us call a graph GE1P1 on E1 ⊎P1 with set P1 specified as ‘ports’
as a multiport (i.e., the multiport is the pair (GE1P1 , P1)).
In Figure 7.1, the graph G is decomposed into multiports GE1P1 ,GE2P2

connected according to the port connection diagram GP1P2 . A volt-
age vector (v1, v2, v3, v4, v5, v6) belongs to Vv(G) iff we can find vectors
(v11, v12), (v21, v22) s.t. (v1, v2, v11, v12) ∈ Vv(GE1P1), (v3, v4, v5, v6, v21, v22) ∈
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Vv(GE2P2) and (v11, v12, v21, v22) ∈ Vv(GP1P2). In our notation we say, if
the above condition is satisfied, that

(Vv(GE1P1),Vv(GE2P2);Vv(GP1P2))

is a multiport decomposition of Vv(G).
We expect intuitively that the multiport decomposition represented
through graphs should work for both voltages and currents. This fact
requires proof. Essentially we need to show that (Vi(GE1P1),Vi(GE2P2);Vi(GP1P2))
is a multiport decomposition of Vi(G), whenever (Vv(GE1P1),Vv(GE2P2);Vv(GP1P2))
is a multiport decomposition of Vv(G). Now, Vv(G) = (Vv(GE1P1) ⊕
Vv(GE2P2))↔ Vv(GP1P2). Hence, by Implicit Duality Theorem

(Vv(G))⊥ = ((Vv(GE1P1))
⊥ ⊕ (Vv(GE2P2))

⊥)↔ (Vv(GP1P2))
⊥.

i.e., Vi(G) = (Vi(GE1P1)⊕ Vi(GE2P2))↔ Vi(GP1P2), as required.

When an idea is intuitive in terms of graphs why bring in vector
spaces?
Here are some reasons:

• The graph version is misleading: if we actually connect the mul-
tiports along their ports according to the connection diagram,
we usually would not get a graph with the same voltage space as
G.

• It is inadequate for optimization purposes: for instance, we can
usually reduce the number of port edges if we formulate decom-
position as a vector space problem.

• While analysing the network, the vector spaces that we work with
need not necessarily be associated with graphs - it is sufficient
that their representative matrices be sparse and, preferably, 0, 1.

7.3.3 Topological Transformation Of Electrical Net-

works

A general way of looking at Network Analysis through Decomposition
is to view it as a way of modifying network structure: a desired struc-
ture is imposed on the network at the cost of additional variables and
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additional constraints [Narayanan87]. We give a sketch of the method.
The technique is valid for arbitrary networks. For linear networks, we
can do more: we can prove bounds on the effort involved, making cer-
tain additional assumptions.
Let the given network have graph G and device characteristic
N(vE − e) + M(iE − j) = 0, where v, i are the branch voltage and
current vectors, e, j are the voltage source and current source vectors.
Each branch is composite made up of a device in series with a voltage
source, the combination being in parallel with a current source.

Network analysis entails the solution of the following constraints:

AriE = 0

vE −Ar
Tvn = 0

N(vE − e) + M(iE − j) = 0.

Suppose that the desired structure is a graph G ′ on the same set of
edges as G. Let V,V ′ be the voltage spaces of graphs G,G ′ respectively.
We look for a space VEP s.t. V = VEP ↔ VP and V ′ = VEP ↔ V ′

P ,
i.e., VEP is an extension of both V and V ′. It is desirable that | P |
is minimized since, as we shall show, each element of P is associated
with an additional variable.

The space VEP can be built using V + V ′ as follows. Let

[

R1

R∩

]

,
[

R∩

R2

]

, R∩ be the representative matrices of V,V ′,V∩V ′ respectively.

We take the representative matrix of VEP to be
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E P1 P2







R1 I 0
R∩ 0 0
R2 0 I





 ,

that of V ′
P to be

P1 P2
[

0 I
]

and that of VP to be
P1 P2
[

I 0
]

.

It is then immediate that VEP ↔ VP = V and VEP ↔ V ′
P = V ′. By a

suitable row transformation, the representative matrix of VEP can be
put in the form (for an appropriate representative matrix A′

r of V ′)

E P1 P2

[

R1 I 0
Ar

′ 0 RP2

]

,

KVE for G can be written as:






vE

vP1

vP2





−







RT
1 (Ar

′)T

I 0T

0 RT
P2







λ1

vn
′ =







0
0
0





 (7.1)

[

vP1

vP2

]

−
[

I
0

]

λ2 =

[

0
0

]

(7.2)

As far as vE is concerned the above is equivalent to
[

vE

0

]

−
[

RT
1 (Ar

′)T

0 RT
P2

]

vP1

vn
′ =

[

0
0

]

(7.3)

By the Implicit Duality Theorem we have,

V⊥
EP ↔ V⊥

P = V⊥.
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So the KCE of G can be written as

[

R1 I 0
Ar

′ 0 RP2

] iE
iP1

iP2

=

(

0
0

)

(7.4)

(

I 0
) iP1

iP2

= 0 (7.5)

i.e.,







R1 0

Ar
′ RP2







iE

iP2

=







0

0





 (7.6)

Thus, the overall constraints can be written as































0 −(Ar
′)T I

... 0 −RT
1

Ar
′ 0 0

... RP2 0

M 0 N
... 0 0

· · · · · · · · · ... · · · · · ·
0 −RT

P2
0

... 0 0

R1 0 0
... 0 0































iE
v′

n

vE

iP2

vP1

=





















0
0

Mj + Ne
· · ·
0
0





















(7.7)

Notice in Equation 7.7 that the border of the coefficient matrix has
size equal to | P2 | + | P1 |=| P | . The core of the matrix, i.e.,
the left hand top corner of the matrix, is precisely the constraint
coefficient matrix of the ‘new’ network with graph G ′ but device
characteristic same as the original network. Let G and G ′ be near each
other in the sense that r(Vv(G)+Vv(G′)) - r(Vv(G)∩Vv(G′)) is very small
in comparison with the ranks and nullities of the spaces involved. Then
the form of Equation 7.7 permits us to solve network N by solving the
network N ′ for appropriate source distributions, | P | +1 times. There
is an additional set of equations of size | P | × | P | that has to be
solved after this to complete the solution. (See Exercise 7.15).
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Exercise 7.11 Minimum common extension of two vector spaces:
Let V,V ′ be vector spaces on S. Let P be disjoint from S. Let VSP

be a vector space on S ⊎ P , and VP ,V ′
P , be vector spaces on P. Let

VSP ↔ VP = V,VSP ↔ V ′
P = V ′. Show that when the above conditions

are satisfied, | P | is minimum iff it equals

r(V ′ + V)− r(V ′ ∩ V).

Exercise 7.12 Minimum extension of graphic spaces not al-
ways graphic: Construct a simple example for which the minimum
extension VEP of Vv(G),Vv(G′), where G,G′ are given graphs, is not the
voltage space of a graph.

Exercise 7.13 Suppose G′ is made up only of coloops (selfloops). What
would the matrices R1,RP2be?

Exercise 7.14 [Narayanan80],[Kajitani+Sakurai+Okamoto] A met-
ric on graphs on a given set of edges: Define the distance be-
tween two graphs G and G ′ s.t. E(G) = E(G ′) by d(G,G′) ≡ r(Vv(G) +
Vv(G′))− r(Vv(G) ∩ Vv(G′)).
i. Show that d(·, ·) is a metric on the space of all graphs with edge
set E(G), i.e., d(G,G) = 0, d(G,G ′) = d(G′,G), d(G,G ′) + d(G′,G”) ≥
d(G′,G”).
ii. Define d(V,V ′) ≡ r(V + V ′) − r(V ∩ V ′), where V,V ′ are vector
spaces on E.
(a) Show that d(., .) is a metric on the collection of all vector spaces
on E.
(b) Show that d(V,V ′) = d(V⊥, (V ′)⊥)

Exercise 7.15 To solve N as though it has the structure of
N ′: Let N ,N ′ be networks on graphs G,G ′ respectively with the same
device characteristic

M(iE − j) + N(vE − e) = 0.

Assume that d(G,G′) ≪ min(r(G), r(G ′)) and that N and N ′ can be
solved uniquely for arbitrary sources. Show that the solution of N can
be obtained essentially by solving N ′, (d(G,G′) + 1) times, for appro-
priate choices of sources.
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7.3.4 The Adjoint of a Linear System

The notion of adjoint of a linear system has extensive theoretical and
practical applications. For simplicity, here we confine ourselves to non-
dynamic systems defined through flow graphs. Also we do not speak of
the utility of this notion. Our aim here is only to show how the Implicit
Duality Theorem helps us to derive the adjoint in a simple way. A word
of caution is in order here. Very often, while deriving the adjoint, au-
thors only show that the original (input, output) vector is orthogonal
to the (output, input) vector of the adjoint. This is insufficient. In
order to show that the inputs to the adjoint can be chosen indepen-
dently, complementary orthogonality of the concerned spaces has to
be shown. The easiest route is through the Implicit Duality Theorem
(for the dynamic case based on flow graphs as well as networks and for
exposition of such ideas see [Narayanan86b]).

Nondynamic Systems Based On Flow Graphs

The system is composed of a number of blocks of the kind ‘zy = Kzu’.
The vector inputs of these blocks are outputs of ‘summers’ while the
outputs of the blocks are inputs to ‘connection points’. The summer
is a device which outputs the vector sum of its vector inputs. The
connection point is a device each of whose vector outputs is equal to
its vector input. (See Figure 7.2.) The overall inputs u of the system
are inputs to summers while the outputs y are outputs of connection
points. Let us suppose the overall input output relation is of the form
y = Ku.

We prove the following:

Theorem 7.3.1 (k) If in the original system the following transfor-
mations are made, then the resulting system would satisfy ŷ = KT û,
where ŷ, û are the overall outputs and inputs of the new system:

i. Reverse direction of arrows everywhere, in particular, the overall
outputs become overall inputs and vice versa.

ii. Replace summers by connection points and vice versa (since the
arrows are reversed outputs become inputs and inputs, outputs).
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K

Block

Summer Connection Point

vx1

xn

ZyZu

β1

βn

α

Figure 7.2: Summer, Connection Point and Block

iii. Each block of the form ‘zy = Kzu’ is replaced by one of the form
ẑy = KT ẑu (since the arrows are reversed outputs becomes inputs
and vice versa).

Before proving the result we adopt some convenient conventions and
notation. We assume that
i. overall inputs do not touch a block directly but always go through
summers. If necessary a summer with a single input and single output
can be introduced to satisfy this condition.
ii. Similarly, overall outputs come only out of connection points.
iii. Output of a block always enters a summer or a connection point.
iv. Distinct summers, connection points, do not have common vari-
ables. Output of a summer (connection point) does not directly become
input of a connection point (summer). If necessary a dummy ‘identity’
block could be introduced in between.

The reader may verify for himself that these assumptions cause no
loss of generality.
Overall inputs are denoted by u, overall outputs by y, block inputs by
zu and block outputs by zy.
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A homogeneous system of linear equations would be denoted by

F(x,y, z, · · ·) = 0

or G(x,y, z, · · ·) = 0

where x,y, z are vectors and together constitute the unknowns of
the equations. F⊥(u,v,w, · · ·) = 0 would be the system of equa-
tions where solution space is complementary orthogonal to that of
F(x,y, z, · · ·) = 0 with u corresponding to x,v to y,w to z and so on.
Thus, if F(x,y, z) = 0 denotes











1 0
... 0 1

... 0 1

0 1
... 0 1

... 1 0

0 0
... 1 0

... 1 1

















x
y
z





 =







0
0
0





 , (7.8)

then, F⊥(u,v,w) = 0 denotes











−1 −1
... 0 1

... 0 0

0 −1
... −1 0

... 1 0

−1 0
... −1 0

... 0 1

















u
v
w





 =







0
0
0





 . (7.9)

We need the following lemma

Lemma 7.3.1 i. If Fs(x1, · · · ,xk,v) = 0, where x1, · · · ,xk,v are
vectors, denotes the summer

v = x1 + · · ·+ xk

then Fs
⊥(−β1, · · · ,−βk, α) = 0 (equivalently Fs

⊥(+β1, · · · ,+βk,−α) =
0) is the connection point

α = β1 = · · · = βk

denoted by
Fc(β1, · · · , βk, α) = 0.
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ii. If Fc(β1, · · · , βk, α) = 0 denotes the connection point as above
then,

Fc
⊥(−x1, · · · ,−xk,v) = 0

(equivalently Fc
⊥(x1, · · · ,xk,−v) = 0) denotes the summer

Fs(x1, · · · ,xk,v) = 0.

iii. If G(x,v) = 0 denotes the block constraint v = Kx then,
G⊥(−β, α) = 0 is the block constraint β = KTα.

The routine proof is omitted.

Proof of Theorem 7.3.1: (We remind the reader that constraints
f(x,y) and g(x, z) are equivalent in x iff whenever (x,y) satisfies the
former (whenever (x, z) satisfies the latter) there exists a solution (x, z)
of the latter (there exists a solution (x,y) of the former)).

The linear system defined through the flow diagram can be denoted
by
F(u, zu, zy,y) = 0 (Connection constraints:summer and connection
points)
G(zu, zy) = 0 (block constraints).
Let these constraints together be equivalent to Fr(u,y) = 0 as far as
the variables u,y are concerned. Then the Implicit Duality Theorem
assures us that the constraints

F⊥(−ŷ, ẑy,−ẑu, û) = 0 (∗)
G⊥(ẑy,−ẑu) = 0 (∗∗)

together are equivalent to

F⊥
r (−ŷ, û) = 0

as far as (ŷ, û) are concerned.
So if Fr(u,y) = 0 is equivalent to y = Ku we have ŷ = KT û.
We now show that the above constraints (∗) and (∗∗) are obtained by
making the already delineated changes in the original flow diagram.
By our convention, the summers, connection points etc. do not have
common variables. Similarly distinct block constraints also do not have
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common variables. Now the connection constraint F(u, zu, zy,y) = 0
is a direct sum of a number of summers and connection points (i.e.,
distinct summers, connection points have no common variables). Thus
we can rewrite these constraints as

⊕

i

Fsi(u
i
1, · · · ,ui

k, z
i
y1, · · · , zi

ym, z
i
u) +

⊕

j

Fcj(y
j
1, · · · ,yj

t , z
j
u1, · · · , zj

un, z
j
y) = 0.

To paraphrase, the ith summer has k overall vector inputs, m other
vector inputs which are outputs of blocks and a single vector output
zi

u; the jth connection point has t overall vector outputs, n vector
outputs which are inputs to blocks and a single vector input zj

y.
A complementary orthogonal system to the above is

F⊥(−ŷ, ẑy,−ẑu, û) = 0

which is equivalent to

⊕

i

F⊥
si(−ŷi

1, · · · ,−ŷi
k,−ẑi

u1, · · · ,−ẑi
um, ẑ

i
y) +

⊕

j

F⊥
cj(û

j
1, · · · , ûj

t , ẑ
j
y1, · · · , ẑj

yn,−ẑj
u) = 0.

But by Lemma 7.3.1 the above reduces to

⊕

i

Fci(ŷ
i
1, · · · , ŷi

k, ẑ
i
u1, · · · , ẑi

um, ẑ
i
y)+

⊕

j

Fsj(û
j
1, · · · ûj

t , ẑ
j
y1, · · · ẑj

yn, ẑ
j
u) = 0.

Observe that the inputs (outputs) of the ith summer of the original
have become the outputs (inputs) of the (corresponding) ith connec-
tion point of the transformed system. Similarly, the inputs (outputs)
of the jth connection point have become the outputs (inputs) of the
corresponding jth summer of the transformed system. Thus, summers
and connection points have been interchanged and the arrows reversed.
Next consider the block constraint

G(zu, zy) = 0.

This can be written as

⊕

j

Gj(z
bj
u , z

bj
y ) = 0.
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A complementary orthogonal system would be

⊕

j

G⊥
j (−ẑbj

y , ẑ
bj
u ) = 0.

We know by Lemma 7.3.1 that if

Gj(z
bj
u , z

bj
y ) = 0

is equivalent to

zbj
y = Kzbj

u

then

G⊥
j (−ẑbj

y , ẑ
bj
u ) = 0

is equivalent to

ẑbj
y = KT ẑbj

u .

Thus, the jth block with the transfer matrix K of the original has
become the jth block with the transfer matrix KT for the transformed
system and the arrows have been reversed. This completes the proof
of the theorem.

2

7.3.5 Rank, Nullity and the Hybrid rank

We show here how some standard notions associated with graphs and
vector spaces can be viewed in terms of generalized minor and exten-
sion.
Let VS be a vector space on S. Let V◦

S denote the zero space on S and
V1

S, the space on S with rank | S |. An extension VSP of spaces VS,V̂S

is said to be their minimal extension iff whenever VSP ′ is any other
such extension we have | P |≤| P ′ |. Define the distance between
VS and a space V̂S, denoted by d(VS, V̂S), to be | P |, where VSP , a
space on S⊎P , is a minimal extension of VS and V̂S. Using the results
of Exercises 7.11 and 7.14 it may be verified that d(V,V ′) as defined
above equals r(V + V ′) − r(V ∩ V ′) and that d(., .) is a metric on the
collection of vector spaces on S. Thus the rank of VS = d(VS,V◦

S). The
nullity of VS = d(VS,V1

S).
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The hybrid rank of VS ≡ minS1⊆S(r(VS · S1) + ν(VS × (S − S1))
= minS1⊆S d(VS, (V◦

S1
⊕ V1

S−S1
))

= minimum distance between VS and a space on S
which has every element as a separator.

The hybrid rank can thus be seen to be the minimum distance be-
tween the given space and another where each element is decoupled
from every other. More generally the hybrid rank of VS relative to a
partition Π of S can be defined to be the minimum distance between
the given space and another space in which blocks of Π are separators.
It is thus a measure of the difficulty in decoupling the blocks of Π in the
space VS or equivalently a measure of the strength of coupling between
blocks of Π in VS. The efficient determination of this generalized hy-
brid rank appears to be a fundamental problem in ‘Network Analysis
by Decomposition’. For details see Chapter 14.

7.4 *Linear Inequality Systems

Inequality systems provide us with a good example of q-orthogonality,
namely, polarity. In case of linear inequality systems the natural
collections of vectors are polyhedral cones which are solution sets of
inequality constraints of the form Ax ≤ 0. The collection of polyhedral
cones is closed under sum, intersection and polarity. We will show that
an analogue of the Implicit Duality Theorem holds also for inequality
systems in terms of polyhedral cones.
We know that a vector space on a finite set can be thought of in two
ways:

i. collection of vectors orthogonal to a finite set of vectors,

ii. collection of vectors generated by a finite basis through linear
combination.

Similarly, a polyhedral cone can be defined in two ways:

i. collection of vectors polar to a given set of vectors (i.e., solution
set of A x ≤ 0),
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ii. collection of real or rational vectors generated by a finite set of
vectors through nonnegative linear combination, i.e., in the form
x = By,y ≥ 0.

In the present case the <,> operation is the usual dot product and
q-orthogonality is polarity. Vectors f , g on S are polar iff < f , g >≤ 0.
Let KS be a collection of vectors on S. The collection of all vectors on
S which are polar to every vector in KS is denoted by Kp

S and is called
the polar of KS.

Theorem 7.4.1 (Implicit Polarity Theorem) Let KSP ,KP be polyhe-
dral cones whose members are vectors respectively on S ⊎ P, P respec-
tively. Then

(KSP ↔ KP )p = Kp
SP ↔ (−Kp

P ).

We need the following lemma for the proof of this theorem.

Lemma 7.4.1 i. A cone C is polyhedral (i.e., defined by Ax ≤ 0)
iff it is a nonnegative linear combination of a finite set of vectors
(i.e., finitely generated). Hence, if C is a polyhedral cone so is
Cp.

ii. (Farkas Lemma) If C is a finitely generated cone Cpp = C.

iii. Let C be a polyhedral cone on S⊎P. Then C·S is finitely generated
and therefore polyhedral.

iv. If C1, C2 are polyhedral cones of vectors on S then C1 + C2, C1∩C2
are also polyhedral cones.

For proof see, for instance, [Stoer+Witzgall70].

Proof of Theorem 7.4.1: Let (AS AP ), ÂP be matrices whose rows
generate KSP ,KP respectively by nonnegative linear combinations. A
vector
xS ∈ KSP ↔ KP iff there exist nonnegative vectors λ1, λ2 s.t.

[

AS
T 0

AP
T −ÂT

P

]

λ1

λ2
=

[

xS

0

]

.

Thus, xS ∈ KSP ↔ KP iff

[

xS

0

]

belongs to the finitely generated

cone KSP − KP .
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By Lemma 7.4.1 part (ii),

[

xS

0

]

belongs to (KSP −KP ) iff it belongs

to
(KSP −KP )pp. The cone (KSP −KP )p is defined by

(

AS AP

0 −ÂP

)

yS

yP
≤
(

0
0

)

. (∗)

Thus, xS ∈ KSP ↔ KP iff
((

AS AP

0 −ÂP

)

yS

yP
≤
(

0
0

))

⇒ (xT
S yS ≤ 0),

i.e., iff (yS ∈ Kp
SP ↔ −Kp

P )⇒ (xT
S yS ≤ 0).

Hence, xS ∈ KSP ↔ KP iff xS ∈ (Kp
SP ↔ −Kp

P )p.

Thus, KSP ↔ KP = (Kp
SP ↔ −Kp

P )p. (∗∗)

Now yS ∈ Kp
SP ↔ −Kp

P iff it is the restriction of a vector

(

yS

yP

)

,

satisfying the inequality (∗), to S.
Equivalently Kp

SP ↔ −Kp
P is the restriction, of the polyhedral cone

(KSP −KP )p on S ⊎ P , to the subset S.
Now (KSP − KP )p is finitely generated by Lemma 7.4.1 and hence
Kp

SP ↔ −Kp
P , which is its restriction to S, is also finitely generated.

By the second part of the same lemma we must have

(Kp
SP ↔ −Kp

P )pp = Kp
SP ↔ −Kp

P .

Hence, by (∗∗)

(KSP ↔ KP )p = (Kp
SP ↔ −Kp

P )pp = Kp
SP ↔ −Kp

P .

2

Remark: i. The reader would notice that the above proof is a trans-
lation (with additional explanations) of the proof of Theorem 7.1.1.

ii. We note that both the pairs of polyhedral cones KSP ,KP as well
Kp

SP ,Kp
P may be defined through inequalities:
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KSP be the solution set of
(

BS BP

) xS

xP
≤ 0.

KP be the solution set of B̂PxP ≤ 0

Kp
SP be the solution set of

(

AS AP

) yS

yP
≤ 0

Kp
P be the solution set of ÂPyP ≤ 0.

Let CS be the collection of all vectors xS s.t. for some xP we have

(

BS BP

0 B̂P

)

xS

xP
≤ 0

Then Cp
S is the collection of all vectors yS s.t. for some yP we have

(

AS AP

0 −ÂP

)

yS

yP
≤ 0.

iii. Since by Lemma 7.2.1, the collection of all vectors q-orthogonal
to a vector space is its complementary orthogonal space, and since the
q-bilinear operation used here is the dot product and further a vector
space is a special case of a cone, it follows that the Implicit Duality
Theorem is a special case of the Implicit Polarity Theorem.

The technique of the proof of Corollary 7.1.1 will work in the case of
the present instance of q-orthogonality, namely, polarity. In this case
also we would be working with a vector space V12 as defined in the
proof of the above mentioned corollary. By Lemma 7.2.1, Vp

12 = V⊥
12

and therefore Vp
12 would have the representative matrix

P1 P2

[

I −I
]

.

Since (KS1

′ ⊕KS2

′)p = (KS1

′)p ⊕ (KS2

′)p, we must have

(KS1

′ ⊕KS2

′)p ↔ Vp
12 = ((KS1

′)p ⊕ (KS2

′)p)↔ Vp
12

The term in the RHS can now be seen to be equal to KS1

p ⇀↽ KS2

p.
We thus have,
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Corollary 7.4.1 Let KS1 ,KS2 be polyhedral cones of vectors on S1, S2

respectively. Let ‘<,>’ be the usual dot product operation. Then
(KS1 ↔ KS2)

p = (KS1

p ⇀↽ KS2

p), where the superscript ‘p’ denotes
polarity.

Exercise 7.16 Redo the Exercises on implicit duality - vector space
case, for the case of polyhedral collections.

Exercise 7.17 Using the Implicit Duality Theorem prove
i. (KSP · S)∗ = K∗

SP × S
ii. (KSP × S)∗ = K∗

SP · S
where KSP is a polyhedral cone of vectors on S ∪ P.
Exercise 7.18 Proof of Implicit Duality from duality of con-
traction and restriction:
Let S, P be disjoint and let P = P1 ⊎ P2.
i. Show that

(KSP ↔ KP1)↔ KP2 = KSP ↔ (KP1 ⊕KP2)

= (KSP ↔ KP2)↔ KP1

ii. Let XP be the collection of all vectors on P and T : XP → XP , be
a nonsingular transformation. Let T(KP ) = K′

P . Let TSP (fS ⊕ fP ) ≡
fS ⊕T(fP ) and let K′

SP ≡ TSP (KSP ). Show that

K′
SP ↔ K′

P = KSP ↔ KP .

iii. Assuming it is true for all KSP and all finite sets S, P1, P2 s.t.
P = P1 ⊎ P2 that

(KSP ↔ (XP1 ⊕ 0P2))
∗ = K∗

SP ↔ (0P1 ⊕XP2),

show that
(KSP ↔ KP )∗ = K∗

SP ↔ (−K∗
P ),

for the following two cases:

• KP is a vector space on P , and KSP , a collection of vectors on
S ⊎ P

• KP ,KSP are collections of vectors on P, S ⊎ P respectively.
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7.4.1 Applications of the Polar Form

Both the polar version and the integrality version of the implicit dual-
ity theorem are presented in this chapter essentially for completeness
[Narayanan85a]. However, we are able to cite atleast one reference in
the literature on polyhedral combinatorics where a result, that could
be regarded as an instance of the Implicit Polarity Theorem, is derived
and applied [Balas+Pulleyblank87]. We state this Projection Theorem
of Balas and Pulleyblank below but prove it using the Implicit Duality
Theorem.

Theorem 7.4.2 Let

Z ≡ {(u,x) : Au + Bx = b1

Du + Ex ≤ b2

u ≥ 0 }

Let W ≡ {(y, z) : yTA + zTD ≥ 0, z ≥ 0}
Then, X ≡ {x : ∃u s.t. (u,x) ∈ Z}
= {x : (yTB + zTE)x ≤ yTb1 + zTb2 ∀(y, z) ∈ W}.
Proof: For notational convenience we take the ‘primal’ cone to be
made up of column vectors and the polar cone to be made up of row
vectors. We regard b1,b2 also as variables initially.

Let C ≡ C(u,x,b1,b2) denote the cone

Au + Bx− Ib1b1 = 0

Du + Ex− Ib2b2 ≤ 0.

and let Cu ≡ Cu(u) denote the cone

(−Iu)u ≤ 0.

Let Ĉ ≡ Ĉ(x,b1,b2) = C ↔ Cu. The restriction of Ĉ to the components
corresponding to x for fixed b1,b2 is the set X .
Then (Ĉ)p = Cp ↔ −Cp

u, by the Implicit Polarity Theorem. Now,

(C)p = {(yTA + zTD)⊕ (yTB + zTE)⊕−yT ⊕−zT , z ≥ 0}

and
−Cp

u = {pT Iu,p ≥ 0}
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by Farkas Lemma (Theorem 2.3.2, also part (ii) of Lemma 7.4.1).
Hence,

(Ĉ)p = {(yTB + zTE)⊕−yT ⊕−zT ), z ≥ 0

and yTA + zTD = pT ≥ 0}
= {(yTB + zTE)⊕−yT ⊕−zT ∀(y, z) ∈ W}.

Now,

Ĉ = (Ĉ)pp = {(x⊕b1⊕b2) : < (x⊕b1⊕b2), (α⊕β⊕γ) >≤ 0 ∀(α⊕β⊕γ) ∈ Ĉp}.

Thus,

Ĉ = {(x⊕b1⊕b2) : (yTB+ zTE)x−yTb1− zTb2 ≤ 0 ∀(y, z) ∈ W}.

To get X we restrict the above set to the components correspond-
ing to x fixing b1,b2. Hence, X = {x : (yTB + zTE)x ≤ yTb1 +
zTb2 ∀(y, z) ∈ W}.

2

The authors ([Balas+Pulleyblank87]) use this result to study the
perfectly matchable subgraph polytope of an arbitrary graph. The
variable of interest x is found in the naturally obtained constraints
along with other variables. Direct elimination of these other variables
would destroy the structure of the problem. The authors therefore, use
the above ‘implicit projection’.

7.5 *Integrality Systems

Another good example of q-orthogonality is integral duality. We say
two vectors on a set S over the rational field are integrally dual iff
their dot product is an integer. As in the case of polyhedral cones and
polarity, here too we have a good family of (regularly generated) col-
lections of vectors which is closed under sum, intersection and integral
duality. We can therefore prove an implicit integral duality theorem
for such systems which we do in the present section.
Throughout this section we will be dealing only with rational vectors.
In this case also ‘< ., . >’ denotes the usual dot product.
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Let KS be a collection of rational vectors. Then, the integral dual of
KS is denoted by KS

d and is defined by
KS

d ≡ {y, < y,x > is an integer ∀x ∈ KS }
The analogue of vector space and polyhedral cone in the present case
is a ‘regularly generated’ collection of vectors. We define this notion
below.
Let (A,B) be an ordered pair of matrices whose rows are vectors over
the rational field defined on a set S. The collection of all vectors of the
form λT

1 A + λT
2 B, where λ1 is an integral vector and λ2, any rational

vector, is said to be regularly generated by the rows of (A,B) or
regularly generated for short.
For each row Aj of A let Ajn denote Aj −Ajp where Ajp is the pro-
jection of Aj on the space spanned by rows of B. (Note that Ajp is
rational). Let An denote the matrix obtained from A by replacing
each row Aj by Ajn. Let B̂ denote a maximal linearly independent
subset of rows of B. It is then clear that the collection of vectors reg-
ularly generated by the rows of (A,B) is identical to that regularly
generated by (An, B̂). We show next that An can be replaced by an
appropriate matrix Â with the same row space as An but with linearly
independent rows.

Definition 7.5.1 An integral matrix of full column rank is said to be

in the Hermite Normal Form if it has the form

[

B
0

]

where B sat-

isfies the following:
i. it is an upper triangular, integral, nonnegative matrix;
ii. its diagonal entries are positive and have the unique highest mag-
nitude in their columns.

We now have the following well known result.

Theorem 7.5.1 By using the elementary integral row operations:

i. interchanging two rows

ii. adding an integer multiple of one row to another

iii. multiplying a row by -1

any integral matrix Ã can be transformed after column permutation to

an integral matrix of the form

[

A11 A12

0 0

]

,
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where A11 is a non singular matrix in the Hermite Normal form.

Proof : After column permutations, if necessary, we can partition

Ã as (Ã11
...Ã12), where Ã11 is composed of a maximal linearly inde-

pendent set of columns of Ã. With elementary integral row operations
on the entire matrix modify the first column of Ã11 to a nonnegative
vector with the least sum possible. Only one of these entries can be
nonzero as otherwise the least nonzero entry can be subtracted from
the others to reduce the sum. Bring this entry to the top left hand cor-
ner. The matrix Ã11 has now been converted into a matrix of the form
[

a11 P Q
0 A”11 A”12

]

. Repeat the procedure with the first column

of A”11 and so on. At the end of this procedure we would have the

matrix in the form

(

A′
11 A12

0 0

)

where A′
11 would be in the upper

triangular form. Now use the diagonal entries of A′
11 to convert all

entries above, by elementary integral row operations, to nonnegative
numbers of value less than the diagonal entries. The resulting matrix
A11, by definition, is in the Hermite Normal Form.

2

Suppose a collection of vectors K is regularly generated by rows of
(An, B̂) where rows of An are orthogonal to rows of B̂. Now An =
1
k
(An

′), where (An
′) is an integral matrix and k is an integer. By el-

ementary integral row operations as in Theorem 7.5.1, we can reduce
An

′ to a row equivalent matrix A′ which has linearly independent
rows. Since it is clear that the inverse of each elementary integral row
operation is another such operation, a vector is an integral linear com-
bination of the rows of An

′ iff it is an integral linear combination of
the rows of A′. Let Â ≡ 1

k
(A′). Then rows of Â are linearly indepen-

dent and further, rows of Â and An can be generated from each other
by integral linear combinations. Thus, the collection of vectors K is
regularly generated by rows of (Â, B̂) where rows of Â and rows of B̂
are independent and are mutually orthogonal. We say that such an
ordered pair (Â, B̂) is in the standard form.

The integral dual operation is sufficiently well behaved, as we show
below, for us to apply the implicit duality technique.

Theorem 7.5.2 Let K be a collection of vectors over the rational field
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regularly generated by the rows of (A,B) in standard form. Then

i. Kd is regularly generated by rows of (C,D) in standard form
where C is row equivalent to A, ACT = I, and D is a represen-
tative matrix for K⊥.

ii. Kdd = K.

iii. If K is a regularly generated collection of vectors on S ⊎ P then
K · S is regularly generated.

iv. If K′ is another regularly generated collection then K+K′,K∩K′

are regularly generated.

Proof :

i. We note that rows of A,B,D are mutually orthogonal. Also







A
B
D







is a full rank matrix. This is also true of C,B,D. Let K′ be regularly
generated by rows of (C,D), where C,D are defined as in the state-
ment of the theorem. Let x ∈ K and y ∈ K′. Then,

< x,y >= (λ1
Tλ2

T )

(

A
B

)

(CT ... DT )

(

σ1

σ2

)

for suitable vectors λ1, λ2, σ1, σ2 where λ1, σ1 are integral. Thus,

< x,y > = (λ1
Tλ2

T )

(

I 0
0 0

)

σ1

σ2

= λ1
Tσ1, which is an integer.

We see therefore, that K′ ⊆ Kd. On the other hand, suppose y is
integrally dual to all vectors in K. We have, λ2

TBy is an integer for
arbitrary λ2. This can happen only if By = 0, i.e., yT belongs to the

space spanned by rows of

(

C
D

)

. Let yT = σT
1 σ

T
2

(

C
D

)

. Suppose

σ1 is not integral. We know that ACT = I. Hence, for some integral
value of λ1 we would have λ1

TACTσ1 nonintegral, which contradicts
the fact that y ∈ Kd. We conclude that σ1 must be integral and that
K′ ⊇ Kd. This proves the first part.
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ii. From the above proof it is clear that if Kd is regularly generated
by rows of (C,D) then (Kd)d is regularly generated by rows of (A,B),
i.e., (Kd)d = K.
iii. This is immediate by the definition of regularly generated collec-
tions.

iv. If K,K′ are regularly generated by rows of (A,B), (A′,B′) respec-

tively then the rows of

((

A
A′

)

,

(

B
B′

))

regularly generate K+K′.

Now Kd, (K′)d are regularly generated and so is their sum.
By Lemma 7.2.2

(Kd + (K′)d)d = Kdd ∩ K′dd = K ∩K′.

Hence, by the first part of the present theorem, K ∩ K′ is regularly
generated.

2

Remark: An easy way of constructing C, from (A,B) in the standard
form, is to first build a representative matrix D for K⊥. Let the matrix






A
B
D





 have the inverse (PT ...QT ...RT ) with APT = I. Then, P can be

taken to be C.

Theorem 7.5.3 (Implicit Integral Duality Theorem): Let KSP ,KP

be regularly generated collections of vectors on S ⊎ P, P respectively.
Then,

(KSP ↔ KP )d = Kd
SP ↔ Kd

P .

Proof of Theorem 7.5.3: Let KSP ,KP be regularly generated by the
rows of ((AS AP ), (BS BP )) and (ÂP , B̂P ) respectively. A vector xS

belongs to KSP ↔ KP iff there exist vectors λ1, µ1 and λ2, µ2, where
λ1, λ2 are integral s.t.









AS
T BS

T 0 0

AP
T BP

T Â
T

P B̂
T

P









λ1

µ1

λ2

µ2

=







xS

0
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Thus, xS ∈ KSP ↔ KP iff

[

xS

0

]

belongs to the regularly generated

collection KSP +KP . By part (ii) of Theorem 7.5.2,

[

xS

0

]

belongs to

KSP +KP iff it belongs to (KSP +KP )dd. The collection (KSP +KP )d

is defined by























(

yS

yP

)

:













AS AP

BS BP

0 ÂP

0 B̂P













yS

yP
is integral.























(∗)

Thus, xS ∈ KSP ↔ KP iff

























AS AP

BS BP

0 ÂP

0 B̂P













yS

yP

is integral.













⇒ (xT
SyS is integral),

i.e., iff

(yS ∈ Kd
SP ↔ Kd

P )⇒ (xT
SyS is integral).

Hence, xS ∈ (KSP ↔ KP ) iff xS ∈ (Kd
SP ↔ Kd

P )d. Thus,
KSP ↔ KP = (Kd

SP ↔ Kd
P )d. (∗∗)

Now, yS ∈ Kd
SP ↔ Kd

P iff it is the restriction of a vector

(

yS

yP

)

satisfying the condition (∗).
Equivalently Kd

SP ↔ Kd
P is the restriction of (KSP + KP )d to S.

Since KSP ,KP are regularly generated we must have (KSP +KP )d also
regularly generated by Theorem 7.5.2. Hence, this must be true also
of (KSP +KP )d · S, i.e., of Kd

SP ↔ Kd
P . By the same theorem we must

have

(Kd
SP ↔ Kd

P )dd = Kd
SP ↔ Kd

P

Hence, by (∗∗)

(KSP ↔ KP )d = (Kd
SP ↔ Kd

P )dd = Kd
SP ↔ Kd

P .

2
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The technique of the proof of Corollary 7.1.1 will work in the case of
the present instance of q-orthogonality, namely, integral duality. In this
case also we would be working with a vector space V12 as defined in the
proof of the above mentioned corollary. By Lemma 7.2.1, Vd

12 = V⊥
12

and therefore Vd
12 would have the representative matrix

P1 P2

[

I −I
]

.

Since (KS1

′ ⊕KS2

′)d = KS1

′d ⊕KS2

′d, we must have

(KS1

′ ⊕KS2

′)d ↔ Vd
12 = (KS1

′d ⊕KS2

′d)↔ Vd
12

The term in the RHS can now be seen to be equal to KS1

d⇀↽KS2

d. We
thus have,

Corollary 7.5.1 Let KS1,KS2 be regularly generated collections of vec-
tors on S1, S2 respectively. Let ‘<,>’ be the usual dot product opera-
tion. Then
(KS1 ↔ KS2)

d = KS1

d⇀↽KS2

d.

Remark: As in the case of polarity, here too it is easy to see that
the Implicit Duality Theorem is a special case of the Implicit Integral
Duality Theorem.

Exercise 7.19 Examine if implicit duality would work for the follow-
ing instances of q-orthogonality.
i. f , g are q-orthogonal iff < f , g > is a nonnegative integer.
ii. f , g are q-orthogonal iff < f , g > is an integral multiple of a given
integer.
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7.6 Problems

Problem 7.1
i. Algorithm for building representative matrix of generalized
minor: Given representative matrices for VSP ,VP show how to build
a representative matrix for VSP ↔ VP .
ii. Rank formula for generalized minor; another proof of the
Implicit Duality Theorem: Complete the details of the following
alternative proof of the Implicit Duality Theorem.
(a) r(VSP ↔ VP ) = r(VSP×S) + r((VSP ·P )∩VP ) - r((VSP×P )∩VP )
(b) (VSP ↔ VP ) is orthogonal to (V⊥

SP ↔ V⊥
P ).

(c) r(VSP ↔ VP ) + r(V⊥
SP ↔ V⊥

P ) =| S | .
Hence, (VSP ↔ VP )⊥ = V⊥

SP ↔ V⊥
P .

Problem 7.2 (∗) Let VSP ,VSP1 be called equivalent in S iff VSP · S
= VSP1 · S.
We say (VSP ,V⊥

SP ), (VSP1 ,V⊥
SP1

) are equivalent in S iff VSP ,VSP1 and
V⊥

SP ,V⊥
SP1

are equivalent in S. We say (VSP ,V⊥
SP ) are minimal in P

iff whenever (VSP1,V⊥
SP1

) is equivalent to (VSP ,V⊥
SP ), | P1 |≥| P | .

Show that (VSP ,V⊥
SP ) is minimal in P iff either of the following equiv-

alent conditions hold
i. | P |= r(VSP · S)− r(VSP × S) = r(V⊥

SP · S)− r(V⊥
SP × S)

ii. r(VSP × P ) = r(V⊥
SP × P ) = 0.

Problem 7.3 Minor of generalized minors in terms of minor
of VSP :
Let S2 ⊆ S1 ⊆ S and let VS1 be a vector space on S1. Show that

(VSP ↔ VP ) · S1 × S2 = (VSP · (S1 ∪ P )× (S2 ∪ P ))↔ VP

Problem 7.4 (∗) Let (VSP ,VP ) be compatible, i.e., VSP ·P ⊇ VP and
VSP × P ⊆ VP .
i. Let r(VSP ×P ) 6= 0, let f̂P ∈ VSP ×P, and let e belong to the support
of f̂P . Let P1 ≡ P − e,VP1 ≡ VP × P1, and let VSP1 ≡ VSP × (S ∪ P1).
Show that
(a) VSP ↔ VP1 = VSP ↔ VP

(b) VSP1 · P1 ⊇ VP1 and VSP1 × P1 ⊆ VP1 .
(c) VSP1 · S = VSP · S and VSP1 × S = VSP × S.

ii. Let r(V⊥
SP×P ) 6= 0, let f̂P ∈ V⊥

SP×P and let e belong to the support
of f̂P . Let P2 ≡ P − e,VP2 ≡ VP · P2 and let VSP2 ≡ VSP · (S ∪ P2).
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Show that
(a) VSP2 ↔ VP2 = VSP ↔ VP ,
(b) VSP2 · P2 ⊇ VP2 and VSP2 × P2 ⊆ VP2 ,
(c) VSP2 · S = VSP · S and VSP2 × S = VSP × S.
iii. Repeat the above problem when ‘compatibility’ is replaced by ‘strong
compatibility’ (i.e., VSP · P = VP and VSP × P = VP ).

Problem 7.5 Compatibility permits recovery of VP from VSP ,
VSP ↔ VP : Prove

Theorem 7.6.1 . Let VS = VSP ↔ VP . Then, VP = VSP ↔ VS iff
VSP · P ⊇ VP and VSP × P ⊆ VP , (i.e., iff (VSP ,VP ) are compatible).

Problem 7.6 (∗) Let V1,V2 be vector spaces on S1, S2 respectively.
Find a vector space V12P on (S1 ∪ S2) ⊎ P that is an extension of
both V1 and V2 such that | P | is the minimum possible. Show that the
minimum value of | P | is r(V1+V2)−r((V1×(S1∩S2))∩(V2×(S1∩S2))).

Problem 7.7 Minimal common extension and algorithms for
construction of the spaces:
i. Given vector spaces V1

S, · · · ,Vk
S show that if VSP is to be a common

extension of V i
S through spaces V i

P then

| P |≥ r(
∑

i

V i
S)− r(

⋂

i

V i
S).

ii. Give a procedure for building VSP ,V i
P s.t. | P | is equal to the RHS

of the above inequality.

Problem 7.8 Let VSP be a common extension of V1
S,V2

S. Then
i. VSP is a common extension of VSP ↔ V1

S and VSP ↔ V2
S.

ii. Distance between spaces does not change when we take
generalized minor with respect to an extension: If VSP is an
extension of V1

S,V2
S, · · · ,Vk

S

d(V1
S,V2

S, · · · ,Vk
S) = d((VSP ↔ V1

S), (VSP ↔ V2
S), · · · , (VSP ↔ Vk

S)).

Here, d(· · · ,Vj
S, · · ·) denotes r(

∑Vj
S) - r(∩Vj

S).
iii. Suppose VSP is a common extension of V1

S,V2
S, · · · ,Vk

S. Show that,
to find a minimal extension, the following procedure is valid . Let
V1

P = VSP ↔ V1
S
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V2
P = VSP ↔ V2

S
...
Vk

P = VSP ↔ Vk
S.

Let VPQ be a minimal extension of V1
P ,V2

P , · · · ,Vk
P . Then, VSP ↔ VPQ

is a minimal extension of V1
S,V2

S, · · · ,Vk
S.

Problem 7.9 How to build R1,RP2 efficiently in special situa-
tions:
The procedure described in subsection 7.3.3 is useful only if the matri-
ces R1,RP2 can be built efficiently. Brute force Gaussian elimination
should be avoided. Linear time algorithms, if available, would obviously
be the best.
Let {E1, · · · , Ek} be a partition of E(G). For the following cases build
R1,RP2 efficiently: Let G′ be
i.

⊕

i G · Ei

ii.
⊕

i G × Ei

iii. obtained from G by fusing nodes,
iv. obtained from G by node splitting,
v. obtained from G by first fusing certain nodes and then splitting
some nodes of the resulting graph.

Problem 7.10 Nodal analysis of N by bordering nodal matrix
of N ′: In subsection 7.3.3 let N = Ĝ and M = −I. For this case derive
a nodal analysis-like procedure in which the nodal matrix of graph G ′
appears as the core of the overall coefficient matrix. Specialise this
derivation to the case where G ′ is made up only of self loops and show
that the usual nodal analysis equations result.

Problem 7.11
i. Using circuit matrix of G ′ instead of reduced incidence ma-
trix: In subsection 7.3.3 the reduced incidence matrix of G ′ is used
while writing KCE and KVL has been applied in terms of node poten-
tials of G′. Instead derive a dual set of equations using a representative
matrix of the current space of G ′ for writing KVE and applying KVL
in terms of loop currents of G ′.
ii. Loop analysis of N by bordering loop matrix of N ′: Let
M = R̂ and N = −I. For this case derive a loop analysis-like procedure
in which the loop analysis coefficient matrix of graph G ′ appears as the
core of the overall coefficient matrix. Specialise this derivation to the
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case where G′ is made up only of coloops and show that the usual loop
analysis equations result.

Problem 7.12 (Tellegen) Reciprocity: Let N be an electrical net-
work with graph G. Let E(G) be partitioned into EP , ER, where the
devices in EP are norators and the devices in ER have the following
characteristic:
Let xR denote the vector (vR, iR), yR denote the vector (−iR,vR),
where (vR, iR) belongs to the device characteristic of ER. Then the
collection VxR of all the xR’s is a vector space and is complementary
orthogonal to the collection VyR of all the yR’s.

e.g. vR = (R)iR where R is a symmetric matrix.
Let xP denote the vector (vP , iP ),
yP denote the vector (−iP ,vP ),
where ((vP ,vR), (iP , iR)) is a solution of the network.
Show that the collection VxP of all the xP ’s is complementary orthog-
onal to the collection VyP of all the yP ’s.

Problem 7.13 Adjoint Networks: Let N ,N ′ be electrical networks
with graph G. Let E(G) be partitioned into ED ⊎Eyv ⊎Eyi ⊎Euv ⊎Eui,
where the characteristic

i. of the devices in ED is

(

MD ND

)

[

iD
vD

]

= 0 in N .
(

M⊥
D N⊥

D

)

[

v′
D

i′D

]

= 0 in N ′,

ii. of the devices in Eyv is

iyv = 0 in N
unconstrained (norators) in N ′

(in particular no constraints on v′
yv)

iii. of the devices in Eyi is

vyi = 0 in N
unconstrained (norators) in N ′

(in particular no constraints on i′yi)
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iv. of the devices in Euv is
unconstrained in N

(in particular iuv has no constraints)

v′
uv = 0 in N ′.

v. of the devices in Eui is
unconstrained in N

(in particular vui has no constraints)

i′ui = 0 in N ′.

The symbols u, y indicate input, output in N and output, input in
N ′. If

[

vyv

iyi

]

=

[

K11 K12

K21 K22

] [

vuv

iui

]

in N

show that
[

i′uv

v′
ui

]

= −
[

KT
11 KT

21

KT
12 KT

22

] [

i′yv

v′
yi

]

in N ′.

Remark:

i.
(

MD ND

)

,
(

M⊥
D N⊥

D

)

are representative matrices of com-
plementary orthogonal spaces.

ii. The usual electrical network adjoint N ” is obtained by replacing
i′ by −i”,v′ by v” in the device characteristic.

iii. u, y indicate ‘input’,‘output’ respectively in N and ‘output’,‘input’
respectively in N ′.

Problem 7.14 *Proof of the Implicit Duality Theorem with-
out using finiteness assumption:
Let < ·, · > be a q-bilinear operation as in Section 7.2. Further when-
ever S, P are disjoint let < fS ⊕ fP , gS ⊕ gP >=< fS, gS > + <
fP , gP > . Let ‘∗’ denote the q-orthogonality operation with the set A
being closed with respect to both addition and subtraction. We say
a collection K of vectors on a set T is closed iff (K∗)∗ = K. Prove the
following:

i.
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Lemma 7.6.1 Let VSP ,VP , be vector spaces.
Let UP ≡ VP ∩ (VSP · P ). Then
(a) VSP ↔ VP = VSP ↔ UP

(b) if VP ,VSP ,VSP · P,V∗
P + V∗

SP × P are closed, then V∗
SP ↔ U∗

P =
V∗

SP ↔ V∗
P .

ii.

Theorem 7.6.2 Let UP ⊆ VSP · P. If VSP ,V∗
SP · S are closed, then

(VSP ↔ UP )∗ = V∗
SP ↔ U∗

P .

iii. Hence, if VP ,VSP ,VSP · P,V∗
SP · S,V∗

SP + V∗
SP × P are closed, then

(VSP ↔ VP )∗ = V∗
SP ↔ V∗

P .

7.7 Notes

It seems very dificult to trace the origins of the Implicit Duality Theo-
rem. The first publication, that the author could trace, which refers to
the ideal transformer version of the result is [Belevitch68]. However in
that reference the proof of the result only deals with orthogonality and
omits the crucial aspect of the ranks of the orthogonal spaces adding
up to the full rank. Kron’s use of the ‘power invariance postulate’,
reminds us of this theorem [Kron39]. Unfortunately he never makes
it clear under what conditions the ‘postulate’ can be used. Some of
the proofs of the theorem presented in this chapter may be found in
[Narayanan86a], [Narayanan86b], [Narayanan87].

7.8 Solutions of Exercises

E 7.1: We remind the reader that the dot product of f1 on S1 with f2
on S2 is equal to

∑

e∈S1∩S2

f1(e)f2(e).

If S1 ∩ S2 = ∅, then, by definition, the dot product is zero.
Wherever possible we state and solve a more general version. However,
throughout, the q-bilinear operation is a dot product. The reader is
referred to Section 7.2 for the definition of q-orthogonality and of the
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set A.
i. If S1 ∩ S2 = ∅, then

(K1 ⊕K2)
∗ = K1

∗ ⊕K2
∗,

where K1 (K2) is a collection of vectors on S1(S2) with the zero vector
as a member.
Proof : Any vector in the RHS is of the form f1 + f2 where f1 ∈ K1

∗

and f2 ∈ K2
∗

. Consider g1 ∈ K1, g2 ∈ K2. We have

< g1 + g2, f1 + f2 >=< g1, f1 > + < g2, f2 > .

Now < g1, f1 >,< g2, f2 >, belong to A. Therefore, so does their
sum (taking g, f to be q-orthogonal iff < g, f >∈ A) i.e., f1 + f2 is
q-orthogonal to every vector in K1 ⊕K2.
Thus, RHS ⊆ LHS.
On the other hand if f ∈ LHS, then f = f/S1 ⊕ f/S2 = f1 ⊕ f2, say.
Now for every g1 ∈ K1, g2 ∈ K2, we have

A ∋< f1 ⊕ f2, g1 ⊕ g2 >=< f1, g1 > + < f2, g2 > .

Setting g1 to 0, we see that < f2, g2 >∈ A. Similarly, < f1, g1 >∈ A.
Hence f1 ∈ K1

∗ and f2 ∈ K2
∗ and f ∈ RHS.

Thus, RHS ⊇ LHS.

ii. (K1 ⊕K2)↔ K2 = K1 with the usual dot product as the q-bilinear
operation.
Proof straight forward.

E 7.2: KP ,K2
P are collections of vectors on P andK1,K2 are collections

on S ⊎ P . We assume the collections are all closed under addition.
i. (K1 +K2)↔ KP ⊇ (K1 ↔ KP ) + (K2 ↔ KP ).
Proof : Let fS ∈ RHS. Then fS = fS

1+fS
2 where fS

1 ∈ K1 ↔ KP and
fS

2 ∈ K2 ↔ KP . There exist vectors fS
1 ⊕ fP

1 ∈ K1, fP
1 ∈ KP , fS

2 ⊕
fP

2 ∈ K2 and fP
2 ∈ KP . Then, fS

1 + fS
2 ⊕ fP

1 + fP
2 ∈ K1 + K2 and

fP
1 + fP

2 ∈ KP .
Hence, fS ∈ L.H.S.

ii. (K1 ∩ K2)↔ KP ⊆ (K1 ↔ KP ) ∩ (K2 ↔ KP ).
This is immediate.

iii. K1 ↔ (KP +K2
P ) ⊇ (K1 ↔ KP ) + (K1 ↔ K2

P ).
Proof is similar to that of part (a) above. We use the fact that K1 is
closed under addition.
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iv. K1 ↔ (KP ∩ K2
P ) ⊆ (K1 ↔ KP ) ∩ (K1 ↔ K2

P ).
This is immediate.

v. (K1 ↔ KP )∗ = (K1−KP )∗ ·S. (Note that K1 ↔ KP = (K1−KP )×
S).
This holds if ((K1 −KP )× S)∗ = (K1 −KP )∗ · S.
E 7.3: For (iii) below, we assume KSP is closed under addition and
KSP −KSP × P ⊆ KSP .
i. KSP ↔ KP = KSP ↔ (KP ∩ (KSP · P ))

ii. KSP ↔ KP = (KSP ∩ (KSP · S ⊕KP ))↔ KP .

iii. Let K̂P −KSP × P = KP −KSP × P.
Then KSP ↔ K̂P = KSP ↔ KP .
Proof :
i. If fS ∈ KSP ↔ KP , then there exists fP ∈ KP s.t. fS ⊕ fP ∈ KSP .
Clearly fP ∈ KP ∩ (KSP · P ). Hence, fS ∈ KSP ↔ (KP ∩ (KSP · P )).
The reverse containment is clear since
KSP ↔ K1

P ⊇ KSP ↔ K2
P

whenever K1
P ⊇ K2

P .

ii. We have K1
SP ↔ KP ⊇ K2

SP ↔ KP whenever K1
SP ⊇ K2

SP . Hence,
LHS ⊇ RHS.
Let fS ∈ KSP ↔ KP .
Then there exists fP ∈ KP s.t. fS ⊕ fP ∈ KSP .
Clearly, fS ⊕ fP ∈ (KSP · S ⊕KP ).
Hence, fS ⊕ fP ∈ KSP ∩ (KSP · S ⊕KP ).
Thus, LHS ⊆ RHS.

iii. Let fS ∈ L.H.S. Then ∃fP ∈ K̂P s.t. fS ⊕ fP ∈ KSP . By the
given condition on KP , K̂P there exist vectors fP

1, fP
2 in KSP × P ,

s.t. fP − fP
1 + fP

2 ∈ KP . Denote this last vector by fP
3. Clearly,

fS ⊕ fP
3 ∈ KSP since KSP −KSP × P ⊆ KSP . Hence, fS ∈ KSP ↔ KP .

Thus LHS ⊆ RHS.
The reverse containment is proved identically, interchanging the roles
of KP and K̂P .

E 7.4: Let Q ⊆ T ⊆ S. If Implicit q-orthogonality holds:
i. (K · T )∗ = K∗ × T.
ii. (K × T )∗ = K∗ · T.
iii. (K × T ·Q)∗ = K∗ · T ×Q.
Proof :
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i. Take KS−T ≡ VS−T , where VS−T is the space XS−T of all vectors on
S − T . Then by Lemma 7.2.1
V∗

S−T = V ⊥
S−T = {0S−T}.

We have

(K · T )∗ = (K ↔ KS−T )∗ = K∗ ↔ K∗
S−T = K∗ × T.

ii. In this case KS−T ≡ {0S−T} and K∗
S−T is the vector space XS−T on

S − T having full rank.

iii. Letting XP , P ⊆ S, denote the space on P with full rank, we have
K × T ·Q = K ↔ KS−Q,
where KS−Q ≡ 0S−T ⊕ XT−Q.
Now K∗

S−Q = XS−T ⊕ 0T−Q.
So, K∗ ↔ K∗

S−Q = K∗ · T ×Q.
E 7.5: Let KSP ,KS be collections of vectors on S ⊎ P, S respectively.
Then there exists a collection of vectors KP on P s.t. 0 ∈ KP and
KSP ↔ KP = KS only if KSP × S ⊆ KS ⊆ KSP · S. The latter condi-
tion is sufficient for the existence of KP with 0 ∈ KP , provided KSP

is a vector space and KS is closed under addition. Proof : Suppose
KSP ↔ KP = KS and 0 ∈ KP . It is clear from the definition of the
generalized minor operation that KSP · S ⊇ KS. Since 0 ∈ KP every
vector fS s.t. fS⊕0P ∈ KSP must belong to KS. Thus, KSP ×S ⊆ KS.
On the other hand suppose KSP · S ⊇ KS ⊇ KSP × S.
Let KP be the collection of all vectors fP s.t. for some vector fS ∈ KS,
fS ⊕ fP ∈ KSP . Clearly KSP ↔ KP ⊇ KS. If fS

′ ∈ KSP × S then
fS

′ ∈ KS and fS
′ ⊕ 0P ∈ KSP . Hence, by definition of KP , 0 ∈ KP .

Let fS be s.t. fS ⊕ fP ∈ KSP for some fP ∈ KP . We know that there
exists fS

′ ∈ KS s.t. fS
′ ⊕ fP ∈ KSP . Since KSP is a vector space, we

must have, (fS − fS
′) ⊕ 0P ∈ KSP . Hence, fS − fS

′ ∈ KSP × S ⊆ KS.
Since KS is closed under addition and fS

′ ∈ KS,
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it follows that (fS − fS
′)+ fS

′ = fS also belong to KS. Thus, KSP ↔
KP ⊆ KS.

2

E 7.6:
i. A vector fS ⊕ fQ belongs to each of the spaces (whose equality is to
be proved) iff there exist vectors fS ⊕ fT , fT ⊕ fP , fP ⊕ fQ, belonging
respectively to VST ,VTP ,VPQ.
The skewed sum case is similar.

ii. For each of these spaces a vector fS1 ⊕ fP 1 ⊕ fS2 ⊕ fP 2 is a member
iff there exist vectors fS1⊕ fT 1, fT 1⊕ fP 1, fS2⊕ fT 2, fT 2⊕ fP 2 in vector
spaces VS1T1 , VT1P1, VS2T2 , VT2P2, respectively. The skewed sum case
is similar.

iii. A vector fS1 ⊕ · · · ⊕ fSn
belongs to LHS (as well as RHS) iff there

exist vectors
fS1 ⊕ fT1 , fS2 ⊕ fT2 , · · · , fSn

⊕ fTn

belonging respectively to VS1T1⊕· · ·⊕VSnTn
and a vector fT1⊕· · ·⊕fTn

belonging to VT1T2···Tn
. The skewed sum case is similar.

E 7.7:
i. This is clear since

(VS1T · T )⊥ = V⊥
S1T × T,

(VS1T × T )⊥ = V⊥
S1T · T, and

V1 ⊇ V2 iff V⊥
1 ⊆ V⊥

2 .

ii. Let VS1S2 ≡ (VS1T ↔ VS2T ).
A vector fS2 ⊕ fT ∈ VS1T ↔ VS1S2

iff there exist vectors
fS1 ⊕ fT ∈ VS1T , fS1 ⊕ f̂T ∈ VS1T , and fS2 ⊕ f̂T ∈ VS2T .
Now, 0S1 ⊕ (fT − f̂T ) ∈ VS1T , i.e., fT − f̂T ∈ VS1T × T ⊆ VS2T × T .
Thus, fS2 ⊕ f̂T + (fT − f̂T ) ∈ VS2T , i.e., fS2 ⊕ fT ∈ VS2T .
Next let fS2 ⊕ fT ∈ VS2T . Since VS1T · T ⊇ VS2T · T , there exists a
vector fS1⊕ fT ∈ VS1T . Hence, fS1⊕ fS2 ∈ VS1S2 . Therefore, fS2⊕ fT ∈
VS1T ↔ VS1S2.
This proves the result.

iii. We have (V⊥
S1T ,V⊥

S2T ) compatible. Therefore,

(VS1T )⊥ ↔ (V⊥
S1T ↔ V⊥

S2T ) = V⊥
S2T
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Taking orthogonal complements on both sides we get,

VS1T⇀↽(VS1T⇀↽VS2T ) = VS2T .

E 7.8: Let Bf = [I
...B12] be the f-circuit matrix of G, where the identity

matrix columns correspond to a coforest f̄ and the columns of B12

correspond to the forest f . Associate with each edge of f an ordered
pair of terminals with no two pairs corresponding to different edges
having common terminals.
(We describe a procedure which would work for any rational matrix

[I
...B12] with the provision that we use 1 : bi transformers instead of 1 : 1

transformers). Suppose a cotree voltage ve = Bevf = b1e1 + · · ·+ bkek,
where Be = (b1, · · · , bk) is the appropriate row of B12 and ve1 , · · · , vek

are the voltages associated with the forest branches. We will use one
2-port ideal transformer for each nonzero entry of B12. Corresponding
to bi, i = 1, · · · , k, we would have a 1 : bi transformer. The primary
and secondary of this transformer have reference arrows. So the nodes
of the primary (secondary) can be called tail node and head node
corresponding to tail of the arrow and head of the arrow associated
with the primary (secondary). Attach the tail (head) node of the
primary of the 1 : bi transformer to the first (second) node of the
ordered pair of nodes associated with edge ei.
Put the secondaries of the 1 : bi transformers in series. Assume for
simplicity that b1, · · · , bk are non zero.
The sum b1v1 + · · · + bkvk would now be associated with an ordered
pair of nodes (n1, n2),where n1 is the tail node of the secondary of the
1 : b1 transformer and n2 is the head node of the secondary of the 1 : bk
transformer. The ordered pair (n2, n1) of nodes will now be associated
with the directed cotree edge e. When this procedure is completed each
directed edge of the graph would be associated with an ordered pair of
nodes. The voltage constraint at these pairs of terminals is given by

[

I B12

]

[

vf̄

vf

]

= 0.

By the Implicit Duality Theorem the current constraints must be

[

−BT
12 I

]

[

if̄
if

]

= 0.
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These are precisely the voltage and current constraints of the graph.

E 7.9: Ideal transformers cannot be connected inconsistently since
the zero solution would always work for linear homogeneous equations.
When two ideal transformers of different turns ratio are connected in
parallel they would still permit zero voltage across the ports.

E 7.10: The voltage constraints are Vv(G)↔ VP and the current con-
straints, Vi(G) ↔ V⊥

P . Thus the ideal transformer that the remaining
devices of the network ‘see’, is

(Vv(G)↔ VP , Vi(G)↔ V⊥
P )

E 7.11: [Narayanan87] If VSP ↔ VP = V, then clearly VSP · S ⊇ V.
Further, V⊥

SP ↔ V⊥
P = V⊥. So V⊥

SP · S ⊇ V⊥, i.e., (V⊥
SP · S)⊥ ⊆ V,

i.e., VSP × S ⊆ V. In the present problem it is therefore clear that
VSP · S ⊇ V + V ′ and VSP × S ⊆ V ∩ V ′. Hence,

r(VSP · S)− r(VSP × S) ≥ r(V + V ′)− r(V ∩ V ′).

But

r(VSP · S)− r(VSP × S) = r(VSP · P )− r(VSP × P ) ≤| P | .

Thus, | P |≥ r(V + V ′)− r(V ∩ V ′).
However, the construction given in the subsection 7.3.3 actually achieves
equality. Thus, for VSP to be a minimum extension of V and V ′ it is
necessary and sufficient that

| P | = r(V + V ′)− r(V ∩ V ′).

E 7.12: Let G be composed of two edges e1, e2 in parallel directed in
the same direction and let G ′ have e1, e2 in parallel directed oppositely.
To make both G and G ′ the minors of a graph GEP , we may think of P
as composed of P1⊎P2. When edges of P1 are shorted and those of P2

opened, we should get G and when edges of P2 are shorted and those
of P1 opened, G′. It can be seen that this requires four edges. Starting
from G we first introduce two edges in series with e2 one at its tail end
and the other at the head end. These would be P1. Now add an edge
from the tail of e2 to the head of e1 and an edge from the head of e2 to
the tail of e1. These would be P2. The reason we cannot do with less
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number of edges in P is that to reverse e2 both its endpoints have to be
detached and reattached. However, our construction clearly requires

r(Vv(G) + Vv(G′))− r(Vv(G) ∩ Vv(G′)) = 2

elements in P. So VEP with | P | = 2 cannot be the voltage space of a
graph.
Remark: Node pair fusion and node fission operations (to be discussed
in the chapter on hybrid rank) are more powerful than graph minor
operations. In the present case to move from G to G ′ we require only
two such operations.

E 7.13: If G′ is made up only of coloops, then Vv(G′) ⊇ Vv(G). Hence,
R1 would have zero rows, i.e., would not exist. As described in Sub-
section 7.3.3 KVE of G can be written as the two constraints

vE = (Ar
′)Tvn

′ and RT
P2

vn
′ = 0,

where Ar
′ is the reduced incidence matrix of G ′. But Ar

′ is the unit
matrix since G′ is made up of coloops. So the KVE of G is equivalent
to RT

P2
vE = 0. Further, the columns of RP2 are linearly independent.

Thus, RT
P2

must be a representative matrix of Vi(G).
If G′ is made up entirely of self loops, Ar

′ will have no rows, i.e., would
not exist. Neither would RP2. The matrix R1 would be the same as
the reduced incidence matrix Ar of G.
E 7.14:
i. Let V,V ′,V” denote Vv(G),Vv(G′),Vv(G”) respectively. We will only
verify the triangle inequality. We have,

d(G,G′) + d(G′,G”) = r(V + V ′) + r(V ′ + V”)− r(V ∩ V ′)− r(V ′ ∩ V”)

d(G,G”) = r(V + V”)− r(V ∩ V”).

We use the identity,

r(V1) + r(V2) = r(V1 ∩ V2) + r(V1 + V2).

Hence,

d(G,G′) + d(G′,G”)− d(G,G”) = 2[(r(V ′)− r(V ∩ V ′ + V ′ ∩ V”))

+(r(V ∩ V”)− r(V ∩ V ′ ∩ V”))] ≥ 0.
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ii. The first part is similar to the above.
The second part follows from the fact that
(V + V ′)⊥ = V⊥ ∩ (V ′)⊥

and r(V)⊥ =| E | −r(V) if V is on E.

E 7.15: Let us rewrite Equation 7.7 as follows:










C11
... C12

· · · · · · · · ·
C21

... 0











x
y

=

[

α
0

]

(7.10)

where x =







iE
v′

n

vE





 and y =

[

iP2

vP1

]

. We will describe the plan of our

method first algebraically and later give it a network interpretation.
Assume that the overall matrix is invertible. We have, from the above
equations, if C11 is invertible,

x = C11
−1[α−C12 y] (7.11)

C21x = 0. (7.12)

Hence,

C21C11
−1(α−C12 y) = 0, (7.13)

i.e., C21C11
−1C12y = C21C11

−1 α. (7.14)

Since we assumed that the equation 7.10 is uniquely solvable the above
equation in y must also be uniquely solvable. Substituting this value
of y in equation 7.11 we get the value of x.
Now the network interpretation:
We first show that our assumptions above follow from assumptions
about unique solvability of N and N ′.

Equation 7.7 is equivalent to the constraints of the network N as
far as the variables vE , iE are concerned. Hence the solution of this
equation is unique as far as vE , iE are concerned. The overall solution
would be unique if we can show that the columns corresponding to
vn

′, iP2 ,vP1 are linearly independent. This is so because (a) columns of
(

(Ar
′)T RT

1

)

are linearly independent - indeed they form a basis

for V+V ′. The matrix RP2 is row equivalent to an identity matrix and
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therefore, has independent columns. Thus,

(

(Ar
′)T 0 RT

1

0 RP2 0

)

has linearly independent columns as desired.
We assumed N ′ is uniquely solvable. The matrix C11 would be the
coefficient matrix, if for N ′, we write KCE, KVL (in the potential
difference form) and device characteristic equations. Hence, C11 is in-
vertible.

Next we interpret the steps of the solution when we solve

C11 x = α−C12 y

We are solving network N ′, (1+ | P |) times. First solve with α in place
but y = 0. Next set α = 0 and keep one component of y at a time
equal to 1 and all the rest zero. The solutions we get are respectively
equivalent to C11

−1 α and columns of C11
−1 C12. Referring to Equation

7.7 we see that each column of C12 is effectively either a column of RP2

or a column of −RT
1 . When we set one of the components of iP2 equal

to 1 the corresponding column RP2j comes into the equation since we
have

Ar
′ iE = −RP2j.

This means that in the network N ′ with sources j, e set to zero we have
the current source vector −RP2j entering the nodes. When we set one
of the components of vP1 equal to 1 the corresponding column −RT

1j

comes into the picture since we have

vE −RT
1j = (Ar

′)Tvn
′.

Here, −RT
1j may be thought of as a branch voltage source vector, each

entry being the value of a source voltage in series with the correspond-
ing branch.

Because | P |≪ r(G ′) we may neglect the computational effort
needed to construct Equation 7.14. (The matrix (C11

−1 C12) has
already been constructed. It has | E | rows and | P | columns. The
matrix C21 has | P | rows and | E | columns. So the effort to build the
coefficient matrix is O(| P |2 | E |)). The solution of this equation is
also easy since the coefficient matrix is | P | × | P | . Once the value
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of y is found, substituting it in Equation 7.11 would give us x which
contains (vE, iE), the solution of N .
E 7.16: Already done earlier (see for instance solution of Exercises
7.1, 7.2 etc.).

E 7.17: See Solution of Exercise 7.4.

E 7.18: Let P = P1 ⊎ P2.
i. We need to show that

(KSP ↔ KP1)↔ KP2 = KSP ↔ (KP1 ⊕KP2).

Both LHS and RHS are composed of vectors fS s.t. fS⊕fP1⊕fP2 ∈ KSP

for some fP1, fP2 in KP1 ,KP2 respectively. So the equality holds.

ii. Let fS ∈ RHS. Then there exists fP ∈ KP s.t. fS ⊕ fP ∈ KSP .
But then TP (fP ) ∈ K′

P and fS ⊕TP (fP ) ∈ K′
SP . Hence, KSP ↔ KP ⊆

K′
SP ↔ K′

P . The reverse containment follows similarly by working with
TP

−1.

iii. We will first consider the case where K′
P is a vector space. Let K′

P

have the representative matrix [IP1 RP2] and let KP have the repre-
sentative matrix [IP1 0P2 ]. Let TP be the nonsingular transformation
defined by

TP (fP1 ⊕ fP2) =
(

fT
P1

fT
P2

)

[

IP1 RP2

0 IP2

]

Clearly, TP (fP1 ⊕ 0P2) = fT
P1

+ (fT
P1

(RP2))
So, K′

P = TP (KP ).
Let K′

SP = TSP (KSP ), where TSP is defined in terms of TP as in the
previous section of this problem. We have

KSP ↔ KP = K′
SP ↔ K′

P .

Now since K′
P = TP (KP ), we claim that

(K′
P )∗ = (TP

T )−1(K∗
P ) (∗)

To prove this we first check that vectors in K′
P and (TP

T )−1(K∗
P ) are

q-orthogonal (i.e., that

(K′
P )∗ ⊇ (TP

T )−1(K∗
P )).
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We have, if fP
′ ∈ K′

P and gP
′ ∈ (TP

T )−1(K∗
P ), that there must exist

fP ∈ KP and gP ∈ K∗
P , s.t fP

′ = TP (fP ) and gP
′ = (TP

T )−1(gP ).
Hence,

(fP
′)T (gP

′) = (TP (fP ))T ((TP
T )−1(gP )) = fP

TgP ∈ A.

(Here we have treated TP (fP ) as a matrix product). On the other hand
if fP ∈ KP and gP ∈ (TP

T )((K′
P )∗), then there must exist fP

′ ∈ K′
P

and gP
′ ∈ (K′

P )∗, s.t fP = TP
−1(fP

′) and gP = (TP
T )(gP

′).Hence,

(fP )T (gP ) =< TP
−1fP

′, TP
TgP

′ >=< fP
′, gP

′ >∈ A,

i.e., TP
T (K′

P )∗ ⊆ K∗
P , equivalently, (K′

P )∗ ⊆ (TP
T )−1K∗

P . This proves
(∗).
Since

TSP (fS ⊕ fP ) = fS ⊕TP (fP ),

it follows that

(TT
SP )−1(fS ⊕ fP ) = fS ⊕ (TP

T )−1(fP ).

As in the case of KP ,K′
P we can verify in the case of KSP ,K′

SP (≡
TSP (KSP )) also that (K′

SP )∗ = (TT
SP )−1(K∗

SP ). By the previous section
of the present problem we must have

(K′
SP )∗ ↔ (K′

P )∗ = K∗
SP ↔ K∗

P .

But it is given that

(KSP ↔ KP )∗ = K∗
SP ↔ K∗

P

and we have already seen that

KSP ↔ KP = K′
SP ↔ K′

P .

It follows therefore that

(K′
SP ↔ K′

P )∗ = (K′
SP )∗ ↔ (K′

P )∗

Next, we handle the case where KP is not a vector space.
Let KP ′ be a copy of KP on set P ′ which itself is a copy of P disjoint
from S ⊎ P. Let KPP ′ be the vector space with representative matrix
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P P ′

[

I I
]

,

where the rows have 1’s on columns corresponding to elements which
are copies of each other. We then have, by the definition of generalized
minor,

(KSP ⊕K′
P )↔ KPP ′ = KSP ↔ KP .

Since KPP ′ is a vector space we must have,

((KSP ⊕KP ′)↔ KPP ′)∗ = (KSP ⊕KP ′)∗ ↔ K∗
PP ′

= (K∗
SP ⊕K∗

P ′)↔ K∗
PP ′

(see the solution of Exercise 7.1).
Now K∗

PP ′(= K⊥
PP ′) has the representative matrix

P P ′

[

I −I
]

.

Hence,
(K∗

SP ⊕K∗
P ′)↔ K∗

PP ′ = K∗
SP ↔ (−K∗

P ),

which proves the required result.

E 7.19: We need to check if there is an appropriate class of collections
of vectors s.t. if K belongs to this class (K∗)∗ = K.
i. f , g are q-orthogonal iff < f , g > is a nonnegative integer:
Consider the collection of integral solutions to

Ax ≤ 0.

It can be shown that this is not closed under q-orthogonality.So implicit
duality would not not work in this case if we take the above mentioned
collection as basic.

ii. f , g are q-orthogonal iff < f , g > is an integral multiple of a given
integer n:
The Implicit Duality Theorem should go through in this case. We
sketch the argument below:
In this case, we could define ‘regularly generated by (A,B)’ to be the
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collection of vectors of the form λTA + σTB where λ is an integral
vector, and σ, an arbitrary rational vector. If K is regularly gener-

ated by (A,B) we can, without loss of generality, take

(

A
B

)

to have

linearly independent rows - the argument as in Theorem 7.5.1. Then,
using the arguments of Theorem 7.5.2, we conclude that K∗ would be
regularly generated by (C,D) where C satisfies ACT = n(I) and rows
of D span the orthogonal complement of the space spanned by rows

of

(

A
B

)

. The rest of Theorem 7.5.2 also goes through in this case.

Hence, we can mimic the proof of Theorem 7.5.3 and conclude

(KSP ↔ KP )∗ = K∗
SP ↔ K∗

P .

7.9 Solutions of Problems

P 7.1:
i. Let V ′

SP be the subspace consisting of all vectors of VSP whose
restrictions to P belong to VP . Choose a representative matrix for V ′

SP

of the form
S P







R1S 0
0 R2P

R3S R3P





 (∗)

where rows of

(

R1S

R3S

)

as well as rows of

(

R2P

R3P

)

are linearly inde-

pendent.
The number of rows (as well as rank) of this representative matrix is
clearly

r(VSP×S)+r((VSP ·P )∩VP ). Now

(

R1S

R3S

)

is a representative matrix

for
VSP ↔ VP .
To determine the space V ′

SP : Construct representative matrices

R = (RS
... R2) for VSP and RP for VP . Find the solution space of the
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equation
(

RT
2 RT

P

) λ1

λ2
= 0

Let (Q11 Q12) be a representative matrix of the solution space.

( Note
(

RT
2 RT

P

)

(

QT
11

QT
12

)

= 0). The rows of Q11R2 generate

(VSP · P ) ∩ VP and the rows of Q11(RS
... R2) generate V ′

SP .

ii. The rank of VSP ↔ VP :

(a) The rank is the number of rows of

(

R1S

R3S

)

. Noting that the

number of rows of R2P (in (∗)) equals r((VSP × P ) ∩ VP ) we see that

r(VSP ↔ VP ) = r(VSP × S) + r((VSP · P ) ∩ VP )− r((VSP × P ) ∩ VP ).

(b) If fS, gS belong respectively to VSP ↔ VP and (V⊥
SP ↔ V⊥

P ), there
exist vectors fP ∈ VP and gP ∈ V⊥

P s.t. fS ⊕ fP ∈ VSP and gS ⊕ gP ∈
V⊥

SP . Hence, < fS, gS > = < fS ⊕ fP , gS ⊕ gP > - < fP , gP > = 0.
(c)

r(V⊥
SP ↔ V⊥

P ) + r(VSP ↔ VP ) = [r(V⊥
SP × S) + r((V⊥

SP · P ) ∩ V⊥
P )−

r((V⊥
SP × P ) ∩ V⊥

P ) + r(VSP × S) +

r((VSP · P ) ∩ VP )− r((VSP × P ) ∩ VP )], (∗∗)

where we have used the results of a previous section of the present
problem.
Now we make use of the following facts:

r(V⊥
SP × S) =| S | −r(VSP · S),

r((V⊥
SP · P ) ∩ V⊥

P ) =| P | −r((VSP × P ) + VP ),

r((V⊥
SP × P ) ∩ V⊥

P ) =| P | −r((VSP · P ) + VP ),

r((VSP × P ) + VP ) = r(VSP × P ) + r(VP )− r((VSP × P ) ∩ VP ),

r((VSP · P ) + VP ) = r(VSP · P ) + r(VP )− r((VSP · P ) ∩ VP ).

The RHS of (∗∗) then simplifies to

| S | −(r(VSP · S)− r(VSP × S)) + (r(VSP · P )− r(VSP × P )) =| S |,



336 7. THE IMPLICIT DUALITY THEOREM

since r(VSP · S) + r(VSP × P ) = r(VSP · P ) + r(VSP × S) = r(VSP ).

P 7.2: We have

| P |≥ r(VSP · P )− r(VSP × P ).

The RHS equals (r(VSP · S)− r(VSP × S)) by Corollary 3.4.2.
Select VSP so that it has the following representative matrix

S P

[

R1S IP

R2S 0

]

, (7.15)

where R2S is a representative matrix of VSP × S and rows of R1S are
linearly independent. It is clear that

| P |= r(VSP · P )− r(VSP × P ) = r(VSP · S)− r(VSP × S).

Now

r(V⊥
SP · P )− r(V⊥

SP × P ) = r(V⊥
SP )− r(V⊥

SP × S)− r(V⊥
SP ) + r(V⊥

SP · S)

= r(V⊥
SP · S)− r(V⊥

SP × S)

= | S | −r(VSP × S)− | S | +r(VSP · S)

= r(VSP · S)− r(VSP × S)

= | P | .

Since we have already seen that, in general, | P | cannot be less than
r(VSP · S)− r(VSP × S), the pair (VSP ,V⊥

SP ) is minimal in P.
To see the validity of the second condition we first observe that

| P |= r(VSP · P )− r(VSP × P )(= r(VSP · S)− r(VSP × S))

only if r(VSP × P ) = 0 and

| P |= r(V⊥
SP · P )− r(V⊥

SP × P )(= r(V⊥
SP · S)− r(V⊥

SP × S))

only if r(V⊥
SP × P ) = 0.

On the other hand since

r(V⊥
SP · P ) =| P | −r(VSP × P )
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and
r(VSP · P ) =| P | −r(V⊥

SP × P ),

we must have, if r(VSP × P ) = r(V⊥
SP × P ) = 0, then

| P | = r(VSP · P )− r(VSP × P )

= r(V⊥
SP · P )− r(V⊥

SP × P ).

So the result follows.

P 7.3: Let VS−S2 have the representative matrix

S − S1 S1 − S2
[

I 0
]

,

where S2 ⊆ S1 ⊆ S.
In Exercise 7.18 we saw that if P1 ⊎ P2 = P that

(KSP ↔ KP1)↔ KP2 = (KSP ↔ KP2)↔ KP1

Hence,

(VSP ↔ VP )↔ V(S1−S2) = (VSP ↔ V(S1−S2))↔ VP .

But the LHS is (VSP ↔ VP ) · S1 × S2 while the RHS is (VSP · (S1 ∪
P )× (S2 ∪ P ))↔ VP . Thus the desired result follows.

P 7.4:
i(a) Let fS ∈ VSP1 ↔ VP1 . Then there exists fP1 ∈ VP1 s.t. fS ⊕ fP 1 ∈
VSP1. Since VP1 = VP×(P−e), and VSP1 = VSP×(S∪(P−e)), we must
have fP 1 ⊕ 0e ∈ VP and fS ⊕ fP 1 ⊕ 0e ∈ VSP . Hence, fS ∈ VSP ↔ VP .
On the other hand let fS ∈ VSP ↔ VP . Then there exists fP ∈ VP s.t.
fS ⊕ fP ∈ VSP . It is given that there exists f̂P ∈ VSP × P ⊆ VP with e
in the support of f̂P . For some λ we must have (fP + λf̂P )(e) = 0. It is
clear that fS ⊕ (fP + λf̂P ) ∈ VSP and fP + λf̂P ∈ VP . Let fP1 be the
restriction of (fP + λf̂P ) to P1. Clearly fS ⊕ fP1 ∈ VSP1 and fP1 ∈ VP1.
Hence, fS ∈ VSP1 ↔ VP1.

i(b) We have that VSP · P ⊇ VP . Let fP1 ∈ VP1 . Then fP1 ⊕ 0e ∈ VP ⊆
VSP · P. Hence, there exists fS ⊕ fP1 ⊕ 0e ∈ VSP . Hence, fS ⊕ fP1 ∈
VSP × (S ∪ P 1) = VSP1. Hence fP1 ∈ VSP1 · P1. Thus, VP1 ⊆ VSP1 · P.
Next, let fP1 ∈ VSP1×P1. Then, there exists fS⊕fP1⊕0e ∈ VSP . Hence,
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fP1 ⊕ 0e ∈ VSP × P ⊆ VP . Hence, fP1 ∈ VP × P1. Thus, VSP1 · P1 ⊇
VP1 ⊇ VSP1 × P1.

i(c) It is clear that VSP · S ⊇ VSP × (S ∪ P 1) · S = VSP1 · S. To see
the reverse containment let fS ∈ VSP · S. Then there exists fP s.t.
fS ⊕ fP ∈ VSP . We have a vector f̂P in VSP × P with e in its support.
Hence, for a suitable λ, (fP + λf̂P )(e) = 0. Now fS ⊕ (fP + λf̂P ) ∈ VSP

and this vector takes zero value on e. Let fP1 be the restriction of
(fP +λf̂P ) to P1. Then fS⊕ fP1 ∈ VSP1. Thus, fS ∈ VSP1 ·S. This proves
that VSP · S ⊆ VSP1 · S, and since the reverse containment is clear we
have VSP · S = VSP1 · S. Next, to prove that VSP × S = VSP1 × S, we
merely note that VSP1 = VSP × (S ∪ P 1).

ii(a) From the previous section it is clear that

V⊥
SP ↔ V⊥

P = V⊥
SP2
↔ V⊥

P2

since V⊥
SP2

= (VSP · (S ∪ P 2))
⊥ = V⊥

SP × (S ∪ P 2)
and V⊥

P2
= (VP · P2)

⊥ = V⊥
P × P2. Hence,

VSP ↔ VP = (V⊥
SP ↔ V⊥

P )⊥ = (V⊥
SP2
↔ V⊥

P2
)⊥ = VSP2 ↔ VP2

ii(b) Since VSP ·P ⊇ VP ⊇ VSP ×P , it follows that (VSP ·P )⊥ ⊆ V⊥
P ⊆

(VSP × P )⊥. Hence, V⊥
SP · P ⊇ V⊥

P ⊇ V⊥
SP × P. Now by the argument

of the previous section of the present problem

V⊥
SP2
· P2 ⊇ V⊥

P2
⊇ V⊥

SP2
× P2.

Hence, VSP2 × P2 ⊆ VP2 ⊆ VSP2 · P2.

ii(c) We have, V⊥
SP · S = V⊥

SP2
· S by the arguments of the previous

section. Hence, VSP × S = VSP2 × S. Similarly, V⊥
SP × S = V⊥

SP2
× S

by the arguments of the previous section. Hence, by taking orthogonal
complements of both sides, VSP · S = VSP2 · S.
iii. The proof is similar to the ‘compatibility’ case.

P 7.5: If VP = VSP ↔ V ′
S for some V ′

S, then by Exercise 7.5,

VSP × P ⊆ VP ⊆ VSP · P.

This takes care of the necessity of the condition.
Suppose

VSP × P ⊆ VP ⊆ VSP · P.
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Let fP ∈ VSP ↔ VS. Then there exists fS ∈ VS s.t. fS ⊕ fP ∈ VSP . But
VS = VSP ↔ VP . Hence, there exists fP

′ ∈ VP s.t. fS ⊕ fP
′ ∈ VSP . It

follows that fP
′ − fP ∈ VSP × P ⊆ VP . Hence, fP ∈ VP .

Next let fP ∈ VP . Then there exists fS s.t. fS ⊕ fP ∈ VSP since
VSP · P ⊇ VP .
Now fS ∈ VSP ↔ VP = VS, by the definition of the generalized minor
operation. Hence, fP ∈ VSP ↔ VS, once again using the definition of
generalized minor.

P 7.6: Extend each vector in V1,V2 to S1 ∪ S2 by padding with ze-
ros. Let us call the resulting vector spaces V ′

1,V ′
2. Using the result in

Exercise 7.11, if VSP is a minimum extension of V ′
1,V ′

2, then

| P |= r(V ′
1 + V ′

2)− r(V ′
1 ∩ V ′

2).

It is clear that VSP is a minimum common extension of V ′
1,V ′

2 iff it is
a minimum common extension of V1,V2.
Now r(V ′

1 + V ′
2) = r(V1 + V2) and V ′

1 ∩ V ′
2 is the collection of vectors

which are zero outside S1 ∩ S2 and belong to both V ′
1 and V ′

2. Hence,

r(V ′
1 ∩ V ′

2) = r((V1 × (S1 ∩ S2)) ∩ (V2 × (S1 ∩ S2))).

P 7.7: This is a generalization of Exercise 7.11 and can be solved
similarly. The essential difference is that the minors may have to be
generalized while in the case of two spaces ordinary minors were ade-
quate. For details see [Narayanan87].

P 7.8:
i. is obvious.

ii. Let VSP be a common extension of V1
S, · · · ,Vk

S.
Let V i

P = VSP ↔ V i
S, i = 1, ...k.

By the result in Problem 7.5 it is clear that VSP ↔ V i
P = V i

S, i = 1, ..k.
Grow a basis for

∑V i
S starting with vectors in

⋂

i V i
S and using vectors

which belong to some V i
S. Let fS

1, · · · , fSr be the vectors of this basis
which are outside

⋂

i V i
S and let them belong to spaces VS1, · · · ,VSr

respectively where the VSi are not necessarily distinct and are each
equal to one of Vj

S. Then there exist fP
1, · · · , fP r in VP1, · · · ,VPr re-

spectively such that fS
1 ⊕ fP

1, · · · , fSr ⊕ fP
r belong to VSP . (Here VPi

are spaces not necessarily distinct each equal to one of the Vj
P ). Sup-

pose fP
1, · · · , fP r are dependent modulo (

⋂

i V i
P ). Then there is a linear
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combination fS = λ1fS
1+· · ·+λrfS

r which does not belong to
⋂

i V i
S but

fP = λ1fP
1 + · · ·+ λrfP

r ∈ ⋂i V i
P . Now the vector fS ∈

⋂

i(VSP ↔ V i
P )

but fS 6∈
⋂V i

S. This is a contradiction. We conclude therefore, that

r(
∑

i

V i
P )− r(

⋂

i

V i
P ) ≥ r(

∑

i

V i
S)− r(

⋂

i

V i
S)

The reverse inequality follows by repeating the argument interchanging
S and P.

iii. We first show that VSP ↔ VPQ is an extension of V1
S, · · · ,Vk

S. Let
fS ∈ V i

S. Then there exists fP s.t. fS ⊕ fP ∈ VSP . Hence, fP ∈ VSP ↔
V i

S = V i
P . Since VPQ is an extension of V i

P there exists fQ s.t. fP ⊕ fQ ∈
VPQ. Hence, fS ⊕ fQ ∈ VSP ↔ VPQ. Then V i

S ⊆ (VSP ↔ VPQ) · S.
Similarly, noting that if a vector space is an extension of of another,
by the Implicit Duality Theorem, the complementary orthogonal space
of the former is an extension of the complementary orthogoanal space
of the latter, we can show that (V i

S)⊥ ⊆ (V⊥
SP ↔ V⊥

PQ) · S = (VSP ↔
VPQ)⊥ · S. Hence, V i

S ⊇ (VSP ↔ VPQ)× S. By Exercise 7.5 this proves
that (VSP ↔ VPQ) is an extension of V i

S).
To see that it is a minimal extension we note that

| Q | = r(
∑

i

V i
P )− r(

⋂

i

V i
P )

= r(
∑

i

V i
S)− r(

⋂

i

V i
S),

using the previous section of the present problem and Problem 7.7.
Thus, once again using the result in the abovementioned problem,
VSQ ≡ VSP ↔ VPQ is a minimal extension of V1

S, · · · ,Vk
k.

P 7.9:
i. This is a special case of part (iv) of the present problem, whose
solution is given below.

ii. G′ ≡⊕i G × Ei where E1, · · · , Ek is a partition of E. Now,

Vv(
⊕

i

G × Ei) =
⊕

i

Vv(G × Ei)

=
⊕

i

(Vv(G))× Ei.

Any vector of the form fEi
⊕ 0E−Ei

where fEi
∈ (Vv(G))×Ei is also in

Vv(G) by the definition of contraction.



7.9. SOLUTIONS OF PROBLEMS 341

So Vv(
⊕

i G × Ei) ⊆ Vv(G). Clearly RP2 cannot exist in this case. We
show how to build R1. Select a forest T of G ′ ≡ ⊕

i G × Ei. Build
the graph G × (E − T ). Let Â1r be the reduced incidence matrix of
G × (E−T ). Let A1r ≡ (Â1r0), where the zero submatrix corresponds
to the set T . We claim A1r can be chosen as the matrix R1. To prove

this statement we first observe that if

(

A1r

Ar
′

)

is a representative ma-

trix of G with A′
r, a representative matrix of G ′, then R1 can be taken

to be A1r. The rows of A1r are voltage vectors of G since G × (E − T )
is a contraction of G. The columns T are independent in the reduced
incidence matrix Ar

′ of G′ whereas they are zero in A1r. Hence, the

matrix

(

A1r

Ar
′

)

has linearly independent rows.

Next r(G × (E − T )) + r(G . T ) = r(G).
Hence, r(G × (E − T ))+ | T |≥ r(G).
Thus, the above matrix must have r(G) rows and is therefore a repre-
sentative matrix of G.
This completes the proof that R1 can be taken to be A1r. The labour
involved is to build G × (E − T ) and its reduced incidence matrix. So
the algorithm is O(| E |).
iii. Let G′ be obtained from G by fusing nodes. Then every voltage
vector of G′ can be derived from a node potential vector of G by as-
signing the same potential to each group of nodes of G which make up
a node of G′. Hence,

Vv(G′) ⊆ Vv(G).

Thus, the method of the previous section of this problem can be used
to show the following: Let T be a forest of G ′. Let Â1r be the reduced
incidence matrix of G × (E−T ). Then R1 can be taken to be (Â1r 0),
with zero submatrix corresponding to T.

iv. Since G′ is obtained from G by node splitting, Vv(G′) ⊇ Vv(G). The
matrix R1 is composed of row vectors which belong to Vv(G) and not
to Vv(G′). Hence, in this case R1 would not exist. We have to construct
RP2 through a fast algorithm.

From the discussion in Subsection 7.3.3 it is clear that imposing
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KVL for G is equivalent to

vE − (Ar
′)Tvn

′ = 0 (∗)
RP2

Tvn
′ = 0 (∗∗)

The equation (∗) represents the KVL conditions for G ′. It expresses
the branch voltages of G′ in terms of the node voltages. Suppose G ′ is
made up of m connected components. For each connected component
we choose a pseudo datum node. The node voltage vector vn

′ repre-
sents the voltages of the nodes in each component with respect to the
pseudo datum node voltage. We could draw additional edges between
each node and the corresponding pseudo datum node with the arrow
directed towards the latter. The voltages of these additional branches
Ea would be given by vn

′. Let us call the graphs obtained by adding Ea

to G′ and that by adding Ea to G respectively G′a,Ga. (Ga is obtained
by performing those node fusions on G ′a through which G′ becomes G.
In G′ there are no voltage constraints on Ea. The voltage constraints
on Ea in the graph Ga would be equivalent to RP2

Tvn
′ = 0. But these

constraints are precisely the voltage constraints of Ga ·Ea. Thus, RP2

T

may be taken to be an f-circuit matrix of Ga ·Ea. The complexity of this
construction is O(number of nonzero entries of RP2). This is bounded
above by (ν(G . Ea))(| Ea | −ν(G . Ea)) + ν(G . Ea). Usually however
the effort required would be much less particularly if we choose a vari-
ation of the mesh matrix.
v. Let G” be obtained from G by fusing some nodes and G ′ from G”
by splitting some nodes of G”. Let G have KCE AriE = 0
and KVL constraints Ar

Tvn = vE .
Then, KCE of G can be written as

Ar”iE” = 0 (
√

)

iE”− iE = 0 (
√

)

R1iE = 0 (
√

)

where Ar” is the reduced incidence matrix of G” and

(

R1

Ar”

)

is a

representative matrix of Vv(G). Observe that the set of equations (
√

)
are the KCE of G”. Since G” is obtained by fusing vertices of G, we
can use the procedure outlined in the solution of parts (ii) and (iii) of
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the present problem to construct the matrix R1.
The KVL of G is imposed by

(

(Ar”)T R1
T
)vn”

vP1

− vE = 0.

Let us define v”E ≡ (Ar”)Tvn”. So the KVL of G can be written as

(Ar”)Tvn”− v”E = 0 (
√√

)

v”E + R1
TvP1 − vE = 0. (

√√
)

Observe that the first set of equations of (
√√

) above are the KVE of
G”.
Now let G′ be obtained from G” by splitting nodes. Then KCE of G”
can be written as

Ar
′iE” + RP2iP2 = 0

and the KVE of G” can be written as

(Ar
′)Tvn

′ − v”E = 0

RP2

Tvn
′ = 0,

where Ar
′ is the reduced incidence matrix of G ′. The matrix RP2

can be constructed therefore by using the procedure outlined in the
solution of parts (i) and (iv) above. Observe that the result of the
above procedure is that KCL and KVL constraints of G are written
equivalently (as far as iE ,vE are concerned) as

Ar
′iE + RP2iP2 = 0

R1iE = 0

(Ar
′)Tvn

′ + R1
TvP1 − vE = 0

RP2

Tvn
′ = 0.

P 7.10: Our starting point is Equation 7.7. We will assume that the
device characteristic can be written in the form

−G(vE − e) + (iE − j) = 0.

We start with KCE in the modified form

Ar
′iE + RP2iP2 = 0

R1iE = 0.
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We now use the device characteristic and get

Ar
′GvE + RP2iP2 = −Ar

′j + Ar
′Ge

R1GvE = −R1j + R1Ge

Next we use KVL constraints in the altered form:

Ar
′G((Ar

′)Tvn
′ + R1

TvP1) + RP2iP2 = −Ar
′j + Ar

′Ge

R1G((Ar
′)Tvn

′ + R1
TvP1) = −R1j + R1Ge

RP2

Tvn
′ = 0

The final transformed nodal equations are as follows:







Ar
′G(Ar

′)T Ar
′G(R1)

T RP2

R1G(Ar
′)T R1G(R1)

T 0
RP2

T 0 0







vn
′

vP1

iP2

=







−Ar
′j + Ar

′Ge
−R1j + R1Ge

0







P 7.11:
i. Let the KVE of G be

BvE = 0.

We write this as
(

B1

B∩

)

vE =

(

0
0

)

,

where B∩ is a representative matrix of (Vi(G)) ∩ (Vi(G′)).
Similarly, let the KVE of G ′ be

(

B2

B∩

)

vE =

(

0
0

)

.

Let V1
E,V2

E be the spaces Vi(G) and Vi(G′). Then a minimal common
extension VEP will have the following representative matrix:

E P1 P2






B1 I 0
B∩ 0 0
B2 0 I





 ,

or equivalently the matrix
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[

B1 I 0
B′

2 0 BP2

]

,

where B′
2 is a representative matrix of V2

E. Let VEP ↔ V1
P = V1

E and
let VEP ↔ V2

P = V2
E .

Then it is clear that V1
P can be taken to have the representative matrix

[
P1

I
P2

0 ] and V2
P the representative matrix [

P1

0
P2

I ]. Thus the KVL, KCL
constraints of G can be rewritten (using a procedure analogous to that
followed in Subsection 7.3.3) as follows:

B′
2vE + BP2vP2 = 0

B1vE = 0

iE − (B′
2)

T i′l −BT
1 iP1 = 0

BT
P2
i′l = 0

ii. We give the final transformed loop equations below:







B′
2R(B′

2)
T B′

2RBT
1 BP2

B1R(B′
2)

T B1RBT
1 0

BT
P2

0 0







i′l
iP1

vP2

=







−B′
2e + B′

2Rj
−B1e + B1Rj

0







P 7.12: Consider the constraints

(

AR AP

)

[

iR
iP

]

= 0 (∗)
(

BR BP

)

[

vR

vP

]

= 0 (∗∗)
(

vR iR
)

∈ VxR (∗ ∗ ∗)

Let us denote (∗) and (∗∗) by

Ftop(iR, iP ,vR,vP ) = 0 (
√

)

and (∗ ∗ ∗) by

Fd(vR, iR) = 0. (
√√

)
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It is clear that (∗), (∗∗) can also be denoted by

F⊥
top(vR,vP ,−iR,−iP ) = 0.

It is given that Fd(vR, iR) = 0 can also be written as F⊥
d (−iR,vR) =

0. As far as the variables (vP , iP ) are concerned (∗), (∗∗), (√√) are
equivalent to

(vP , iP ) ∈ VxP .

By the Implicit Duality Theorem it follows that

[(Solution space of (
√

))↔ (solution space of (
√√

))]⊥

= (Solution space of (
√

))⊥ ↔ (solution space of (
√√

))⊥

But, LHS = VxP ,
and RHS = VyP .
The result follows.

Remark: The above may be used to prove reciprocity for certain kinds
of networks.
Example vR = RiR and R is a symmetric matrix.

Suppose VxP is defined by
[

I K
]

[

vP

iP

]

= 0. The VyP would be

defined by
[

−KT I
]

[

iP
vP

]

= 0. This is possible only if K is a

symmetric matrix.

Let us now subject the network to two different port excitations. Let
us call the (vP , iP ) vector corresponding to the first situation, (v′

P , i
′
P )

and that corresponding to the second situation, (v”P , i”P ). Then

(v′
P , i

′
P )(−i”P ,v”P )T = 0

Hence, v′
P i”P = v”P i′P .

P 7.13: We use the notation of Subsection 7.3.4. The constraints of
N are

Fi(iD, iyv, iyi, iuv, iui) = 0 · · ·KCE
Fv(vD,vyv,vyi,vuv,vui) = 0 · · ·KV E
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The device characteristic constraints are

[

M N
]

[

iD
vD

]

= 0

(I)iyv = 0
(I)vyi = 0
no constraints on vui

no constraints on iuv







































Fd(vD,vyi,vui, iD, iyv, iuv) = 0.

As far as the variables vyv, iyi,vuv, iui are concerned, these constraints
are equivalent to, say,

Fuy(vyv, iyi,vuv, iui) = 0.

By the Implicit Duality Theorem, the constraints

F⊥
i (v′

D,v
′
yv,v

′
yi,v

′
uv,v

′
ui) = 0 · · ·KV E

F⊥
v (i′D, i

′
yv, i

′
yi, i

′
uv, i

′
ui) = 0 · · ·KCE

F⊥
d (i′D, i

′
yi, i

′
ui,v

′
D,v

′
yv,v

′
uv) = 0 · · · device characteristic

are together equivalent, as far as the variables

i′yv,v
′
yi, i

′
uv,v

′
ui

are concerned, to

F⊥
uy(i

′
yv,v

′
yi, i

′
uv,v

′
ui) = 0.

But the constraint

F⊥
d (i′D, i

′
yi, i

′
ui,v

′
D,v

′
yv,v

′
uv) = 0

is equivalent to the following:

(

M⊥
D N⊥

D

)

[

v′
D

i′D

]

= 0,

no constraints on v′
yv,

no constraints on i′yi,

(I)i′ui = 0,

(I)v′
uv = 0.
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The result follows.

P 7.14:
Proof of Lemma 7.6.1: (a) is immediate.

(b). Since UP ⊆ VP it is clear that U∗
P ⊇ V∗

P . Hence,

V∗
SP ↔ V∗

P ⊆ V∗
SP ↔ U∗

P

To prove the reverse containment, we first observe that, by Lemma
7.2.4,

(VSP · P )∗ = V∗
SP × P.

Next, since V∗
P + V∗

SP × P is given to be closed, we must have

U∗
P = (VP ∩ VSP · P )∗ = V∗

P + V∗
SP × P

(by Lemma 7.2.2).
Suppose gS ∈ V∗

SP ↔ U∗
P .

Then there exists gP ∈ U∗
P s.t. gS⊕gP ∈ V∗

SP . Now U∗
P = V∗

P +V∗
SP×P.

Thus, there exists gP
′ ∈ V∗

SP×P s.t. gP−gP
′ ∈ V∗

P . Since gP
′ ∈ V∗

SP×
P , we must have 0S⊕gP

′ ∈ V∗
SP . Hence,(( gS⊕gP )−(0S⊕gP

′)) ∈ V∗
SP .

(V∗
SP is a vector space since VSP is one - by Lemma 7.2.1). Hence,

gS ⊕ (gP − gP
′) ∈ V∗

SP .
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It follows that gS ∈ V∗
SP ↔ V∗

P .

2

Proof of Theorem 7.6.2: We have UP ⊆ VSP · P. It is easily seen
that vectors in VSP ↔ UP and V∗

SP ↔ U∗
P are q-orthogonal. For, if

fS ∈ VSP ↔ UP , then there exists fP ∈ UP s.t. fS ⊕ fP ∈ VSP . If
gS ∈ V∗

SP ↔ U∗
P , then there exists gP ∈ U∗

P s.t. gS ⊕ gP ∈ V∗
SP .

Now < fS ⊕ fP , gS ⊕ gP >∈ A and < fP , gP >∈ A. Since A is closed
under subtraction, it follows that

< fS ⊕ fP , gS ⊕ gP > − < fP , gP >∈ A,

i.e., < fS, gS >∈ A. So fS, gS are q-orthogonal.
Thus (VSP ↔ UP )∗ ⊇ (V∗

SP ↔ U∗
P ).

Next let gS ∈ (VSP ↔ UP )∗. Let fS ∈ VSP × S. Since 0P ∈ UP and
fS ⊕ 0P ∈ VSP , it is clear that fS ∈ VSP ↔ UP and < fS, gS >∈ A.
Hence, gS ∈ (VSP × S)∗. Since VSP ,V∗

SP · S are closed, we have, using
Lemma 7.2.4,

V∗
SP · S = (V∗

SP · S)∗∗

= (V∗∗
SP × S)∗ = (VSP × S)∗.

Thus, gS ∈ V∗
SP · S. Hence, there exists gP on P s.t. gS ⊕ gP ∈ V∗

SP .
We will show that gP ∈ U∗

P . Let fP ∈ UP ⊆ VSP · P. Then there exists
fS on S s.t. fS ⊕ fP ∈ VSP . Since gS ∈ (VSP ↔ UP )∗, we must have
< fS, gS >∈ A. We also have

< fS ⊕ fP , gS ⊕ gP >=< fS, gS > + < fP , gP >∈ A.
Since A is closed under subtraction it follows that < fP , gP >∈ A,
i.e., gP ∈ U∗

P and therefore, gS ∈ V∗
SP ↔ U∗

P . Thus (VSP ↔ UP )∗ ⊆
(V∗

SP ↔ U∗
P ).

2



350 7. THE IMPLICIT DUALITY THEOREM



Chapter 8

Multiport Decomposition

8.1 Introduction

An informal discussion of the role of multiports in electrical networks
may be found in Section 5.8 of Chapter 5. Its relation to the Implicit
Duality Theorem is brought out briefly in Subsection 7.3.2 of Chapter
7. In this chapter, we give a formal description of multiport decom-
position using the notion of generalized minor and the Implicit
Duality Theorem. The primary application we have in mind is to
network analysis by decomposition. Relevant to this application is the
port minimization of component multiports. These topics we deal with
in detail. The port connection diagram can be viewed as the graph of
a reduced network which keeps invariant the interrelationship between
the subnetworks which go into the making of the different multiports.
We give some instances of this idea in Section 8.5.

Remark: The word multiport has been used in two different senses
in this chapter. An electrical multiport is an electrical network with
some devices, which are norators, specified as ports. A component
multiport is a vector space VEP on E⊎P with the subset P specified
as ports. Formally, in both cases no further property of ports needs
to be specified.

351
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8.2 Multiport Decomposition of Vector

Spaces

Definition 8.2.1 Let VE be a vector space on E and let E be parti-
tioned into E1, E2, · · · , Ek. Let VE1P1 , · · · ,VEkPk

,VP , where P ≡ P1 ⊎
· · · ⊎Pk is a set disjoint from E, be vector spaces on E1 ∪P1, · · · , Ek ∪
Pk, P respectively. We say (VE1P1, · · · ,VEkPk

;VP ) is a k-multiport
decomposition (k-decomposition or decomposition for short) of
VE iff

(
⊕

i

VEiPi
)↔ VP = VE.

The set P is called the set of ports, VEiPi
, i = 1, · · · , k are called the

components or component multiports of the decomposition while
VP is called the coupler. A multiport decomposition (VE1P1 , · · · ,VEkPk

;VP )
of VE is said to be minimal iff whenever (VE1P ′

1
, · · · ,VEkP ′

k
;VP ′) is a

multiport decomposition of VE, we have | P |≤| P ′ | .

Remark: Instead of (VE1P1, · · · ,VEkPk
;VP ) we would usually write

((VEjPj
)k;VP ). Instead of (· · · VEjPj

· · · ;VPI
) where j ∈ I ⊆ {1, · · · , k}

and PI = ∪j∈IPj we write ((VEjPj
)j∈I ;VPI

).
As an immediate consequence of the Implicit Duality Theorem, we
have

Theorem 8.2.1 (VE1P1, · · · ,VEkPk
;VP ) is a multiport decomposition

of VE iff

(V⊥
E1P1

, · · · ,V⊥
EkPk

;V⊥
P )

is a multiport decomposition of V⊥
E .

Proof : We have

(
⊕

i

VEiPi
)↔ VP = VE

iff

(
⊕

i

VEiPi
)⊥ ↔ V⊥

P = V⊥
E

by the Implicit Duality Theorem (Theorem 7.1.1)
The LHS of the second condition = (

⊕

i V⊥
EiPi

)↔ V⊥
P ,

and the result follows.

2
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We can now define multiport decomposition for graphs in a natural
manner.

Multiport Decomposition of a Graph

Let G be a directed graph on edge set E. Let E be partitioned into
E1, · · · , Ek. Let P1 ⊎ · · · ⊎ Pk = P be a set disjoint from E. Let
GE1P1, · · · ,GEkPk

,GP be graphs on sets of edges E1 ⊎P1, · · · , Ek ⊎Pk, P
respectively, such that

Vv(G) = (
⊕

j

Vv(GEjPj
))↔ Vv(GP ),

equivalently, such that

Vi(G) = (
⊕

i

Vi(GEjPj
))↔ Vi(Gp).

Then we say that (GE1P1 , · · · ,GEkPk
;GP ) is a k-multiport decompo-

sition of G. The edges in P are called ports. The graphs GEiPi
, i =

1, · · · , k are called the components or component multiports in
the decomposition while GP is called the port connection diagram.

We would usually write ((GEiPi
)k;GP ) instead of (GE1P1 , · · · ,GEkPk

;GP ).
If the components and coupler of a multiport decomposition of Vv(G)
are voltage spaces of graphs we say that the decomposition is graphic.
In general, a multiport decomposition of Vv(G) would not be graphic.
Also the procedure for minimization of number of ports that we de-
scribe in this section yields a multiport decomposition of Vv(G) that is
not always graphic. Computationally this is not a great hindrance, as
we shall show.

Coupling of given components to yield a given vector space

We describe below necessary and sufficient conditions under which
given components VEjPj

, j = 1, · · · , k can be coupled to yield a given
vector space VE . First we state a simple lemma which characterizes an
extension of a vector space.

Lemma 8.2.1 Let VEP ,VE be vector spaces on E ⊎ P,E. Then,
there exists a vector space VP on P s.t. VEP ↔ VP = VE iff

VEP · E ⊇ VE ⊇ VEP × E.
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For proof see the solution of Exercise 7.5.

Theorem 8.2.2 Let VE1P1 , · · · ,VEkPk
be vector spaces on E1⊎P1, · · · , Ek⊎

Pk. Let E ≡ ⊎Ei, P ≡ ⊎Pi and let VE be a vector space on E. Then
there exists a vector space VP on P such that (VE1P1 , · · · ,VEkPk

;VP )
is a k-multiport decomposition of VE iff the following two equivalent
conditions are satisfied:

i.
⊕

j(VEjPj
·Ej) ⊇ VE ⊇

⊕

j(VEjPj
× Ej), j = 1, · · · , k.

ii. VEjPj
· Ej ⊇ VE · Ej and

VEjPj
× Ej ⊆ VE × Ej, j = 1, · · · , k

Proof : i. From Lemma 8.2.1 we have that
there exists VP s.t. (

⊕

j VEjPj
)↔ VP = VE

iff
(
⊕

j

VEjPj
) · E ⊇ VE ⊇ (

⊕

j

VEjPj
)×E.

We observe that

(
⊕

j

VEjPj
) ·E =

⊕

j

(VEjPj
· Ej)

and
(
⊕

j

VEjPj
)× E =

⊕

j

(VEjPj
×Ej).

The result follows.

ii. We observe that (
⊕

j VEjPj
) · E ⊇ VE iff (

⊕

j VEjPj
) · E · Ej ⊇

VE · Ej, j = 1, · · · , k,
i.e., iff VEjPj

· Ej ⊇ VE · Ej , j = 1, · · · , k.
Next VE ⊇ (

⊕

j VEjPj
)×E iff (

⊕

j VEjPj
)×E ×Ej ⊆ VE ×Ej , j =

1, · · · , k,
i.e., iff VEjPj

×Ej ⊆ VE ×Ej , j = 1, · · · , k.
2

Compatibility of a decomposition

In general one cannot recover the coupler VP of a decomposition given
the components VEjPj

and the decomposed space VE . This is possible
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(as we show below) precisely when
VEjPj

· Pj ⊇ VP · Pj, j = 1, · · · , k
and VEjPj

× Pj ⊆ VP × Pj, j = 1, · · · , k.
When these conditions are satisfied we say that the components and
the coupler of the decomposition are compatible, or more briefly, that
the decomposition is compatible.

Theorem 8.2.3 Let ((VEjPj
)k,VP ) be a decomposition of VE . Then

(
⊕

j

VEjPj
)↔ VE = VP

iff the decomposition is compatible.

Proof : Given spaces VEP ,VP ,VE on E ⊎ P, P,E respectively such
that
VEP ↔ VP = VE , we have
VP = VEP ↔ VE iff VEP ·P ⊇ VP and VEP ×P ⊆ VP (by Theorem
7.6.1 of Problem 7.5).
The result now follows from the fact that the two sets of conditions of
Theorem 8.2.2 are equivalent.

2

Further Decomposition of Components

Let (VE1P1 , · · · ,VEkPk
;VP ) be a decomposition of VE . It would often

be convenient to further decompose the components VEjPj
. There are

two ways in which this could be done:

• We could perform an mj-multiport decomposition of VEjPj
, j =

1, · · · , k. In this case while decomposing VEjPj
we would treat Ej

and Pj the same way, i.e., not distinguish between them.

• We could try another kind of decomposition in which the final
ports Pj do not appear in the individual components VEjtQt

but
only in the port connection diagram VPjQ (see Figure 8.1.)

The latter is encountered more often in network theory when electri-
cal multiports are decomposed. For instance, in network theory, there
are procedures for 2-port synthesis where simpler electrical 2-ports are
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Figure 8.1: Decomposition of a Multiport

first built and their ports then connected together to form the final
electrical 2-port. In Figure 8.1, two component multiports on GE1Q1

and GE2Q2 are connected acccording to the port connection diagram
GQP to yield the final multiport GEP . The reader would notice that
this corresponds to the series connection of the two 2-ports.

We formally define the ‘decomposition of component multiports’, as
opposed to ‘decomposition of vector spaces’, below. The reader may, if
he so wishes, identify VEP with one of the VEiPi

in the decomposition
of a vector space VE .

Let VEP be a vector space on E ⊎ P . The ordered pair (VEP , P )
is called a vector space on E ⊎ P with ports P . More briefly
we might say VEP is a vector space on E ⊎ P with ports P . We say
(VE1Q1 , · · · ,VEkQk

;VQP ), where Q ∩ (E ⊎ P ) = ∅, ⊎Qj = Q, is a
matched k-multiport decomposition of (VEP , P ) iff

(
⊕

j

VEjQj
)↔ VQP = VEP .

We say it is a skewed k-multiport decomposition of (VEP , P ) iff

(
⊕

j

VEjQj
)⇀↽VQP = VEP .
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Thus the notion of decomposition of component multiports may be
used to decompose a vector space hierarchically. Suppose we have
VE ≡ (

⊕VEiPi
)↔ VP . We could then further decompose the compo-

nents VEiPi
as

(VEi1Qi1
, · · · ,VEikQik

;VQiPi
), i.e., VEiPi

= (
⊕

j VEijQij
)↔ VQiPi

.

Remark: As in the case of decomposition of vector spaces, we usu-
ally write ((VEiQi

)k;VQP ) instead of (VE1Q1, · · · ,VEkQk
;VQP ). Again

as in the case of decomposition of vector spaces, VEjQj
would be called

components and VQP the coupler. We say a k-multiport decompo-
sition of (VEP , P ) is graphic if the components and the coupler space
are voltage spaces of graphs.
We now have

Theorem 8.2.4 Let VEP be a vector space with ports P . Then
(VE1Q1 , · · · , VEkQk

;VQP ) is a matched k-multiport decomposition of
VEP iff
(V⊥

E1Q1
, · · · ,V⊥

EkQk
;V⊥

QP ) is a skewed k-multiport decomposition V⊥
EP .

Proof : We use Corollary 7.1.1. We have in general,

(VEP ↔ VQP )⊥ = (V⊥
EP
⇀↽V⊥

QP )

Hence,
((
⊕

j

VEjQj
)↔ VQP )⊥ = ((

⊕

j

V⊥
EjQj

)⇀↽V⊥
QP )

and the theorem follows.

2

Exercise 8.1 Number of ports needed to access a graph: Let
G be a connected graph on edgeset E1. Suppose G were a subgraph of
another graph G′ on the set of edges E ′.

i. If nothing is known about the structure of G ′, show that the min-
imum number of ports P1 we require, in a multiport decomposi-
tion of Vv(G′) with respect to a partition {E1, E2, · · · , Ek} of E ′,
is equal to r(G) and that these ports can in general be arranged
as the copy of a tree of G.

ii. What if G had p connected components?

iii. Repeat for a multiport decomposition of Vi(G′).
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Exercise 8.2 Essential information about one part of a solu-
tion for the remaining part: Consider the complementary orthog-
onal linear equations

(A1
...A2)

x1
x2

= 0 (∗)

(B1
...B2)

z1
z2

= 0 (⊥)

Suppose x1 = x̂1. Let S2(x̂1) be the collection of all x2 s.t. (x̂1,x2) is a
solution of Equations (∗). To determine S2(x̂1) we usually would not
have to know individual entries of x̂1.

i. Show that it is sufficient to know the image p1 of x1 through an
appropriate linear transformation Q, where the number of entries
of the vector p1 = r(V . E1) − r(V × E1), V denoting the row
space of A and E1 the columns corresponding to x1.
Also show that if the vector p1 is obtained by a linear transfor-
mation of x1, then it cannot have less entries than the above.

ii. Repeat for the complementary orthogonal set of equations (Equa-
tions (⊥)).

iii. How is this notion related to multiport decomposition?

Exercise 8.3 Counter-intuitive behaviour of decomposition: Give
an example of a graph of G and a multiport decomposition (GE1P1 ,GE2P2 , · · · ;GP )
such that if the graphs GE1P1,GE2P2 , · · · are connected along their ports
according to the port connection diagram GP , we do not get back a
graph with the same voltage space as G.
Exercise 8.4 Violation of port conditions after connection: In
some practical synthesis procedures, one first synthesizes ‘component’
multiports, which are put together later to construct the desired larger
multiport. It is however necessary to check, after connection, whether
the component multiports continue to satisfy the port conditions they
were originally assumed to satisfy. In Figure 8.2, GE1Q1,GE2Q2 are put
together according to GQP to yield GEP .

i. Check if the port conditions of GE1Q1 ,GE2Q2 are satisfied in GEP .
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Figure 8.2: Testing Port Conditions of Component Multiports

ii. [Narayanan85b] Give a general procedure for testing whether port
conditions of component multiports are satisfied in the combined
multiport.

Exercise 8.5 The decomposition of generalised minors of VE:
Let (VE1P1, · · · ,VEkPk

;VP ) be a k-multiport decomposition of VE . Let
Q ⊆ E and let VQ = VQ1 ⊕ · · · ⊕ VQk

, where

Qj = Q ∩ Ej , j = 1, · · · , k.

Then, VE ↔ VQ has the decomposition ((VE1P1 ↔ VQ1), · · · , (VEkPk
↔

VQk
);VP ). Hence, if T ⊆ S ⊆ E, VE × S · T has the decomposition

(VEjPj
× (Sj ∪Pj) · (Tj ∪Pj)k;VP ) where Sj ≡ S ∩Ej , and Tj ≡ T ∩Ej .

Exercise 8.6 If Pi are separators then Ei are separators: Let
VP have P1, · · · , Pk as separators. Then

(
⊕

j

VEjPj
)↔ VP

has E1, · · · , Ek as separators.

Exercise 8.7 Compatible decomposition - Minors of VE that
can be obtained through minors of VP : Let ((VEjPj

)k;VP ) be
a compatible decomposition of VE . Let I1 ⊆ {1, · · · , k}. Let PI1 ≡
⋃

j∈I1 Pj and EI1 ≡
⋃

j∈I1 Ej. Then
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i. ((
⊕

j∈I1 VEjPj
)j∈I1 ↔ VP · PI1) = VE ·EI1 .

ii. ((
⊕

j∈I1 VEjPj
)j∈I1 ↔ VP × PI1) = VE × EI1 .

iii. ((
⊕

j∈I2 VEjPj
)j∈I2 ↔ VP × PI1 · PI2) = VE ×EI1 · EI2.

where I2 ⊆ I1 ⊆ {1, · · · , k}

iv. In each of the above cases the derived decomposition is also com-
patible.

Exercise 8.8 Counterintuitive behaviour of decomposition of
a multiport: Give an example of the graphic decomposition of a vector
space VEP with ports P such that when the graphs GEjQj

are connected
according to GQP the resulting graph GEP does not have VEP as its
voltage space.

Exercise 8.9 Flattening a hierarchical multiport decomposi-
tion:
Let M≡ (VE1P1, · · · ,VEkPk

;VPQ) be a matched k-multiport decomposi-
tion of the vector space VEQ with ports Q.
Let VEjPj

with ports Pj have a matched mj-multiport decomposition
((VEjtTjt

)mj
;VTjPj

). Show that VEQ has the matched Σmj multiport
decomposition
(· · · ,VEjiTji

, · · · ;VTQ) where VTQ = (
⊕

j VTjPj
)↔ VPQ.

8.3 Analysis through Multiport Decom-

position

Let N be an electrical network on the directed graph G. Let E(G) be
partitioned into subsets E1, · · · , Ek which are mutually decoupled in
the device characteristic of the network. Let (VE1P1 , · · · VEkPk

;VP ) be
a multiport decomposition of Vv(G). We now describe a scheme for
analyzing the network N using the above multiport decomposition.
The procedure is valid for a network with arbitrary devices but we
illustrate our ideas through a linear network since computationally
this is the most important case.
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8.3.1 Rewriting Network Constraints in the Mul-
tiport Form

Let the device characteristic of the network N be

Mj(iEj
− jj) + Nj(vEj

− ej) = 0, j = 1, · · · , k, (8.1)

where iEj
,vEj

denote the current and voltage vectors respectively as-
sociated with the edge subset Ej . Let VE be the voltage space of
the graph G. Let the representative matrix of the space VEjPj

be

(Rj RPj
), j = 1, · · · , k and of the space VP be R̃p. Thus, the KVL

constraints can be written equivalently as far as the variables vE(=
vE1 ⊕ · · · ⊕ vEk

) are concerned, as follows:
[

vEj

vPj

]

−
[

RT
j

RT
Pj

]

vnj
= 0, j = 1, · · · , k (8.2)

vP − R̃T
P ṽnP

= 0. (8.3)

We note that vP = (vP1 ⊕ · · · ⊕ vPk
)

and R̃P = (R̃P1 · · · R̃Pk
).We know by Theorem 8.2.1 that Vi(G) has the

multiport decomposition (V⊥
E1P1
· · · V⊥

EkPk
;V⊥

P ). Hence, the KCE of N
may be written equivalently as far as the variable iE = (iE1⊕· · ·⊕ iEk

)
are concerned as follows:

(

Rj RPj

)iEj

iPj

= 0, j = 1, · · · , k (8.4)

R̃P iP = 0. (8.5)

We note that iP = (iP1 ⊕ · · · ⊕ iPk
).

Equations 8.1, 8.2, 8.3, 8.4 and 8.5 are together equivalent to the con-
straints of the network N as far as the variables iE ,vE are concerned.
For convenience we rearrange these equations according to multiports
and the coupler as follows:

(

Rj RPj

)iEj

iPj

= 0 (8.6)

[

vj

vPj

]

−
[

RT
j

RT
Pj

]

vnj
=

(

0
0

)

. (8.7)

Mj(iEj
− jj) + Nj(vEj

− ej) = 0, j = 1, · · · , k (8.8)

R̃P iP = 0 (8.9)

vP − R̃T
P ṽnP

= 0. (8.10)
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We may regard the equations 8.6 through 8.8 as consisting of the KCL,
KVL and device characteristic constraints of the electrical multiport
networks NEjPj

, j = 1, · · · , k. We remind the reader that informally
an electrical multiport (multiport for short) is a network with some
devices which are norators, specified as ports. It is in this sense that
we use this word when we talk of solution of multiports henceforth.

8.3.2 An Intuitive Procedure for Solution through

Multiports

Let us assume that each of the electrical multiports NEjPj
can be

uniquely solved for arbitrary values of (iPj1
,vPj2

) for some partitions
{Pj1, Pj2} of Pj. The natural way of solving equations 8.6 to 8.10 is as
follows: .

STEP 1: Solve NEjPj
, j = 1, · · · , k

(a) setting all entries of (iPj1
,vPj2

) equal to zero; let (v◦
EjPj

, i◦EjPj
) be

the corresponding solution.
(b) setting the source values ej, jj equal to zero and setting one entry
of (iPj1

,vPj2
) equal to one in turn and the rest to zero. If Pj has kj

elements we would have kj solutions (vt
EjPj

, itEjPj
), t = 1, · · · , kj.

(c) write the general solution (denoting kj by q)

[

vEj

iEj

]

=

[

v◦
Ej

i◦Ej

]

+

[

v1
Ej
· · · vq

Ej

i1Ej
· · · iqEj

]









x1

...
xq









(8.11)

[

vPj

iPj

]

=

[

v◦
Pj

i◦Pj

]

+

[

v1
Pj
· · · vq

Pj

i1Pj
· · · iqPj

]









x1

...
xq









(8.12)

(Here x1, · · · , xq are the entries of iPj1
,vPj2

)). Thus the x variables,
appearing in the RHS of Equation 8.12, also appear as some of the
variables on the left. So the equation can be rewritten involving only
the variables in vPj

and in iPj
. Thus the Equation 8.12, has the form of

a device characteristic on the set of edges Pj. We will call this equation
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the equivalent device characteristic of Pj .

STEP 2: Combine all the equivalent device characteristics of Pj, j =
1, · · ·k (called Dp say) with the KCL and KVL constraints of the cou-
pler given in equation 8.9 and 8.10 and solve the resultant ‘generalized
network’ NP on P.
Let (vf

P , i
f
p) be the solution of this network.

STEP 3: Substitute appropriate entries of (vf
P , i

f
P ) in (iPj1

,vPj2
) (i.e.,

in the x variables) of Equation 8.11.

STOP

Remark: We define a generalized network NP to be a pair (V,D)
where V is a real vector space on P and D is a device characteristic
on P as in Definition 6.2.1. The space V takes the place of Vv(G)
of ordinary network. A solution is a pair of vectors (v(·), i(·)) s.t.
v(t) ∈ V ∀t ∈ ℜ, i(t) ∈ V⊥ ∀ t ∈ ℜ and (v(·), i(·)) ∈ D.

Detailed description of STEPS 1(a) and 1(b)

In subsequent sections we describe a procedure for port minimization
which allows the electrical multiport NEjPj

to have a graph structure
(i.e., VEjPj

can be chosen to be the voltage space of a graph GEjPj
). We

now go into details of steps 1(a) and 1(b) assuming this. (It should be
noted however that graph structure is not as important as the sparsity
that is its consequence.) We also simplify the notation as follows:
S ≡ Ej, T ≡ Pj, T1 ≡ Pj1, T2 ≡ Pj2, Ĝ ≡ GEjPj

, VST ≡ VEjPj
,

ĜS ≡ Ĝ × (S ∪ T1) · S.
Select a reduced incidence matrix Â1 of Ĝ × (S ∪ T1). When port
minimization is done it would follow that in the graph GEjPj

, the edges
Pj would have no circuit or cutset. So we may assume that in the graph

Ĝ × (S ∪ T1) there is a forest t which does not intersect T1. Let Â2 be
an f-cutset matrix with respect to the forest T2 of Ĝ ×((S−t)∪T ). Let
A1,A2 be the matrices obtained from Â1, Â2 by lengthening the rows
padding them with zeros so that they become vectors on S ⊎ T . Let
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us partition the matrix

(

A1

A2

)

as

(

A1S A1T1 0
A2S A2T1 IT2

)

. This matrix

is a representative matrix of Vv(Ĝ) (see Problem 7.9). We can rewrite
the constraints of the electrical multiport NEjPj

as



























0 A1S 0 0 A1T1 0 0 0
−AT

1S 0 I −AT
2S 0 0 0 0

0 M N 0 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 A2S 0 0 A2T1 I 0 0

−AT
1T1

0 0 −AT
2T1

0 0 I 0
0 0 0 −IT2 0 0 0 I



























vn1

iS
vS

vn2

iT1

iT2

vT1

vT2

=

0
0

Mjj + Nej

· · ·
0
0
0

(8.13)
The submatrix A1S is the reduced incidence matrix of ĜS(≡ GEjPj

×
(Ej∪ Pj1)·Ej). When the independent sources jj and ej are active and
the variables iT1 ,vT2(= vn2) are set to zero, we are left with the inner
core of the equations with unknowns vn1 , iS,vS. After these have been
solved v◦

T1
is computed in terms of vn1 and i◦T2

in terms of i◦S using the
fifth and fourth sets of rows respectively. Clearly the network structure
and therefore, the constraint structure corresponds to ĜS (as we have
seen it must in Section 6.3).

Next let us set the sources jj and ej to zero and say the rth entry
of iT1 equal to 1, remaining entries of iT1 equal to zero and all of vT2

equal to zero. This corresponds to current sources leaving the nodes
of ĜS whose value is given by the rth column of A1T1 , i.e., if the pth

entry of this column of A1T1 is β then a current source of value β leaves
the pth node of ĜS (and enters the datum node). So in this case again
we are solving a network with graph ĜS with the source free device
characteristic the same as before but a different source distribution.
Finally let us set the sources jj, ej to zero and say the rth entry of
vT2 equal to value 1, remaining entries of vT2 equal to zero and all
of iT1 equal to zero. Since vn2 = vT2 , this is clearly equivalent to
impressing a voltage source distribution on the branches of
the network given by the jth column of AT

2S. (Suppose the pth entry of
this column is α, then the pth branch will acquire the voltage source of
value α as shown in the Figure 8.3.

In each of the three cases described above vT1 and iT2 are computed
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VP

(AT
1Svn1)p = vp − α

α

Figure 8.3: Voltage Source Distribution when vT1 is Active

after completing the solution of the rest of the variables, i.e., iS, vS

and vn1.

Computational Effort for the Procedure

Let us examine the computational effort required in steps 1, 2 and 3
of the above procedure.
Solving the network NEjPj

in STEP 1 entails the solution of a linear
network on Ej, (| Pj | +1) times for appropriate source distributions
corresponding to (a) the actual source vectors jj , ej and (b) setting one
term at a time of iPj1

,vPj2
to value 1 and the rest as well as source terms

to zero. We expect this step to be the most expensive computationally
because of the size of the Ej’s. In practice the partition {E1, · · · , Ek}
of E can usually be chosen (using heuristics) such that | P | is less
than about 5% of | E | (assuming | E |> 10000). Hence, the effort
involved in STEP 2, i.e., in computing the solution of NP , should be
regarded as negligible in comparison with the effort involved in solving
the NEjPj

repeatedly.

Exercise 8.10 Structure of constraints of electrical multiports
during solution: The method of multiport decomposition gives us the
additional freedom of imposing appropriate structure on the equations
corresponding to NEjPj

(on VEjPj
) by solving in terms of iPj1

,vPj2
.
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i. What is this structure?

ii. What is the best partition (Pj1, Pj2) for the multiport in Figure
8.4. Assume that all the edges are decoupled in the device char-
acteristic.

iii. For a given partition {E1, · · · , Ek} what is the complete range of
structures possible for the electrical multiport constraint equations
through variation of the port sets (through nonsingular transfor-
mation) as well as the partition of ports Pj into Pj1, Pj2.

e1 e2

e3e4
e5

P11

e7

e8 e9

e10

e11

e12

P12e6

Figure 8.4: Graph Of A Multiport

Remark: Let us suppose that we use LU factorisation to solve the
linear equations. When we solve the network NEjPj

for various source
distributions, the coefficient matrix, i.e., the core submatrix composed
of the first three sets of rows and the first three sets of columns of
Equation 8.13, remains the same. So the LU factorisation of this
submatrix has to be done only once. We have to solve an equation
say (LjUj)xj = b for (| Pj | +1) values of b. For each of these values of
b we have to premultiply it by L−1

j and then premultiply the result of
the multiplication by U−1

j . Thus when we say solve NEjPj
, (| Pj | +1)

times we are really speaking of an upper bound of the effort involved.
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8.4 Port Minimization

The discussion in the previous section suggests that port minimization
(see the definition at the beginning of Section 8.2) is useful since

i. the number of times each of the electrical multiports NEjPj
has

to be solved equals (| Pj | +1), and

ii. if the ports are not minimized, they may contain circuits or cut-
sets so that the imposed port conditions cannot be treated as
independent. Our procedure of keeping one entry of (iPj1

,vPj2
)

equal to one and the rest to zero would not be feasible.

However, it would be relevant to network analysis only if it is near-
linear time. In the present section we give a few minimization algo-
rithms. Two of these algorithms are very fast and can be used during
the preprocessing stage of network analysis.

8.4.1 An Algorithm for Port Minimization

We begin with a general algorithm based on vector spaces [Narayanan86a],
[Narayanan87]. The reader might like to review Section 3.4, particu-
larly Subsections 3.4.2 and 3.4.5 and Exercises 3.53 and 3.54.

ALGORITHM 8.1 PORT MINIMIZATION 1
INPUT Representative matrix R̂ of vector space VE on E, a parti-

tion {E1, · · ·Ek} of E.

OUTPUTRepresentative matrices
(

Rj RPj

)

of space

VEjPj
, j = 1, · · · , k and representative matrix R̃P of

space VP , where (VE1P1, · · · ,VEkPk
;VP ) is a k-multiport

decomposition of VE such that |P | is a minimum.
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STEP 1 Let R̂ ≡ (R̂E1

... · · · ...R̂Ek
). Do reversible row transformations

on R̂ so that we get a row equivalent matrix

R ≡



















R11

R22

. . .

Rkk

R̃(k+1)1 R̃(k+1)2 · · · R̃(k+1)k



















,

where the submatrices Rjj are representative matrices of V×
Ej , j = 1, · · · , k and the submatrices other than Rjj and
R̃(k+1)j , j = 1, · · · , k are zero submatrices.
(Note that some of the Rjj may not exist).

STEP 2 Let R(k+1)j be such that

(

Rjj

R(k+1)j

)

is composed of a maximal linearly independent set of rows of

(

Rjj

R̃(k+1)j

)

Let Tj be a maximal linearly independent set of columns of
R(k+1)j. Let R(k+1)Tj

be the full row submatrix of R(k+1)j

corresponding to Tj . Take the representative matrix (Rj RPj
)

of VEjPj
, j = 1, · · ·k to be

(

Rj
... RPj

)

≡




Rjj
... 0

R(k+1)j
... R(k+1)Tj





(Observe that R(k+1)Tj
is a square submatrix of size

r(VE · Ej)− r(VE × Ej)).
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STEP 3 Let R̃(k+1)Tj
be the full row submatrix of R̃(k+1)j correspond-

ing to Tj . Let R̃Pj
≡ R̃(k+1)Tj

, j = 1, · · · , k. Take the repre-

sentative matrix R̃P to be

R̃P ≡ (R̃P1

... · · · ... R̃Pk
).

STOP

Complexity of Algorithm (Port Minimization 1)

In STEP 1 to compute the matrix R for the case where k = 2, we
could proceed as follows. For the submatrix of R̂ composed of columns
E1, and all rows, build the RRE but extend the row operations to all
columns. This takes O(r1r | E |) operations where r1 ≡ r(V · E1), r ≡
r(VE) The result is a matrix of the form shown below:

(

A1

A2

)

=











A11
... A12

· · · ... · · ·
0

... A22











For the matrix A12 compute the RRE but extend the row operations
to all columns. This converts A1 to A′

1 where

A′
1 =

[

A′
a1 0

A′
b1 A′

b2

]

This takes O(r2
1 | E |) steps.

At the end of these steps we have the matrix A′ shown below:

A′ =







A′
a1 0

A′
b1 A′

b2

0 A22







To compute A′ from R̂, as we have shown, takes O(r1r | E |) steps.
Now if k > 2 we proceed as above but the columns of A22 correspond
to E−E1. Also we have to repeat the procedure with A22 recursively.
To break up A22 as above takes O(r2r | E − E1 |) steps where r2 =
r(V×(E−E1) ·E2). Repeating this procedure we see that computation
of R takes
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O(r1r | E | +r2r | E −E1 | + · · ·+ rk−1r | Ek−1 ∪ Ek |) steps, where
rj = r(V × (E − (E1 ∪ · · · ∪ Ej−1)) · Ej). By using Corollary 3.4.2 we
see that
r1 + · · · + rk = r(V). Hence, complexity of the above computation is
O(r2 | E |), where r ≡ r(VE).
In STEP 2 we need to compute the RRE of

(

Rjj

R̃(k+1)j

)

j = 1, · · · , k.

The columns Tj are merely those columns corresponding to the unit
matrix of appropriate order appearing in the second set of rows of the
RRE (corresponding to the rows of R̃(k+1)j). Thus, this computation,
for all j = 1, · · · , k, is O(r2 | E |). In STEP 3, we merely put together
the matrices R̃(k+1)Tj

that are already computed.
Thus, the overall complexity of Algorithm 8.1 is O(r2 | E |),
where r ≡ r(VE).

Remark: Algorithm 8.1 can be easily adapted to the case where VE

is the voltage space of a graph so that it is near linear time and all
the matrices generated are sparse. Further, for this case it produces a
coupler space VP which is voltage space of a graph. The component
spaces VEjPj

are the sum of the voltage spaces of two graphs. Algorithm
8.2 described later produces component spaces which are voltage spaces
of graphs but a coupler space which is not the voltage space of a graph.

Justification of Algorithm (Port Minimization 1)

We now proceed to show that the output of the Algorithm 8.1 is a
minimal k-multiport decomposition of VE . We first show that

VE = (
⊕

j

VEjPj
)↔ VP .

Let fE ∈ VE . We denote fE/Ej by fEj
. Then

fEj

T =
(

λT
j

... λT
k+1

)

[

Rjj

R̃(k+1)j

]

, j = 1, · · · , k.

Observe that by the structure of the representative matrix R, when j
varies, λj would vary but λk+1 would remain fixed.
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Let

fEjPj

T = λT
j (Rjj

... 0Pj
) + (σj

(k+1))
T (R(k+1)j

... R(k+1)Tj
), j = 1, · · · , k,

where (σj
(k+1))

T (R(k+1)j) = λT
(k+1)(R̃(k+1)j). Such a σj

(k+1) must exist

since rows of R(k+1)j span rows of R̃(k+1)j . Observe that

(σj
(k+1))

T (R(k+1)Tj
) = λT

(k+1)(R̃(k+1)Tj
) = λT

(k+1)R̃Pj
.

Hence,

fEjPj

T =
(

λT
j

... λT
(k+1)

)

(

Rjj

R̃(k+1)j

)

⊕ λT
(k+1)R̃Pj

, j = 1, · · · , k.

Let, fP ≡ λT
(k+1)R̃P ,

i.e., fP/Pj = λT
(k+1)R̃Pj

, j = 1, · · · , k.
It is now clear that

⊕

j

fEjPj
− fP = fE ⊕ 0P .

Hence,
fE ∈ ((

⊕

j

VEjPj
)↔ VP )

On the other hand, let

fE ∈ ((
⊕

j

VEjPj
)↔ VP ).

Then there exist fEjPj
, j = 1, · · · , k and fP such that

⊕

j

fEjPj
− fP = fE ⊕ 0P

If fEjPj
= λT

j (Rjj
... 0Pj

) + (σj
(k+1))

T (R(k+1)j
... R(k+1)Tj

)

then fEjPj
/Pj = fP/Pj = (σj

(k+1))
T (R(k+1)Tj

)

But fP = λT
(k+1)(R̃P1

... · · · ...R̃Pk
) for some λ(k+1). It follows that

(σj
(k+1))

T (R(k+1)Tj
) = λT

(k+1)(R̃Pj
), j = 1, · · · , k.
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and since the columns corresponding to Tj span the columns of R̃(k+1)j

as well as R(k+1)j , we must have

(σj
(k+1))

T )(R(k+1)j) = λT
(k+1)(R̃(k+1)j), j = 1, · · · , k.

Thus,

fEjPj
/Ej = λT

j (Rjj) + λT
(k+1)(R̃(k+1)j), j = 1, · · · , k.

Hence,

⊕

j

(fEjPj
/Ej) =

⊕

j

(λT
j (Rjj) + λT

(k+1))(R̃(k+1)j)).

But the RHS of the above equation is clearly a linear combination of
the rows of R and therefore belongs to VE.
Next we need to show that the k-multiport decomposition that is gener-
ated by the algorithm is minimal. It is clear that in the decomposition
generated by the algorithm

| Pj |= r(VE · Ej)− r(VE ×Ej), j = 1, · · · , k.

Lemma 8.4.1 proved below assures us that for every k-multiport de-
composition | Pj | cannot be less than the above RHS. The minimality
of the decomposition follows.

Lemma 8.4.1 Let (VE1P1, · · · ,VEkPk
;VP ) be a k-multiport decomposi-

tion of VE . Then, | Pj |≥ r(VE ·Ej)− r(VE × Ej), j = 1, · · · , k.
Proof : By Corollary 3.4.2

r(VEjPj
) = r(VEjPj

· Ej) + r(VEjPj
× Pj)

= r(VEjPj
× Ej) + r(VEjPj

· Pj).

Thus, r(VEjPj
·Ej)−r(VEjPj

×Ej) = r(VEjPj
·Pj)−r(VEjPj

×Pj) ≤| Pj | .
Next, by Theorem 8.2.2, we know that VEjPj

·Ej ⊇ VE · Ej, and
VEjPj

×Ej ⊆ VE ×Ej . We conclude therefore, that

| Pj |≥ r(VE · Ej)− r(VE × Ej), j = 1, · · · , k.

2



8.4. PORT MINIMIZATION 373

8.4.2 Characterization of Minimal Decomposition

In Theorem 8.4.1, below, we give a number of equivalent conditions for
the minimality of a k-multiport decomposition. A preliminary lemma
is needed for the proof of this theorem.

Lemma 8.4.2 Let (VE1P1, · · · ,VEkPk
;VP ) be a k-multiport decomposi-

tion of VE . Then

r(VE · Ej)− r(VE ×Ej) ≤ r(VP · Pj)− r(VP × Pj), j = 1, · · · , k.

Proof : Let fEj

1, · · · , fEj

r be a set of vectors which together with a
basis of VE × Ej form a basis for VE · Ej. Then there exist vectors
fPj

1, · · · , fPj

r in VP ·Pj s.t. fEj

1⊕ fPj

1, · · · , fEj

r⊕ fPj

r ∈ VEjPj
. Suppose

a nontrivial linear combination fPj
of fPj

1, · · · , fPj

r belongs to VP ×Pj.

Let the same linear combination of fEj

1, · · · , fEj

r yield the vector fEj
.

Then fEj
⊕ fPj

∈ VEjPj
with fEj

∈ VE ·Ej−VE ×Ej and fPj
∈ VP ×Pj .

Let fEP be the vector, on E⊎P , whose restriction to Ej⊎Pj is fEj
⊕fPj

and whose value outside this set is zero. Let fP be the vector, on P ,
whose restriction to Pj is fPj

and whose value outside this set is zero.
Since VE = (⊕jVEjPj

) ↔ VP , it follows that fEj
⊕ 0(E−Ej) belongs to

VE . Hence, fEj
∈ VE ×Ej , which is a contradiction. We conclude that

fPj

1, · · · , fPj

r together with a basis of VP × Pj forms an independent
set. The result follows immediately.

2

Theorem 8.4.1 Let (VE1P1, · · · ,VEkPk
;VP ) be a k-multiport decompo-

sition of VE . Then it is minimal iff the following equivalent conditions
are satisfied.

i. | Pj |= r(VE · Ej)− r(VE ×Ej), j = 1, · · · , k.

ii. r(VEjPj
· Ej) = r(VE · Ej)

r(VEjPj
× Ej) = r(VE × Ej) and

r(VEjPj
× Pj) = r(V⊥

EjPj
× Pj) = 0, j = 1, · · · , k.

iii. r(VEjPj
· Pj) = r(VP · Pj) =| Pj |, j = 1, · · · , k.

r(VEjPj
× Pj) = r(VP × Pj) = 0, j = 1, · · · , k.



374 8. MULTIPORT DECOMPOSITION

iv. If (Rj
... RPj

′), (Bj
...BPj

′) are representative matrices of VEjPj
,V⊥

EjPj

respectively and (RP1

... · · · ...RPk
), (BP1

... · · · ...BPk
) are representa-

tive matrices of VP ,V⊥
P respectively then the matrices RPj

,RPj

′,BPj
,BPj

′

all have independent columns, j = 1, · · · , k.

Proof : By Lemma 8.4.1 it follows that | Pj |≥ r(VE · Ej) - r(VE ×
Ej), j = 1, · · · k for every k-multiport decomposition. But in Algo-
rithm 8.1 we have constructed a k-multiport decomposition which sat-
isfies the above condition with equality. Thus, (VE1P1 , · · · ,VEkPk

;VP )
is a minimal k-multiport decomposition iff Condition (i) is satisfied.

Conditions (i) and (ii) are equivalent: Let Condition (i) hold. We
have

| Pj |≥ r(VEjPj
·Pj)−r(VEjPj

×Pj) = r(VEjPj
·Ej)−r(VEjPj

×Ej). (∗)

But r(VEjPj
·Ej)−r(VEjPj

×Ej) ≥ r(VE ·Ej)−r(VE×Ej) by Theorem
8.2.2. It follows that Condition (i) can hold only if we have equality in
place of the above inequality in Equation (∗).
But | Pj |≥ r(VEjPj

· Pj), r(VEjPj
× Pj) ≥ 0, r(VEjPj

·Ej) ≥ r(VE ·Ej)
and r(VEjPj

× Ej) ≤ r(VE ×Ej).
Hence, equality holds in (∗) only if
| Pj |= r(VEjPj

· Pj), r(VEjPj
× Pj) = 0, r(VEjPj

· Ej) = r(VE · Ej)
and r(VEjPj

× Ej) = r(VE × Ej).
Now | Pj |= r(VEjPj

· Pj) + r(V⊥
EjPj
× Pj). So | Pj |= r(VEjPj

· Pj) iff

r(V⊥
EjPj
× Pj) = 0.

This proves that Condition (i) implies Conditions (ii).
Next let Condition (ii) hold. We have (by Theorem 3.4.3)

| Pj | = r(VEjPj
· Pj) + r(V⊥

EjPj
× Pj)

= r(V⊥
EjPj
· Pj) + r(VEjPj

× Pj)

So we must have, using Condition (ii),

| Pj |= r(VEjPj
· Pj)− r(VEjPj

× Pj)

The RHS equals r(VEjPj
·Ej)− r(VEjPj

×Ej) by Corollary 3.4.2. But
this expression equals r(VE · Ej) − r(VE × Ej). Hence, Condition (i)
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holds.

Conditions (i) and (iii) are equivalent:
Let | Pj |= r(VE · Ej)− r(VE × Ej).
Now | Pj |= r(VEjPj

· Pj) + r(V⊥
EjPj
× Pj).

Hence, by Condition (ii), since r(V⊥
EjPj
×Pj) = 0, we must have | Pj |=

r(VEjPj
· Pj). Further by Lemma 8.4.2

r(VE · Ej)− r(VE × Ej) ≤ r(VP · Pj)− r(VP × Pj), j = 1, · · · , k,

i.e., | Pj |≤ r(VP · Pj)− r(VP × Pj), j = 1, · · · , k.
The only way this inequality can be satisfied is to have | Pj |= r(VP ·Pj)
and r(VP×Pj) = 0. Further, by Condition (ii), r(VEjPj

×Pj) = 0. Thus
Condition (i) implies Condition (iii).
Next let us assume that

r(VEjPj
· Pj) = r(VP · Pj) =| Pj |, j = 1, · · · , k,

r(VEjPj
× Pj) = r(VP × Pj) = 0, j = 1, · · · , k.

By Lemma 8.4.1 we already have

| Pj |≥ r(VE · Ej)− r(VE × Ej), j = 1, · · · , k.

Suppose | Pj |> r(VE ·Ej)− r(VE × Ej) for some j.
So we have r(VEjPj

· Pj) − r(VEjPj
× Pj) > r(VE · Ej) − r(VE × Ej).

Equivalently we have, r(VEjPj
· Ej) − r(VEjPj

× Ej) > r(VE · Ej) −
r(VE × Ej). So by Theorem 8.2.2 there exists
(a) fEj

∈ (VEjPj
· Ej − VE · Ej), or

(b) gEj
∈ (VE × Ej − VEjPj

× Ej).
Case (a): fEj

∈ (VEjPj
· Ej − VE ·Ej).

In this case there exists a vector fEjPj
∈ VEjPj

s.t. fEjPj
/Ej = fEj

.
Since VP ·Pj has full rank there must exist a vector fP ∈ VP such that
fP/Pj = fEjPj

/Pj. Since VEiPi
· Pi has full rank for all i, it follows that

there exist vectors fEiPi
for all i 6= j also s.t. fEiPi

/Pi = fP/Pi. But this
means that

⊕

i fEiPi
/E belongs to VE . But then fEj

∈ VE ·Ej, which is
a contradiction.
Case (b): gEj

∈ (VE × Ej − VEjPj
× Ej).

In this case there exists a vector gE ∈ VE s.t. gE/Ej = gEj
and

gE/(E − Ej) = 0. By the definition of k-multiport decomposition it
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follows that there must exist vectors gEiPi
∈ VEiPi

, i = 1, · · · , k and
gP ∈ VP s.t.
gEiPi

/Ei = gE/Ei, i = 1, · · · , k and gP/Pi = gEiPi
/Pi, i = 1, · · · , k.

But then it follows that gEiPi
/Ei = 0, i 6= j. Hence, gEiPi

/Pi ∈ VEiPi
×

Pi, i 6= j. But r(VEiPi
× Pi) = 0, i = 1, · · · , k. Thus gEiPi

/Pi = 0, i 6= j.
It follows that gP/Pi = 0, i 6= j. Hence, gP/Pj ∈ VP × Pj. But this
latter vector space also has zero rank. We conclude that gP/Pj = 0.
But this means that gEjPj

/Pj = 0, i.e., gEjPj
/Ej(= gEj

) belongs to
VEjPj

×Ej , a contradiction.

Thus, in both cases we arrive at contradictions. We therefore must
have

| Pj |= r(VE · Ej)− r(VE ×Ej) ∀j.
Thus, Conditions (i) and (iii) are equivalent.

Conditions (iii) and (iv) are equivalent:
We observe that since

| Pj | = r(VEjPj
× Pj) + r(V⊥

EjPj
· Pj)

= r(VP × Pj) + r(V⊥
P · Pj)

| Pj | = r(V⊥
EjPj
· Pj) iff r(VEjPj

× Pj) = 0

and | Pj | = r(V⊥
P · Pj) iff r(VP × Pj) = 0

Now Condition (iv) merely states that

| Pj | = r(VEjPj
· Pj) = r(V⊥

EjPj
· Pj)

= r(VP · Pj) = r(V⊥
P · Pj)
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It follows that Condition (iii) is equivalent to Condition (iv).

2

Exercise 8.11 (Strongly) Compatible Decomposition and Min-
imization Starting from a Strongly Compatible Decomposi-
tion: We remind the reader that a k-multiport decomposition (VE1P1, · · · ,VEkPk

;VP )
of VE is compatible iff

VEiPi
· Pi ⊇ VP · Pi, i = 1, · · · , k,

VEiPi
× Pi ⊆ VP × Pi, i = 1, · · · , k.

Let us define a k-multiport decomposition (VE1P1, · · · ,VEkPk
;VP ) of VE

to be strongly compatible iff

VEiPi
· Pi = VP · Pi, i = 1, · · · , k,

VEiPi
× Pi = VP × Pi, i = 1, · · · , k.

Prove the following:

i. ((VEjPj
)k;VP ) is a (strongly) compatible decomposition of VE iff

(
⊕

j

VEjPj
) · P ⊇ VP ((

⊕

j

VEjPj
) · P = VP )

and

(
⊕

j

VEjPj
)× P ⊆ VP ((

⊕

j

VEjPj
)× P =

⊕

j

VP × Pj).

ii. ((VEjPj
)k;VP ) is a compatible k-multiport decomposition of VE

(a) iff ((VEjPj
)k;VE) is a compatible k-multiport decomposition

of VP ;

(b) iff ((VEjPj
)⊥k ;V⊥

P ) is a compatible k-multiport decomposition
of V⊥

E .

iii. ((VEjPj
)k;VP ) is a strongly compatible k-multiport decomposition

of VE iff ((VEjPj
)⊥k ;V⊥

P ) is a strongly compatible k-multiport de-
composition of V⊥

E .
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iv. (∗) Let r(VEiPi
×Pi) > 0, let f̂Pi

be a nonzero vector in VEiPi
×Pi

and let e belong to its support. If (VE1P1 , · · · ,VEkPk
;VP ) is a

strongly compatible k-multiport decomposition of VE, then (VE1P1, · · · ,VEiP ′
i
, · · · ,VEkPk

;VP ′),
where P ′

i = Pi − e, P ′ = P − e,VEiP ′
i

= VEiPi
× (Ei ∪ (Pi − e))

and VP ′ = VP × (P − e),
is also a strongly compatible k-multiport decomposition of VE.

v. (∗) Let r((VEiPi
)⊥ × Pi) > 0, let gPi

be a nonzero vector in
(VEiPi

)⊥ × Pi and let e belong to the support of gPi
. Let Qj ≡

Pj ∀j 6= i, Qi ≡ Pi − e, Q ≡ P − e,VEjQj
≡ VEjPj

∀j 6= i,
VEiQi

≡ VEiPi
· (Ei ∪Qi) and let VQ ≡ VP ·Q.

Then ((VEjQj
)k;VQ) is a strongly compatible k-multiport decom-

position of VE if ((VEjPj
)k;VP ) is strongly compatible.

vi. (∗) The preceding two sections give us an algorithm for construct-
ing a minimal decomposition starting from a strongly compatible
decomposition by successively contracting and deleting suitable
elements. Show that this algorithm terminates in a minimal de-
composition. Show further that every minimal decomposition is
a strongly compatible decomposition.

Exercise 8.12 Natural transformation from VE to VP for mini-
mal decompositions: Let ((VEjPj

)k,VP ) be a minimal decomposition
of VE. Show that

i. If
⊕

j fEj
∈ VE there is a unique

⊕

j fPj
∈ VP s.t. fEj

⊕ fPj
∈

VEjPj
, j = 1, · · · , k, and hence , there is a linear transformation

T : VE → VP s.t. T (
⊕

j fEj
) =

⊕

j fPj
and fEj

+ fPj
∈ VEjPj

, j =
1, · · · , k

ii. if
⊕

j fPj
∈ VP ,then there exist

⊕

j fEj
∈ VE s.t fEj

⊕ fPj
∈

VEjPj
, j = 1, · · · , k. If

⊕

j fEj

1 and
⊕

j fEj

2 correspond in this
manner to

⊕

j fPj
then

fEj

1 − fEj

2 ∈ VEjPj
× Ej = VE ×Ej .

Exercise 8.13 Uniqueness of VP for minimal decompositions:
Let ((VEjPj

)k,VP ), ((VEjPj
)k, V̂P ) both be minimal decompositions of

VE. Then VP = V̂P .

Exercise 8.14 Nonsingular transformation of port variables:
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i. Let (VE1P1 , · · · ,VEkPk
;VP ) be a minimal k-decomposition of VE .

Let (VE1P ′
1
, · · · ,VEkP ′

k
,VP ′) be obtained as follows:

fEj
⊕ fPj

∈ VEjPj
iff fEj

⊕Tj(fPj
) ∈ VEjP ′

j
, j = 1, · · · , k

⊕

j

fPj
∈ VP iff

⊕

j

Tj(fPj
) ∈ VP ′,

where Tj is a nonsingular linear transformation acting on vectors
defined on Pj .
Show that the latter decomposition is also minimal.

ii. Given two minimal k-decompositions of VE show that one can
be obtained from the other by nonsingular linear transformations
acting on vectors on port sets (as in the previous section of this
problem).

Exercise 8.15 Structure of the columns Pj for a minimal de-
composition
Let (VE1P1, · · · ,VEkPk

;VP ) be a minimal k-decomposition of VE.

i. Show that in any representative matrix of VEjPj
,V⊥

EjPj
,VP orV⊥

P

the columns Pj would be linearly independent.

ii. The hybrid rank of a vector space VP is defined to be

minK1⊆P (r(VP ·K1) + r(V⊥
P · (P −K1))).

Show that hybrid rank of VP ≥| Pj | j = 1, · · · , k.

iii. We say VP ′ is obtained from VP by nonsingular transformation
of the Pj if

fP1 ⊕ · · · ⊕ fPK
∈ VP ⇔ T1(fP1)⊕ · · · ⊕Tk(fPK

) ∈ VP ′,

where fP ′
j
≡ Tj(fPj

).

Show that | Pj |≤ hybrid rank of VP ′, if VP ′ is obtained by non-
singular transformation of the Pj.
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8.4.3 Complexity of Algorithm (Port minimiza-
tion 1) for Graphic Spaces and Sparsity of

the Output Matrices

We have proposed multiport decomposition as a prelude to network
analysis. It is necessary therefore that the algorithm for decomposition
be near linear time in the size of the set E and that the matrices
generated be sparse. However, this can be hoped for, and is essential,
only in the case where VE is the voltage or current space of a graph.
Algorithm 8.1 is intended to work on an arbitrary vector space. While
it is polynomial time (O(r2 | E |) as shown earlier), it needs to be
shown that it is acceptably fast when VE is the voltage space of a
graph. The same holds for sparsity. In general we can say little about
sparsity of the matrices generated but with voltage spaces of graphs
one can hope to do better. Below, first we show that the algorithm is
near linear time for voltage spaces of graphs. From the discussion it
would also be clear that the matrices involved are quite sparse.

Adaptation of Algorithm (Port minimization 1) to graphic
spaces

Let R be a reduced incidence matrix of a graph G.
i. The matrix Rjj can be taken to be the reduced incidence matrix
for G × Ej , j = 1, · · · , k. Building all the G × Ej takes O(k | E |) time
(in fact this can be shown to take O(k|V |+ |E|) time) and then all the
Rjj takes an additional
O(| E |) time).
ii. To build the matrix (R̃(k+1)1 : · · · : R̃(k+1)k), we could first
select a forest t of the graph

⊕

j G×Ej. This would be a disjoint union
of forests tj of G × Ej , j = 1, · · · , k. Construct a reduced incidence
matrix of the graph G × (E − t). This takes O(| E |) time. Adjoin a
zero submatrix corresponding to the set t. This would be the desired
matrix (R̃(k+1)1 : · · · : R̃(k+1)k) since the rows of this matrix along with
the rows of the reduced incidence matrix of

⊕

j G ×Ej form a basis for
Vv(G) (see Problem 7.9).
Building (R̃(k+1)1 : · · · : R̃(k+1)k) takes O(| E |) time.
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iii. The representative matrix (Rj : RPj
) of VEjPj

is





Rjj
... 0

R(k+1)j
... R(k+1)Tj





where R(k+1)Tj
is a nonsingular submatrix of R(k+1)j of full rank. We

obtain the rows of (R(k+1)j : R(k+1)Tj
) as follows:

Observe that the matrix (R̃(k+1)1 : · · · : R̃(k+1)k) is the reduced inci-
dence matrix of the graph G ′ obtained by adding self loops t to the
graph G × (E− t). Let (R′

(k+1)1 : · · · : R′
(k+1)k) be the incidence matrix

of G′. Then, R′
(k+1)j is the incidence matrix of G ′ ·Ej. Thus, R(k+1)j can

be taken to be the reduced incidence matrix of this graph. Let Tj be a
forest of this graph. The columns corresponding to this set form a max-
imal linearly independent subset of columns of R(k+1)j . Let this subma-
trix of R(k+1)j be denoted by R(k+1)Tj

. The matrix (R(k+1)j : R(k+1)Tj
)

is the reduced incidence matrix of the graph G ′EjPj
obtained from G′ ·Ej

by adding a forest Pj that is a copy of Tj to G′ · Ej.
Building R(k+1)j , j = 1, · · · , k takes O(| E |) time overall. Building the
forests Tj and R(k+1)Tj

, j = 1, · · · , k takes O(| E |) time overall.

iv. Let R̃(k+1)Tj
be the submatrix of R̃(k+1)j corresponding to the

columns Tj . Select R̃Pj
≡ R̃(k+1)Tj

.

Building R̃Pj
, j = 1, · · · , k, clearly takes O(| E |) time overall.

Thus, the Algorithm (Port minimization 1) takes O(k | E |)
time.
We now briefly speak of the sparsity of the above matrices. We saw
in the above discussion that the matrices Rjj, R(k+1)j ,R(k+1)Tj

are
reduced incidence matrices of appropriate graphs. Thus, the matrix

(

Rj
... RPj

)

=





Rjj
... 0

R(k+1)j
... R(k+1)Tj





has at most four nonzero entries per column in Rj and atmost two
nonzero entries per column in RPj

. The matrix R̃P is the reduced
incidence matrix of a graph. So it has atmost two nonzero entries per
column.
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8.4.4 *Minimal Decomposition of Graphic Vector
Spaces to make Component Spaces Graphic

We saw in the previous subsection that Algorithm (Port minimization
1) permits us to minimally decompose the voltage space of a graph in
such a way that the coupler space is graphic. For such a vector space, it
is not clear whether minimal multiport decomposition is possible, with
both component spaces and the coupler, graphic. However, in this
subsection we give an algorithm which makes the component spaces
graphic while losing control over the coupler space. In the interest of
brevity we only sketch the justification.

ALGORITHM 8.2 (PORT MINIMIZATION 2)
INPUT A connected directed graph G with a partition {E1, · · · , Ek}

of E ≡ E(G). The space VE to be decomposed is Vv(G).

OUTPUTGraphs GEjP ′
j
, j = 1, · · · , k and a representative matrix R̃P ′

of space VP ′ s.t. (VE1P ′
1
, · · · ,VEkP ′

k
;VP ′) is a minimal k-

multiport decomposition of VE, where VEjP ′
j
≡ Vv(GEjP ′

j
).

STEP 1 Construct a reduced incidence matrix R̂ ≡ (R̂E1

... · · · ...R̂Ek
)

of G. This is a representative matrix for VE.

STEP 2 For j=1 to k, do the following:
Construct a forest f j of G . Ej extending f j to a forest f of
G.
Extend f − f j to a forest f−j of G . (E − Ej).
Let Pj

′ ≡ f−j − (f − f j). Contract (f − f j) in G and delete
E − Ej − (f−j − (f − f j)).
The resulting graph is on Ej ∪ Pj

′ and will be denoted by
GEjP ′

j
.

Take VEjP ′
j

to be the voltage space of GEjP ′
j
.

A reduced incidence matrix of GEjP ′
j

would be a representa-
tive matrix of VEjP ′

j
.
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STEP 3 Let tj be a forest of G × Ej , j = 1, · · · , k. Let t ≡ ⋃

tj. Con-
struct the graph G × (E − t). Add branches of t as self loops
to this graph. Call the resulting graph G ′. Select a forest
Tj for G′ · Ej, j = 1, · · · , k. Let T ≡ ⋃

Tj . Let GT ≡ G′ · T.
Let (R̃T1

... · · · ...R̃Tk
) be a reduced incidence matrix of GT . In

the graph GEjP ′
j

contract tj and delete Ej ∪ Pj
′ − (Tj ∪ tj).

The resulting graph is on Tj ∪ Pj
′ and is denoted by G′TjP ′

j
.

Let (I
... QTjP ′

j
) be an f-cutset matrix of GTjP ′

j
with respect to

the forest Tj . Let R̃P ′
j
≡ (R̃Tj

)(QTjP ′
j
), j = 1, · · · , k and let

R̃P ′ ≡ (R̃P ′
1

... · · · ... R̃P ′
k
).

Output R̃P ′ as the representative matrix of VP ′.

STOP.

Justification of Algorithm (Port minimization 2)

We confine ourselves to a statement of the main steps in the justifica-
tion, omitting details, in the interest of brevity. We need the following
elementary lemma. This essentially states that if we apply the same
nonsingular transformation on the ‘Pj part’ of vectors in VEjPj

and VP

the resulting spaces would still constitute a k-multiport decomposition
of VE .

Lemma 8.4.3 Let (VE1P1, · · · ,VEkPk
;VP ) be a k-multiport decompo-

sition of VE . Let (Rj
...RPj

) be a representative matrix of VEjPj
, j =

1, · · · , k and let (R̃P1

... · · · ...R̃Pk
) be a representative matrix of VP . Let

Kj be a square nonsingular submatrix of size | Pj | . Let (Rj
...RP ′

j
) be

a representative matrix of VEjP ′
j
, j = 1, · · · , k and let (R̃P ′

1

... · · · ...R̃P ′
k
)

be a representative matrix of VP ′,
where RP ′

j
= RPj

(Kj) and R̃P ′
j
= R̃Pj

(Kj)

Then, (VE1P ′
1
, · · · ,VEkP ′

k
;VP ′) is a k-multiport decomposition of VE .

We omit the routine proof. It is essentially the same as that of Exercise
7.18.
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We indicate below how the k-multiport decomposition output by
Algorithm 8.2 (Port minimization 2) is related to that output by the
adaptation of Algorithm 8.1 (Port minimization 1) (hereinafter called
‘Modified algorithm (Port minimization 1)’) given in Subsection 8.4.3,
through nonsingular transformation of the Pj part of vectors in VEjPj

and VP . This would justify Algorithm (Port minimization 2). Since
| P ′ |=| P |, it would also follow that the latter algorithm is minimal.

i. The graph Gj ≡ GEjP ′
j
· Ej of Algorithm (Port minimization 2) is

2-isomorphic to G . Ej . This is because in the graph G . (Ej∪(f−f j)),
(f − f j) is a separator. Thus, contraction or deletion of (f − f j) will
result in 2-isomorphic graphs. It is also easily seen that

GEjP ′
j
× Ej = G × Ej

ii. Since the graph GEjP ′
j

in the same algorithm is built so that

GEjP ′
j
· Ej = G . Ej

GEjPj
×Ej = G × Ej ,

it follows that,
VEjP ′

j
·Ej = VE · Ej .

VEjP ′
j
× Ej = VE ×Ej

iii. In the Modified Algorithm (Port minimization 1)

VEjPj
· Ej = VE · Ej

VEjPj
×Ej = VE × Ej .

Now | Pj |=| P ′
j | . Hence, a representative matrix of VEjP ′

j
can be

obtained from that of VEjPj
by post multiplying columns Pj by a non-

singular matrix Kj.
By Lemma 8.4.3, if

R̃P ′
j
= (R̃Pj

)Kj, j = 1, · · · , k,

and VP ′ has the representative matrix (R̃P ′
1

... · · · ...R̃P ′
k
), then (VE1P ′

1
, · · · ,VEkP ′

k
;VP ′)

is a k-multiport decomposition of VE .
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iv. We need to show that our computation of Kj is correct.
The graph G′ of the Modified Algorithm (Port minimization 1) and
the Algorithm (Port minimization 2) are identical. In Algorithm (Port
minimization 2) let G′EjP ′

j
denote the graph obtained from GEjP ′

j
by

contracting the forest tj of GEjP ′
j
× Ej (∼= G × Ej) and adding it as

self loops. The graph G ′EjP ′
j

is related to G′EjPj
of Modified Algorithm

(Port minimization 1) as follows: In G ′EjP ′
j
, the set of edges Pj

′ form

a forest. If we delete this forest and replace it by a copy Pj of the
forest Tj of G′EjP ′

j
we get G′EjPj

. Let G′EjP ′
j
Pj

denote the graph obtained

from G′EjP ′
j

by adding Pj but not deleting Pj
′. If (Arj ArP ′

j
ArPj

) is a

reduced incidence matrix of this graph, there is no loss of generality in

assuming that (Arj ArPj
) is the same as the matrix (R(k+1)j

... R(k+1)Tj
)

of Modified Algorithm (Port minimization 1). Further (Arj
... ArP ′

j
) is

the reduced incidence matrix of the graph G ′EjP ′
j
. The matrix Kj is

defined by ArP ′
j

= (ArPj
)Kj. Now ArPj

is identical to the submatrix
ArTj

of Arj corresponding to Tj. Thus, to compute Kj, we need only
consider

the matrix (ArTj

...ArP ′
j
). This is the reduced incidence matrix of the

graph G′TjP ′
j

≡ G′EjP ′
j
· (Tj ∪P ′

j). The column dependence structure of this matrix is

identical to

that of the f-cutset matrix (I
...QTjP ′

j
) of this graph with respect to Tj.

Hence,

(ArTj
)QTjP ′

j
= ArP ′

j
, i.e.,Kj = QTjP ′

j
.

Complexity of Algorithm (Port minimization 2)

Computation of Rjj, j = 1, · · · , k is as in Modified Algorithm (Port
minimization 1). This takes O(k | E |) time overall. Computation of

(Rj
...RP ′

j
) (the representative matrix of VEjP ′

j
), j = 1, · · · , k is O(k |

E |) since the graph operations to reach GEjP ′
j
, j = 1, · · · , k, are each

O(| E |). We need to examine more carefully the following:
(a) Construction of the matrices Kj. This involves building an f-cutset
matrix for G′TjP ′

j
. This is O(Σ | Pj

′ |2)(= O(Σ | Pj |2)).
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(b) Post multiplication of R̃Pj
by Kj , j = 1, · · · , k. Now R̃Pj

is

a reduced incidence matrix. Multiplying Kj by a row of R̃Pj
(cor-

responding to a vertex vi) is equivalent to adding some rows of Kj

and subtracting some other rows. If qi is the degree of vi (the num-
ber of nonzero entries in the row), then the number of operations is
qi(| Pj |). Thus, the product can be computed in (Σqi) | Pj | steps.
But Σqi < 2 | Pj | since R̃Pj

is a reduced incidence matrix. Thus
the product takes O(| Pj |2) steps and the overall multiplication takes
O(Σ | Pj |2) steps.

Thus Algorithm (Port minimization 2) has time complexity O(k |
E | + | Pj |2). It is slower than Algorithm (Port minimization 1) but
would still be acceptable if | P |≪| E |, which is often the case.

8.5 *Multiport Decomposition for Network

Reduction

We saw in Subsection 8.3.2 that multiport decomposition can be used
to solve a network N by
first solving electrical multiports in terms of suitable port variables,
in the process obtaining constraints on port variables
next using these constraints as the device characteristic in another
network NP based on the coupler space, and
finally using the solution of the latter network to obtain the port vari-
ables and thence the solution of N .
Thus, if the network N is on graph G, (VE1P1 , · · · VEkPk

;VP ) is a k-
multiport decomposition of VE ≡ Vv(G), and if E1, · · ·Ek are decou-
pled in the device characteristic of N , then we can define a reduced
generalized network Np ≡ (VP ,Dp) with respect to {E1, · · · , Ek} that
accurately mirrors the relationship between E1, · · · , Ek in the network
N . We will consider an application of this idea informally.We assume
the reader to be familiar with the nature of solutions of linear constant
coefficient differential equations in terms of eigenvalues of the A ma-
trix of the state equations.(For standard material on eigenvalues see
[Hoffman+Kunze72]).
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We begin with some preliminary definitions.
Let N be a network on graph G with device characteristic D. Let
{E1, · · · , Ek} be a partition of E(G) such that the Ei are decoupled in
D.
We say a solution (v, i) of N is trapped relative to Ej iff v(t)/Ej ∈
Vv(G)× Ej and i(t)/Ej ∈ Vi(G)×Ej .
A solution that is not trapped for any of E1, · · · , Ek is said to be
interactive with respect to {E1, · · · , Ek}.
Network reduction by multiport decomposition can reveal information
about interactive solutions in a compact manner. Indeed, a solution
of the reduced network NP will determine a solution of the original
network uniquely modulo a trapped solution.

Trapped solutions in an RLMC network

In a source free RLMC network (i.e., a network with resistors, inductors
with coupling and capacitors) when the RLMC matrices are positive
definite, if initial conditions were specified, then the solution is unique.
In the discussion that follows we assume that the initial conditions
are unknown and then study the nature of the trapped solution.
Consider an RLMC network N on graph G. Let E(G) be partitioned
into ER, EM , EC corresponding to resistors, coupled inductors and ca-
pacitors. If the resistor matrix R is positive definite and a solution
(v,i) of N is trapped relative to ER then

vR(t) ≡ v(t)/ER = 0 and iR(t) ≡ i(t)/ER = 0.

For, < vR(t), iR(t) >= 0 since spaces Vv(G) × ER,Vi(G) × ER are
orthogonal. On the other hand, since vR(t) = RiR(t) we must have

< vR(t), iR(t) >= (iR(t))T (R)iR(t).

The RHS is zero only if iR(t) = 0 since R is positive definite. Thus
iR(t) = 0 and vR(t) = 0.
If the capacitor matrix C is positive definite, then we can show that,
solution (v, i) is trapped with respect to EC iff iC = 0 and vC(t) ∈
(Vv(G)) × EC (= Vv(G × EC)), and further is constant in time. An
example of this is where two capacitors are in series with nonzero
initial voltages which are equal and opposite. The proof is similar to
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the resistor case discussed above. But here we work with v̇C , iC and
show that v̇C(t) = 0, iC(t) = 0 using the fact that C is a positive
definite matrix.
If the mutual inductor matrix L is positive definite then solution (v,i)
is trapped with respect to EL iff vL = 0 and iL(t) ∈ (Vi(G)) × EL =
Vi(G . EL) and further is constant in time. An example of this is where
inductors form a circuit and their initial currents circulate within the
loop. To prove this fact we work with vL, i̇L and show that vL(t) = 0
and i̇l(t) = 0, using the fact that L is a positive definite matrix and
using arguments similar to the resistive case.

State equations for a linear network

We will now show how to use minimal multiport decomposition to
write state equations for a circuit with capacitors, mutual inductors
and nondynamic devices. A byproduct of our method is that we would
get a reduced generalized network of the same kind whose solution
mimics the solution of the original network except for the trapped so-
lution corresponding to zero eigen values.
Let N be a linear network on graph G. Let E ≡ E(G) be partitioned
into EC , EL, ER. Let the voltage and current vectors associated with
these edges be denoted by vC , iC ,vL, iL,vR, iR. Let the device charac-
teristic of N be given by

(C)v̇C − iC = 0

(L)i̇L − vL = 0

M(vR − eR) + N(iR − jR) = 0.

where C,L are symmetric positive definite matrices.
We could use any algorithm for minimal 3-multiport decomposition
of the space VE ≡ Vv(G). But for convenience we use the notation

of Algorithm (Port minimization 1). Let (Rj
...RPj

), (Bj
...BPj

) be rep-

resentative matrices of VEjPj
,V⊥

EjPj
, j = C,L,R. Let (R̃PC

...R̃PL

...R̃PR
)

be the representative matrix of the space VP . The capacitor multiport
equations are

(

RC
... RPC

)iC

iPC

= 0 (8.14)
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Cv̇C − iC = 0 (8.15)
(

vC

vPC

)

−
(

RT
C

RT
PC

)

vnC
= 0 (8.16)

These may be rewritten to obtain the relationship between iPC
,vPC

and vC

RPC
iPC

= −RC C v̇C (8.17)

= −RC C RT
Cv̇nC

(8.18)

vPC
= RT

PC
vnC

(8.19)

v̇PC
= −RT

PC
(RC C RT

C)−1 RPC
iPC

(8.20)

= −(CP )−1 iPC
, say. (8.21)

Since the decomposition is minimal, rows of RC are linearly indepen-
dent and so are columns of RPC

. It follows that since C is symmetric
positive definite so are (RC C RT

C)−1 and RT
PC

(RC C RT
C)−1 RPC

.
We call the inverse of this latter matrix CP .
The inductor multiport equations are

(

BL
... BPL

)vL

vPL

= 0 (8.22)

Li̇L − vL = 0 (8.23)
(

iL
iPL

)

−
(

BT
L

BT
PL

)

ilL = 0 (8.24)

This may be rewritten to obtain the relationship between iPL
,vPL

and
iL

BPL
vPL

= −BL (L) i̇L (8.25)

= −BL (L) BT
L i̇lL (8.26)

iPL
= BT

PL
ilL (8.27)

i̇PL
= −BT

PL
(BL L BT

L)−1 BPL
vPL

(8.28)

= −(LP )−1 vPL
say. (8.29)

Since the decomposition is minimal, rows of BL are linearly indepen-
dent and so are columns of BPL

. It follows that since L is symmetric
positive definite so are (BL L BT

L)−1 and BT
PL

(BL L BT
L)−1 BPL

.
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We call the inverse of this latter matrix LP .
The resistor multiport equations are

(

RR
... RPR

)iR

iPR

= 0 (8.30)

M(vR − eR) + N(iR − jR) = 0 (8.31)
(

vR

vPR

)

−
(

RT
R

RT
PR

)

vnR
= 0. (8.32)

Let us suppose that these latter can be equivalently written as

(

vR

iR

)

=

(

Kvv Kvi

Kiv Kii

)vPR

iPR

+

(

svR

siR

)

. (8.33)

MP (vPR
− ePR

) + NP (iPR
− jPR

) = 0. (8.34)

(We will now work with a generalized network as defined in page 363-
the network NP is defined in Subsection 8.3.2). Consider a network
N ′

p ≡ (VP ,D′
p) where P = PC ⊎ PL ⊎ PR

and the device characteristic D′
p is defined by

CP v̇′
PC

= i′PC

LP i̇′PL
= v′

PL

−MP (v′
PR

+ ePR
) + NP (i′PR

− jPR
) = 0.

We take v′
PC
≡ −vPC

, v′
PR
≡ −vPR

, v′
PL
≡ −vPL

, and i′P ≡ iP . This
network differs from NP in that the voltages of N ′

P are negatives of
the voltages of NP but the currents in both the networks are the same.
We use N ′

P instead of NP since the former is of the same kind as N .
Let the state equations for this network be written as in Section 5.7.
Let these equations be

[

v̇′
PC

i̇′PL

]

=

[

A′
CC A′

CL

A′
LC ALL

]

v′
PC

i′PL

+

[

B′
CE B′

CJ
B′

LE B′
LJ

]

eR

jR
(8.35)

Let the output equations be

[yP ] =
[

C′
PC

C′
PL

] v′
PC

i′PL

+
[

D′E D′J
] eR

jR
(8.36)
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where yp includes variables such as iPC
,vPL

, iPR
,vPR

. Here we have
assumed that v′

PC
, i′PL

do not become dependent in the network N ′
P

when the resistive device characteristic alone is used (and PC , PL are
treated as voltage sources and current sources respectively). This is
done only for notational convenience.

N ′
P contains the dynamics of N

In the discussion to follow we relate the solutions of NP and N without
assuming that the initial conditions are specified.
We will show that Equation 8.35 contains a description of the ‘essential
dynamics’ of the network N . We have, from Equations 8.16 and 8.24

[

RT
C

RT
PC

]

vnC
=

[

vC

vPC

]

[

BT
L

BT
PL

]

ilL =

[

iL
iPL

]

.

Note that knowledge of vnC
(t) and ilL(t) gives us complete knowledge

of the dynamics of the network.
Decompose vnC

(t) into two orthogonal components v1
nC

(t) and v2
nC

(t),
where
RT

PC
(v1

nC
(t)) = 0 and v2

nC
(t) is spanned by the columns of RPC

. Simi-

larly decompose ilL(t) into two orthogonal components i1lL(t) and i2lL(t)

where BT
PL

(i1lL(t)) = 0 and i2lL(t) is spanned by columns of BPL
.

We will show that v2
nC

(t), i2lL(t) are uniquely determinable from vPC
(t),

iPL
(t). The ambiguity in obtaining vnC

(t), ilL(t) from the latter vari-
ables is contained in v1

nC
(t) and i1lL(t).

We now show that v1
nC

(t) and i1lL(t) correspond to trapped constant
solutions. We prove only the v1

nC
case. The other case is similar (dual).

Let us split vC into v1
C and v2

C where v1
C(t) = (RT

C)v1
nC

(t). We then
have

[

v1
C(t)

0

]

=

[

RT
C

RT
PC

]

v1
nC

(t).

So v1
C(t) and therefore,v̇1

C(t), also belong to VECPC
× EC , i.e., to

VE × EC (using Theorem 8.4.1 since the multiport decomposition is
minimal).Hence, < iC(t), v̇

1
C(t) > = 0, i.e., < Cv̇1

C(t), v̇1
C(t) >= 0.
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The matrix C is positive definite. Hence, v̇1
C(t) = 0 and therefore,

i1C(t) = 0. Thus, v1
C(t) is a constant and (v1

C ⊕0L⊕0R, 0C ⊕0L⊕0R)
is a trapped solution. Similarly one can show that iL

1(t) is constant
(where iL

1(t) = BT
Li1lL) and (0C ⊕ 0L ⊕ 0R, 0C ⊕ iL ⊕ 0R) is a trapped

solution.
To obtain v2

nC
(t) from vPC

(t) we proceed as follows:

v2
nC

(t) = (RPC
)k(t) say.

Hence, vPC
(t) = (RPC

TRPC
)k(t). Now RPC

has linearly independent
columns, since by the minimality of the decomposition, r(VECPC

·
PC) =| PC | . Hence,

v2
nC

(t) = RPC
(RPC

TRPC
)−1vPC

(t).

Similarly one can show that

i2lL(t) = BPL
(BT

PL
BPL

)−1iPL
(t).

The trapped solutions corresponding to v1
nC
, i1lL are constant solutions

of linear constant coefficient differential equations which can exist in
the absence of inputs. They are of the form keot and therefore, corre-
spond to zero eigen values.
For completeness we show how to obtain the overall state equations.
We have

v̇nC
(t) = v̇2

nC
(t) = RPC

(RPC

TRPC
)−1v̇PC

(t)

i̇lL(t) = i̇2lL(t) = BPL
(BT

PL
BPL

)−1i̇PL
(t)

(v̇1
nC

(t), i̇1lL(t) are zero since v̇1
C(t), i̇1L(t) are zero, v1

C(t) = (RT
C)v1

nC
(t),

i1L(t) = (BT
L)i1lL(t), and the coefficient matrices RT

C ,B
T
L have full col-

umn rank).

Now in Equation 8.35, v̇′
PC
, i̇′PL

have been expressed as time invariant
linear functions of v′

PC
, i′PL

, eR and jR. Now since vPC
= −v′

PC
, iPL

=

i′PL
we can express v̇nC

, i̇lL as time invariant linear functions of vPC
, iPL

, eR

and jR. But vPC
= RPC

TvnC
and iPL

= BT
PL

ilL. Thus, v̇nC
, i̇lL are ex-

pressed as time invariant linear functions of vnC
, ilL, eR and jR. These

would be the required state equations.
The number of state variables that we have obtained equals the number
of entries in vnC

and ilL . Clearly this equals r(VECPC
)+r(V⊥

ELPL
). Now,
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r(VECPC
) = r(VECPC

· EC) = r(VE · EC) since the multiport decompo-
sition is minimal (Theorem 8.4.1). But r(VE · EC) = r(Vv(G . EC)) =
r(G . EC). Similarly,

r(V⊥
ELPL

) = r(V⊥
E · EL)

= r(Vi(G × EL))

= ν(G ×EL).

If in the network N ′
P , when PC , PL are treated as voltage sources and

current sources, the voltages in v′
PC

and currents in i′PL
are indepen-

dent, then it is clear from the above discussion on writing state equa-
tions in terms of the variables vnC

, ilL , using equation 8.35, that vnC
, ilL

can have their initial conditions arbitrary. Thus, r(G . EC)+ν(G×EL)
is the least number of state variables for this network.
If N has the device characteristic of ER of the form

−G(vR − eR) + (iR − jR) = 0,

where G is positive definite, then one can show that N ′
P has the device

characteristic of PR of the form

−GP (vPR
− ePR

) + (iPR
− jPR

) = 0,

where GP is positive definite. In this case, N ′
P has no constant solution

and therefore no zero eigen values (see Problem 8.7). Thus, all the
zero eigen values of the network N are concentrated in the trapped
solutions. For the above case, the number of zero eigen values of N

= r(VE ×EC) + r(V⊥
E × EL)

= r(G × EC) + ν(G . EL).

8.6 Problems

Problem 8.1 Given two decompositions to get a decomposi-
tion of one of the couplers: Let ((VEjPj

)k,VP ), ((VEjQj
)k;VQ) be

decompositions of VE and further let the former be compatible. Then,
((VQjPj

)k;VQ), where
VQjPj

≡ (VEjPj
↔ VEjQj

), j = 1, · · · , k, is a compatible decomposition
of VP .
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Problem 8.2 In a compatible decomposition the generalized
hybrid rank of VE and VP are the same: The generalized hybrid
rank of a vector space VT relative to a partition {T1, · · · , Tk}, of T
equals minV ′

T
{d(VT ,V ′

T )}, where V ′
T is a vector space on T which has

Tj , j = 1, · · · , k as separators. We remind the reader that

d(VT ,V ′
T ) = r(V + V ′

T )− r(VT ∩ V ′
T ).

i. Let VE be a vector space on E. Let E be partitioned into {E1, · · · , Ek}.
Let V̂E have Ej , j = 1, · · · , k, as separators and further be such
that

d(VE, V̂E) ≤ d(VE,V ′
E)

whenever V ′
E has the Ej as separators. Then

⊕

j

(VE ·Ej) ⊇ V̂E ⊇ (
⊕

VE × Ej).

ii. Let (VE1P1 , · · · ,VEkPk
;VP ) be a compatible decomposition of VE.

Then (the generalized hybrid rank of VE relative to {E1, · · · , Ek})
equals (the generalized hybrid rank of VP relative to {P1, · · · , Pk}).

Problem 8.3 Let (GE1P1 , · · · ,GEkPk
;GP ) be a strongly compatible

multiport decomposition of G, i.e.,
(VE1P1 , · · · ,VEkPk

;VP ), where VEjPj
≡ Vv(GEjPj

), j = 1, · · · , k, VP ≡
Vv(GP ), is a strongly compatible decomposition of VE ≡ Vv(G).
Justify the following algorithm for building a minimal k-multiport de-
composition starting from the above decomposition.

ALGORITHM 8.3 (Port minimization 3)
STEP 1 Construct graphs GEjPj

× Pj, j = 1, · · · , k. Let
tj , j = 1, · · · , k respectively be forests of these graphs.

STEP 2 Construct graphs GEjPj
·Pj, j = 1, · · · , k. Let Lj , j = 1, · · · , k

respectively be the coforests of these graphs such that
Lj ∩ tj = ∅, j = 1, · · · , k.
Let Qj = Pj − (tj ∪ Lj), Q =

⋃

Qj ,
GEjQj

= GEjPj
× (Ej ∪ (Pj − tj)) · (Ej ∪ (Pj − tj − Lj))

GQ = GP × (P − ⋃ tj) · (P −
⋃

tj −
⋃

Lj)
(GE1Q1 , · · · ,GEkQk

;GQ) is a minimal k-multiport decomposi-
tion of G.

STOP
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Problem 8.4 Fast algorithm for minimal graphic 2-decomposition:
Let G be a graph on E, and let E = E1 ⊎ E2. Let P1 be a copy of E2,
and P2, a copy of E1. Let GE1E2 ≡ G and let GE1P1 ,GE2P2 ,GP1P2 all be
copies of G.

i. Show that (GE1P1,GE2P2 ;GP1P2) is a strongly compatible decompo-
sition of G..

ii. Use the algorithm of Problem 8.3 to obtain a minimal graphic
2-decomposition of G.

Problem 8.5 *NAL −NBK method and 2-decomposition:
Show that the NAL − NBK method (see Section 6.4) can be regarded
as a special case of network analysis through decomposition into two
multiports.

Problem 8.6 *Formal description of network reduction: Let
N ≡ (G,D) be a network. Let E ≡ E(G) be partitioned into {E1, · · · , Ek}
such that the Ei are decoupled in the device characteristic, i.e., D =
DE1 × · · · × DEk

. Let ((VEjPj
)k;VP ) be a minimal k-multiport decom-

position of VE.
Let multiport networks NEjPj

≡ (VEjPj
,DEj

× δPj
), j = 1, · · · , k.

Define D′
Pj
, j = 1, · · · , k as follows:

(v′
Pj
, i′Pj

) ∈ D′
Pj

iff there exist vectors vEj
, iEj

s.t. (vEj
⊕ (−v′

Pj
), iEj

⊕
i′Pj

) is a solution of NEjPj
.

Let N ′
P ≡ (VP ,D′

P1
× · · ·D′

Pk
)

i. Let (v, i) be a solution of N . Then there is a unique solution
(v′

P , i
′
P ) of N ′

P which corresponds to (v, i) s.t.

(v/Ej ⊕ (−v′
P/Pj), i/Ej ⊕ i′P/Pj)

is a solution of NEjPj
, j = 1, · · · , k.

ii. The reverse process is not quite unique: Given a solu-
tion (v′

P , i
′
P ) of N ′

P , a corresponding solution in the above sense
is unique within a pair (v̂, î) where v̂ ∈ ⊕

j VE × Ej and î ∈
⊕

j V⊥
E ×Ej .

iii. Let ((VEjQj
)k,VQ) be a compatible (not necessarily minimal) k-

multiport decomposition of VE. Define N ′
Q and relate its solutions

to those of N ′
P .
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Problem 8.7 *Minimal reduced network for an RLC network
has no zero eigen values: Show that the network N ′

P defined in
Section 8.5 has

i. no nonzero trapped solution if the sources have zero values.

ii. all eigenvalues nonzero.

Problem 8.8 *If the decomposition is compatible VE ,VP have
essentially the same polymatroid: Let (VEjPj

)k;VP ) be a k-multiport
compatible decomposition of VE, i.e.,

VEjPj
· Pj ⊇ VP · Pj and

VEjPj
× Pj ⊆ VP × Pj, j = 1, · · · , k

Define the following set functions on subsets of {1, 2 · · ·k}

ρE(I) = r(VE · (
⋃

i∈I

Ei))

ωE(I) =
∑

i∈I

r(VEiPi
×Ei)

ρP (I) = r(VP · (
⋃

i∈I

Pi))

ωP (I) =
∑

i∈I

r(VEiPi
× Pi).

Show that

i. ρE , ρP are polymatroid rank functions while ωE, ωP are modular
functions.

ii. ρE − ωE = ρP − ωP

Problem 8.9 *Is the generalized minor operation matroidal?:
Let VEP ↔ VP = VE . Show that

i. if the vector spaces are over GF2 thenM(VE) can be determined
from M(VEP ),M(VP );

ii. in general, knowledge ofM(VEP ),M(VP ) would not be sufficient
for us to determine M(VE).
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8.7 Solutions of Exercises

E 8.1:
i. We denote E1 by E. By Theorem 8.2.2 we have

VEP1 · E ⊇ VE′ · E

VEP1 ×E ⊆ VE′ × E

Thus, r(VEP1 · E)− r(VEP1 ×E) ≥ r(VE′ · E)− r(VE′ ×E)
But the LHS = r(VEP1 · P1)− r(VEP1 × P1) ≤| P1 | .
Hence, | P1 |≥ r(VE′ · E)− r(VE′ ×E).
Next suppose the graph G ′ is obtained by adding a copy t′ of a tree
t of G again to G. We have r(VE′ · E) − r(VE′ × E) = r(G). So we
cannot do with number of ports less than this number. On the other
hand this number of ports is adequate. For, from these port voltages
all voltages of the graph are uniquely determined.
More formally, use of Algorithm (Port minimisation 2) will allow us
to have a multiport decomposition of Vv(G′) in which VEP1 is the volt-
age space of a graph GEP1 with P1 containing no circuits or cutsets.
Hence a copy of a tree of G is always sufficient to act as ports in VEP1.
The structure of the tree does not matter by Lemma 8.4.3.

ii. We require r(G) ports in general. For each component we could
add a tree of ports on the set of nodes of the component.

iii. If (VE1P1, · · · VEkPk
;VP ) is a multiport decomposition of Vv(G′)

then we know that (V⊥
E1P1

, · · · V⊥
EkPk

;V⊥
P ) is a multiport decomposition

of Vi(G′). So the arguments of the previous sections of this problem
are adequate to prove that a copy of a forest of G would be adequate
as ports in general.

E 8.2:
i. Consider the equation

(
E1

A1
...

E−E1

A2 )x1
x2

= 0
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By row transformation we can transform these into an equivalent form







A11 0
A21 A22

0 A32







x1

x2
= 0 (8.37)

where A11,A32 are representative matrices of V × E1,V × (E − E1),
respectively.
The rows of A21,A22 are linearly independent and in number equal to
r(V . E1)−r(V ×E1). If A11x̂1 6= 0, then S2(x̂1) = ∅. So let us assume
that A11x̂1 = 0. Now we can rewrite Equation 8.37 as shown below as
far as x̂1,x2 are concerned.

(

A21 A22

0 A32

)

x̂1

x2
= 0. (8.38)

The affine space S2(x̂1) is determined by A21x̂1. So if p1 ≡ A21x̂1 we
do not require a vector of number of entries greater than that of p1 to
determine S2(x̂1).
One cannot do with a vector in place of p1 with less number of entries
provided that vector is obtained from x1 by a linear transformation.To
prove this we proceed as follows: The rows of A21 are linearly indepen-
dent. So for each p1 there exists a corresponding x̂1. Also for different
values of p1 the spaces S2 would be disjoint. Given a value of x2,p1

is determined uniquely. Suppose there is a matrix M s.t. y = Mx1

determines S2(x1) uniquely. Since S2(x1) determines A21(x1) uniquely
A21(x1) = f(y) for some function f(.). It is easily seen that f(.) must
be a linear transformation. If Vp,Vy represent the range spaces of A21

and M then we have an onto linear transformation f : (Vy) → Vp.
Thus dim(Vy) ≥ dim(VP ) as required.

ii. For (B1
...B2)

z1
z2

= 0 the minimum number of entries of a vector
to determine the affine space of vectors z2 knowing z1 can be similarly
shown to be

r(V⊥ ·E1)− r(V⊥ ×E1) = r(V . E1)− r(V ×E1).

iii. If we decompose VE into (VE1P1,VE2P2 ;VP ) where E2 = E−E1
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then the minimum size of P2 equals (r(V . E1)− r(V ×E1)). P2 repre-
sents E1 as far as E2 is concerned, in the space VE2P2. If x ∈ VE and
we are given x/E1 then the range of possible values x/E2 can take can
be determined as follows:
First find all possible vectors x/E1⊕xP1 in VE1P1 . If the decomposition
is minimal there would be only one such vector. Let us for simplicity
assume the decomposition is minimal.
Next find the vector xP1 ⊕ xP2 in VP1P2 .
Finally find the collection of vectors xE2⊕xP2 in VE2P2 .The restriction
of this collection to E2 gives the range of poissible values that x/E2

can take.

E 8.3:

C1

R1

C2 C3

L1 L3

L2

R2

R3

PR1
PC1

PR2

PC
2

PL1

PL2

R1 R3

R2

PR1 PR2

C1
C2

C

PC1 PC2

L1

L2
L3

PL1

PL2

3

Figure 8.5: A Graph and its Multiport Decomposition

The decomposition shown in Figure 8.5 provides such an example.

E 8.4:
i. In GE1Q1 of Figure 8.2, the currents entering e1, e4 are always nega-
tives of each other. However, in GEP , because of the circulating current
in {e4, e5, e6, e7}, this condition is not necessarily satisfied.

ii. The port conditions of GE1Q1,GE2Q2 would be satisfied in GEP iff
the current vectors that can exist in {e1, · · · , e10} in GEP can also exist
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in GE1Q1 ,GE2Q2. Equivalently, iff

Vi(GEP ×E) ⊆ ⊕iVi(GEiQi
× Ei).

The easiest way to check this is to see if each row of the incidence matrix
of the graph on the right can be obtained by adding appropriate rows
of the incidence matrix on the left.
More generally, one can check if the rows of a circuit matrix of GEP×E
are orthogonal to an incidence matrix of ⊕GEiQi

×Ei.

Remark: In practice we need to know whether the port conditions of
electrical multiports NE1P1,NE2P2 with devices present are satisfied
in the multiport NEQ with devices present. However, the above
procedure is still useful. This is because the characteristics of electrical
devices, except those of short circuits and open circuits, cannot be
constructed exactly. So one performs the above test after fusing the end
points of short circuit branches and deleting open circuit branches. If
the test succeeds then of course the connection is permissible. If it fails,
the probability of the possible current solution vectors ofNE1P1⊕NE2P2

(restricted to E) lying in the set of possible current solution vectors
of NEQ (restricted to E) can be seen to be zero. This can be shown
by using the fact that if one picks a vector randomly out of a vector
space, the probability of its lying in a given proper subspace is zero.

E 8.5: Let VEP ≡
⊕

j VEjPj
. Then VE = VEP ↔ VP .

Hence, (VE ↔ VQ) = (VEP ↔ VP )↔ VQ.
Since P ∩Q = ∅, the RHS can be written as (VEP ↔ VQ)↔ VP .
Now VQ = VQ1 ⊕ · · · ⊕ VQk

, where Qj ⊆ Ej , j = 1, · · · , k.
It is then easily seen that

(
⊕

j

VEjPj
)↔ (

⊕

j

VQj
) =

⊕

j

(VEjPj
↔ VQj

).

The result follows.
Next we have

VE × S · T = VE ↔ VQ,

where Q = E − T and VQ has the representative matrix [
E−S
0

S−T

I ]. It
is clear that VQ is the direct sum of spaces VQj

whose representative

matrices are given by [
Ej−Sj

0
Sj−Tj

I ]. Hence

VEjPj
↔ VQj

= VEjPj
× (Sj ∪ Pj) · (Tj ∪ Pj).
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Since we have shown above that

VE ↔ VQ = (
⊕

j

(VEjPj
↔ VQj

))↔ VP ,

the required result about decomposition of a minor follows.

E 8.6: Let
⊕

j fEj
,
⊕

j fEj

′ ∈ VE .We will show that for any i, (
⊕

j 6=i fEj
)⊕

fEj

′ ∈ VE. This is clearly equivalent to showing that VE =
⊕

(VE ·Ej).
We have, (

⊕

j VEjPj
) ↔ VP = VE. So there exist

⊕

j fPj
,
⊕

j fPj

′ ∈ VP

s.t. fEj
⊕ fPj

∈ VEjPj
and fEj

′ ⊕ fPj

′ ∈ VEjPj
, j = 1, · · · , k.

Now
⊕

j 6=i fPj
⊕ fPi

′ ∈ VP , since VP =
⊕

j(VP · Pj).
Further, fEj

⊕ fPj
∈ VEjPj

, j 6= i
and f ′Ei

⊕ fPi

′ ∈ VEiPi
.

Hence, (
⊕

j 6=i fEj
)⊕ f

′

Ei
∈ VE .

E 8.7: Let Ik ≡ {1, · · · , k}.
i. Let

⊕

j∈I1 fEj
be a vector in the LHS. Then there exists a vector

(
⊕

j∈I1

fEj
)⊕ (

⊕

j∈I1

fPj
)

in
⊕

j∈I1 VEjPj
and a vector

⊕

j∈I1 fPj
in VP · PI1. Now

⊕

j∈I1

fPj
∈ (VP · PI1) ⊆ ((

⊕

j∈Ik

VEjPj
) · PI1).

Hence there exists a vector

⊕

j∈Ik

fPj
∈ VP ⊆ ((

⊕

j∈Ik

VEjPj
) · P )

We would then have

⊕

j∈I2

fPj
∈ (VP · PI2) ⊆ ((

⊕

j∈I2

VEjPj
) · PI2)

where I2 = {1, · · · , k} − I1
Hence there exists a vector

((
⊕

j∈I2

fEj
)⊕ (

⊕

j∈I2

fPj
)) ∈

⊕

j∈I2

VEjPj
.
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Thus there exists a vector

((
⊕

j∈Ik

fEj
)⊕ (

⊕

j∈Ik

fPj
)) ∈

⊕

j∈Ik

VEjPj
.

It is therefore clear that (
⊕

j∈Ik
fEj

) ∈ VE and hence, (
⊕

j∈I1 fEj
) ∈

VE · EI1. Thus LHS ⊆ RHS. The reverse containment is easier to see.

ii. Using compatibility we have, ((
⊕

j∈I1 V⊥
EjPj

) ↔ V⊥
P · PI1) =

V⊥
E · EI1 .

Hence, ((
⊕

j∈I1 V⊥
EjPj

)⊥ ↔ (V⊥
P · PI1)

⊥ = (V⊥
E · EI1)

⊥

This is clearly equivalent to the required result.

iii. This is a direct consequence of the previous two sections of
this problem.

iv. We verify the compatibility condition only for the first section
of this problem. We have

VEjPj
· Pj ⊇ VP · Pj = (VP · PI1) · Pj, j ∈ I1

VEjPj
× Pj ⊆ VP × Pj ⊆ (VP · PI1)× Pj, j ∈ I1

E 8.8: Figure 8.2 shows component multiports GE1Q1,GE2Q2 and a
port connection diagram GQP such that when the multiports are con-
nected according to the latter the graph GEP shown in the figure re-
sults. But the voltage space of this graph GEP cannot be decomposed
into the voltage spaces of the given component multiports and the
port connection diagram. The reason is that KVE corresponding to
{e4, e5, e6, e7} in GEP is not indirectly imposed through the component
multiports and the port connection diagram. Equivalently, if VEP =
(Vv(GE1Q1)⊕Vv(GE2Q2))↔ Vv(GQP ), it is clear that VEP 6= Vv(GEP ).

E 8.9: We have

VEQ = (
⊕

j

(
⊕

i

VEjiTji
↔ VTjPj

))↔ VPQ (∗)

We first prove the following

Lemma 8.7.1

(VS1T1 ↔ VT1P1)⊕ (VS2T2 ↔ VT2P2) = (VS1T1 ⊕VS2T2)↔ (VT1P1 ⊕VT2P2)

where S1, S2, T1, T2, P1, P2 are all pairwise disjoint.
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Proof : : A vector gSP ∈ L.H.S. iff there exist

gS1
⊕ gT1

, gT1
⊕ gP1

, gS2
⊕ gT2

, gT2
⊕ gP2

belonging respectively to VS1T1 ,VT1P1 ,VS2T2 ,VT2P2 s.t.

gSP = gS1
⊕ gS2

⊕ gP1
⊕ gP2

i.e., iff there exist vectors

gS1
⊕gT1

⊕gS2
⊕gT2

∈ VS1T1⊕VS2T2 , gT1
⊕gP1

⊕gT2
⊕gP2

∈ VT1P1⊕VT2P2

s.t. gSP = gS1
⊕ gS2

⊕ gP1
⊕ gP2

. The result follows.

2

Applying this lemma to the RHS of (∗) we get

VEQ = ((
⊕

j,i

VEjiTji
)↔ (

⊕

j

VTjPj
))↔ VPQ

It is easy to see in general that

(VET ↔ VTP )↔ VPQ = VET ↔ (VTP ↔ VPQ)

where E, T, P,Q are pairwise disjoint.
Thus,

VEQ = (
⊕

j,i

VEjiTji
)↔ ((

⊕

j

VTjPj
)↔ VPQ).

E 8.10:
i. As discussed in Section 8.3, when we solve a multiport in
terms of iPj1

, vPj2
the essential structure of the equations corresponds

to VEjPj
× (Ej ∪ Pj1) · Ej. If VEjPj

is the voltage space of a graph
GEjPj

then this structure corresponds to GEjPj
× (Ej ∪ Pj1) · Ej . If

we have freedom in choosing Pj1, Pj2 we should choose that partition
which gives us a large number of separators, preferably of uniform size,
for the space VEjPj

× (Ej ∪ Pj1) · Ej . If the separators Ej1, · · · , Ejt of
this space are decoupled in the device characteristic we would have an
advantage during analysis.

ii. It can be observed, in Figure 8.4, that if P11 were shorted and
P12 opened we get two separators. The other three options: opening
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both, shorting both, opening P11 and shorting P12 do not give this
advantage. Therefore, while solving for NE1P1 we should solve in terms
of vP11 , iP12.

iii. Shorting all the port edges gives us the structure VEjPj
× Ej.

Deleting all port edges gives us the structure VEjPj
· Ej.

Now if we perform nonsingular transformations on the columns Pj of
representative matrices of VEjPj

and the same transformations also on
columns Pj of representative matrices of VP , it can be seen that we
would get a new multiport decomposition of VE . For any vector space
V ′

E , s.t.
⊕

j

(VEjPj
×Ej) ⊆ V ′

E ⊆
⊕

j

(VEjPj
· Ej)

we can find a VP ′ s.t.

⊕

j

VEjP ′
j
↔ VP ′ = V ′

E

(using Exercise 7.5). By column transformation if required we can
convert the representative matrix of VP ′ to the form [0 I]. We may,
therefore, without loss of generality assume that the representative
matrix has this form. But this implies that the generalized minor
operation is equivalent to an ordinary minor operation. Further, since
VEP ′ has the form

⊕

j VEjP ′
j

this would correspond to performing a
minor operation on each VEjP ′

j
.

Thus, for any V ′
E = ⊕jV ′

Ej
s.t.

⊕

j

(V ′
EjPj
×Ej) ⊆ V ′

E ⊆
⊕

j

(VEjPj
· Ej)

We can find a set of transformed ports P ′ as well as a partition of each
Pj

′ s.t.
V ′

E =
⊕

j

V ′
Ej

=
⊕

j

(VEjP ′
j
× (Ej ∪ Pj

′) · Ej)

If we use minimal multiport decomposition we must have

VEjPj
× Ej = VE × Ej

and VEjPj
· Ej = VE · Ej

and the range of possible structures lies between VE ×Ej and VE ·Ej.
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E 8.11:
i. We will consider only the compatible case since the strongly
compatible case is similar. We need to show that ((VEjPj

)k;VP ) is a
compatible decomposition iff

⊕

j

VEjPj
· P ⊇ VP (∗)

⊕

j

VEjPj
× P ⊆ VP . (∗∗)

Only if part is obvious. To prove the if part we observe that

(
⊕

j

VEjPj
) · P =

⊕

j

(VEjPj
· Pj).

So the condition (∗) implies that VEjPj
·Pj ⊇ VP ·Pj ∀j. The condition

(∗∗) implies
⊕

j

(V⊥
EjPj

) · P ⊇ V⊥
P

from which we conclude

V⊥
EjPj
· Pj ⊇ V⊥

P · Pj ∀j

and therefore, VEjPj
× Pj ⊆ VP × Pj ∀j.

ii. (a) By the previous section of this problem we have that
compatibility is equivalent to the conditions (∗) and (∗∗). But by
Theorem 7.6.1 in Problem 7.5 these conditions are equivalent to

VP = (
⊕

j

VEjPj
)↔ VE

along with

VEjPj
·Ej ⊇ VE · Ej ∀j (

√
)

and

VEjPj
× Ej ⊆ VE × Ej ∀j (

√√
)

Now conditions (
√

) and (
√√

) are equivalent to the compatibility of
the decomposition ((VEjPj

)k,VE) of VP .
The ‘strongly compatible’ case is proved similarly.
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ii. (b) By the Implicit Duality Theorem ((VEjPj
)k;VP ) is a de-

composition of VE iff ((V⊥
EjPj

)k;V⊥
P ) is a decomposition of V⊥

E . Com-

patibility of the decomposition of V⊥
E follows since VEjPj

· Pj ⊇ VP · Pj

is equivalent to V⊥
EjPj
× Pj ⊆ V⊥

P × Pj and VEjPj
× Pj ⊆ VP × Pj is

equivalent to V⊥
EjPj
· Pj ⊇ V⊥

P · Pj.

iii.The equivalence of the strong compatibility of the decompositions
((VEjPj

)k;VP ) and ((V⊥
EjPj

)k;V⊥
P ) is proved similar to (ii) (b) above.

iv. We have VE ≡ (
⊕

j VEjPj
)↔ VP . Let V ′

E ≡ (
⊕

j VEjP ′
j
)↔ VP ′,

f̂Pi
∈ VEiPi

× Pi.
We will first show that VE = V ′

E .
Let fE ∈ VE . Then fE =

⊕

fEj
and there exists fPj

s.t. fP ≡
⊕

j fPj
∈

VP and fEj
⊕fPj

∈ VEjPj
for each j. By strong compatibility, VEiPi

×Pi =

VP × Pi. Hence OP−Pi
+ f̂Pi

belongs to VP . Let f̂P denote this vector.

Suppose fPi
(e) = λf̂Pi

(e). Then, fP −λf̂P ∈ VP . Let fP ′ ≡ fP −λf̂P/P
′.

Since (fP − λf̂P )(e) = 0, it is clear that fP ′ ∈ VP ′. We know that
f̂Pi
∈ VEiPi

×Pi. Thus, fEi
⊕(fPi

−λf̂Pi
) ∈ VEiPi

. But (fPi
−λf̂Pi

)(e) = 0.
So fEi

⊕ (fP ′/P ′
i ) ∈ VEiP ′

i
. Noting that Pj = P ′

j ∀j 6= i, it is clear that
⊕

j fEj
∈ V ′

E. So VE ⊆ V ′
E . The reverse containment is easier to see.

Next we need to show that the decomposition ((VEjP ′
j
)k;VP ),where

P ′
j = Pj ∀j 6= i, is strongly compatible.

A vector fP ′
i
∈ VEiP ′

i
× P ′

i iff fP ′
i
∈ VEiPi

× (Ei ⊎ P ′
i ) × P ′

i (= VEiPi
×

Pi × P ′
i ), i.e., iff 0e + fP ′

i
∈ VEiPi

× Pi.
Now by strong compatibility of ((VEjPj

)k;VP ) we have VEiPi
× Pi =

VP × Pi.
Hence, fP ′

i
∈ VEiP ′

i
×P ′

i iff 0e +fP ′
i
∈ VP×Pi, i.e., iff fP ′

i
∈ VP ×Pi×P ′

i ,
i.e., iff fP ′

i
∈ VP × P ′ × P ′

i , i.e., iff fP ′
i
∈ VP ′ × P ′

i .
Next, a vector fP ′

i
∈ VEiP ′

i
·P ′

i iff fP ′
i
∈ VEiPi

×(Ei⊎P ′
i )·P ′

i , i.e., iff fP ′
i
∈

VEiPi
·Pi×P ′

i , i.e., iff fP ′
i
∈ VP ·Pi×P ′

i (using strong compatibility), i.e.,
iff fP ′

i
∈ VP × P ′ · P ′

i (= VP ′ · P ′
i ). This proves the strong compatibility

of ((VEjP ′
j
)k;VP ).

v. It is clear by the previous section of this problem that ((V⊥
EjQj

)k;V⊥
Q )

is a strongly compatible decomposition of V⊥
E . (Observe that V⊥

EiQi
=

V⊥
EiPi
× (Ei∪Qi)). But by an earlier section of the present problem this

is equivalent to ((VEjQj
)k,VQ) being a strongly compatible decompo-

sition of VE .
vi. The algorithm terminates in a strongly compatible decomposition
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((VEjTj
)k;VT ), for which VEjTj

× Tj = VT × Tj = 0 and V⊥
EjTj
× Tj =

V⊥
T × Tj = 0. By Theorem 8.4.1 it follows that the decomposition is

minimal.
By the same theorem it also follows that every minimal decomposition
is strongly compatible.
E 8.12:
i. Suppose there exist distinct vectors

⊕

j fPj
and

⊕

j fPj

′ in VP

s.t. fEj
⊕ fPj

as well as fEj
⊕ fPj

′ belong to VEjPj
, j = 1, · · · , k. But

then fPj
− fPj

′ ∈ VEjPj
× Pj, j = 1, · · · , k. For minimal decompositions

VEjPj
× Pj has zero dimension (Theorem 8.4.1). Hence,

⊕

j

fPj

′ =
⊕

j

fPj
.

The linearity of this correspondence is clear since, if for each j,

fEj

1⊕fPj

1 ∈ VEjPj
, fEj

2⊕fPj

2 ∈ VEjPj
,
⊕

j

fPj

1 ∈ VP ,
⊕

j

fPj

2 ∈ VP , then

(λ1fEj

1 + λ2fEj

2)⊕ (λ1fPj

1 + λ2fPj

2) ∈ VEjPj
.

and
λ1

⊕

j

fPj

1 + λ2

⊕

j

fPj

2

belongs to VP . Thus, if
⊕

j fEj

1 corresponds to fPj

1 and
⊕

j fEj

2 cor-

respond to
⊕

j fPj

2 it follows that
⊕

j(λ1fEj

1 + λ2fEj

2) corresponds to
⊕

j(λ1fPj

1 + λ2fPj

2).

ii. We use the following facts:

VEjPj
· Pj = VP · Pj, and

VEjPj
× Ej = VE × Ej.

(Theorem 8.2.2 and Theorem 8.4.1).
The existence of a vector

⊕

j fEj
∈ VE corresponding to

⊕

j fPj
is clear

from the fact that VEjPj
· Pj ⊇ VP · Pj , j = 1, · · · , k. If both

⊕

j fEj

1

and
⊕

j fEj

2 of VE correspond to
⊕

j fPj
, it is clear that

(fEj

1 − fEj

2)⊕ 0Pj
∈ VEjPj

, j = 1, · · · , k

fEj

1 − fEj

2 ∈ VEjPj
×Ej = VE × Ej, j = 1, · · · , k.
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E 8.13: We use the results in Exercise 8.11. We see that both the
decompositions being minimal are also compatible decompositions of
VE . But then ((VEjPj

)k;VE) is a decomposition of both VP and V̂P . We

conclude that VP = V̂P .

E 8.14:
i. It is easily seen that fEj

⊕ fPj
∈ VEjPj

, j = 1, · · · , k
and

⊕

fPj
∈ V iff fEj

⊕ fP ′
j
∈ VEjP ′

j
and

⊕

fP ′j ∈ VP ′ , where

fP ′
j
≡ Tj(fPj

).

This proves that ((VEjP ′j)k,VP ′) is a decomposition of VE. Minimality
follows from the fact that | P ′ |=| P | .
ii. We have

VEjPj
· Ej = VEjP ′j · Ej

VEjPj
× Ej = VEjP ′j ×Ej

Hence, we have a representative matrix for VEjPj
of the form

[

Rjj 0
R2j Q2j

]

and for VEjP ′j of the form

[

Rjj 0
R2j Q′

2j

]

,

where

(

Rjj

R2j

)

is a representative matrix for VEjPj
· Ej and Rjj is a

representative matrix for VEjPj
× Ej . Now by the minimality of the

decomposition (using Theorem 8.4.1) we have

| Pj |=| Pj
′ | = r(VEjPj

·Ej)− r(VEjPj
× Ej)

= r(VEjPj
· Pj) = r(VEjP ′j · Pj

′)

Thus, Q2j,Q
′
2j are representative matrices of VEjPj

·Pj,VEjP ′j ·Pj
′ and

are square and nonsingular.
Clearly, there is a matrix Tj s.t. Q2jTj = Q′

2j . Now let ((V̂EjP ′j)k, V̂P ′)
be the decomposition derived from ((VEjPj

)k;VP ) by using the nonsin-
gular transformation Tj on fPj

as in the previous section of the present

problem. Thus, ((V̂EjP ′j)k; V̂P ′) is a minimal k-decomposition of VE.
We claim that the decomposition is identical to ((VEjP ′j)k;VP ′). For

it is clear that V̂EjP ′j = VEjP ′j by construction. By Exercise 8.13,
since the decompositions are minimal and therefore compatible we can
conclude that V̂P ′ = VP ′.

E 8.15:
i. This is condition (iv) of Theorem 8.4.1.
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ii. Since the set of columns Pj are linearly independent in a
representative matrix of VP it is clear that Pj ∩K1 would be linearly
independent in a representative matrix of VP ·K1. Similarly, since Pj

are linearly independent in a representative matrix of V⊥
P , Pj∩(P−K1)

would be linearly independent in a representative matrix of V⊥
P · (P −

K1). Thus,
| Pj |≤ r(VP ·K1) + r(V⊥

P · (P −K1))

for any K1 ⊆ P.
The result follows.

iii. Let VP ,V⊥
P have the representative matrices (R1

..., · · · ...Rk),

(B1
... · · · ... Bk) and let VP ′,V⊥

P ′ have the representative matrices

(R′
1

..., · · · ...R′
k), (B′

1

... · · · ... B′
k), where the columns of Rj ,Bj cor-

respond to Pj and those of R′
j ,B

′
j correspond to P ′

j.
Then it is clear that

R′
j = RjTj

for an appropriate nonsingular matrix Tj , j = 1, · · · , k.
Since (R′)(B′)T = 0 = (R)(B)T we must have

B′
j = Bj(Tj

T )−1.

It is clear therefore, that the columns Pj
′ are linearly independent

in the representative matrices of V ′
P , as well as V⊥

P ′. Hence, | Pj
′ |≤

hybrid rank of VP ′ by the previous section of the present problem. But
| Pj

′ |=| Pj | . So the result follows.

8.8 Solutions of Problems

P 8.1: Let
V̂P ≡ (

⊕

j

(VEjPj
↔ VEjQj

))↔ VQ.

Now f̂Pj
⊕ fQj

belongs to VEjPj
↔ VEjQj

iff there exists fEj
s.t.

fEj
⊕ f̂Pj

∈ VEjPj
and fEj

⊕ fQj
∈ VEjQj

.

Next
⊕

j f̂Pj
∈ V̂P iff there exist fEj

, j = 1, · · · , k, s.t.

fEj
⊕ f̂Pj

∈ VEjPj
, fEj
⊕ fQj

∈ VEjQj
and

⊕

j

fQj
∈ VQ.
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Now fEj
, j = 1, · · · , k, satisfy the above condition only if

⊕

j fEj
∈ VE

since ((VEjQj
)k;VQ) is a decomposition of VE . Hence, this happens only

if there exists fPj
, j = 1, · · · , k, s.t. fEj

⊕ fPj
∈ VEjPj

, j = 1, · · · , k, and
⊕

j fPj
∈ VP , since ((VEjPj

)k;VP ) is a decomposition of VE . But such
fPj

must satisfy,

fPj
− f̂Pj

∈ VEjPj
× Pj , j = 1, · · · , k.

Since the decomposition ((VEjPj
)k;VP ) is compatible this means that

fPj
− f̂Pj

∈ VP × Pj .

We conclude that
⊕

j f̂Pj
∈ VP . Hence, V̂P ⊆ VP .

On the other hand let
⊕

j fPj
∈ VP . Since the decomposition is com-

patible,
VP · Pj ⊆ VEjPj

· Pj, j = 1, · · · , k.
Hence, there exist fEj

, j = 1, · · · , k, s.t.

fEj
⊕ fPj

∈ VEjPj
, j = 1, · · · , k.

But this means
⊕

j fEj
∈ VE. Hence there exist fQj

, j = 1, · · · , k, s.t.
fEj
⊕ fQj

∈ VEjQj
, j = 1, · · · , k and

⊕

j fQj
∈ VQ.

Thus,
fPj
⊕ fQj

∈ VEjPj
↔ VEjQj

, j = 1, · · · , k
and

⊕

j

fQj
∈ VQ.

Hence,
⊕

j fPj
∈ V̂P , as required.

P 8.2:
i. Suppose V̂E ∩ (

⊕

j(VE ×Ej)) ⊂
⊕

j(VE × Ej).

Consider the space V ′
E ≡ V̂E + (

⊕

j(VE × Ej)). Since both V̂E and
⊕

j(VE × Ej) have the Ej as separators, V ′
E also will have the Ej as

separators. But
⊕

j

(VE ×Ej) ⊆ VE .

Hence, VE + V ′
E = VE + V̂E. But VE ∩ V ′

E ⊃ VE ∩ V̂E .
Hence, d(VE,V ′

E) < d(VE, V̂E), a contradiction.
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Hence, V̂E ⊇
⊕

j(VE × Ej). We can similarly prove that

V̂E ⊆
⊕

j

(VE · Ej).

(The result also follows by using duality, i.e., working with V⊥ in place
of V and using the facts that

(V · Ej)
⊥ = V⊥ × Ej , (V + V ′)⊥ = V⊥ ∩ (V ′)⊥

and d(V,V ′) = d(V⊥, (V ′)⊥).

ii. Let V ′
E be a vector space on E which has the Ej as separators.

Let V ′
P ≡ (

⊕

j VEjPj
) ↔ V ′

E . We know by Exercise 8.6 that V ′
P has

Pj, j = 1, · · · , k as separators. The decomposition ((VEjPj
)k;VP ) is

compatible and therefore by Exercise 8.11

VP = (
⊕

j

(VEjPj
)k)↔ VE.

Hence by Problem 7.8

d(VE ,V ′
E) = d(VP ,V ′

P ).

Thus, the hybrid rank of VE relative to {E1, · · · , Ek} is not less than
the hybrid rank of VP relative to {P1, · · · , Pk}.
Next let V̂P have the Pj as separators. Then the vector space

V̂E ≡ ((
⊕

VEjPj
)↔ V̂P

has the Ej as separators. Again d(VP , V̂P ) = d(VE, V̂E). So the hybrid
rank of VP relative to {P1, · · · , Pk} is not less than the hybrid rank of
VE relative to {E1, · · · , Ek}. This proves the required result.

P 8.3: We need to use the ideas of Exercise 8.11.
Let a1, · · · , ap be the edges of tj and let e1, · · · , eq be the edges of Lj . Let
Tj(⊇ tj), j = 1, · · · , k be forests of GEjPj

respectively. We observe that
whenever 1 ≤ r ≤ p, the f-cutsets of Tj with respect to ar+1, · · · , ap in
the graph GEjPj

are contained in Pj and remain as f-cutsets even after
a1, · · · , ar are contracted. The corresponding vectors (appropriately
padded with zeros whenever required) belong to the voltage spaces of
GEjPj

× Pj ,GEjPj
as well as that of the graph obtained from GEjPj

by
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contracting a1, · · · , ar.
Since VEjPj

×Pj = VP ×Pj , (strong compatibility) these vectors (again
appropriately padded with zeros) belong to Vv(GP ) as well as the volt-
age spaces of the graph obtained from GP by contracting a1, · · · , ar.
Thus, the branches a1, · · · , ar may be successively contracted (i.e.,tj
may be contracted) in GEjPj

as well as GP leaving the remaining com-
ponents of the decomposition as they were earlier.
The voltage spaces of the resulting graphs would continue to be a
strongly compatible decomposition of Vv(G). This process may be re-
peated for each of the components of the decomposition since when
tj , j 6= i, is contracted the f-cutsets of ti remain as they were before
the contraction.
At the end of this process involving all the j we would have the strongly
compatible decomposition, ((GEjTj

)k,GT ), where

GEjTj
= GEjPj

× (Pj − tj)

GT = GP × (P −
⋃

j

tj).

The edges Lj would be contained in a coforest of GEjTj
as well as

GT . (Because contraction of some tree edges would not disturb the
corresponding coforest).
We have

(Vv(GEjTj
)) · Tj = (Vv(GT ) · Tj)

i.e., (Vi(GEjTj
))× Tj = (Vi(GT ))× Tj

i.e., Vi(GEjTj
· Tj) = (Vi(GT · Tj), j = 1, · · · , k.

We repeat the argument now in terms of circuits. It would then follow
that Lj can be deleted from all the GEjTj

as well as GT and the result
would be the strongly compatible decomposition ((GEjQj

)k;GQ) of G.
This decomposition would be minimal by Theorem 8.4.1 for the fol-
lowing reasons:
i. r((GEjQj

) ·Qj) =| Qj |= r(GQ ·Qj)
(since the coforest edges Lj have been deleted from GEjTj

· Tj).

ii. r((GEjQj
)×Qj) = 0 = r(GQ ×Qj)

(since the forest edges of GEjPj
× Pj have been contracted).
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P 8.4:
i. is trivial since the components and the port connection diagram
are copies of the same graphs and the relevant sets for application of
strong compatibility conditions are also trivial.

ii. This is an immediate specialization of the algorithm of Problem
8.3.

P 8.5: In the NAL − NBK method, we have a graph whose edge set
E(G) is partitioned into {A,B}. Sets K ⊆ A,L ⊆ B are such that
G × (A ∪ L)) · A ∼= G . A and G . (B ∪K)× B ∼= G × B. We need to
show, using multiport decomposition,
i. Vv(G) equals the collection of all vectors fA−K ⊕ fK ⊕ fB s.t.
there exist vectors

fA−K ⊕ fK ⊕ f̂L ∈ Vv(G × (A ∪ L))

and fB ⊕ fK ∈ Vv(G . (B ∪K))

ii. Vi(G) equal the collection of all vectors

gB−L ⊕ gL ⊕ gA s.t.

there exist vectors

gB−L ⊕ gL ⊕ ĝK ∈ Vi(G . (B ∪K))

and gA ⊕ gL ∈ Vi(G × (A ∪ L)).

We will only prove the statement about voltage vectors. The state-
ment about current vectors can be proved similarly (dually).
For the discussion to follow we need to build copies of graphs derived
from G. We use the following notation:
The sets PA, PB are copies of A,B. If G is alternatively denoted by
GAB,GPAPB

would denote its copy on PA ∪ PB. In general if GST , S ⊆
A, T ⊆ B is a graph derived from GAB by a sequence of operations,
then GPSPT

would denote the graph derived from GPAPB
by the same

sequence of operations on corresponding elements of the copy. Denote
the graphs G × (A ∪ L),G . (B ∪K) respectively by GAL,GBK and the
graph G . (B ∪K)× (K ∪ L) ∼= G × (A ∪ L) · (K ∪ L) by GKL.
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We will first show that (GAPL
,GBPK

;GPKPL
) is a 2-multiport decom-

position of G.
We start with the strongly compatible decomposition (Exercise 8.11)
(VAPB

,VBPA
;VPBPA

) of Vv(G), where VST denotes the voltage space of
Vv(GST ).
From Exercise 8.11 we will use the idea that if (VAP1,VBP2 ;VP1P2) is
a strongly compatible decomposition of VAB and if fP1 ∈ VAP1 × P1, e
an element in the support of fP1, then e can be contracted in VAP1

as well as VP1P2 and we would be left with a new strongly compatible
decomposition of VAB. Dually if gP1 ∈ V⊥

AP × P1, e an element in the
support of gP1 , then e can be deleted in VAP1 as well as VP1P2 yielding a
new strongly compatible decomposition of VAB. If VAP1 is the voltage
space of GAP1 then a cutset (circuit) vector with support contained in
P1 would belong to VAP1×P1 (V⊥

AP ×P1). So we can work directly with
cutsets and circuits of GAP1 × P1,GAP1 · P1, respectively.
Build a forest tk of G . K, extend it to a forest tA of G . A. Let t(B−L)

be a forest of G . (B−L). Since G× (A ∪ L) ·A ∼= G . A, tA contains no
circuits in G × (A ∪ L). Hence, observing that G × (A ∪ L) is obtained
by contracting the branches of B − L, t(B−L) ∪ tA contains no circuits
of G. Extend this set to a forest t of G. Let t̄ be the corresponding
coforest.
We will denote by ty, t̄y the sets t∩Y, t̄∩Y respectively. For simplicity
the copies of these sets in PA ∪PB would also be denoted by the same
symbols.
Observe that the f-cutsets of t with respect to edges in t(B−L) do not
intersect A. Let e1 · · · , ep be the edges in t(B−L). When e1, · · · , er

(1 ≤ r < p), are contracted, it is clear that the f-cutsets of t −
{e1, · · · , er} with respect to er+1, · · · , ep remain as cutsets in the con-
tracted graph. We can, therefore, contract t(B−L) in GAPB

and GPAPB

while leaving GBPA
unaltered and the resulting voltage spaces would

continue to be a strongly compatible decomposition of VAB. The edges
of t̄(B−L) would now have become self loops in GAPB

×(A∪PB−t(B−L))
and GPAPB

× (PA ∪ PB − tB−L). They can therefore, be deleted in
GAPB

× (A ∪ PB − tB−L) as well as GPAPB
× (PA ∪ PB − tB−L). But

deleting or contracting selfloops has the same effect. So they may be
contracted in both the graphs. Thus, at this stage we are left with the
graphs GAPL

≡ GAPB
× (A∪PL),GBPA

and GPLPA
≡ GPAPB

× (PA∪PL),
whose voltage spaces constitute a strongly compatible decomposition
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of VAB.

Next consider the f-circuits of t with respect to edges in t̄(A−K) in
the graph G. These would remain as such in G . A ∼= G × (A ∪ L) · A
and therefore also in GBPA

and GPAPL
. So t̄(A−K) may be deleted in

GBPA
and GPAPL

while leaving GAPL
unaltered. The resulting volt-

age spaces would continue to be a strongly compatible decomposi-
tion of VAB. The edges of tA−K would now have become coloops.
They can therefore be contracted in GBPA

· (B ∪ PA − t̄A−K) and
GPAPL

· (PA ∪ PL − t̄A−K). But deleting or contacting coloops has
the same effect as far as voltage spaces are concerned. So they may
be deleted in both the graphs. Thus at this stage we are left with
GAPL

,GBPK
≡ GBPA

· (B ∪PK), GPKPL
≡ GPAPL

· (PK ∪PL). Their volt-
age spaces constitute a 2-multiport decomposition of VAB.
We will next show that the port voltage matching conditions are equiv-
alent to the condition that voltage vector on K be the same in G ×
(A ∪ L) and G . (B ∪K). The equivalence of port current matching
conditions to the condition that current vector on L be the same in
G . (B ∪K) and G × (A ∪ L), can be proved similarly (dually).
In what follows if fy is a vector on Y , fPy

would denote that vector on
Py whose value on e′ is the value of fy on e, where e′ in Py is the copy
of e in y.

A vector fA ⊕ fB ∈ Vv(G) iff there exist vectors fA ⊕ f̂PL
, fB ⊕ f̂PK

,

f̂PL
⊕ f̂PK

of Vv(GAPL
),Vv(GBPK

), Vv(GPKPL
) respectively. Let us write

fA as fA−K ⊕ fK . The vector fK ⊕ f̂PL
∈ Vv(GAPL

· (K ∪ PL)). Hence,
noting that
GPKPL

≡ GPAPL
· (PK ∪ PL), the vector fPK

⊕ f̂PL
∈ Vv(GPKPL

). The
vector
f̂PK
⊕ f̂PL

belongs to Vv(GPAPL
· (PK ∪ PL))(= Vv(GPKPL

)). Hence, the
vector
f̂K⊕ f̂PL

∈ Vv(GAPL
·(K∪PL)). Thus, fPK

− f̂PK
∈ Vv(GPAPL

·(PK ∪PL)
×PK)
(= Vv(GPKPL

×PK)) and fK − f̂K ∈ Vv(GAPL
· (K ∪ PL)×K).

Now G . (B ∪K)×K = G . (B ∪K)× (K ∪ L)×K ∼= G × (A ∪ L) ·
(K ∪ L)×K.
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So GBPA
· (B ∪ PK)× PK is a copy of GAPL

· (K ∪ PL)×K. Hence,

fPK
− f̂PK

∈ Vv(GBPA
· (B ∪ PK)× PK)(= Vv(GBPK

× PK).

It follows that (fB ⊕ f̂PK
) + (fPK

− f̂PK
) ∈ Vv(GBPK

) iff fB ⊕ f̂PK
does

and (f̂PL
⊕ f̂PK

) + fPK
− f̂PK

∈ Vv(GPKPL
) iff f̂PL

⊕ f̂PK
does.

We conclude that fA⊕fB ∈ Vv(G) iff there exist vectors fA−K⊕fK⊕f̂PL
,

fB⊕fPK
, f̂PL
⊕fPK

, respectively in Vv(GAPL
), Vv(GBPK

), Vv(GPKPL
). This

is equivalent to saying that fA ⊕ fB ∈ Vv(G) iff there exist vectors

fA−K ⊕ fK ⊕ f̂L ∈ G × (A ∪ L), and

fB ⊕ fK ∈ G . (B ∪K).

This proves the required result.

P 8.6:
i. Let (v, i) be a solution of N . Then for each j we have

vEj
∈ VE · Ej ,

iEj
∈ V⊥

E · Ej

(vEj
, iEj

) ∈ DEj
,

where vEj
, iEj

denote the restrictions of v, i toEj . Since VE = (
⊕

j VEjPj
)↔

VP , there must exist vP ∈ VP s.t.

vEj
⊕ vPj

∈ VEjPj
,

where vPj
= vP/Pj, j = 1, · · · , k.

Dually, there must exist iP ∈ V⊥
P s.t.

iEj
⊕ iPj

∈ V⊥
EjPj

,

where iPj
= iP/Pj , j = 1, · · · , k.

Thus, if v′
P = −vP , i

′
P = iP , since (vEj

⊕ (−v′
Pj

), iEj
⊕ i′Pj

), in addition
to the above conditions, also belongs to DEj

×δPj
, it must be a solution

of NEjPj
. So (v′

Pj
, i′Pj

) ∈ D′
Pj
. Further

⊕

j v′
Pj
∈ VP and

⊕

j i′Pj
∈ V⊥

P .

Thus, (v′
P , i

′
P ) is a solution of N ′

P . If (v”P , i”P ) is another such solu-
tion, v′

Pj
− v”Pj

∈ VEjPj
× Pj for each j.

Since the decomposition is minimal (using Theorem 8.4.1), each of
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these spaces has zero dimension. Hence, v′
P = v”P . Similarly one can

show that i′P = i”P .

ii. (v′
E , i

′
E), (v”E , i”E) are both solutions of N corresponding to

(v′
P , i

′
P ) iff

v′
Ej
− v”Ej

∈ VEjPj
× Ej ⊆ VE × Ej for each j, and

i′Ej
− i”Ej

∈ V⊥
EjPj
× Ej ⊆ V⊥

E ×Ej for each j.

iii N ′
Q would be defined in an identical manner to N ′

P . A solution
(v′

Q, i
′
Q) of N ′

Q corresponds to a collection SN of solutions of N such
that whenever (v1, i1), (v2, i2) belong to SN we must have (v1− v2) ∈
⊕

j VE × Ej and (i1 − i2) ∈
⊕

j V⊥
E × Ej.

But whenever two solutions of N differ in this manner (by the previous
sections of the present problem) they correspond to the same solution
(v′

P , i
′
P ) of N ′

P . Hence, each solution of N ′
Q corresponds to a unique

solution of N ′
P .

P 8.7:
i. Using equations 8.33 and 8.34 we can show that iPR

= −GP vPR

where GP is a positive definite matrix.
The edges PR in N ′

P would therefore have the device characteristic

i′PR
= GPv′

PR
.

PC , PL have the device characteristic

CP v̇′
PC

= i′PC

LP i̇
′

PL
= v′

PL

where CP ,LP are positive definite.
By the discussion on trapped solutions in RLMC networks in the above
section we know that in N ′

P , if (v, i) is trapped relative to PR then
v/PR = 0 and i/PR = 0; if trapped relative to PL then v/PL = 0
and i/PL ∈ V⊥

P × PL; if trapped relative to PC then i/PC = 0 and
v/PC ∈ VP × PC . But the decomposition is given to be minimal. So
by Theorem 8.4.1 we have r(VP × PC) = 0 and r(V⊥

P × PL) = 0. So
i/PL = 0 and v/PC = 0. This proves the required result.

ii. We will show that in N ′
P , a zero eigen value solution has to

be trapped solution relative to PC , PR, PL. A zero eigen value solution

implies that v̇′
PC
, i̇

′

PL
are zero. (This means v′

PC
, i′PL

are constant vec-
tors).
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Let v′
PC
6∈ VP ×PC . This means that either v′

PL
6= 0 or v′

PR
6= 0. Since

i̇′PL
= 0 we must have v′

PL
= 0. So v′

PR
6= 0. Since GP is positive

definite we conclude that < v′
PR
, i′PR

> 6= 0. Now we have

< v′
PC
, i′PC

> + < v′
PL
, i′PL

> + < v′
PR
, i′PR

>= 0.

So either < v′
PC
, i′PC

> 6= 0 or < v′
PL
, i′PL

> 6= 0. As we have seen, v′
PL

=
0, and since v̇′

PC
= 0, we must have i′PC

= 0. This is a contradiction.
A similar contradiction can be derived from the assumption that

i′PL
6∈ V⊥

P × PL.

Thus, a zero eigen value solution corresponds to a trapped solution.
But from the previous section of this problem the only trapped solution
to this problem is the zero solution. This proves the required result.

P 8.8:
i. is routine.

ii. We have

r(VEP ↔ VP ) = r(VEP ×E) + r((VEP ·P )∩VP )− r((VEP ×P )∩VP ).

(see Problem 7.1).
Let VEP ≡

⊕

j VEjPj
.

Let ((VEjPj
)k;VP ) be a compatible decomposition of VE. We know that

VEjPj
· Pj ⊇ VP · Pj, j = 1, · · · , k

VEjPj
× Pj ⊆ VP × Pj, j = 1, · · · , k.

By Exercise 8.7 we have, ((VEjPj
)j∈I ;VP · PI) is a compatible decom-

position of VE ·EI . Thus,

r(VE · EI) = r((
⊕

j∈I

VEjPj
)× EI) + r(VP · PI)− r((

⊕

j∈I

VEjPj
)× PI)

=
∑

j∈I

r(VEjPj
×Ej) + r(VP · PI)−

∑

j∈I

r(VEjPj
× Pj)

as required.

P 8.9:
i. If the vector spaces are over GF2,M(VS) fully determines VS.
Hence if we know M(VEP ),M(VP ), we know VEP ,VP and therefore,
VE andM(VE).

ii. See Example 7.1 p.95 [Narayanan86a].



Chapter 9

Submodular Functions

9.1 Introduction

In combinatorial mathematics submodular functions are a relatively
recent phenomenon. Systematic interest in this area perhaps began
with the work of Edmonds in the late sixties [Edmonds70]. By then
matroids were well studied with numerous applications to engineering
systems already known. Submodular functions could be regarded as
a generalization of matroid rank functions and it is natural to won-
der whether they are really required. The answer is that, even if we
ignore considerations of theory, we come across them far more often
in practical problems than we come across matroids. The method of
attack for these problems using submodular function theory is usually
quite simple and the algorithms generated, very efficient. Study of
basic ‘submodular’ operations such as convolution and Dilworth trun-
cation is likely to prove fruitful for practical algorithm designers since,
in addition to completely capturing the essence of many practical sit-
uations, they also allow us to give acceptable approximate solutions to
several intractable problems.

In this chapter we begin with simple equivalent restatements of the
definition of submodularity along with a number of instances where
submodular functions are found in ‘nature’. Next we discuss some
standard operations by which we get new submodular / supermodular
(more compactly, semimodular) functions starting from such functions.

419
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We then pay special attention to the important special cases of ma-
troid and polymatroid rank functions. Next we give a sketch of the
polyhedral approach to the study of semimodular functions. Finally we
give a brief outline of some recent work on minimization of symmetric
submodular functions. The important notions of convolution and Dil-
worth truncation of submodular functions are relegated to subsequent
chapters.

9.2 Submodularity

We begin with a few definitions of submodularity which are easily
proved to be equivalent. The most useful form appears to be one which
essentially states that the ‘rate of increase’ of submodular functions is
less on ‘larger’ sets (analogous to ‘cap’ functons over the real line).
Thereafter we present a number of simple examples of submodular
functions.

Definition 9.2.1 Let S be a finite set.
Let f : 2S −→ ℜ, f is said to be a submodular (supermodular)
function iff

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) ∀X, Y ⊆ S (9.1)

(f(X) + f(Y ) ≤ f(X ∪ Y ) + f(X ∩ Y ) ∀X, Y ⊆ S)

The function f is modular if the inequality is replaced by equality. A
function is semimodular if it is submodular or supermodular.1

The following theorem gives equivalent conditions for submodularity /
supermodularity. These conditions are often easier to apply in practice
than the original definitions. The conditions for supermodularity are
obtained by reversing the submodular inequalities and the proof of the
equivalence is obtained by reversing the inequalities line by line in the
submodular case proof.

Theorem 9.2.1 (k)

1Warning: before the early 70’s submodular functions used to be referred to as
semimodular functions in the literature.
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i. A function f : 2S −→ ℜ is submodular iff it satisfies any one of
the following properties.

f(X∪a)−f(X) ≥ f(X∪b∪a)−f(X∪b) ∀X ⊆ S , ∀a, b ∈ S−X
(9.2)

f(X ∪ a)− f(X) ≥ f(Y ∪ a)− f(Y ) ∀X ⊆ Y ⊆ S , ∀a ∈ S−Y
(9.3)

f(X∪Z)−f(X) ≥ f(Y ∪Z)−f(Y ) ∀X ⊆ Y ⊆ S , ∀Z ⊆ S−Y
(9.4)

ii. The function f is supermodular iff it satisfies any one of the
above three properties with the inequalities reversed.

Proof: i.

(9.2)⇒ (9.3)⇒ (9.4)⇒ (9.1)⇒ (9.2)

(9.2)⇒ (9.3)

Let Y = X ⊎ b1 ⊎ b2 ⊎ · · · ⊎ bk. If a is not in Y , we have, by (9.2)

f(X ∪ a)− f(X) ≥ f(X ∪ b1 ∪ a)− f(X ∪ b1)

≥ f(X ∪ b1 ∪ b2 ∪ a)− f(X ∪ b1 ∪ b2)
· · ·

≥ f(X ∪ b1 ∪ · · · ∪ bk ∪ a)− f(X ∪ b1 ∪ · · · ∪ bk).
(9.3)⇒ (9.4)

Let Z = {a1, a2, · · ·at} and let X ⊆ Y ⊆ S, Z ⊆ S − Y . Then

f(X ∪ a1)− f(X) ≥ f(Y ∪ a1)− f(Y )

f(X ∪ a1 ∪ a2)− f(X ∪ a1) ≥ f(Y ∪ a1 ∪ a2)− f(Y ∪ a1)

· · ·
f(X∪a1∪· · ·∪at)−f(X∪a1∪· · ·∪at−1) ≥ f(Y ∪a1∪· · ·∪at)−f(Y ∪a1∪· · ·∪at−1)

Adding all the inequalities we get (9.4).

(9.4)⇒ (9.1)
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This is immediate by setting (in (9.4))

X to X ∩ Y, Z to (X −X ∩ Y )(= (X ∪ Y − Y )) and Y to Y

(9.1)⇒ (9.2)

This is immediate by setting (in (9.1))

X to X ∪ a and Y to X ∪ b

ii. The supermodular case is similar.

2

We now give some common examples of submodular functions. The
first set involves graphs.
Let G be a graph on vertices V and edges E.

Example 9.2.1 (k) Let V (X) ≡ set of endpoints of edges of X, X ⊆
E(G). Then |V |(·) 2 (called the vertex function of G) is submodular.

Example 9.2.2 (k) Let E(V1) ≡ set of edges with both endpoints in
V1, V1 ⊆ V (G). Then |E|(·) (called the interior edge function of
G) is supermodular.

Example 9.2.3 (k) Let I(V1) ≡ set of edges with atleast one end point
in V1, V1 ⊆ V (G). Then |I|(·) (called the incidence function of G)is
submodular.

Example 9.2.4 (k) Let Γ(V1) ≡set of vertices adjacent to some vertex
in V1, V1 ⊆ V (G). Then |Γ|(·) (called the adjacency function of G)
is submodular.

Example 9.2.5 (k) Let cut(V1) ≡ set of all branches with only one
endpoint in V1, V1 ⊆ V (G). Then |cut|(·), called the cut function of
G, is submodular.

Example 9.2.6 (k) Let G be a directed graph. We can now define,
analogous to the definition in Example 9.2.1, Vtail(X), Vhead(X) over
the subsets of the edge set of the directed graph. These lead to submod-
ular functions. Analogous to the definitions in Examples 9.2.3, 9.2.4,

2Throughout |X(·)| and |X |(·) are used interchangeably to specify the cardinal-
ity of X(·), where X(·) is any set function.
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9.2.5, we could define Iout(·), Iin(·), Γout(·),Γin(·), cutout(·),
cutin(·) etc. In each case the functions are submodular. (The functions
Iout(·),
Iin(·) are actually modular).

The above examples can be generalized to the context of hypergraphs
as represented by bipartite graphs. The reader might like to think
of the right vertex set of the bipartite graph as the edge set of the
hypergraph.

Example 9.2.7 Let B ≡ (VL, VR, E). Let EL(X) ≡ set of all vertices
in VR adjacent only to vertices in X, X ⊆ VL. ER(·) is defined similarly
on subsets of VR. Then |EL|(·), |ER|(·) (called the left exclusivity
function and the the right exclusivity function respectively of
B) are supermodular.

Example 9.2.8 Let B ≡ (VL, VR, E) be a bipartite graph. For X ⊆ VL

define c(X) to be the set of all vertices in VR whose images under Γ(·)
intersect both X and VL −X. Then |c|(·) is submodular.

The next couple of examples are of the matroid kind.

Example 9.2.9 (k) Let E be the set of columns of a matrix over any
field F . Then, the rank function r(·) on the subsets of E is submodular.

Example 9.2.10 (k) Let G be a graph on the set of edges E(G). Let
r(X), X ⊆ E be the number of edges in a forest of G.X, the subgraph
on X. Let r′(X), X ⊆ E be the number of edges in a forest of G ×X,
the graph obtained by shorting and removing all edges in E −X. Let
ν(X), X ⊆ E be the number of edges in a coforest of G × X. Let
ν ′(X), X ⊆ E be the number of edges in a coforest of G.X. Then,
r(·), ν(·) (called the rank and nullity functions of the graph respectively)
are submodular, while r′(·), ν ′(·) are supermodular.

Exercise 9.1 Show that the functions listed in the above examples are
submodular or supermodular as the case may be.

Remark: In Examples 9.2.9, 9.2.10 above, the size of the ‘maximal
independent set’ contained in a subset turns out to be submodular.
Weaker notions of independence do not always yield submodular func-
tions. Exercise 9.2 presents such an instance.

Exercise 9.2 Let G be a graph. Let a set of vertices V1 ⊆ V (G) be
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called e-independent if no two vertices of V1 are joined by an edge.
Let k(Vi), Vi ⊆ V (G) be the maximum size of an e-independent set
contained in Vi. Show that k(·) is not in general submodular or super-
modular.

Exercise 9.3 Let (VL, VR, E) be a bipartite graph. Let w(·) be a non-
negative weight function assigned to VR. Let q : 2VL −→ ℜ be defined by
q(X) ≡ w(Y ) where Y is the set of all vertices in VR which are adjacent
to every vertex in X. Let q′ : 2VL −→ ℜ be defined by q′(X) ≡ w(Z)
where Z is the set of all vertices in VR which are adjacent to none of
the vertices in X.

i. Show that q′(X) = w(EL(VL −X)) and hence supermodular.

ii. Define the complementary bipartite graph B(VL, VR, E) of B as
follows:
e ∈ E iff the endpoints of e are not connected by an edge of E.
Show that qB(X) ≡ q′

B
(X) where qB and q′

B
denote the appropri-

ate functions defined for B and B respectively. Hence show that
qB is supermodular.

The terms ‘submodular’ and ‘supermodular’ have arisen from the well
known notion of modular set functions. However in our framework
the latter functions are essentially trivial. For completeness we define
modularity and give equivalent definitions below.

Definition 9.2.2 A function w : 2S −→ ℜ is modular iff it satisfies
the relation

w(X) + w(Y ) = w(X ∪ Y ) + w(X ∩ Y ) ∀X, Y ⊆ S.

If w(X) ≡ ∑e∈X w(e), X ⊆ S, then we call w(·) a weight function.

Theorem 9.2.2 (k)

i. Let w(·) be a modular function on subsets of S. Then, w(X) =
∑

e∈X(w(e)−w(∅))+w(∅). Hence, if w(∅) = 0, w(X) =
∑

e∈X w(e).

ii. if wE(X) ≡ |X ∪ E|, where E is a fixed subset of S, then wE(·)
is modular. (Note that wE(∅) = |E| which could be nonzero.)
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iii. the function
α(X) ≡

∑

e∈X

α(e)

is modular. In particular | · | is modular. So is the function
wE(X) ≡ |X ∩ E|, where E is a fixed subset of S. (In this case
observe that the weight of elements in S − E is zero.)

Proof: We prove only the part (i). Let X ⊆ S and let a ∈ S−X. We
then have

w(X) + w(a) = w(X ∪ a) + w(∅),
The result then follows by induction.

2

9.3 Basic Operations on Semimodular Func-

tions

We now present a number of operations which act on submodular /
supermodular / modular functions and convert them to submodular
or supermodular functions. We begin with addition and scalar mul-
tiplication. Here the underlying set does not change. In the case of
‘direct sum’ it becomes the disjoint union of the original sets while in
the case of ‘fusion’ it is a partition of the original set. We next con-
sider the fundamental operations of ‘restriction’, ‘contraction’ and two
types of dualization. In the case of contraction and restriction the new
functions are over the power sets of appropriate subsets of the old set
while the dualization operations do not change the underlying set.

Definition 9.3.1 Let µ1(·), µ2(·) be real valued set functions on the
subsets of S1, S2, where S1 ∩ S2 = ∅. The direct sum of µ1(·), µ2(·),
denoted by (µ1 ⊕ µ2)(·), is defined over subsets of S1 ⊎ S2 by

(µ1 ⊕ µ2)(X1 ⊎X2) ≡ µ1(X1) + µ2(X2) ∀X1 ⊆ S1, X2 ⊆ S2.

Exercise 9.4 (k) Let µ1(·), µ2(·) be submodular functions and let w(·)
be a modular function on the subsets of S. Then (µ1 + µ2)(·), (µ1 +
w)(·), (µ1 − w)(·), λµ1(·), (λ ≥ 0) are submodular while −µ1(·) is su-
permodular. If µ1, µ2 are submodular (supermodular) on subsets of
disjoint sets S1, S2 then (µ1 ⊕ µ2(·)) is submodular (supermodular).
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A common technique in optimization problems which involve finding
the ‘best subset’ is to somehow show that the optimum subset can
be thought to be a union of some of the blocks of an appropriate
partition of the underlying set. In this manner the size of the problem
is reduced since each block can be treated as a single element. The
fusion operation defined below formalizes this notion.

Definition 9.3.2 Let µ(·) be a set function on subsets of S and let Π
be a partition (≡ S1, · · ·Sk) of S. Then the fusion of µ relative to
Π , denoted by µfus.Π(·), is defined on subsets of Π by

µfus.Π(Xf ) ≡ µ(
⋃

T∈Xf

T ), Xf ⊆ Π.

It is immediate that µfus.Π(·) is submodular (supermodular) [modular]
if µ(·) is such a function.
Contraction, restriction, dualization are fundamental matroidal opera-
tions. For graphs these ideas correspond to short circuiting (contract-
ing), open circuiting (deleting) and taking planar duals. These ideas
generalize naturally to submodular functions. We prefer to define them
for real valued set functions and then specialize them.

Definition 9.3.3 Let µ(·) be a real valued set function on subsets of
S. The restriction of µ(·) to X ⊆ S denoted by µ/X(·) is defined by

µ/X(Y ) ≡ µ(Y ) ∀Y ⊆ X ⊆ S.

(Note that there is an abuse of notation here. The original function is
on 2S, while the restriction according to the definition of page 20 is on
2X).
The contraction of µ(·) to X ⊆ S, denoted by µ⋄X(·), is defined by

µ⋄X(Y ) ≡ µ(Y ∪ (S −X))− µ(S −X) ∀Y ⊆ X ⊆ S.

Definition 9.3.4 Let µ(·) be a real valued set function on subsets of S.
Let α(·) be a modular function with α(∅) = 0 (i.e., α(·) is ‘essentially’
a real vector) and let α(e) ≥ µ(e) ∀e ∈ S. The comodular dual of
µ(·) relative to α(·), denoted by µ∗(·), is defined by

µ∗(X) ≡
∑

e∈X

α(e)− [µ(S)− µ(S −X)].
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(If α(·) is unspecified we take α(e) ≡ µ(e) ∀e ∈ S). The contramod-
ular dual of µ(·), denoted by µd(·), is defined by

µd(X) ≡ µ(S)− µ(S −X).

Remark 9.3.1 The condition α(e) ≥ µ(e) ∀e ∈ S is usually used in
the definition of comodular dual of a polymatroid rank function, which
we would like to be another such function. It can be seen that this
condition is not critical for general submodular functions.

Let µ(·),Π, α(·) be as in the above definitions. We collect properties
of contraction, restriction, fusion, comodular and contramodular dual-
ization in the following theorems. The first of these speaks of how to
reverse the order of contraction and restriction without affecting the
outcome. The reader might like to compare it with Theorems 3.4.1
and 3.4.2. The routine proof is omitted.

Theorem 9.3.1 (k)

i. Let P ⊆ Q ⊆ S. Then,

(µ⋄(S−P)/(Q−P))(·) = (µ/Q ⋄ (Q−P))(·)

ii. Let P ⊆ Q ⊆ S and let P,Q be unions of blocks of Π. Let Pf , Qf

be the sets of blocks of Π contained in P,Q respectively. Then,
(µ⋄(S−P)/(Q−P))(Y ) = (µfus.Π⋄(Π−Pf )/(Qf −Pf ))(Yf) =
(µfus.Π)/Qf ⋄ (Qf −Pf )(Yf), where Y is the union of the blocks
in Yf ⊆ Π

The next theorem speaks of the dual of a dual of a function (itself),
the duality of contraction and restriction, and of the self dual nature
of fusion. We note that if the comodular dual of µ(·) is taken with
respect to α(·) then we would take that of µfus.Π(·) with respect to
αfus.Π(·).

Theorem 9.3.2 (k) If µ(∅) = 0, then

i. (a) (µ∗)∗(·) = µ(·)
(b) (µ/X)∗(·) = µ∗⋄X(·)
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(c) (µ⋄X)∗(·) = µ∗/X(·)
(d) (µfus.Π)∗(·) = µ∗

fus.Π(·)

ii. (a) (µd)d(·) = µ(·)
(b) (µ/X)d(·) = µd⋄X(·)
(c) (µ⋄X)d(·) = µd/X(·)
(d) (µfus.Π)d(·) = µd

fus.Π(·)

Proof:

i. (a) We have,

(µ∗)∗(X) ≡
∑

e∈X

α(e)− [µ∗(S)− µ∗(S −X)]

=
∑

e∈X

α(e)−[
∑

e∈S

α(e)−
∑

e∈S−X

α(e)−(µ(S)−µ(∅))+(µ(S)−µ(X))]

= µ(X).

(b) Let Z ⊆ X. Then,

(µ∗⋄X)(Z) ≡ µ∗(Z ∪ (S −X))− µ∗(S −X)

=
∑

e∈Z∪(S−X)

α(e)−
∑

e∈S−X

α(e)−(µ(S)−µ(X−Z))+(µ(S)−µ(X))]

=
∑

e∈Z

α(e)− (µ(X)− µ(X − Z))

= (µ/X)∗(Z).

(c) This follows by using the above two results.

(d) This follows from the definitions of fusion and comodular
duals of µ(·) and µfus.Π(·).

ii. The proof is similar to the ‘*’ case and is omitted.

2

The next theorem is a generalization of Corollaries 3.4.3 and 3.4.2. Its
routine proof is omitted.
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Theorem 9.3.3 (k) Let A ⊆ S and let X ⊆ (S − A). Then

µ(X ∪ A) = µ/A(A) + µ⋄(S−A)(X)

We now show that contraction and restriction preserve submodularity
and supermodularity while comodular and contramodular dualizations
behave as the names indicate.

Theorem 9.3.4 (k)

i. Let X ⊆ S. Then, µ/X(·), µ⋄X(·) are submodular (supermodu-
lar) if µ(·) is submodular (supermodular).

ii. If µ(·) is submodular (supermodular), then µ∗(·) is submodular
(supermodular) while µd(·) is supermodular (submodular).

Proof: We consider only the submodular case.
i. The submodularity of the restriction of a submodular function is
obvious.
We now consider contraction. We have

µ(Y1 ∪ (S −X)) + µ(Y2 ∪ (S −X))

≥ µ(Y1 ∪ Y2 ∪ (S −X)) + µ(Y1 ∩ Y2 ∪ (S −X)) ∀Y1, Y2 ⊆ X.

Further, µ(S −X) is a constant for subsets of X. The submodularity
of µ⋄X(·) follows.

ii. We have

µ(S−X)+µ(S−Y ) ≥ µ(S− (X ∪Y ))+µ(S− (X ∩Y )) ∀X, Y ⊆ S.

Further, w(X) ≡ ∑

e∈X α(e) is a modular function, µ(S) is a con-
stant. The submodularity of µ∗(·) follows. The supermodularity of
µd(·) follows noting that the negative of a submodular function is su-
permodular.

2

Submodular and supermodular functions associated with graphs, hy-
pergraphs (as represented by bipartite graphs) etc usually behave in
an interesting way. A basic operation such as the ones described above
on a semimodular function associated say with a graph G takes it to
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another such function associated with a second graph which can be
derived from G in a simple way. The exercises given below illustrate
this idea.

Exercise 9.5 (k) Rank and nullity functions of a graph
Let G be a graph. Let X ⊆ E(G). We remind the reader that G.X is
the subgraph of G on X and G × X is the graph obtained from G by
fusing the end points of edges in E(G) − X and removing them. Let
r′(X), X ⊆ E, be the number of edges in a forest of G×X. We will call
r′(·) the prime rank function of G. Let ν ′(X), X ⊆ E, be the number of
edges in a coforest of G.X. We will call ν ′(·) the prime nullity function
of G. Prove

i. The rank function of G.X = r/X(·).

ii. The rank function of G ×X = r⋄X(·).

iii. rd(·) = r′(·).

iv. r∗(·) = ν(·).

v. The nullity function of G ×X = ν/X(·).

vi. The nullity function of G.X = ν⋄X(·).

vii. The prime rank function of G ×X = r′/X(·).

viii. The prime rank function of G.X = r′⋄X(·).

ix. The prime nullity function of G.X = ν ′/X(·).

x. The prime nullity function of G ×X = ν ′⋄X(·).

Exercise 9.6 The incidence function |I|(·) and the interior edge
function |E|(·) of a graph G
(see Examples 9.2.2 and 9.2.3) Let G ′ denote the graph obtained by
fusing V (G)−X into a single node and deleting all edges with both end
points in V (G)−X and let |I ′|(·), |E ′|(·) be its incidence and interior
edge functions respectively. Let |I”|(·), |E”|(·) be the incidence and
interior edge functions respectively of the subgraph of G on X ∪ Γ(X).
|Î|(·) be the incidence function of the subgraph of G on X. Let Π be a
partition of V (G) and let |IΠ|(·) be the incidence function of the graph
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obtained from G by fusing the blocks of Π into single vertices but not
deleting any edges.
Prove

i. |I|/X(·) = |I ′|/X(·) = |I”|/X(·) and |I|⋄X(·) = |I ′|⋄X(·) =
|I”|⋄X(·).

ii. |I|⋄X(·) = |Î|(·).

iii. |I|fus.Π(·) = |IΠ|(·).

iv. |I|d(·) = |E|(·).

v. Let G have no self loops. Then, |I|∗(·) = |I|(·), where the dual
is defined with respect to the weight vector α(·) with α(v) ≡
|I|(v) ∀v ∈ V (G).

vi. |E|⋄X(·) = |E ′|⋄X(·) = |E”|⋄X(·) and |E|/X(·) = |E ′|/X(·) =
|E”|/X(·).

vii. |E|/X(·) = |Ê|(·).

viii. |E|fus.Π(·) = |EΠ|(·).

Exercise 9.7 The |ΓL|(·), |EL|(·) functions of a bipartite graph
Let B ≡ (VL, VR, E) be a bipartite graph. Let ΓL(·) ≡ Γ/VL(·) and let
ΓR(·) ≡ Γ/VR(·). We will call |ΓL|(·), (|ΓR|(·)) |EL|(·), (|ER|(·)), the
left(right) adjacency function, left (right) exclusivity function respec-
tively of B (see Example 9.2.7). Let X ⊆ VL. Let B.LX be the subgraph
of B on X

⊎

Γ(X) and let B⋄LX be the graph obtained by first deleting
VL − X

⊎

Γ(VL − X) and all edges with atleast one end point in this
set (B.RX , B⋄RX , X ⊆ VR are similarly defined interchanging left and
right). Let Π be a partition of VL. Let BΠ be the graph obtained from
B by fusing the blocks of Π into single vertices. Let |ΓΠL|(·), |EΠL|(·)
be the corresponding left adjacency and left exclusivity functions.
Show that

i. |ΓL|/X(·) is the left adjacency function of B.LX .

ii. |ΓL|⋄X(·) is the left adjacency function of B⋄LX.

iii. |ΓL|fus.Π(·) = |Γ|ΠL(·).
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iv. |ΓL|d(·) = |EL|(·)

v. |EL|/X(·) is the left exclusivity function of B⋄LX.

vi. |EL|⋄X(·) is the left exclusivity function of B.LX.

vii. |EL|fus.Π(·) = |EΠL|(·).

9.4 *Other Operations on Semimodular

Functions

We now consider a number of other operations on semimodular func-
tions which yield other such functions. These operations, while being
useful, are by no means standard. We therefore study them through a
sequence of problems.

Problem 9.1 (k)

i. Let f(·), g(·) be submodular (supermodular) on subsets of S and
let
(f −g)(·) be monotone increasing or monotone decreasing. Show
that
h(·) ≡ min(f(·), g(·)) (max(f(·), g(·))) is a submodular (super-
modular) function.

ii. Let f(·) be an increasing or decreasing submodular (supermodu-
lar) function and let k be a constant. Show that min(k, f(X))
(max(k, f(X)) is a submodular (supermodular) function.

Solution: We consider only the monotone increasing case, since (f −
g)(·) is monotone decreasing iff (g−f)(·) is monotone increasing. Fur-
ther we confine ourselves to submodular functions.

i. Let X, Y ⊆ S. We will verify that

h(X) + h(Y ) ≥ h(X ∪ Y ) + h(X ∩ Y ).

This is clear if h(·) agrees with f(·) or with g(·) on both X and Y . Let
us therefore assume that h(X) = f(X) and h(Y ) = g(Y ). We then
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have,

h(X) + h(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) + g(Y )− f(Y ).

But f(X ∪ Y ) + g(Y )− f(Y ) ≥ g(X ∪ Y ). Hence

h(X) + h(Y ) ≥ g(X ∪ Y ) + f(X ∩ Y ) ≥ h(X ∪ Y ) + h(X ∩ Y ).

ii. This is a direct consequence of the previous result.

The next problem involves an instance of the convolution operation
to be discussed in the next chapter. As we shall see later, even more
important than the µmin(·) and µmax(·) functions are the collection of
subsets over which these functions become equal to µ(·).
Problem 9.2 (k)

Definition 9.4.1 Let µ(·) be a real valued set function defined over
subsets of S. Let

µmin(X) ≡ minY ⊆Xµ(Y ),

µmax(X) ≡ maxY ⊆Xµ(Y ),

µmin(X) ≡ minY ⊇Xµ(Y ),

µmax(X) ≡ maxY ⊇Xµ(Y ).

Show that

i. µmin(·), µmin(·) are submodular if µ(·) is submodular and µmax(·), µmax(·)
are supermodular if µ(·) is supermodular.

ii. if µ(·) be a submodular (supermodular) function on subsets of S
then the subsets over which it reaches a minimum (maximum)
form a distributive lattice (i.e., the collection is closed under
union and intersection).

Definition 9.4.2 The collection of subsets of S over which a
submodular (supermodular) function reaches a minimum (maxi-
mum) is called its principal structure.

iii. Prove
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Theorem 9.4.1 (k) Let µ(·) be a submodular function on sub-
sets of S. Let X ⊆ S have the property that

µ(X) ≤ µ(Y ) ∀Y ⊆ X

(µ(X) < µ(Y ) ∀Y ⊂ X).

Then X is contained in some (every) set that minimizes µ(·).

Solution:
i. Let mZ denote a subset of Z ⊆ S at which µ(·) reaches the minimum
among all the subsets of Z and let mXa, mY a denote mX∪a, mY ∪a. Let
X ⊆ Y ⊆ S and let a ∈ S − Y . We now have,

µ(mXa) + µ(mY ) ≥ µ(mY ∪mXa) + µ(mY ∩mXa).

i.e.,
µ(mY ∪mXa)− µ(mY ) ≤ µ(mXa)− µ(mY ∩mXa).

Now mY ∪mXa ⊆ Y ∪ a and mY ∩mXa ⊆ X. But then

µ(mY a) ≤ µ(mY ∪mXa)

and
µ(mX) ≤ µ(mY ∩mXa).

We therefore have,

µ(mY a)− µ(mY ) ≤ µ(mXa)− µ(mX).

Since µmin(T ) = µ(mT ) ∀T ⊆ S, it is clear that µmin(·) is submodular.
The proof of the supermodular case µmax(·) is similar.
Next let

σ(X) ≡ µ(S)− µ(S −X).

Observe that
µmin(X) = µ(S)− σmax(S −X)

and
µmax(X) = µ(S)− σmin(S −X).

The required results follow by noting that σ(·) is supermodular (sub-
modular) iff µ is submodular (supermodular).



9.4. OTHER OPERATIONS ON SUBMODULAR FUNCTIONS 435

ii. Let X, Y minimize the submodular function µ(·). By the basic
inequality

µ(X) + µ(Y ) ≥ µ(X ∪ Y ) + µ(X ∩ Y ).

The only way this inequality can be satisfied is to have the values of
µ(·) on all four sets to be the same. The result follows. The proof for
the supermodular case is similar.

iii. Proof of Theorem 9.4.1: Let µ(·) reach the minimum, among
all subsets of S, at Z. If X is a subset of Z, there is nothing to prove.
Suppose X is not. Then X ∩ Z ⊂ X. By the submodularity of µ(·),
we then have,

µ(X) + µ(Z) ≥ µ(X ∪ Z) + µ(X ∩ Z).

Case1 µ(X) ≤ µ(X ∩ Z). In this case µ(Z) ≥ µ(X ∪ Z). Thus X is
contained in a subset that minimizes µ(·) viz X ∪ Z.
Case2 µ(X) < µ(X ∩ Z). In this case µ(Z) > µ(X ∪ Z), which is a
contradiction. We conclude that X must be a subset of Z.

2

Problem 9.3 Let s(·) be an increasing set function taking subsets of a
finite set S1 to subsets of another finite set S2 i.e., s(Y ) ⊇ s(X) ∀X ⊆
Y ⊆ S1. Suppose

s(X) ∪ s(Y ) = s(X ∪ Y )

(s(X) ∩ s(Y ) = s(X ∩ Y )).

i. Let w(·) assign each element of S2 a nonnegative weight. Define
ŝ(X) ≡ ∑e∈s(X)w(e). Show that

(a) the function ŝ(·) is submodular (supermodular).

(b) (k) the set functions (defined in Exercise9.1) V (·),Γ(·), I(·), Vtail(·),
Vhead(·),Γin(·),Γout(·), Iin(·), Iout(·) yield submodular functions
when
‘weighted nonnegatively’ while E(·) yields a supermodular
function. Hence show that the nonnegatively weighted ver-
sions of cut(·), cutin(·), cutout are also submodular.

ii. (k) Let µ(·) be an increasing submodular(supermodular) func-
tion on subsets of S2. Define σ(·) on subsets of S1 by σ(X) ≡
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µ(s(X)), X ⊆ S1. Show that σ(·) is submodular (supermodular).
Example: (k) Let B be a bipartite graph on VL, VR. Let the
function s(·) be taken as the Γ(·) (EL(·)) function of the bipar-
tite graph. Let µ(·) be any increasing submodular (supermodular)
function on subsets of VR. Then µ(Γ(·))(µ(EL(·))) is a submod-
ular (supermodular) function on subsets of VL.

Solution:
i(a) For any increasing set function, we must have,

s(X) ∪ s(Y ) ⊆ s(X ∪ Y ),

s(X) ∩ s(Y ) ⊇ s(X ∩ Y ).

If

s(X) ∪ s(Y ) = s(X ∪ Y ),

it is clear that

ŝ(X) + ŝ(Y ) = w(s(X)) + w(s(Y ))

= w(s(X) ∪ s(Y )) + w(s(X) ∩ s(Y ))

≥ ŝ(X ∪ Y ) + ŝ(X ∩ Y ).

The supermodular case (where s(X) ∩ s(Y ) = s(X ∩ Y )) is handled
similarly.

i(b) It is easily verified that the functions V (·),Γ(·), I(·), Vtail(·), Vhead(·),
Γin(·),Γout(·), Iin(·), Iout(·) all satisfy the property s(X)∪s(Y ) = s(X∪
Y ), while E(·) satisfies s(X) ∩ s(Y ) = s(X ∩ Y ). Further they are all
increasing set functions. Thus it is clear that they must yield sub- or
supermodular functions (as the case may be) when weighted. To study
the weighted version of cut(·), we observe that cut(X) = Γ(X)−E(X)
and Γ(X) ⊇ E(X). So

w(cut(X)) = w(Γ(X))− w(E(X))

and the submodularity of this function follows from the sub- and su-
permodularity of the functions w(Γ(·)) and w(E(·). One can similarly
prove that cutin(·), cutout(·) yield submodular functions when weighted.
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ii. We consider only the case where s(X ∪ Y ) = s(X) ∪ s(Y ) and µ(·)
submodular. The supermodular case can be handled similarly. We
have σ(·) ≡ µ(s(·)). Now

µ(s(X)) + µ(s(Y )) ≥ µ(s(X) ∪ s(Y )) + µ(s(X) ∩ s(Y ))

≥ µ(s(X ∪ Y )) + µ(s(X ∩ Y ))

(since

s(X) ∩ s(Y ) ⊇ s(X ∩ Y ), s(X) ∪ s(Y ) = s(X ∪ Y )

and µ(·) is increasing). Thus σ(·) is submodular on subsets of S1.
To verify the correctness of the example we need only verify that
Γ(·), EL(·) are increasing and respectively satisfy the property s(X) ∪
s(Y ) = s(X ∪ Y ) and the property s(X) ∩ s(Y ) = s(X ∩ Y ). This, as
mentioned before, is routine.

Problem 9.4 (k) Let f be any increasing cap (increasing cup) func-
tion from ℜ to ℜ. Let µ be an increasing submodular (increasing super-
modular) function. Show that f(µ(·)) is submodular (supermodular).
Examples:

i. Let r(·) be the rank function of a graph G. Let f(t) ≡ (r(G))2 −
(t− r(G))2. Note that f(·) is increasing in the interval [0, r(G)].
Then f(r(·)) is submodular.

ii. Let w(·) be a weight function on S. Let f(t) ≡ (w(S))2 − (t −
w(S))2 and let g(t) ≡ t2. Then f(w(·)) is submodular while
g(w(·)), g(r′(·)), g(ν ′(·)) (the latter of Example 9.2.10) are super-
modular.

Solution: If the function f(·) is an increasing cap function from ℜ to
ℜ then

f(x+ h)− f(x) ≥ f(y + h)− f(y) ∀y ≥ x, h ≥ 0.

Let µ(·) be an increasing submodular function on the subsets of S and
let X ⊆ Y ⊆ S, a ∈ S − Y . Then

µ(X ∪ a)− µ(X) ≥ µ(Y ∪ a)− µ(Y ).
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Let δ, ǫ represent the left and right sides of the above inequality. Then,
since f(·) is increasing,

f(µ(X) + δ)− f(µ(X)) ≥ f(µ(X) + ǫ)− f(µ(X))

≥ f(µ(Y ) + ǫ)− f(µ(Y )).

This is equivalent to saying that

f(µ(X ∪ a))− f(µ(X)) ≥ f(µ(Y ∪ a))− f(µ(Y )).

This proves the submodularity of f(µ(·)). The supermodular case is
similar and the examples are direct applications of the result.

9.5 Polymatroid and Matroid Rank Func-

tions

Matroid rank functions are the most important class of submodular
functions. Polymatroid rank functions are their immediate generaliza-
tion. As we shall show, any submodular function is a translate of a
polymatroid rank function by a modular function. In this section we
define these functions and study the results of applying on them some
of the basic operations introduced in Section 9.3.

Definition 9.5.1 A submodular function is a polymatroid rank func-
tion iff it takes zero value on ∅ and is nonnegative and increasing.

Definition 9.5.2 A polymatroid rank function is a matroid rank
function iff it takes integral values and does not exceed 1 on any of
the singletons.

Exercise 9.8 (k) Show that the rank and nullity functions of a graph
are matroid rank functions.

Exercise 9.9 (k) Show that the vertex function, incidence function
and adjacency function of a graph are polymatroid rank functions while
the cut function |cut|(·) is not (see Examples 9.2.1, 9.2.3, 9.2.4, 9.2.5).

Both matroid and polymatroid rank functions behave nicely with re-
spect to comodular dualization.
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Exercise 9.10 Theorem 9.5.1 (k) µ∗(·) is a polymatroid (matroid)
rank function if µ(·) is one.

Remark: In the definition of µ∗(·), if α(e) is less than µ(e) for some
e, the dual of a polymatroid rank function would not be a polymatroid
rank function. But we would still have µ∗(·) as submodular.

The next theorem states among other things that every submodular
function is a translate of a polymatroid rank function. This idea would
be useful when we relate minimization of submodular functions to the
operation of convolution in the next chapter.

Theorem 9.5.2 (k) Let µ(·) be a submodular function on subsets of
a finite set S

i. µ(·) is an increasing function iff

µ(S)− µ(S − e) ≥ 0 ∀e ∈ S.

It is nonnegative increasing iff it satisfies, in addition, µ(∅) ≥ 0.

ii. If
µ(S)− µ(S − e) = µ(e)− µ(∅) ∀e ∈ S,

then µ(·) is modular.

iii. Let a weight function w(·) on S be defined by w(e) ≡ µ(S) −
µ(S−e). Then µ(·)−w(·)−µ(∅) is a polymatroid rank function.

Proof: ‘only if’ is clear.
if:

i. Since µ(·) is submodular, we have

µ(S)− µ(S − e) ≤ µ(X ∪ e)− µ(X) ∀X ⊆ S, e ∈ S −X.

The result follows. The nonnegative increasing case is trivial.

ii. Since

µ(S)−µ(S−e) ≤ µ(X ∪e)−µ(X) ≤ µ(e)−µ(∅) ∀X ⊆ S, e ∈ S−X,

it follows that the given condition implies that

µ(X ∪ e)− µ(X) = µ(e)− µ(∅) ∀X ⊆ S, e ∈ S −X.
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Thus

µ(X) =
∑

e∈X

[µ(e)− µ(∅)] + µ(∅) ∀X ⊆ S.

Clearly this means µ(·) is modular.

iii. It is easily verified that the function µ(·)−w(·)−µ(∅) satisfies the
above condition for being nonnegative increasing and takes zero value
on ∅. Since it is clearly submodular, the function is a polymatroid rank
function.

2

The next exercise speaks of contraction, restriction and dualization on
natural functions associated with a matroid. The reader might like to
compare it with Exercise 9.5.

Exercise 9.11 (k) The rank and nullity functions of a matroid
As has already been pointed out in Chapter 4, we can give a number of
alternative descriptions of a matroid in terms of

• independent sets

• circuits

• bases

• matroid rank function.

Let us assume the last description (of a matroid rank function on sub-
sets of S) is available. Then, a set X ⊆ S is said to be independent
iff r(X) = |X|, it is a base iff r(X) = |X| = r(S), it is a circuit
iff r(X) = |X| − 1 and all proper subsets of X are independent. We
remind the reader that every independent set can be extended to a base
and that circuits are minimal dependent (non independent) sets. It is
verified elsewhere that these classes satisfy the conditions of the appro-
priate axiom sets. Let us denote the matroid corresponding to these
classes by M. The comodular dual of the rank function with respect
to the |.| function is called the nullity function of the matroid and
denoted by ν(·). Let Π be a partition of S. Show that

i. r/X(·), r⋄X(·), ν(·) are matroid rank functions.
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ii. rfus.Π(·) is an integral polymatroid rank function. (We show
later, in the next chapter, that all integral polymatroid rank func-
tions can be obtained by fusion of matroid rank functions).

iii. The independent sets of the matroid (denoted by M.X) defined
by r/X(·) are independent sets of M contained in X. The bases
of M.X are maximal intersections of bases of M with X. The
circuits of M.X are circuits of M contained in X.

iv. The independent sets of the matroid (denoted byM×X) defined
by r⋄X(·) are sets whose union with every independent set of
M.(S − X) is independent in M. The bases of M × X are
minimal intersections of bases of M with X. The circuits of
M×X are minimal intersections of circuits of M with X.

v. The bases of the matroid (denoted by M∗) defined by r∗(·) are
the complements of bases of M.

vi. rd(X) = rank of M×X.

vii. The nullity function of M×X = ν/X(·). Thus M∗.X = (M×
X)∗.

viii. The nullity function of M.X = ν⋄X(·). Thus M∗ × X =
(M.X)∗.

ix. The contramodular dual of the rank function ofM×X = rd/X(·).

x. The contramodular dual of the rank function ofM.X = rd⋄X(·).

xi. The contramodular dual of the nullity function of M × X =
νd⋄X(·).

xii. The contramodular dual of the nullity function ofM.X = νd/X(·).

An elementary but useful notion in graphs is that of putting additional
edges in parallel to existing ones. This notion immediately generalizes
to matroids. For submodular functions however more is possible pro-
vided some minor conditions on monotonicity are satisfied.
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Definition 9.5.3 Let µ(·) be a submodular function on subsets of S.
Elements e1, e2 ∈ S are parallel with respect to µ(·) iff

µ(X ∪ e1) = µ(X ∪ e2) = µ(X ∪ e1 ∪ e2) ∀X ⊆ S.

Observe that other elements cannot distinguish between e1, e2.

Definition 9.5.4 [Lovász83] Let µ(·) be a submodular function on sub-
sets of S. Let T ⊆ S and element aT 6∈ S. The parallel extension
of µ(·) by aT parallel to T, denoted by µ̂(·) on subsets of S ∪ aT is
defined by

µ̂(X) ≡ µ(X)

µ̂(X ∪ aT ) ≡ µ(X ∪ T ) ∀X ⊆ S.

Theorem 9.5.3 (k)

i. µ̂(·) is a submodular function, if, for each e ∈ T we have µ(S)−
µ(S − e) ≥ 0.

ii. if µ(·) is a polymatroid rank function, then, so is µ̂(·).

iii. if µ(·) is a matroid rank function on subsets of S then e1, e2 are
in parallel iff

µ(e1) = µ(e2) = µ({e1, e2}).

Proof:
i. We need to verify if

µ̂(X∪e)−µ̂(X) ≥ µ̂(Y ∪e)−µ̂(Y ) ∀X ⊆ Y ⊆ S∪aT , ∀e ∈ (S∪aT )−Y.

We have the following cases

• aT 6∈ Y

• aT ∈ X

• aT ∈ Y −X and e 6∈ T

• aT ∈ Y −X and e ∈ T
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In the first three cases the inequality holds by the submodularity of
µ(·) and the definition of µ̂(·). In the last case the RHS is zero while
the LHS is nonnegative since

µ(X ∪ e)− µ(X) ≥ µ(S)− µ(S − e) ≥ 0.

ii. By the above reasoning, since in this case µ(·) is increasing, we
must have the parallel extension as submodular. Further µ̂(∅) = 0 and
µ̂(·) is clearly increasing.

iii. We need only prove the ‘if’ part.
Let µ(·) be a matroid rank function. We must have, for i = 1, 2,

µ(X ∪ ei)−µ(X) ≤ µ(X ∪ e1 ∪ e2)−µ(X) ≤ µ({e1, e2}) = µ(ei) · · · (∗)

If µ(e1) = 0 then it is easy to see that

µ(X ∪ e1) = µ(X ∪ e2) = µ(X ∪ e1 ∪ e2) ∀X ⊆ S · · · (∗∗)

Let µ(e1) = 1. Suppose µ(X ∪ e1) − µ(X) = 1. We claim e2 /∈ X, as
otherwise

µ(X ∪ e1)− µ(X) ≤ µ({e1, e2})− µ(e2) = 0,

a contradiction. But then

µ(X ∪ e2) + µ({e1, e2}) ≥ µ(X ∪ e1 ∪ e2) + µ(e2)

i.e., µ(X∪e2) = µ(X∪e1∪e2) (since µ(·) is increasing and µ({e1, e2}) =
µ(e2)). Similarly µ(X ∪e1) = µ(X∪e1∪e2). Thus the desired equality
(∗∗) holds. So we need only consider the case where

µ(X ∪ e1)− µ(X) = 0.

By the above argument µ(X ∪ e2)−µ(X) cannot be 1 and is therefore
0. Now, by the submodularity of µ(·), we must have

µ(X ∪ e1 ∪ e2)− µ(X ∪ e1) ≤ µ(X ∪ e2)− µ(X) = 0,

from which the desired equality (∗∗) follows.

2
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9.6 Connectedness for Semimodular Func-

tions

When a submodular function can be expressed as the direct sum of
other such functions, problems involving it drastically simplify. We
essentially have to look at much smaller underlying sets which are
disconnected under the function. We sketch elementary ideas regarding
connectedness in this section.

We introduce the notion of an elementary separator of a submodular
function below. This notion is a generalization of 2-connectedness for
graphs and connectedness for matroids.

Definition 9.6.1 Let µ(·) be a submodular (supermodular) function
on subsets of S with µ(∅) = 0. A set E ⊆ S is a separator of µ(·) iff

µ(E) + µ(S −E) = µ(S).

A minimal nonvoid separator is called an elementary separator.

Theorem 9.6.1 (k) Let µ(·) be a submodular (supermodular) function
on subsets of S with µ(∅) = 0. Then,

i.

µ(X1)+· · ·+µ(Xn) ≥ µ(X1∪· · ·∪Xn) ∀X1, · · ·Xn ⊆ S,Xi∩Xj = ∅, i 6= j

(µ(X1)+· · ·+µ(Xn) ≤ µ(X1∪· · ·∪Xn) ∀X1, · · ·Xn ⊆ S,Xi∩Xj = ∅, i 6= j).

ii. if E1, E2 are separators of µ(·), then so are E1 ∪ E2, E1 ∩ E2.

iii. E is a separator of µ(·) iff

µ(X1) + µ(X2) = µ(X1 ∪X2) ∀X1 ⊆ E,X2 ⊆ S − E

(Thus when E is a separator studying µ(·) reduces to studying
µ/E(·),
µ/S−E(·). In other words µ(·) = (µ/E⊕ µ/S−E)(·)).

iv. E is a separator of µ(·) iff

µ/E(·) = µ⋄E(·).
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v. if E is a separator of µ(·), it is also a separator of µd(·) and
µ∗(·).

Proof: We will handle only the submodular case. The supermodular
situation is similar.

i. If X1, X2 do not intersect we have

µ(X1) + µ(X2) ≥ µ(X1 ∪X2) + µ(∅).

Since µ(∅) = 0, the result follows by induction on the number of sets.

ii. We have,

µ(E1) + µ(E2) ≥ µ(E1 ∪ E2) + µ(E1 ∩E2),

µ(S − E1) + µ(S −E2) ≥ µ(S − (E1 ∪E2)) + µ(S − (E1 ∩E2)).

Adding the two inequalities we get,

µ(E1) + µ(E2) + µ(S − E1) + µ(S − E2)

≥ µ(E1 ∪ E2) + µ(E1 ∩ E2) + µ(S − (E1 ∪ E2)) + µ(S − (E1 ∩ E2))

≥ 2µ(S).

But E1, E2 are separators and hence the LHS = 2µ(S). Thus the
inequalities are throughout equalities and therefore

µ(E1 ∪ E2) + µ(S − (E1 ∪E2)) = µ(S)

µ(E1 ∩ E2) + µ(S − (E1 ∩E2)) = µ(S)

as required.

iii. The ‘if’ part is trivial. To show the ‘only if’ part, let E be a
separator. Let E2 denote S − E and let X1 ⊆ E,X2 ⊆ E2. We need
to show that

µ(X1) + µ(X2) = µ(X1 ∪X2)

We already have,

µ(X1) + µ(X2) ≥ µ(X1 ∪X2)

µ(X1 ∪X2) + µ(E2) ≥ µ(X1 ∪E2) + µ(X2)
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µ(X1 ∪X2) + µ(E) ≥ µ(X2 ∪ E) + µ(X1).

Hence (looking at the extreme LHS and RHS of the inequalities)

µ(X1 ∪X2) + µ(E2) + µ(X1 ∪X2) + µ(E)

≥ µ(X1 ∪ E2) + µ(X2) + µ(X2 ∪E) + µ(X1)

≥ µ(X1 ∪X2 ∪ E ∪ E2) + µ(X1 ∪X2) + µ(X1) + µ(X2)

≥ µ(S) + µ(X1 ∪X2) + µ(X1) + µ(X2).

Since E is a separator, we have,

µ(S) = µ(E) + µ(E2).

Hence (looking at the extreme LHS and the extreme RHS of the in-
equalities)

µ(X1 ∪X2) ≥ µ(X1) + µ(X2)

and the result follows, the reverse inequality already being shown.

iv. Observe that

µ/E(X) = µ⋄E(X) ∀X ⊆ E

iff

µ(X) = µ((S − E) ∪X)− µ(S −E) ∀X ⊆ E.

We see that this last condition, using the previous sections of the
present problem, is equivalent to E being a separator.

v. If E is a separator of µ(·), it is easily verified that

µd(E) + µd(S − E) = µd(S),

µ∗(E) + µ∗(S − E) = µ∗(S).

Since this condition is sufficient for E to be a separator both when the
function is submodular as well as when it is supermodular, the result
follows.

2
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9.7 *Semimodular Polyhedra

A powerful technique to study a class of real(rational) valued set func-
tions is to associate a polyhedron with it and study the geometry of
the polyhedron. In this section we begin with the simple notions of
a set polyhedron and its dual and their specialization to semimodu-
lar polyhedra. We show that any ‘polyhedrally tight’ set function can
be naturally extended to a convex function over ℜn. In particular
submodular functions are polyhedrally tight. Their extension due to
Lovász [Lovász83] (called Lovász extension [Fujishige91]), has a very
simple alternative description.

Definition 9.7.1 Let f(·) be a real valued set function on 2S, S ≡
{e1, · · · , en}. Let χX denote the characteristic vector of X ⊆ S. When
x is a real vector let

x(X) ≡ (χX)Tx ∀X ⊆ S.

Then the polyhedron associated with f(·), denoted by Pf is defined
as follows:A vector x ∈ ℜS belongs to Pf iff

x(X) ≤ f(X) ∀X ⊆ S.

We say f(·) is polyhedrally tight iff for each X ⊆ S there exists
a vector x ∈ Pf such that x(X) = f(X). The dual polyhedron
associated with f(·) denoted by P d

f is defined as follows:A vector
x ∈ ℜS belongs to P d

f iff

x(X) ≥ f(X) ∀X ⊆ S.

We say f(·) is dually polyhedrally tight iff for each X ⊆ S there
exists a vector x ∈ P d

f such that x(X) = f(X).

We list some simple properties of polyhedrally tight functions in the
next theorem.

Theorem 9.7.1 (k)

i. x ∈ Pf and x(S) = f(S) iff x ∈ P d
fd and x(S) = f(S).

ii. if f(·), g(·) are polyhedrally tight and λ ≥ 0 then (λf + g)(·) is
polyhedrally tight.
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iii. if A ⊆ S and f(·) is polyhedrally tight, then f/A(·) is polyhedrally
tight.

iv. if f(·) is modular with f(∅) = 0 then Pf is the set of all vectors
beneath a single point and f(·) is polyhedrally tight.

Proof:
i. We have, x(X) ≤ f(X) ∀X ⊆ S and x(S) = f(S) iff
x(S −X) ≥ f(S)− f(X) ∀X ⊆ S and x(S) = f(S).

ii. If x ∈ Pf and y ∈ Pg such that x(X) = f(X) and y(X) = g(X)
then clearly (λx + y) ∈ Pλf+g and further (λx + y)(X) = (λf+g)(X).

iii. This is immediate from the relevant definitions.

iv. Clearly f(·) is induced by the vector x ≡ (f(e1), · · · , f(en)) (see
Definition 9.2.2 and Theorem 9.2.2) and the vectors in Pf are pre-
cisely the set of all vectors less or equal to this vector. Since f(X) =
x(X) ∀X ⊆ S, f(·) is polyhedrally tight.

2

Exercise 9.12 Let f(·) be a set function on subsets of S and let x
denote also the modular function induced by the vector x. Then Pf+x =
Pf + x, where the latter addition denotes translation by the vector x.

When f(·) is submodular the problem of maximising a linear objec-
tive function over Pf is particularly easy. One need only use a greedy
strategy. The next theorem speaks of this strategy. As a consequence
it follows that f(·) must be polyhedrally tight. Further when f(·) is
integral it turns out that it must have integral vertices.

Theorem 9.7.2 (k) Let S = {e1, · · · , en} and let f(·) be a submodular
function on subsets of S such that f(∅) = 0. Let c ∈ ℜS be a nonneg-
ative vector and let c(e1) ≥ · · · ≥ c(en). Let x ∈ ℜS be a vector such
that

x(e1) = f(e1), x(e2) = f({e1, e2})− f(e1)

· · ·x(en) = f({e1 · · · , en})− f({e1 · · · , en−1}).
Then

i. x is integral if f(·) is integral.
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ii. x optimizes the linear program

max cTz, z ∈ Pf .

Further if c has a negative entry then the above linear program has no
optimal solution.

Proof:
i. This is immediate.

ii. Let Tj denote {e1, · · · , ej}. We first show that x ∈ Pf . If not
then there exists a subset T ⊆ S such that x(T ) > f(T ). Let T
have the smallest size consistent with this condition and let ei be the
element of T with the largest index. Observe that T cannot be null
since x(∅) = f(∅) = 0. We have x(T − ei) ≤ f(T − ei). Next, Ti ⊇ T .
Hence, by the submodularity of f(·),

f(Ti)− f(Ti − ei) ≤ f(T )− f(T − ei).

But
x(ei) = x(Ti)− x(Ti − ei) = f(Ti)− f(Ti − ei).

So x(ei) ≤ f(T )− f(T − ei). But

x(ei) = x(T )− x(T − ei).

Hence x(T − ei) > f(T − ei), which contradicts the definition of T .
Thus x ∈ Pf .
Next we show that x optimizes the linear program. We use LP duality.
The dual linear program is

min
∑

T⊆S

f(T )yT

∑

T∋ei

yT = c(ei) ∀ei ∈ S,y ≥ 0.

(observe that y has one component for each subset of S). We select
yT =
c(ei)− c(ei+1) if T = Ti, taking c(en+1) to be 0. Otherwise yT is taken
to be zero. It is easily verified that for such a selection y ≥ 0 and that

∑

T∋ei

yT = c(ei) ∀ei ∈ S.
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Further,
∑

f(T )yT =

(c(e1)−c(e2))f(e1)+(c(e2)−c(e3))f({e1, e2})+ · · · c(en)f({e1, · · · en}).
= c(e1)f(e1) + c(e2)(f({e1, e2})− f(e1))

+ · · · c(en)(f({e1, · · · en})− f({e1, · · · en−1})).
= c(e1)x(e1) + · · ·+ c(en)x(en) = cTx.

This implies that x and y are optimal solutions to the primal and dual
programs respectively.

Finally let us consider the situation where c has a negative entry.
We note that decreasing the component of any vector in Pf will not
take it out of the polyhedron. Therefore the component corresponding
to the negative entry in c can be indefinitely decreased remaining in
the polyhedron but arbitrarily increasing the



9.7. SEMIMODULAR POLYHEDRA 451

objective function.

2

Corollary 9.7.1 (k) If f(·) is submodular (supermodular) with f(∅) =
0 then f(·) is polyhedrally tight (dually polyhedrally tight).

Proof: We first consider the situation where f(·) is submodular. Let
X ⊆ S. In the statement of Theorem 9.7.2 we select c = χX . The
selection procedure for x used in the statement of the theorem ensures
that x(X) = f(X). Further x ∈ Pf . Next let f(·) be supermodular.
Let X ⊆ S. In the polyhedron Pfd we select a vector x such that
x(S −X) = f d(S −X) and x(S) = f(S) (the procedure given in the
statement of the theorem permits this). This vector belongs to P d

f and
satisfies x(X) = f(X) (see Theorem 9.7.1 (i)).

2

Corollary 9.7.2 (k) If f(·) is submodular (supermodular) and integral
then all the vertices of Pf (P d

f ) are integral.

Proof: We will consider only the submodular case . If x is a vertex of
the polyhedron Pf then there exists a vector c such that cTz reaches
its maximum value (among all vectors of the polyhedron) only at x.
Clearly this vector (by Theorem 9.7.2) must be nonnegative . But then
the procedure outlined in the same theorem yields an integral optimum
if f(·) is integral. We conclude that this integral optimum must be the
given vertex.
The supermodular case follows by noting that

• g(·) is supermodular iff −g(·) is submodular,

•

max cTz, z ∈ P−g

is equivalent to
min cT (−z),−z ∈ P d

g .

2

We now show that there is a natural convex extension to every
polyhedrally tight set function. We need the following definitions.
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Definition 9.7.2 Let S ≡ {e1, · · · .en}. Let f(·) : ℜS −→ ℜ and let
g(·) be a set function on subsets of S defined by g(X) ≡ f(χX) ∀X ⊆
S. Then we say that g(·) is the set function induced by f(·).
Definition 9.7.3 Let P (A, b) denote the polyhedron defined by the sys-
tem of inequalities Ax ≤ b, where x is a vector in ℜS. Let fAb(·) be
the function on ℜS defined by

fAb(c) ≡ (max cTx,x ∈ P (A, b)).

Then we say the function fAb(·) is induced by the polyhedron
P (A, b). If P (A, b) is empty we take fAb(c) = −∞ ∀c ∈ ℜS. Let

fAb(c) ≡ (min cTx,x ∈ P (A, b)).

Then we say the function fAb(·) is dually induced by the polyhe-
dron P (A, b). If P (A, b) is empty we take fAb(c) =∞ ∀c ∈ ℜS.

Theorem 9.7.3 (k)

i. fAb(λc1 + µc2) ≤ λfAb(c1) + µfAb(c2), λ, µ ≥ 0.

ii. The collection of vectors on which fAb(·) takes finite values is
closed under addition and nonnegative scalar multiplication (i.e.,
forms a cone).

iii. fAb(λc1 + µc2) ≥ λfAb(c1) + µfAb(c2), λ, µ ≥ 0 and the collec-
tion of vectors on which fAb(·) takes finite values is closed under
addition and nonnegative scalar multiplication.

iv. Let f(·) be a submodular function on subsets of S taking zero
value on the null set. Let f ′(·) be the function induced by Pf

and let f”(·) be the set function induced by f ′(·). Let c be a
vector such that c(e1) ≥ · · · ≥ c(en). Let Ti, i = 1, 2, · · ·n denote
{e1, · · · , ei}. Then

(a) f ′(·) takes finite values on all nonnegative vectors.

(b) f”(X) = f(X) ∀X ⊆ S.

(c) [Lovász83] f ′(c) = (c(e1) − c(e2))f(χT1) + · · · (c(en−1) −
c(en))f(χTn−1) + (c(en))f(χTn

).
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Proof:
i. Let fAb(λc1 + µc2) = (λc1 + µc2)

Tx for some x ∈ P (A, b). By
the definition of fAb(·) it follows that (c1)

Tx ≤ fAb(c1) and (c2)
Tx ≤

fAb(c2). The result follows by multiplying the first inequality by λ and
the second by µ and adding.

ii. This follows immediately from the preceding result.

iii. Similar to the proof of the first two parts. Note that when PAb is
not void, fAb(·) would take value −∞ when it does not take a finite
value).

iv(a) This follows from the definition of f ′(·) and Theorem 9.7.2.

iv(b) This follows from the definition of f”(·), the fact that f(·) is
polyhedrally tight (Corollary 9.7.1) and by use of the greedy strategy.

iv(c) By using the procedure given in the statement of Theorem 9.7.2
we can construct a vector x which optimizes

max χT
Ti
z, z ∈ Pf

for i = 1, 2 · · ·n. We then have, by the definition of f ′(·),

f ′(c) ≥ cTx.

But

c = (c(e1)− c(e2))χT1 + · · · (c(en−1)− c(en))χTn−1 + (c(en))χTn

and

cTx = (c(e1)−c(e2))x(T1)+ · · · (c(en−1)−c(en))x(Tn−1)+(c(en))x(Tn).

Noting that

x(Ti) = f(Ti) = f ′(χTi
), i = 1, 2, . . . n,

we have,

f ′(c) ≥ (c(e1)−c(e2))f ′(χT1)+· · · (c(en−1)−c(en))f ′(χTn−1)+(c(en))f ′(χTn
).

The reverse inequality follows from the statement of the first part of
the present theorem.
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2

Remark: Observe that if c(e1) ≥ · · · ≥ c(en), then

c = (c(e1)− c(e2))(χT1) + · · · (c(en−1)− c(en))(χTn−1) + (c(en))(χTn
).

Thus f ′(c) is obtained by performing the above linear combination of
the f(χTi

).

The next result is one of the deepest in submodular function theory.
It is a very good starting point for proving many of the important
results in this area. Our proof is, however, not polyhedral even though
the result is naturally polyhedral. A generalization of the result using
polyhedral methods (in fact the Hahn-Banach Separation Theorem) is
given in Problem 9.13

Theorem 9.7.4 (The ‘Sandwich Theorem)’ [Frank82] Let f(·), g(·)
be submodular and supermodular functions defined on subsets of S such
that f(·) ≥ g(·). Then there exists a modular function h(·) on subsets
of S such that f(·) ≥ h(·) ≥ g(·) (equivalently, such that h(·) sepa-
rates or lies between f(·) and g(·)). Further if f(·), g(·) are integral
then h(·) can be chosen to be integral.

Our proof of the theorem is an algorithmically more efficient version of
that due to Lovász and Plummer [Lovász+Plummer86] and is based
on the following lemma.

Lemma 9.7.1 Let ∅ ⊂ A ⊂ S be such that f(A) = g(A) and let
there exist modular functions hA(·), hS−A(·) on subsets of A, S − A
respectively such that f/A(·) ≥ hA(·) ≥ g/A(·) and f⋄(S−A)(·) ≥
hs−A(·) ≥ g⋄(S−A)(·). Then f(·) ≥ (hA ⊕ hS−A)(·) ≥ g(·).
Proof of the Lemma: Let X ⊆ S. Clearly,

f(X ∩ A) ≥ hA(X ∩A) ≥ g(X ∩ A)

f(X ∪ A) = f(A) + f⋄(S−A)(X ∩ (S − A))

≥ hA(A) + hS−A(X ∩ (S −A))

≥ g(A) + g⋄(S−A)(X ∩ (S −A)) = g(X ∪A).

Since f(·), g(·) are submodular and supermodular respectively, we have

f(X)− f(X ∩ A) ≥ f(X ∪ A)− f(A) = f⋄(S−A)(X ∩ (S − A)),
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g⋄(S−A)(X ∩ (S −A)) = g(X ∪A)− g(A) ≥ g(X)− g(X ∩ A).

Further we are given that

f⋄(S−A)(X∩(S−A)) ≥ hS−A(X∩(S−A)) ≥ g⋄(S−A)(X∩(S−A)).

Thus

f(X) ≥ hS−A(X ∩ (S − A)) + f(X ∩ A) ≥ hS(X)

and

g(X) ≤ hS−A(X ∩ (S −A)) + g(X ∩ A) ≤ hS(X),

where hS ≡ hA ⊕ hS−A. Hence, f(X) ≥ h(X) ≥ g(X).

2

Proof of Theorem 9.7.4: Assume without loss of generality that
f(∅) = 0. Suppose f(·) has every element e as a separator. Then
f(·) is already modular and the theorem is trivially true. We therefore
assume that the submodular function has atleast one element say e
that is not a separator. Let Y be the subset of all elements of S which
are singleton separators. We will assume that the theorem is true for
(|S| < n) and for (|S| = n, |S− Y | < m). We note that the theorem is
trivially true for |S| = 1 and also for |S − Y | = 0. We will now prove
the result when (|S| = n, |S−Y | = m).We have f(S) < f(S−e)+f(e).
Let f ′(·) be the function

f ′(X) ≡ f(X − e) + (f(S)− f(S − e)), e ∈ X

≡ f(X), e 6∈ X.
The function f ′(·) is obviously a submodular function with e as a sep-
arator (see Theorem 9.6.1) and further f(·) ≥ f ′(·) (since, by the
submodularity of f(·) , f(X)− f(X − e) ≥ f(S)− f(S− e) ∀X such
that e ∈ X). Let the set A minimize (f ′ − g)(·).

i. Case 1. If (f ′−g)(A) is nonnegative we have found a submodular
function (namely f ′(·)), which lies between f(·) and g(·) and
further has one more singleton separator (namely {e}), than f(·)
has. Also f ′(·) is integral if f(·) is. By induction on |S− Y |, the
theorem is true for f ′(·) and therefore for f(·).
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ii. Case 2. Let (f ′ − g)(A) be negative. Clearly A is not null or
equal to S . Let f”(·) be defined by

f”(X) ≡ min(f(X), f ′(X) + (g − f ′)(A)) ∀X ⊆ S.

It can be verified that f”(·) is submodular (directly or by using
the idea of convolution, to be introduced in the next chapter).
Further f(·) ≥ f”(·) ≥ g(·) and f”(A) = g(A). It follows that
f”/A(·) ≥ g/A(·), f”⋄(S−A)(·) ≥ g⋄(S−A)(·). By induction
on |S|, we may assume that there are modular functions hA(·)
between f”/A(·) and g/A(·) and hS−A(·) between
f”⋄(S−A)(·) and g⋄(S−A)(·). Now by Lemma 9.7.1, (hA ⊕
hS−A)(·) lies
between f”(·) and g(·) and therefore also lies between f(·) and
g(·). Further, in case f(·), g(·) are integral it is clear that f”(·)
is integral and we may assume by induction that hA(·), hS−A(·)
are integral. It follows that (hA⊕ hS−A)(·) is also integral. Thus
the theorem is true when |S| = n, |S − Y | = m.

2

Remark: The above proof of the Sandwich Theorem contains an ef-
ficient algorithm for finding the separating modular function provided
we have an efficient algorithm for minimising submodular functions (in
this case the function (f ′−g)(·)). It may be verified that the algorithm
requires no more than |S| submodular function minimizations.

Exercise 9.13 LetM be a matroid on S. Let r(X) ≡ r(M.X), r′(X) ≡

r(M×X), ν(X) ≡ ν(M×X), ν ′(X) ≡ ν(M.X) as in Exercise 9.11.
We have already seen that r(·), ν(·) are submodular and r′(·), ν ′(·) are
supermodular. Show that

i. r(·) ≥ r′(·) and ν(·) ≥ ν ′(·).

ii. Find vectors wr,wν such that r(·) ≥ wr(·) ≥ r′(·) and ν(·) ≥
wν(·) ≥ ν ′(·).

Exercise 9.14 Let ρ(·) be a polymatroid rank function on subsets of
S. Let

ρ′(X) = ρ(S)− ρ(S −X).
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i. Show that ρ(·) ≥ ρ′(·).

ii. Show how to construct a vector w(·) so that ρ(·) ≥ w(·) ≥ ρ′(·).

9.8 Symmetric Submodular Functions

A key problem in submodular function theory is that of minimiza-
tion. To be precise, the search was for a practically efficient poly-
nomial time algorithm for a general submodular function which is
available through a rank oracle. (The oracle will give the value of
the function on any given subset). The input size for such an algo-
rithm is determined by the size of the underlying set and the maxi-
mum number of bits needed to represent a value of the submodular
function. As we shall see later minimization is equivalent to con-
volution of an appropriate polymatroid rank function with a weight
vector. This problem was solved in 2000 by two groups of research
workers ([Iwata01],[Schrijver00]). Their solution, however, for many
practical problems, is not fast enough. Fast solution is known to
the minimization problem in many practical situations: e.g. mini-
mum directed cut in a graph, convolution of a matroid rank func-
tion with a weight vector [Cunningham84], [Narayanan95b]. For the
general problem, it was known quite early that the ellipsoid method
[Grötschel+Lovász+Schrijver81] does provide a polynomial algorithm
which however is practically useless. There are a few algorithms for
minimization [Cunningham85], [Sohoni92] which are practical but pseudo
polynomial (for integral functions the algorithm is polynomial in the
size of the underlying set and the maximum value of the function).
The case of symmetric submodular functions was solved in a surpris-
ingly simple way, a few years before he general problem was solved.
We describe this solution in this section.

Definition 9.8.1 A set function g : 2S −→ ℜ is symmetric iff g(X) =

g(S −X) ∀X ⊆ S.

Example 9.8.1 (k) The following are symmetric submodular func-
tions.

i. Cut function on the vertex subsets of a graph.
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ii. The function |c|(X), X ⊆ E(G) where c(X) ≡ the set of vertices
common to edges in X and E(G)−X.

iii. |c|(X) acting on the left vertex set of a bipartite graph. Here
|c|(X) ≡number of right side vertices adjacent to vertices in X
as well as vertices in VL −X(see Example 9.2.8).

iv. The function ξ(X) ≡ r(M.X)−r(M×X), X ⊆ S, whereM is a
matroid on S and r(·) denotes the rank function of the matroid.

v. θ(X) ≡ f(X) + f(S − X), X ⊆ S, where f(·) is a submodular
function on subsets of S.

Exercise 9.15 Show that the functions in Example 9.8.1 are symmet-
ric submodular functions.

Remark: Prior to the work of Nagamochi and Ibaraki [Nagamochi+Ibaraki92a]
(see also [Nagamochi+Ibaraki92b] [Nagamochi+Ono+Ibaraki94]) the
standard way of finding min cut was through flow techniques . The
above authors used a special (linear time) decomposition of a graph
into forests to identify a pair of vertices for which a minimum sep-
arating cut was immediately available. This was stored. This pair
was fused and the process repeated until the graph had only two ver-
tices. The minimum value cut among all the stored cuts gives the
minimum cut. A simpler algorithm of the same complexity was found
by M. Stoer and F. Wagner [ Stoer+Wagner94] and, independently,
by A. Frank [Frank94]). It is this algorithm that we generalize below.
The version we present is essentially the same as the one due to M.
Queyranne [Queyranne95]. However we have tried to bring out the
relationship to the Stoer-Wagner algorithm more strongly.

We follow the notation of Stoer-Wagner and essentially do a line
by line translation of their algorithm for finding a min cut to that for
minimising a symmetric submodular function over all sets not equal to
the full set or the void set.

Let f : 2S −→ ℜ be a submodular function. Let c(A,B) ≡
1
2
(f(A) + f(B) − f(A ∪ B)) ∀A,B ⊆ S,A ∩ B = ∅. Observe that
c(A,B) = c(B,A). We then have c(X,S−X) = 1

2
(f(X)+f(S−X)−

f(S)). If g(X) ≡ c(X,S − X) it is clear that g(·) is symmetric and
submodular. We minimize g(·) over X ⊆ S,X 6= ∅, X 6= S.
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Subroutine Minimum Phase (g, a, Sj)
BEGIN

A← {a}
while (A 6= Sj) {

add to A the element e /∈ A such that c(A, e) is the largest i.e.,
f(A ∪ e)− f(e) is least.

}
Store the ‘pair of the phase’ (en, Sj − en) and the

‘value of the pair of the phase’ c(en, Sj − en).
Fuse en, en−1.
Replace the set Sj by
Sj+1 ≡ {e1, e2, . . . , en−2, en−1 ∪ en}.

(Note that en−1, en are treated as subsets of S.)
Replace the function g by gfus.Sj+1

. (Here Sj+1 is being treated
as a partition of S.)
END Subroutine Minimum Phase.
Algorithm Symmetric:
Initialize S0 = S.
BEGIN
The algorithm has |S| − 1 phases of Subroutine Minimum Phase.
Value of current minimum pair =∞
while (|Sj| > 1) {

Subroutine Minimum Phase (g, a, Sj).
If the value of the pair of the phase (en, Sj − en) has a
lower value than the current minimum pair then store
(en, Sj − en) as the current minimum pair.
}
Let the minimum pair be (eni

, Sj − eni
) at the end of the

algorithm (i.e., when |Sj| = 2). Output sets eni
, S − eni

as minimising sets (non void proper subsets of S) for g(·).
END Algorithm Symmetric.

We justify algorithm Symmetric through the following theorem. We
first introduce some convenient notation and a couple of lemmas.

In any phase the elements of the current set Si are ordered as say
(e1, e2, . . . , ek). Let Aj ≡ {e1, e2, . . . , ej−1}, j = 2, . . . , k + 1. (In par-
ticular Ak+1 = Si). Let A ⊆ {e1, e2, . . . , ek} with ek ∈ A, er−1 ∈ A and
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{er, . . . , ek−1} ∩ A = ∅.
Lemma 9.8.1

c(Ak, ek)− c(Ar, ek) ≤ c(A,Ak+1 −A)− c(Ar+1 ∩A,Ar+1 −Ar+1 ∩A)

Proof: We note that

c(X, Y ) ≡ 1

2
[f(X) + f(Y )− f(X ∪ Y )]

Hence the LHS of the inequality in the statement simplifies to

1

2
[(f(Ak)− f(Ar)− f(Ak+1) + f(Ar ∪ ek)]

while the RHS simplifies to

1

2
[(f(A) + f(Ak+1 − A)− f(Ak+1)− f(Ar+1 ∩ A)

−f(Ar+1 −Ar+1 ∩A) + f(Ar+1)].

We therefore have to show (after simplification) that the following
inequality is valid. f(Ak)− f(Ar+1) + f(Ar ∪ ek)− f(Ar)

≤ f(Ak+1 −A)− f(Ar+1 − Ar+1 ∩ A) + f(A)− f(Ar+1 ∩ A).(9.5)

Now we note that

Ak −Ar+1 = (Ak+1 − A)− (Ar+1 − Ar+1 ∩ A)

= {er+1, . . . , ek−1}
and Ak ⊇ Ak+1 − A.

Hence by submodularity

f(Ak)− f(Ar+1) ≤ f(Ak+1 −A)− f(Ar+1 − Ar+1 ∩ A).

By a similar argument we see that

f(Ar ∪ ek)− f(Ar) ≤ f(A)− f(Ar+1 ∩ A)

(since Ar∪ek−Ar = ek = A−Ar+1∩A). This proves the inequality(9.5)
and hence the lemma.
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2

Lemma 9.8.2 Let (ek, Si − ek) be the pair of the phase. Then

c(ek, Si − ek) ≤ c(A, Si − A)

where ek ∈ A and ek−1 ∈ Si − A.

Proof: The proof is by induction on the size of Si. The lemma is true
for |Si| = 2. Suppose it to be true for |Si| ≤ k.
Let A ⊆ Si with ek ∈ A, er−1 ∈ A, {er, . . . , ek−1} ∩A = ∅.
By induction it follows that

c(Ar+1 ∩A,Ar+1 −Ar+1 ∩A) ≥ c(Ar, er) (9.6)

(since er−1 ∈ A, er ∈ Ar+1)
We have

c(Ak, ek) = c(Ar, ek) + (c(Ak, ek)− c(Ar, ek))

≤ c(Ar, er) + (c(Ak, ek)− c(Ar, ek))

(since in the algorithm er has been chosen so that

c(Ar, er) ≥ c(Ar, e) ∀e ∈ (Si − Ar)).

Hence,

c(Ak, ek) ≤ c(Ar+1 ∩ A,Ar+1 −Ar+1 ∩A) + (c(Ak, ek)− c(Ar, ek)) (by (9.6))

≤ c(Ar+1 ∩ A,Ar+1 −Ar+1 ∩A) + (c(A,Ak+1 − A)

−c(Ar+1 ∩A,Ar+1 − Ar+1 ∩ A)) by (Lemma 9.8.1).

Thus

c(Ak, ek) ≤ c(A,Ak+1 −A),

which is the required inequality.

2

Theorem 9.8.1 The current minimum pair (enj
, Sj − enj

) at the end
of the Algorithm Symmetric yields the minimising set enj

for g(·).
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Proof: The proof is by induction on the size of the set S. The theorem
is clearly valid when the |S| = 2. Suppose it to be valid when the size
of the set is n− 1. Let |S| = n. Now let the last two elements of the
first phase be en−1, en. If the minimum value pair (X,S − X), X ⊆
S,X 6= ∅, X 6= S had {en−1, en} ⊆ X then we can fuse {en−1, en} and
work with the set S2 = {e1, e2, . . . , en−2, {en−1, en}} and the function
gfus.S2. By induction, in the subsequent phases of the algorithm the
minimum pair will be revealed as a pair of some phase. On the other
hand if the minimum pair (X,S − X) had en ∈ X, en−1 ∈ S −X, by
Lemma 9.8.2 the pair of the first phase has this minimum value. This
completes the proof of the theorem.

2

Complexity of Algorithm Symmetric

Suppose there is an oracle that gives the value of c(X, Y ) for given
X, Y ⊆ S, X ∩ Y = ∅. If the current set is Si the number of calls to
this oracle is O(|Si|2) during the phase. At the end of the phase the
set reduces in size by one. We continue until the set reaches size two.
Hence the total number of calls to the oracle is O(|Si|3).

Special cases can be handled much faster: for instance in the case of
cut(·) function of a graph Stoer & Wagner show that the complexity is
O(|E|+ |V |log |V |) elementary operations per phase, giving an overall
complexity of O(|V ||E| + |V |2log |V |). The case of the symmetric
function (ΓL − EL)(·) of a bipartite graph B ≡ (VL, VR, E) is almost
identical. The complexity here per phase is O(|E|+ |VL|log |VL|) and
overall is O(|VL||E|+ |VL|2log |VL|).
Exercise 9.16 (k) For any function f(·) show that g(X) = 1

2
(f(X)+

f(S − X)) is symmetric. If f(·) is a symmetric function show that
c(X,S −X) = f(X) provided f(S) = 0.

Exercise 9.17 If f(·) is a symmetric function which of the following
operations preserve symmetry ?

i. Contraction.

ii. Restriction.
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iii. Comodular dual.

iv. Contramodular dual.

Exercise 9.18 For any submodular function f(·) show (using the no-
tation of Section 9.8) that c(A,B) ≥ c(X, Y ) whenever X ⊆ A, Y ⊆
B,A∩B = ∅. Interpret this statement for the cut function of a graph.

Exercise 9.19 Let g(·) : 2S −→ ℜ be a symmetric submodular func-
tion. Give an algorithm to minimize g(·) over

i. all subsets X, A ⊆ X ⊂ S.

ii. all subsets X, ∅ ⊂ X ⊆ A.

Exercise 9.20 Specialize Algorithm Symmetric to the case of

i. the cut function |cut|(·) of a graph G ≡ (V,E).

ii. the function (|ΓL|−|EL|)(·) of the bipartite graph B ≡ (VL, VR, E).

iii. the symmetric function arising from |ΓL|(·) in B above.

Exercise 9.21 In Theorem 9.5.2 we have shown how to subtract a
modular function from a given submodular function to yield a polyma-
troid rank function. Work this case out for |cut|(·).

9.9 Problems

Problem 9.5 Let G be a graph on vertices V and edges E. Let w be
a nonnegative weight function on the edges of G. As usual w(X) ≡
∑

e∈X w(e). Let ρ : 2E −→ ℜ+ be defined by ρ(X) ≡ maximum weight
of a forest of the subgraph of G on X. Show that ρ(·) is submodular.
Examine the case where ρ(·) is defined by minimum weight instead of
maximum weight.

Problem 9.6 How would you generalize Problem 9.5 above for the
adjacency and exclusivity functions of a bipartite graph, given a non-
negative weight function of the left vertex set?
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Problem 9.7 (Generalization of Problem 9.5 to the matroid base case)
Let M be a matroid on S. Let w be a nonnegative weight function on
the elements of M. Let ρ : 2S −→ ℜ+ be defined by

ρ(X) ≡ maximum weight base of M.X

Show that ρ(·) is a polymatroid rank function.

Problem 9.8 (k) Let A be a matrix with real entries. Let R ≡
{r1, . . . , rk}, C ≡ {c1, . . . , cn} be the sets of rows and columns of A
respectively. Let AX denote the submatrix of A using only the rows in
X ⊆ R but all columns. Let f : 2R −→ ℜ be defined as follows

f(X) = log(det (AXAT
X)) ∀X ⊆ R

Prove that f(·) is submodular.

Problem 9.9 Let A be a matrix with linearly independent rows. Let T
be a set of maximally independent columns of A and let the submatrix
corresponding to the columns of T be the identity matrix. Let AX , X ⊆
T, denote the submatrix of A composed of those rows of A which have
nonzero entries in one of the columns corresponding to X. Let f(X) ≡
log(AXAT

X), X ⊆ T. Prove that f(·) is submodular.

Problem 9.10 Let A be a totally unimodular matrix (every subdeter-
minant of A is 0,±1) with columns S. Let M be the matroid on S
associated with A. Let T be a base of M. Let

f(X) ≡ log(number of bases of M× (S − (T −X))), X ⊆ T.

Prove that f(·) is submodular.

Problem 9.11 [Fujishige78a], [Fujishige91] We consider some analo-
gies between polymatroids and matroids in this problem. We note that
if we perform the fusion operation on a matroid rank function we ob-
tain a polymatroid rank function. Later, in the next chapter, we show
that every polymatroid rank function can be so obtained. In other words
every polymatroid rank function can be ‘expanded’ into a matroid rank
function. If ρ : 2S −→ ℜ is a polymatroid rank function we say that
Pρ ≡ {x ∈ ℜS : x(X) ≤ ρ(X) ∀X ⊆ S} is a polymatroid.

An independent vector of a polymatroid is a nonnegative vector
in Pρ, i.e., it is a vector x s.t. x(X) ≤ ρ(X) ∀X ⊆ S. We will
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show later that if x is an integral independent vector, in the expanded
matroid there is an independent set T ⊆ Ŝ whose intersection with the
set e ∈ S has size x(e) (Here Ŝ is the expanded version of the set S,
the latter being a partition of Ŝ).

i. Let x be a real vector on S. Define

D(x) ≡ {X|X ⊆ S, x(X) = ρ(X)}

Show that D(x) is closed with respect to union and intersection
and hence has a unique maximal and a unique minimal set.

ii. If x is independent define the saturation function

sat(x) ≡
⋃

{X|X ⊆ S,x(X) = ρ(X)}

Show that

sat(x) ≡ {e|e ∈ S ∀α > 0 : x + αχe /∈ Pρ }

Observe that the saturation function generalizes the closure func-
tion of a matroid.

iii. Let D(x, e) denote the collection of sets in D(X) which have e
as a member. Show that D(x, e) is closed under union and inter-
section and hence has a unique maximal and a unique minimal
element.

iv. For an independent vector x ∈ Pρ and e ∈ sat(x), define the
dependence function

dep(x, e) ≡
⋂

{X|e ∈ X ⊆ S,x(X) = ρ(X)}

Let x(e) < ρ(e) and let 0 < α < ρ(e) − x(e). Let x′ ≡ x + αχe

and let θ(X) ≡ x′(X) − ρ(X) ∀X ⊆ S. Let D′(x′) denote the
collection of sets where θ(·) reaches a maximum. Show that

(a) D′(x′) is closed under union and intersection and hence has
a unique maximal and a unique minimal set.

(b) Let K be the minimal member ofD′(x′). ThenK = dep(x, e).
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(c)

dep(x, e) = {e′|e′ ∈ S, ∃α > 0 : x + α(χe − χe′) ∈ Pρ}

Observe that the dependence function generalizes the funda-
mental circuit of a matroid.

Problem 9.12 Let f : 2S −→ ℜ be a submodular function with f(∅) =
0. Let c be a nonnegative weight function on S. Let cX denote the row
vector on S with

cX(e) = 0, e /∈ X
cX(e) = c(e), e ∈ X

Let ρ : 2S −→ ℜ be defined by

ρ(X) ≡ max cT
Xx, x ∈ Pf .

Show that ρ(·) is a submodular function.

Problem 9.13 We state the Hahn-Banach Separation Theorem
below.
Let V be a normed space over ℜ and let E1, E2 be nonempty disjoint
convex subsets of V, where E1 is open in V. Then there is a real
hyperplane in V which separates E1 and E2 in the following sense: For
some linear functional g(·) over V and t ∈ ℜ, we have

g(y1) > t ≥ g(y2) ∀y1 ∈ E1, y2 ∈ E2.

Use this result to prove the following:

Let f1, f2 : 2S −→ ℜ be polyhedrally tight and dually polyhedrally
tight set functions respectively with f1(·) ≥ f2(·). Then there is a
modular function w(·) such that f1(·) ≥ w(·) ≥ f2(·).
Problem 9.14 Use Sandwich Theorem to prove the following:
Let M1,M2 be two matroids on S. Then the maximum size of a
common independent set of the two matroids = minX⊆S r1(X)+r2(S−
X), where r1(·), r2(·) are the rank functions of the matroids M1,M2

respectively.

Problem 9.15 Let f : 2S −→ ℜ be a submodular function. For each
of the following cases construct an algorithm for minimising this func-
tion.
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i. f(X−e)−f(X) ≥ f((S−X)∪e)−f(S−X) ∀X ⊆ S, e ∈ X.

ii. f(X−e)−f(X) ≤ f((S−X)∪e)−f(S−X) ∀X ⊆ S, e ∈ X.

9.10 Notes

Submodular functions became an active area of research in optimiza-
tion after Edmond’s pioneering work. Earlier prominent workers who
used such ideas were H. Whitney [Whitney35] and W.T. Tutte [Tutte58],
[Tutte59], [Tutte61], [Tutte65], [Tutte71] (in their work on graphs and
matroids), G. Choquet [Choquet55] (in his work on capacity theory)
and O. Ore [Ore56] (in his work on graph theory). The present chapter
follows Lovász’s excellent review paper [Lovász83]. We have also made
use of Fujishige’s comprehensive monograph [Fujishige91] on the sub-
ject. In the present book, the polyhedral approach to submodular func-
tions has not been emphasized. A thorough treatment of this subject
through the polyhedral approach may be found in [Frank+Tardos88]
and in the above mentioned monograph of Fujishige. The notion of co-
modular duality is due to McDiarmid [McDiarmid75]. The Sandwich
theorem first appeared as a technical result in [Frank82]. Its impor-
tance as a central result in submodular function theory was emphasized
by Lovász and Plummer [Lovász+Plummer86].

9.11 Solutions of Exercises

E 9.1: For most of the examples the easiest route for proving sub or
super modularity is to show that Inequality 9.3 holds.
Example 9.2.1: Let X ⊆ Y ⊆ E(G) and let a ∈ E(G)− Y . Then

V (X ∪ a) = V (X)
⊎

(V (a)− V (X)),

V (Y ∪ a) = V (Y )
⊎

(V (a)− V (Y )).

Clearly since V (Y ) ⊇ V (X) it follows that

V (a)− V (Y ) ⊆ V (a)− V (X).
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Hence
|V |(X ∪ a)− |V |(X) ≥ |V |(Y ∪ a)− |V |(Y ).

Example 9.2.2: Let X ⊆ Y ⊆ V (G) and let a ∈ V (G)− Y . Now

E(Z ∪ a) = E(Z)
⊎

EZa, Z ⊆ V (G), a ∈ V (G)− Z,

where EZais the set of all edges, with a as one end point, the other
endpoint lying in Z ∪ a. Clearly

EXa ⊆ EY a.

Thus
|E|(X ∪ a)− |E|(X) ≤ |E|(Y ∪ a)−E(Y ).

Example 9.2.3: Let X ⊆ Y ⊆ V (G) and let a ∈ V (G)− Y . Then

I(X ∪ a) = I(X)
⊎

[I(a)− I(X)],

I(Y ∪ a) = I(Y )
⊎

[I(a)− I(Y )],

Clearly
I(a)− I(X) ⊇ I(a)− I(Y ).

The result follows.
Example 9.2.4: Let X ⊆ Y ⊆ V (G), a ∈ V (G)− Y . We have

Γ(X ∪ a) = Γ(X)
⊎

(Γ(a)− Γ(X)),

Γ(Y ∪ a) = Γ(Y )
⊎

(Γ(a)− Γ(Y )).

Clearly
(Γ(a)− Γ(X)) ⊇ (Γ(a)− Γ(Y )).

The result follows.
Example 9.2.5: Let X ⊆ Y ⊆ V (G) and let a ∈ V (G)− Y . Then

cut(X ∪ a) = (cut(X)− cut(X) ∩ cut(a))
⊎

(cut(a)− cut(X)),

cut(Y ∪ a) = (cut(Y )− cut(Y ) ∩ cut(a))
⊎

(cut(a)− cut(Y )),

Clearly
cut(a)− cut(X) ⊇ cut(a)− cut(Y ).
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and cut(X) ∩ cut(a) ⊆ cut(Y ) ∩ cut(a) The result follows.
Example 9.2.6: In every one of these cases the method of the above
solutions works.
Example 9.2.7: The proof is similar to that of Example 9.2.2. We
only have to define EZa to be the set of all vertices in VR adjacent only
to vertices in Z ∪ a and adjacent to a.
Example 9.2.8: We have seen that the function |EL|(·) is supermod-
ular in
Example9.2.7. Next let ΓL(·) denote Γ/VL(·). Now

c(X) = ΓL(X)− EL(X), X ⊆ VL,

and
ΓL(X) ⊇ EL(X).

Hence
|c|(X) = |ΓL|(X)− |EL|(X).

Now |ΓL|(·) is submodular while |E|(·) is supermodular. The result
follows from the fact that subtraction of a supermodular function from
a submodular function yields another submodular function. Such facts
are presented in Exercise 9.4 .
Example 9.2.9: Let X ⊆ Y ⊆ S and let e ∈ E − Y . Clearly if e is
independent of Y it must be independent of X. Hence

r(X ∪ e)− r(X) ≥ r(Y ∪ e)− r(Y ).

The submodularity of r(·) follows.
Example 9.2.10: We parallel the argument of the previous example.
Let X ⊆ Y ⊆ E(G) and let e ∈ E(G)− Y . If e does not form a circuit
with edges in Y it is clear that e will not do so with edges in X either.
Hence

r(X ∪ e)− r(X) ≥ r(Y ∪ e)− r(Y ).

So r(·) is submodular. We know that

ν ′(X) = |X| − r(X).

Since | · | is modular and r(·) is submodular it is easily seen that the
function ν ′(·) is supermodular. Next observe that r′(X ∪ e) > r′(X)
iff E − X contains no circuit with e as a member. Clearly, whenever
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Y ⊇ X, if E −X contains no circuit with e as a member neither will
E − Y contain a circuit with e as a member. Hence

r′(X ∪ e)− r′(X) ≤ r′(Y ∪ e)− r′(Y ).

This is equivalent to supermodularity of r′(·). The submodularity of
ν(·) follows since ν(X) =| X | −r′(X).

E 9.2: Let G be the graph on the vertex set {a, b, c, d} with edges
between (a, b), (b,
c), (c, d), (d, a). Let X = {b}, Y = {c, b}, Z = {a, b, c}. Observe that

k(Y ∪ a)− k(Y ) = 1,

k(X ∪ a)− k(X) = 0.

So k(·) cannot be submodular. On the other hand

k(Z ∪ d)− k(Z) = 0,

k(X ∪ d)− k(X) = 1.

So k(·) cannot be supermodular.

E 9.5:
i. This is immediate.

ii. Let the rank function of G×X be r”(·). It is easily verified that r”(·)
and r⋄X(·) are matroid rank functions (increasing, integral, submodu-
lar with zero value on ∅ and value not exceeding one on singletons). A
matroid rank function r(·) is fully determined by its independent sets
(sets on which r(Y ) = |Y |). So we need to show that r”(·) and r⋄X(·)
have the same independent sets. Now independent sets of r”(·) are the
circuit free sets of G ×X. Let Y ⊆ X. We know that this set contains
no circuit of G ×X iff for each Z ⊆ E(G)−X that contains no circuit
of G, Y ∪ Z contains no circuit of G, i.e., iff no circuit of G intersects
X in a subset of Y i.e., iff r(Y ∪ (E(G) − X)) = |Y | + r(E(G) − X)
i.e., iff r⋄X(Y ) = |Y |.
iii. This follows immediately from the above proof and the definition
of contramodular dual.

iv. Immediate from the definition of nullity function.
The remaining parts follow from the above through the use of Theorem
9.3.2 (i), (ii).
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E 9.6:
i. This is immediate from the definitions of restriction, contraction
and incidence functions of the relevant graphs.

ii. Let Y ⊆ X ⊆ V (G). Then, |I|⋄X(Y ) ≡ |I|((V (G) − X) ∪ Y ) −
|I|(V (G)−X)= the number of edges which are incident on Y but not
on V (G)−X. The result follows.

iii. This is immediate.

iv. We have,

|I|d(X) ≡ |I|(V (G))− |I|(V (G)−X).

= |E|(X).

v. Let X ⊆ V (G). We have

|I|∗(X) ≡ α(X)− |I|(V (G)) + |I|(V (G)−X).

= α(X)− |E|(X)

=
∑

v∈X

|I|(v)− |E|(X).

= |I|(X).

The remaining parts follow through the use of Theorem 9.3.2 (ii). on
the corresponding results for the incidence function.

E 9.7:

i. This is immediate.

ii. Let Y ⊆ X. Then |ΓL⋄X|(Y ) ≡ ΓL((VL −X) ∪ Y )− ΓL(VL −X),
i.e., the size of the set of vertices adjacent to Y but not in ΓL(VL−X).
This is clearly the size of the set adjacent to Y in B ⋄L X.

iii. This is immediate from the definitions of |(ΓL)fus.Π(·) and |ΓΠL|(·).
iv. Let X ⊆ VL. Then

|Γd
L|(X) = |ΓL|(VL)− |ΓL|(VL −X).

This is the size of the set of vertices which are adjacent to X but not
to VL −X i.e., the size of EL(X).



472 9. SUBMODULAR FUNCTIONS

The remaining parts follow by the use of Theorem 9.3.2 (ii) on the
above results.

E 9.8: The submodularity of these functions has already been shown
(Example9.2.10). That they are increasing and integral functions and
their values on singletons do not exceed 1 is clear.

E 9.9: The submodularity of all these functions has already been
shown (see the Solution of Exercise 9.1). It is clear that they all take
zero value on the null set. Except for the cut function all the functions
are monotone increasing. The cut function is symmetric i.e., its value
is the same on a set and its complement. So it cannot be monotone
increasing if the graph is not trivial.

E 9.10: Proof of Theorem9.5.1: We will consider only the poly-
matroid case, since the matroid case is an easy consequence. We have

µ∗(X) ≡
∑

e∈X

α(e)− [µ(S)− µ(S −X)].

(Note that α(·) satisfies α(e) ≥ µ(e) ∀e ∈ S). We have already seen
that µ∗(·) is submodular (Theorem 9.3.4).

• It is immediate from the definition that µ∗(∅) = 0

• Let Y ⊇ X. Since µ(·) is submodular and µ(∅) = 0, we have

µ(S −X)− µ(S − Y ) ≤
∑

e∈(Y −X)

µ(e).

Hence

µ∗(Y )− µ∗(X) ≡
∑

e∈Y −X

α(e)− [µ(S −X)− µ(S − Y )] ≥ 0.

Thus µ∗(·) is increasing.

• µ∗(e) ≥ 0 ∀e ∈ S, because µ∗(∅) = 0 and µ∗ is increasing.

Thus µ∗(·) is a polymatroid rank function.

2



9.11. SOLUTIONS OF EXERCISES 473

E 9.11:
i. It is easily verified that all these functions are submodular, increas-
ing, integral, take the value zero on the null set and zero or one on
singleton sets.

ii. Clearly this function is submodular, increasing , integral and takes
value zero on the null set.

iii. The statements about independent sets, bases and circuits are
all immediate from the definitions of these sets in terms of the rank
function and the definition of the notion of restriction.

iv. A set Y is independent inM×X iff

|Y | = r⋄X(Y ) = r((S −X) ∪ Y )− r(S −X).

Now it can be verified that, whenever Z is a base of M.(S −X),

r((S −X) ∪ Y )− r(S −X) = r(Z ∪ Y )− r(Z)

and r(Z) = |Z|. Hence Y is independent inM×X iff, whenever Z is
a base ofM.(S −X), we have

|Y |+ |Z| = r(Z ∪ Y ),

equivalently, we have Y ∪ Z independent in M. Noting that a base
is a maximal independent set, we find that, Y is a base of M×X iff
whenever Z is a base ofM.(S−X), Y ∪Z is a base ofM. But a base
of M.(S −X) is a maximal intersection of a base of M with S −X.
The desired result follows.

A circuit of a matroid can be seen to be a minimal set not contained
in any base of the matroid. A circuit of M×X is a minimal set not
contained in any minimal intersection of bases ofM with X. Suppose
C is a circuit of M with C ∩ X 6= ∅. Now C − X is independent in
M and hence is contained in a base b ofM.(S−X). If bX is any base
of M× X we know that b ∪ bX is a base of M which intersects X
minimally. Clearly b∪ bX cannot contain C. Hence no base ofM×X
can contain C ∩X. Hence C ∩X contains a circuit ofM×X. On the
other hand if C ′ is a circuit of M× X, it is seen from the definition
(in terms of rank) of such a circuit that C ′ ∪ Z, when Z is a base of
M.(S−X), contains a circuit ofM. Since Z contains no circuit ofM
it follows that C ′ contains the intersection of a circuit ofM with X.
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v. We have, B is a base ofM∗ iff

|B| = r∗(B) = r∗(S) = |S| − r(S).

Now r∗(B) = |B| − r(S) + r(S − B). Thus B is a base of M∗ iff
|S −B| = r(S −B) i.e., iff S −B is a base ofM.

vi. We have,

rd(X) ≡ r(S)− r(S −X) = r⋄X(X).

But by (iv) above we have, rank of M× X = r⋄X(X). The result
follows.
The remaining parts are consequences of Theorem 9.3.2 ((i), (ii)), when
applied to the above results.

E 9.12: A vector y belongs to Pf+x iff y(X) ≤ f(X)+x(X) ∀X ⊆ S
i.e., iff (y − x)(X) ≤ f(X) ∀X ⊆ S i.e., iff (y − x) ∈ Pf .

2

E 9.13:
i. Since r(∅) = 0,

r(X) + r(S −X) ≥ r(S).

Hence,
r(S)− r(S −X) = r′(X) ≤ r(X).

The proof for the ν(·) case is similar.

ii. Let b be any base of M. If X ⊆ S we have X ∩ b independent in
M and hence X ∩ b is contained in a base of M.X. Thus |X ∩ b| ≤
r(X). On the other hand X ∩ b contains a base of M× X. Hence
|X ∩ b| ≥ r′(X). Thus we can choose wr as follows. wr(e) = 1, e ∈ b
and wr(e) = 0, e /∈ b. Similarly it can be seen that choosing wν(·)
corresponding to a cobase would satisfy ν(·) ≥ wν(·) ≥ ν ′(·).
E 9.14:
i. Similar to the matroid case.

ii. Choose w to be a base of the polymatroid, i.e., a vector on S such
that w(X) ≤ ρ(X), X ⊆ S and w(S) = ρ(S). We then have

ρ(X) ≥ w(X) ∀X ⊆ S

ρ(S)− ρ(X) ≤ w(S)− w(X) ∀X ⊆ S.



9.11. SOLUTIONS OF EXERCISES 475

E 9.15: The functions in (i) and (ii) are special cases of the function
in (iii). The latter has already been shown to be submodular in the
solution to Exercise 9.1, Example 9.2.8. The symmetry follows by
definition. The function ξ(·) in (iv) is the sum of two submodular
functions. Further

ξ(S −X) = r(M.(S −X))− r(M × (S −X))

= r(M)− r(M ×X)− r(M) + r(M.X)

= ξ(X).

The function θ(·) in (v) is the sum of two submodular functions. The
symmetry follows by definition.

E 9.17: Only contramodular dualization (µd(X) ≡ µ(S)− µ(S −X))
preserves symmetry.

E 9.18: We need to show that

f(A) + f(B)− f(A ∪ B) ≥ f(X) + f(Y )− f(X ∪ Y )

X ⊆ A, Y ⊆ B,A ∩ B = ∅,
i.e., to show that,

f(A) + f(B) + f(X ∪ Y ) ≥ f(X) + f(Y ) + f(A ∪ B)

By using submodularity twice the LHS

≥ f(A ∪ Y ) + f(X) + f(B) ≥ f(X) + f(Y ) + f(A ∪ B).

as desired.

In the case of the cut function, c(A,B) is the sum of the weights of
edges with one end in A and another in B. But the set of edges with
one end in A and the other in B contains the set of edges with one end
in X and the other in Y . so the inequality is obvious in this case.

E 9.19:
i. Treat A as a single element and use Algorithm Symmetric on the
set (S − A) ∪ {A} and the corresponding version of g(·). If (X, Y ) is
the output of the algorithm either X or Y would contain A.

ii. Treat S −A as a single element.
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E 9.20: In the case of the cut function the algorithm goes through
without change if we define,

c(A,B) ≡ 1

2
(|cut|(A) + |cut|(B)− |cut|(A ∪ B))

≡ weight of the edges with one end point in A and the other in B.

and in the case of (|ΓL| − |EL|)(·)

c(A,B) ≡ 1

2
((|ΓL| − |EL|)(A) + (|ΓL| − |EL|)(B)− (|ΓL| − |EL|)(A ∪ B))

In the case of |ΓL|(·)

c(A,B) ≡ 1

2
(|ΓL|(A) + |ΓL|(B)− |ΓL|(A ∪ B))

≡ halfweight of vertices (of VR) adjacent to vertices in A and B.

Notice that both (|ΓL| − |EL|)(·) and |ΓL|(·) when processed by Al-
gorithm Symmetric will yield the same optimal set. But the c(A,B)
function is simpler in the case of |ΓL|(·).
E 9.21: Let µ(·) denote the function |cut|(·) on the vertex subset of
graph G. Then the desired weight function w : V −→ ℜ is defined by

w(v) ≡ µ(V )− µ(V − v)
≡ 0− µ(V − v)
≡ −(weight of edges incident on v).

Then µ(A) − w(A) = weight of edges with one endpoint in A + [
2(weight of edges with both endpoints in A) + (weight of edges with
only one endpoint in A) ] = 2|Γ|(A).

Thus minimising µ(·) over nonvoid proper subsets is the same as
minimising |Γ|(·) + 1

2
w(·) over such subsets. The latter is the same as

minimising |Γ|(X)− 1
2
w(V −X). Since −w(X) takes positive value on

each vertex, this latter can be posed as a sequence of flow problems.
The complexity is however worse than that of the Stoer - Wagner
algorithm (mainly because mincuts corresponding to X = S,X = ∅
must be avoided).
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9.12 Solutions of Problems

P 9.5: The maximum weight case. Let X ⊆ Y ⊆ E − e. We need
to show that

ρ(X ∪ e)− ρ(X) ≥ ρ(Y ∪ e)− ρ(Y )

Let tX , tY be the maximum weight forests of G.X,G.Y respectively.
Suppose e is not spanned by tY . Then it would not also be spanned
by tX . So in this case the inequality would be satisfied as an equality.
Next let e be spanned by tY . Then

ρ(Y ∪ e)− ρ(Y ) = w(e)− w(eY ) if w(e) > w(eY )

= 0, otherwise

where eY is the edge with least weight in the fundamental circuit of e
with respect to tY . If e is not spanned by tX then

ρ(X ∪ e)− ρ(X) = w(e)

and the inequality is satisfied. Suppose e is spanned by tX . Let eX be
the edge with least weight in the fundamental circuit of e with respect
to tX . Clearly if w(eX) ≤ w(eY ) the desired inequality is satisfied.
Suppose otherwise. Let e1, e2, . . . , ek be the edges in the fundamental
circuit of e with respect to tX . Of these edges let e1, . . . , er not belong
to tY and let er+1, . . . , ek belong to tY . Consider the fundamental
circuits C1, C2, . . . , Cr of e1, . . . , er with respect to tY . Now (C1 ∪C2 ∪
. . .∪Cr −{e1, e2, . . . , er})∪ {er+1, . . . , ek} span the edges {e1, . . . , ek}.
Hence they span the edge e. But the minimal set of edges in tY which
span e is the set of edges of tY which lie in the fundamental circuit Ce

of e with respect to tY . Hence each of Ce − e lies in one of the Ci or
is equal to one of er+1, . . . , ek. Now eY /∈ {er+1, . . . , ek} since we have
assumed that w(eX) > w(eY ). So eY belongs to one of the Ci say Cj.
But w(ej) ≥ w(eX) > w(eY ). This contradicts the fact that tY is a
maximum weight forest of the subgraph on Y .
The minimum weight case: Observe that it could happen that e is
spanned by tY but not by tX . Assume w(eY ) > w(e) > 0. So in this
case

ρ(X ∪ e)− ρ(X) = w(e) > ρ(Y ∪ e)− ρ(Y ) = w(e)− w(eY ).
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Suppose however e spanned by tY as well as tX . By the argument that
we used for the maximum weight case we must have w(eY ) ≤ w(eX).
Assume w(e) < w(eY ) < w(eX). In this case

ρ(X ∪ e)− ρ(X) = w(e)− w(eX) < ρ(Y ∪ e)− ρ(Y ) = w(e)− w(eY ).

Thus in general ρ(·) is neither supermodular nor submodular.

P 9.6: See the general solution of the submodular function case.
(Problem 9.12).

P 9.7: Routine generalization of the solution of Problem 9.5.

P 9.8: We need to show that

f(X)− f(X − {r}) ≥ f(Y )− f(Y − {r}), X ⊆ Y, r ∈ X

The following lemma contains the required proof.

Lemma 9.12.1 Let AZ be a submatrix of A on Z ⊆ R and all columns
of A. Let ÂZ be obtained from AZ by applying the Gram - Schmidt
orthogonalization procedure on the rows of AZ in the same order as
the order of the rows. Then

i. ÂZÂT
Z = DZ where DZ is a diagonal matrix with its jth diagonal

entry djj = square of the euclidian norm of the jth row of ÂZ.

ii. det(AZAT
Z) = det(ÂZÂT

Z) = det(DZ) =
∏

(djj).

iii. Let A1
Z be obtained from AZ by permuting the first (j − 1) rows

of the latter. Let D1
Z denote the diagonal matrix obtained from

A1
Z the way DZ is obtained from AZ. Then

(D1
Z)kk = (DZ)kk, k ≥ j.

iv. If r is the last (say tth) row of AZ, then

f(Z)− f(Z − {r}) = log(dtt).

v. Let Y ⊇ Z. Let r be the last, say sth, row of AY . If ÂY ÂT
Y = D′

Y

and Y has s rows then d′ss ≤ dtt.



9.12. SOLUTIONS OF PROBLEMS 479

Proof of the Lemma: We remind the reader that the Gram - Schmidt
orthogonalization procedure yields, while acting on the sequence of
vectors x1, . . . ,xt,

x̂1 = x1

x̂2 = x2 −
< x2, x̂1 >

< x̂1, x̂1 >
x̂1

...
...

x̂t = xt −
< xt, x̂t−1 >

< x̂t−1, x̂t−1 >
x̂t−1 − . . .−

< xt, x̂1 >

< x̂1, x̂1 >
x̂1

i. Since x̂1, . . . , x̂t are mutually orthogonal any matrix say ÂZ which
has these as rows will satisfy ÂZÂT

Z = DZ where DZ satisfies the
conditions specified in the statement (i) of the lemma.
ii. It is clear from the description of the procedure that ÂZ = (K)AZ

where K is a lower triangular matrix with 1s along the diagonal. Hence

det(ÂZÂT
Z) = det(K).det(AZAT

Z).det(KT )

= det(AZAT
Z)

But det(ÂZÂT
Z) = det(DZ) =

∏

(djj). Thus the result follows.

iii. This is a consequence of the previous parts of this lemma and the
Gram-Schmidt orthogonalization procedure.

iv. If r is the last say tth row of AZ , it is clear that

det(AZAT
Z)

det(AZ−rA
T
Z−r)

=

∏t
j=1 djj

∏t−1
j=1 djj

= dtt.

Hence
f(Z)− f(Z − {r}) = log(dtt).

v. We see that in the procedure

xt = x̂t +
< xt, x̂t−1 >

< x̂t−1, x̂t−1 >
x̂t−1 + . . .+

< xt, x̂1 >

< x̂1, x̂1 >
x̂1

ys = ŷs +
< ys, ŷs−1 >

< ŷs−1, ŷs−1 >
ŷs−1 + . . .+

< ys, ŷ1 >

< ŷ1, ŷ1 >
ŷ1
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Suppose the vector r occurs as the tth vector in the first case and the
sth vector in the second case and the first (t− 1) vectors are the same
in both expressions. Then the terms

< r, x̂t−1 >

< x̂t−1, x̂t−1 >
x̂t−1 + . . .+

< r, x̂1 >

< x̂1, x̂1 >
x̂1

denoted as α, appear in both expressions. Also x̂1, . . . , x̂s are orthog-
onal. Hence

< r, r >=< x̂t, x̂t > + < α, α >≥< ŷs, ŷs > + < α, α >

It follows that < x̂t, x̂t >≥< ŷs, ŷs >.
Equivalently, r is being decomposed into perpendicular vectors x̂t, α
in the first case, ŷs, β in the second, where α, β are the projections of
r onto subspaces say Vα,Vβ with Vα ⊆ Vβ. Hence

< x̂t, x̂t > ≥ < ŷs, ŷs > .

2

P 9.9: We observe that this is essentially the same as the previous
problem except that the underlying set has been changed from R to
T . However a natural way of identifying elements of R with those of
T is given in the problem.

P 9.10: By Binet - Cauchy Theorem det(AXAT
X) = sum of the squares

of nonzero major subdeterminants of AX , which is equal to number of
bases of the matroid associated with AX (since every subdeterminant
of A is 0,±1 ). The result follows from the solution to the previous
problem .

P 9.11:
i. Let X, Y ∈ D(x). We have

x(X) + x(Y ) = x(X ∪ Y ) + x(X ∩ Y )

Now ρ(·) is submodular. Suppose

ρ(X) + ρ(Y ) > ρ(X ∪ Y ) + ρ(X ∩ Y )

We then must have x(X ∪ Y ) > ρ(X ∪ Y ) or x(X ∩ Y ) > ρ(X ∩ Y ).
But this is impossible since x is an independent vector. Hence

ρ(X) + ρ(Y ) = ρ(X ∪ Y ) + ρ(X ∩ Y )
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and x(X ∪ Y ) = ρ(X ∪ Y ), x(X ∩ Y ) = ρ(X ∩ Y ).

ii. Let e ∈ sat(x)(≡ Z). If α > 0,

(x + αχe)(Z) > ρ(Z).

On the other hand if ∀α > 0 : x + αχe /∈ Pρ then there exists a
set Y ⊆ S s.t. e ∈ Y and x(Y ) ≥ ρ(Y ). Since x is independent we
conclude that x(Y ) = ρ(Y ) and e ∈ sat(x).

iii. As in (i).

iv(a) Let X, Y maximize θ(·). We have

θ(X) + θ(Y ) ≤ θ(X ∪ Y ) + θ(X ∩ Y ).

Hence the inequality can only be satisfied as an equality and θ(X∪Y ) =
θ(X ∩ Y ) = θ(X). An immediate consequence is that D′(x′) has a
unique maximal and a unique minimal member set.

iv(b) We have x(K) ≤ ρ(K) and x′(K) > ρ(K). Suppose x(K) <
ρ(K) then

x′(K)− ρ(K) < x′(Z)− ρ(Z)

where Z = sat(x). This is a contradiction. We conclude that x(K) =
ρ(K). Thus K ∈ D(x, e). Suppose K ⊃ L ∈ D(x, e). We must have

x′(L)− ρ(L) = x′(K)− ρ(K) = α.

Hence K would not be the minimal member of D′(x′). We conclude
that K is the minimal member of D(x, e) ie K = dep(x, e).

iv(c) Let K ≡ dep(x, e) and let K ′ denote the set in the RHS of the
equation in the statement. If x(e) = ρ(e), the statement is obvious
with dep(x, e) = {e}. So let x(e) < ρ(e) and let e′ ∈ K − e. Select α
s.t.

0 < α < ρ(L)− x(L) ∀L : e ∈ L,L /∈ D(x, e).

Now if x′′ ≡ x + α(χe − χe′), it is clear that x′′ ∈ Pρ. Hence K ⊆ K ′.
On the other hand if for some α > 0,x + α(χe − χe′) ∈ Pρ, we must
have e′ ∈ K as otherwise x′′(K) > ρ(K). Hence K ⊇ K ′.

P 9.12: We need to show that

ρ(X ∪ e)− ρ(X) ≥ ρ(Y ∪ e)− ρ(Y ), X ⊆ Y ⊆ S − e
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We note that we can use the greedy algorithm to compute the value
of ρ(·) on any set. Thus to compute ρ(X) we first order the elements
in X as ei1, . . . , eik such that

c(ei1) ≥ c(ei2) ≥ . . . ≥ c(eik)

We set

x(ei1) = f(ei1)

x(ei2) = f(ei1, ei2)− f(ei1)
... =

x(eik) = f(X)− f(X − eik)

Then,

ρ(X) ≡
k
∑

j=1

c(eij)x(eij) ≡
k
∑

j=1

(c(eij)− c(eij+1)(f(ei1, . . . , eij))

where c(eik+1) is taken to be zero. Let us now order the elements of
the set X,X ∪ e, Y, Y ∪ e according to their decreasing c(·) values. Let
the ordering be

(ei1, . . . , eik), (ei1, . . . , eir, e, eir+1, . . . , eik)

(ej1, . . . , ejq), (ej1, . . . , ejp, e, ejp+1, . . . , ejq)

We will adopt the convention that the elements of X,X ∪ e etc will
appear in the larger sets in the same order but possibly with additional
intermediate elements. We then have,
ρ(X ∪ e)− ρ(X)

= (c(e)− c(eir+1))(f(ei1, . . . , eir, e)− f(ei1, . . . , eir))

+(c(eir+1)− c(eir+2))(f(ei1, . . . , eir, e, eir+1)− f(ei1, . . . , eir, eir+1))
...

...

+c(eik)(f(X ∪ e)− f(X))
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and
ρ(Y ∪ e)− ρ(Y )

= (c(e)− c(ejp+1))(f(ej1, . . . , ejp, e)− f(ej1, . . . , ejp))

+(c(ejp+1)− c(ejp+2))(f(ej1, . . . , ejp, e, ejp+1)− f(ej1, . . . , ejp, ejp+1))
...

...

+c(ejk)(f(Y ∪ e)− f(Y ))

We observe that the elements eir+1, . . . , eik also occur among the above
elements ejp+1, . . . , ejq in the same order. Let



484 9. SUBMODULAR FUNCTIONS

eir+1 = ejp+s1

...
...

...

eir+t = ejp+st

...
...

...

eik = ejp+sk

We can therefore rewrite ρ(X ∪ e)− ρ(X) as

[(c(e)− c(ejp+1))(f(ei1, . . . , eir, e)− f(ei1, . . . , eir)) + . . .+

(c(ejp+s1−1)− c(ejp+s1))(f(ei1, . . . , eir, e)− f(ei1, . . . , eir))]

+ . . .+(c(ejp+sk)−c(ejp+sk+1))(f(X∪e)−f(X))+. . .+c(ejq)(f(X∪e)−f(X)).

Now we could compare the expansion for ρ(Y ∪ e)− ρ(Y ) and that for
ρ(X∪e)−ρ(X) term by term (identifying a product term by the expres-
sion (c(eje)− c(eje+1)) in the first bracket). But by submodularity the
expression in the second bracket of a product term of ρ(X ∪ e)− ρ(X)
will never be smaller than the second bracket expression of the corre-
sponding term of ρ(Y ∪ e)− ρ(Y ). Example

(f(ei1, . . . , eir, e)−f(ei1, . . . , eir)) ≥ (f(ej1, . . . , ejp, e)−f(ej1, . . . , ejp))

since {ej1, . . . , ejp} ⊇ {ei1, . . . , eir}, while the first bracket expression is
always nonnegative because of the way the elements have been ordered.
Thus

ρ(X ∪ e)− ρ(X) ≥ ρ(Y ∪ e)− ρ(Y )

as required.

P 9.13: Let f ′
1(·), f ′

2(·) be the extensions of f1(·), f2(·) induced by
Pf1 , P

d
f2

respectively. By Theorem 9.7.3 f ′
1(·), f ′

2(·) are convex (cup
like) and concave (cap like) functions respectively. We can associate
two convex regions E1, E2 in ℜ|S|+1 with f ′

1(·) and f ′
2(·) respectively

in the usual way: (c, x) ∈ E1 (E2), where c ∈ ℜS, x ∈ ℜ iff f ′
1(c) <

x (f ′
2(c) ≥ x). It is easily verified that these regions are convex. For



9.12. SOLUTIONS OF PROBLEMS 485

instance let (c1, x1), (c2, x2) ∈ E1. Then f ′
1(c1) < x1 and f

′
1(c2) < x2.

Hence

λf ′
1(c1) + (1− λ)f ′

1(c2) < λx1 + (1− λ)x2, 0 ≤ λ ≤ 1

ie f ′
1(λc1 + (1− λ)c2) < λx1 + (1− λ)x2

ie (λc1 + (1− λ)c2, λx1 + (1− λ)x2) ∈ E1.

We note that E1 is open because of the strict inequality in its definition
and also that E1 ∩ E2 = ∅. Further since f ′

1(0) = f ′
2(0) = 0 (by

definition) we must have (0, x) ∈ E1 iff x > 0 and (0, x) ∈ E2 iff x ≤ 0.

By the Separation Theorem we have a hyperplane H (which is the
set of all points in ℜ|S|+1 on which the functional g(·) in the separation
theorem takes the value t) separating E1 and E2. Clearly (0, 0) ∈
H and H is a linear subspace. Now if (c, x1), (c, x2) ∈ H we must
have x1 = x2. For the hypothesis implies that (0, x1 − x2) ∈ H , and
(0, x2 − x1) ∈ H . So neither (0, x1 − x2) nor (0, x2 − x1) belongs to
E1. Hence x1 − x2 ≤ 0 and x2 − x1 ≤ 0. We conclude x1 = x2.

Thus H induces a function w(·) on ℜ|S| through w(c) ≡ x iff (c, x) ∈
H . Since H is a linear subspace it is easy to verify that w(·) is a linear
functional. Further w(·) induces a modular function on 2S. For

w(χX) + w(χY ) = w(χX + χY )

= w(χX∪Y + χX∩Y )

= w(χX∪Y ) + w(χX∩Y ).

Next let (c, x1), (c, x0), (c, x2) belong respectively to E1, H,E2. We
must have x1 > x0. Otherwise (c, x0) ∈ E1 (by definition of E1), which
is a contradiction. Suppose x0 < x2. Then w(c, x2) 6= t as otherwise
(c, x2) ∈ H and x2 = x0. Hence w(c, x2) < t. Now w(c, x1) > t.
Hence w(c, λx1 + (1 − λ)x2) = t for some 0 ≤ λ ≤ 1. But then
x0 = λx1 + (1− λ)x2, which is impossible since x0 < x1, x2. Hence we
conclude that x1 > x0 ≥ x2. Thus f ′

1(c) ≥ w(c) ≥ f ′
2(c). Restricting

these functions to characteristic vectors of subsets of S we get the
desired result.

P 9.14: We first show that

∀X ⊆ S, r1(X)+ r2(S−X) ≥ max size of common independent set .
(9.7)
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Let T be a common independent set. Then

|T | = r1(X ∩ T ) + r2((S −X) ∩ T ) ≤ r1(X) + r2(S −X).

So the desired result (9.7) follows.

We will next construct a common independent set T whose size
equals r1(X) + r2(S − X) for an appropriate subset X. We will use
the Sandwich Theorem for this purpose. Consider the submodular and
supermodular functions r1(·), rd

2(·)
(where rd

2(X) = r2(S)−r2(S−X) ∀X ⊆ S). Let k be the least integer
for which r1(·) ≥ rd

2(·) − k. (Note that this means there exists some
X ⊆ S for which r1(·) = rd

2(·)− k). By Sandwich Theorem there is an
integral weight function h(·) such that

r1(·) ≥ h(·) ≥ rd
2(·)− k

It is clear that h(e) = 0 or1 on each e ∈ S. Let A be the support of
h(·). We have

r1(A) ≥ h(A) = |A|.
Therefore A is independent in the matroidM1. Next,

h(S −A) = 0 ≥ rd
2(S − A)− k

i.e., rd
2(S −A) ≤ k.

It follows that r2(A) ≥ r2(S)− k. But k is the least integer such that
r1(·) ≥ rd

2(·)−k.Hence there existsX ⊆ S such that r1(X) = rd
2(X)−k.

Therefore r2(A) ≥ r1(X) + r2(S −X) for some X ⊆ S. Let T ⊆ A be
independent inM2 with r2(A) = T . Now T is a common independent
set forM1 andM2 and we have

|T | = r2(A) ≥ minX⊆S r1(X) + r2(S −X).

Thus T is the maximum size common independent set.
Remark: The generalization of the above result is given in the next
chapter. The above technique has to be modified slightly to prove that
result.

P 9.15:
i. Let a /∈ S. Let g : 2S∪a −→ ℜ be defined as follows.

g(X ∪ a) ≡ f(X), X ⊆ S.
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g(X) ≡ f(S −X), X ⊆ S.

Observe that g(·) is symmetric, since if a /∈ Y, g(Y ) = f(S − Y ) =
g((S − Y ) ∪ a) and if a ∈ Y, g(Y ) = f(Y − a) = g(S − (Y − a)). For
proving that g(·) is submodular we consider a number of cases.

i(a) If X ⊆ Y ⊆ S and e /∈ Y, e 6= a.

g(X ∪ e)− g(X) = f(S −X − e)− f(S −X)

g(Y ∪ e)− g(Y ) = f(S − Y − e)− f(S − Y )

and f(S − Y )− f(S − Y − e) ≥ f(S −X)− f(S −X − e).
i(b) If X ⊆ Y ⊆ S and e = a.

g(X ∪ e)− g(X) = f(X)− f(S −X)

g(Y ∪ e)− g(Y ) = f(Y )− f(S − Y )

so we need to show

f(X)− f(Y ) ≥ f(S −X)− f.(S − Y )

Let Y −X = {e1, . . . , en}. We then have,

(f(X)−f(X∪e1))+f(X∪e1)−f(X∪e1∪e2))+. . .+(f(Y −en)−f(Y ))

≥ (f(S−X)−f(S−X−e1))+(f(S−X−e1)−f(S−X−e1−e2))+. . .
+(f(S − (Y − en))− f(S − Y )).

But this follows from the conditions of the problem.

i(c) If X ⊆ Y ⊆ S ∪ a and a ∈ X, e /∈ Y .

g(X ∪ e)− g(X) = f(X ∪ e− a)− f(X − a)

g(Y ∪ e)− g(Y ) = f(Y ∪ e− a)− f(Y − a)
So the desired inequality is immediate.

i(d) If X ⊆ Y ⊆ S ∪ a and a ∈ Y −X, e /∈ Y .

g(X ∪ e)− g(X) = f(S −X − e)− f(S −X)

g(Y ∪ e)− g(Y ) = f(Y ∪ e− a)− f(Y − a)
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Now f(S −X − e)− f(S −X) ≥ f(X ∪ e)− f(X) (given). But,

f(X ∪ e)− f(X) ≥ f(Y ∪ e− a)− f(Y − a)

since a ∈ Y −X. Thus the desired inequality holds.

Now the function g(·) is symmetric and submodular so that we can
apply Algorithm Symmetric to it. If g(·) reaches its minimum among
all nonvoid proper subsets of S∪a atX, eitherX or S∪a−X contains a.
So f(·) reaches its minimum atX−a or (S∪a−X). However g(·) might
reach its minimum at {a}. To avoid this eventuality minimize g(·) over
all subsets that contain {a, ei}, ei ∈ S. Repeat the minimization for
each ei.

ii. In this case we define g : 2S∪a −→ ℜ as follows.

g(X ∪ a) ≡ f(S −X), X ⊆ S.

g(X) ≡ f(X), X ⊆ S.

It can be seen that g(·) is symmetric and submodular by arguments
similar to those of the previous section of the present problem. We can
minimize g(·) over nonvoid proper subsets of S ∪ a, using Algorithm
Symmetric. If the minimum occurs at X, either X or S ∪ a − X,
does not contain a. Then f(·) reaches its minimum on that set. If
the minimum falls on S we use the strategy described in the previous
section of the present problem.



Chapter 10

Convolution of Submodular
Functions

10.1 Introduction

The operations of convolution and Dilworth truncation are funda-
mental to the development of the theory of submodular functions. In
this chapter we concentrate on convolution and the related notion of
principal partition. We begin with a formal description of the con-
volution operation and study its properties. Convolution is important
both in terms of the resulting function as well as in terms of the sets
that arise in the course of the definition of the operation. The prin-
cipal partition displays the relationships that exist between these sets
when the convolved functions are scaled. In this chapter, among other
things, we study the principal partitions of functions derived from the
original functions in simple ways such as through restricted minor op-
erations and dualization. We also present efficient algorithms for its
construction and specialize these algorithms to an important instance
based on the bipartite graph.

489
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10.2 Convolution

10.2.1 Formal Properties

Definition 10.2.1 Let f(·), g(·) : 2S −→ ℜ . The lower convolu-
tion of f(·) and g(·), denoted by f ∗ g(·), is defined by

f ∗ g(X) ≡ minY ⊆X [f(Y ) + g(X − Y )].

The collection of subsets Y , at which f(Y ) + g(X − Y ) = f ∗ g(X), is
denoted by Bf,g(X). But if X = S, we will simply write Bf,g.
The upper convolution of f(·) and g(·), denoted by f∗g(·), is de-
fined by

f∗g(X) ≡ maxY ⊆X [f(Y ) + g(X − Y )].

It is clear that

i. f ∗ g(·) = g ∗ f(·).

ii. if λ, σ ∈ ℜ then

(f(·) + λ) ∗ (g(·) + σ) = f ∗ g(·) + (λ+ σ).

iii. if x is a vector with all entries equal and the corresponding weight
function is denoted by x(·), then

(f(·) + x(·)) ∗ (g(·) + x(·)) = f ∗ g(·) + x(·).

We now have the following elementary but important result.

Theorem 10.2.1 (k) If f(·) is submodular (supermodular) and g(·) is
modular then
f ∗ g(·)(f∗g(·)) is submodular(supermodular).

We need the following lemma for the proof of the theorem.

Lemma 10.2.1 Let g(·) be a modular function on the subsets of S.Let
A,B,C,D ⊆ S such that A ∪ B = C ∪D, A ∩B = C ∩D. Then

g(A) + g(B) = g(C) + g(D).
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Proof: Both LHS and RHS in the statement of the lemma are equal
to

∑

e∈A∪B

(g(e)− g(∅)) +
∑

e∈A∩B

(g(e)− g(∅)) + 2(g(∅)).

2

Proof of the theorem: We consider only the submodular case. Let
X, Y ⊆ S. Further let

f ∗ g(X) = f(ZX) + g(X − ZX), f ∗ g(Y ) = f(ZY ) + g(Y − ZY ).

Then,

f ∗ g(X) + f ∗ g(Y ) = f(ZX) + g(X − ZX) + f(ZY ) + g(Y − ZY ).

We observe that, since ZX ⊆ X,ZY ⊆ Y,

(X − ZX) ∪ (Y −ZY ) = (X ∪ Y − (ZX ∪ ZY )) ∪ (X ∩ Y − (ZX ∩ZY ))

and

(X−ZX)∩ (Y −ZY ) = ((X ∪Y )− (ZX ∪ZY ))∩ (X ∩Y − (ZX ∩ZY )),

we must have, by Lemma 10.2.1,

g(X−ZX)+g(Y −ZY ) = g(X∪Y −(ZX∪ZY ))+g(X∩Y −(ZX∩ZY )).

Hence, f ∗ g(X) + f ∗ g(Y )
≥ f(ZX∪ZY )+f(ZX∩ZY )+g(X∪Y−(ZX∪ZY ))+g(X∩Y −(ZX∩ZY )).
Thus,

f ∗ g(X) + f ∗ g(Y ) ≥ f ∗ g(X ∪ Y ) + f ∗ g(X ∩ Y ),

which is the desired result.

2

Remark: It is clear that if g(·) is not modular, but only submodular,
then
g(X − ZX) + g(Y − ZY ) need not be greater or equal to
g(X ∪ Y − (ZX ∪ZY )) + g(X ∩Y − (ZX ∩ZY )). Thus the above proof
would not hold if g(·) is only submodular.

Henceforth we will confine our attention to lower convolu-
tion of submodular functions with submodular or modular
functions. The results can be appropriately translated for upper con-
volution in the supermodular case.
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Exercise 10.1 (k) If f(·), g(·) are both submodular, f ∗ g(·) is not
always submodular. Construct an example to illustrate this fact.

Exercise 10.2 (k) Show that in the following situations f ∗ g(·) is
submodular.

i. f(·)− f(∅) ≤ g(·)− g(∅),

ii. g(·) = f(·),

iii. f(·)− g(·) is monotonically decreasing (increasing).

Exercise 10.3
Let f1(·), f2(·) be increasing submodular functions and let g(·) be a non-
negative weight function. Show that

((f1 + f2) ∗ g)(·) = ((f1 ∗ g + f2 ∗ g) ∗ g)(·)

Exercise 10.4 (k) Show that Bf,g is closed under union and intersec-
tion, if f(·), g(·) are both submodular.

10.2.2 Examples

We now list, from the literature, a number of examples which are
related to the notion of convolution.

i. Hall’s Theorem(P.Hall [Hall35])
Hall’s Theorem on systems of distinct representatives states the fol-
lowing in the language of bipartite matching :‘Let B ≡ (VL, VR, E) be
a bipartite graph. There exists a matching meeting all the vertices in
VL iff for no subset X of VL we have |Γ(X)| < |X|’. This condition is
equivalent to saying ‘· · · iff (|Γ| ∗ | · |)(VL) = |VL|.’
ii. Dulmage - Mendelsohn decomposition of a bipartite graph
(Dulmage and Mendelsohn [Dulmage+Mendelsohn59])
The above mentioned authors made a complete analysis of all min cov-
ers and max matchings in a bipartite graph through a unique decom-
position into derived bipartite graphs. We present their decomposition
using the language of convolution.

Let B ≡ (VL, VR, E) be a bipartite graph. Let B1 denote the col-
lection of subsets of VL which minimize h1(X) ≡ |ΓL|(X) + |VL −X|,
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with ΓL(X) denoting the set of vertices adjacent to vertices in X.
Thus minX⊆VL

h1(X) = (|ΓL| ∗ | · |)(VL). We have seen (Exercise 10.4)
that B1 is closed under union and intersection. Let Xmin and Xmax

be the minimal and maximal sets which are members of B1. Then
Xmax − Xmin can be partitioned into sets Ni such that for any given
member of B1, each Ni is either contained in it or does not intersect
it, and further, the partition is the coarsest with this property. Let Π
be the partition whose blocks are Xmin, all the Ni and VL−Xmax. Let
us define a partial order (≥) on the blocks of Π as follows: Ni ≥ Nj

iff Nj is present in a member of B1 whenever Ni is present. For all
Ni, it is clear that Ni ≥ Xmin and VL − Xmax ≥ Ni. Next for each
block K of Π we build the bipartite graph BK as follows: Let IK be
the principal ideal of K (i.e., the collection of all elements (blocks of
Π) that are ‘less than or equal to’ K ) in the partial order. Let JK

be the union of all the elements in IK . Then BK is defined to be the
subgraph of B on K

⊎

(Γ(JK) − Γ(JK − K)). The partial order (≥)
induces a partial order (≥B) on the collection of bipartite graphs BK ,
K ∈ Π. The Dulmage -Mendelsohn decomposition is the collection of
all BK together with the partial order (≥B).

We now present the important properties of this decomposition.

• A set (VL − X)
⊎

Y ,X ⊆ VL,Y ⊆ VR is a minimum cover of B
(cover ≡ every edge of B is incident on some vertex of the set)
iff X is the union of blocks which are in an ideal of the partial
order (≥) and which are also contained in Xmax, and Y = Γ(X).

• Every maximum matching is incident on all the vertices in Γ(Xmax)
and VL −Xmin.

• A set of edges P is a maximum matching of B iff P =
⊎

K∈Π P
K,

where PK is a maximum matching of BK .

Exercise 10.5 (k) Show that |Γ|(X) ≥| X | ∀X ⊆ VL is equivalent
to
(|Γ|∗ | · |)(VL) =| VL |.
Exercise 10.6 Prove

Theorem 10.2.2 [König36] (König) In a bipartite graph the sizes of
a maximum matching and a min cover are equal.
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Exercise 10.7 (k) Prove the properties of the Dulmage - Mendelsohn
decomposition listed above.

iii. Decomposition of a graph into minimum number of sub-
forests (Tutte [Tutte61],Nash-williams [Nash-Williams61]).
Tutte and Nash-Williams characterized graphs which can be decom-
posed into k disjoint subforests as those which satisfy kr(X) ≥ |X|, ∀X ⊆
E(G). This condition can be shown to be equivalent to (kr ∗ | ·
|)(E(G)) = |E(G)|.
iv. The matroid intersection problem (Edmonds [Edmonds70],
[Lawler76])
Given two matroidsM1,M2 on S, find a maximum cardinality subset
which is independent in both matroids.

The size of the maximum cardinality common independent set =(r1∗
r2)(S).To find this set one can either use Edmond’s algorithm for this
purpose or find bases b1, b

∗
2 of M1,M∗

2, which are maximally distant.
(See the solution of Problem 9.14 and the matroid union algorithm in
the next chapter).

v. The matroid union problem
Given two matroids M1,M2 find the maximum cardinality union of
an independent set inM1 and an independent set inM2.

The collection of all unions of two sets, one independent inM1 and
the other inM2 is also a matroid denotedM1 ∨M2. Thus the maxi-
mum cardinality union of an independent set ofM1 and one ofM2 is a
base ofM1∨M2. There is the well known ([Edmonds65a],[Edmonds68])
matroid union algorithm for constructing this set. The rank function
of this matroid is ((r1 + r2) ∗ | · |)(·). The union of all circuits of this
matroid is the minimal set X which satisfies ((r1 + r2) ∗ | · |)(S) =
(r1 + r2)(X) + |S −X|.
vi. Representability of matroids (A.Horn [Horn55])
Horn showed that k independent sets of columns can cover the set of
all columns of a matrix iff there exists no subset A of columns such
that |A| > kr(A). He conjectured that this might be correct only for
representable matroids (i.e., for matroids which are associated with
column sets of matrices over fields). If the conjecture had been true
then there would have been a nice characterization of representability.
However Edmonds [Edmonds65a] showed that this result is true for all
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matroids. He gave an algorithm for constructing k bases of a matroid
whose union has the maximum cardinality. His results are equivalent
to saying that k bases will cover the underlying set S of a matroidM
iffMk (the union ofM with itself k times) has no circuits. The rank
function of this matroid is (kr ∗ | · |)(·). So the result can be stated
equivalently as ‘covering is possible iff (kr ∗ | · |)(S) = |S|’.

10.2.3 Polyhedral interpretation for convolution

We now show that the convolution operation is naturally polyhedral in
the sense that natural questions about submodular set polyhedra are
related to it [Edmonds70].

Theorem 10.2.3 i. Let f(·), g(·) be set functions on subsets of S.
Then

Pf ∩ Pg = Pf∗g

ii. If f(·), g(·) are submodular functions that take zero value on ∅
then f ∗ g(·) is polyhedrally tight. Equivalently,

f ∗ g(X) ≡ minY ⊆X(f(Y ) + g(X − Y )) = max(x(X)),

where x is a vector satisfying x(Z) ≤ f(Z), x(Z) ≤ g(Z) ∀Z ⊆
X. Further if f(·), g(·) are integral, then x can be chosen to be
integral.

Proof:
i. A vector x ∈ Pf∗g only if x(X) ≤ minY ⊆X(f(Y )+g(X−Y )) ∀X ⊆
S, i.e., only if x(X) ≤ f(X) and x(X) ≤ g(X) for every subset X of
S, i.e., only if x ∈ Pf ∩ Pg.

A vector x ∈ Pf ∩ Pg only if x(Y ) ≤ f(Y ) and x(X − Y ) ≤ g(X −
Y ) ∀Y ⊆ X ⊆ S, i.e., only if x(X) ≤ minY ⊆X⊆S(f(Y ) + g(X −
Y )) ∀X ⊆ S, i.e., only if x ∈ Pf∗g .

ii. Any submodular (supermodular) function that takes zero value on
the null set can be made into a polymatroid rank function by adding
a large enough weight function x(·) which takes the same value on all
singletons. In this case we know that

(f(·) + x(·)) ∗ (g(·) + x(·)) = f ∗ g(·) + x(·).
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Further the polyhedron with the above function is Pf∗g + x. Hence,
we need only to prove the required result for the case where f(·) and
g(·) are polymatroid rank functions. This we assume henceforth in the
proof.

Our proof follows Lovasz and Plummer [Lovász+Plummer86] and
uses the Sandwich Theorem (Theorem 9.7.4). We will exhibit a vector
x in Pf∗g such that x(Z) = f ∗g(Z) for a given Z ⊆ S. Since it is clear
that x(X) ≤ f ∗ g(X) ∀X ⊆ S, the result would follow.

Consider the (respectively) submodular and supermodular functions

f ′(X) ≡ min(k, f(X)), g′(X) ≡ max(0, k − g(Z −X)) ∀X ⊆ Z.

Choose k = minX⊆Z(f(X) + g(Z −X)) = f ∗ g(Z).

We claim that f ′(X) ≥ g′(X) ∀X ⊆ Z. If f ′(X) = k then this fact
is immediate. Otherwise let f ′(X) = f(X). We know that f(X) ≥
0.Let us assume therefore that g′(X) = k − g(Z − X). But f(X) +
g(Z −X) ≥ k.Hence f(X) ≥ k − g(Z −X).

Further, we observe that f ′(∅) = g′(∅) = 0 and that f ′(Z) = g′(Z) =
k = f ∗ g(Z).

Therefore, by the Sandwich Theorem (Theorem 9.7.4), there exists
a nonnegative weight function x(·) on subsets of Z such that f ′(·) ≥
x(·) ≥ g′(·) and f ′(Z) = x(Z) = g′(Z) = k. We then have x(X) ≤
f(X) for all X ⊆ Z, and since x(Z − X) ≥ k − g(X) for all X ⊆ Z,
we also have x(X) = x(Z)− x(Z −X) ≤ x(Z)− k + g(X) = g(X).

Thus the vector x corresponding to the weight function x(·) belongs
to Pf ∩ Pg = Pf∗g and further satisfies x(Z) = f ∗ g(Z).



10.3. MATROIDS, POLYMATROIDS AND CONVOLUTION 497

Further the Sandwich Theorem assures us that the vector x can be
chosen to be integral if f(·),g(·) are integral.

2

Exercise 10.8 (k) Let f(·) be a submodular function and let g(·) be a
weight function, i.e., g(X) ≡ ∑

e∈X g(e). It is natural to ask whether
the vector g whose components are g(ei), ei ∈ S, belongs to Pf . More
generally one could ask for a set X on which g(·) − f(·) reaches its
maximum. (If this value is less than or equal to zero, we know that g
belongs to Pf , otherwise we atleast know an inequality in the definition
of Pf which g fails to satisfy in the worst possible way). This latter
problem is called the membership problem of g over Pf . Show that
the above mentioned sets X are precisely those in Bf,g.

Exercise 10.9 (k) Let µ(·) be a submodular function. Let g(·) be
the weight function defined through g(e) ≡ µ(S − e) − µ(S). Let
f(·) ≡ µ(·) + g(·). In Problem 9.5.2 we saw that f(·) is a polyma-
troid rank function. Show that µ(·) reaches a minimum at X ⊆ S
iff X ∈ Bf,g. Thus minimization of a submodular function is
equivalent to solving the membership problem over a polymatroid.

10.3 Matroids, Polymatroids and Convo-

lution

In this section we relate matroids and polymatroids through the op-
eration of convolution. The first result given below contains one of
the most powerful ways of constructing matroid rank functions - by
convolving a polymatroid rank function with a weight function which
takes value 1 on singletons. The second result shows a way of regarding
polymatroid rank functions as obtained through fusion of the under-
lying set of a matroid rank function. Once again convolution plays an
important role.

Theorem 10.3.1 Let f(·), g(·) be arbitrary set functions on subsets of
S.

i. Then f ∗ g(X ∪ e)− f ∗ g(X)
≤ min[maxY ⊆X(f(Y ∪e)−f(Y )), maxY ⊆X(g(Y ∪e)−g(Y ))], X ⊆
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S, e ∈ S.

ii. Let f(·), g(·) be increasing. Then f ∗ g(·) is increasing.

iii. Let f(·), g(·) be integral. Then so is f ∗ g(·).

iv. (Edmonds [Edmonds70]) Let f(·) be an integral polymatroid rank
function and let g(·) = |·|.Then f∗g(·) is a matroid rank function.

Proof:
i. Let f ∗ g(X) = f(Z) + g(X − Z), where Z ⊆ X. Then

f ∗ g(X ∪ e) ≤ min[f(Z ∪ e) + g(X − Z), f(Z) + g((X − Z) ∪ e)].

The proof is now immediate.

ii. Let, without loss of generality ,

f ∗ g(X ∪ e) = f(Z ∪ e) + g(X − Z), Z ⊆ X, e ∈ (S −X).

But then

f ∗ g(X) ≤ f(Z) + g(X − Z) ≤ f(Z ∪ e) + g(X − Z).

iii. The proof is immediate from the definition of convolution.

iv. We need to show that f ∗ g(·) is an integral polymatroid rank
function that takes value atmost one on singletons. We have, f(·), g(·)
are increasing, integral, submodular, taking value zero on the null set
and further g(·) is a weight function with g(e) = 1 ∀e ∈ S. From
Theorem 10.2.1 it follows that f ∗ g(·) is submodular. It is clear that
f ∗ g(∅) = 0. The remaining properties for being a matroid rank
function follow from the preceding sections of the present theorem.

2

Exercise 10.10 (k) Let ρ(·) be an integral polymatroid rank function
on subsets of S. Characterize the independent sets and circuits of the
matroid rank function ρ∗ | · | .
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Matroid expansion of a polymatroid

It is clear that we would get a polymatroid rank function if we fuse the
elements of a matroid. Our next result shows that every polymatroid
rank function is obtained by fusing the elements of an appropriate
matroid.

Definition 10.3.1 Let f(·) be an integral polymatroid rank function
on subsets of a set S ≡ {e1, e2, · · · , en}. Let Ŝ be another set with
a partition {ê1, ê2 · · · , ên} and let r(·) be a matroid rank function on
subsets of Ŝ such that whenever X ⊆ {e1, e2, · · · , en}, we have,

f(X) = r(∪ei∈X êi).

Then r(·) is called a matroid expansion of f(·).
We will now show that every integral polymatroid rank function has a
matroid expansion.

For each ei, if f(ei) = ki, replace ei by ki copies of it, all in parallel,
and call the resulting set êi. Thus f(·) is extended to a submodular
function f̂(·) on subsets of Ŝ ≡ ∪êi (equivalently, f(·) is a restriction of
f̂(·)). Let | · | be the cardinality function on the subsets of Ŝ. By Theo-
rem 10.3.1 we know that f̂(·)∗|·| is a matroid rank function, say r(·) on
subsets of Ŝ. We will now show that r(·) is a matroid expansion of f(·).

Let X = {ei1 , · · · , eit} and let X̂ = êi1 ⊎ · · · ⊎ êit . We need to show
that

r(X̂) ≡ f̂ ∗ | · |(X̂) = f̂(X̂) ≡ f(X).

Now let f̂ ∗ | · |(X̂) = f̂(P ) + |X̂ −P |. The RHS of the above equation
is the minimum possible among all such sums. Thus P and therefore
X̂ − P must be the union of sets of the form êij (addition of parallel

elements to P does not increase the value of f̂(·) while decreasing the
value of the |X̂ − P | term). Further, (again since the RHS must be
minimum), we must have f̂(X̂ −P ) ≥ |X̂−P | as otherwise, since f̂(·)
is submodular and takes zero value on the null set, we must have

f̂(P ) + |X̂ − P | > f̂(P ) + f̂(X̂ − P ) ≥ f̂(X̂),
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which is a contradiction. On the other hand, by submodularity of f(·)
and by reason of its taking zero value on the null set, we must have

f̂(X̂ − P ) ≤
∑

êi⊆X̂−P

f̂(êi) = |X̂ − P |.

It follows that, f̂(X̂ − P ) = |X̂ − P |. Thus f̂ ∗ | · |(X̂) = f̂(P ) +
f̂(X̂−P ). The RHS of this equation must, using the above mentioned
properties of f̂(·), be greater or equal to f̂(X̂), and, by the definition
of convolution be less than or equal to it. We conclude that

r(X̂) ≡ f̂ ∗ | · |(X̂) = f̂(X̂) ≡ f(X).

Exercise 10.11 The matroid rank function r(·) has some unusual
symmetry properties: Any subset of êi behaves identically as any other
subset of êi that has the same cardinality. For instance if a circuit
(base) of the matroid defined by r(·) contains a k element subset of
êi it can be replaced by any other such k element subset of êi and the
resulting subset would remain a circuit (base).
Prove the above statements.

10.4 The Principal Partition

10.4.1 Introduction

The notion of principal partition (PP) is important because of the
structural insight it provides in the case of many practical problems
[Iri79b], [Iri+Fujishige81], [Iri83], [Iri84], [Fujishige91]. The literature
on this subject is extensive. The idea began as the ‘principal partition
of a graph’ [Kishi+Kajitani68] and was originally an offshoot of the
work on maximally distant trees (summarized in Lemma 14.2.1). The
extensions of this concept can be in two directions: towards making the
partition finer or towards making the functions involved more general.
Our present description favours the former approach and is based on
the principal partition of a matroid ([Narayanan74], [Tomizawa76]).
Thus, although we begin by defining the PP of (f(·), g(·)), where
f(·), g(·) are general submodular functions, most of the properties de-
scribed are for the case where g(·) is a strictly increasing polymatroid
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rank function. For structural results (as in Sections 10.4.5 and 10.4.6)
and algorithms (Section 10.6) we restrict ourselves to the important
practical case of g(·) being a positive weight function.

10.4.2 Basic Properties of PP

Definition 10.4.1 Let f(·), g(·) be submodular functions on the sub-
sets of a set S. The collection of all sets in Bλf,g

(i.e., the collection of

sets which minimize λf(X) + g(S −X) over subsets of S), ∀λ, λ ≥ 0,
is called the principal partition (PP) of (f(·), g(·)).
We denote Bλf,g

by Bλ when f(·), g(·) are clear from the context. We

denote the maximal and minimal members of Bλ by Xλ,Xλ, respec-
tively.

We now list the important properties of the principal partition of
(f(·), g(·)), where f(·) is a submodular function and g(·), a strictly
increasing polymatroid rank function on subsets of S.

Property PP1
(This property is valid even if g(·) is not strictly increasing.)
The collection Bλf,g, λ ≥ 0, is closed under union and intersection and
thus has a unique maximal and a unique minimal element.

Remark: For the remaining properties we assume f(·) to be submod-
ular and g(·) to be a strictly increasing (i.e., g(Y ) < g(X) ∀Y ⊂
X ⊆ S) polymatroid rank function.

Property PP2
If λ1 > λ2 ≥ 0, then Xλ1 ⊆ Xλ2 .

Definition 10.4.2 A nonnegative value λ for which Bλ has more than
one subset as a member is called a critical value of (f(·), g(·)).
Property PP3
the number of critical values of (f(·), g(·)) is bounded by |S|.
Property PP4
Let (λi), i = 1, · · · , t be the decreasing sequence of critical values of
(f(·), g(·)). Then, Xλi = Xλi+1

for i = 1, · · · , t− 1.

Property PP5
Let (λi) be the decreasing sequence of critical values. Let λi > σ >
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λi+1. Then Xλi = Xσ = Xσ = Xλi+1
.

Definition 10.4.3 Let f(·) be submodular and let g(·) be a strictly
increasing polymatroid rank function on subsets of S. Let (λi), i =
1, · · · , t be the decreasing sequence of critical values of (f(·), g(·)). Then
the sequence Xλ1 , Xλ2 , · · · , Xλt

, Xλt = S is called the principal se-
quence of (f(·), g(·)). A member of Bλ would be alternatively referred
to as a minimizing set corresponding to λ in the principal parti-
tion of (f(·), g(·)).
Remark 10.4.1 The principal sequence need not start with ∅. Con-
sider the function f(·) on subsets of {e} given by f(∅) = 1, f({e}) =
−2. It can be seen that the only critical value for this function is ∞
and the principal sequence has only the set {e}.

Proof of the properties of the Principal Partition

i. PP1: Define h(X) ≡ λf(X) + g(S −X) ∀X ⊆ S, λ ≥ 0. Observe
that the function g′(·), defined through g′(X) ≡ g(S − X) ∀X ⊆ S,
is submodular. So it is clear that h(·) is a submodular function. The
principal structure (i.e., the collection of subsets that minimize this
function) has been shown in Problem 9.2 to be closed under union and
intersection and thus to have a unique minimal and a unique maximal
set. But then the principal structure of h(·) is precisely the same as
Bλ.

ii. PP2: Observe that minimizing λif(X) + g(S −X), ∀X ⊆ S, λi ≥
0, i = 1, 2, is equivalent to minimizing f(X) + (λi)

−1g(S −X) ∀X ⊆
S, λi ≥ 0, i = 1, 2. (Here 0×+∞ is treated as zero). So we may take the
sets which minimize the latter expression to be the sets in Bλi

,i = 1, 2.
Define pi(X) ≡ f(X) + (λi)

−1g(S − X) ∀X ⊆ S, λi ≥ 0, i = 1, 2. As
in the case of hi(·), pi(·), i = 1, 2 is also submodular. Let Z1 minimize
p1(·). We will now show that p2(Z1) < p2(Y ) ∀Y ⊂ Z1. By Theorem
9.4.1, it would then follow that Z1 is a subset of every subset that
minimizes p2. In particular it would follow that Xλ1 ⊆ Xλ2 . Let
Y ⊂ Z1. We have,

p2(Z1) = p1(Z1) + ((λ2)
−1 − (λ1)

−1)g(S − Z1)

and
p2(Y ) = p1(Y ) + ((λ2)

−1 − (λ1)
−1)g(S − Y ).



10.4. THE PRINCIPAL PARTITION 503

Since g(·) is a strictly increasing submodular function, S−Z1 ⊂ S−Y
and
((λ2)

−1 − (λ1)
−1) > 0, we must have ((λ2)

−1 − (λ1)
−1)g(S − Z1)

< ((λ2)
−1 − (λ1)

−1)g(S − Y ). Since p1(Y ) ≥ p1(Z1), it follows that
p2(Y ) > p2(Z1).

iii. PP3: If Bλ has more than one set as a member then |Xλ| > |Xλ|.
So if λ1, λ2 are critical values and λ1 > λ2, by Property PP2, we must
have |Xλ1 | < |Xλ2|. Thus the sequence Xλi

, where (λi) is the decreasing
sequence of critical values cannot have more than |S| elements.

iv. PP4: We need the following lemma.

Lemma 10.4.1 Let λ > 0. Then, for sufficiently small ǫ > 0, the
only set that minimizes λ− ǫ is Xλ.

Proof of the Lemma: Since there are only a finite number of (f(X), g(S−
X)) pairs, for sufficiently small ǫ > 0 we must have the value of
(λ − ǫ)f(X) + g(S − X) lower on the members of Bλ than on any
other subset of S. We will now show that, among the members of
Bλ,X

λ takes the least value of (λ − ǫ)f(X) + g(S − X), ǫ > 0. This
would prove the required result. If λ is not a critical value this is
trivial. Let λ be a critical value and let X1, X

λ be two distinct sets
in Bλ. Since X1 ⊂ Xλ, we have, g(S − X1) > g(S − Xλ). But,
λf(X1) + g(S − X1) = λf(Xλ) + g(S − Xλ). So, λf(X1) < λf(Xλ).
Since λ > 0, we must have, −ǫf(X1) > −ǫf(Xλ), ǫ > 0. It follows
that, (λ− ǫ)f(X1) + g(S −X1) > (λ− ǫ)f(Xλ) + g(S −Xλ).

2

Proof of PP4: By Lemma 10.4.1, for sufficiently small values of
ǫ > 0, Xλi would continue to minimize (λi− ǫ)f(X) + g(S −X). As ǫ
increases, because there are only a finite number of (f(X), g(S −X))
pairs, there would be a least value ǫ1 at which Xλi and atleast one
other set minimize (λi− ǫ1)f(X)+ g(S−X). Clearly, the next critical
value λi+1 = λi − ǫ1. Since λi > λi − ǫ1, by Property PP2, we must
have Xλi ⊆ Xλi−ǫ1 . Hence we must have, Xλi = Xλi−ǫ1 = Xλi+1

, as
desired.

v. PP5: This is clear from the above arguments.

Exercise 10.12 (k) Show that the critical values have to be positive.
What are Xλ, Xλ when λ = +∞?
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Remark: All the properties hold in the case where f(·) is a strictly
increasing polymatroid rank function while g(·) is merely submodular.
Proofs are essentially the same except that while proving ‘if λ1 > λ2,
then Xλ1 ⊆ Xλ2 ’ we work with λ rather than (λ)−1.

Exercise 10.13 (k) Let f(·) be a submodular function on subsets of
S. We say (X, Y ) is a modular pair for f(·) iff

f(X) + f(Y ) = f(X ∪ Y ) + f(X ∩ Y ).

Let g(·) be a positive weight function on S. Show that if X, Y are in
Bλ with respect to (f(·), g(·)), then

i. (X, Y ) is a modular pair for f(·),

ii. Let f(e) ≤ g(e) ∀e ∈ S. Then, (S−X,S−Y ) is a modular pair
for f ∗(·) (the dual of f(·) with respect to g(·)).

A characterization of principal partition would be useful for justify-
ing algorithms for its construction. We will describe two such charac-
terizations in Theorems 10.4.1 and Theorems 10.4.6 below. The first
of these is a routine restatement of the properties for the case where
f(·) minimizes on the null set.

Theorem 10.4.1 Let f(·) be a submodular function on subsets of S
and let g(·) be a strictly increasing polymatroid rank function on S.
Let Bλ denote Bλf,g. Let λ1, · · · , λt be a strictly decreasing sequence of
numbers such that

i. each Bλi
, i = 1, · · · , t has atleast two members,

ii. Bλi
,Bλi+1

, i = 1, · · · , t− 1 have atleast one common member set,

iii. ∅ belongs to Bλ1, while S belongs to Bλt
.

Then λ1, · · · , λt is the decreasing sequence of critical values of (f(·), g(·))
and therefore the collection of all the sets which are member sets in all
the Bλi

, i = 1, · · · , t is the principal partition of (f(·), g(·)).
Proof: We note that, by definition, λ1, · · · , λt are some of the critical
values and, in the present case, ∅ = Xλ1 , Xλ2 , · · · , Xλt

, Xλt = S is a
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subsequence of the principal sequence. Let λ′1, · · · , λ′k be the critical
values and let Y0, · · · , Yk = S be the principal sequence of (f(·), g(·)).
Since the principal sequence is increasing, it follows that Y0 = ∅. By
Property PP2 of (f(·), g(·)), the only member set in Bλ, when λ > λ′1,
is Y0. Further when λ < λ′1, Y0 is not in Bλ. Hence λ1 = λ′1. Next by
Property PP5, when λ′1 > λ > λ′2, the only member in Bλ is Y1 which
is the maximal set in Bλ′

1
. Since Bλ2 has atleast two sets we conclude

that λ2 ≤ λ′2. We know that Bλ1 and Bλ2 have a common member
which by Property PP2 can only be Y1. But for λ < λ′2, by Property
PP5, Y1 cannot be a member of Bλ. Hence λ2 = λ′2. By repeating this
argument, we see that t must be equal to k and λi = λ′i, i = 1, · · · , t.

2

Remark 10.4.2 If the function f(·) does not minimize on the null
set, the only difference in the above theorem would be that the empty
set would be replaced by the minimal minimizing set of f(·).
Exercise 10.14 Let g(·) be a submodular function on subsets of S
and let f(·) be a positive weight function on S. Describe the principal
partition of (f(·), g(·)).
Exercise 10.15 What is the principal partition of a weight function
f(·) with respect to another weight function g(·)? How is it related to
the principal partition of g(·) with respect to f(·)?
Exercise 10.16 Let f(·), f2(·) be submodular functions on subsets of
S and let g(·) be a positive weight function on S.

i. Find the principal partition and critical values of

(a) (βf(·), αg(·)), where β, α > 0,

(b) ((f + αg)(·), g(·)), where α > 0.

ii. Let f3(·) be the comodular dual of f2(·) with respect to g(·). Show
that Bβf+f3,g = Bβf,f2.

Storing PP - Partial order representation of a distributive
lattice

We have seen that Bλ is closed under union and intersection, equiv-
alently, the elements of Bλ form a distributive lattice with join in
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place of union and meet in place of intersection. The number of ele-
ments in Bλ would be usually too large to store directly. Fortunately
there is a very simple representation [Birkhoff67] available, by which a
distributive lattice may be stored. We describe this below:

Let C be a collection of subsets of S closed under union and inter-
section. Let S be the union of all the sets in C. Define a preorder ‘�C ’
on the elements of S through ‘e1 �C e2 ∀e1, e2 ∈ S iff whenever e1
belongs to a member of C, e2 also belongs to it’.

Definition 10.4.4 The preorder ‘�C ’ and the partial order that it in-
duces on its equivalence classes are referred to as the preorder and
partial order associated with C.

Exercise 10.17 (k) Verify that �C is a preorder (and hence that its
equivalent classes partition S). As discussed in Subsection 3.6.7, the
preorder induces a partial order ≥ on this partition.

We remind the reader that an ideal of a preorder is a subset I of
the set over which the preorder is defined, with the property that
ei ∈ I,ei �C ej implies ej ∈ I.
We now show that the ideals of ‘�C ’ are precisely the members of C.

Let T be a member of C. Let e1 ∈ T . Suppose e1 �C e2. Then, we
have that whenever e1 belongs to a member of C, e2 will also belong
to it. Hence e2 ∈ T . Thus T is an ideal of C. Next, let I be an
ideal of ‘�C ’. By the definition of the preorder, every member of I
belongs to some set that is a member of C. Since C is closed under
intersection there is a unique minimal member say Te that contains a
given element e ∈ I. Now if e′ is any other element in Te we must
have, by the definition of the preorder and the unique minimality of
Te, that e �C e′. Hence Te ⊆ I. Since C is closed under union we have
that

⋃

e∈I Te is a set in C. But this latter set is clearly the same as I.

We observe that, in general, C might have size exponential in the
size of S. But the Hasse diagram contains atmost as many elements
as |S| and atmost O(|S|2) edges.

Example 10.4.1 Let M be the collection
{1, 2}, {2}, {1, 2, 3, 6}, {2, 3, 4, 6}, {1, 2, 3, 4, 6}, {2, 3, 6}.This collection
can be easily seen to be closed under union and intersection. The equiv-
alence classes of the preorder are {2}, {1}, {3, 6}, {4}. The Hasse dia-
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gram has {1} ≥ {2}, {3, 6} ≥ {2}, {4} ≥ {3, 6}.
Exercise 10.18 Prove

Lemma 10.4.2 (k) Let C be a collection of subsets of S closed under
union and intersection. Let C′ be the collection of complements of sets
in S. Then

i. C′ is closed under union and intersection.

ii. the preorders associated with C and C′ are duals of each other,

iii. the equivalence classes of the preorders are identical and the in-
duced partial orders are duals of each other.

The Partition - Partial Order Pair Associated with (f(·), g(·))

Each of the collections Bλ, in the the principal partition of (f(·), g(·))
(f(·) submodular, g(·), a strictly increasing polymatroid rank function)
is closed under union and intersection. Hence one can define preorders
for each of them, so that the ideals of the preorders are identical to the
members of the corresponding Bλ. For a given λ, it is clear that Xλ is
partitioned by the equivalence classes of the corresponding preorder.
(One of the blocks of this partition is Xλ, provided this set is nonvoid).
More conveniently,
let us denote by Nλ, the collection {X −Xλ : X ∈ Bλ}.
There is a one to one correspondence between sets in Bλ and sets in
Nλ, with union of the sets in the former being Xλ and of those in the
latter being Xλ−Xλ. Further Xλ in the former corresponds to ∅ in the
latter. Clearly Nλ is closed under union and intersection and induces
a preorder on the elements of Xλ −Xλ.
Let us denote by Π(λ), the partition of Xλ−Xλ, whose blocks are the
equivalence classes of the preorder induced by Nλ.
This partition is identical to that of Xλ induced by the preorder of
Bλ except that Xλ is omitted. Clearly the partitions induced in this
manner by all the critical values, if put together, constitute a partition
of S.
Let us denote by Πpp, the union of all the partitions Π(λ), λ a critical
value. We denote by �p, the preorder on elements in S induced by all
preorders of Nλ, λ a critical value, with the additional condition



508 10. CONVOLUTION OF SUBMODULAR FUNCTIONS

e2 �p e1 whenever e1 ∈ Xλ1 − Xλ1 ,e2 ∈ Xλ2 − Xλ2 , λ1 ≥ λ2. The
partial order induced on the blocks of Πpp by �p is denoted by ≥π.
The pair (Πpp,≥π) is referred to as the partition-partial order pair
associated with (f(·), g(·)). This partial order is refined later.

10.4.3 Symmetry Properties of the Principal Par-
tition of a Submodular Function

One of the attractive features of the principal partition is that, under
fairly general conditions, it preserves the symmetries of the original
structure. This fact is relatively easy to see if we use convolution
as the basis for the development. But it is somewhat less obvious if
we develop the idea of principal partition algorithmically (in terms of
maximally distant forests and generalizations for instance). Below we
formalize the notion of symmetry for a set function.

Definition 10.4.5 Let f(·) be a real valued function on the subsets
of S. An automorphism of f(·) is a bijection α : S −→ S such
that f(X) = f(α(X)) ∀X ⊆ S. A set X is invariant under α(·) iff
α(X) = X. Let ‘�Y ’ be a preorder on the elements of Y ⊆ S. We say
‘�Y ’ is invariant under α(·) iff

• Y is invariant under α(·),

• a �Y b iff α(a) �Y α(b).

A function g(·) is symmetric with respect to f(·) iff every automor-
phism of f(·) is also an automorphism of g(·).

Theorem 10.4.2 Let f(·) be a submodular function and let g(·) be a
strictly increasing polymatroid rank function on the subsets of S. If
g(·) is symmetric with respect to f(·), then,

i. the principal partition of (f(·), g(·)) is invariant under the auto-
morphisms of f(·) and

ii. (equivalently) the partition-partial order pair of (f(·), g(·)) is in-
variant under such automorphisms.
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Proof:
i. Let α(·) be an automorphism of f(·). We need to show

• a set in Bλ moves to another such set under α

• the sets in the principal sequence remain invariant under α(·).

We have that α(·) is a bijection on S. It is then immediate that X ⊆ Y
iff α(X) ⊆ α(Y ). Let X1 minimize λf(X) + g(S − X). Since g(·) is
symmetric with respect to f(·), we must have that g(S − α(X1)) =
g(S−X1). Hence α(X1) also minimizes the expression λf(X)+ g(S−
X). Thus the image of a set in Bλ is also in Bλ. Since α(·) is a
bijection, the sizes of these two sets must be the same. It then follows,
from the fact that Xλ is the unique minimal set minimizing the above
expression, that Xλ = α(Xλ). A similar argument shows that Xλ is
invariant under α.

ii. To show that the partition - partial order pair of (f(·), g(·)) is
invariant under α(·), we need to show

• a block of Π(λ) moves to another such block under α(·) and

• the partial order on these blocks induced by Bλ is invariant under
α(·).

We saw that α(·) is a bijection on S that leaves both Xλ and Xλ

invariant and further simply permutes the sets in Bλ preserving the
containment property. Now the blocks of Π(λ) are determined by the
member sets of Bλ (being the maximal subsets of Xλ which are not
‘cut’ by the member sets of Bλ,i.e., which lie entirely inside or entirely
outside these member sets). Hence a permutation of Bλ would deter-
mine a permutation of Π(λ). Next, (e1) ≥π (e2) iff every set in Bλ

containing (e1) also contains (e2) (denoting the equivalence class de-
termined by an element e by (e)). Now X contains an element e iff
α(X) contains α(e). Since α permutes the sets in Bλ it follows that
every set in this collection which contains α((e1)) also contains α((e2))
and hence α((e1)) ≥π α((e2)).

2
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10.4.4 Principal Partition from the Point of View
of Density of Sets

The principal partition gives information about which subsets are densely
packed relative to (f(·), g(·)). For instance if f(·) is the rank function
of a graph and g(X) ≡| X |, the sets of the highest density (the sets in
Bλm , where λm is the highest critical value) correspond to subgraphs
where we can pack the largest (fractional) number of disjoint forests.

Definition 10.4.6 Let f(·) be a submodular function which minimizes
on ∅ and g(·), a strictly increasing polymatroid rank function on subsets
of S. The density of X ⊆ S with respect to (f(·), g(·)) is the ratio
(g(S)− g(S −X))/(f(X)− f(∅)). The set S is said to be molecular
with respect to (f(·), g(·)) iff (f(·), g(·)) has only one critical value,
equivalently, iff it has ∅, S as the principal sequence. A set S that
is molecular is said to be atomic with respect to (f(·), g(·)) iff S
and ∅ are the only sets in Bλ, λ being the only critical value. A set
X ⊆ S is said to be molecular (atomic) with respect to (f(·), g(·)) iff
it is molecular (atomic) with respect to (f/X(·), g/X(·)).

The problem of finding a subset T of S of highest density for a
given (g(S)− g(S− T )) value would be NP hard even for very simple
submodular functions.
Example: Let f(·) ≡ rank function of a graph, g(X) ≡| X |. In this
case
g(S) − g(S − T ) =| T | and if we could find a set of branches of
given size and highest density we can solve the problem of finding the
maximal clique subgraph of a given graph. However, every set in the
principal partition has the highest density for its (g(S)−g(S−T )) value
(see Exercise 10.19) and further is easy to construct. This apparent
contradiction is resolved when we note that there may be no set of the
given value of (g(S)− g(S − T )) in the PP.

The idea of ‘density’ is natural for polymatroid rank functions. So,
in this subsection, we confine ourselves to such functions even though
the results can be generalized to arbitrary submodular functions.

Exercise 10.19
Let f(·), g(·) be polymatroid rank functions on subsets of S with g(·)
strictly increasing. Let T be a set in the principal partition of (f(·), g(·)).
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If T ′ ⊆ S s.t. g(S−T ) = g(S−T ′) and T ′ not in the principal partition
show that the density of T ⊆ S is greater than that of T ′.

Exercise 10.20 Let f(·), g(·) be polymatroid rank functions on subsets
of S with g(·) strictly increasing.

i. Show that S is molecular with critical value λ iff ((λf) ∗ g)(S) =
λf(S) = g(S).

ii. When S is molecular show that the critical value is equal to
g(S)/f(S).

iii. Show that S is molecular (atomic) iff S has the highest density
among all its subsets (has higher density than all its proper sub-
sets).

Remark 10.4.3 When the context makes (f(·), g(·)) clear we would
simply say S is molecular (atomic) instead of S is molecular (atomic)
with respect to (f(·), g(·)). Similarly while speaking of density.

* Alternative Development of PP

The following exercises constitute an alternative development of the
principal partition from the density based point of view. They are
included primarily to bring out an aspect of the analogy between prin-
cipal partition and the principal lattice of partitions (to be introduced
in the next chapter). They may therefore be omitted during a first
reading.

We need a preliminary definition.

Definition 10.4.7 Let f(·), g(·) be polymatroid rank functions on sub-
sets of S with g(·) strictly increasing.
A set T satisfies the λ-density gain (λ-density loss) condition with
respect to (f(·), g(·)), iff whenever T ′ ⊇ T (T” ⊆ T ), we have

g(S − T )− g(S − T ′)

f(T ′)− f(T )
≤ λ

g(S − T”)− g(S − T )

f(T )− f(T”)
≥ λ.
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We say that these conditions are satisfied strictly if the inequalities
above are strict.

Exercise 10.21
Let hλ(X) ≡ g(S − X) + λf(X), X ⊆ S, f(·), g(·) as defined in Defi-
nition 10.4.7. Prove

Theorem 10.4.3 i. If T ⊆ S satisfies the λ−density loss (λ−density
gain) condition, then there exists a subset T̂ of S such that T̂
minimizes hλ(·) over subsets of S and T̂ ⊇ T (T̂ ⊆ T ).

ii. If T ⊆ S satisfies the λ−density loss (λ−density gain) condition
strictly then whenever T̂ minimizes hλ(·) over subsets of S we

must have T̂ ⊇ T (T̂ ⊆ T ).

iii. A subset T of S satisfies both the λ−density gain condition and
λ−density loss condition iff it minimizes hλ(·) over subsets of S.

Exercise 10.22
Let hλ(X) ≡ g(S − X) + λf(X), X ⊆ S, with f(·), g(·) as defined in
Definition 10.4.7. If T1, T2 ⊆ S satisfy the λ−density gain (λ−density
loss) property with respect to (f(·), g(·)) then

hλ(T1 ∩ T2) ≤ hλ(Ti), i = 1, 2

(hλ(T1 ∪ T2) ≤ hλ(Ti), i = 1, 2)

Exercise 10.23
Let hλ(X) ≡ g(S − X) + λf(X), X ⊆ S, with f(·), g(·) as defined in
Definition 10.4.7. Using the above exercises show that if T1, T2 mini-
mize hλ(·), then so do T1 ∪ T2 and T1 ∩ T2.

Exercise 10.24
Let hλ(X) ≡ g(S −X) + λf(X), X ⊆ S, with f(·), g(·) as defined in
Definition 10.4.7. Let T1 minimize hλ1

(·), and let T2 minimize hλ2
(·)

with λ1 > λ2. Then T2 ⊇ T1.

An alternative to the last problem:

Exercise 10.25
Let hλ(X) ≡ g(S−X) +λf(X), X ⊆ S. Let f(·), g(·) be as defined in
Definition 10.4.7. Let T1, T2 minimize hλ1

(·), hλ2
(·) respectively over

subsets of S, with λ1 > λ2. Show that hλ2
(T1) < hλ2

(T ), T ⊂ T1 and
hence, T1 ⊆ T2.
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10.4.5 Principal Partition of f ∗(·) and f ∗ g(·)
In this subsection we show that the principal partitions of (f ∗g(·), g(·))
and (f ∗(·), g(·)) are closely related to that of (f(·), g(·)). In the case
of f ∗(·), the principal partition is ‘oppositely directed’ to that of f(·)
while in the case of f ∗ g(·), the principal partition remains identical
to that of f(·) above a certain critical value and below it, becomes a
set of coloops. Throughout, we take f(·) to be submodular on subsets
of S and g(·) to be a positive weight function on S. While studying
the case of f ∗ g(·), we further assume that f(∅) = 0.

We begin with some preliminary definitions.

Definition 10.4.8 Let f(·) be a submodular function on subsets of S
with f(∅) = 0. The function f(·) is said to be modular over X ⊆ S
iff (f/X)(·) is a modular function. The modular part of f(·) is the
union of all the separators 1 over which it is modular. Let g(·) be a
positive weight function on S. If e belongs to the modular part of f(·)
with f(e) = 0 (f(e) ≥ g(e)) it is called a self loop (a coloop with
respect to g(·)).
Remark:
i. When it is clear from the context, while speaking of coloops, we will
omit reference to the function g(·).
ii. In the case of a general submodular function, the above defini-
tion, where we insist that f(e) ≥ g(e), seems necessary since single
element separators, with value of f(·) greater or less than g(·), behave
differently in the PP of f ∗ g(·). In the case of a matroid, the g(·)
function one would normally work with would satisfy g(e) ≤ 1∀e ∈ S.
So coloops of the matroid (singleton separator with rank 1) would turn
out to be the same as the coloop with respect to g(·).
Lemma 10.4.3 Let f(·) be a submodular function on subsets of S,
minimizing on the null set, and let g(·) be a positive weight function
on S. Let f(e) ≤ g(e) ∀e ∈ S. Let C be the set of coloops of f(·) with
respect to g(·) and let L be the set of self loops of f(·). Then

i. every subset of L is a minimizing set in the principal partition of
(f(·), g(·)) corresponding to λ =∞ and further L is the maximal

1K is a separator iff f(K) + f(S −K) = f(S) (Section 9.6)
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such minimizing set.

ii. every set between S and S − C (both sets inclusive) is a mini-
mizing set corresponding to λ = 1 in the principal partition of
(f(·), g(·)). Therefore no critical value is less than 1.

iii. S − C is the minimal minimizing set corresponding to λ = 1 in
the principal partition of (f(·), g(·)).

Proof:
i. This is immediate from the fact that f(X) = 0 iff X ⊆ L.
ii. Since f(∅) = 0 we must have

f(X ∪ Y ) ≤ f(X) + f(Y ) ∀X, Y ⊆ S,X ∩ Y = ∅.

Now f(e) ≤ g(e) ∀e ∈ S. Hence

f(X) + g(S −X) ≥ f(X) + f(S −X) ≥ f(S).

Thus S is a minimizing set corresponding to λ = 1 . Now by the
definition of coloops and since f(e) ≤ g(e) ∀e ∈ S, it follows that if
K is a set of coloops then g(K)+f(S−K) = f(K)+f(S−K) = f(S).
Therefore S −K is a minimizing set corresponding to λ = 1. That no
critical value is less than 1 follows from Property PP2.
iii. Let Z be any such minimizing set. We must have f(Z)+g(S−Z) =
f(S). But the LHS cannot be lower than f(Z)+f(S−Z) ≥ f(S). Thus
the only way these conditions can be satisfied is to have f(S − Z) =
g(S − Z) and f(Z) + f(S − Z) = f(S). Thus S − Z must be a set of
coloops. Hence S − C is the minimal such minimizing set.

2

We now study the principal partition of (f ∗ g(·), g(·)) through the
following result.

Theorem 10.4.4 Let f(·) be a submodular function on subsets of S
with f(∅) = 0 and let g(·) be a positive weight function on S. Let p(X)
denote λ(f ∗ g)(X) + g(S − X) and let h(X) denote λf(X) + g(S −
X) ∀X ⊆ S.

i. When λ ≥ 1
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• The minimum values of p(·) and h(·) over subsets of S are
equal. If Y minimizes p(·) then it contains a subset Z that
minimizes h(·).
• Any set that minimizes h(·) also minimizes p(·).

ii. When λ > 1, Y minimizes p(·) iff it minimizes h(·).

iii. When λ ≥ 1 there is a unique minimal set that minimizes both
p(·) and h(·) and when λ = 1, this set is the complement of the
set of coloops of f ∗ g(·) with respect to g(·).

Proof:
i. By the definition of convolution,

(f ∗ g)(X) ≤ f(X) ∀X ⊆ S.

Hence, since λ ≥ 0, p(X) ≤ h(X) ∀X ⊆ S and minX⊆Sp(X) ≤
minX⊆Sh(X). Next, for any subset X of S, when λ ≥ 1 we have,

p(X) ≡ λ(f ∗ g)(X) + g(S −X)

= λ(f(Z) + g(X − Z)) + g(S −X) for some Z ⊆ X.

≥ λf(Z) + g(S − Z) ≡ h(Z),

i.e., any subset X of S contains a subset Z such that p(X) ≥ h(Z)
and p(X) cannot be less than the minimum value of h(·). We conclude
that

minX⊆Sp(X) = minX⊆Sh(X)

and that any set that minimizes p(·) contains a subset that minimizes
h(·). Let m denote this minimum value. Suppose Y minimizes h(·).
We then have,

m = λf(Y ) + g(S − Y ) ≥ λ(f ∗ g)(Y ) + g(S − Y ) ≥ m.

Thus Y must minimize p(·).
ii. (λ > 1) We need to show that if Y minimizes p(·) it also minimizes
h(·). We claim that in this case f ∗ g(Y ) = f(Y ), from which it would
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follow that the minimum value m = h(Y ). Suppose otherwise. Then,
we must have

m = p(Y ) ≡ λ(f ∗ g(Y )) + g(S − Y )

= λ(f(Z) + g(Y − Z)) + g(S − Y ) for some Z ⊂ Y

> λ(f(Z)) + g(S − Z) ≡ h(Z) ≥ m,

which is a contradiction. Thus we must have f ∗ g(Y ) = f(Y ) and
hence Y minimizes h(·).
iii. Since h(·) is clearly submodular (it is the sum of the submodular
function λf(Y ) and the submodular function g(S−Y )), we must have
the minimal minimizing set to be unique. From part (i) and (ii) above,
this set is also the unique minimal minimizing set of p(·), when λ ≥ 1.
We observe that f ∗ g(e) ≤ g(e) ∀e ∈ S. Hence it follows from Lemma
10.4.3 that when λ = 1, the minimal minimizing set of p(·) is the
complement of the set of coloops of f ∗ g(·) with respect to g(·).

2

The following corollary is now obvious.

Corollary 10.4.1 Let f(·) be a submodular function on subsets of S
with f(∅) = 0 and let g(·) be a positive weight function on S. Let λ ≥ 1.
Then,

(λ(f ∗ g) ∗ g)(·) = ((λf) ∗ g)(·).

From Theorem 10.4.4 it is clear that

for λ > 1, the sets in the principal partition of (f(·), g(·))
(f(·) submodular with f(∅) = 0, g(·), a positive weight
function) and in that of (f ∗ g(·), g(·)) are identical. The
least critical value of (f ∗g(·), g(·)) is 1 and the minimizing
sets for this value are the complements of subsets of coloops
of f ∗ g(·). For λ = 1, the minimal sets in the principal
partition of (f(·), g(·)) and in that of (f ∗g(·), g(·)) coincide
(see Figure 10.1).

The principal partition of (f(·), g(·)) may have critical values lower
than 1. But we lose this information when we construct the principal
partition of (f ∗ g(·), g(·)).
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We next study the principal partition of the dual. We have the
following result which summarizes the relation between the PP of
(f(·), g(·)) and that of (f ∗(·), g(·)) (see Figure 10.1).

Theorem 10.4.5 Let f(·) be a submodular function on the subsets of
S and let g(·) be a positive weight function on S. Let Bλ,B∗

λ denote
respectively the collection of minimizing sets corresponding to λ in the
principal partitions of (f(·), g(·)), (f ∗(·), g(·)), where f ∗(·) denotes the
dual of f(·) with respect to g(·). Let λ∗ denote
(1− (λ)−1)−1 ∀λ ∈ ℜ. Then

i. A subset X of S is in Bλ iff S −X is in B∗
λ∗,

ii. if λ1, · · · , λt is the decreasing sequence of critical values of (f(·), g(·)),
then λ∗t , · · · , λ∗1 is the decreasing sequence of critical values of
(f ∗(·), g(·)),

iii. if the principal sequence of (f(·), g(·)) is ∅ = X0, · · · , Xt = S,
then the principal sequence of (f ∗(·), g(·)) is ∅ = S−Xt, · · · , S−
X0 = S.

iv. the partitions associated with the principal partitions of both (f(·), g(·))
and (f ∗(·), g(·)) are identical but the partial orders are duals.

Proof:
i. We will show that Y minimizes λf(X)+g(S−X) iff S−Y minimizes
λ∗f ∗(X) + g(S −X). We have

λ∗f ∗(X) + g(S −X) = λ∗[
∑

e∈X

g(e)− (f(S)− f(S −X))] + g(S −X)

= λ∗f(S −X) + (λ∗ − 1)g(X)− λ∗f(S) + g(S).

This is equivalent to minimizing the expression λ∗(λ∗−1)−1f(S−X)+
g(X).Noting that λ∗(λ∗−1)−1 = λ we get the desired result. (We note
that when one of λ, λ∗ is 1, the other is to be taken as +∞.)

The remaining sections of the theorem are now straightforward. For
the last section however we need to use Lemma 10.4.2.

2
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10.4.6 The Principal Partition associated with Spe-
cial Minors

In general very little can be said about the relation between the prin-
cipal partition of f(·) with respect to a positive weight function g(·),
and the principal partitions of the contractions and restrictions of f(·)
with respect to g(·). For certain special cases the situation is better.
The following lemma allows us to study such cases.

Let hλ(X) denote λf(X) + g(S −X) ∀X ⊆ S,
hλK(X) denote λf(X) + g(K −X) ∀X ⊆ K,
hS−K,λ(Y ) denote λ(f ⋄ (S−K))(Y )+(g/(S−K))(S−K−Y ) ∀Y ⊆
(S −K).
We then have

Lemma 10.4.4 Let f(·) be a submodular function on subsets of S and
let g(·) be a positive weight function on S. Let K ⊆ S.

i. If hλK(·) minimizes at Z ⊆ K, then hλ(·) minimizes at a superset
of Z, i.e., Xλ in the principal partition of (f(·), g(·)), contains
Z.

ii. Y ⊆ (S − K) minimizes hS−K,λ(·) iff Y ∪ K minimizes hλ(·)
among all supersets of K. Hence, if in addition K minimizes
hλ(·), then Y ∪K minimizes hλ(·).

Proof:
i. We observe that, hλK(X) = hλ(X) − g(S −K) ∀X ⊆ K. Hence
hλ(Z) ≤ hλ(Z

′) ∀Z ′ ⊆ Z. We know that hλ(·) is submodular (see
proof of Property PP2). Hence by Theorem 9.4.1 the desired result
follows.

ii. We have, hS−K,λ(X) = λ(f(K∪X)−f(K))+g(S−K−X) ∀X ⊆
S −K. So Y ⊆ S −K minimizes hS−K,λ(·) iff Y ∪K minimizes hλ(·)
among all supersets of K.

2

The following corollary is immediate from the first part of the above
lemma.

Corollary 10.4.2 Let f(·) be a submodular function on subsets of S
and let g(·) be a positive weight function on S.
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Let S1 satisfy (λf) ∗ g(S1) = λf(S1). Then there exists a subset X1

of S such that X1 ⊇ S1 and X1 ∈ Bλf,g. Hence, Xλ, in the principal
partition of (f(·), g(·)), contains S1.

Exercise 10.26 Prove

Lemma 10.4.5 Let f(·) be a submodular function on subsets of S
and let g(·) be a positive weight function on S. Let K ⊆ S. We then
have

i. (f ∗ g)/K(X) = (f/K ∗ g/K)(X) ∀X ⊆ K,

ii. if f ∗ g(S −K) = f(S −K), then (f ∗ g) ⋄K(X) = (f ⋄K ∗ g ⋄
K)(X) ∀X ⊆ K.

Let f(·) be a submodular function on the subsets of S and let g(·)
be a positive weight function on S. Let (using the notation of Lemma
10.4.4) K minimize hβ and let P minimize hθ, with β ≥ θ. Let f1(·) ≡
(f ⋄ (S−K)/(P−K))(·) and let g1(·) ≡ (g/(P−K))(·).

We now describe

i. the principal partition of (f/K(·), g/K(·)),

ii. the principal partition of ((f ⋄ (S−K))(·), (g/(S−K))(·)),

iii. the principal partition of (f1(·), g1(·)).

i. Let B′
λ denote Bλf/K,g/K , and let Bλ denote Bλf,g as before. We

have, hλK(X) ≡ λf/K(X) + g(K − X) ∀X ⊆ K. So to determine
the principal partition of (f/K(·), g/K(·)), we need only determine the
subsets of K that minimize hλK(·). Now hλK(X) = hλ(X) − g(S −
K) ∀X ⊆ K. Since K itself minimizes hβ(·), the sets that minimize
hβK(·) are precisely those that minimize hβ(·) and are contained in K.
If λ > β we know that Xλ ⊆ K by Property PP2 of (f(·), g(·)). Hence
the sets that minimize hλK(·) are the same as those that minimize
hλ(·) . If, however λ < β, because K is in B′

β by Property PP2 of
(f/K(·), g/K(·)), the minimal set that minimizes hλK(X) must contain
K, i.e., be equal to it. To summarize,

• (λ = β). In this case B′
λ = {members of Bλ contained in K}.
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• (λ > β). In this case B′
λ = Bλ

• (λ < β). In this case B′
λ = {K}.

ii. We are given thatK is contained in Bβ associated with the principal
partition of (f(·), g(·)). Let us denote by B”λ the collection of minimiz-
ing sets for λ in the principal partition of ((f⋄(S−K))(·), (g/(S−K))(·)).
Now by Lemma 10.4.4, Y minimizes hS−K,λ(·) iff among all supersets
of K, K ∪ Y minimizes hλ(·). Since K belongs to Bβ, when λ = β,
these supersets are precisely those sets in Bβ that contain K. Thus
B”β = {Z−K,Z ∈ Bβ}. By Property PP2 of (f(·), g(·)) every set that
minimizes hλ(·), when λ < β, contains all sets in Bβ. So in this case the
desired supersets are all the members of Bλ, i.e., B”λ = {Z −K,Z ∈
Bλ}. Again by Property PP2 of ((f ⋄ (S−K))(·), (g/(S−K))(·)),
when λ > β, every set that is in B”λ is contained in all sets in B”β.
But the latter has ∅ as a member. To summarize

• (λ = β). In this case B”λ = {Z − K,Z ∈ Bβ , Z ⊇ K} =
{Z −K,Z ∈ Bβ}.

• (λ < β). In this case B”λ = {Z −K,Z ∈ Bλ}.

• (λ > β). In this case B”λ = {∅}.

iii.

Observe that when θ < β, P is a superset of K, and when θ = β,
P ∪ K is also a set in Bβ. So, without loss of generality, we need
only consider the situation where P ⊇ K. Now by applying the ideas
developed in the previous sections of the present problem we see that
the principal partition of (f1(·), g1(·)) can be described as follows (see
Figure 10.2):

• the critical values are those of the principal partition of (f(·), g(·))
that lie in the range β to θ, including both numbers,

• the minimizing sets corresponding to these critical values in the
principal partition of (f1(·), g1(·)) are precisely those sets (X ∩
P ) − K, where X is a minimizing set corresponding to these
critical values in the principal partition of (f(·), g(·)). Thus, if
B1

λ denotes Bλf1,g1 we have, when θ < β
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Figure 10.2: Comparison of PP of (f(·), g(·)), (f1(·), g1(·))

i. (β ≥ λ > θ). B1
λ = {X −K,X ∈ Bλ}

ii. (λ = θ). B1
λ = {(X ∩ P )−K,X ∈ Bλ}.

Further, when θ = β, B1
λ = {(X ∩ P ) −K,X ∈ Bλ} . Observe

that in this case P −K is molecular with respect to (f1(·), g1(·)).
It would be atomic if no set lies strictly between P and P ∩K
in Bβ( = Bθ), i.e., if P −K is a block in Π(β).

To describe the same situation in terms of the partition-partial order
pair, denoting the partition for (f1(·), g1(·)) by Π1 and the partial order
by ≥1, we have

• Π1 = {Z,Z ∈ Πpp, Z ⊆ P −K}

• a block in Π1 corresponds to a critical value λ in the PP of
(f1(·), g1(·)) iff it corresponds to λ in the PP of (f(·), g(·))

• the partial order ≥1 is the restriction of the partial order of
(f(·), g(·)) to Π1.

The next theorem is a useful characterization of the principal partition
using the foregoing ideas.
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Theorem 10.4.6 (Uniqueness Theorem) Let f(·) be a submodular
function on subsets of S and let g(·) be a positive weight function on
S. Let {S1, · · · , St} be a partition of S. Let S1 ∪ · · · ∪Sk be denoted by
Ek for k = 1, · · · , t. Let (f/Ek ⋄ (Ek−Ek−1))(·), (g/(Ek−Ek−1))(·) be
denoted by fk(·), gk(·) respectively for k = 1, · · · , t, and let the collec-
tion of minimizing sets corresponding to λ in the principal partition of
(fk(·), gk(·)) for k = 1, · · · , t, by Bk

λ.
Let Sk, for k = 1, · · · , t, be molecular with respect to (fk(·), gk(·)) with
critical value λk and let λ1 > · · · > λt . Then, for (f(·), g(·)),

i. the decreasing sequence of critical values is λ1, · · · , λt and ∅, E1, · · · , Et

is the principal sequence,

ii.

Bλk
= {Z,Z = Ek−1 ∪ Y, Y ∈ Bk

λk
}, k = 1, · · · , t,

where E0 ≡ ∅.

Proof:
We prove the theorem by induction on t. The result is obviously
true for t = 1. Let it to be true for t = n − 1. Let f ′(·), g′(·),
denote (f ⋄ (S− E1))(·), (g/(S− E1))(·), respectively and let B′

λ de-
note the minimizing sets corresponding to λ in the principal par-
tition of (f ′(·), g′(·)). By the use of Theorem 9.3.1 we know that
fk(·) = (f ′/(Ek − E1) ⋄ (Ek − Ek−1))(·) for k = 2, · · · , t and gk(·) =
(g′/(Ek −Ek−1))(·), for k = 2, · · · , t.

By the induction assumption it follows that for (f ′(·), g′(·)),

i. the decreasing sequence of critical values is λ2, · · · , λt and
∅, E2 − E1, · · · , Et −E1 is the principal sequence.

ii.

B′
λk

= {Z,Z = (Ek−1 − E1) ∪ Y, Y ∈ Bk
λk
}, k = 2, · · · , t.

We will use Lemma 10.4.4 and the notation adopted therein. Since
by Property PP2 of (f ′(·), g′(·)), ∅ is the only set that minimizes
hS−E1,λ1(·), we must have that hλ1(·) takes strictly lower value on E1

than on all its proper supersets. But E1 ∈ B1
λ1

. So by the lemma, E1
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is a subset of some set in Bλ1 . We conclude that E1 is the maximal
set that minimizes hλ1(·). Now if X ∈ B1

λ1
, the value of hλ1E1(·) is the

same on both X as well as E1. Hence the value of hλ1(·) is the same
on both these sets, i.e., B1

λ1
= Bλ1 . Since ∅ is in B1

λ1
(= Bλ1), λ1 must

be the highest critical value of (f(·), g(·)).
When λ < λ1, E1 is the only set in B1

λ and E1 is contained in every
set in Bλ, by PropertyPP2 of (f1(·), g1(·)) and (f(·), g(·)). Once again
by Lemma 10.4.4, Y ∪ E1 minimizes hλ(·) iff Y minimizes hS−E1,λ(·).
Thus Y ∪ E1 is in Bλ iff Y is in B′

λ. We now see that λ1, · · · , λt is a
strictly decreasing sequence of numbers such that each of the Bλi

has
atleast two members, Bλ1 has ∅ as a member, Bλt

has S as a mem-
ber and further the maximal member of Bλi

is the minimal member
of Bλi+1

,i = 1, · · · , t− 1. Hence, by Theorem 10.4.1, we conclude that
λ1, · · ·λt is the decreasing sequence of all critical values for (f(·), g(·))
and the Bλi

together constitute the principal partition of (f(·), g(·)).
Thus the proof is complete for t = n.

2

Problem 10.1 ([Fujishige80a], [Fujishige91]) Let f(·) be a submodu-
lar function on subsets of S ≡ {e1, · · · , en} and let g(·) be a positive
weight function on S. Let ∅ = E0, E1, · · · , Ek ≡ S be the principal se-
quence and let λ1, · · · , λk, be the decreasing sequence of critical values
of (f(·), g(·)). Let x be a vector defined by

x(ei) = g(ei)/λj, ei ∈ (Ej − Ej−1), j = 1, · · · , k.

Show that

i. x(Ei) = f(Ei), i = 1, · · · , k.

ii. x is a base of Pf (i.e., x(X) ≤ f(X) ∀X ⊆ S and x(S) =
f(S)).

iii. x is a F-lexicographically optimum base of Pf relative to
g(·), i.e., if x(e1)/g(e1) ≤ · · · ≤ x(en)/g(en), whenever x′ is a
base of Pf with x′(e′1)/g(e

′
1)

≤ · · · ≤ x′(e′n)/g(e′n) and t is the first index for which x(et)/g(et) 6=
x′(e′t)/g(e

′
t), then x(et)/g(et) > x′(e′t)/g(e

′
t).
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iv. the F-lexicographically optimum base is unique.

Problem 10.2 [Tomizawa+Fujishige82], [Fujishige91] Let f(·), g(·) be
submodular functions on subsets of S and further let g(·) be an in-
creasing function. This problem describes the structure of the principal
partition in this case.

i. Let σ ≥ 0.
Bf,σg is a distributive lattice. Hence, it has a unique maximal
element Y σ and a unique minimal element Yσ.

ii. If 0 ≤ σ1 < σ2, then Y σ1 ⊆ Y σ2 and Yσ1 ⊆ Yσ2.

iii. Let gd(X) ≡ g(S) − g(S − X) and let σ < 0. Then Bf,σgd is a
distributive lattice. Hence it has a unique maximal and a unique
minimal element.

iv. Let B·σ refer to Bf,σg, σ ≥ 0 and to Bf,σgd , σ < 0. If X1 ∈ B·σ1

and X2 ∈ B·σ2,σ1 < σ2, then X1 ∪ X2 ∈ B·σ2, X1 ∩ X2 ∈ B·σ1.
Hence, Yσ1 ⊆ Yσ2 and Y σ1 ⊆ Y σ2 .

10.5 *The Refined Partial Order of the

Principal Partition

We spoke earlier about the partial order (≥π) associated with (f(·), g(·))
(f(·) submodular, g(·), a positive weight function). The elements of
this partial order were the blocks of Πpp (maximal sets which are not
cut by any of the members of the Bλ). The ideals of the partial order
correspond to members of all the Bλ, i.e., correspond to the ‘solutions’
of minX⊆Sλf(X)+g(S−X) for all the λs. Suppose ∅, E1, · · · , Et is the

principal sequence of (f(·), g(·)), with E1 = Xλ1 , · · · , S = Et = Xλt .
The partial order relationship between blocks that lie entirely within
Ej+1 − Ej is determined by the family Bλj+1

while if A is a block

within Ej+1 − Ej and B a block within Er+1 − Er (r > j) we take
A ≥ B. It follows by the Uniqueness Theorem (Theorem 10.4.6) that
the principal partition and partial order would be unchanged even if
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we replace f(·) by ⊕kfk(·), where fk(·) is as defined in the Unique-
ness Theorem. Thus, the relationship (imposed by f(·)) between the
blocks corresponding to different critical values is not brought out by
the partial order (≥π).

Additional structure related to the principal partition is revealed if
we refine the partial order (but use the same partition Πpp) as described
below. This new partial order (≥R) contains all the ideals of (≥π)
and some more. It, therefore, has ideals which are not solutions of
minX⊆Sλf(X) + g(S −X). But, as we will see, if X1, X2 are ideals in
(≥R) the principal partition of f/X1⋄ (X1−X2)(·) relative to g/(X1−
X2)(·) is easy to describe. As in the case of (≥π) these ideals also
are modular with respect to f(·). Further, the ideals behave well with
respect to addition, dualization and convolution of functions.

Throughout this section we assume f(·) to be submodular and g(·)
to be a positive weight function.

We now informally describe the construction of this refined partial
order.

On the collection of blocks of Πpp contained in Xλ1 = Xλ2
, both the

partial orders (≥π) and (≥R) coincide. Suppose we have already built
the partial order (≥R) on the blocks contained in Xλk

. We extend it to
blocks in Xλk+1

as follows. Let X be a member of Bλk
. Then X−Xλk

is molecular with respect to
((f/X ⋄ (X−Xλk

))(·), (g/(X−Xλk
))(·)). To reach this structure we

restricted
f(·) to X and contracted out Xλk

. However, it may be possible to

achieve this structure by restricting on a smaller set Y ⊎ (X − Xλk
),

where Y ⊆ Xλk
, and contracting out Y . But we would insist that Y

be an ideal of the restriction of (≥R) (already defined) on blocks of
Πpp contained in Xλk

. It turns out that there is a unique smallest ideal

of (≥R) (restricted to the collection of blocks contained in Xλk
) with

the above property. We would take all the blocks contained in Y to
be below the maximal blocks contained in X. (For technical reasons
we insist on simpler but equivalent conditions which are brought out
in the following exercise). For blocks of Πpp within Xλk+1

− Xλk
, we

retain the same relationship as in (≥π).

Exercise 10.27
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(k) Let f(·) be submodular on subsets of S. Let T1 ⊇ T2 ⊇ T3.
If f(T2)− f(T2 − T3) = f(T1)− f(T1 − T3),
then (f/T1 ⋄T3)(X) = (f/T2 ⋄T3)(X), X ⊆ T3.

In the next couple of pages we give an inductive definition of the
refined partial order (≥R) associated with the principal partition of
(f(·), g(·)) (f(·) submodular, g(·), a positive weight function). Before
we can do so, however, we need a few preliminary definitions and a
lemma.

Let (≥′) be a partial order on the blocks of Πpp contained in Ek.
We say (≥′) is a modular refinement of (≥π) on the blocks of Πpp

contained in Ek iff

i. A ≥′ B ⇒ A ≥π B, and

ii. if Y1, Y2 are ideals of (≥′) then

f(Y1) + f(Y2) = f(Y1 ∪ Y2) + f(Y1 ∩ Y2).

(Note that the second condition above is satisfied by (≥π) (Exercise
10.13)).

Let (≥k) be a modular refinement of (≥π) over the blocks of Πpp

contained in Ek(= Xλk). Let X be a member of Bλk+1
. We say that

X − Ek is contraction related to a subset Y of Ek that is also a
union of the blocks in an ideal of (≥k) iff f((X − Ek) ∪ Y )− f(Y ) =
f(X ∪Ek)− f(Ek).

We then have the following lemma. (Henceforth we abuse the no-
tation and say ‘Y is an ideal of (≥)’ instead of ‘Y is a union of blocks
of Πpp in an ideal of (≥)’.)

Lemma 10.5.1 Let (≥k) be a modular refinement of (≥π) over the
blocks of Πpp contained in Ek. Let X1, X2, X3 be members of Bλk+1

s.t.

X1 ⊇ X2 and let Y1, Y2, Y3 ⊆ Ek be ideals of (≥k) such that Y3 ⊇ Y1

and X1 −Ek, X3 −Ek are contraction related to Y1, Y2.
Then

i. X2 − Ek is contraction related to Y1,

ii. X1 − Ek is contraction related to Y3,
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iii. X1 − Ek is contraction related to Y1 ∩ Y2,

iv. X1 ∪X3 −Ek is contraction related to Y1.

Proof : We use the following notation:
For each set Z, Ẑ ≡ Z − Ek.
i. We have

f(X̂1 ∪ Y1)− f(Y1) = f(X̂1 ∪Ek)− f(Ek).

Suppose
f(X̂2 ∪ Y1)− f(Y1) > f(X̂2 ∪Ek)− f(Ek).

(Note that by submodularity, LHS ≥ RHS).
We then have

f(X̂1 ∪ Y1)− f(X̂2 ∪ Y1) < f(X̂1 ∪Ek)− f(X̂2 ∪Ek),

which contradicts the submodularity of f(·). We conclude that X̂2 is
contraction related to Y1.

ii. Suppose

f(X̂1 ∪ Y3)− f(Y3) > f(X̂1 ∪Ek)− f(Ek).

We then have, using the fact that X̂1 is contraction related to Y1,

f(X̂1 ∪ Y3)− f(X̂1 ∪ Y1) > f(Y3)− f(Y1),

which contradicts the submodularity of f(·). Thus, X̂1 is contraction
related to Y3.

iii. Since, over the blocks of Πpp contained in Ek, (≥k) is a modular
refinement of (≥π) and Y1, Y2 are ideals of (≥k) we have

f(Y1) + f(Y2) = f(Y1 ∪ Y2) + f(Y1 ∩ Y2).

On the other hand

f(X̂1 ∪ Y1) + f(X̂1 ∪ Y2) ≥ f(X̂1 ∪ (Y1 ∪ Y2)) + f(X̂1 ∪ (Y1 ∩ Y2)).

Hence, (f(X̂1 ∪ Y1)− f(Y1)) + (f(X̂1 ∪ Y2))− f(Y2))

≥ (f(X̂1 ∪ (Y1 ∪ Y2))− f(Y1 ∪ Y2))

+(f(X1 ∪ (Y1 ∩ Y2))− f(Y1 ∩ Y2)).
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In this inequality, each of the two terms on the LHS is equal to the
first term on the RHS, all being equal to (f(X1 ∪Ek)− f(Ek), by the
second part of the present lemma.
Since by submodularity of f(·),

f(X̂1 ∪ Y1)− f(Y1) ≤ f(X̂1 ∪ (Y1 ∩ Y2))− f(Y1 ∩ Y2),

we conclude that

f(X̂1∪(Y1∩Y2))−f(Y1∩Y2) = f(X̂1∪Y1)−f(Y1) = f(X̂1∪Ek)−f(Ek).

iv. We have

f(X̂1 ∪ Y1)− f(Y1) = f(X̂1 ∪Ek)− f(Ek) (∗)

f(X̂3 ∪ Y1)− f(Y1) = f(X̂3 ∪ Ek)− f(Ek). (∗∗)
Now X̂1 ∪Ek, X̂3 ∪ Ek are sets in Bλk+1

. Hence,

f(X̂1∪Ek)+f(X̂3∪Ek) = f(X̂1∪X̂3∪Ek)+f((X̂1∩X̂3)∪Ek) (∗∗∗)

By submodularity of f(·), we have

f(X̂1 ∪ Y1) + f(X̂3 ∪ Y1) ≥ f(X̂1 ∪ X̂3 ∪ Y1) + f((X̂1 ∩ X̂3) ∪ Y1).

It follows using (∗), (∗∗), (∗ ∗ ∗), that

(f(X̂1 ∪ X̂3 ∪ Y1)− f(Y1)) + (f((X̂1 ∩ X̂3) ∪ Y1)− f(Y1))

≤ (f(X̂1 ∪ X̂3 ∪Ek)− f(Ek)) + (f((X̂1 ∩ X̂3) ∪ Ek)− f(Ek)).

But f(·) is submodular. So the above inequality must be satisfied as an
equality with the first and second terms on the LHS being respectively
equal to the first and second terms on the RHS. Thus,

f(X̂1 ∪ X̂3 ∪ Y1)− f(Y1) = f(X̂1 ∪ X̂3 ∪Ek)− f(Ek).

2

Corollary 10.5.1 Let X be a member of Bλk+1
. Then there is a

unique minimal ideal Y of the partial order (≥k) s.t. X − Ek is con-
traction related to Y.
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Proof : This is an immediate consequence of the third part of Lemma
10.5.1.

2

If Y is the minimal ideal of (≥k) such that X−Ek is contraction related
to it, we say X−Ek is properly related to Y . From the above lemma
it is clear that there is a unique such subset Y .

We are now ready to present the inductive definition of (≥R).
To begin with (≥1) is defined to agree with (≥π) on the blocks of Πpp

contained in E1 ≡ Xλ2
. Let (≥k) be a modular refinement of (≥π)

on the blocks contained in Ek ≡ Xλk+1
. We now extend the partial

order (≥k) to the partial order (≥k+1), which is a modular refinement
of (≥π) on the blocks of Πpp contained in Ek+1 ≡ Xλk+2

, as follows.

Let A,B be blocks of Πpp.

i. If A,B are contained in Ek then A ≥k+1 B iff A ≥k B.

ii. If A,B are contained in Ek+1 − Ek then A ≥k+1 B iff A ≥π B.

iii. If A is contained in Ek+1 − Ek and B is contained in Ek, then
A ≥k+1 B iff XA − Ek is properly related to YB ⊇ B, where XA

is the minimal member of Bλk+1
containing A and YB is a union

of blocks of an ideal of (≥k) defined over blocks contained in Ek.

Lemma 10.5.1 assures us that the above definition does yield a partial
order on blocks of Πpp contained in Ek+1 and further that this partial
order is a refinement of (≥π) over blocks of Πpp within Ek+1. It can be
verified that (see Exercise 10.28 below), if X1, X2 are unions of blocks
in an ideal of (≥k+1) then

f(X1) + f(X2) = f(X1 ∪X2) + f(X1 ∩X2).

The above procedure, therefore, extends to a unique partial order (≥R

)(≡ (≥t)) that is also a modular refinement of (≥π), on all the blocks
of Πpp. We refer to this partial order as the refined partial order
associated with the principal partition of (f(·), g(·)) (f(·) submodular,
g(·), a positive weight function).

Exercise 10.28 (k) Verify that if X1, X2 are unions of blocks in an
ideal of (≥k+1) then

f(X1) + f(X2) = f(X1 ∪X2) + f(X1 ∩X2).
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We now give a simple characterization of the partial order (≥R) asso-
ciated with (f(·), g(·)).
Theorem 10.5.1 Let λ1, · · · , λt be the decreasing sequence of critical
values of (f(·), g(·)) (f(·) submodular on subsets of S, g(·), a positive
weight function on S). A set X ⊆ S is an ideal of the refined partial
order (≥R) associated with (f(·), g(·)) iff it satisfies the following con-
ditions:

i. For each critical value λj, (X ∩Xλj+1
) ∪Xλj

is a set in Bλj

ii. Let X 6⊆ Xλj+1
. Then

f(X ∩Xλj+1
)− f(X ∩Xλj

) = f((X ∩Xλj+1
) ∪Xλj

)− f(Xλj
).

Proof : We denote Xλj (= Xλj+1
) by Ej, j = 1, · · · , t.

only if
Let X be an ideal of (≥R). Then X ∩ Ej is an ideal of (≥R),since
by definition Ej is an ideal of of (≥π) and therefore of (≥R) and the
intersection of ideals yields another ideal. We observe that any two
blocks of Πpp that lie in Ej −Ej−1 have the same relationship in both
(≥π) and (≥R). Let A be a block of Πpp in X∩(Ej−Ej−1). The blocks
of Πpp that are contained in (Ej−Ej−1) and that lie beneath A in (≥R)
must be identical to those beneath A in (≥π).
The remaining blocks beneath A in (≥π) are precisely those in Ej−1.
Thus,
(X ∩ (Ej − Ej−1)) ∪ Ej−1 is an ideal of (≥π) and therefore a member
of Bλj

. This

proves the first condition.
Next observe that Ej is an ideal of (≥R). Hence X ∩Ej is also an ideal
of (≥R). Since X ∩Ej is an ideal of (≥R), (by the inductive definition
of (≥R)) it follows that each block A of Πpp within X ∩ (Ej −Ej−1) is
contained in a minimal set XA of Ej s.t. XA−Ej−1 is properly related
to an ideal Y of (≥R) contained in X ∩ Ej−1. Hence, by the first part
of Lemma 10.5.1 it is clear that (XA − Ej−1) is contraction related to
X ∩ Ej−1. The union of all such sets (XA − Ej−1) is clearly equal to
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X∩(Ej−1−Ej). By the fourth part of Lemma 10.5.1 the latter set must
be contraction related to X ∩Ej−1. This proves the second condition.

if
Conversely, suppose X satisfies conditions (i) and (ii). We will show
that X is an ideal of (≥R).
We proceed inductively. It is clear that X ∩ E1 is a set in Bλ1

and

hence an ideal of (≥π) as well as (≥R). Suppose X ∩ Ek−1 is an ideal
of (≥R). We are given that (X ∩ Ek) ∪ Ek−1 is a set in Bλk

and also

that X ∩ (Ek −Ek−1) is contraction related to X ∩Ek−1. Hence, there
exists an ideal Y ⊆ X ∩Ek−1 of (≥R) s.t. X ∩ (Ek −Ek−1) is properly
related to Y . Now, if A is a block of Πpp in X ∩ (Ek−Ek−1), all blocks
beneath A in (≥R) which are in Ek−1 are contained in Y . Further, since
(X∩Ek)∪Ek−1 is an ideal of (≥π), all blocks of Πpp in Ek−Ek−1 which
are beneath A in (≥π) are contained in X ∩ (Ek −Ek−1). We conclude
that this is also true with respect to (≥R) since the relationship between
such blocks is identical both in (≥π) and (≥R). From the inductive
construction of (≥R) it is clear that (X ∩ (Ek −Ek−1)) ∪ Y is an ideal
of (≥R). Hence, ((X ∩ (Ek − Ek−1)) ∪ Y ) ∪ (X ∩ Ek−1) is an ideal of
(≥R), i.e., X ∩Ek is an ideal of (≥R). This completes the proof.

2

Exercise 10.29 (k) A base of a polymatroid rank function f : 2S →
R is a vector x on S s.t.

x(X) ≤ f(X) ∀X ⊆ S,

and x(S) = f(S).

We say a base is consistent with a preorder � (and with the induced
partial order on the equivalence classes of the preorder) iff x(X) =
f(X), whenever X is an ideal of � . Let (≥π) be the partial order and
(≥R) be the refined partial order associated with the principal partition
(f(·), g(·)) (g(·), a positive weight function). Let x be a base of f(·)
consistent with (≥π). Show that it is consistent with (≥R).

Exercise 10.30 Let (≥R) be the refined partial order and let Πpp be
the partition of S associated with the principal partition of (f(·), g(·))
where f(·) is submodular on subsets of S and g(·) is a positive weight
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function on S. Let X be the union of blocks of Πpp in an ideal of (≥R).
Describe the principal partition of (f/X)(·) and the partial orders as-
sociated with it.

Exercise 10.31 (k) Let f(·) be a submodular function on subsets of S
and let g(·) be a positive weight function on S. Let f ∗(·) be the dual of
f(·) with respect to g(·). Then the refined partial order of (f ∗(·), g(·))
is dual to the refined partial order of (f(·), g(·)).

10.6 Algorithms for PP

10.6.1 Basic Algorithms

In this subsection we give a collection of algorithms which together
would construct the principal partition of (f(·), g(·)), where f(·) is sub-
modular minimizing on the null set and g(·) is a positive weight func-
tion. The submodular functions may be available in various ways. One
common way is through a ‘rank oracle’ which when presented with a
subset would return the value of the function on it. We assume that we
have available an algorithm called ConvolveK (f1, f2) which, given sub-
modular functions f1(·), f2(·) on subsets of K, would output the unique
minimal and maximal sets (Minset(convolve) and Maxset(convolve) re-
spectively) which minimize f1(X) + f2(K − X) ∀X ⊆ K. In general
such an algorithm involves minimization of a submodular function.
Good algorithms are available for this general problem [Iwata01]. Fur-
ther, for the instances that are our primary concern in this book we
have very fast algorithms.

Informally, Algorithm 10.1 proceeds as follows. We start with the
set interval (∅, S). The subroutine, given below, breaks up the set
interval (∅, S) into (∅, Z) and (Z, S), where Z minimizes the expression

λf(X)+g(S−X), λ ≡ g(S)
f(S)−f(∅)

If for every set X between the endsets,

the value of λf(X)+g(S−X), does not exceed its value at the endsets
(= g(S) + λf(∅)), then we are done - the principal sequence is ∅, S
and the critical value is g(S)

f(S)−f(∅)
. Otherwise we find the minimal set,

say T , that minimizes the above expression. Now we work with the
intervals (∅, T ), (T, S) and look for minimizing sets within the interval
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in question. In each case we use a value of λ for which λf(X) +
g(T ′ −X), where T ′ is the right end of the interval, reaches the same
value at both ends of the interval. When we are unable to subdivide
the intervals any further we get a sequence of sets and a sequence of
values which, the Uniqueness Theorem (Theorem 10.4.6) assures us,
are respectively the principal sequence and the sequence of critical
values of (f(·), g(·)).
Subdividef,g(A,B)

INPUT A submodular function f(·) minimizing on the null set and a
positive weight function g(·)
on subsets of S. Sets A,B s.t. ∅ ⊆ A ⊆ B ⊆ S.

OUTPUTThe unique minimal minimizing set (Minset) A ⊎ Z for

λf(X) + g(B −X), A ⊆ X ⊆ B, where λ = g(B)−g(A)
f(B)−f(A)

.

STEP 1 λ← g(B)−g(A)
f(B)−f(A)

,

Let f ′(Y ) ≡ f(A ⊎ Y )− f(A),
Convolve(B−A) (λf ′, g)
Let Z be the Minset(convolve) of the output.
Output A ⊎ Z as the Minset.

STOP
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ALGORITHM 10.1 Algorithm P Sequence

INPUT A submodular function f(·) and a positive weight function g(·)
on subsets of S.

OUTPUTThe principal sequence of (f(·), g(·)).

Initialize Current Set Sequence ← (∅, S)

λ1 ← g(S)
f(S)−f(∅)

Current λ Sequence ← (λ1)
j ← 0
∅ is unmarked.

STEP 1 Let Current Set Sequence be (Sj
1, · · · , Sj

rj
) and

let Current λ Sequence be (λj
1, · · · , λj

rj−1).

If Sj
t 1 ≤ t ≤ rj − 1 is unmarked,
then Subdividef,g (Sj

t , S
j
t+1)

Else GOTO STEP 3.

STEP 2 Let
(Sj

1, · · · , Sj
rj

) ≡ (T1, · · · , Tq)

(λj
1, · · · , λj

rj−1) ≡ (λ1, · · · , λq−1)

Let T be the Minset output by Subdividef,g (Sj
t , S

j
t+1).

If T = Sj
t ,

then
j ← j + 1
rj ← q
(Sj

1, · · · , Sj
rj

)← (T1, · · ·Tq)

(λj
1, · · · , λj

rj−1)← (λ1, · · ·λq−1).

mark Sj
t

GOTO STEP 1;
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Else (T 6= Sj
t )

j ← j + 1
rj ← q + 1
Sj

i ← Ti, i ≤ t
Sj

t+1 ← T
Sj

i+1 ← Ti, t < i < rj

λj
i ← λi, i < t
λj

t ← λ′ = g(T )−g(Tt)
f(T )−f(Tt)

,

λj
t+1 ← λ” = g(Tt+1)−g(T )

f(Tt+1)−f(T )
,

λj
i+1 ← λi, t < i < rj − 1

The Current Set Sequence
(Sj

1, · · · , Sj
t , S

j
t+1, S

j
t+2, · · · , Sj

rj
)← (T1, · · · , Tt, T, Tt+1, · · · , Tq).

The Current λ Sequence
(λj

1, · · · , λj
t−1, λ

j
t , λ

j
t+1, λ

j
t+2, · · · , λj

rj−1)← (λ1, · · · , λt−1, λ
′, λ”, λt+1, · · · , λq)

GOTO STEP 1.

STEP 3 Output Current Set Sequence as the Principal Sequence and
Current λ Sequence as the Critical Value Sequence.

STOP

Next we consider the problem of construction of Bλf,g
. Since the

number of sets in this family is very large we would try to get a rep-
resentation of it through a partial order whose ideals correspond to
the members of the family. This is possible since Bλf,g

is closed under

union and intersection (see page 505). We assume we have available
an algorithm (easy to build) that, for a preorder � on S, if given
the collection F ≡ {(e, Te), e ∈ S}, Te ≡ {ej, ej � e}, produces the
Hasse Diagram of the induced partial order. We will call this algorithm
Hasse Diagram (F).

ALGORITHM 10.2 Algorithm Bλf,g

INPUT S ≡ {e1, · · · , en}. Submodular function f(·) and positive weight
function g(·) on subsets of S, λ ≥ 0.
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OUTPUTA preorder �λ whose ideals are precisely the members of Bλf,g
.

The preorder is specified through the Hasse diagram of the induced
partial order.

STEP 1 ConvolveS(λf, g)

Let Z be the Minset, Z ′ be the Maxset, Xλ ← Z, Xλ ← Z ′.

STEP 2 For each j, ej ∈ Z ′ − Z,
let f j(·) ≡ f/(S− ej)(·), gj(·) ≡ g/(S− ej)(·).
Convolve(S−ej)(λf

j, gj)
Let Zj be the Maxset.
{e, e �λ ej , } ≡ Z ′ − Zj.

STEP 3 Let F ≡ {(ej, Yj), Yj ≡ Z ′−Zj if ej ∈ Z ′−Z, Yj = Z ′ if ej ∈ Z }.
Hasse Diagram F .

STOP

Construction of (Πpp,≥π) is as described in page 507.

Remark 10.6.1 In Algorithm 10.2 we have found, for each element e
in S, the set of all elements �λ e. From this the Hasse Diagram of the
induced partial order has been built. An equivalent procedure would be
to find for each e in S, the set of all elements �λ e. Clearly from this
also the Hasse Diagram of the induced partial order can be constructed.
The set of all elements �λ e is obtained, when e ∈ Xλ, by finding the
minimal minimizing set for the function λf(X)+g(S−X), e ∈ X ⊆ S.
But this is precisely what the subroutine Subdividef,g({e}, S) does.

Justification for the PP algorithms

Justification for Algorithm P-sequence is directly by use of Uniqueness
Theorem (Theorem 10.4.6). For, at the end of the algorithm, we have
a sequence of sets and a sequence of critical values which satisfy the
conditions of the theorem. Algorithm Bλf,g

essentially involves, for
each e ∈ S, finding the largest member Ze of Bλf,g

, which does not
contain e. By the definition of the preorder associated with Bλf,g

, the
complement of Ze contains precisely those elements which are present
only in those members of Bλf,g

which have e present. If e ∈ Xλ, there
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is no member of Bλf,g
without e.

Complexity of the PP algorithms

The main subroutine is Convolve. So we will bound the number of
calls to it. In Algorithm P-sequence, at each stage we have a nested
sequence of sets. Hence the number of subdivisions is bounded by
| S | . Each call to Convolve either creates a subdivision or marks a
set. Marking a set Sj is equivalent to omitting (Sj , Sj+1) from further
consideration. Now Sj+1 − Sj must have had atleast two elements -
otherwise we could not have called Convolve. Thus, the total number
of calls to Convolve cannot exceed | S | .
Algorithm Bλf,g

requires | Z ′ − Z | +1 calls to Convolve. The total

number of critical values is bounded by | S | . Hence, for all the critical
values together we do not have to make more than 2 | S | calls to
Convolve.
Thus, building the principal partition as well as the partition, partial
order pair (Πpp,≥π) associated with the principal partition requires
0(| S |) calls to Convolve.

Remark: Note that we have assumed Convolve to be powerful since
it produces Minset and Maxset instead of just any set minimising
λf(X) + g(S − X). This however, appears valid for practical situa-
tions such as where f(·) ≡ rank function of a graph or a matroid and
g(·) ≡ a positive weight function.

Exercise 10.32
Speeding up the PP algorithm Let f(·) be a submodular function
on subsets of S and let g(·) be a positive weight function. Let X ⊆ S
and let e ∈ S − X. Let Tmax, Tmin denote the maximal and minimal
subsets that minimize f(Y ) + g(T − Y ) over Y ⊆ T. Prove that the
following hold.

i. (X ∪ e)min ⊇ Xmin,
(X ∪ e)max ⊇ Xmax.

ii. Let f(·) be increasing. Then (f ∗ g)(X ∪ e) = (f ∗ g)(X) iff
f(Xmax ∪ e) = f(Xmax).
Further, if (f∗g)(X∪e) = (f∗g)(X), then (X∪e)max = Xmax∪e.
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How would you use this fact for computing Smax efficiently when
f(·) is integral and f(S)≪| S | .

10.6.2 *Building the refined partial order given

(Πpp,≥π).

We remind the reader that Πpp is obtained by putting together the

partitions Π(λ) of Xλ − Xλ for each critical value λ. Each block of
Π(λ) is a maximal subset of S which is not ‘cut’ by members of Bλf,g

.

Each Bλf,g
is equivalent to a partial order on blocks of Π(λ). The overall

partial order (≥π) is built by putting together the partial orders (≥λ)
corresponding to the critical value λ and defining each block of Π(λ1)
to be above every block of Π(λ2) whenever λ2, λ1 are critical values
with λ2 < λ1. We use the same symbol for an ideal of (≥π)((≥R)) and
the union of blocks of Πpp contained in the ideal and use terms such
as ‘properly related’ (defined in page 530) for the latter also.

Let λ1 > · · · > λt be the decreasing sequence of critical values.
The partial orders (≥R) and (≥π) agree with each other over Π(λ1).
Suppose we have built (≥R) for Π(λ1)⊎ · · ·⊎Π(λk). For each block Aj

of Π(λk+1), let Ij be the principal ideal determined by Aj in (≥λk+1
).

Let Ij be properly related to Y where Y is an ideal of (≥R) (restricted
to Π(λ1)⊎ · · · ⊎Π(λk). Then the blocks beneath Aj in (≥R) are the
blocks in Y and the blocks in Ij.

We give an algorithm for computing Y below.

ALGORITHM 10.3 Algorithm Y
INPUT (≥R) over Π(λ1) ⊎ · · · ⊎Π(λk), Ij.

OUTPUTIdeal Y of (≥R) over Π(λ1) ⊎ · · · ⊎ Π(λk) s.t.
Ij is properly related to Y.

Initialize Current ideal X ← Xλk+1
.
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STEP 1 For each Bj in Π(λ1) ⊎ · · · ⊎ Π(λk), let
Uj ≡ {Bk, Bk ≥R Bj, Bk ⊆ Xλk+1

}
and if Ij is contraction related to X − Uj,
X ← (X − Uj).

STEP 2 Output the current ideal as Y.

STOP

Complexity of construction of refined partial order
To compute the principal ideal of Aj in the refined partial order, we
need to compute atmost | Πpp | Uj’s. For each Uj we need to compute
ranks f(X − Uj),
f(Ij ∪ (X − Uj)). Thus, O(| Πpp |) ranks have to be computed.
Hence, to compute the principal ideal for all the blocks Πpp, O(| Πpp |2
) Uj ’s have to be computed and O(| Πpp |2) ranks have to be computed.
We note that each Uj is a principal ideal in an appropriate partial order.

10.6.3 Algorithm ConvolveS(wR(ΓL), wL)

We must examine the algorithm ConvolveS(f, g) for two important
special cases:
i. f(·) ≡ wR(ΓL)(·), where ΓL is the left adjacency function of a
bipartite graph (VL, VR, E), wR(·) is a positive weight function on VR,
g(·) ≡ wL(·), a positive weight function on VL.

ii. f(·) ≡ r(·) rank function of a matroid, g(·) ≡| · |.
We study the former case in this subsection and relegate the latter to
the next chapter.

For the present instance

λf(X) + g(S −X) = λwR(ΓL)(X) + wL(VL −X). Let λ > 0.

As we saw for the case λ = 1 in the proof of Theorem 10.2.2, minimizing
the above function is equivalent to finding the min cut in the network
Nλ ≡ F (B,wL, λwR). For convenience we repeat the definition and
sketch the discussion given in Subsection 3.6.10. The flow graph is
built as follows: Each edge of the bipartite graph is directed from left
to right with capacity ∞. There is a source vertex s and a sink vertex
t. From s to each left vertex vL there is a directed edge of capacity
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wL(vL). From each right vertex vR there is a directed edge to t with
capacity λwR(vR). Using the facts that a mincut should not have
infinite capacity and that λ > 0, we can show that a mincut must have
the form

(s ⊎X ⊎ ΓL(X), t ⊎ (VL −X) ⊎ (VR − ΓL(X)))

(see Figure 10.3).

V1

VL−X

(X)L

R    V

V2 VR    

VR    

wL(V1)

*wR(VR)

wR(VR2
)*

 

− L (X)

2

s t

X

wL(V )2

Figure 10.3: Convolution through Flow Maximization

The capacity of this cut is wL(VL − X) + λwR(ΓL)(X). On the
other hand, given X̂, we can always build a ‘corresponding cut’ of
the above form whose capacity is given by the expression wL(VL −
X̂)+λwR(ΓL)(X̂). Thus, there is a one to one correspondence between
min cuts and sets X̂ which minimize the expression wL(VL − X) +
λwR(ΓL)(X). Any standard max flow algorithm would yield a mincut.
Finding the min cuts corresponding to the unique largest and unique
smallest minimizing set X̂ is also easy and does not cost additional
complexity as we have shown in the above mentioned subsection.

Exercise 10.33 The subroutine SubdivideK,S(λwR(ΓL), wL) involves
minimizing wL(VL −X) + λwR(ΓL)(X), K ⊆ X.
Show that this minimization is equivalent to solving a max flow problem
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in which the capacity of the edges in the flow graph F (B,wL, λwR) are
modified as follows: capacity of (s, v), v ∈ K is changed from wL(v) to
∞.

Exercise 10.34
Let B ≡ (VL, VR, E) and wL(·), wR(·) be positive weight functions on
VL, VR. Show that

i. Y ⊆ VL minimizes wR(ΓL(X)) + wL(VL −X)
iff (VR − ΓL(Y )) minimizes wL(ΓR(Z)) + wR(VR − Z)

ii. Y ⊆ VL is in B
(λwRΓL,wL)

iff VR − ΓL(Y ) ⊆ VR is in B( 1

λ
wLΓR,wR) (in the latter case the

underlying set is VR).

10.6.4 Example: PP of (|ΓL|(·), wL(·))

We illustrate how to construct a bipartite graph with a desired princi-
pal partition of (|ΓL|(·), wL(·)) and a desired refined partial order say
the one given in part (a) of Figure 10.4. Here (|ΓL|(·), wL(·)) are the
adjacency function and a positive weight function on the left vertex
set of a bipartite graph (VL, VR, E). We work with | · | but the same
ideas work for any wL(·).

We begin with a stock of ‘(|ΓL|(·), | · |) atomic bipartite graphs’ (i.e.,
bipartite graphs for which the principal partition of (|ΓL|(·), | · |) has
only two sets: ∅ and VL) of the specified critical value. If a connected
bipartite graph has a totally symmetric left vertex set, then it has
to be atomic with respect to (|ΓL|(·), | · |). The critical value for

such bipartite graphs equals |VL|
|VR|

. These bipartite graphs are seen in

part (b) of the figure if one ignores the dotted lines. Let us call these
bipartite graphs BA, BB1, BB2 , BB3 , BC1 , BC2 , BD1, BD2. We remind the
reader that the bipartite graph B.LX is defined to be the subgraph of
B on X ⊎ΓL(X) whereas the bipartite graph B⋄LX is defined to be the
subgraph on X ⊎ (ΓL(X ⊎ (VL−X)) - ΓL(VL−X)). Given a bipartite
graph B ≡ (VL, VR, E) with left adjacency function |ΓL|(·), the derived
bipartite graphs B.LX , B⋄LX , X ⊆ VL, have as left adjacency functions
|ΓL|/X(·) and |ΓL| ⋄X(·) (see Exercise 9.7). Let Si be one of the sets
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Figure 10.4: The Principal Partition and Refined Partial Order for
(ΓL(·), | · |)
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A,B1, · · · , D2 and let ISi be the set corresponding to the principal ideal
of Si relative to (≥R). We want the structure on Si to become atomic
with respect to the left adjacency function and the | · | function, in the
bipartite graph (B.LISi

)⋄LSi,. Thus, for instance, (B.L(C1∪B3∪B1))⋄LC1

must be the same as BC1 (the bipartite graph on C1 ⊎ ΓL(C1) when
the dotted lines are removed). If the original bipartite graph has edges
from the left vertex set C1 to the right vertex set of BB3 , then unless the
ideal B3∪B1 is contracted we would be unable to get the desired atomic
structure on C1. We therefore force this, since we want C1 ≥R B1, B3,
and attach such (dotted) edges. This procedure, if carried out for each
of the sets A, · · · , D2, results in the bipartite graph with additional
dotted edges shown in part (b) of the figure. Conversely the latter
bipartite graph has the principal partition and refined partial order
given in part (a) of the figure. It should be clear from this example
that we can build a bipartite graph with any desired refined partial
order by using the above procedure.
The Hasse Diagram for the partial order (≥π) can be obtained from
part (a) of the figure by adding the following additional lines:
(D1, C2), (D2, C1), (C1, B2), (C2, B2), (B1, A) and deleting (B2, A).

Observe that the principal partition and refined partial order carry
more information than the Dulmage-Mendelsohn decomposition. The
latter would show the partial order on B1, B2, B3 but lump all of
D1, D2, C1, C2 and also lump all elements corresponding to λ > 1.

Exercise 10.35 What is the significance of an atomic (|ΓL|, | · |)
structure for a critical value λ 6= 1?

Exercise 10.36 Verify the following simple rules for building atomic
structures relative to (|ΓL|(·), k | · |) where |ΓL|(·) is the adjacency
function acting on the left vertex set of a bipartite graph (VL, VR, E)
and k is any positive number. We say ‘atomic bipartite graph’ to be
brief.

i. Any connected bipartite graph in which the left vertex set is totally
symmetrical is atomic.

ii. Build two atomic bipartite graphs on the same left vertex set.
Merge corresponding left vertices. The result is an atomic bipar-
tite graph.
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iii. Start with an atomic bipartite graph. Replace each left (right)
vertex by m copies. The result is an atomic bipartite graph.

iv. Start with an atomic bipartite graph and interchange left and
right vertex sets. This yields an atomic bipartite graph.

10.7 *Aligned Polymatroid Rank Func-

tions

In this section we deal with situations where certain submodular func-
tions have strongly related principal partitions and these relations carry
through under special operations. We show that if we perform these
operations on a single polymatroid rank function the principal parti-
tion is relatively unaffected. Our ideas culminate in Theorem 10.7.5,
where we show that a polymatroid obtained from another through a
‘positive’ or ‘negative’ expression is ‘aligned ’ to the original. Since the
ideas of this section, though useful, are not standard, they are stated
in the form of problems.

Definition 10.7.1 Aligned polymatroid rank functions with re-
spect to a positive weight function Let f0(·), f1(·) be polymatroid
rank functions on subsets of S and let g(·) be a positive weight function
on S. Let Bi

λ, i = 0, 1, denote the collections of sets in the principal
partition of (fi(·), g(·)), i = 0, 1, corresponding to λ. We say f0(·), f1(·)
are aligned with respect to g(·) iff

i. The set of self loops of one of the polymatroid rank functions
f0(·), f1(·) is contained in that of the other polymatroid rank func-
tion. Similarly, the set of coloops relative to g(·) of one of the
functions f0(·), f1(·) is contained in that of the other.

ii. Every set in the principal sequence of one of the functions, which
contains the set of selfloops of both the functions and does not
intersect the coloops of either function is a set in the principal
sequence of the other function.

iii. Whenever X ⊆ S
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• contains the set of self loops of one of the functions say fi(·),
• does not contain any of its coloops,

• and X ∈ Bi
λi

for some λi

then X ∈ Bj
λj

for some λj, where j = i+ 1 mod 2.

In general the property of being aligned is not transitive.With some
additional conditions however, as illustrated in the next problem,it is.

Problem 10.3 Definition 10.7.2 Let f0(·), f1(·) be polymatroid rank
functions on subsets of S and let g(·) be a positive weight function on
S. If f0(·), f1(·) are aligned with respect to g(·), and further every self
loop of f0(·) is a self loop of f1(·) and every coloop relative to g(·) of
f0(·) is a coloop relative to g(·) of f1(·) then we say that the principal
partition of (f1(·), g(·)) is coarser than that of (f0(·), g(·)). and that
the principal partition of (f0(·), g(·)) is finer than that of (f1(·), g(·)).

Prove

Theorem 10.7.1 Let f0(·), f1(·), f2(·), be polymatroid rank functions
on subsets of S and let g(·) be a positive weight function on S. If
f0(·), f1(·) and f1(·), f2(·) are aligned with respect to g(·), and the prin-
cipal partition of (f0(·), g(·)) is finer than that of (f1(·), g(·)) which in
turn is finer than that of (f2(·), g(·)) then f0(·), f2(·) are aligned with
respect to g(·) and further the principal partition of (f0(·), g(·)) is finer
than that of (f2(·), g(·)).
Solution: Proof of Theorem 10.7.1: We have,

• the set of self loops of f0(·) is contained in that of f1(·) which in
turn is contained in the set of self loops of f2(·) and

• the set of coloops of f0(·) is contained in that of f1(·) which in
turn is contained in the set of coloops of f2(·).

The alignedness of f0(·), f2(·) now follows if the second and third parts
of its definition is satisfied. It is easy to verify that the part of the
definition of alignedness about principal sequences of the two functions
is satisfied. We will therefore verify only the third part.

To see this, consider first the case where X is a set, corresponding
to λ2 in the principal partition of (f2(·), g(·)), that contains all self
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loops of f2(·) and none of its coloops. Since f1(·), f2(·) are aligned, X
must be a set in the principal partition of f1(·) and further does not
intersect any of the coloops of f1(·) and contains all its self loops. Since
f0(·), f1(·) are aligned it follows that X must be a set in the principal
partition of (f0(·), g(·)).

Next, let X be a set corresponding to λ0 in the principal partition of
(f0(·), g(·)), that contains all self loops of f0(·) and none of its coloops.
It must then be a set in the principal partition of (f1(·), g(·)). We then
have three possibilities, by Lemma 10.4.3.

• (∞ > λ > 1, i.e., X contains all selfloops of f1(·) and none of its
coloops). Clearly X must be a set in the principal partition of
(f2(·), g(·)) also, since f1(·), f2(·) are aligned.

• (λ = ∞, i.e., X is a subset containing only self loops of f1(·)).
Clearly X contains only selfloops of f2(·) since the principal par-
tition of (f2(·), g(·)) is coarser than that of (f1(·), g(·)).

• (λ = 1, i.e., X is a subset whose complement contains only
coloops of f1(·)). Clearly the complement of the set X contains
only coloops of f2(·), since the principal partition of (f2(·), g(·))
is coarser than that of (f1(·), g(·)).

2

Problem 10.4 Prove

Lemma 10.7.1 Let f0(·), f1(·) be polymatroid rank functions on sub-
sets of S and let g(·) be a positive weight function on S. Let B3

λ denote
the collection of sets corresponding to λ in the principal partition of
(f0(·) + f1(·), g(·)).

i. Let X be a set in B0
λ0

as well as in B1
λ1

.Then X ∈ B3
λ3

, where
λ3 = ((λ0)

−1 + (λ1)
−1)−1.

ii. Suppose, in addition, X is a maximal (minimal) member of B0
λ0

,
then X is a maximal (minimal) member of B3

λ3
.

iii. If B0
λ0

= B1
λ1

then B3
λ3

= B1
λ1

.
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Solution: Proof of Lemma 10.7.1:

i. We have,

fi(X)+((λi)
−1)g(S−X) ≤ fi(Y )+((λi)

−1)g(S−Y ), i = 0, 1, Y ⊆ S.

Hence,

f0(X) + f1(X) + ((λ0)
−1 + (λ1)

−1)g(S −X) ≤

f0(Y ) + f1(Y ) + ((λ0)
−1 + (λ1)

−1)g(S − Y ).

This proves the required result.

ii. In the above proof note that the final inequality reduces to an
equality iff the former inequalities do so for i = 0, 1. The result
now follows.

iii. Proof depends on the fact stated above.

2

The following theorem is an immediate consequence of the above lemma.

Theorem 10.7.2 Let f0(·), f1(·) be polymatroid rank functions on sub-
sets of S and let g(·) be a positive weight function on S. Let (f0(·), g(·)),
(f1(·), g(·)) have the same principal partition with decreasing sequence
of critical values λ01, · · · , λ0t and λ11, · · · , λ1t. Then ((f0 + f1)(·), g(·))
has the same principal partition with decreasing sequence of critical
values λ31, · · · , λ3t, where λ3i = ((λ0i)

−1 + (λ1i)
−1)−1, i = 1, · · · , t.

Problem 10.5 Prove

Theorem 10.7.3 Let f1(·), f0(·) be aligned polymatroid rank func-
tions on subsets of S relative to the positive weight function g(·) such
that fi(e) ≤ g(e), i = 0, 1, ∀e ∈ S. Then

i. The principal sequence of (f1(·)+ f0(·), g(·)) is the coarsest com-
mon refinement of those of (f0(·), g(·)), (f1(·), g(·)).

ii. f1(·) + f0(·) is aligned to both f1(·) and f0(·) with respect to g(·).
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iii. If both f1(·) and f0(·) are aligned with f3(·) with respect to g(·)
and further if the principal partitions of (f0(·), g(·)) and (f1(·), g(·))
are coarser than that of (f3(·), g(·)), then f1(·) + f0(·) is aligned
with f3(·) and the principal partition of (f1(·) + f0(·), g(·)) is
coarser than that of (f3(·), g(·)).

Solution: The assumption fi(e) ≤ g(e) is not essential. It has been
made only to make the proof simpler and also because it is the only
case of importance.
Proof of Theorem 10.7.3: Let Bi

λ, i = 0, 1, 2 denote the collection of
sets corresponding to λ in the principal partitions of (f0(·), g(·)), (f1(·), g(·))
and (f0(·) + f1(·), g(·)) respectively.
Suppose the set of selfloops Si of fi(·) contains the set Sj of selfloops of
fj(·), where j = i+1mod 2. From the definition of alignedness it follows
that the principal sequence of (fj(·), g(·)) has the form ∅, Sj, · · · , Si, · · ·.
Now by the use of Lemma 10.7.1 it is clear that

• the principal sequence of (fi(·) + fj(·), g(·)) will be identical to
the above sequence upto the set Si and that

• if λ is a critical value of (fj(·), g(·)) whose maximal minimizing
set is contained in Si it satisfies the same property with respect
to (fi(·) + fj(·), g(·)).

For these values of λ the collections of sets are identical both in(fj(·), g(·))
and in (fi(·)+fj(·), g(·)). From Lemma 10.4.3, if Ci is the set of coloops
of fi(·) with respect to g(·), we know that S − Ci is the penultimate
set in the principal sequence of (fi(·), g(·)), i = 0, 1. Suppose next,
without loss of generality, that the set of coloops C0 of f0(·) contains
the set of coloops C1 of f1(·). We then have by Lemma 10.7.1

• the segment Si, · · · , S − C0 appears in the principal sequence of
(f0(·) + f1(·), g(·)) since it appears in the principal sequences of
both (f0(·), g(·)) and (f1(·), g(·)).

• if λ0, λ1 are the critical values of (f0(·), g(·)), (f1(·), g(·)) respec-
tively coresponding to two successive sets in this segment then
B0

λ0
= B1

λ1
= B2

λ2
, where λ2 = ((λ0)

−1 + (λ1)
−1)−1.
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• since in the principal partition of (f0(·), g(·)), S − C0, S are the
minimal and maximal sets in B0

λ=1 and every set between these
two is also in this collection, therefore the segment S−C0, · · · , S
would be identical in the principal sequences of (f1(·), g(·)) and
(f0(·) + f1(·), g(·)). If λ1 is a critical value of (f1(·), g(·)) cor-
responding to two successive sets in the above segment then
B1

λ1 = B2
λ2 , where λ2 = (1 + (λ1)−1)−1.

All the parts of the theorem are now immediate

2

Problem 10.6 Prove

Lemma 10.7.2 Let f0(·), f1(·) be polymatroid rank functions on sub-
sets of S and let g(·) be a positive weight function on S. Let f0(·), f1(·)
be aligned with respect to g(·). Then

i. f0 ∗ g(·), f1(·) are aligned with respect to g(·)

ii. if the principal partition of (f0(·), g(·)) is coarser than that of
(f1(·), g(·)) then the principal partition of (f0∗g(·), g(·)) is coarser
than that of (f1(·), g(·)).

Solution: Proof of Lemma 10.7.2: Let Bi
λ, i = 0, 1, 2, denote the

class of sets corresponding to λ in the respective principal partitions
of
(f0(·), g(·)), (f1(·), g(·)), (f0 ∗ g(·), g(·)).
By Theorem10.4.4 it is clear that for λ > 1,B0

λ = B2
λ. In particular

the maximal set in B0
λ and B2

λ are the same for any value of λ > 1.
But then by Property PP5 of the principal partition, the minimal set
say Z in B0

λ and B2
λ are the same for λ ≥ 1. Again by Theorem10.4.4,

S−Z is the set of all coloops of f0 ∗ g(·) with respect to g(·). Thus we
see that

• The principal sequence of (f0 ∗ g(·), g(·)) has the form

∅, X1, · · · , Xr = Z, S,

while that of (f0, g(·)) has the form

∅, X1, · · · , Xr = Z,Xr+1, · · · , S.
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• S − Z is the set of all coloops of f0 ∗ g(·) with respect to g(·).
The sets Z and S are the minimal and maximal sets in B2

λ when
λ = 1.

• For λ > 1,B0
λ = B2

λ.

Thus f0(·), f0 ∗ g(·) are aligned with respect to g(·) and further the
principal partition of (f0 ∗g(·), g(·)) is coarser than that of (f0(·), g(·)).
The second part of the theorem now follows by Theorem 10.7.1.

2

Problem 10.7 Prove

Theorem 10.7.4 Let f0(·), f1(·), f3(·) be polymatroid rank functions
on subsets of S and let g(·) be a positive weight function on S. Let
f0(·), f1(·) be aligned with respect to g(·). Let f3(·) be aligned to both
f0(·) and f1(·) with respect to g(·) and further let the principal par-
titions of (f0(·), g(·)), (f1(·), g(·)) be coarser than that of (f3(·), g(·)).
Then

i. f0, (f0 + f1) ∗ g(·) and f1, (f0 + f1) ∗ g(·) are aligned with respect
to g(·).

ii. the principal partition of ((f0+f1)∗g(·), g(·)) is coarser than that
of (f3(·), g(·)).

Solution: The result is immediate from Lemma 10.7.2 and Theorem
10.7.1.

Problem 10.8 Prove

Lemma 10.7.3 Let fi(·), i = 0, 1 be polymatroid rank functions on
the subsets of S and let g(·) be a positive weight function on S with
g(e) ≥ fi(e), ∀e ∈ S, i = 0, 1. Then

i. f0(·), f1(·) are aligned with respect to g(·) iff f ∗
0 (·), f ∗

1 (·) are so
aligned. If in addition the principal partition of (f0(·), g(·)) is
coarser than that of (f1(·), g(·)) then the principal partition of
(f ∗

0 (·), g(·)) is coarser than that of (f ∗
1 (·), g(·)).

ii. f ∗
0 (·), f1(·) are aligned with respect to g(·) iff f0(·), f ∗

1 (·) are so
aligned.
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iii. if f0(·), f1(·) are aligned with respect to g(·) then f ∗
0 ∗ g(·), f ∗

1 (·)
are so aligned.

Solution: The assumption fi(e) ≤ g(e) is made only to make the
duals into polymatroid rank functions.
Proof of Lemma 10.7.3:

i. This follows from Theorem10.4.5 and the definition of aligned-
ness.

ii. This follows from the above result and the fact that f ∗∗
0 (·) = f0(·).

iii. This follows from the first part and Lemma 10.7.2.

2

Definition 10.7.3 Let fi(·), i = 0, 1 be polymatroid rank functions
on the subsets of S and let g(·) be a positive weight function on S
with g(e) ≥ fi(e), ∀e ∈ S, i = 0, 1. We say that the polymatroid rank
functions f0(·), f1(·) are oppositely aligned with respect to g(·) iff
f ∗

0 (·), f1(·) (equivalently f ∗
1 (·), f0(·)) are aligned with respect to g(·).

The results about alignedness presented thus far permit us to talk of
the alignedness of polymatroid rank functions derived from simpler
aligned polymatroid rank functions through certain formal expressions
involving the operations of addition, convolution with g(·), and du-
alization. We know that addition of aligned polymatroid rank func-
tions results in another such, convolution with g(·) results in a coarser
aligned polymatroid rank function while dualization oppositely aligns
the polymatroid rank function. It is therefore clear that if the formal
expressions were constructed according to certain simple rules, then we
would have complete knowledge of the principal partition associated
with the resulting polymatroid rank function. The care that we have
to take essentially lies in convolving with g(·) whenever the value of
the polymatroid rank function can become greater than that of g(·) at
any element - otherwise we cannot use dualization ideas freely.

Definition 10.7.4 • ‘i’ is a positive expression of length 1.

• ‘i∗’ is a negative expression of length 2.
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• If ‘ω’ is a positive expression of length l − 1 then ‘ω ∗ g’ is a
positive expression of length l.

• If ‘ω’ is a negative expression of length l − 1 then ‘ω ∗ g’ is a
negative expression of length l.

• If ‘ω’ is a positive expression of length l − 1 then ‘(ω)∗’ is a
negative expression of length l.

• If ‘ω’ is a negative expression of length l − 1 then ‘(ω)∗’ is a
positive expression of length l.

• If ‘ω’ is a positive expression (negative expression) of length l−1
then ‘(λω) ∗ g’, λ > 0 is a positive expression (negative expres-
sion) of length l + 1.

• If ‘ω0’,‘ω1’ are positive expressions (negative expressions) of lengths
k, l respectively, then ‘(ω0 +ω1) ∗ g’ is a positive expression (neg-
ative expression) of length k + l + 1.

Remark: If ‘ω ’ is an expression (positive or negative) with respect to
the weight function g(·) on S and f(·) is a polymatroid rank function
on subsets of S then ω(f)(·) denotes the polymatroid rank function
obtained by replacing all the ocurrences of the symbol ‘i’ in ‘ω’ by
f(·).
Example 10.7.1 Consider the expression ‘(i+ i∗ g) ∗ g’. If this oper-
ates on the polymatroid rank function f(·) we get the polymatroid rank
function
((f(·) + f ∗ g(·)) ∗ g)(·). The expressions ‘i’,‘i ∗ g’,are positive with
lengths 1, 2 respectively. The expressions ‘i + i ∗ g’, ‘(i + i ∗ g) ∗ g’
are therefore positive with lengths 3, 4 respectively. So the expression
‘((i + i ∗ g) ∗ g)∗ ∗ g’ is negative with length 6 and the expression
‘(((i+ i∗g)∗g)∗∗g+(3i∗g)∗)∗g’ is negative with length 6+4+1 = 11.

Remark: We will omit inverted commas henceforth while speaking of
expressions.

Problem 10.9 Prove

Theorem 10.7.5 Let ω be a positive (negative) expression with re-
spect to g(·), a positive weight function on S. Let f(·) be a poly-
matroid rank function on subsets of S. Then the polymatroid rank
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function ω(f)(·) is aligned to f(·) (f ∗(·)) with respect to g(·) and the
principal partition of (ω(f)(·), g(·)) is coarser than that of (f(·), g(·))
((f ∗(·), g(·))). Further ω(f)(e) ≤ g(e) ∀e ∈ S.

Solution: Proof of Theorem 10.7.5: The proof is by induction
using the following results:

• if f0(·), f1(·) are aligned with the principal partition of the former
coarser than that of the latter then f0(·) ∗ g(·), f1(·) are aligned,
with the former having a coarser principal partition than the
latter (Lemma 10.7.2).

• if f0(·), f1(·) are aligned with the principal partition of the former
coarser than that of the latter then f ∗

0 (·), f ∗
1 (·) are aligned, with

the former having a coarser principal partition than the latter
(Lemma 10.7.3).

• if f0(·), f1(·) are aligned with the principal partition of the former
coarser than that of the latter then f ∗

0 ∗ g(·), f ∗
1 (·) are aligned,

with the former having a coarser principal partition than the
latter (Lemma 10.7.3).

• if f0(·), f1(·) are aligned with f2(·) with their principal partitions
coarser than that of the latter then (f0 +f1)∗g(·) is aligned with
f2(·) and has a coarser principal partition than the latter has
(Theorem 10.7.3, Lemma 10.7.2).

• if f0(·), f1(·) are aligned with f2(·) with their principal partitions
coarser than that of the latter then λf0(·), λf1)(·), λ > 0 are
aligned with f2(·) and have coarser principal partitions than the
latter has.

Clearly the theorem is true for expressions of length 1. Suppose it is
true for expressions of length less or equal to k. Let ω be a positive
(negative) expression of length k + 1. Then ω could have been built
up out of shorter expressions in one of the following ways, for each of
which the results mentioned above enable us to show that ω satisfies
the theorem.

• ω = θ ∗ g, where θ is positive (negative) of length k. Here ω
remains positive (negative) and the required result follows from
Lemma 10.7.2.
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• ω = (θ)∗, where θ is positive (negative) of length k. Here ω
becomes negative (positive) and the required result follows from
Lemma 10.7.3.

• ω = (θ∗g)∗, where θ is positive (negative) of length k−1. Here ω
becomes negative (positive) and the required result follows from
Lemma 10.7.2 and Lemma 10.7.3.

• ω = λθ∗g,where θ is positive (negative) of length k−1 and λ > 0.
Here ω remains positive (negative) and the required result follows
from Lemma 10.7.2 and the fact that for any polymatroid rank
function f(·), (λf(·), g(·)), λ > 0 has the same principal partition
(but different critical values) as (f(·), g(·)).

• ω = (θ1 + θ2) ∗ g,where θi, i = 1, 2 are both positive (negative) of
length d, k − d respectively. Here ω remains positive (negative)
and the required result follows from Theorem 10.7.3 and Lemma
10.7.2.

The fact that in each case the resulting polymatroid rank function
has lower value on singletons than g(·) follows from the definition of
convolution and the properties of the dual.

2

When f(·) is molecular with respect to g(·) we can make a stronger
statement than in Theorem 10.7.5. In this case ω(f)(·) is molecular
even if ω is not positive or negative.

Problem 10.10 Prove
Let ω be an expression involving

• convolution with g(·)

• addition followed by convolution with g(·)

• positive scalar multiplication followed by convolution with g(·)

• dualization with respect to g(·)

Let f(·) be a molecular polymatroid rank function on subsets of S with
respect to g(·). Then ω(f)(·) is also a molecular polymatroid rank
function on subsets of S.
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Solution: If f0(·), f1(·) are aligned with respect to g(·) we know that
(f0+f1)∗g(·), λf0∗g(·), λ > 0, f ∗

0 (·) are all aligned to f1(·) (by Theorem
10.7.3, Lemma 10.7.2, Lemma 10.7.3 ). Clearly by the definition of
alignedness, if f0(·), f1(·) are aligned and f1(·) is molecular then so
must f0(·) be. It follows by induction on the number of elementary
operations that ω(f(·)) must be molecular if f(·) is molecular. The
next theorem shows that if we so wish we could generalize the notion
of alignedness using different weight functions instead of a single one.

Problem 10.11 Prove

Theorem 10.7.6 Let f0(·), f1(·) be polymatroid rank functions on sub-
sets of S which are molecular respectively with respect to the positive
weight functions g0(·), g1(·). Then (ρ0f0 + ρ1f1)(·) is molecular with
respect to (σ0g0 + σ1g1)(·), where ρi, σi, i = 0, 1 are greater than zero.

Solution: Proof of Theorem 10.7.6: Suppose not.Then there exists
X ⊂ S such that

λ(ρ1f1 + ρ2f2)(X) + (σ1g1 + σ2g2)(S −X) < λ(ρ1f1 + ρ2f2)(S).

Then,

σ1[(λ/σ1)ρ1f1(X) + g1(S −X)] + σ2[(λ/σ2)ρ2f2(X) + g2(S −X)]

< σ1[(λ/σ1)ρ1f1(S)] + σ2[(λ/σ2)ρ2f2(S)].

So we must have, for i=1 or 2,

(λ/σi)ρifi(X) + gi(S −X) < (λ/σi)ρifi(S).

This contradicts the molecularity of fi(·) with respect to gi(·)
2

Problem 10.12 Let f0(·), f1(·) be polymatroid rank functions on sub-
sets of S and let g(·) be a positive weight function on S. Let (f0(·), g(·)), (f1(·), g(·))
have identical principal partitions. If the refined partial order with re-
spect to (f0(·), g(·)) and (f1(·), g(·)) are identical, then it would also be
identical to the refined partial order associated with ((f0 + f1)(·), g(·)).
Solution: Lemma 10.7.1 assures us that ((f0 + f1)(·), g(·)) also has
the same principal partition. Next the characterization of ideals of
≥R given in Theorem 10.5.1 is such that if the conditions hold for a
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particular set with respect to both f0(·), f1(·) they would also hold for
(f0 + f1)(·). This proves the required result.

The program that we carried out for aligned polymatroids can also
be carried out for what could be called ‘strongly aligned polymatroids’
(defined below). We sketch these ideas in the following problems. How-
ever we omit the solutions.

Problem 10.13 Let f0(·), f1(·) be aligned polymatroid rank functions
on subsets of S relative to g(·), a positive weight function on S. We
say f0(·), f1(·) are strongly aligned relative to g(·) iff whenever A,B
are two blocks present in both the partitions associated (f0(·), g(·)) and
(f1(·), g(·)), but which are not coloops or self loops in either partition
the relationship between A and B is identical in both the refined partial
orders.
If f0(·), f1(·) are strongly aligned polymatroid rank functions relative
to the positive weight function g(·) show that (f0 + f1)(·) is strongly
aligned to both f0(·) as well as f1(·) relative to g(·).

Problem 10.14 Let f(·) be a polymatroid rank function on subsets of
S and let g(·) be a positive weight function on S. Show that f(·) is
strongly aligned with λf ∗ g(·), λ > 0.

Problem 10.15 Let f1(·), f0(·) be strongly aligned polymatroid rank
functions on subsets of S relative to a positive weight function g(·). If
both f1(·) and f0(·) are strongly aligned with f3(·) with respect to g(·)
and further if the principal partitions of (f0(·), g(·)) and (f1(·), g(·)) are
coarser than that of (f3(·), g(·)), then, show that (f1(·)+ f0(·)) ∗ g(·) is
strongly aligned with f3(·) relative to g(·) and the principal partition of
(f1(·) + f0(·)) ∗ g(·) is coarser than that of f3(·).

Problem 10.16 Show that the statement obtained by replacing ‘aligned’
by
‘strongly aligned’ in Theorem 10.7.5 is true.

Problem 10.17 Let f1(·), f2(·) be two polymatroid rank functions on
subsets of S with identical principal partitions relative to the positive
weight function g(·) and identical refined partial order given in Figure
10.4(a). The critical value sequences are given to be λ11 = 5, λ12 = 4,
λ13 = 3, λ14 = 2 and λ21 = 4, λ22 = 3, λ23 = 3

2
, λ24 = 4

3
.

Describe the principal partition and refined partial order of
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i. ((f1 + f2) ∗ g(·), g(·))

ii. (((f1 + f2) ∗ g)∗(·), g(·))

iii. (((2f1 ∗ g)∗ + f1
∗) ∗ g)∗(·), g(·))

iv. In the previous parts compute the value of the functions on S.

10.8 Notes

Convolution, as an operation on submodular functions, was probably
first studied systematically by Edmonds [Edmonds70]. Principal par-
tition began with graphs when Kishi and Kajitani [Kishi+Kajitani68]

decomposed a graph into three parts - Xλ,X
λ and S −Xλ for λ = 2.

These ideas were generalized to matroids for integral λ by Bruno and
Weinberg [Bruno+Weinberg71] and for rational (real) λ independently
by Tomizawa and Narayanan [Tomizawa76], [Narayanan74]. For about
a decade and a half, from late sixties to middle eighties, extensive work
was done in Japan on the principal partition, its extensions and appli-
cations. Good surveys of this work may be found in
[Iri79a], [Iri79b], [Iri+Fujishige81], [Tomizawa+Fujishige82], [Iri83] and
in the comprehensive monograph due to Fujishige [Fujishige91].
Extensions of the basic ideas may be found for instance in
[Ozawa74], [Ozawa75], [Ozawa76], [Ozawa+Kajitani79], in several pa-
pers due to Tomizawa in Japanese
[Tomizawa80a], [Tomizawa80b], [Tomizawa80c], [Tomizawa80d] etc.,
in [Fujishige80a], [Fujishige80b], [Nakamura+Iri81], [Iri84], [Murota88]
etc.
Applications may be found, apart from the above mentioned surveys
and monograph, in the following very partial list of references:
[Iri71], [Tomi+Iri74], [Iri+Tomi76], [Ozawa76], [Fujishige78b], [Sugihara79],
[Sugihara80], [Sugihara+Iri80], [Sugihara82], [Iri+Tsunekawa+Murota82],
[Sugihara83], [Sugihara84], [Sugihara86], [Murota+Iri85], [Murota87],
[Murota90].

The west, except for the notable case of Bruno and Weinberg, has
been largely immune to the principal partition virus. Recently, how-
ever, there were some signs of activity (see for instance [Catlin+Grossman+Hobbs+Lai92]).
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This chapter, as far as the discussion on principal partition the-
ory goes, is in the main, a translation of the author’s PhD thesis
[Narayanan74], which used matroid union and partition as basic no-
tions, to the language of convolution of polymatroids and submodular
functions (Subsections 10.4.5, 10.4.6, Section10.7 etc. are very natural
for matroids). We have adopted this approach because it is elementary
and the extensions follow naturally. The readers interested in pursuing
this subject further would do well to begin with the above mentioned
survey papers of Iri. Those interested in studying these ideas and
their extensions in the context of convex programming are referred to
[Fujishige91].

10.9 Solutions of Exercises

E 10.1: LetB1, B2 be bipartite graphs on VL ≡ {a, b, c}, VR ≡ {1, 2, 3, 4}
with adjacency functions Γ1,Γ2 defined as follows:

Γ1(a) = {1, 2, 4},Γ1(b) = {1, 2, 4},Γ1(c) = {2, 3, 4},

Γ2(a) = {1, 2, 3},Γ2(b) = {1, 2, 4},Γ2(c) = {2, 3}.
It may be verified that

|Γ1|∗|Γ2|(a) = 3, |Γ1|∗|Γ2|(a, b) = 3, |Γ1|∗|Γ2|(a, c) = 3, |Γ1|∗|Γ2|(a, b, c) = 4.

Hence

|Γ1| ∗ |Γ2|(a, b, c)− |Γ1| ∗ |Γ2|(a, c) > |Γ1| ∗ |Γ2|(a, b)− |Γ1| ∗ |Γ2|(a).

This shows that |Γ1| ∗ |Γ2|(·) is not submodular. But we do know that
|Γ1(·)|, |Γ2(·)| are submodular.

E 10.2:
i. We know that f ∗ g(·) = (f(·)− f(∅)) ∗ (g(·)− g(∅)) + f(∅) + g(∅) .
Thus f ∗ g(·)is submodular if (f(·)−f(∅))∗ (g(·)−g(∅) is submodular.
Calling these new functions f ′(·), g′(·) respectively, we observe, using
the fact that f ′(∅) = 0, by Theorem9.6.1 that

f ′∗g′(X) = minY ⊆X(f ′(Y )+g′(X−Y )) ≥ minY ⊆X((f ′(X)−f ′(X−Y ))+g′(X−Y ))
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≥ f ′(X) +minY ⊆X(g′ − f ′)(X − Y ).

But, (g′ − f ′)(X − Y ) ≥ 0. Thus

f ′ ∗ g′(X) = f ′(X),

which latter is submodular. The next two instances are special cases
of the above result.

E 10.3: Since f1(·) ≥ (f1 ∗ g)(·) and f2(·) ≥ (f2 ∗ g)(·), we have, LHS
≥ RHS. Now we prove the reverse inequality.
We have

((f1 ∗ g + f2 ∗ g) ∗ g)(S) = min
X⊆S

((f1 ∗ g)(X) + (f2 ∗ g)(X) + g(S −X))

= min
X⊆S

(min
Y ⊆X

(f1(Y ) + g(X − Y )) + min
Y ⊆X

(f2(Y ) + g(X − Y )) + g(S−X))

= (f1(Y1) + g(Z − Y1)) + (f2(Y2) + g(Z − Y2)) + g(S − Z)

(for some Y1, Y2, Z with Y1 ⊆ Y2 ⊆ Z ⊆ S),

≥ f1(Y1 ∩ Y2) + f2(Y1 ∩ Y2) + g(Z − (Y1 ∩ Y2)) + g(S − Z),

(since f1(·), f2(·) are increasing and g(·) is a non-negative weight func-
tion)

≥ f1(Y1 ∩ Y2) + f2(Y1 ∩ Y2) + g(S − (Y1 ∩ Y2))

≥ ((f1 + f2) ∗ g)(S).

E 10.4: Suppose X1, X2 belong to Bf,g. We then have,

f ∗ g(S) = f(X1) + g(S −X1) = f(X2) + g(S −X2).

Thus

2f ∗ g(S) = f(X1) + g(S −X1) + f(X2) + g(S −X2)

≥ f(X1 ∪X2) + g(S − (X1 ∪X2)) + f(X1 ∩X2) + g(S − (X1 ∩X2),

using the submodularity of f(·), g(·). By the definition of convolution
the only way the inequality can be satisfied is to have

f ∗g(S) = f(X1∪X2)+g(S−(X1∪X2) = f(X1∩X2)+g(S−(X1∩X2).
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Thus X1 ∪X2, X1 ∩X2 belong to Bf,g .

E 10.5: If |Γ|(Y ) <| Y | for some Y ⊆ VL, then,

|Γ|(Y )+ | VL − Y |<| VL | .

Next if |Γ|(X) ≥| X | ∀X ⊆ VL, then

|Γ|(X)+ | VL −X |≥| VL | ∀X ⊆ VL.

But for X = ∅, the above inequality becomes equality. Hence, (Γ∗ | · |
)(VL) =| VL | .

E 10.6: Proof of Theorem 10.2.2:
Make each edge of the bipartite graph directed from left to right with
a capacity equal to ∞. Join each left vertex to a source vertex s with
edges directed away from s with capacity 1 and join each right vertex to
a sink vertex t with edges directed towards t with capacity 1. It is easily
seen that an integral maximum flow for this network corresponds to a
maximum matching and vice versa (the edges from left vertices to right
vertices carrying flow equal to 1 constitute the maximum matching)
and has therefore value equal to cardinality of the maximum matching.
On the other hand, since capacities of the edges are all integral, value
of integral maximum flow = value of maximum flow = capacity of
minimum cut.
Every minimum cut can be seen to be of the form

(s ⊎X ⊎ Γ(X), (t ⊎ (VL −X) ⊎ (VR − Γ(X))).

The capacity of this min cut can be seen to be | VL −X | + | Γ(X) |,
since the edges of the cut go from s to (VL −X) or from Γ(X) to t.

Every cover contains another of the form Γ(X)⊎ (VL−X), X ⊆ VL.
Also corresponding to a cover of this form there exists a cut of the form
described earlier whose capacity equals the size of the cover. Hence,
size of the min cover equals the capacity of the min cut which in turn
equals the size of the maximum matching.

2

E 10.7:
i. We note that a set of vertices of the form Γ(X) ⊎ (VL − X) is
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a cover. Further any cover will contain a cover of the above form. If
(VL−X)⊎Y , where X ⊆ VL, Y ⊆ VR, is a cover then Y ⊇ Γ(X). For,
otherwise, any edge with one endpoint in X and the other in Γ(X) will
not be incident on (VL −X) ⊎ Y. Thus, a set of vertices is a minimum
cover iff it is a set of minimum cardinality of the form Γ(X)⊎(VL−X),
i.e., iff it is a set of the form Γ(X)⊎ (VL−X), where X ∈ B1, (≡ Bf,g,
where f(·) = |Γ|(·) and g(·) =| · |). Now a collection of blocks of Πpp

form an ideal of the partial order ‘≥’ iff their union is a member of B1

or if the collection is equal to Πpp, in which case it includes VL−Xmax.
Thus a set of vertices is a minimum cover iff it is a set of the form
Γ(X) ⊎ (VL −X), where X is the union of blocks of Πpp contained in
Xmax and belonging to an ideal of the partial order (≥).

ii. Let Γ(X)⊎(VL−X) be a min cover. Every edge of a matching will
be incident on the vertices of this cover. By Theorem 10.2.2 the sizes
of a maximum matching and a minimum cover are equal. Further, by
definition, no two edges of a matching have a common vertex. Hence,
precisely one edge of the maximum matching will be incident on each
of the vertices of Γ(X) ⊎ (VL − X). Each such edge will either have
one end in X and the other in Γ(X) or have one end in (VL − X)
and the other end in Γ(VL −X)− Γ(X). Two possible min covers are
Γ(Xmin) ⊎ (VL − Xmin) and Γ(Xmax) ⊎ (VL − Xmax). Thus it is clear
that every maximum matching will meet every vertex of (VL −Xmin)
and every vertex of Γ(Xmax).

iii. The bipartite graphs BK may be divided into three groups
(changing the notation slightly for convenience) B′, the subgraph on
Xmin ⊎ Γ(Xmin), Bf , the subgraph on (VL−Xmax)⊎ (Γ(VL−Xmax)−
Γ(Xmax)) and all the remaining bipartite graphs of the kind BK , which
we will call of the third kind.

By the arguments in part (ii) above, every maximum matching must
have edges incident on each vertex of Γ(Xmin) with the other end in
Xmin and must also have edges incident on each vertex of (VL−Xmax)
with the other end in Γ(VL−Xmax)−Γ(Xmax). Thus, every maximum
matching intersects the edges of B′ and Bf in maximum matchings for
these bipartite graphs.
Next let X1, X2 ∈ B1 and let X2 ⊇ X1.
We have the min covers

Γ(X2) ⊎ (VL −X2) = Γ(X1) ⊎ (Γ(X2)− Γ(X1)) ⊎ (VL −X2)
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Γ(X1) ⊎ (VL −X1) = Γ(X1) ⊎ (X2 −X1) ⊎ (VL −X2).

Any maximum matching must have edges which meet every vertex
of Γ(X1)(Γ(X2)) and which have the other end in X1(X2). It follows
that it must have edges which meet every vertex of (Γ(X2) − Γ(X1))
and which have the other end in (X2 − X1). Thus, every maximum
matching intersects edges of the third kind ofBK in one of its maximum
matchings.
Lastly, we observe that any minimum cover can be partitioned into
vertex sets each of which is either the right vertex set or the left vertex
set of the BK (of all three kinds). Now, distinct BK do not have
common vertices. Since the maximum matching has the same size as
the minimum cover, it follows that its intersection with the edge sets
of the BK partitions it.

E 10.8: Bf,g is the collection of subsets Z which minimize the expres-
sion f(Y ) + g(S− Y ), Y ⊆ S.This is precisely the collection of subsets
which maximize the expression g(S)− (f(Y ) + g(S − Y )), Y ⊆ S, i.e.,
maximize the expression (g(Y )− f(Y )), Y ⊆ S.

E 10.9: We have,

minX⊆Sµ(X) = minX⊆S(f(X)− g(X))

= minX⊆S(f(X) + g(S −X)− g(S)) = −(maxX⊆S [g(X)− f(X)]).

The latter two expressions define the sets involved in Bf,g and the
membership problem respectively.

E 10.10: Let r(·) ≡ ρ∗ | · |. A set X ⊆ S is independent iff r(X) =
|X|, i.e., iff (ρ∗ | · |)(X) =| X |, i.e., iff

minY ⊆X(ρ(Y )+ | X − Y |) =| X | .
Clearly this would happen iff ρ(Y ) ≥| Y | ∀Y ⊆ X. A set X ⊆ S is
a circuit of the matroid iff r(X) =| X | −1 and all its proper subsets
are independent. Hence, in order that X is a circuit we must have
ρ(Y ) ≥| Y | ∀Y ⊂ X and ρ(X) <| X | .
E 10.11: The reader is referred to Definition 10.4.5. We use the
following simple lemma.

Lemma 10.9.1 Let f(·), g(·) be real valued set functions on subsets of
Ŝ, with g(·) symmetric with respect to f(·). Then f ∗ g(·) is symmetric
with respect to f(·).
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Proof: Let α be an automorphism of f(·). Then α is also an auto-
morphism of g(·). We will show that α is an automorphism of f ∗ g(·).
Let X ⊆ Ŝ. We need to show that f ∗ g(X) = f ∗ g(α(X)). We have

f ∗ g(X) ≡ minY ⊆X(f(Y ) + g(X − Y ))

= minY ⊆X(f(α(Y )) + g(α(X − Y )))

= minY ⊆X(f(α(Y )) + g(α(X)− α(Y )))

= minα(Y )⊆α(X)(f(α(Y )) + g(α(X)− α(Y )))

= f ∗ g(α(X)).

2

Now let r(·) ≡ f̂ ∗ g(·) be a matroid rank function with f̂(·), a
polymatroid rank function and g(·) ≡| · | . Let X ⊆ Ŝ. Let e ∈ X and
let Y ⊆ X be the set of all elements parallel to e in f̂(·) and contained
in X. Further let Z ⊇ Y be the set of all elements of Ŝ parallel to e
in f̂(·). Clearly if Y ′ ⊆ Z is such that | Y |=| Y ′ |, then there exists
an automorphism α of f̂(·) in which α(X) = (X − Y ) ⊎ Y ′. Since g(·)
is the | · | function, α is an automorphism also for it. Hence, α is
an automorphism also for r(·). Thus, r(X) = r(α(X)). The required
results now follow.

E 10.12: When λ = 0, the sets X in Bλ are those that minimize
g(S − X), i.e., the sets which are complements of sets on which g(·)
takes zero value. Since g(·) is strictly increasing, the only possible such
set is S. Thus all critical values have to be positive. When λ = +∞
the sets X in Bλ are those that minimize f(·). These are the sets on
which f(·) takes minimum value. Clearly, if f(·) is a polymatroid rank
function Xλ = ∅, while Xλ is the maximal set on which f(·) takes zero
value.

E 10.13:
i. We have, if X, Y ∈ Bλ so do X ∪ Y and X ∩ Y belong.

λf ∗ g(S) = λf(X) + g(S −X)

= λf(Y ) + g(S − Y )

= λf(X ∪ Y ) + g(S − (X ∪ Y ))

= λf(X ∩ Y ) + g(S − (X ∩ Y ))

But g(S −X) + g(S − Y ) ≥ g(S − (X ∪ Y )) + g(S − (X ∩ Y ))
and λf(X) + λf(Y ) ≥ λf(X ∪ Y ) + λf(X ∩ Y ), λ ≥ 0.
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We conclude that the inequalities must be satisfied as equalities. Since
λ ≥ 0, this proves the required result.

ii. (Note that the condition f(e) ≤ g(e)∀e ∈ S is required only because
we have defined our dual only for this condition. It is otherwise not
critical.)

f ∗(S −X) + f ∗(S − Y )

=
∑

e∈(S−X)

g(e)− (f(S)− f(X)) +
∑

e∈(S−Y )

g(e)− (f(S)− f(Y ))

=
∑

e∈S−(X∩Y )

g(e)−(f(S)−f(X∩Y ))+
∑

e∈S−(X∪Y )

g(e)−(f(S)−f(X∪Y ))

= f ∗(S − (X ∩ Y )) + f ∗(S − (X ∪ Y )),

where we have used the facts that

∑

e∈S−X

g(e) +
∑

e∈S−Y

g(e) =
∑

e∈S−(X∩Y )

g(e) +
∑

e∈S−(X∪Y )

g(e)

and

f(X) + f(Y ) = f(X ∪ Y ) + f(X ∩ Y ).

E 10.14: All the properties derived for the earlier case also hold here.
However in this case we can also speak of the minimization problem
for λ < 0. This is because the function hλ is submodular even for
negative values of λ if f(·) is a positive weight function. Property PP2
then holds for all real λ. However for λ = 0 it is easily seen that S
minimizes hλ. Hence for all negative values of λ also S is the only
minimizing set.

E 10.15: To obtain the principal partition of f(·) with respect to g(·):
For each e ∈ S, compute the ratio g(e)/f(e). The critical values are
the various ratios obtained in this manner. For a particular critical
value λ, Xλ = {ei, g(ei)/f(ei) > λ} and Xλ = {ei, g(ei)/f(ei) ≥ λ}.
Bλ has as member every subset of Xλ that is also a superset of Xλ.
It is easily seen that the critical values of f(·) with respect to g(·) are
the reciprocals of those of g(·) with respect to f(·) while the minimal
and maximal sets relative to a particular critical value of the former
are complements of the maximal and minimal sets relative to the cor-
responding critical value of the latter.
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E 10.16:
i(a). We have,

λf(X) + g(S −X) = (1/α)[(λα/β)βf(X) + αg(S −X)].

Clearly therefore we must have,

Bλf,g = B(λα/β)βf,αg .

Thus we see that the principal partitions of (f(·), g(·)) and (βf(·), αg(·))
are the same when α, β > 0. However, if the critical values of (f(·), g(·))
are λ1, · · · , λt, then the critical values of (βf(·), αg(·)) are (α/β)λ1, · · · (α/β)λt.

i(b). We see that,

λf(X)+g(S−X) = λ(f(X)+αg(X))+g(S−X)−λα(g(S)−g(S−X))

= λ(f(X) + αg(X)) + (1 + λα)g(S −X)− λαg(S).

Clearly therefore we must have,

Bλf,g = Bλ(f+αg),(1+λα)g = B(λ/(1+λα))(f+αg),g .

Thus the principal partitions of (f(·), g(·)) and ((f+αg)(·), g(·)), where
α > 0, are the same. If λ is a critical value of (f(·), g(·)) then λ/(1+λα)
is the corresponding critical value of ((f + α)(·), g(·)), where α > 0.

ii. We have,

(βf+f3)(X)+g(S−X) = (βf(X)+[g(X)−(f2(S)−f2(S−X))])+g(S−X)

= βf(X) + f2(S −X)− f2(S) + g(S).

Thus the desired result follows.

E 10.17: It is trivial that reflexivity holds. Next let e1 �C e2 and
let e2 �C e3. To see that transitivity holds we need to verify that
e1 �C e3. By the definition of the preorder we have that whenever e1
belongs to a member of C, e2 will also belong to it and whenever e2
belongs to a member of C, e3 will also belong to it. But this implies
that whenever e1 belongs to a member of C, e3 will also belong to it.
Thus e1 �C e3, as required.
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E 10.18: Proof of Lemma 10.4.2:
i. This follows from DeMorgan’s rule, i.e.,

S − (X ∪ Y ) = (S −X) ∩ (S − Y ), S − (X ∩ Y ) = (S −X)∪ (S − Y ).

ii. We have ei �C ej iff whenever ei belongs to a set in C, ej also
belongs to it, i.e., iff whenever ej does not belong to some set K in
C, ei also does not belong to it, i.e., iff whenever ej belongs to a set
S −K in C′, ei also belongs to it, i.e., iff ej �C′ ei.

iii. This is immediate from the above.

2

E 10.19: Suppose otherwise. Let λ be the density of T. We must have
g(S) − g(S − T ′) − λf(T ′) ≥ 0 = g(S) − g(S − T ) − λf(T ). Hence,
g(S − T ) + λf(T ) ≥ g(S − T ′) + λf(T ′). But g(S − T ) = g(S − T ′).
Hence, f(T ) ≥ f(T ′), since λ > 0. Let T ∈ Bσ. Then T minimizes the
expression g(S−X) + σf(X) ∀X ⊆ S. But since σ > 0, (see Exercise
10.12) g(S − T ) + σf(T ) ≥ g(S − T ′) + σf(T ′), a contradiction, since
T ′ is given to be not a set in the principal partition (and therefore, not
in
Bσ).

E 10.20:
i. We have S molecular iff λf ∗ g(S) ≡ minX⊆S(λf(X) + g(S −X))
= λf(S) + g(∅) = λf(∅) + g(S) = λf(S) = g(S).

ii. Let λ be the only critical value. We then have, by the above
argument, λ = g(S)/f(S) (= the density of S).

iii. S is molecular iff there is only one critical value λ, i.e., iff S, ∅
minimize λf(X) + g(S −X) (and this minimum value is g(S) )
i.e., iff S, ∅ maximize g(S) − g(S − X) − λf(X) (and this maximum
value is 0), i.e., iff (g(S)−g(S−X))/f(X) reaches its maximum value
(=λ) at S.
The argument for the atomic case is essentially the same.

E 10.21: Proof of Theorem 10.4.3:
i. Let T satisfy the λ−density loss condition, and let T̂ minimize hλ(·)
over subsets of S. We have by submodularity of hλ(·)

hλ(T ) + hλ(T̂ ) ≥ hλ(T ∪ T̂ ) + hλ(T ∩ T̂ ).
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Since T satisfies the λ−density loss condition, it can be seen that

hλ(T ) ≤ hλ(T ∩ T̂ ).

Hence, hλ(T̂ ) ≥ hλ(T ∪ T̂ ), i.e., T ∪ T̂ minimizes hλ(·) over subsets of
S. The argument for the λ−density gain condition is similar.

ii. (Strict λ−density loss case)
Going through the argument of the λ - density loss case used above,
here we get hλ(T ) < hλ(T ∩ T̂ ) unless T ∩ T̂ = T.

The former alternative implies hλ(T ∪ T̂ ) < hλ(T̂ ), a contradiction.

Hence, we must have T ∩ T̂ = T. Hence, T̂ ⊇ T.

iii. Suppose T satisfies both the λ− density loss and the λ− density
gain conditions. The former condition implies that there exists a set
T̂ with T ⊆ T̂ ⊆ S s.t. T̂ minimizes hλ(·) over subsets of S. Suppose

hλ(T̂ ) < hλ(T ). Then, it can be seen that this violates the λ−density

gain condition satisfied by T . We conclude that hλ(T̂ ) = hλ(T ). Thus,
T minimizes hλ(·) over subsets of S.

2

E 10.22: We only prove the λ−density gain case. By the submodu-
larity of hλ(·) we have

hλ(T1) + hλ(T2) ≥ hλ(T1 ∪ T2) + hλ(T1 ∩ T2).

By the λ−density gain property of T1,

hλ(T1) ≤ hλ(T1 ∪ T2).

Hence,
hλ(T2) ≥ hλ(T1 ∩ T2).

Interchanging T1, T2 we get

hλ(T1) ≥ hλ(T1 ∩ T2).

E 10.23: Using the result in Exercise 10.22 it follows that (since T1, T2

have the λ−density gain property),

hλ(T1) ≥ hλ(T1 ∩ T2).
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Hence, T1 ∩ T2 minimizes hλ(·).
Similarly, since T1, T2 have the λ−density loss property,

hλ(T1) ≥ hλ(T1 ∪ T2).

The result follows.

E 10.24: We will show that T1 satisfies the strict λ2−density loss
property. The result then follows from Theorem 10.4.3. Let T3 ⊆ T1.
We have,

hλ1
(T3) ≥ hλ1

(T1),

i.e., g(S − T3) + λ1f(T3) ≥ g(S − T1) + λ1f(T1).
Hence, 1

λ1
g(S − T3) + f(T3) ≥ 1

λ1
g(S − T1) + f(T1).

Hence,

(
1

λ1
− 1

λ2
) g(S − T3) +

1

λ2
g(S − T3) + f(T3)

≥ (
1

λ1

− 1

λ2

) g(S − T1) +
1

λ2

g(S − T1) + f(T1).

Now 1

λ1
< 1

λ2
and g(S − T1) < g(S − T3).

Hence, 1

λ2
g(S − T3) + f(T3) >

1

λ2
g(S − T1) + f(T1),

i.e., hλ2
(T3) > hλ2

(T1),
which is the strict λ2−density loss condition for T1.

E 10.26: Proof of Lemma 10.4.5:
i. This is immediate from the definition.

ii. Let X ⊆ K. Then

(f ∗ g) ⋄K(X) ≡ (f ∗ g)((S −K) ∪X)− (f ∗ g)(S −K).

Since f ∗ g(S − K) = f(S − K), there must exist a subset Y ′ of
X ∪ (S − K) such that Y ′ ⊇ S − K and (f ∗ g)((S − K) ∪ X) =
f(Y ′)+g(((S−K)∪X)−Y ′) (by taking X∪(S−K) as the underlying
set in Corollary10.4.2). Hence

(f ∗ g) ⋄K(X) = f(Y ′) + g(((S −K) ∪X)− Y ′)− f(S −K)

= min(S−K)∪X⊇Y ⊇S−K(f(Y )+g(((S−K)∪X)−Y )−f(S−K)) · · · (∗).
Next

(f ⋄K ∗ g ⋄K)(X) = minZ⊆X(f ⋄K(Z) + g ⋄K(X − Z))
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= minZ⊆X(f((S−K)∪Z)− f(S −K)+ g(X −Z)) · · · (∗∗).
Taking Y = (S −K) ∪ Z we see that (∗) and (∗∗) are identical mini-
mization problems. The result follows.

2

E 10.27: We have, for X ⊆ T3,

(f/T1 ⋄T3)(X) ≡ f(X ∪ (T1 − T3))− f(T1 − T3),

(f/T2 ⋄T3)(X) ≡ f(X ∪ (T2 − T3))− f(T2 − T3),

f(T1)− f(T1 − T3) = f(T2)− f(T2 − T3),

f(X ∪ (T1 − T3))− f(T1 − T3) ≤ f(X ∪ (T2 − T3))− f(T2 − T3).

Suppose the above inequality is strict. Then

f(T1)− f(X ∪ (T1 − T3)) > f(T2)− f(X ∪ (T2 − T3)),

which contradicts the submodularity of f(·). We conclude that the
inequality must be satisfied as an equality which proves the required
result.

E 10.28: Each of X1∩Ek, X2∩Ek, (X1∪X2)∩Ek, (X1∩X2)∩Ek, is
a union of blocks of Πpp in an ideal of ≥k. By the manner in which ≥k

was extended to blocks in Ek+1 and by use of Lemma 10.5.1, we know
that X1 − Ek is contraction related to X1 ∩ Ek, X2 − Ek to X2 ∩ Ek,
X1 ∪X2−Ek to (X1 ∪X2)∩Ek and X1 ∩X2 −Ek to (X1 ∩X2)∩Ek.
Since we assume that ≥k is a modular refinement of ≥π over blocks
contained in Ek and the concerned sets correspond to ideals of ≥k, we
have,

f(X1∩Ek)+f(X2∩Ek) = f(X1∪X2)∩Ek+f((X1∩X2)∩Ek) (∗)

Further we have,

f(X1 ∪Ek) + f(X2 ∪Ek) = f(X1 ∪X2 ∪Ek) + f((X1 ∩X2) ∪ Ek),

since these are all sets in Bλk+1
. Hence,

(f(X1∪Ek)−f(Ek))+(f(X2∪Ek)−f(Ek)) = (f(X1∪X2∪Ek)−f(Ek))+

(f((X1 ∩X2) ∪ Ek)− f(Ek)).
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Hence, using the facts that X1 − Ek is contraction related to X1 ∩ Ek

etc.,

(f(X1)−f(X1∩Ek))+(f(X2)−f(X2∩Ek)) = (f(X1∪X2)−f((X1∪X2)∩Ek))

+(f(X1 ∩X2)− f((X1 ∩X2) ∩Ek)).

Using (∗) this reduces to

f(X1) + f(X2) = f(X1 ∪X2) + f(X1 ∩X2)

as desired.

E 10.29: Clearly x/E1 is a base for (f/E1)(·). On the blocks of Πpp

contained in E1 both the partial orders agree. So the statement is true
in this case. Next x/Ek is a base for (f/Ek)(·). Suppose the statement
is true for this case. We will show that it is also true for the base
x/Ek+1 of (f/Ek+1)(·). Now x/Ek+1 is consistent with respect to ≥π.
Let X ⊆ Ek+1 be the union of blocks of an ideal of ≥R . Then, X ∩Ek

corresponds to an ideal of ≥R and by the induction assumption we
must have

x(X ∩ Ek) = f(X ∩Ek). (∗)

Further, X ∪Ek, Ek correspond to ideals of ≥π.
Hence, x(X ∪ Ek) = f(X ∪ Ek)
and x(Ek) = f(Ek).
Hence, x(X − Ek) = f(X ∪ Ek)− f(Ek) = f(X)− f(X ∩Ek),
since X is contraction related to X ∩ Ek. Hence, using (∗), x(X) =
f(X).

E 10.30: Let E1, · · · , Et be the principal sequence of (f(·), g(·)). Let
Xi1 , · · · , Xir be the earliest distinct nonvoid terms (in the same order)
in the sequence
E1∩X, · · · , Et∩X and λi1, · · · , λir be the corresponding critical values.
Then
∅, Xi1, · · · , Xir is the principal sequence of (f/X)(·), (g/X)(·)) and λi1, · · · , λir

is the decreasing sequence of critical values. The partition Π′ associ-
ated would be the collection of blocks of Πpp which are contained in
X. The partial order associated with the principal partition would be
the restriction of ≥π to Π′ and the refined partial order would be the
restriction of ≥R to Π′. We only sketch the proof.
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It can be seen that Ei1 ∩ X is molecular with critical value λi1 and
that if Ei1 ∩X is contracted ((Ei2−Ei1)∩X) is molecular with critical
value λi2 and so on. (By the definition of ≥R, using Exercise 10.27,
(f/(Ei1 ∩ X) ∪ Ei1−1) ⋄ (Ei1 ∩ X))(·) = (f/Ei1 ∩ X)(·), noting that
Ei1−1 ∩X = ∅. Further

(f/((Ei2∩X)∪Ei2−1)⋄((Ei2−Ei1)∩X))(·) = (f/(Ei2∩X)⋄((Ei2−Ei1)∩X))(·)).
Also if Y is an ideal of ≥π, Y ∩X ∩Ei1 , if nonnull, would be molecular
with critical value λi1 and when X ∩ Ei1 (or Y ∩ Ei1) is contracted,
Y ∩X ∩ (Ei2 −Ei1), if nonnull, would be molecular with critical value
λi2 etc. Thus, using Theorem 10.4.6, the partial order associated with
the principal partition of (f/X)(·), (g/X)(·)) is the restriction of ≥π

to Π′. Further if Y is the union of blocks of Πpp in an ideal of ≥R

contained in X, Y ∩Ei1 would similarly correspond to an ideal of ≥R .
Thus, in the principal partition of (f(·), g(·)), Y ∩ (Ei2 − Ei1) would
be properly related to Y ∩ Ei1 which is contained in X. Using this
argument inductively it follows that the ideals of the refined partial
order of (f/X)(·), (g/X)(·)) are precisely the ideals of ≥R of (f(·), g(·))
contained in X, as required.

E 10.31: We will show that the collection of all complements of ideals
of ≥R with respect to (f(·), g(·)) satisfy the characteristic properties
(given in Theorem 10.5.1) of the ideals of the refined partial order with
respect to (f ∗(·), g(·)). We claim that the ideals of this partial order
are precisely the complements of ideals of ≥R. (We note that this
statement is true for the partial orders associated with the principal
partitions of (f(·), g(·)), (f ∗(·), g(·)) respectively). Let Zσ, Z

σ denote
respectively the minimal and maximal members of B∗

σ, the collection
of subsets which minimize the expression σf ∗(X ′) + g(S − X ′). We
need to verify two conditions:
When Z is a complement of an ideal X of ≥R,

• (Z ∩ Zσj+1
) ∪ Zσj

is a set in B∗
σj

.

• If Z 6⊆ Zσj+1
, then

f ∗(Z ∩ Zσj+1
)− f ∗(Z ∩ Zσj

) = f ∗((Z ∩ Zσj+1
) ∪ Zσj

)− f(Zσj
).

i. We know that (by Theorem 10.4.5), for some λr,

Zσj+1
= S −Xλr
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Zσj
= S −Xλr+1

,

where Xλr
, Xλr+1

are the minimal members respectively of Bλr
,Bλr+1

.
Next,

(Z ∩ Zσj+1
) ∪ Zσj

= ((S −X) ∩ (S −Xλr
)) ∪ (S −Xλr+1

)

= (S − (X ∪Xλr
)) ∪ (S −Xλr+1

)

= S − ((X ∪Xλr
) ∩Xλr+1

)

= S − [(X ∩Xλr+1
) ∪Xλr

]

Thus the LHS is the complement of a member of Bλr
(whose maximal

member is Xλr+1
). It is therefore, a member of B∗

σj
(whose minimal

member is Zσj
= S −Xλr+1

). This proves the first condition.

ii. This follows directly by using the definition of f ∗(·), that Z is a
complement of an ideal X in ≥R, that Zσj+1

, Zσj
are complements of

Xλr
, Xλr+1

respectively and that any two ideals of ≥R form a modular

pair for f(·).
E 10.32:
i. Let h1(Y ), h2(Y ) denote respectively f(Y ) + g(X − Y ) and f(Y ) +
g(X ∪ e − Y ), e ∈ (S − X). It is easily verified that these func-
tions are submodular. Now h2(Y ) = h1(Y ) + g(e), Y ⊆ X. Hence,
h2(Y ) > h2(Xmin) ∀Y ⊂ Xmin and h2(Y ) ≥ h2(Xmax) ∀Y ⊆ Xmax.
So using the submodular inequality for h2(·) on Xmin and (X ∪ e)min,
we conclude that (X ∪ e)min ⊇ Xmin. Similarly using it on Xmax and
(X ∪ e)max we conclude that (X ∪ e)max ⊇ Xmax.

ii. If f(Xmax ∪ e) = f(Xmax), then
(f ∗ g)(X)

= f(Xmax)+g(X−Xmax) = f(Xmax∪e)+g(X−Xmax) ≥ (f∗g)(X∪e).

However, we know that (since f(·), g(·) are increasing) (f ∗g)(X∪e) ≥
(f ∗ g)(X). Hence, (f ∗ g)(X) = (f ∗ g)(X ∪ e) (by Theorem 10.3.1).

Next let (f ∗ g)(X) = (f ∗ g)(X ∪ e). We know (X ∪ e)max ⊇ Xmax.
Suppose e 6∈ (X ∪ e)max. Then

(f ∗ g)(X ∪ e) = f((X ∪ e)max) + g((X − (X ∪ e)max) ∪ e)
> f((X ∪ e)max) + g(X − (X ∪ e)max),
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since g(·) is a positive weight function. But the last expression on the
RHS ≥ (f ∗ g)(X), which is a contradiction. Hence,

(X ∪ e)max ⊇ Xmax ∪ e.

We then have

(f ∗ g)(X ∪ e) = f((X ∪ e)max) + g(X − (X ∪ e)max)

≥ f((X ∪ e)max − e) + g(X − (X ∪ e)max)

≥ (f ∗ g)(X)

The only way these inequalities can be satisfied is through equalities.
Hence,

(X ∪ e)max − e ⊆ Xmax,

Hence, (X ∪ e)max ⊆ Xmax ∪ e, and therefore,

(X ∪ e)max = Xmax ∪ e.

Now we have

(f ∗ g)(X ∪ e) = f(Xmax ∪ e) + g(X −Xmax)

= (f ∗ g)(X).

= f(Xmax) + g(X −Xmax)

Hence, f(Xmax) = f(Xmax ∪ e),and therefore,

f(Xmax) = f((X ∪ e)max).

To compute Smax efficiently we start from e1 ∈ S and grow it to S in the
following manner. Suppose we have reached the setX = {e1, · · · , ek} in
this process and know Xmax. For each e ∈ S−X we check if f(Xmax) =
f(Xmax ∪ e). If so we discard e. If f(Xmax) 6= f(Xmax ∪ e′) we update
X to the set X ∪e′. We compute (X ∪e′)max. We continue this process
until we reach a set Y with (f ∗ g)(Y ) = (f ∗ g)(S). Observe that
| Y |≪| S | . At this stage Smax can be computed since

Smax = Ymax ∪ (S − Y ).
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(If e ∈ S − Y , we know that for some X ′ ⊆ Ymax, f(X ′) = f(X ′ ∪ e).
So if e ∈ S − Y , and Y ′ ⊇ Ymax, then f(Y ′) = f(Y ′ ∪ e), by using
submodularity of f(·) and the fact that it is increasing. By induction
we conclude

Smax = Ymax ∪ (S − Y ).)

Thus, we performed | Y | computations ofXmax on sets which are much
smaller than S instead of directly computing Smax. Suppose direct
computation of Xmax is O(| X |α) where α > 1. Then

| Y || Y |α=| Y |α+1<| S |α,

provided | Y |<| S |α/α+1 e.g. if α = 2, | S |= 1000, we need | Y |<
(1000)2/3 = 100. Often there are additional advantages in following
this procedure. Whenever Xmax is not a singleton, we could fuse it
and work with the set X − Xmax ∪ {Xmax} and the corresponding
fusion of the function. Or, when Xmax is nonnull, we could contract
Xmax out and work with f ⋄ (S−Xmax)(·).
E 10.33: Let w′

L(·) be the modified weight function. By Theorem
3.6.2, in order to minimize the expression w′

L(VL−X)+λwR(Γ)(X), we
only need look for a min cut in the flow graph F (B,w′

L, λwR). Since
w′

L(·) and wR(·) are strictly positive weight functions, this cut will
‘correspond’ to a subset X̂ ⊆ VL. Now w′

L(v) = ∞, v ∈ K. It is then
clear that X̂ must contain K as otherwise the above expression would
reach infinite value on X̂. But if X̂ ⊇ K, w′

L(VL− X̂)+λwR(Γ)(X̂) =
wL(VL− X̂)+λ(wR(Γ)(X̂). So such an X̂ minimizes the above expres-
sion over all supersets of K.

E 10.34:
i. We construct the flow graph associated with B with wL(vL) the
capacity of the edge (s, vL), wR(vR) the capacity of the edge (vR, t)
and the edges of the bipartite graph directed from left to right with
capacity ∞. A min cut will have the form

(s ⊎ Y ⊎ ΓL(Y ), t ⊎ VL − Y ⊎ VR − ΓL(Y ))

with capacity wRΓL(Y )+wL(VL−Y ). This cut can have no forward arc
of capacity∞. Also every arc (s, v), v ∈ VL−X must be saturated and
therefore carry nonzero flow. Hence there is an arc carrying nonzero
flow from v into VR. This arc cannot lead into ΓL(X) (otherwise it



576 10. CONVOLUTION OF SUBMODULAR FUNCTIONS

would be a backward arc carrying zero flow). So the arc goes from v
into VR − ΓL(X)). Hence, ΓR(VR − ΓL(Y )) = VL − Y. So the capacity
can also be written as

wL(ΓR(VR − ΓL(Y ))) + wR(VR − (VR − ΓL(Y )))

and the result follows.

ii. This is an immediate consequence of the previous part.

E 10.35: Let λ = p/q. If we make q copies of each vertex v in VL

(making the copies adjacent to the right side vertices to which v is ad-
jacent) and p copies of each vertex in VR, then the resulting bipartite
graph would have a matching which meets all the left vertices.

10.10 Solutions of Problems

P 10.1:
i. By the definition of the vector x, we have

x(E1)

g(E1)
=

1

λ1
, i.e.,

x(E1)− x(∅)
g(E1)− g(∅)

=
1

λ1
.

By induction let us assume x(Ei) = f(Ei), i < q. We then have

1

λq

=
x(Eq)− x(Eq−1)

g(Eq)− g(Eq−1)
=
x(Eq)− f(Eq−1)

g(Eq)− g(Eq−1)
.

But since E1, · · · , Ek is the principal sequence of (f(·), g(·)) we know
that,

g(Eq)− λqf(Eq) = g(Eq−1)− λqf(Eq−1)

i.e.,
1

λq
=
f(Eq)− f(Eq−1)

g(Eq)− g(Eq−1)
=
x(Eq)− f(Eq−1)

g(Eq)− g(Eq−1)
.

Hence, x(Eq) = f(Eq).
So the result is true for all i.

ii. Let Sj ≡ {e1, · · · , ej}, j = 1, · · · , n. We have already seen that
x(Ei) = f(Ei), i = 1, · · · , k. In particular x(Ek) = x(S) = f(S). We
will now show that x(Sj) ≤ f(Sj), j = 1, · · · , n. By an argument similar
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to the one in Theorem 9.7.2, it would then follow that x(X) ≤ f(X)
∀X ⊆ S and, therefore, since x(Ek) = x(S) = f(S), that x is a base
of Pf .
Suppose x(Sj) > f(Sj) for some j. Let r be the least index for which
Sj 6⊇ Er.
We have f(Sj) + f(Er) ≥ f(Sj ∩ Er) + f(Sj ∪ Er),
while x(Sj) + x(Er) = x(Sj ∩ Er) + x(Sj ∪ Er).
We conclude that either x(Sj ∩ Er) > f(Sj ∩ Er) or x(Sj ∪ Er) >
f(Sj ∪ Er). In the former eventuality we pick the set Sj ∩ Er for our
subsequent arguments. Otherwise we repeat the process with Sj ∪Er.
Thus without loss of generality we may assume that Er ⊃ Sj ⊇ Er−1

for some r.
Now we have, by the definition of x,

x(Sj)− x(Er−1)

g(Sj)− g(Er−1)
=

1

λr
.

But x(Sj) > f(Sj) while x(Er−1) = f(Er−1). Hence,

f(Sj)− f(Er−1)

g(Sj)− g(Er−1)
<

1

λr

,

i.e., λrf(Sj)− g(Sj) < λrf(Er−1)− g(Er−1). This contradicts the fact
that Er−1 minimizes λrf(X) + g(S − X). We conclude that x(Sj) ≤
f(Sj), j = 1, · · · , n,. Now consider T for which x(T ) > f(T ) and such
T ⊆ Sj for minimum j. We have, f(Sj−1) + f(T ) ≥ f(Sj−1 ∩ T ) +
f(Sj−1 ∪ T ), while x(Sj−1) + x(T ) = x(Sj−1 ∩ T ) + x(Sj−1 ∪ T ). By
the definition of T we must have x(Sj−1 ∩ T ) ≤ f(Sj−1 ∩ T ). Hence
x(Sj−1∪T ) > f(Sj−1∪T ). However Sj−1∪T = Sj and we have seen that
x(Sj) ≤ f(Sj), j = 1, · · · , n,. We conclude that x(T ) ≤ f(T )∀T ⊆ S
and since x(S) = f(S), x is a base of Pf .

iii. Let x′ be any other base of Pf with

x′(e′1)

g(e′1)
≤ · · · ≤ x′(e′n)

g(e′n)
.

Define S ′
j ≡ {e′1, · · · , e′j}, j = 1, · · · , n. Let us say that the set Er is

broken by a sequence e′1, · · · , e′n iff for some i, e′i 6∈ Er but e′j ∈ Er for
some j > i. Let t be the least index for which x′(e′t)/g(e

′
t) 6= x(et)/g(et).

We need to show that x′(e′t)/g(e
′
t) < x(et)/g(et). We will prove this by
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contradiction. Let x′(e′t)/g(e
′
t) > x(et)/g(et). We proceed by first

proving the following claim.

Claim: Sets E1, · · · , Ek are not broken by e′1, · · · , e′t−1.

Suppose not. Let m be the least index for which Em is broken
by e′1, · · · , e′t−1. Now e1, · · · , et does not break E1, · · · , Ek. So if et ∈
Ej − Ej−1 it is clear, since E1 ⊂ E2 ⊂ · · · ⊂ En, that m ≤ j and
therefore, λm ≥ λj . Hence,

x(et)/g(et) ≥
1

λm
.

Let q be the last index for which e′q ∈ Em. Since e1, · · · , eq does not
break Em, it follows that eq ∈ Es −Em, s > m. Hence, if q ≤ t− 1, we
have

x′(e′q)

g(e′q)
=
x(eq)

g(eq)
>

1

λm
,

and if q > t− 1, we have

x′(e′q)

g(e′q)
≥ x′(e′t)

g(e′t)
>
x(et)

g(et)
≥ 1

λm

.

Thus it is clear that in every case

x′(e′q)

g(e′q)
>

1

λm

.

Now let {e′i1, · · · , e′iw} = Em − Em−1, where i1 < · · · < iw. If i1 < t,
then

x′(e′i1)

g(e′i1)
=
x(ei1)

g(ei1)
≥ 1

λm

(since Em−1 is not broken by e′1, · · · , e′n, and, therefore, ei1 6∈ Em−1). If
i1 ≥ t, then

x′(e′i1)

g(e′i1)
≥ x′(e′t)

g(e′t)
>
x(et)

g(et)
≥ 1

λm
,

We thus see that for each e′ ∈ Em −Em−1,
x′(e′)

g(e′)
≥ 1

λm

.

In addition we have already seen that
x′(e′q)

g(e′q)
>

1

λm
.
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It follows that
x′(e′i1) + · · ·+ x′(e′iw)

g(e′i1) + · · ·+ g(e′iw)
>

1

λm
,

i.e.,
x′(Em)− x′(Em−1)

g(Em)− g(Em−1)
>

1

λm

.

Now E1, · · · , Em−1 are not broken by e′1, · · · , e′t−1. They are also not
broken by e1, · · · , en. Further, et ∈ Ej with j ≥ m. So Em−1 ⊆
{e′1, · · · , e′t−1}. It follows that for each e′x ∈ Ei − Ei−1, i ≤ m − 1,
we must have

x′(e′x)

g(e′x)
=
x(ex)

g(ex)
=

1

λi

.

Hence, x′(Ei) = x(Ei), i = 1, · · · , m − 1. But x(Ei) = f(Ei), i =
1, · · · , k. Hence, x′(Em−1) = f(Em−1). Hence,

f(Em)− f(Em−1)

g(Em)− g(Em−1)
≥ x′(Em)− x′(Em−1)

g(Em)− g(Em−1)
>

1

λm

.

This is a contradiction as we have shown in the previous section.
This contradiction can be avoided only if E1, · · · , Ek is not broken
by e′1, · · · , e′t−1. Thus, the claim is justified.
Now let Er ⊇ S ′

t−1 ⊃ Er−1. We consider two cases.
Case 1: Er ⊇ S ′

t ⊃ Er−1.
Suppose S ′

t−1 − Er−1 = {e′j1, · · · , e′jy}, j1 < · · · < jy. Then St−1 −
Er−1 = {ej1, · · · , ejy}. Now

x′(e′j1)

g(e′j1)
=

x(ej1)

g(ej1)
=

1

λr
,

...
x′(e′jy)

g(e′jy)
=

x(ejy)

g(ejy)
=

1

λr
.

Further,
x′(e′t)

g(e′t)
>
x(et)

g(et)
≥ 1

λr
.

Hence, for each e′ ∈ Er − S ′
t−1,

x′(e′)

g(e′)
>

1

λr
.
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It follows that
x′(Er)− x′(Er−1)

g(Er)− g(Er−1)
>

1

λr
.

By arguments used in the previous sections of this problem

x′(Er−1) = x(Er−1) = f(Er−1).

Further, x′(Er) ≤ f(Er). We therefore have

f(Er)− f(Er−1)

g(Er)− g(Er−1)
>

1

λr
, a contradiction.

Case 2: Er = S ′
t−1

In this case

x′(Er+1)− x′(Er)

g(Er+1)− g(Er)
≥ x′(e′t)

g(e′t)
>
x(et)

g(et)
=

1

λr+1
.

Since x′(Er) = x(Er) = f(Er), and x′(Er+1) ≤ f(Er+1), it follows that

f(Er+1)− f(Er)

g(Er+1)− g(Er)
>

1

λr+1
, a contradiction.

Since the assumption that

x′(e′t)

g(e′t)
>
x(et)

g(et)
,

leads us to a contradiction in every case, and since the two sides are
not equal, we conclude that

x′(e′t)

g(e′t)
<
x(et)

g(et)
.

(iv) From the arguments of the previous section, the only F-lexicographically
optimum base is the one defined by

x(e)

g(e)
=

1

λj
, e ∈ Ej −Ej−1, j = 1, · · · , k.

This definition yields a unique base. So the F-lexicographically opti-
mum base is unique.
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P 10.2: [Fujishige91]
i. This has been already shown for the case where g(·) is a general
submodular function (in the proof of PP1).

ii. We proceed as in the proof of PP2 slightly modifying the notation
of that proof.
Let p1(X) ≡ f(X) + σ1g(S −X)
p2(X) ≡ f(X) + σ2g(S −X).
If Z1 minimizes p1(·) and Y ⊂ Z1 we have

p2(Y ) = p1(Y ) + (σ2 − σ1)g(S − Y )

p2(Z1) = p1(Z1) + (σ2 − σ1)g(S − Z1)

Since g(·) is increasing, Y ⊂ Z1 and σ2 > σ1, p2(Y ) ≥ p2(Z1). Hence,
there is a set that minimizes p2(·) and contains Z1 (by Theorem 9.4.1).
Hence, Y σ1 ⊆ Y σ2 . If Z1 is the unique set that minimizes p1(·) we have
p1(Y ) > p1(Z1), ∀Y ⊂ Z1. Hence, p2(Y ) > p2(Z1), ∀Y ⊂ Z1.
Thus, in this case every set that minimizes p2(·) would contain Z1.
Thus, Yσ2 ⊇ Yσ1.

iii. The proof is similar to the case where σ ≥ 0. Note that σgd(·) is a
submodular function if g(·) is submodular and σ is negative.

iv. We have three cases:
a. 0 ≤ σ1 < σ2.
b. σ1 < 0 < σ2.
c. σ1 < σ2 ≤ 0.
Cases (a) and (c) have already been considered in the previous sections
of the present problem. So we consider only Case (b).
Case (b): Let X1 ∈ B·σ1 , X2 ∈ B·σ2 . We use the following facts:

g(S − (X1 ∩X2))− [g(S −X1)− g(S − (X1 ∪X2))] ≤ g(S −X2),

σ2(g(S − (X1 ∩X2))− g(S −X1)) ≥ 0,

σ1(g(X1 ∩X2)− g(X1)) ≥ 0.

We have

f(X1) + σ1(g(S)− g(X1)) + f(X2) + σ2g(S −X2)

≥ f(X1 ∪X2) + f(X1 ∩X2) + σ2g(S − (X1 ∪X2))

+σ1(g(S)− g(X1 ∩X2)) + σ2(g(S − (X1 ∩X2))− g(S −X1))
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+σ1(g(S)− g(X1))− σ1(g(S)− g(X1 ∩X2))

≥ f(X1 ∪X2) + σ2g(S − (X1 ∪X2))

+f(X1 ∩X2) + σ1(g(S)− g(X1 ∩X2)).

The only way the final inequality can be satisfied is to have
f(X1) + σ1(g(S)− g(X1)) = f(X1 ∩X2) + σ1(g(S)− g(X1 ∩X2)) and
f(X2) + σ2g(S −X2) = f(X1 ∪X2) + σ2g(S − (X1 ∪X2)).
The required result now follows.

P 10.17: Familiarity with Theorems 10.4.4, 10.4.5,10.7.2 and Prob-
lems 10.12 and 10.10 is assumed in the following solution. A polyma-
troid rank function f(·) and another obtained from it by taking direct
sum of the structures
f/Xλi+1

⋄(Xλi+1
−Xλi

)(·) have identical principal partitions and would

continue to have identical principal partitions even if both are operated
on by positive or negative expressions. This fact can be proved similar
to the way in which Theorem 10.7.5 is proved and is also used below.

i. (f1+f2)(·) would have identical principal partition and partial order
as f1(·) and f2(·). The critical values would change as follows:

λ+1 = (λ−1
11 + λ−1

21 )−1 = (
1

5
+

1

4
)−1 =

20

9
,

λ+2 = (
1

4
+

1

3
)−1 =

12

7
,

λ+3 = (
1

3
+

2

3
)−1 = 1

λ+4 = (
1

2
+

3

4
)−1 =

4

5
(f1 + f2) ∗ g would have D1 ∪ D2 ∪ C1 ∪ C2 as coloops. The refined
partial order would not change as far as A,B1, B2, B3 are concerned.
The elements in D1 ∪ D2 ∪ C1 ∪ C2 would remain as isolated vertices
in the Hasse Diagram of (≥R).

ii. The function ((f1 + f2) ∗ g)∗(·) would have D1 ∪ D2 ∪ C1 ∪ C2

as self loops. The refined partial order would be the dual of that of
((f1 + f2) ∗ g)(·). The critical values of (((f1 + f2) ∗ g)(·) are 20/9, 12/7
and 1, where the value 1 corresponds to D1 ∪ D2 ∪ C1 ∪ C2. So the
critical values of ((f1 + f2) ∗ g)∗(·) are

∞, (1− 7

12
)−1, (1− 9

20
)−1
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where the critical value ∞ corresponds to D1 ∪ D2 ∪ C1 ∪ C2,
12
5

=
(1− 7

12
)−1 corresponds to B1∪B2∪B3 and 20

11
= (1− 9

20
)−1 corresponds

to A.

A quick way of computing the principal partition in such cases is to
examine what happens to each of the molecular structures f/Xλi+1

⋄
(Xλi+1

−Xλi
)(·) corresponding to the different critical values. In the

following discussion, for notational convenience, the function which is
the direct sum of the above functions on the sets (Xλi+1

−Xλi
) will be

denoted by f(·). Let us examine what would happen to the molecular
structure on B1 ∪ B2 ∪ B3 in ((f1 + f2) ∗ g)∗(·).
The corresponding critical value in f1(·) is 4 and in f2(·) it is 3. When
two functions have molecular (fi(·), g(·)) structure, adding them cor-
responds to addition of the reciprocal of the critical values. So the
critical value for (f1 + f2)(·) is (1

4
+ 1

3
)−1 = 12

7
. This value is above 1.

So convolution with g(·) will not affect the critical value. Dualization
would replace λ by (1 − 1

λ
)−1. So we get 12

5
as the critical value for

((f1 + f2) ∗ g)∗(·). This does not correspond to coloops. So we know
the refined partial order to be as in the case of f1(·) and f2(·) as far as
B1, B2, B3 and elements below these are concerned. If, however, for an
intermediate expression ω(f1, f2) the critical value for Ei+1−Ei (where
Ei are the sets in the principal sequence) falls ≤ 1, convolving with
g(·) will make that region into coloops for the resulting function. In
the present case no such intermediate expression occurs.

iii. Let us use the above technique with critical values to study the
principal partition of (((2f1 ∗ g)∗ + f1

∗) ∗ g)∗(·). Critical value λ11 for
f1(·) ⇒ 1

2
λ11 for 2f1(·). Since 1

2
λ11 > 1, therefore, the corresponding

critical value continues to be 1
2
λ11 for 2f1 ∗ g(·).

Next, 1
2
λ11 for 2f1 ∗ g(·) ⇒ (1− 2

λ11
)−1 for (2f1 ∗ g)∗(·).

So λ11 = 5 for f1(·) becomes the critical value (1− 2

λ11
)−1 = 5

3
for (2f1∗

g)∗(·). Next, corresponding to λ11, f1
∗(·) has critical value (1− 1

5
)−1 =

5
4
. So ((2f1 ∗g)∗+f1

∗)(·) has critical value (4
5
+ 3

5
)−1 = 5

7
corresponding

to λ11. This value is less than 1. So convolution with g(·) will convert
this set A into coloops and dualization would make these into selfloops.
Repeating this computation with λ12, λ13 we find that B1 ∪ B2 ∪ B3

and C1 ∪ C2 also become sets of self loops in ((2f1 ∗ g)∗ + f1
∗)(·).

However, in the case λ14 = 2, 2f1(·) has critical value 1. So (2f1∗g(·))(·)
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has only coloops and its dual has only selfloops in D1 ∪ D2. Hence,
((2f1 ∗ g)∗ + f1

∗)(·) would coincide with f1
∗(·) on D1 ∪D2. Now f1

∗(·)
has critical value 2. So does f1

∗ ∗ g(·) and also (f1
∗ ∗ g)∗(·). Thus the

function (((2f1 ∗ g)∗ + f1
∗) ∗ g)∗(·) has the value g(D1∪D2)

2
on D1 ∪D2

and, since S − (D1 ∪D2) is made of selfloops, the same value also on
S.

Calculations in the case of the other functions are similar.



Chapter 11

Matroid Union

11.1 Introduction

In this chapter we study the important operation of matroid union.
We first prove that the matroid union operation yields a matroid if
we start with matroids. There are many ways of proving this result.
We have chosen a route which has the merit of displaying, along the
way, some of the deepest results in matroid theory (e.g. Rado’s The-
orem). However, space considerations have prevented us from giving
the results the motivation they deserve. The key notion in our de-
velopment is the idea of a submodular function induced through a
bipartite graph. Next we present an algorithm for matroid union that
is an immediate extension of Edmonds’ famous algorithm for matroid
partition [Edmonds65a]. We study this algorithm in detail and, as a
consequence, the structure of the union matroid. Finally we use this
algorithm to construct the principal partition of the rank function of
a matroid with respect to the | · | function.

11.2 Submodular Functions induced through

a Bipartite Graph

In this section we study the effect that a submodular function, defined
on one side of a bipartite graph, has on the other side. Results of

585
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this nature include some of the deepest (e.g. Rado’s Theorem on in-
dependent transversals) and some of the most practically useful (e.g.
Matroid Union Theorem) in matroid theory. The treatment in this
section largely follows that of Welsh [Welsh76]. However, we choose to
work in the context of bipartite graphs rather than in that of families
of sets.

Remark: In this chapter and in subsequent chapters, maximal inde-
pendent sets would be denoted invariably by b and not by B.

We begin with a simple result which is a restatement of the one
found in Problem 9.3 (second part).

Theorem 11.2.1 Let B ≡ (VL, VR, E) be a bipartite graph. Let f(·)
be an increasing submodular function on subsets of VL. Then f(ΓR(·))
(where ΓR(X), X ⊆ VR is the set of vertices adjacent to X in B), is
an increasing submodular function on subsets of VR.

(For proof see solution of the above mentioned problem.)
It is convenient at this stage to introduce terms which are commonly
used in ‘transversal theory’. Let B ≡ (VL, VR, E) be a bipartite graph.
A family (xi : i ∈ I) of vertices in VL is a system of representatives
(SR) of a subset Y ≡ {yi : i ∈ I} of VR iff there exists a bijection
τ : I → I s.t. xi ∈ ΓR(yτ(i)) (where ΓR(X), X ⊆ VR is the set of
vertices adjacent to X in B). (We remind the reader that the definition
of family (see page 21) permits xi = xj even if i 6= j).
The system of representatives of Y becomes a system of distinct
representatives (SDR) or a transversal of Y iff xi 6= xj , i 6= j.
Alternatively, a set T ⊆ VL is a transversal of Y iff there is a bijection
τ : T → I s.t. x ∈ ΓR(yτ(x)) ∀x ∈ T. (A convenient way of defining
this bijection when Y ≡ VR is to use the same index set for both the
family of left vertices in an SR and the right vertex set VR and the
bijection to be the identity mapping). A matching in B is a set of
edges of B no two of which have a vertex in common. Thus, T ⊆ VL

is a transversal of Y iff there exists a matching in B with T as the
set of left vertices and Y as the set of right vertices. Throughout this
section, index sets (such as I) are taken to be finite. The set underlying
a family (xi : i ∈ I) is denoted by {xi : i ∈ I}.

Theorem 11.2.2 (Welsh [Welsh76]) Let B ≡ (VL, VR, E) be a bipar-
tite graph with no parallel edges. Let VR ≡ {yi : i ∈ I}.
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Let f(·) be an increasing submodular function on subsets of VL. Then
VR has a system of representatives (xi : i ∈ I) such that

f({xi : i ∈ J}) ≥| J | ∀J ⊆ I (∗)

iff

f(ΓR(Y )) ≥| Y | ∀Y ⊆ VR. (∗∗)

Proof : Only if: Let (xi : i ∈ I) be an SR of VR. Let Y ≡ {yi : i ∈ J}.
Further, let yi 6= yj, i 6= j. Then ΓR(Y ) =

⋃

i∈J ΓR(yi) ⊇ {xi : i ∈ J},
since xi ∈ ΓR(yi) ∀i ∈ I.
Further f(·) is increasing. Hence, f(ΓR(Y )) ≥ f({xi : i ∈ J}) ≥| J |=|
Y |. So (∗) is satisfied.

If: Let (∗∗) be satisfied. The proof is by induction on the number of
edges in the bipartite graph. Clearly the result is true if there is only
one edge. Let us assume that the result is true for all bipartite graphs
with k edges and let B have k+ 1 edges. The result is in fact trivially
true (there can be no SR) unless each vertex in VR has degree at least
1. If each vertex in VR has degree 1 the result is immediately true (the
SR is (ΓR(yi) : i ∈ I)). So we assume that each vertex of VR has degree
atleast 1 and without loss of generality that vertex y1 ∈ VR has degree
atleast 2. Let edges (x1, y1), (x2, y1) be incident on y1. Let B1(B2)
be the bipartite graph obtained by deleting (x1, y1) ((x2, y1)) from B.
We claim that one of B1, B2 must satisfy (∗∗) (with ΓR(·) replaced by
their right adjacency functions ΓR

1(·),ΓR
2(·) respectively). Suppose

not. Then there must exist subsets Y1, Y2 of VR − {y1} s.t.

f((ΓR
1(y1) ∪ ΓR(Y1)) ≤| Y1 |,

f((ΓR
2(y1) ∪ ΓR(Y2)) ≤| Y2 | .

Now since f(·) is submodular, increasing and since
ΓR(P ∩Q) ⊆ ΓR(P ) ∩ ΓR(Q) ∀P,Q ⊆ VR,

f(ΓR
1(y1) ∪ ΓR(Y1)) + f(ΓR

2(y1) ∪ ΓR(Y2))

≥ f(ΓR(y1) ∪ ΓR(Y1 ∪ Y2)) + f(ΓR(Y1 ∩ Y2) ∪ (ΓR
1(y1) ∩ ΓR

2(y1)))

≥ f(ΓR(y1) ∪ ΓR(Y1 ∪ Y2)) + f(ΓR(Y1 ∩ Y2)).
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Hence,

| Y1 | + | Y2 | +1 = | Y1 ∪ Y2 | + | Y1 ∩ Y2 | +1

> f((ΓR(y1) ∪ ΓR(Y1 ∪ Y2)) + f(ΓR(Y1 ∩ Y2)).

Now
f(ΓR(Y1 ∩ Y2)) ≥| Y1 ∩ Y2 |

by (∗∗). But then f(ΓR(y1) ∪ ΓR(Y1 ∪ Y2)) <| Y1 ∪ Y2 | +1. This
violates (∗∗) for B. We conclude that one of B1, B2, say B1, must
satisfy (∗∗). But B1 has k edges and by the induction assumption has
an SR satisfying (∗). This is also an SR satisfying (∗) for B.

2

We can now prove

Theorem 11.2.3 (Rado’s Theorem [Rado42])
Let B ≡ (VL, VR, E) be a bipartite graph. Let M be a matroid on VL

with rank function f(·). Then VR has a transversal that is independent
in M iff

f(ΓR(Y )) ≥| Y | ∀Y ⊆ VR · · · (∗∗).

Proof : Necessity of the condition is trivial. So we only consider
sufficiency. Let (∗∗) hold. By Theorem 11.2.2, VR has an SR (xi : i ∈ I)
s.t.

f({xi : i ∈ J}) ≥| J | ∀J ⊆ I.

Since f(·) is the rank function of a matroid, the only way this inequality
can be satisfied is for | {xi : i ∈ J} | to be equal to | J | and f({xi :
i ∈ J}) to be also equal to | J | . The former of these two conditions
makes the SR into an SDR and
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the latter ensures that {xi : i ∈ I} is independent in M. Thus
{xi : i ∈ I} is an independent transversal of VR.

2

Hall’s Theorem is an easy corollary by taking M to be the free
matroid (in which every set is independent).

Theorem 11.2.4 (Hall’s Theorem [Hall35])
Let B ≡ (VL, VR, E) be a bipartite graph. Then VR has a transversal
(there exists a matching which meets every vertex in VR) iff | ΓR(Y ) |≥|
Y | ∀Y ⊆ VR.

We are now in a position to prove the following useful result due to
Perfect [Perfect69]

Theorem 11.2.5 Let B ≡ (VL, VR, E) be a bipartite graph. Let ML

be a matroid on VL with rank function f(·). Then

i. the collection of subsets of VR which have independent (in ML)
transversals is the family of independent sets of a matroid MR

ii. the rank of a set A ⊆ VR inMR is minX⊆A(f(ΓR(X))+ | A−X |
).

We need the following preliminary lemma for the proof of the theorem
(see also Theorem 10.3.1).

Lemma 11.2.1 Let µ(·) be an integral polymatroid rank function on
subsets of S (an increasing integral submodular function with µ(∅) =
0). Then the collection of subsets P with µ(K) ≥| K | ∀K ⊆ P,
forms the collection of independent sets of a matroid with rank function
(µ∗ | · |)(·).
Proof of the Lemma: The function (µ∗ | · |)(·) is easily seen to be
a matroid rank function since it is submodular (Theorem 10.2.1),

(µ∗ | · |)(X ∪ e)− (µ∗ | · |)(X) = 1 or 0

and (µ∗ | · |)(·) is increasing, integral and takes zero value on the null
set. Further µ(K) ≥| K | ∀K ⊆ P is equivalent to saying that
(µ∗ | · |)(P ) =| P |, i.e., equivalent to saying that P is independent in
the matroid whose rank function is (µ∗ | · |)(·).
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2

Proof of the Theorem:
i. We define the function fR(·) on subsets of VR by

fR(X) ≡ f(ΓR(X)) ∀X ⊆ VR.

By Theorem 11.2.1, fR(·) is an increasing submodular function with
fR(∅) = 0. It is also integral. Hence (fR ∗ | · |)(·) is a matroid rank
function and a set P is independent with respect to it iff fR(K) ≥|
K | ∀K ⊆ P , i.e., iff f(ΓR(K)) ≥| K | ∀K ⊆ P. But by Theorem
11.2.3, using the bipartite graph (ΓR(P ), P, EP ), (where EP is the set
of edges of B incident on P ), this happens iff P has a transversal T
that is independent relative to f(·).
ii. We saw above that the rank function ofMR is (fR∗ | · |)(·). Since
fR(·) ≡ f(ΓR(·)) the result follows.

2

The following corollary is due to Nash-Williams [Nash-Williams67].

Corollary 11.2.1 Let ΓL : VL → VR be a function and let ML be a
matroid on VL with rank function f(·).

i. The collection of images of independent sets of ML under ΓL(·)
are the independent sets of a matroid MR on VR.

ii. The rank of a subset A ⊆ VR in MR is given by

minX⊆A(f(ΓL
−1(X))+ | A−X |).

Proof : Build a bipartite graph (VL, VR, E) where e = (a, b) belongs
to E iff ΓL(a) = b. The result now follows from Theorem 11.2.5 when
we observe that ΓR(·) = ΓL

−1(·).
2

We can now prove the Matroid Union Theorem.

Theorem 11.2.6 Let Ma,Mb be matroids on S. Let Ia ∨ Ib ≡ {T :
T = A ∪ B, A independent in Ma, B independent in Mb}.
Then Ia ∨ Ib is the family of independent sets of a matroid on S. The
rank function of this matroid is ((ra + rb)∗ | · |)(·), where ra(·), rb(·)
are the rank functions of Ma,Mb respectively.
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Proof : : We build copies S1, S2 of S and build a matroidMa1 on S1

that is a copy ofMa and a matroidMb2 on S2 that is a copy ofMb.
We thus have the matroidMa1⊕Mb2 on S1 ⊎ S2. Define the function
Γ : S1 ⊎ S2 → S by Γ(e′) ≡ e whenever e′ is a copy of e. The rank
function of Ma1 ⊕Mb2 on S1 ⊎ S2 is (ra1 ⊕ rb1)(·) where ra1(·), rb1(·)
are copies of ra(·), rb(·). Using Corollary 11.2.1, let Ma ∨Mb denote
the matroid on S whose independent sets are images under Γ(·) of
independent sets ofMa1⊕Mb2. Now a set A1 ⊎B2, A1 ⊆ S1, B2 ⊆ S2

is independent in Ma1 ⊕Mb2 iff A1 is independent in Ma1 and B2

independent inMb2. The image of this set under Γ(·) is A∪B, where
A1 is a copy of A and B2, a copy of B. (i.e., A is independent in Ma

and B inMb). Hence, a set is independent inMa∨Mb iff it is a union
of an independent set ofMa and an independent set ofMb. Let rab(·)
be the rank function ofMa ∨Mb. By Corollary 11.2.1,

rab(A) = minX⊆A((ra1 ⊕ rb2)(Γ
−1(X))+ | A−X |)

Now Γ−1(X) = X1 ⊎X2 where X1 is a copy of X within S1 and X2 is
a copy of X within S2 and

(ra1 ⊕ rb2)(X1 ⊎X2) = ra1(X1) + rb2(X2)

= ra(X) + rb(X)

= (ra + rb)(X).

Hence,
rab(A) = minX⊆A((ra + rb)(X)+ | A−X |),

i.e., rab(·) = ((ra + rb)∗ | · |)(·).
2

The corollary given below follows by routine induction.

Corollary 11.2.2 (Nash-Williams’ Rank Formula) Let M1, · · · ,Mk

be matroids on S with rank function r1(·), · · · , rk(·). Then I ≡ {T : T =
T1∪· · ·∪Tk, Ti independent inMi ∀i} is the collection of independent
sets of a matroid whose rank function is given by ((r1+· · ·+rk)∗ | · |)(·).
Definition 11.2.1 Given matroids M1,M2 on S, the matroid each
of whose independent sets is a union of an independent set ofM1 and
an independent set of M2 is called union of M1 and M2 and is
denoted by M1 ∨M2.
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The construction of the base of the union of matroids is a very common
occurrence in combinatorial optimization problems, e.g. the problem
of finding maximally distant trees, the hybrid rank problem, the max-
imum rank-minimum term rank problem etc. (see Section 14.2). Very
often the problem is disguised as the ‘Matroid intersection problem:
Given two matroids M1,M2 find the largest set that is independent
inM1 andM2’.

Exercise 11.1
(k) LetM1,M2 be matroids on S. Let b12 be the largest set independent
in M1 as well as in M2. Show that

i. b12 can be represented as b12∗−b∗2 where b12∗ is a base ofM1∨M∗
2

which is the union of a base b1 of M1 and a base b∗2 of M∗
2,

ii. | b12 |= r(M1 ∨M∗
2)− r(M∗

2),

iii. every set of the form b12∗ − b∗2 is a common independent set of
M1,M2 of maximum size.

Exercise 11.2
(k) Let M1, · · · ,Mk be matroids on S and let T ⊆ S. Let r(·) be the
rank function of Mv =M1 ∨ · · · ∨Mk. Then

i. M1 ∨ · · · ∨Mk · T =M1 · T ∨ · · · ∨Mk · T,

ii. if r(S − T ) =
∑k

i=1 ri(S − T ) then

(M1 ∨ · · · ∨Mk)× T =M1 × T ∨ · · · ∨Mk × T.
Exercise 11.3
(k) Show that there exist bases b1, · · · , bk of matroids M1, · · · ,Mk on
S s.t.

⋃

bi = S iff there exist no subsets T of S s.t.
∑k

i=1 ri(T ) <| T | .
Exercise 11.4 Let M1,M2 be two matroids on S. Let M3 =M1 ∨
M2.
Let di(Q) =| Q | /ri(Mi · Q), ∅ ⊂ Q ⊆ S. where ri(·) is the rank
function ofMi, i = 1, 2, 3. If d1(·), d2(·) reach their maximum value on
P 6= ∅, show that d3(·) also reaches its maximum on P.

Exercise 11.5
(k) Let B ≡ (VL, VR, E) be a bipartite graph. Use the matroid union
theorem to show that
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i. [Edmonds+Fulkerson65] the collection of transversals of subsets
of VR form the independent sets of a matroid on VL (the transver-
sal matroid on VL defined by B);

ii. the union of rank one matroids is a transversal matroid;

iii. if M is a transversal matroid on VL and K ⊆ VL then M ·K is
a transversal matroid on K; if M · K contains no coloops then
M× (VL −K) is a transversal matroid.

iv. size of the maximum matching = (|ΓL|∗ | · |)(VL).

Exercise 11.6
[Pym+Perfect70] Let f1(·), f2(·) be non-negative, increasing, integral
submodular functions and let M(f) denote the matroid whose rank
function is (f∗ | · |)(·). Show that

M(f1 + f2) =M(f1) ∨M(f2).

Exercise 11.7
Let M1,M2 be matroids on S and let M∗

1,M∗
2 be their duals. Let

r1(·), r2(·), r1∗(·),
r2

∗(·) be the rank of functions of M1,M2,M∗
1,M∗

2 respectively. Let
R,R∗ be the minimal sets that minimize (r1 +r2)(X)+ |S−X|, X ⊆ S
and
(r1

∗ + r2
∗)(X)+ | S −X |, X ⊆ S respectively. Show that

i. A set K ⊆ S minimizes (r1 +r2)(X)+ | S−X |, X ⊆ S iff S−K
minimizes (r1

∗ + r2
∗)(X)+ | S −X |, X ⊆ S.

ii. S −R∗, S −R are the maximal sets that minimize

(r1 + r2)(X)+ | S −X |, X ⊆ S,

(r1
∗ + r2

∗)(X)+ | S −X |, X ⊆ S

respectively.

iii. the collection of non-coloops of M1 ∨ M2 is disjoint from the
collection of non-coloops of M∗

1 ∨M∗
2.
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Exercise 11.8
Let M1,M2 be matroids on S with rank functions r1(·), r2(·) respec-
tively. Show that

i. [Pym+Perfect70]

max
X⊆S

(r1(X) + r2(S −X)) = min
X⊆S

((r1 + r2)(X)+ | S −X |).

ii. [Edmonds70] maximum cardinality of a common independent set
=
minX⊆S(r1(X) + r2(S −X)).

iii.

max | b1 − b2 |= min
X⊆S

(r1(X) + r2
∗(S −X)),

where b1, b2 are bases of M1,M2 respectively.

Exercise 11.9 [Narayanan74] Let us call the PP of (r, | · |) where r(·)
is the rank function of matroid M, the PP of M. Given the PP of
M, how would you compute the PP of M∨M, (M∨M)∗ ∨M∗, in
general of ‘positive’ or ‘negative’ expressions of M
(M is positive, M∗ negative,
f(M), g(M) positive ⇒ f(M) ∨ g(M) positive
f(M), g(M) negative ⇒ f(M) ∨ g(M) negative
f(M) positive (negative) ⇒ (f(M))∗ negative (positive)).

11.3 Matroid Union: Algorithm and Struc-

ture

11.3.1 Introduction

In this section we present the well known algorithm for the construction
of a base of the union of matroids. The algorithm is due to Edmonds
[Edmonds65a]. It can be easily modified to give the maximum size
common independent set of two matroids. It also allows us to discuss
the structure of various standard ‘objects’ associated with the matroid
union viz. f-circuit, the set of coloops etc.
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11.3.2 The Algorithm

In the Algorithm Matroid Union that we describe below, we make
use of a directed graph, G(b1, · · · , bk), associated with bases b1, · · · , bk of
matroidsM1, · · · ,Mk respectively defined on S. The graph G(b1, · · · , bk)
is built as follows: S is the vertex set of the directed graph. Let
v1, v2 be vertices. Then there is an edge (v1, v2, i) directed from v1 to
v2 iff v2 ∈ Li(v1, bi), i.e., iff v2 lies in the fundamental circuit of v1 with
respect to bi in the matroidMi. If v1 ∈ bi there is no edge of the kind
(v1, v2, i).
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ALGORITHM 11.1 Algorithm Matroid Union
INPUT Matroids M1, · · · ,Mk on S. Bases b1, · · · , bk of

M1, · · · ,Mk respectively.

OUTPUT i. Bases b1f , · · · , bkf of M1, · · · ,Mk respectively such
that

⋃k
i=1 bif is a base of M1 ∨ · · · ∨Mk.

ii. The set R of all element reachable from S−⋃k
i=1 bif in

G(b1f , · · · , bkf).
Initialize j ← 0

(COMMENT: j describes the current index of the base set.)
b1j ← b1, · · · , bkj ← bk.

STEP 1 Construct G(b1j , · · · , bkj). If S =
⋃k

i=1 bij , GOTO STEP 7.

STEP 2 Mark all vertices which belong to more than one of the bij.
For each v ∈ S − ⋃k

i=1 bij in G(b1j , · · · , bkj), do
Starting from v do a bfs and find the set of all
vertices reachable through directed paths from v.

(COMMENT: The directed edges (va, vb, p),
(vc, vd, q),

p 6= q may be in the same directed path.)
If no marked vertex is reachable from v in

G(b1j , · · · , bkj)
call v good. Otherwise v is bad.

STEP 3 If all v ∈ S − ⋃k
i=1 bij are good, GOTO STEP 7.

STEP 4 Let v be a bad vertex of G(b1j , · · · , bkj) and let vm be a
marked vertex reachable from v. Let v = vo, e1, v1, · · · , em, vm

be the shortest directed path from v to vm (where ei is the
directed edge from vi−1 to vi).
For i = 0 to m− 1, do

If em−i ≡ (vm−i−1, vm−i, q)
bqj ← (bqj ∪ vm−i−1)− vm−i

(COMMENT: The union of the updated bases has size one
more than the union of the original bases since vo has moved
into the union by pushing vm out of one of the bases to
which it belonged.)
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STEP 5 For i = 1, · · · , k, do
bi(j+1) ← bij

STEP 6 j ← j + 1. GOTO STEP 1

STEP 7 Declare: b1f = b1j , · · · , bkf = bkj

and R to be the set of all vertices reachable in G(b1f , · · · , bkf)
from S − ⋃k

i=1 bif .

STOP

11.3.3 Justification and complexity of Algorithm

Matroid Union

In order to justify Algorithm Matroid Union we need to verify two
facts.

i. In STEP 4, the bases are updated according to a rule – the new
objects actually are bases of the corresponding matroids.

ii.
⋃

bif that we obtain at the end of the algorithm cannot be en-
larged.

The following lemmas do the needful.

Lemma 11.3.1 Let v be a bad vertex of G(b1j , · · · , bkj) and let
v = vo, e1, v1, · · · , em, vm be the shortest directed path from v to vm with
ei the
directed edge from vi−1 to vi. Let en ≡ (vn−1, vn, q) and ep ≡ (vp−1, vp, q)
with n < p. Then vp 6∈ Lq(vn−1, bqj)

Proof : Suppose vp ∈ Lq(vn−1, bqj). Then there is a directed edge
e ≡ (vn−1, vp, q) in G(b1j , · · · , bkj). The path that replaces the segment
vn−1, en, · · · , vp by vn−1, e, vp would be shorter than the original path
from v to vm. This is a contradiction. We conclude vp 6∈ Lq(vn−1, bqj).

2

As a consequence of this lemma, if we update the base bqj to b̂qj ≡
((vp−1 ∪ bqj)− vp)

Lq(vn−1, b̂qj) = Lq(vn−1, bqj).
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Hence, ((b̂qj ∪ vn−1) − vn) is a base of the matroid Mq. This proves
that the set of updated subsets b1j , · · · , bkj that we obtain at the end
of STEP 4 are bases ofM1, · · · ,Mk respectively.

Lemma 11.3.2 Let b1f , · · · , bkf be the bases output by the Algorithm
Matroid Union. Let

⋃

bif 6= S. Let Rv ⊆ S be the set of all elements
reachable from v ∈ S−⋃k

i−1 bif in G(b1f , · · · , bkf) and let R be the union
of all such Rv. Then

i. R ∩ bif ∩ bjf = ∅, i 6= j.

ii. R ∩ bif is a base of Mi · R, i = 1, · · · , k.

Proof :

i. Since
⋃k

i=1 bif 6= S at the termination of the algorithm, no ele-
ment of
bif ∩ bjf , i 6= j can be reached from any element in S − ⋃ bif .

ii. We need to prove that if v′ ∈ R − bif then Li(v
′, bif ) ⊆ R. If

vj ∈ Li(v
′, bif), since v′ is reachable in G(b1f , · · · , bkf ) from some

v ∈ S − ⋃k
i=1 bif , we must

have that vj is reachable from v. Hence, vj ∈ R.

2

We can now see why
⋃

bif cannot be enlarged. If
⋃

bif = S we are
done. Otherwise let

⋃

b′i ⊇
⋃

bif , where b′i are independent inMi. Now

| (
⋃

b′i) ∩R |≤
∑

i

r(Mi.R) =| (
⋃

bif) ∩R |

Hence, (
⋃

b′i) ∩ R = (
⋃

bif ) ∩ R.
Further by definition of R, S − R ⊆ ⋃

bif . Hence,
⋃

b′i =
⋃

bif . We
thus see that

⋃k
i=1 bif is a base of M1 ∨ · · · ∨Mk. This completes the

justification of Algorithm Matroid Union.



11.3. MATROID UNION: ALGORITHM AND STRUCTURE 599

Complexity of Algorithm Matroid Union

We can express the complexity in terms of calls to standard oracles we
define below

i. Rank oracle gives, once per call, the rank of a specified subset of
S in any desired one of the matroidsM1, · · · ,Mk.

ii. Independence oracle would declare, once per call, whether a par-
ticular subset of S is independent in the specified matroidMi, i =
1, · · · , k.

Independence oracle is clearly weaker and we will express the complex-
ity in terms of calls to it. In STEP 1, we build G(b1j , · · · , bkj). This
requires the knowledge of the f-circuits of an element outside bij with
respect to it in the matroid Mi. To build Li(v, bij) we check for each
v′ ∈ bij whether v ∪ bij − v′ is independent in the matroid Mi. This
requires atmost r(Mi) calls to the independence oracle. Thus the total
number of calls to the independence oracle to build Gj ≡ G(bij , · · · , bkj)
is atmost

∑k
i=1(| S − bij || bij |). Finding the reachable set from

S − ∪k
i=1bij requires O(| E(Gj) |) elementary steps, where | E(Gj) |

is the number of edges in Gj treating parallel edges as a single edge.
We may have started with (in the worst case) bij = · · · = bkj and end
with a base of the union of size atmost
∑k

i=1 | bij | . Each time STEP 4 is used the bases are updated and
the size of their union increases by one. Hence, G(bij , · · · bkj) has
to be built at most

∑k−1
i=1 | bij | times. So the overall complexity is

O(
∑k−1

i=1 | bij |
∑k

i=1(| S − bij || bij |)) calls to the independence oracle.
If r, r′ are the maximum and minimum of the ranks of the matroids,
M1, · · · ,Mk, the above expression for Complexity of Algorithm
Matroid Union can be simplified to
O(k(k − 1)r2(| S | −r′)) calls to the independence oracle.
In addition there are O((k−1)r | E(Gj) |) elementary steps involved
in building the reachable set for each Gj .
If we wish to suppress the factor k, we may replace kr as well as (k−1)r
by | S | and | E(Gj) | by | S |2 . In this case the complexity of Algo-
rithm Matroid Union is O(| S |2 (| S | −r′)) calls to the independence
oracle +O(| S |3) elementary operations.
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The space requirement is that of storing the updated version of the
graph G(b1, · · · bk). This has atmost | S |2 edges. So
the space complexity of Algorithm Matroid Union is O(| S |2).

Exercise 11.10
Let b1, · · · , bk be bases of M1, · · · ,Mk respectively and let vo 6∈

⋃k
i=1 bi

and vm ∈ bi ∩ bj , i 6= j. Let vm be reachable from vo in G(b1, · · · , bk).
Show that there exist bases b′1 · · · , b′k and v′m ∈ b′i∩b′j , i 6= j s.t.

⋃k
i=1 b

′
i =

⋃k
i=1 bi, and v′m can be reached from vo in one step in G(b′1, · · · , b′k).

Exercise 11.11
Let b1, · · · , bk be bases of the matroid M.

i. In the graph G(b1, · · · , bk) show that the shortest path between two
vertices cannot exceed length r.

ii. Now let
⋃

bi be a base of Mk. Let T be the set of all vertices in
G(b1, · · · , bk) from which no element common to two bases can
be reached. Build the preorder on T − R by the following rule:
v1 ≥ v2 iff v2 can be approached from v1. If (v) is an equivalence
class of this preorder show that (v) ∩ bi 6= ∅ for each i.

Exercise 11.12
(k) Convert Algorithm Matroid Union to an algorithm for finding the
maximum size common independent set of two matroids M1,M∗

2.

11.3.4 Structure of the Matroid Union

The Algorithm Matroid Union gives some insight into the structure of
the union of matroids. Specifically, using the algorithm, we present
simple results on the set of non-coloops, circuits and f-circuits for this
matroid. Finally we discuss the idea of approachability relative to a
base of the union and show that this notion is helpful in the construc-
tion of the principal partition of a matroid.

We define bases b1, · · · , bk of M1, · · · ,Mk respectively to be max-
imally distant iff

⋃k
i=1 bi is a base of M1 ∨ · · · ∨Mk (i.e., iff

⋃k
i=1 bi

cannot be enlarged).
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Lemma 11.3.3 Let b1, · · · , bk be maximally distant bases of matroids
M1, · · · ,Mk respectively on S. Let b∨ ≡

⋃k
i=1 bi and let R be the set of

all elements reachable from S−⋃k
i=1 bi in the graph G(b1, · · · , bk). Then

i. b1∩R, · · · , bk∩R are pairwise disjoint bases ofM1 ·R, · · · ,Mk ·R,

ii. M1 · R, · · · ,Mk ·R do not contain any coloops within R,

iii. R is the unique minimal set that minimizes
∑k

i=1 ri(X)+ | S−X |
, X ⊆ S, equivalently, minimizes

∑k
i=1 ri(X)− | X |, X ⊆ S,

iv. S −R is the set of coloops of M1 ∨ · · · ∨Mk.

Proof :

i. By definition, R ⊇ S−b∨ and the set of all elements reachable from
elements in S− b∨ in G(b1, · · · , bk). Further R∩ bi are pairwise disjoint.
Otherwise an element vc ∈ bi ∩ bj is reachable from some vo ∈ S − b∨
in G(bi · · · , bk). Use of STEP 4 of Algorithm Matroid Union will allow
us to enlarge

⋃

bi, a contradiction.
Next, if R∩bj is not a base ofMj ·R, then for some v ∈ R−bj , Lj(v, bj)
has an element v′ 6∈ R. But then v is reachable from some vo ∈ S − b∨
and so must v′ be. Thus, v′ ∈ R, a contradiction.

ii. We have to show that the base bj∩R ofMj ·R contains no coloop
ofMj · R. Let vm ∈ bj ∩ R. Then vm is reachable from vo ∈ S − b∨ in
G(b1, · · · , bk). But this means there is vm−1 ∈ R − bj , s.t. Lj(vm−1, bj)
contains vm. So vm is not a coloop ofMj · R.
iii. A set minimizes

∑k
i=1 ri(X)+ | S −X |, X ⊆ S

iff it minimizes
∑k

i=1 ri(X)− | X |, X ⊆ S,
i.e., iff it maximizes | X | −∑ ri(X), X ⊆ S.
We will work with the latter function. We have

| X | −
∑

ri(X) ≤| X | −r∨(X),

where r∨(·) is the rank function of the union of the matroids.
Now | X | −r∨(X) is a supermodular function, takes value zero on the
null set and 1 or 0 on singletons. It is therefore an increasing function
and reaches its maximum on S.
Next | S | −r∨(S) =| S − b∨ | . We know that R ⊇ S − b∨. Further
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R ∩ bi are pairwise disjoint bases ofMi ·R, i = 1, · · · , k. Hence,

| R | −r∨(R) = | R | −
k
∑

i=1

ri(R) = | S − b∨ | = | S | −r∨(S).

Thus, | X | −∑ ri(X) reaches a maximum at R. This function is
supermodular and use of the supermodular inequality reveals that it
has a unique minimal set maximizing it.
So it suffices to show that no proper subset of R maximizes the func-
tion.
Suppose R′ ⊆ R is such that

| R′ | −
k
∑

i=1

ri(R
′) = | R | −

k
∑

i=1

ri(R),

i.e.,

| R′ | −
k
∑

i=1

ri(R
′) = | S − b∨ | ≥ | R′ − b∨ ∩R′ | .

On the other hand

| R′ | − | b∨ ∩R′ | ≥ | R′ | −r∨(R′) ≥ | R′ | −
k
∑

i=1

ri(R
′).

We conclude that | S−b∨ |=| R′−b∨∩R′ | and | b∨∩R′ | = ∑k
i=1 ri(R

′).
Since S−b∨ ⊇ R′−b∨∩R′, we have S−b∨ = R′−b∨∩R′. Since | b∨∩R′ |
=
∑k

i=1 ri(R
′), b∨∩bi are pairwise disjoint bases ofMi ·R′, i = 1, · · · , k.

Hence, from the elements in S− b∨ it is impossible to reach outside R′

in G(b1, · · · , bk), i.e., R′ ⊇ R. Thus, R = R′, i.e., R is the minimal set
that maximizes | X | −∑ ri(X).

iv. This part follows by Lemma 10.4.3.
We give an alternative proof because the technique of the proof is
useful.
We need to show that S−R is contained in every base of the union and
for each v ∈ R there is some base of the union that does not contain
it.
If we initialize Algorithm Matroid Union on (b1, · · · , bk) the algorithm
must output the same set of bases. Hence,

S − R ⊆
k
⋃

i=1

bi = b∨
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Now if b′1, · · · , b′k are bases of M1, · · · ,Mk s.t.
⋃k

i=1 b
′
i is a base of the

union, we must have

| (
k
⋃

i=1

b′i) ∩ R | ≤
k
∑

i=1

r(Mi · R) = | (
k
⋃

i=1

bi) ∩ R | .

Hence,
⋃k

i=1 b
′
i ⊇ S − R, as otherwise its size would be less than that

of
⋃k

i=1 bi. Next let vm ∈ R. If vm 6∈
⋃

bi we already have a base of
the union to which vm does not belong. So let vm ∈

⋃

bi. There exists
v ∈ S − ⋃ bi from which vm can be reached in G(b1, · · · , bk). Using a
shortest path from v to vm we apply STEP 4 of Algorithm Matroid
Union. This would result in a new set of bases b′1, · · · , b′k, the cardinality
of whose union would be the same as that of

⋃

bi. However, v ∈ ⋃ b′i
but vm 6∈

⋃

b′i. Thus, we have found a base of the union to which vm

does not belong. So we conclude that vm is not a coloop.

2

Using arguments similar to the proof of the above lemma we can
prove the following two results.

Lemma 11.3.4 Let b1, · · · , bk be bases of matroids M1, · · · ,Mk re-
spectively on S s.t.

⋃k
i=1 bi is a base b∨ of M1 ∨ · · · ∨ Mk. Let v ∈

S − ⋃k
i=1 bi. Let Rv be the set of all elements reachable from v in

G(b1, · · · , bk). Then the f-circuit L∨(v, b∨) = Rv.

We thus see that Rv does not change in G(b′1, · · · , b′k) provided
⋃

bi =
⋃

b′i and this subset is a base of the matroid union.

Lemma 11.3.5 Let C be a circuit of M1 ∨ · · · ∨Mk. Then C can be
expressed as v ⊎ b1 ⊎ · · · ⊎ bk, where bi is a base ofMi ·C, i = 1, · · · , k,
the bi are pairwise disjoint and every element of

⋃k
i=1 bi can be reached

from v in G(b1, · · · , bk).
Approachability
Let b1, · · · , bk be maximally distant bases of matroidsM1, · · · ,Mk re-
spectively on S. Let b∨ ≡

⋃k
i=1 bi. Let D be the set of all vertices

of G(b1, · · · , bk) contained in b∨ from which no element common to
more than one bi can be reached. It is clear that D ∩ bi are bases
of Mi · D, i = 1, · · · , k, and further are disjoint. Let vp, vq ∈ D. We
say vq is approachable from vp relative to (b1, · · · , bk) iff vq is reach-
able from vp in G(b1, · · · , bk). Approachability depends on the base b∨ of
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M1∨· · ·∨Mk and the matroidsM1, · · · ,Mk but not on the individual
bi. However it cannot be defined knowing only M1 ∨ · · · ∨Mk (with-
out knowledge of M1, · · · ,Mk). This idea is algorithmically useful in
building the principal partition of a matroid rank function. We collect
all the useful properties of approachability in the following lemma. We
remind the reader that minimizing

∑

ri(X)− | X | is equivalent to
minimizing

∑

ri(X)+ | S −X | .
Lemma 11.3.6 Let b1, · · · , bk be maximally distant bases of matroids
M1, · · · ,Mk respectively on S. Let b∨ ≡

⋃

bi and let D ⊆ b∨ be the set
of all vertices of G(b1, · · · , bk) contained in b∨ from which no element
common to more than one bi can be reached. Let f(·) ≡ (

∑

ri(·)− | · |)
where ri(·) is the rank function of Mi, i = 1, · · · , k. Then,

i. f(·) reaches a minimum on D among all subsets of b∨ and D is
the unique maximal such set,

ii. if vp ∈ D, then there is a unique minimal subset Ap of D on which
f(·) reaches a minimum among all subsets of b∨ s.t. vp ∈ Ap;
further, Ap is the set of all elements approachable from vp relative
to (b1, · · · , bk),

iii. if R is the set of all elements reachable from S − b∨ in the graph
G(b1, · · · , bk), then R ∪ D is the maximal subset of S that mini-
mizes f(·) over subsets of S,

iv. if vp ∈ D−R then R ∪Ap minimizes f(·) over subsets of S and
is the minimal set containing vp with this property.

Proof:
i. The function f(·) is obtained by summing submodular functions and
subtracting a modular function and so is submodular. Let X ⊆ b∨.
Then, since

⋃k
i=1(bi ∩X) = X, it is clear that f(X) ≥ 0. Next let b∨ ⊇

D′ ⊃ D. If bi∩D′ are all pairwise disjoint bases ofMi ·D′, i = 1, · · · , k,
then D′ does not contain any element common to more than one bi and
it is impossible to reach outside D′ from v ∈ D′ in G(b1, · · · , bk). Hence,
D′ ⊆ D, a contradiction. So we must have that either the bi ∩D′ have
nonvoid intersections or they do not all form bases ofMi ·D′. In either
case f(D′) > 0. On the other hand, f(D) = 0, since D ∩ bi are bases
ofMi ·D, i = 1, · · · , k and pairwise disjoint. So the minimum value of
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f(·) over subsets of b∨ is reached at D and it is the maximal such set.
The unique maximality of D follows from the submodularity of f(·).
ii. If there are two distinct minimal sets which minimize f(·) among
subsets of b∨ containing vp, by using the submodular inequality it would
follow that their intersection is also a set of the same kind. This
would contradict the minimality of the sets. So there must be a unique
minimal set Ap which minimizes f(·) among subsets of b∨ containing
vp. Also vp ∈ D. So f(D) = f(Ap) = 0.Thus Ap minimizes f(·) among
subsets of b∨ and further is the unique minimal such set containing vp.

Since f(Ap) = 0,
∑k

i=1 ri(Ap =| Ap | . Further,
⋃k

i=1(bi ∩ Ap) = Ap.
We conclude that bi ∩ Ap are pairwise disjoint bases of Mi.Ap, i =
1, · · · , k. Since vp ∈ Ap, the set A′

p of all elements approachable from vp

relative to b1, · · · , bk cannot have element from S−Ap. Hence, A′
p ⊆ Ap.

On the other hand, it is easy to see that A′
p has the property that bi∩A′

p

are pairwise disjoint bases ofMi · A′
p, i = 1, · · · , k. Hence,

f(A′
p) =

k
∑

i=1

ri(A
′
p)− | A′

p |= 0.

Also vp ∈ A′
p and hence A′

p must contain the minimal set Ap that
contains vp and minimizes f(·) among subsets of b∨. So A′

p ⊇ Ap. Thus
A′

p = Ap.

iii. By Lemma 11.3.3 we know that R minimizes f(·). Consider the
submodular inequality:

f(R) + f(D) ≥ f(R ∪D) + f(R ∩D).

We know that f(D) ≤ f(R∩D). Hence, f(R) ≥ f(R∪D), i.e., R∪D
minimizes f(·).
Now R = (S − b∨) ⊎ (R ∩ b∨). Further R ∩ bi is a base of Mi · R, i =
1, · · · , k, and these bases are pairwise disjoint. So f(R ∩ b∨) = 0 and
hence R ∩ b∨ ⊆ D. Therefore,

f(R) = (
∑

ri(R)− | R ∩ b∨ |)− | R− b∨ |
= (

∑

ri(R ∩ b∨)− | R ∩ b∨ |)− | S − b∨ |
= f(R ∩ b∨)− | S − b∨ | .
= − | S − b∨ | .
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Since S −R ⊆ b∨, in order to show that R ∪D is the maximal subset
of S that minimizes f(·) over subsets of S, it suffices to prove that
f(R ∪D′) > f(R ∪D) whenever b∨ ⊇ D′ ⊃ D. We have

f(R ∪D′) =
∑

ri(R ∪D′)− | R ∪D′ |

= (
k
∑

i=1

ri(R ∪D′)− | D′ |)− | R−D′ |

= (
k
∑

i=1

ri(D
′)− | D′ |)− | R− b∨ |

(since R is spanned by R ∩ b∨ in each Mi and R ∩ b∨ ⊆ D ⊆ D′).
We saw earlier that D′ ∩ bi are either not all bases ofMi, i = 1, · · · , k
or are not pairwise disjoint. Hence, f(D′) > 0. Thus, f(R ∪ D′) =
f(D′)−|R−b∨| > 0− | S−b∨ | . We have already seen that f(R∪D) =
f(R) = − | S − b∨ | . Thus, f(R ∪D′) > f(R ∪D) as needed.

iv. We have,

f(R ∪ Ap) =
k
∑

i=1

ri(R ∪ Ap)− | R ∪ Ap |)

= (
k
∑

i=1

ri(R ∪ Ap)− | (R ∪ Ap) ∩D |)− | R− b∨ |,

= (
k
∑

i=1

ri(R ∪ Ap)− | (R ∪ Ap) ∩D |)− | S − b∨ | .

Now Ap ∩ bi are bases of Mi · Ap, i = 1, · · · , k, and R ∩ bi are bases
of Mi · R, i = 1, · · · , k. So (R ∪ Ap) ∩ bi span R ∪ Ap in Mi, i =
1, · · · , k. Further, the sets bi∩D are pairwise disjoint and R∩b∨, Ap∩b∨
are subsets of D. Hence, (R ∪ Ap) ∩ bi are pairwise disjoint bases of
Mi · (R ∪Ap), i = 1, · · · , k. Hence,

(
k
∑

i=1

ri((R ∪ Ap) ∩D)− | (R ∪ Ap) ∩D |) = 0.

Hence,

f(R ∪ Ap) = (
k
∑

i=1

ri((R ∪ Ap) ∩D)− | (R ∪ Ap) ∩D |)− | S − b∨ | .

= 0− | S − b∨ |
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Thus, R ∪ Ap minimizes f(·).
Next suppose vp ∈ R∪A”p and R∪A”p minimizes f(·). We must have,

− | S−b∨ |= f(R∪A”p) = (
k
∑

i=1

ri(R∪A”p)− | (R∪A”p)∩b∨ |)− | (R∪A”p)−b∨ | .

Since S − b∨ = R − b∨ we must have S − b∨ = (R ∪ A”p) − b∨ and
therefore,

k
∑

i=1

ri(R ∪ A”p) =| (R ∪ A”p) ∩ b∨ | .

This can happen only if (R∪A”p)∩bi spanMi ·(R∪A”p), i = 1, · · · , k,
and are pairwise disjoint. Thus f((R∪A”p)∩b∨) = 0. So (R∪A”p)∩b∨
minimizes f(·) among subsets of b∨ containing vp and therefore (R ∪
A”p) ∩ b∨ ⊇ Ap, by the definition of Ap. Hence,

R ∪ Ap = (R− b∨) ⊎ ((R ∪ Ap) ∩ b∨)

⊆ (R− b∨) ⊎ ((R ∪ A”p) ∩ b∨)

⊆ R ∪ A”p as required.

2

11.4 PP of the Rank Function of a Ma-

troid

11.4.1 Constructing Bλr,|·|

Algorithm Matroid Union can be used as a basic subroutine in building
the principal partition of (r, | · |), where r(·) is the rank function of a
matroid.

Consider the problem of building Bλr,|·|
. Our way of constructing

this family would be as in the Remark 10.6.1 of page 537, i.e., we first

find the minimal and maximal sets, Xλ,X
λ respectively, minimizing

the function λr(X)+ | S − X |. Next we find, for each e ∈ Xλ, the
minimal minimizing set containing e. From this we can build the Hasse
Diagram of the preorder (�λ) whose ideals are the members of Bλr,|·|

.
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Finding sets that minimize λr(X)+ | S − X |, where λ = p/q, p, q
positive integers,X ⊆ S, is equivalent to that of computing minimizing
sets of pr(X) + q | S − X | . (Observe that the λ’s that come up in
this case when Algorithm P-sequence is used are all rational. Further,
p ≤| S | and q ≤ r(S). Hence one can use a technique called ‘balanced
bisection’ which is described in page 703). The following lemma is
useful in solving this latter problem.

We begin with some preliminary notation.
Let f(·) be a polymatroid rank function on subsets of S and let g(·)
be an integral positive weight function on S. Let Ŝ be obtained from S
by replacing each e ∈ S by g(e) copies of it. We take S to be a subset
of Ŝ. For X ⊆ S, let hat(X) denote the subset of Ŝ which contains X
and all the copies of elements in X. For X̂ ⊆ Ŝ let floor(X̂) denote
the subset of S s.t. hat(floor(X̂)) ⊇ X̂ ⊇ floor(X̂), i.e., floor(X̂)
contains all those elements of S some of whose copies are contained in
X̂. Define f̂(X̂) ≡ f(floor(X̂)), X̂ ⊆ Ŝ. Thus, f̂(·) is a polymatroid
rank function on subsets of Ŝ being obtained by making all the copies
of e ∈ S parallel (see Definition 9.5.3).

Lemma 11.4.1 i. A set Ŷ ⊆ S minimizes f̂(X̂)+ | Ŝ − X̂ |, X̂ ⊆
Ŝ, only if Ŷ = hat(Y ) for some Y ⊆ S.

ii. A set Y ⊆ S minimizes f(X) + g(S − X), X ⊆ S, iff hat(Y )
minimizes f̂(X̂)+ | Ŝ − X̂ |, X̂ ⊆ Ŝ.

Proof : i. We have f̂(X̂) = f̂(hat(floor(X̂))) and X̂ ⊆ hat(floor(X̂)).
The result follows since | · | is a strictly increasing function.

ii. We have

f(Y ) + g(S − Y ) = f̂(hat(Y ))+ | Ŝ − hat(Y ) |

The result now follows using the previous part of the present lemma.

2

Thus minimizing pr(X) + q | S −X | is equivalent to minimizing

pr̂(X̂)+ | Ŝ − X̂ |, where g(e) ≡ q|e|.

If M is a matroid on S with rank function r(·), the matroid M̂ on Ŝ
which has rank function r̂(·) is obtained by replacing each e ∈ S by
q parallel edges. By Lemma 11.3.3, the minimal set that minimizes
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pr̂(X̂)+ | Ŝ − X̂ | is the set of non-coloops of the matroid (M̂)p ≡
M̂ ∨ · · · ∨ M̂, where the union operation is performed on M̂, p times

(M̂1 ≡ M̂, (M̂)2 ≡ M̂ ∨ M̂, · · ·).
Use of Algorithm Matroid Union gives us bases b̂1 · · · b̂p of M̂ s.t.

⋃p
i=1 b̂i is a base of M̂p

. It also gives us the set R̂ of all vertices reach-
able from Ŝ − ⋃p

i=1 b̂i in the graph G(b̂1, · · · , b̂p). Now R̂ is the set of

noncoloops of the matroid M̂p
and is the minimal set that minimizes

pr̂(X̂)+ | Ŝ − X̂ | (equivalently, minimizes pr̂(X̂)− | X̂ |) among
subsets of Ŝ. The set (floor(R̂)) would be the minimal set Xλ that
minimizes pr(X) + q | S −X | (equivalently, minimizes λr(X) +
| S − X |, X ⊆ S, λ = p

q
).Let D̂ be the set of all elements in

⋃p
i=1 b̂i

from which no element common to more than one b̂i can be reached in
G(b̂1, · · · , b̂p). By Lemma 11.3.6, R̂ ∪ D̂ is the maximal set that min-

imizes pr̂(X̂)+ | Ŝ − X̂ |, X̂ ⊆ Ŝ. The set floor(R̂ ∪ D̂)) would be

the maximal set Xλ that minimizes pr(X) + q|S − X| (equivalently,
λr(X)+ | S −X |, X ⊆ S).

To build Bλr,|·|
we need to be able to find the minimal set, containing

a specified element in floor((R̂ ∪ D̂) − R̂), that minimizes λr(X)+ |
S − X | . This is equivalent to finding the minimal set, containing
a specified element in D̂ − R̂, that minimizes pr̂(X̂)+ | Ŝ − X̂ | .
For this purpose, Lemma 11.3.6 shows that, we need to find for each
v̂p ∈ D̂ − R̂ the set Âp of all elements approachable from it relative

to (b̂1, · · · , b̂p). Actually it can be shown that it is sufficient to do this

for each v̂p ∈ b̂1 − R̂. The set floor(Âp) would be the minimal set
that minimizes λr(X)+ | S −X | under the condition that it contains
the element in S that is parallel to v̂p. Repeating the process for each

v̂p ∈ b̂1 − R̂ yields the preorder defining Bλr,|·|
.

11.4.2 Complexity of constructing Bλr,|·|

i. Algorithm Matroid Union
Some care is needed in applying the Algorithm Matroid Union to
compute Bλr,|·|

. The set Ŝ has size q | S | but is derived by adding

(q − 1) elements in parallel to each element in S. So the construction
of G(b̂1, · · · , b̂p) is somewhat simpler than appears at first sight. The
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following points need to be noted.

i. If two elements outside a base are in parallel, their f-circuits with
respect to a base would have identical intersections with the base.

ii. The shortest path between two vertices of G(b̂1, · · · , b̂p) cannot

exceed r(M̂) in length. So in STEP 4 of Algorithm Matroid
Union no more than r(M̂) bases need to be tampered with.

Initial work to set up G(b̂o1, · · · , b̂op)

Here b̂o1, · · · , b̂op are the bases to initialize Algorithm Matroid Union.
They may be obtained conveniently by taking q parallel copies of a
base ofM and repeating one of the bases an additional (p− q) times.
We need only one vertex per element v in S (with no additional vertices
for parallel elements of v in Ŝ). Let us call this graph Gred(b̂o1, · · · , b̂op).
Here f-circuit computation has to be done only for | S | elements. As
we have shown earlier each such computation requires at most r calls
to the independence oracle. Hence building Gred(b̂o1, · · · , b̂op) requires
atmost r | S | calls to the independence oracle. Storage requirement is
that of storing the edges of this graph. In general, the space complexity
(if bo1, · · · , bop are unrelated) is O(rp | S |) since an arrow might go
from each element outside a base to each element inside and there are
p bases each of size r.

Effort to find the set of all reachable elements from Ŝ−⋃p
i=1 b̂i

Here we replace parallel (and same direction) edges of Gred by a sin-
gle edge. The number of resulting reduced edges cannot exceed the
square of the number of vertices in Gred(b̂1, · · · , b̂p). Thus the number
of reduced edges is O(| S |2). Reachability computations therefore take
O(| S |2) elementary steps.

Effort to update Gred(b1, · · · , bp)
At each update no more than r of the bases have to be altered. So we
need to perform atmost r|S| f-circuit computations, i.e., at most r2|S|
calls to the independence oracle.

The number of updates of Gred(b1, · · · , bp)
This number cannot exceed q(| S | −r) since that is an upper bound
on the number of elements in Ŝ outside

⋃k
i=1 boi. It cannot also exceed

(p − 1)(r), since pr is the maximum number of elements in a base of

M̂p
.
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Thus, the overall complexity of Algorithm Matroid Union with
each element parallel to atleast (q − 1) others is as follows.

Calls to the independence oracle:

O(min(q(| S | −r)r2 | S |, (p− 1)r3 | S |) + rp | S |)
Since λ = p/q, p ≤| S | and q ≤ r, we can simplify this to O(| S | (| S |
−r)r3)

Elementary Steps:

O(q | S |2 (| S | −r)) = O(| S |2 (| S | −r)r)

Space complexity: O(rp | S |).
ii. Computing the preorder for Bλr,|·|

Once the final Gred(b̂1, · · · , b̂p) is obtained from the Algorithm Ma-
troid Union the remaining work for computing the preorder defining
Bλr,|·|

involves only the finding of the set D̂ (≡ set of all elements

in
⋃k

i=1 b̂i, from which no element common to more than one b̂i can
be reached in G(b̂1, · · · , b̂p)), and for each element v̂p ∈ D̂ − R̂, find-
ing the set of all elements approachable from v̂p. This can be done

by finding for each b̂i − R̂ the set of all elements reachable from it in
Gred(b̂1, · · · , b̂p). If the set includes elements in more than one b̂i, v̂p

is outside D̂, otherwise inside. So these computations take no more
than r | S |2 elementary steps which therefore can be absorbed in the
complexity of Algorithm Matroid Union. Thus the overall complexity
for computing Bλr,|·|

is the same as that for Algorithm Matroid Union

when there are p ≤| S | bases (whose union is being taken) and each
element of Ŝ belongs to a set of parallel elements of size q ≤ r.

iii. Computation of the PP of (r, | · |)
In the case of a matroid it is easy to see that Algorithm P-sequence
would call subdivide no more than r(M) times. So the complexity
for construction of PP can be taken to be
O(| S | (| S | −r)r4) calls to the independence oracle+
+ O(| S |2 (| S | −r)r2) elementary steps.
However, somewhat more careful techniques would replace the extra
r factor with a log | S | factor. This requires the use of the balanced
bisection technique which is described in page 703.
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Space complexity is O(r | S |2).

11.4.3 Example

Principal partition of (r(·), | · |) where r(·) is the rank function
of a graph

Consider the graph G in Figure 11.1. We have, E(G) ≡ {1, · · · , 20}.
The principal sequence of (r(·), | · |) is

E0 ≡ ∅ = Xλ1
, E1 = Xλ2

, E2 = Xλ3
, E3 = Xλ4

, E4 = Xλ4 ≡ E(G),
where E0 = ∅, E1 = A ≡ {1, 2, 3}, E2 ≡ {4, · · · , 13} ⊎E1

E3 ≡ {14, 15, 16} ⊎ E2, E4 ≡ {17, · · · , 20} ⊎E3.
The critical values are

λ1 = 3, λ2 = 2, λ3 = 3/2, λ4 = 4/3.

The partition Πpp ≡ {A,B1, B2, B3, C,D}
where A ≡ {1, 2, 3}, B1 ≡ {4, 5, 6, 7, 8, 9}, B2 ≡ {10, 11}, B3 ≡
{12, 13}, C ≡ {14, 15, 16}, D ≡ {17, 18, 19, 20}.
The partial order ≥π on Πpp can be built as follows:
Consider Bλ1

. This has only two sets ∅ and E1. The partial order ≥λ1
therefore, has only the element E1 ≡ A. Bλ2

has the sets A,A ⊎ B1,
A ⊎ B1 ⊎B2, A ⊎ B1 ⊎B3, A ⊎B1 ⊎ B2 ⊎ B3.
The partial order ≥λ2

therefore has the elements B1, B2, B3. The Hasse

diagram of (≥λ2
) is shown in part (c) of the figure between lines

‘λ1 = 3’ and ‘λ2 = 2.’ In the partial order (≥π) all elements of the
partial order (≥λ1

) are taken to be below all the elements of the par-

tial order (≥λ2
). This is achieved in the Hasse diagram by drawing

from each minimal element of (≥λ2
) an arrow to each maximal ele-

ment of (≥λ1
). Bλ3

has the two sets E2 = A ⊎ B1 ⊎ B2 ⊎ B3 and

E3 = A ⊎ B1 ⊎ B2 ⊎ B3 ⊎ C. The partial order (≥λ3
) has only the

element C. Bλ4
has the two sets E3 and E4. The partial order (≥λ4

)
has only the element D.
The part (d) of the figure refers to the refined partial order (≥R) and
is discussed in Section 10.5.

The partial order (≥R) agrees with (≥π) over the elements of (≥λ1
), (≥λ2

), (≥λ3
) and (≥λ4

). However, the relationship between ele-
ments in partial orders corresponding to different critical values is now
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Figure 11.1: The Principal Partition and Refined Partial Order for a
Graph
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changed.
We see that B1 is properly related to A, B2 ∪ B1 to A, B3 ∪ B1 to A.
So (≥R) agrees with (≥π) over {A,B1, B2, B3}. However, C is properly
related to B1 ∪A, i.e., r(C ∪B1 ∪A) - r(B1 ∪A) = r(C ∪E2)− r(E2)
where E2 = A∪B1∪B2∪B3 and no ideal of the restriction of (≥R) to
{A,B1, B2, B3}, properly contained in {B1, A}, would satisfy the above
relationship. This can also be seen directly by inspection. When the
edges of E2 are contracted, the graph on C is a ‘triangle’ with 14, 15, 16
appearing in series. This effect is also achieved simply by contracting
the branches of B1 ∪ A. Thus, we take only B1, A to be below C in
(≥R). In the Hasse diagram there is, therefore, a directed edge from C
to B1. A similar argument shows that there should be an arrow from
D to B1. The Hasse Diagram of (≥R) is shown in (d).

Now some informal remarks on how to construct examples with a
desired refined partial order. (Not every refined partial order may be
‘realizable’ in this manner). We first build atomic structures corre-
sponding to A,B1, B2, B3, C,D, with appropriate critical values. This
is shown in part (b) of Figure 11.1. There are many ways in which
atomic structures can be built. It is easily seen that any totally edge
symmetric matroid that is connected has to be atomic if g(·) takes the
same value on all edges. For graphs this translates to ‘totally sym-
metric 2-connected’. Once this is available we build the refined partial
order starting from the highest critical value and going down. In the
present example the sequence is as follows: On A we build the graph
of three parallel edges. On B1 we build K4. In this graph 9, 4, 5 are
incident at a node. We split this node and attach the two halves across
A. The result would be that when A is contracted we see K4 on B1. An
arrow goes from B2 to B1. So we ensure that unless B1 is contracted
we would not see the atomic structure of two parallel branches on B2.

This procedure is continued until we exhaust all the elements of
≥R (i.e., the blocks of Πpp). We are ensuring that on E1 there is a
molecular structure of critical value λ1, and on E2 − E1, when E1 is
contracted, one of critical value λ2, and on E3−E2, when E2 contracted,
one of critical value λ3, and on E4 − E3, when E3 contracted, one of
critical value λ4. Within each molecular structure the relationship
between the atomic structures is maintained as in the partial order
(≥λi

). Further, λ1 > λ2 > λ3 > λ4. These facts are sufficient, by the
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use of Uniqueness Theorem (Theorem 10.4.6), to ensure that the graph
that is built as described has the ideals of ≥π as principal partition.
Once this holds, since we have built the structure consistent with
(≥R), the refined partial order of the graph would have to be (≥R).

The Uniqueness Theorem also ensures that parts of the principal
partition remain unaffected when changes are made in certain other
parts of the graph.
Suppose we contract a branch in B1. The principal partition would
remain unaffected as far as all elements above B1 in (≥π) are con-
cerned. This also is true of (≥R). If we delete a branch in C say,
the principal partition would remain unaffected as far as all elements
below C are concerned.
The above facts are true for all (f(·), g(·)), where f(·) is submodular
and g(·), a positive weight function. Using the Uniqueness Theorem,
we can also show that increasing g(e), e ∈ B1, is analogous to contrac-
tion of e (i.e., principal partition unaffected as far as elements above B
in the partial order (≥π) or (≥R) are concerned), and decreasing g(e)
is analogous to deletion of e.

Exercise 11.13 Verify the following simple rules for building atomic
graphs (i.e., E(G) is atomic with respect to (r(·), k | · |), where k is
any positive number).

i. Any graph that is 2-connected and totally edge symmetric is atomic.

ii. Build two graphs, one atomic and the other molecular, on the
same set of vertices. Now put the two graphs together (merge
corresponding vertices). The result is an atomic graph.

iii. Start from an atomic graph. Replace each edge by m parallel
copies (m series edges). The result is an atomic graph.

iv. If (f(·), g(·)) is atomic so is (f ∗(·), g(·)) where the dual is taken
with respect to g(·). Hence, if an atomic graph is planar its planar
dual is atomic.

v. Start with an atomic (molecular) graph with density |E|
r(E)

= d.

Suppose d < d( r(E)
r(E)+1

)+1. Then adding a new vertex and joining
it to each of the original nodes would result in an atomic graph.
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11.5 Notes

The problem of matroid intersection (find the maximum size common
independent set of two given matroids) and its solution has received
more attention in the literature than matroid union. This is prob-
ably because Lawler based his well known book [Lawler76] on ma-
troid intersection. A good way of approaching either of these ideas
is through submodular functions induced through a bipartite graph
[Welsh76]. Related material may be found in the survey paper by
Brualdi [Brualdi74]. Detailed information on transversal theory may
be found in [Mirsky71]. The principal partition of the rank function
of a matroid can be generalized to polymatroids defined on two sides
of a bipartite graph. Such results have the flavour of the Dulmage-
Mendelsohn decomposition ([Dulmage+Mendelsohn59]) of a bipartite
graph [Iri79a] and have good practical applications. In this book, since
we wish to be ‘device independent’, we have steered away from this
important class of applications of the matroid union theorem and its
generalizations, namely, structural solvability of systems [Murota87],
[Recski89].

11.6 Solutions of Exercises

E 11.1:
i. Let b1, b2 be bases of M1,M2 s.t. b1 ∩ b2 = b12. Let b2

∗ = S − b2.
Then b12 = b1∪b2∗−b2∗. Next b1∪b2∗ is independent inM1∨M∗

2. Let
this be contained in the base b1n∪ b∗2n ofM1∨M∗

2. Now b1n∪ b∗2n− b∗2n

is independent inM1 andM2. Further,

| b1n ∪ b∗2n − b∗2n |≥| b1 ∪ b2∗ − b2∗ |=| b12 | .

But b12 is the largest common independent set of M1 and M2. We
conclude that b12 = b1n∪b∗2n−b∗2n, where b1n∪b∗2n is a base ofM1∨M∗

2.

ii. It is clear from the above that | b12 |= r(M1 ∨M∗
2)− r(M∗

2).

iii. If b∗12 is a base of M1 ∨M∗
2 with b∗12 = b1 ∪ b2∗, where b1, b2

∗ are
bases of M1,M∗

2 respectively, then b∗12 − b2∗ is independent in M1 as
well as inM2 and further its size equals r(M1 ∨M∗

2)− r(M∗
2).
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E 11.2:
i. An independent set of the LHS matroid is a union of independent
sets of the matroids Mi which are each contained in T. Clearly an
independent set of the RHS matroid has precisely the same property.

ii. The rank function of the LHS matroid is r⋄T(·). Now r(·) ≡
((
∑

ri)∗ | · |)(·). We are given that

((
∑

ri)∗ | · |)(S − T ) =
k
∑

i=1

ri(S − T ).

So by Lemma 10.4.5,

r ⋄T(·) = (((
∑

ri)∗ | · |) ⋄T)(·) = (((
∑

ri) ⋄T)∗ | · |)(·).

The RHS is clearly the rank function of the matroid M1 × T ∨ · · · ∨
Mk × T.
E 11.3: Let r∨(·) be the rank function ofM1∨· · ·∨Mk. The problem
reduces to characterizing the case where r∨(S) =| S | . By Nash-
William’s rank formula (Corollary 11.2.2)

r∨(S) = min
X⊆S

(
k
∑

i=1

ri(X)+ | S −X |).

Clearly (see for instance Exercise 10.5) the RHS equals | S | iff there
exists no subset T of S s.t.

k
∑

i=1

ri(T ) <| T | .

E 11.4: Consequence of Theorem 10.7.4.

E 11.5:
i. For each ΓR(a), a ∈ VR, build the matroid Ma on VL by taking all
elements in ΓR(a) in parallel and those in VL − ΓR(a) to be selfloops.
Consider the matroid ML on VL defined by ML ≡ ∨a∈VR

Ma. We
will show that T ⊆ VL is a transversal of some subset of VR iff it is
independent in the above matroid.
Let T be a transversal of Y ⊆ VR. Then there is a bijection τ : T → Y
s.t. (e, τ(e)) is an edge in B. Thus for each e ∈ T,Mτ(e) has {e} as an
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independent set. Hence, ∨e∈TMτ(e) has T as an independent set. On
the other hand suppose T is an independent set of ∨a∈VR

Ma. Then for
each e ∈ T there is a matroidMτ(e) in which {e} is independent, i.e.,
there is an edge (e, τ(e)) in B. Also τ(ei) 6= τ(ej), i 6= j. This shows
that T is a transversal of {τ(e), e ∈ T}.
ii. LetM =M1∨· · ·∨Mk, whereM1, · · · ,Mk are rank one matroids
on S. Let B ≡ (VL, VR, E) where VL ≡ S, VR ≡ {1, · · · , k} with edge
(v, i) present iff v is not a selfloop in Mi. (ΓR(i) ≡ the set of non-
selfloops of Mi, also these are in parallel in Mi). It is easy to verify
thatM is the matroid on VL whose bases are transversals of VR.

iii. If M is a transversal matroid on VL then M = M1 ∨ · · · ∨ Mk,
whereMi are rank one matroids on VL. Now,M·K = ∨k

i=1Mi ·K. If
M·K has no coloops then by Lemma 11.3.3, r(M·K) =

∑k
i=1 r(M·K).

This means (see Exercise 11.2)M× (VL −K) = ∨k
i=1Mi × (VL −K).

Each matroidMi×(VL−K) has rank atmost one (if zero, the matroid
has only selfloops). So M× (VL − K) is either of rank zero or can
be expressed as a union of rank one matroids, (if M2 has rank zero
M1 ∨ M2 = M1). It is therefore a transversal matroid (perhaps a
trivial one).

iv. By Nash-Williams Rank formula (Corollary 11.2.2),

r(∨a∈VR
Ma) = min

X⊆VL

(
∑

a∈VR

ra(X)+ | VL −X |), (∗)

where ra(·) is the rank function ofMa. Now for each X ⊆ VL, ra(X) is
one if a ∈ ΓL(X) and zero otherwise. Hence,

∑

a∈VR
ra(X) =| ΓL(X) |.

Thus the RHS of (∗) is minX⊆VL
(| ΓL(X) | + | VL−X |). Now the size

of the maximum matching is the size of the maximum transversal of a
subset of VR and hence the result follows.

E 11.6: The rank function ofM(f1)∨M(f2) (by Nash-Williams’ rank
formula (Corollary 11.2.2)) is (f1∗ | · | +f2∗ | · |)∗ | · |, while that of
M(f1 + f2) is
((f1 + f2)∗ | · |)(·). The result now follows from the one in Exercise
10.3.

E 11.7:
i. We have

(r1
∗ + r2

∗)(X)+ | S −X |



11.6. SOLUTIONS OF EXERCISES 619

= (2 | X | −(r1(S) + r2(S)− r1(S −X)− r2(S −X))+ | S −X |
= ((r1 + r2)(S −X)+ | S − (S −X) |) + (| S | −(r1 + r2)(S)).

It is thus clear that K minimizes (r1 + r2)(Y ) + |S − Y |, Y ⊆ S iff
(S −K) minimizes (r1

∗ + r2)
∗(Y )+ | S − Y |, Y ⊆ S .

ii. This is an immediate consequence of the above result.

iii. We observe that (by Lemma 11.3.3) the collection of non-coloops
of M1 ∨M2 (M∗

1 ∨M∗
2) is the minimal set R (R∗) that minimizes

(r1 + r2)(X)+ | S − X |, X ⊆ S ((r1
∗ + r2

∗)(X)+ | S −X |, X ⊆ S).
However, the second part (above) of this exercise shows that S −R ⊇
R∗.

E 11.8:
i. Let b1 be a base ofM1 ·X and b′2, a base ofM2 · (S −X). Clearly
b1 ∪ b′2 is independent inM1 ∨M2. Thus,

max
X⊆S

(r1(X) + r2(S −X)) ≤ r(M1 ∨M2).

On the other hand let b∨ be a baseM1 ∨M2 and let b1, b2 be bases of
M1,M2 respectively s.t. b∨ = b1 ∪ b2. Clearly

r1(b1) + r2(S − b1) =| b1 | + | b2 − b1 |=| b∨ | .

But Nash-Williams’ rank formula (Corollary 11.2.2) gives

b∨ = r(M1 ∨M2) = min
X⊆S

((r1 + r2)(X)+ | S −X |).

This proves the result.

ii. Let b∗∨ be a base of M1 ∨M∗
2 and let b∗∨ = b1 ∪ b∗2 where b1, b

∗
2 are

bases of M1,M∗
2 respectively. We saw in Exercise 11.1 that b∗∨ − b∗2

is a maximum size common independent set of M1,M2. Now if r∗2(·)
denotes the rank function ofM∗

2,

| b∗∨ − b∗2 | = min
X⊆S

((r1 + r2
∗)(X)+ | S −X |)− r∗2(S)

= min
X⊆S

(r1(X)+ | X | −r2(S) + r2(S −X)+ | S −X | − | S | +r2(S))

= min
X⊆S

(r1(X) + r2(S −X)).

This proves the result.
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iii. This follows from the above when we recognize that (b1 − b2) is
a common independent set between M1 andM∗

2 (also every common
independent set can be so written) and so max | b1 − b2 |= maximum
size of common independent set of M1 and M∗

2 = minX⊆S(r1(X) +
r2

∗(S −X)).

E 11.9: Observe that rank function ofM∨M is (2r∗ | · |)(·),
(M∨M)∗ ∨M∗ is (((2r∗ | · |)∗ + r∗)∗ | · |)(·) etc.
So we can use the ideas developed in Section 10.7.

E 11.10: Let the shortest path from vo in G(b1, · · · , bk) be vo, e1, · · · , em, vm.
In this path let vm be the first to belong to more than one of the bi. Now
apply STEP 4 of Algorithm Matroid Union to v1, e2, v2, · · · , em, vm. The
result would be that v1 belongs to two of the updated b′i’s and vo, e1, v1

would be a valid path in G(b′1, · · · , b′k) and
⋃

b′i =
⋃

bi.

E 11.11:
i. Start from any vertex v and do a bfs. We need to show that in
r steps or less we would have covered all vertices reachable from v.
Let Ri

v denote the set of vertices reachable in not more than i steps
from v. We will show that r(Ri+1

v ) ≥ r(Ri
v) + 1 or Ri+1

v is the set
of all elements reachable from v. It is clear that r(Ri+1

v ) ≥ r(Ri
v). If

the inequality is an equality then Ri+1
v ∩ bj must span Ri

v for each j
and therefore must span Ri+1

v for each j. Hence, from inside Ri+1
v it is

impossible to reach outside it in G(b1, · · · , bk). Thus we see that if the
first equality is reached at the (k + 1)th step, i.e., r(Rk

v) = r(Rk+1
v ),

then r(Rk+1
v ) ≥ k+1 (if r(Ro

v) = r(v) = 1). Hence, k+1 cannot exceed
r(M). (If r(v) = 0, then v is the only element reachable from v.)

ii. Let K be any subset of T with the property
(∗) from no element in K we can approach outside K.
Then it is clear that bi ∩ K form pairwise disjoint bases of M · K.
Let Tv denote the sets of all elements approachable from v and let T ′

v

denote the set of all elements approachable from v ∈ T − R but from
which v cannot be approached. Both Tv and T ′

v have the property
(∗). Further Tv − T ′

v is the equivalence class (v) containing v. Now
Tv ∩ bi form pairwise disjoint bases ofMi ·Tv and T ′

v ∩ bi form pairwise
disjoint bases ofMi ·T ′

v. For at least one of i ∈ {1, · · · , k} we must have
| T ′

v ∩ bi |<| Tv ∩ bi | . But then ri(T
′
v) < ri(Tv) and T ′

v ∩ bi ⊂ Tv ∩ bi,
for each i ∈ {1, · · · , k}. Hence, (v) ∩ bi 6= ∅, i = 1, · · · , k.
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E 11.12: We begin with two bases of b01, b
∗
02 of matroids M1,M∗

2

respectively on S. Let b02 = S − b∗02. We now try to push updated ver-
sions of b01, b02 apart. However, we would like to work with f-circuits
ofM∗

2 rather than with f-circuits ofM2. For this it suffices to observe
that vp ∈ L∗

2(vq, b
∗
2) iff vq ∈ L2(vp, S− b∗2), where L∗

2(·, ·), L2(·, ·) denote
f-circuits of M∗

2,M2 respectively. So while constructing G(b1, S − b∗2)
it is convenient to build edges of the type (vp, vq, 2) at the node vq

directed into vq (rather than at vp directed away from vp). If b1, S− b∗1
are maximally distant bases ofM1,M2, then b1 ∩ b∗2 is a common in-
dependent set ofM1,M∗

2 of maximum size (see Exercise 11.1).



622 11. MATROID UNION



Chapter 12

Dilworth Truncation of
Submodular Functions

12.1 Introduction

In this chapter we study the Dilworth truncation (truncation for
short) operation on submodular functions and the related notion of
principal lattice of partitions. The theory of Dilworth truncation
bears a strong resemblance to that of convolution. This chapter has
been written in a manner that emphasizes this resemblance. The trun-
cation operation was first used by Dilworth [Dilworth44] to build a
new matroid with certain natural properties on the collection of flats
of specified rank in a given matroid. The definition of the operation in-
volves special partitions of the set over which a submodular function is
defined. These partitions are of theoretical and practical significance.
So one could, in addition to studying the truncation of a submodu-
lar function, also study the partitions used to define the operation.
This leads us to the principal lattice of partitions of the submodular
function.

We begin with formal properties of the truncation operation and
present a number of examples from the literature, including Dilworth’s
own, relevant to the operation. We then study the principal lattice of
partitions (PLP) of a submodular function and point out the similarity
in its properties with those of the principal partition (PP) - indeed the

623
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characteristic properties of the PLP can be obtained by ‘translating’
those of the PP from sets to partitions. Keeping in mind applications
of the PLP we have presented an alternative development of the theory
from a ‘cost of partition’ point of view. We have also described a tech-
nique for building approximation algorithms for ‘optimum partitioning’
problems (including vertex partitioning for a graph, minimizing num-
ber of cut edges). After this we study the relation of the PLP of a
given submodular function to the PLP of naturally derived functions
such as truncations and fusions of the original. We relegate the study
of algorithms for the construction of the PLP to the next chapter.

12.2 Dilworth Truncation

12.2.1 Formal Properties

We remind the reader that a partition of S is a collection of nonnull,
pairwise disjoint subsets whose union is S. The members of the par-
tition are called blocks. A partition of an underlying set, clear from
the context but usually S, which has N as a block and the remaining
blocks, if any, as singletons, is denoted by ΠN . The partition which has
all blocks as singletons is denoted by Π0. The collection of all partitions
of S is denoted by PS. We say Π1 ≥ Π2, Π1,Π2 ∈ PS (equivalently,
Π1 is coarser than Π2 or Π2 is finer than Π1) iff every block of Π2 is
contained in some block of Π1. The partition Π1 ∨Π2 (Π1 ∧Π2) is the
least upper bound (greatest lower bound) of the partitions Π1 and Π2

in the partial order (≥). For a description of Π1 ∨Π2 and Π1 ∧Π2 see
Subsection 3.6.8.

Definition 12.2.1 Let f(·) be a real set function on the subsets of
S. The partition associate of f(·), defined on the collection PS

of all partitions of S, is denoted by f(·) and is defined by f(Π) ≡
∑

Ni∈Π f(Ni). The lower (upper) Dilworth truncation of f(·) is
denoted by ft(·) (f t(·)) and is defined by

ft(∅) ≡ 0, ft(X) ≡ min
Π∈PX

(
∑

Xi∈Π

f(Xi))



 f t(∅) ≡ 0, f t(X) ≡ max
Π∈PX

(
∑

Xi∈Π

f(Xi))



 .
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Remark: Let fT (·) be the restriction of f(·) on T . If there is no
possibility of confusion we would say ‘the function f(·) over PT ’ instead
of ‘fT (·)’.
Exercise 12.1 Let f(·), g(·) be real set functions on subsets of S and
let λ, β ≥ 0. Show that,

i. (λf)t(·) = λ(ft(·)),
(λf)t(·) = λ(f t(·)),

ii. (λf + βg)t(·) ≥ λft(·) + βgt(·) ,
(λf + βg)t(·) ≤ λf t(·) + βgt(·),

If g(·) is a weight function, the inequalities may be replaced by equali-
ties.

Definition 12.2.2 Let f(·) be a real set function on the subsets of S.
Then f(·) is said to be intersecting submodular iff

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) ∀X, Y ⊆ S,X ∩ Y 6= ∅.

Intersecting supermodular functions are defined similarly with
the inequality reversed.

When f(·) is intersecting submodular (intersecting supermodular)
f(·) has the following attractive property. It is the main cause of the
strong analogies that exist between structural properties of convolution
and those of Dilworth truncation.

Theorem 12.2.1 [Narayanan91] Let f(·) be a real set function on
the subsets of S and let N ⊆ S. Then f(·) is intersecting submodular
(intersecting supermodular) iff

f(Π) + f(ΠN) ≥ f(ΠN ∨ Π) + f(ΠN ∧ Π)

(f(Π) + f(ΠN ) ≤ f(ΠN ∨Π) + f(ΠN ∧Π)) ∀Π ∈ PS.

We need the following lemma in the proof of Theorem 12.2.1. A similar
result is true for intersecting supermodular functions.
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Lemma 12.2.1 Let f(·) be an intersecting submodular function on the
subsets of S. Let M1, · · · ,Mr, N be subsets of S such that Mi ∩ N 6=
∅ ∀i, Mi ∩Mj = ∅, i 6= j. Then,

r
∑

i=1

f(Mi) + f(N) ≥
r
∑

i=1

f(N ∩Mi) + f((
r
⋃

i=1

Mi) ∪N).

Proof of the lemma: By the intersecting submodularity of f(·), the
result is true for r=1. Suppose it to be true for r = k − 1. Then

k
∑

i=1

f(Mi) + f(N) =
k
∑

i=2

f(Mi) + f(N) + f(M1)

≥
k
∑

i=2

f(Mi) + f(N ∪M1) + f(N ∩M1)

≥
k
∑

i=2

f((N ∪M1) ∩Mi) + f((
k
⋃

i=2

Mi) ∪ (N ∪M1))

+f(N ∩M1),

by the induction assumption for r = k − 1.

But, since Mi ∩Mj = ∅, i 6= j, we must have

f((N ∪M1) ∩Mi) = f(N ∩Mi), i = 2, · · · , k.

The required inequality is now immediate for r = k.

2

Proof of Theorem 12.2.1: We consider only the intersecting sub-
modular case.

Only if
Let Mi be the blocks of Π. We observe that

f̄(Π) + f̄(ΠN) =
∑

Mi∩N=∅

f(Mi) +
∑

Mi∩N 6=∅

f(Mi) + f(N) +
∑

e∈S−N

f(e),

f̄(Π ∨ΠN ) + f̄(Π ∧ΠN ) =
∑

Mi∩N=∅

f(Mi) + f(
⋃

Mi∩N 6=∅

Mi) +
∑

Mi∩N 6=∅

f(Mi ∩N)

+
∑

e∈S−N

f(e).
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The result now follows from Lemma 12.2.1 when we observe that

⋃

Mi∩N 6=∅

Mi ⊇ N.

if
Let f̄(·) satisfy the inequality in the statement of the theorem. Re-
placing Π by say ΠT , it is immediate from the definition of f̄(·) that
f(T ) + f(N) ≥ f(N ∪ T ) + f(N ∩ T ) ∀ N, T s.t. N ∩ T 6= ∅.

2

Remark: This result is not true for two arbitrary partitions Π1,Π2.
Consider for example the modular function f(X) = 1, X ⊆ {1, 2, 3, 4}.
Let Π1 ≡ {{1, 2}, {3, 4}} , Π2 ≡ {{1, 3}, {2, 4}} . Then Π1 ∨ Π2 ≡
{1, 2, 3, 4} and Π1 ∧Π2 ≡ {{1}, {2}, {3}, {4}} . We then see that

f̄(Π1) + f̄(Π2) = 4 < 5 = f̄(Π1 ∨ Π2) + f̄(Π1 ∧Π2).

The following simple lemma is used frequently in this chapter.

Lemma 12.2.2 Let f(·) be a real set function on subsets of S. Let
f̄(Π̂) = minΠ∈PS

f̄(Π) and let N1, · · · , Nk be some of the blocks of Π̂.
Let N =

⋃

iNi. Then

i. f̄({N1, · · · , Nk}) ≤ f̄(Π′) for each partition Π′ of N .

ii. If, further, Π̂ is minimal s.t. f̄(Π̂) = min
Π∈PS

f̄(Π), and Π′ is a

nontrivial partition of a block N1 of Π̂, then f(N1) < f̄(Π′).

Proof : i. If f̄({N1, · · · , Nk}) > f̄(Π′), then in Π̂ we could re-
place N1, · · · , Nk by the blocks of Π′ and get a new partition Πnew

s.t. f̄(Πnew) < f̄(Π̂).

ii. Proof similar to the above.

2

Using Theorem 12.2.1 and Lemma 12.2.2 we can prove the following
results.

Theorem 12.2.2 [Narayanan91] Let f(·) be intersecting submodular
(intersecting supermodular) over subsets of S and let Π1 ,Π2 minimize
(maximize) f(·) over PS. Then
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i. Π1 ∨Π2 ,Π1 ∧ Π2 also minimize (maximize) f(·).
ii. if N1, · · · , Nk are some of the blocks of Π1 and M1, · · · ,Mr are

some of the blocks of Π2 such that Ni
⋂

Mj = ∅ ∀i, j and (
⋃

Ni)∪
(
⋃

Mj) = S, then the partition
{N1, · · · , Nk,M1, · · · ,Mr} minimizes (maximizes ) f(·).

Proof:
We consider only the intersecting submodular case.
i.(a) Π1∨Π2 minimizes f̄(·): Let N1 be a block of Π2. By Theorem
12.2.1,

f̄(Π1) + f̄(ΠN1) ≥ f̄(Π1 ∨ΠN1) + f̄(Π1 ∧ ΠN1). (∗)
By Lemma 12.2.2,

f̄(ΠN1) ≤ f̄(Π1 ∧ΠN1).

Hence,
f̄(Π1) ≥ f̄(Π1 ∨ ΠN1).

Hence, f̄(·) reaches a minimum also at Π1 ∨ΠN1 . Repeating the argu-
ment with Π1 ∨ΠN1 ∨ · · · ∨ΠNj

and ΠNj+1
for j = 1 to r − 1, where r

is the number of blocks of Π2, we have the required result.

i.(b) Π1 ∧ Π2 minimizes f̄(·): Let Ni be a block of Π2. By the
argument used above,

f̄(Π1 ∨ ΠNi
) = f̄(Π1).

But using this in the inequality (∗) and using Lemma 12.2.2, we see
that

f̄(ΠNi
) = f̄(Π1 ∧ ΠNi

).

Let Π2 have r blocks. Then by the definition of ΠNi
, we have

f̄(Π2) =
r
∑

i=1

f̄(ΠNi
)− (r − 1)

∑

e∈S

f(e)

and

f̄(Π1 ∧ Π2) =
r
∑

i=1

f̄(Π1 ∧ ΠNi
)− (r − 1)

∑

e∈S

f(e).

So
f̄(Π2) = f̄(Π1 ∧ Π2).

ii. The result follows directly by the use of Lemma 12.2.2.
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2

Theorem 12.2.3 [Narayanan95b] Let f(·) be intersecting submodular
(intersecting supermodular) over subsets of S and let X ⊆ Y ⊆ S. Let
Π minimize (maximize) f(·) over PX. Then there exists a Π′ in PY

such that the blocks of Π are contained in the blocks of Π′ and Π′

minimizes (maximizes) f(·) over PY .

Proof :
We handle only the intersecting submodular case. Let Π,Π” mini-
mize f̄(·) over PX , f̄(·) over PY respectively. Suppose Π has a block
N that is not contained in any block of Π”. We then have by Theorem
12.2.1, taking ΠN to be a partition of Y ,

f̄(ΠN) + f̄(Π”) ≥ f̄(ΠN ∧ Π”) + f̄(ΠN ∨ Π”).

Now f̄(ΠN) ≤ f̄(ΠN ∧ Π”), using Lemma 12.2.2. Hence,

f̄(Π”) ≥ f̄(ΠN ∨Π”).

Thus, ΠN ∨Π” minimizes f̄(·) over PY and has a block containing N.
Repeating this process yields a partition Π′ of Y such that its blocks
contain the blocks of Π.

2

Theorem 12.2.4 [Lovász83] If f(·) is intersecting submodular (inter-
secting supermodular) on subsets of S then ft(·) (f t(·)) is submodular
(supermodular).

Proof:
Select minimizing partitions Π(X),Π(X ∪ a),Π(Y ),Π(Y ∪ a) respec-
tively for f̄(·) over PX , f̄(·) over PX∪a, f̄(·) over PY , f̄(·) over PY ∪a

s.t. each block of Π(X) is contained in some block of Π(X ∪ a) as well
as some block of Π(Y ) and each block Π(Y ) is contained in some block
of Π(Y ∪ a). This is possible by Theorem 12.2.3. Let Na, Ma be the
blocks of Π(X ∪a), Π(Y ∪a) respectively that have a as a member. By
Lemma 12.2.2, there is no loss of generality in assuming that the blocks
outside Na are identical in Π(X ∪ a) and Π(X) and those outside Ma

are identical in Π(Y ∪ a) and Π(Y ). We need to show that

f̄(Π(X ∪ a))− f̄(Π(X)) ≥ f̄(Π(Y ∪ a))− f̄(Π(Y )).
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We can cancel terms involving common blocks between Π(X ∪ a) and
Π(X) and those involving common blocks between Π(Y ∪a) and Π(Y ).
Let N1, · · · , Nk be the blocks of Π(X) contained in Na and M1, · · · ,Mr

be the blocks of Π(Y ) contained in Ma. (Observe that each Ni is
contained in some Mj). Thus, we need to show that

f(Na)− f̄({N1, · · · , Nk}) ≥ f(Ma)− f̄({M1, · · · ,Mr})

(Observe that when X = ∅, the LHS equals f(a) and RHS cannot
exceed this value since f(Ma) ≤ f̄({M1, · · · ,Mr}) + f(a).) Let Π+M

denote the partition of Ma that has blocks M1, · · · ,Mr and {a}. Let
ΠNa

denote the partition of Ma that has Na as a block and all the rest
as singletons. We then have by Theorem 12.2.1,

f̄(ΠNa
) + f̄(Π+M) ≥ f̄(ΠNa

∧ Π+M) + f̄(ΠNa
∨Π+M).

On both sides there are singleton terms corresponding to elements in
Ma − Na and a. If we cancel these and shift terms appropriately we
have

f(Na)− f̄({N ′
1, · · · , N ′

t}) ≥ f̄(ΠNa
∨ Π+M)− f̄({M1, · · · ,Mr}),

where N ′
1, · · · , N ′

t is a partition of N induced by ΠNa
∧Π+M .

The required result now follows, since we must have by Lemma
12.2.2 that
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f̄({N ′
1, · · · , N ′

t}) ≥ f̄({N1, · · · , Nk}) and f̄(ΠNa
∨Π+M) ≥ f(Ma).

2

Exercise 12.2 Let f(·) be submodular on subsets of S. If f(·) is
increasing, show that so is ft(·).
Exercise 12.3 [Lovász83] Let f(·), g(·) be submodular functions on
subsets of S with g(·) ≤ f(·). If g(∅) = 0, show that

i. gt(·) = g(·).

ii. g(·) ≤ ft(·).

12.2.2 Examples

We now list a number of examples from the literature relevant to the
Dilworth truncation operation.

i. Truncation of matroids(Dilworth [Dilworth44], see also [Mason81])

LetM be a matroid on S. Let Sk be the collection of k−rank flats of
M. Build a matroidMk on Sk such that

• each element of Sk has rank 1

• if A is a flat of M with rank p > k then Â, the collection of
all k−rank flats ofM contained in A, is a flat ofMk with rank
p− (k − 1).

Solution Let PX denote the collection of all partitions of X ⊆ Sk.
Define the rank function rk(·) on subsets of Sk as follows:

rk(∅) ≡ 0, rk(X) ≡ minΠ∈PX

∑

Xi∈Π

(r′ − (k − 1))(Xi).

Here r′(·) is the function induced by r(·) on subsets of Sk (i.e., r′(X) ≡
r(
⋃

Yi), Yi ∈ X). Clearly, rk(·) = (r′ − (k − 1))t(·).
It can be shown that
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• rk(·) is a matroid rank function

• if A is a flat of M with rank p > k then Â is a flat of Mk with
rank p− (k − 1).

ii. Hybrid rank relative to a partition of the edges of a
graph([Narayanan90])
The problem described below arises when we attempt to solve an elec-
trical network by decomposing it. First we define two operations on
graphs. A node pair fusion means fusing two specified vertices v1, v2

into a single vertex v12 while a node fission means splitting a node
v1 into v11, v12, making some of the edges incident at v1 now incident
at v11 and the remaining at v12. We are given a partition Π of the
edge set E(G) of a graph G such that the subgraph on each block of
the partition is connected. Find a sequence of fusion and fission op-
erations least in number such that the resulting graph has no circuit
intersecting more than one block of Π.

Solution (This problem is handled in detail in Section 14.4). It is easy
to see that one cannot lose if one performs fusion operations first and
then fission operations. Let I(X), X ⊆ V (G) be the set of blocks of
Π whose member branches are incident on vertices in X. Let ΠV be a
partition that minimizes |I| − 2(·). The best sequence is the following:
Fuse each block of ΠV into a single node. (If k nodes are in a single
block this involves k− 1 operations). In the resulting graph, which we
shall call G′, perform the minimum number of node fissions required
to destroy all circuits intersecting more than one block of Π. This
is relatively easy to do and the number of such fission operations is
∑

Ni∈Π r
′(Ni)− r′(E(G)),where r′(·) is the rank function of G ′.

iii. New matroids
A simple method (see Exercise 12.4 below) for generating new ma-
troids from polymatroid rank functions is the following (see for exam-
ple [Patkar92],
[Patkar+Narayanan92a]). Let f(·) be an integral polymatroid rank
function with f(e) = k, e ∈ S. Let pk − q = 1. Then (pf − q)t(·) is a
matroid rank function.

Example Let |V |(·) be the polymatroid rank function on the sub-
sets of E(G) (where G is a selfloop free graph ) such that |V |(X) ≡
number of vertices incident on edges in X. Clearly |V |(e) = 2. Then
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(k|V |(·)−(2k−1))t is a matroid rank function. In particular (|V |(·)−1)t

is the rank function of the graph and (2|V |(·) − 3)t is the rank func-
tion of the rigidity matroid associated with the graph [Laman70],
[Asimow+Roth78], [Asimow+Roth79].

Exercise 12.4 Let f(·) be an integral polymatroid rank function on
subsets of S with f(e) = k ∀e ∈ S, k an integer. Let p, q be integers
s.t. pk − q = 1. Prove that (pf − q)t(·) is a matroid rank function.

Exercise 12.5 Prove the statements about the function rk(·) given in
the solution to the Dilworth truncation of matroids problem.

iv. Posing convolution problems as truncation problems
([Narayanan90], [Narayanan91], [Patkar+Narayanan92b]
[Narayanan+Roy+Patkar92]) We give an example. Consider the con-
volution
problem: ‘Find minX⊆E(G)λr(X) + w(E(G) − X), λ ≥ 0, where E(G)
is the edge
set and r(·) is the rank function of the graph G and w(·) is a nonneg-
ative weight function on E(G).’
Let I(Y ) ≡ set of edges incident on vertices in Y ⊆ V (G), let E(Y ) ≡
set of edges incident only on vertices in Y ⊆ V (G) and let w(I(Y )), w(E(Y ))
denote the sum of the weights of edges in the corresponding sets. Then
one can show that X ⊆ E(G) solves the above convolution problem
iff X =

⋃

Ni∈Π′ E(Ni), where Π′ solves the truncation problem: ‘Find

minΠ∈PV (G)
w(I(·))− λ(Π) or equivalently findmaxΠ∈PV (G)

w(E(·)) + λ(Π).’
Thus the principal partition of the rank function of a graph can be
determined by solving either of the above mentioned truncation prob-
lems for appropriate values of λ. Indeed, this approach yields the
fastest algorithm currently known for this principal partition problem
- (O(|E||V |2log2(|V |)) for the unweighted case and O(|E||V |3log(|V |))
for the weighted case).

Polyhedral Interpretation for Truncation

The polyhedral interpretation for Dilworth truncation appears to be
less important than is the case for convolution. We however have the
following simple result.

Theorem 12.2.5 Let f(·) be a real set function on subsets of S.
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i. Pf = Pft
and P d

f = P d
ft

ii. If f(·) is polyhedrally tight then ft(·) = f(·). If f(·) is dually
polyhedrally tight then f t(·) = f(·).

iii. If f(·) is submodular then ft(·) is polyhedrally tight and is the
greatest polyhedrally tight function below f(·). If f(·) is super-
modular then f t(·) is dually polyhedrally tight and is the least
dually polyhedrally tight function above f(·).

Proof : We will handle only the ‘polyhedral’ (as opposed to the ‘dually
polyhedral’) case.
i. If x(X) ≤ f(X) ∀ X ⊆ S then

k
∑

i=1

x(Xi) ≤
k
∑

i=1

f(Xi)

for all partitions {X1, · · · , Xk} of X ⊆ S. Hence Pf ⊆ Pft
. The result

follows since ft(X) ≤ f(X), X 6= ∅ and therefore Pf ⊇ Pft
.

ii. We have Pft
= Pf . For each X ⊆ S there exists x ∈ Pf s.t. x(X) =

f(X). But x(X) ≤ ft(X) ≤ f(X). Hence, ft(X) = f(X) ∀X ⊆ S.

iii. If f(·) is submodular ft(·) is submodular and ft(∅) = 0. We have
seen (Corollary 9.7.1) that every submodular function that takes zero
value on the empty set is polyhedrally tight. The remaining part of
the statement follows from Exercise 12.3.

2

12.3 The Principal Lattice of Partitions

12.3.1 Basic Properties of the PLP

The principal lattice of partitions has its roots in the variation of the
hybrid rank problem described in page 632. It is curious that the prin-
cipal partition is strongly linked to the original hybrid rank problem
as we indicate in Chapter 14. There are also formal analogies between
principal partition and principal lattice of partitions which we will in-
dicate at appropriate places. We begin by suggesting that the reader
compare Subsection 10.4.2 with the present subsection.
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Definition 12.3.1 Let f(·) be submodular on the subsets of S. Let
Lλf (Lλ when f(·) is clear from the context) denote the collection of
partitions of S that minimize (f − λ)(·). The collection of all partitions
of S which belong to some Lλ, λ ∈ ℜ is called the principal lattice
of partitions of f(·).

As in the case of the principal partition, one of the interesting fea-
tures of the principal lattice of partitions is that one need only examine
a few (not more than |S|) λs in order to solve the optimization prob-
lems for all the λs.

We list below the main properties of the principal lattice of par-
titions. The reader might like to compare them with those of the
principal partition (Subsection 10.4.2).

i. Property PLP1
The collection Lλ is closed under join (∨) and meet (∧) operations and
thus has a unique maximal and a unique minimal element.

ii. Property PLP2
If λ1 > λ2, then Πλ1 ≤ Πλ2 ,
where Πλ,Πλ ,respectively denote the maximal and minimal elements
of Lλ.

iii.

Definition 12.3.2 A number λ for which Lλ has more than one par-
tition as a member is called a critical PLP value of f(·) (critical
value for short).

Property PLP3
The number of critical PLP values of f(·) is bounded by |S|.
iv. Property PLP4
Let λ1, · · · , λt be the decreasing sequence of critical PLP values of f(·).
Then, Πλi = Πλi+1

for i = 1, · · · , t− 1.

v. Property PLP5
Let λ1, · · · , λt be the decreasing sequence of critical PLP values. Let
λi > σ > λi+1. Then Πλi = Πσ = Πσ = Πλi+1

.

Definition 12.3.3 Let f(·) be submodular on subsets of S. Let (λi), i =
1, · · · , t be the decreasing sequence of critical PLP values of f(·). Then
the sequence Π0 = Πλ1 ,Πλ2 , · · · ,Πλt

,Πλt = {S} is called the principal
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sequence of partitions of f(·). A member of Lλ would be alterna-
tively referred to as a minimizing partition corresponding to λ
in the principal lattice of partitions of f(·).
Proof of the properties of the Principal Lattice of Partitions
i. PLP1: This follows directly from Theorem 12.2.2.

ii. PLP2: The following lemma and theorem are needed for the proof
of PLP2.

Lemma 12.3.1 Let f(·) be a submodular function on subsets of S and
let N ⊆ S. Let Π be any partition of S. Then,

(f − λ2)(Π) + (f − λ1)(ΠN) ≥ (f − λ2)(Π ∨ ΠN) + (f − λ1)(Π ∧ ΠN)

−(λ2 − λ1)(| Π ∧ΠN | − | ΠN |).

Proof : We have, by the definition of (f − λi)(·),

(f − λ2)(Π ∨ΠN ) + (f − λ1)(Π ∧ΠN ) = (f − λ2)(Π ∨ ΠN) + (f − λ2)(Π ∧ ΠN)

+(λ2 − λ1) | Π ∧ ΠN | .

By Theorem 12.2.1, the RHS

≤ (f − λ2)(Π) + (f − λ2)(ΠN) + (λ2 − λ1) | Π ∧ ΠN | .

≤ (f − λ2)(Π) + (f − λ1)(ΠN) + (λ2 − λ1)(| Π ∧ ΠN | − | ΠN |).
The required result now follows immediately.

2

Theorem 12.3.1 Let f(·) be a submodular function on the subsets of
S. Let Πi, i = 1, 2, be a partition at which (f − λi)(·), i = 1, 2 reaches
a minimum. If λ1 > λ2 then Π2 ≥ Π1.

Proof : Let N be any block of Π1. By the definition of Π2, we have

(f − λ2)(Π2 ∨ ΠN) ≥ (f − λ2)(Π2)

Hence, by Lemma 12.3.1, we have

(f − λ1)(Π2 ∧ ΠN) ≤ (f − λ1)(ΠN) + (λ2 − λ1)(| Π2 ∧ ΠN | − | ΠN |)

Since λ1 > λ2, using Lemma 12.2.2, we must have | Π2∧ΠN |=| ΠN | .
Thus, N is contained in a block of Π2. Hence, Π2 ≥ Π1.



12.3. THE PRINCIPAL LATTICE OF PARTITIONS 637

2

iii. PLP3: If Lλ has more than one partition as a member, then

| Πλ |>| Πλ | . So if λ1, λ2 are critical values and λ1 > λ2, by the
property PLP2, we must have | Πλ1

|>| Πλ2
| . Now the maximum

number of blocks a partition of S can have cannot exceed | S | . Hence,
the number of critical values cannot exceed | S | .
iv. PLP4: We need the following lemma.

Lemma 12.3.2 Let λ be a real number. Then for sufficiently small

ǫ > 0, the only partition that minimizes (f − (λ− ǫ))(·) over PS is Πλ.

Proof : Since there is only a finite number of partitions of S, for
sufficiently small ǫ > 0, we must have the value of (f − (λ− ǫ))(·)
lower on the members of Lλ than on any other partition of S. But if

Π ∈ Lλ and Π 6= Πλ

(f − (λ− ǫ))(Π) = (f − λ)(Π) + ǫ | Π |
> (f − λ)(Πλ) + ǫ | Πλ |
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The result follows.

2

Proof of PLP4: For sufficiently small values of ǫ > 0,Πλi would con-
tinue to minimize (f − (λi − ǫ))(·) over partitions of S. As ǫ increases,
because there are only a finite number of partitions of S, there would

be a least value ǫ1 at which Πλi and at least one other partition of S
minimize (f − (λi − ǫ1))(·). Clearly (λi − ǫ1) is the next critical value

λi+1. Since λi > λi− ǫ1 by property PLP2 we must have Πλi ≤ Πλi+1
.

Hence, we must have

Πλi = Πλi+1
as desired.

v. PLP5: This is clear from the above arguments.

Exercise 12.6 Let g(·) be a modular function on the subsets of S.
Describe the PLP of g(·).
Exercise 12.7 Show that

i. the PLP of βf(·), where β > 0, f(·) submodular on subsets of S,
is the same as that of f(·). λ is a critical value of the PLP of
f(·) iff λβ is a critical value of the PLP of βf(·).

ii. the PLP of (f+g)(·) is the same as that of f(·) if g(·) is a weight
function. The critical values of the PLP of f(·) and the PLP of
(f + g)(·) are identical.

iii. the PLP of f(·) and (f + k)(·), where k is a real number, are
identical. The critical values of (f + k)(·) are λi + k, where λi

are the critical values of f(·).

Just as in the case of the principal partition we give two character-
izations for the principal lattice of partitions also. The first of these is
presented below. Both the result and the proof are line by line trans-
lations of the statement and proof of Theorem 10.4.1.

Lemma 12.3.3 Let f(·) be a submodular function on subsets of S. Let
λ1, · · · , λt be a strictly decreasing sequence of numbers such that

i. each Lλi
, i = 1, · · · , t has atleast two member partitions,
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ii. Lλi
,Lλi+1

, i = 1, · · · , t − 1 have at least one common member
partition.

iii. Π0 belongs to Lλ1
while ΠS belongs to Lλt

.

Then λ1, · · · , λt is the decreasing sequence of critical values of the PLP
of f(·) and therefore the collection of all partitions which are member
partitions in all the Lλi

, i = 1, · · · , t is the principal lattice of partitions
of f(·).
Proof : Let λ1

′, · · · , λ′k be the critical values and let Π0,Π1, · · · ,Πk =
ΠS be the principal sequence of partitions of f(·). By Property PLP2
the only member partition in Lλ, when λ > λ1

′ is Π0. Further, when
λ < λ1

′,Π0 is not in Lλ. Hence, λ1 = λ1
′. Next by Property PLP5 when

λ1
′ > λ > λ2

′, the only member in Lλ is Π1 which is the maximal
partition in Lλ1

′. Since Lλ2
has at least two member partitions we

conclude that λ2 ≤ λ2
′. We know that Lλ1

and Lλ2
have a common

member which by Property PLP2 can only be Π1. But for λ < λ2
′, by

Property PLP5, Π1 cannot be a member of Lλ. Hence, λ2 = λ2
′. By

repeating this argument, we see that t = k and λi = λ′i, i = 1, · · · , t.
2

The next result is the main characterization of PLP. Later for con-
venience we restate it as Theorem 12.6.1. The latter result could
be viewed as a ‘translation’ of Uniqueness Theorem (PP) (Theorem
10.4.6).

Theorem 12.3.2 ( Uniqueness Theorem (PLP))[Narayanan91]
Let f(·) be a submodular function on subsets of S. Let Π0 < Π1 <
· · · < Πt = ΠS be a strictly increasing sequence of partitions of S and
let λ1, · · · , λt be a strictly decreasing sequence of real numbers such that

i. (f − λi+1)(Πi) = (f − λi+1)(Πi+1), i = 0, · · · , t− 1

ii. (f − λi+1)(Π) ≥ (f − λi+1)(Πi),Πi ≤ Π ≤ Πi+1.

Then Π0, · · · ,Πt is the principal sequence of partitions of f(·) and
λ1, · · · , λt is its decreasing sequence of critical values. Further,

Lλi+1
=
{

Π : Πi+1 ≥ Π ≥ Πi and (f − λi+1)(Π) = (f − λi+1)(Πi)
}

, i = 0, · · · , t−1.
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Proof : The proof is by induction on t, where t + 1 is the length of
the principal sequence. The theorem is obviously true for t = 1 when
the principal sequence is Π0,ΠS. Let the theorem be true for t < k.
Let t = k.
Let Π̂i be the minimal partition of S at which (f − λi+1)(·) reaches a
minimum.
We will first show that Π̂i ≤ Πi for i = 0, · · · , k.
We know that Π̂0 = Π0. Suppose for some i > 0, Π̂i 6≤ Πi. Then
there exists a block N of Π̂i that is not contained in any block of Πi.
It follows that Πi∧ΠN is distinct from Πi. Use of Lemma 12.2.2 shows
that

(f − λi+1)(ΠN ) < (f − λi+1)(Πi ∧ΠN )

By Theorem 12.2.1,

(f − λi+1)(Πi)+(f − λi+1)(ΠN ) ≥ (f − λi+1)(Πi∨ΠN )+(f − λi+1)(Πi∧ΠN).

Hence, (f − λi+1)(Πi) > (f − λi+1)(Πi ∨ ΠN).
Now consider the function ffus·Πi

(·). Clearly it follows that

(ffus·Πi
− λi+1)((Πi∨ΠN )fus·Πi

) < (ffus·Πi
− λi+1)((Πi)fus·Πi

). (∗)

However, on the sequence of partitions (Πi)fus·Πi
, · · · , (Πk)fus·Πi

=
(ΠS)fus·Πi

(which are partitions of Πi), and on the sequence of values
λi+1, · · · , λk, the function ffus·Πi

(·) satisfies the conditions of the theo-
rem. Therefore, by the induction assumption, (Πi)fus·Πi

, · · · , (Πk)fus·Πi

is the principal sequence and λi+1, · · · , λk the critical values of ffus·Πi
(·).

But then (∗) cannot be true, a contradiction. We therefore conclude
Π̂i ≤ Πi, i = 0, · · · , k.
We will now prove that Π̂i = Πi, i = 0, · · · , k by induction on k.
Clearly Π̂0 = Π0. Let Π̂i = Πi for i = 0, · · · , k − 1. Let Πi(max)

be the maximal partition at which (f − λi+1)(·) reaches a minimum
for i = 0, · · · , k. Suppose Π̂k < Πk. By Property PLP2 we have
Πk−1(max) ≤ Π̂k. Hence, Πk−1(max) < Πk, and by the definition of

Πk−1(max), (f − λk) (Πk−1(max)) < (f − λk)(Πk). Therefore, (f − λk)(Π̂k−1) <

(f − λk)(Πk). Since, by the conditions of the theorem, in the interval
(Πk−1,Πk), (f − λk)(·) reaches the same minimum value at Πk−1 and
Πk, this implies that (f − λk)(Π̂k−1) < (f − λk)(Πk−1), i.e., Π̂k−1 6=
Πk−1, which is a contradiction. We therefore, conclude that Π̂k = Πk.
Further, by Property PLP2, Πk−1 ≤ Πk−1(max) ≤ Π̂k. By the above
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mentioned conditions of the theorem, this implies that Πk−1(max) = Πk.
For each λi+1, i = 0, · · · , k − 1, it is clear that Πi,Πi+1 are the unique
minimal and maximal partitions which minimize (f − λi+1)(·). Hence,
Lλi+1

= {Π : Πi+1 ≥ Π ≥ Πi and (f − λi+1)(Π) = (f − λi+1)(Πi)}.
We now see that the sequence λ1, · · · , λt and the sequence Lλ1

, · · · ,Lλt
,

together satisfy the conditions of Lemma 12.3.3. Hence, Π0, · · · ,Πt is
the principal sequence of partitions of f(·), λ1, · · · , λt its decreasing
sequence of critical values and Lλi

, the collections indicated above.

2

Range of Critical Values of the PLP

It is of algorithmic importance to have some idea of the range of critical
values of a given submodular function. The following simple result
[Narayanan91] is useful in this regard.

Theorem 12.3.3 Let f(·) be a submodular function on subsets of
S. Let λ be a critical value of f(·). Let maxei∈Sf(ei) = p and let
minei∈Sf(ei) = q. Then,

i. λ ≥ f(∅)

ii. λ ≤ 2p if f(·) is non-negative.

iii. λ ≤ 2p− q if f(·) is a nonnegative increasing set function.

iv. if f(·) is the left adjacency function of a bipartite graph, we have
0 ≤ λ ≤ 2(max degree of a left vertex) - min degree of a left
vertex.

v. if f(·) is the rank function of a selfloop free matroid, we have
0 ≤ λ ≤ 1.

Proof :
i. A partition Π of S minimizes (f − λ)(·) iff it minimizes (f − k)− (λ− k)(·).
Hence, λ is a critical value of f(·) iff (λ − k) is a critical value of
(f − k)(·). Let g(·) ≡ f(·)− f(∅). Then g(∅) = 0 and by repeated use
of the submodular inequality we have

ḡ(Π) ≥ g(S), i.e., ḡ(Π) ≥ ḡ(ΠS) ∀Π ∈ PS.
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By Property PLP2 we conclude that the critical values of g(·) are
greater than or equal to zero, i.e., the critical values of f(·) are greater
than or equal to f(∅).
ii. If λ is the highest critical value of f(·), then (f − λ)(·) reaches
its minimum on two partitions Π0,Π1 of S, where Π0 is the partition
which has only singleton blocks. Let N be a non-singleton block of Π1.
Clearly

(f − λ)(N) =
∑

e∈N

(f − λ)(e).

Hence,
λ(1− | N |) +

∑

e∈N

f(e) = f(N) ≥ 0, (∗)

i.e., λ(1− | N |) + p(| N |) ≥ 0

i.e., p(| N |) ≥ λ(| N | −1)

i.e., λ ≤ p(| N |)
(| N | −1)

i.e., λ ≤ 2p.

iii. If f(·) is increasing

f(N) ≥ f(e) ∀e ∈ N
≥ q.

Hence,if f(·) is also nonnegative in addition, we may replace (∗) above
by

λ(1− | N |) + p | N | −q ≥ 0,

which gives

λ ≤ p(| N |)− q
| N | −1

≤ 2p(| N | −1)− q − p(| N |) + 2p

| N | −1
≤ 2p− q

(since p(| N | −2) + q ≥ q(| N | −1)).

The last two parts of theorem follow by direct application of the
above results.

2
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Storing the lattice Lλ

We saw in the case of the principal partition that Bλ is a distributive
lattice which can be stored in the form of a Hasse diagram. It is a bit
more difficult to store Lλ. The following result shows that we only need
to store | Πλ | distributive lattices. (In the next chapter we present an
alternative way of storing Lλ).

Lemma 12.3.4 Let f(·) be a submodular function on subsets of S. Let
Ni, i = 0, · · · , k, be the blocks of Πλ, the unique minimal partition that
is a member of Lλ. Let DNi

be the collection of all blocks of partitions
in Lλ which contain Ni. Then

i. DNi
is a distributive lattice.

ii. A partition Π ≡ {M1, · · · ,Mt} of S belongs to Lλ iff each Mj

belongs to one of the DNi
.

Proof :
i. Let P,Q ∈ DNi

.
Since P,Q are unions of blocks of Πλ so must P ∪Q as well as P ∩Q be.
Let Πp,Πq,Πpq,Πp∪q denote respectively the partitions of S which have
P as a block and remaining blocks from Πλ,Q as a block and remaining
blocks from Πλ, P ∩Q as a block and remaining blocks from Πλ, P ∪Q
as a block and remaining blocks from Πλ. By Theorem 12.2.2, Πp,Πq

belong to Lλ and so do Πp ∨Πq and Πp ∧Πq. But Πp ∨Πq = Πp∪q and
Πp ∧ Πq = Πpq (note that P ∩Q ⊇ Ni). The result follows.

ii. If each block of Π belongs to one of the DNi
, then by Theorem

12.2.2, Π ∈ Lλ. On the other hand if Π ∈ Lλ we must have Π ≥ Πλ
which implies that each block of Π is a union of blocks of Πλ and
therefore belongs to one of the DNi

.

2

Symmetry Properties of the PLP

The PLP of a submodular function exhibits the expected symmetry
properties. However, unlike the PP it does not induce a partial order
among the elements since the basic object here is a partition.



644 12. DILWORTH TRUNCATION

The reader might like to review the definitions preceding Theorem
10.4.2 in page 508. If α : S → S is a bijection and Π ≡ {N1, · · · , Nk}
is a partition of S then α(Π) denotes {α(N1), · · · , α(Nk)}. We then
have the following elementary but useful result.

Theorem 12.3.4 Let f(·) be a submodular function on subsets of S
and let α(·) be an automorphism of f(·).

i. (f − λ)(·) reaches a minimum at Π among all partitions of S iff
it reaches a minimum at α(Π).

ii. For each λ the partitions Πλ and Πλ are invariant under α(·).
Hence, if N1, N2 are blocks of different sizes in some Πλ and
x ∈ N1, y ∈ N2 then no automorphism of f(·) can map x to y.

iii. If N1, N2 are blocks of Πλ s.t. α(N1) = N2, then DN1 (the col-
lection of all blocks of partitions in Lλ which contain N1) is iso-
morphic to DN2 under α(·).

Proof : i. Immediate from the definition of an automorphism of f(·)
and the definition of α(Π).

ii. We have α(Πλ) also as a member of Lλ. Further, it has the same
number of blocks as Πλ. But Πλ is the unique minimal partition
that is a member of Lλ. Hence, α(Πλ) ≥ Πλ and we conclude that

α(Πλ) = Πλ. The case of Πλ is similar. If α(·) is an automorphism of
f(·) and Πλ ≡ {N1, · · · , Nt} then Πλ = α(Πλ) = {α(N1), · · · , α(Nk)}
clearly Ni, α(Ni) have the same size since α(·) is a bijection.

iii. If M is a block containing N1, α(M) must contain α(N1) = N2.
The converse must be true since α−1 is also a bijection. The result
follows.

2

12.3.2 PLP from the Point of View of Cost of Par-
titioning

The principal partition gives information about which subsets are densely
packed relative to (f(·), g(·)) while the principal lattice of partitions
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gives information about weak links between different subsets relative
to f(·). The latter thus appears to be a better way of examining nat-
ural partitions relative to f(·). Below we give an informal description
of the principal lattice of partitions from this point of view.

Let us define the cost of a partition Π of S relative to f(·) to be
f̄(Π) − f(S). (Note that the cost of the single block partition ΠS is
zero). Let cost rate (gain rate) of a partition Π1(Π2) with respect
to a coarser partition Π2 (finer partition Π1) be defined to be

f̄(Π2)− f̄(Π1)

| Π2 | − | Π1 |
.

Let λ1, · · · , λt be the decreasing sequence of critical values and let

Π0 = Πλ1
, · · · ,Πλt

,Πλt = S be the principal sequence of partitions of

f(·).
The partition Πλt

would have the cost λt(| Πλt
| −1) (i.e., cost

rate λt relative to ΠS). We may imagine that we are attempting to
break S but for lower cost rate no partition occurs. Note that even at
the above mentioned cost rate we may not be able to reach from ΠS

to Πλt
through partitions whose number of blocks increases one at a

time. (To reach Πλt
from Πλt we can use partitions in Lλt

but these
do not necessarily have a given number of blocks between |Πλt

| and

|Πλt|). To further break up Πλt
we have to pay a higher cost rate λt−1

and so on, with the cost rate increasing each time we reach a partition
in the principal sequence of partitions, until we reach the partition Π0

in which each block is a singleton.

Every partition in the PLP has least cost relative to its number of
blocks (see Exercise 12.8 below) and further is easy to construct (has
a polynomial algorithm which is often quite fast). However, the prob-
lem of finding the partition of least cost relative to a given number of
blocks is NP Hard even for the simplest submodular functions (exam-
ple: f(·) ≡ (wI)(·), where (wI)(X) ≡ weighted sum of edges incident
on the vertex set X ⊆ V (G),G a graph [Saran+Vazirani91]). This
apparent contradiction is resolved when we remember that there may
be no partition of the given number of blocks in the PLP. Even in this
case, however, good approximation algorithms can be given, as we will
indicate later (see Section 12.4).
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Exercise 12.8 (Compare Exercise 10.21) Let Π be a partition of S in
the PLP of a submodular function f(·). If Π′ is any other partition of
S with the same number of blocks as Π then f̄(Π) ≥ f̄(Π′), the equality
holding only if Π′ is also a partition in the PLP of f(·).

The following exercises constitute an alternative development of
PLP from the cost point of view [Roy93],[Roy+Narayanan93b]. We
need a preliminary definition and a basic result.

A partition Π satisfies the λ-gain rate (λ-cost rate) condition
with respect to f(·) iff whenever Π′ ≥ Π (Π” ≤ Π) we have

f̄(Π)− f̄(Π′)

| Π | − | Π′ | ≤ λ equivalently (f − λ)(Π) ≤ (f − λ)(Π′)

(

f̄(Π”)− f̄(Π)

| Π” | − | Π | ≥ λ equivalently (f − λ)(Π) ≤ (f − λ)(Π”)

)

.

We say that these conditions are satisfied strictly if the inequalities
above are strict.

Theorem 12.3.5 (The Optimum Cost Rate Theorem) Let f(·)
be a submodular function on subsets of S.

i. If a partition Π of S satisfies the λ − cost rate (λ − gain rate)
condition, then there exists a partition Π̂ of S such that Π̂ mini-
mizes (f − λ)(·) and Π̂ ≥ Π (Π̂ ≤ Π).

ii. If a partition Π of S satisfies the λ-cost rate (λ-gain rate) con-
dition strictly, then whenever Π̂ minimizes (f − λ)(·) we must
have Π̂ ≥ Π (Π̂ ≤ Π).

iii. A partition Π of S satisfies both the λ−gain rate condition and
λ−cost rate condition iff it minimizes (f − λ)(·).

Proof :
i. Let Π satisfy the λ−cost rate condition, let Π̂ minimize (f − λ)(·)
and let N be a block of Π. We have by Theorem 12.2.1

(f − λ)(ΠN) + (f − λ)(Π̂) ≥ (f − λ)(ΠN ∨ Π̂) + (f − λ)(ΠN ∧ Π̂).
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Let {N1, · · · , Nk} be the partition of N in ΠN ∧ Π̂.
Suppose (f − λ)(ΠN ∧ Π̂) < (f − λ)(ΠN ), i.e.,

k
∑

i=1

f(Ni)− kλ < f(N)− λ.

We now replace N by {N1, · · · , Nk} in Π. Let this new partition be
called Π”. We then have

f̄(Π”)− f̄(Π) < (k − 1)λ = (| Π” | − | Π |)λ,

which violates the λ-cost rate condition. Hence,

(f − λ)(ΠN ∧ Π̂) ≥ (f − λ)(ΠN ).

Hence,
(f − λ)(ΠN ∨ Π̂) ≤ (f − λ)(Π̂).

Thus, (ΠN ∨ Π̂) minimizes (f − λ)(·) and one of its blocks contains N.
Repeating this procedure gives us a partition that minimizes (f − λ)(·)
and is coarser than Π.
The argument for the ‘λ−gain rate’ case is similar. (We use a block N
of Π̂ and use Theorem 12.2.1 on Π, Π̂N).

ii. (strict λ−cost rate case)
Going through the argument of the λ− cost rate case used above, here
we get

(f − λ)(ΠN ∧ Π̂) > (f − λ)(ΠN)

unless ΠN ∧ Π̂ = ΠN .
The former alternative implies

(f − λ)(ΠN ∨ Π̂) < (f − λ)(Π̂),

a contradiction. Hence, we must have

ΠN ∧ Π̂ = ΠN .

Hence, Π̂ must be coarser than Π.

iii. Suppose Π satisfies both the λ− cost rate and the λ−gain rate
conditions. Then, by the former condition, there exists a partition
Π̂ ≥ Π s.t. Π̂ minimizes (f − λ)(·). Suppose (f − λ)(Π̂) < (f − λ)(Π).



648 12. DILWORTH TRUNCATION

It is easily seen that this violates the λ−gain rate condition satisfied
by Π. We conclude that (f − λ)(Π̂) = (f − λ)(Π). Thus, Π minimizes
(f − λ)(·).
On the other hand let Π minimize (f − λ)(·). For any Π′ we then have

(f − λ)(Π) ≤ (f − λ)(Π′).

By taking Π′ to be coarser (finer) than Π, it follows that Π satisfies
the λ−gain rate (λ−cost rate) condition.

2

Exercise 12.9 If two partitions Π1,Π2 have the λ−gain rate (λ−cost
rate) property with respect to the submodular function f(·) on subsets
of S then show that

(f − λ)(Π1 ∧Π2) ≤ (f − λ)(Πi), i = 1, 2,

((f − λ)(Π1 ∨Π2) ≤ (f − λ)(Πi), i = 1, 2).

Exercise 12.10 Let Π1,Π2 minimize (f − λ). Then, using the above
exercise, show that so do Π1 ∨Π2,Π1 ∧ Π2.

Exercise 12.11 Let Π1 minimize (f − λ1)(·), and let Π2 minimize
(f − λ2)(·) with λ1 > λ2. Then Π1 satisfies the strict λ2 cost rate prop-
erty and hence, Π2 ≥ Π1.

The following result is useful for creating approximation algorithms
for finding partitions of least cost with given number of blocks. The
result is easiest to apply when the principal sequence is simple. We
therefore, introduce some appropriate preliminary definitions.

Let f(·) be a submodular function on subsets of S. We say S is
Π−molecular relative to f(·) iff Π0,ΠS is the principal sequence of
f(·). If in addition the only partitions in the PLP are Π0,ΠS we say S
is Π−atomic. (The reader might like to compare these notions with
‘molecular’ and ‘atomic’ in the case of PP).

Theorem 12.3.6 Let Πj ,Πj+1 both minimize (f − λ)(·) for some λ.

i. If | Πj |≥ k ≥| Πj+1 |, then for any Π ∈ PS with |Π| = k,

f̄(Π) ≥ f̄(Πj+1) +
k− | Πj+1 |
| Πj | − | Πj+1 |

(f̄(Πj)− f̄(Πj+1)).
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Further the equality holds only if Π is a member of the PLP of
f(·).

ii. If S is Π- molecular with respect to f(·) and Π is a partition of
S then,

cost of Π ≥ k − 1

| S | −1
(cost of Π0).

Proof : i. Suppose f̄(Π) < RHS. It follows that

f̄(Π)− λj+1 | Π |< f̄(Πj+1)− λj+1 | Πj+1 |, (∗)

where

λj+1 =
f̄(Πj)− f̄(Πj+1)

| Πj | − | Πj+1 |
.

Now Πj ,Πj+1 minimize (f − λ)(·) for a certain value of λ. But the
only value of λ for which (f − λ)(Πj) = (f − λ)(Πj+1) is clearly λj+1.
Hence, λ = λj+1 and therefore,(∗) is a contradiction. If there is equality
then

(f − λj+1)(Π) = (f − λj+1)(Πj+1).

Hence, Π also minimizes (f − λj+1) and is therefore a member of the
PLP of f(·).
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ii. This is a restatement of the above for the molecular case.

2

We give some simple examples of submodular functions and examine
the cost of a partition in each case.

Examples
i. Let G be a graph and let w(·) be a positive weight function on the
edge set of G. Let (wI)(X) ≡ sum of the weights of edges incident on
X ⊆ V (G).
In this case (wI)(Π) − (wI)(V (G)), which is the cost of Π relative to
(wI)(·), is the sum of the weights of the edges whose end points are in
different blocks of Π.
((wI)(Π) counts the weights of such edges twice and that of other edges
once while (wI)(V (G)) counts the weights of all edges once).

ii. Let (wE)(X) ≡ sum of weights of edges with both end points in
X. Clearly −(wE)(·) is a submodular function and (wE)(V (G)) −
(wE)(Π), which is the cost of Π relative to −(wE)(·), is again the
sum of the weights of edges whose end points are in different blocks
of Π. ((wE)(V (G)) is the sum of weights of all the edges in the graph,
(wE)(Π) counts the weight of all edges with both end points within a
block once).

iii. Let B ≡ (VL, VR, E) be a bipartite graph and let w(·) be a positive
weight function on VR. Let (wΓL)(X) ≡ sum of the weights of vertices
adjacent to X ⊆ VL and let (wEL)(X) ≡ sum of the weights of the
vertices adjacent to vertices in X but not to vertices in VL −X. Here
cost of Π relative to (wΓL)(·) is

(wΓL)(Π)− (wΓL)(VL) =
∑

vi∈VR

(ki − 1)(w(vi)),

where ki is the number of blocks of Π to whose vertices vi is adjacent,
and the cost of Π relative to −(wEL)(·) is

(wEL)(VL)− (wEL)(Π) = sum of weights of vertices which are adjacent

to vertices in more than one block of Π.

Observe that the cost of the partition in both cases, (wΓL)(·) as
well as (wEL)(·), is related to the ‘overlap’ between blocks of Π as
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reflected by the vertex sets in VR adjacent to these blocks. However,
in the above two cases, the overlap is measured in very different ways.
In the case of (wΓL)(·), if a vertex is adjacent to k blocks its weights
is counted (k − 1) times. (In particular, a vertex adjacent to only
one block does not contribute to the cost.) In the case of (wEL)(·),
however, each vertex which is adjacent to more than one block of Π
has its weight counted exactly once and a vertex adjacent to only one
block is not counted.

A graph G can be associated with a bipartite graph BG with VL ≡
V (G), VR ≡ E(G) with e ∈ VR adjacent to v ∈ VL iff in G edge e is
incident on v. However, in this case, the cost of a partition Π of V (G)
would be the same relative to (wΓL)(·) as well as (wEL)(·) since here
each vertex e ∈ VR is adjacent to exactly two vertices in VL.

Problem 12.1 This problem is analogous to Problem 10.2. To com-
plete the analogy we remind the reader that if g′(·) is a submodular
function on subsets of S then g(X) ≡ g′(S − X) ∀X ⊆ S is also a
submodular function.
Let f(·), g(·) be submodular on subsets of S and let g(∅) = 0.

i. Let Lλg,f
, λ ≥ 0, denote the collection of all partitions that min-

imize
f̄(Π) + λḡ(Π),Π ∈ PS.

If Π1,Π2 ∈ Lλg,f
, then Π1 ∨Π2,Π1 ∧ Π2 ∈ Lλg,f

.

ii. If λ2 > λ1 ≥ 0,Π1 ∈ Lλ1g,f
and Π2 ∈ Lλ2g,f

then Π1 ∨ Π2 ∈
Lλ2g,f

and Π1 ∧Π2 ∈ Lλ1g,f
.

iii. If instead of g(∅) = 0, we have the condition that g(X) < ḡ(Π)
for all partitions Π of X not equal to ΠX, then every partition in
Lλ1g,f

is below every partition in Lλ2g,f
when λ2 > λ1 ≥ 0.

Remark: The idea in the above problem can be used to modify the
PLP of f(·). Instead of minimizing (f − λ)(·) we could minimize
(f − λ) + σg(·). In practice this could allow us to tamper with the
size of blocks. The cost of a partition in the PLP of this new function
would deviate from the optimum f̄(.) (for its size of blocks) at most
by σg(Π).
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12.4 *Approximation Algorithms through

PLP for the Min Cost Partition Prob-

lem

We present a simple scheme for constructing approximation algorithms
for partitions of minimum cost which appears to do well when the cost
is in terms of a polymatroid rank function. For greater simplicity we
first consider the case where the underlying set S is Π−molecular with
respect to the submodular function f(·). The generalization to the
non-molecular case is easy and will be presented afterwards.

ALGORITHM 12.1 Algorithm Min cost Partition Approxi-
mation Molecular
INPUT A polymatroid rank function f(·) whose value is available at each

subset X ⊆ S (through a rank oracle) and k ≡ the number of blocks
for the desired partition. S is Π−molecular relative to f(·).

OUTPUTA partition Π of S with k blocks whose cost

≤ f̄(Π0)

f̄(Π0)− f(S)
∗ (cost of optimum partition),

where n =| S | .

STEP 1 Sort the elements of S according to decreasing f(·) value.
Let N be the block composed of the first (n− k + 1) elements
in this sequence. Output ΠN as desired partition.

STOP

Justification
Let Π̂ be the min cost partition of k blocks. We have

f̄(Π̂)− f(S) ≥ k − 1

n− 1
(f̄(Π0)− f(S)),

using Theorem 12.3.6. Since N is composed of the largest valued first
(n− k + 1) elements of S, we must have

f̄(ΠN) ≤ f(N) +
k − 1

n
f̄(Π0)
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≤ f(S) +
k − 1

n
f̄(Π0),

since f(·) is a polymatroid rank function.

Hence,
f̄(ΠN )− f(S)

f̄(Π̂)− f(S)
≤ f̄(Π0)

f̄(Π0)− f(S)
(
n− 1

n
).

2

Let us now examine the ratio f̄(Π0)
f̄(Π0)−f(S)

. If we were to subtract a

positive weight function g(·) from f(·), the above ratio would reduce
even though the cost of a partition remains the same. The largest
weight function that we can subtract from f(·), still retaining it as
a polymatroid rank function, is the function g(e) ≡ f(S) − f(S − e)
∀ e ∈ S. (Since f((X− e)∪ e)− f(X − e) ≥ f(S)− f(S− e), it is clear
that (f−g)(·) is a polymatroid rank function). So the above algorithm
must use as its input, the function (f − g)(·).
Let us, therefore, assume without loss of generality that

f(S)− f(S − e) = 0,

and bound the ratio
f̄(Π0)

f̄(Π0)− f(S)
.

In this case

f(S) = f(S − e) ≤ f̄(Π0)− f(e) ∀ e ∈ S.

Hence,

f̄(Π0)

f̄(Π0)− f(S)
≤ f̄(Π0)

f(e)
∀ e ∈ S

≤ n =| S | .

In the above discussion we only used the fact that Π0 and ΠS minimize
(f − λ)(·). The ‘Π−molecularity’ was not otherwise used. In general,
let Π0,Π1, · · · ,Πt = ΠS be the principal sequence of partitions of f(·).
As before let it be required that we find an optimum partition of k
blocks. If k =| Πj | for some j, then Πj is the optimum partition. So
let | Πj |> k >| Πj+1 | .
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In what follows, in place of successive terms of the principal sequence,
we can take any two partitions that minimize (f − λ)(·) for the same
λ and whose numbers of blocks are on either side of k. Let Πj+1 ≡
{S1, S2, · · · , Sm} and let Πj ≡ {N11, · · · , N1p1 , · · · , Nm1, · · · , Nmpm

},where
{Nj1, · · · , Njpj

} is a partition of Sj.
By Theorem 12.2.2 any partition of S that is obtained by taking some
blocks from Πj+1 and others from Πj would also minimize (f − λj+1)(·).
Thus, we could obtain two partitions

Π′
j+1 ≡ {S1, S2, · · · , Sr−1, Nr1, · · ·Nrpr

, · · · , Nm1, · · · , Nmpm
},

Π′
j ≡ {N11, · · · , N1p1 , S2, · · · , Sr−1, Nr1, Nrpr

, · · · , Nm1 , · · · , Nmpm
}

which both minimize (f − λj+1)(·) and differ from each other only in
that Π′

j+1 has S1 as a block while Π′
j has in its place N11, · · · , N1p1 are

blocks. Further, | Π′
j+1 |> k >| Π′

j | .

ALGORITHM 12.2 Algorithm Min cost Partition Approxi-
mation
INPUT i. A polymatroid rank function f(·) whose value is available at

each X ⊆ S through a rank oracle,

ii. k ≡ the number of blocks for the desired partition,

iii. partitions Π′ ≡ {N11, · · · , N1p1, S2, · · · , Sm},
Π” ≡ {S1, S2, · · · , Sm} which both minimize
(f − λ)(·) for some λ and s.t. | Π′ |> k >| Π” |
(equivalently, (p1 − 1) > k −m > 0).

OUTPUTA partition Π of S with k blocks whose cost
≤ α (cost of optimum partition), (α to be defined at the end of the
algorithm), in general α ≤ (p1 − 1).

STEP 1 Let f ′(·) = f/S1(·)
and let f 2(·) ≡ (f ′

fus·Π(S1)
)(·), where Π(S1) ≡ {N11, · · · , N1p1}.

Let ω({Nij}) = f 2(Π(S1))− f 2(Π(S1)− {Nij})
(= f(S1)− f(S1 −Nij)) Let f 3(·) = f 2(·)− ω(·).
Sort {N11}, · · · , {N1p1} in order of decreasing value of f 3(·).
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STEP 2 Lump the first (p1 − k +m) of the sorted list into a
single block M . Let {N ′

11, · · · , N ′
k−m} be the remaining blocks of

Π(S1). Let Π ≡ {N ′
11, · · · , N ′

k−m,M, S2, · · · , Sm}. Let

β ≡
p1
∑

j=1

f 3({N1j})

Define

α ≡ β

β − f 3(Π(S1))

(

p1 − 1

p1

)

.

Output Π as the desired partition.

STOP

Justification
For simplicity of notation, we replace f 3({Nij}) by f 3(Nij). We have

f̄(Π)− f̄(Π”) =
k−m
∑

j=1

f 3(N ′
1j) + f 3(M)− f 3(Π(S1)) ≤

k−m
∑

j=1

f 3(N ′
1j)

≤ k −m
p1

β (∗).

If Π̂ is the optimum k-block partition we must have

f̄(Π̂)− f̄(Π”) ≥ k− | Π” |
| Π′ | − | Π” |

(

f̄(Π′)− f̄(Π”)
)

≥ k −m
p1 − 1





p1
∑

j=1

f(N1j)− f(S1)





≥ k −m
p1 − 1





p1
∑

j=1

f 3(N1j)− f 3(Π(S1))



 ,

since
p1
∑

j=1

f 3(N1j)− f 3(Π(S1)) =
p1
∑

j=1

f(N1j)− f(S1).

Hence,

f̄(Π̂)− f̄(Π”) ≥ k −m
p1 − 1

(β − f 3(Π(S1))) (∗∗).

Hence, using (∗) and (∗∗)
f̄(Π)− f̄(Π”)

f̄(Π̂)− f̄(Π”)
≤ p1 − 1

p1

β

β − f 3(Π(S1)
.
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But,

f̄(Π)− f(S)

f̄(Π̂)− f(S)
≤ f̄(Π)− f̄(Π”)

f̄(Π̂)− f̄(Π”)
,

since f̄(Π) ≥ f̄(Π̂) and f(S) ≤ f̄(Π”). It follows that

f̄(Π)− f(S)

f̄(Π̂)− f(S)
≤ p1 − 1

p1

β

β − f 3(Π(S1))
.

Thus,

(cost of Π) ≤ (cost of Π̂)(
β

β − f 3(Π(S1)
)(
p1 − 1

p1
).

Now, f 3(·) is a polymatroid rank function on subsets of Π(S1) with
the property that

f 3(Π(S1)) = f 3(Π(S1)− {N1j}), j = 1, · · · , p1.

As we have seen before (page 653), for such a polymatroid rank function
∑p1

j=1 f
3(N1j)

∑p1
j=1 f

3(N1j)− f 3(Π(S1)))
≤| Π(S1) |= p1.

Hence, cost of Π ≤ (cost of Π̂)(p1 − 1).

2

The following exercises ([Narayanan+Roy+Patkar96]) give instances
of application of the above ideas. In these cases the bounds come out
to be more attractive.

Exercise 12.12 Let G be a self loop free graph and let w(·) be a posi-
tive weight function on E(G).

i. Let (wI)(X), X ⊆ V (G) denote the sum of the weights of the
edges incident on X.
Let (wE)(X), X ⊆ V (G), denote the sum of the weights of the
edges with both end points in X. Then

∑

v∈X

(wI)(v)− (wE)(X) ≡ (wI)(X)
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ii. (We use the notation of Algorithm 12.2). If f(·) ≡ (wI)(·) then
β

β−f3(Π(S1))
= 2, since for any self loop free graph

∑

(wI)(v)
∑

(wI)(v)−(wI)(V (G))
=

2.

Exercise 12.13 Let B ≡ (VL, VR, E) be a bipartite graph and let wR(·)
be a positive weight function on VR. Let wRΓL(X), X ⊆ VL, denote the
sum of the weights of the vertices in VR which are adjacent to vertices
in X. Let wREL(X), X ⊆ VL denote the sum of the weights of the
vertices in VR which are adjacent only to vertices in X. Prove:

i. (wRΓL)∗(X) =
∑

v∈X wRΓL(v)−wREL(X), where the comodular
dual is taken with respect to the vector α with α(v) ≡ wRΓL(v), v ∈
VL.

ii. If no vertex in VR is adjacent to only one vertex in VL then
∑

wRΓL(v)
∑

wRΓL(v)− wRΓL(VL)
≤ 2.

Hence, if f(·) ≡ wRΓL(·), then β
β−f3(Π(S1))

≤ 2.

iii. In any bipartite graph wRΓ∗
L(VL)− wRΓ∗

L(VL − v1) = 0.

iv. If f(·) ≡ (wRΓL)∗(·) then β

β−f3(Π(S1))
≤ q, where q is the maxi-

mum degree of a vertex in VR.

12.5 The PLP of Duals and Truncations

In this section we deal with the PLP of functions derived from a sub-
modular function by the natural operations of dualization and Dilworth
truncation. The PLP of the different types of duals is essentially the
same but seems to bear no apparent relation to the PLP of the original
function. The PLP of the truncation (f − σ)t(·), however, is very sim-
ply related to that of the original function f(·). We also define a new
dual operation to truncation. This is related to copartitions analogous
to the way in which Dilworth truncation and partitions are related.
One is thereby led to the definition of the Principal Lattice of Copar-
titions (PLC).
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12.5.1 The PLP of Duals

We remind the reader of the two types of duals defined in Section 9.3.
If f(·) is a submodular function on subsets of S, then f d(X) ≡ f(S)−
f(S−X) (the supermodular function f d(·) is the contramodular dual
of f(·)) and f ∗(X) ≡ ∑e∈X α(e)− [f(S)− f(S−X)] (the submodular
function f ∗(·) is the comodular dual of f(·) with respect to the weight
function α(·)). Let f c(X) ≡ f(S −X)
∀X ⊆ S.

The PLP of the submodular function f d(·) is the collection of all par-
titions that maximize (f(S) + λ− f c)(·), i.e., minimize (f c − f(S)− λ)(·).
Now f ∗(·) = α(·)− f d(·). We know that adding a weight function to a
submodular function h(·) does not alter the partitions which minimize
(h− λ)(·). Hence, a partition minimizes (f ∗ − λ)(·) iff it minimizes
(−fd − λ)(·), i.e., iff it minimizes (f c − f(S)− λ)(·). We therefore
need only study the PLP of any one of these functions. The follow-
ing example suggests that there may not be any simple relationship
between the PLP of f(·) and f ∗(·).

4

6

G

7

2

3

1

5

12

11

13

9

8
10

Figure 12.1: The graph G: PLP of Dual not Simply Related

Example 12.5.1 Consider the graph G of Figure 12.1. It is shown
in page 727 that E(G) is Π - molecular relative to the rank function
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r(·). Let E ≡ E(G). Let r∗(·) be the comodular dual of r(·) taken with
respect to the | · | function. We find that r∗(E) = 6. The value of λ
for which (r∗ − λ)(Π0) = (r∗ − λ)(ΠE) is 7/12. Consider the partition
Π which has {12, 13} as a block and others as singletons. We find that
(r∗ − λ)(Π) < (r∗ − λ)(Π0). So E is not Π - molecular relative to r∗(·).

Some partitions are however common to the PLPs of f(·) and f c(·)
as shown below.

Lemma 12.5.1 Let f(·) be a submodular function on subsets of S. Let
Π be a partition of S s.t. the blocks of Π are separators of (f−f(∅))(·).
Then

i. Π minimizes (f − f(∅))(·),

ii. the blocks of Π are separators of (f c − f c(∅))(·) and hence mini-
mize
(f c − f c(∅))(·).

Proof :
i. The function g(·) ≡ (f − f(∅))(·) is submodular and takes value
zero on the null set. Hence, for any partition Π′ of S, (by repeated use
of the submodular inequality), we must have ḡ(Π′) ≥ g(S). But if the
blocks of Π are separators of g(·). we have ḡ(Π) = g(S). This proves
the required result.

ii. Suppose K is a separator of (f − f(∅))(·). Then

f c(K)− f c(∅) = f(S −K)− f(S),

f c(S −K)− f c(∅) = f(K)− f(S)

Thus

(f c − f c(∅))(K) + (f c − f c(∅))(S −K) = f(S −K) + f(K)− 2f(S)

= f(S −K)− f(∅) + f(K)− f(∅)
+2f(∅)− 2f(S)

= f(S)− f(∅) + 2f(∅)− 2f(S)

= f(∅)− f(S)

= f c(S)− f c(∅),
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i.e., K is a separator of (f c − f c(∅))(·). The result now follows from
the previous part of the present lemma.

2

12.5.2 The PLP of the Truncation

The PLP of (f −σ)t(·) can be obtained immediately from that of f(·),
as we show below.
We need the following theorem whose statement and proof are line by
line translations of Theorem 10.4.4.

Theorem 12.5.1 Let f(·) be a submodular function on subsets of S.
Let p(·) denote ((f − σ)t − λ)(·) and let h(·) denote (f − (σ + λ))(·).

i. When λ ≥ 0

• the minimum values of p(·) and h(·) over partitions in PS

are equal and if Π minimizes p(·) then there exists a finer
partition Π′ that minimizes h(·);
• any partition that minimizes h(·) also minimizes p(·).

ii. When λ > 0, Π minimizes p(·) iff it minimizes h(·).

iii. When λ ≥ 0, there is a unique minimal partition that minimizes
both p(·) and h(·) and when λ = 0 its blocks are the elementary
separators of (f − σ)t(·).

Proof of Theorem 12.5.1:
i. By the definition of truncation,

(f − σ)t(Π) ≤ (f − σ)(Π), ∀Π ∈ PS.

Hence p(Π) ≤ h(Π) ∀Π ∈ PS and min
Π∈PS

p(Π) ≤ min
Π∈PS

h(Π).
Next, for any partition Π of S, when λ ≥ 0 we have,

p(Π) ≡ (f − σ)t(Π)− λ|Π| = (f − σ)(Π1)− λ|Π|,

for some Π1 ≤ Π. Hence,

p(Π) ≥ (f − σ)(Π1)− λ|Π1| = h(Π1).
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We conclude that minΠ∈PS
p(Π) = minΠ∈PS

h(Π) and that if Π min-
imizes p(·) then there exists a finer partition Π′ that minimizes both
h(·) and p(·). Let m denote this minimum value. Suppose Π minimizes
h(·). We then have,

m = (f − σ)(Π)− λ|Π| ≥ (f − σ)t(Π)− λ|Π| ≥ m.

Thus Π minimizes p(·).
ii. (λ > 0). We need to show that if Π minimizes p(·) then it also
minimizes h(·). We claim that in this case

(f − σ)t(Π) = (f − σ)(Π),

from which it would follow that the minimum value m of both p(·) and
h(·) equals h(Π). Suppose otherwise. Then, we must have

m = (f − σ)(Π)− λ|Π| = (f − σ)t(Π1)− λ|Π|,
for some Π1 < Π. Hence,

m > (f − σ)t(Π1)− λ|Π1| ≥ m,

which is a contradiction. Thus we must have

(f − σ)t(Π) = (f − σ)(Π),

and that Π minimizes (f − σ)(·).
iii. Since h(·) is clearly submodular we must have the minimal min-
imizing partition to be unique since the minimizing partitions of h(·)
are precisely the minimizing partitions in the principal lattice of parti-
tions of (f −σ)(·) and property PLP1 can be used. From the previous
parts of the present theorem it follows that this partition is also the
unique minimal partition that minimizes p(·). Consider the situation
when λ = 0. Let Π minimize p(·). Now if M is any union of blocks of
Π, we have, by the submodularity of (f −σ)t and the fact that it takes
value zero on ∅, (f −σ)t(M) ≤ ∑(f −σ)t(Ni), where Ni are the blocks
of Π contained in M . Thus if Π′ ≥ Π then Π′ (in particular ΠS) also
minimizes p(·). It follows that the blocks of Πmin, the minimal mini-
mizing partition of p(·) must be separators of (f − σ)t. On the other
hand if Π has its blocks as separators of (f − σ)t, by the definition of
separators, we must have (f − σ)t(Π) = (f − σ)t(ΠS). This completes
the proof.
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2

The structure of the PLP of (f − σ)t(·) is an immediate corollary
(see Figure 12.2).

D E F+ D E F+

FEDCBA

PLP of

PLP of

,

A B C G+ A C +B

FEDCBA

 =

=

=

=

PLP of

PLP of

G

S1 S1

f(.)

f(.)

λt

λr

πS

π(α<σ)

πσ

πλ

π0

π̂S

π̂σ

π̂λ

π̂0

∀π̂, π̂ ≥ π̂σ

(f − σ)t(.)

πλt

πλr

πλ1

π̂λt

π̂λr

π̂λ1

λr

(f/S1)fus.πλ1
(.)

λ1

Figure 12.2: Comparison of PLP of f(·), (f − σ)t(·), f/S1fus·Πλ1

(·)

Corollary 12.5.1 Let f(·) be a submodular function on subsets of S.
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i. The minimum partitions of (f−σ)(·) and (f−σ)t(·) are identical.

ii. The blocks of this partition are the elementary separators of (f −
σ)t(·). Hence the maximum partition that minimizes (f − σ)t(·)
is ΠS.

iii. For λ > 0, a partition of S minimizes (f − σ)t − λ(·) iff it min-
imizes
(f − σ − λ)(·).

We thus see that the relation between the PLP of (f − σ)t(·) and that
of f(·) is analogous to the relation between the PP of (f, g) and that
of ((λf) ∗ g, g).

The following result is a consequence of Corollary 12.5.1. It is anal-
ogous to Corollary 10.4.1 for convolution.

Corollary 12.5.2 Let f(·)be a submodular function on subsets of S.
Let λ ≥ 0. Then

((f − σ)t − λ)t(·) = (f − (σ + λ))t(·)

Exercise 12.14
Let G be a graph with E ≡ E(G). Let V (X) ≡ set of end points of
edges in X, X ⊆ E(G) and r(X) ≡ rank of the subgraph on X. Show
that

i. the minimum partition of (| V | −1)(·) is also the minimum par-
tition of r̄(·), that the blocks of this partition are the 2-connected
components of G, and that ΠE is the maximum minimizing par-
tition of r̄(·),

ii. the blocks of the maximum minimizing partition of (| V | −1)(·)
are the 1-connected components of G.

12.5.3 The Cotruncation Operation and the Prin-
cipal Lattice of Copartitions

A collection {M1, · · · ,Mk} of subsets of X ⊆ S is called a coparti-
tion of X relative to S iff {S −M1, · · · , S −Mk} is a partition of X.
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‘Optimum’ copartitions carry information about the structure of a sub-
modular function very much the same way as optimum partitions do.
Analogous to the Dilworth truncation operation we can define the Dil-
worth cotruncation operation and we have quite naturally a principal
lattice of copartitions (PLC).

We use the following notation. A typical copartition would be de-
noted by Θ. The collection of all copartitions of X relative to S would
be denoted by ∆XS (∆X for short). If Θ′ ≡ {M1, · · · ,Mk} is a co-
partition of X ⊆ S relative to S, then Π(Θ′) denotes the partition
Π′ ≡ {S −M1, · · · , S −Mk}. Conversely Θ(Π′) denotes Θ′.
If f(·) is a real valued function on subsets of S the copartition asso-
ciate of f(·), denoted by f(·), is defined as follows:

f(Θ) ≡
∑

Mi∈Θ

f(Mi),

where Θ is a copartition of X ⊆ S relative to S.
The upper Dilworth cotruncation of f(·) (lower Dilworth cotrun-
cation of f(·)) denoted by f ct(·) (denoted by fct(·)) is defined as fol-
lows:

f ct(X) ≡ maxΘ∈∆XS
(f(Θ))

(fct(X) ≡ minΘ∈∆XS
(f(Θ)))

The following lemma shows that fct(·) is submodular if f(·) is submod-
ular and f ct(·) is supermodular if f(·) is supermodular. We remind the
reader that f c(X) ≡ f(S −X), X ⊆ S.

Lemma 12.5.2 Let f(·) be a real valued function on subsets of S.
Then

i. fct(·) = ((f c)t)(·)
ii. f ct(·) = ((f c)t)(·) .

Proof :

i. We have

fct(X) = minΘ∈∆XS
(f(Θ))

= minΠ∈PX
(f c(Π))

= (f c)t(X)
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ii. The proof is similar to the above.

2

Corollary 12.5.3 If f(·) is a submodular (supermodular) function on
subsets of S then fct(·) is submodular (f ct(·) is supermodular).

Proof : We only prove the submodular case. If f(·) is submodular
then f c(·) is submodular. By Theorem 12.2.4 it follows that (f c)t(·)
must be submodular. The result follows from Lemma 12.5.2.

2

Since we have f(Θ) = f̄ c(Π(Θ)) and (f −λ)c(·) = (f c−λ)(·) it follows
that

Θ minimizes (f − λ)(·) over ∆SS iff Π(Θ) minimizes (f c − λ)(·) over
PS.· · · (∗PLC)

The above fact (∗PLC) is the truncation analogue of Theorem
10.4.5. We are now led naturally to the definition of the principal
lattice of copartitions (PLC) of a submodular function f(·) on subsets
of S, as the collection of all copartitions which minimize (f − λ)(·) over
∆SS for some value of λ. Let us define Θ1 ≤ Θ2 iff Π(Θ1) ≤ Π(Θ2).
Then the (PLC) of f(·) has properties identical to the PLP of f(·).
These can be derived routinely by using the fact (∗PLC). The PLC
of (f − σ)ct(·) is related to the PLC of f(·) exactly the way the PLP
of (f c − σ)t(·) is related to that of f c(·).

12.6 *The Principal Lattice of Partitions

associated with Special Fusions

We saw in the case of the principal partition of (f(·), g(·)) (f(·) sub-
modular, g(·) a positive weight function) that if T1, T2 are sets in the
principal partition with T1 ⊆ T2 then the principal partition of (f ⋄
(S−T1)/(T2−T1)(·), g/(T2−T1)(·)) would mimic that of (f(·), g(·)).
Indeed a subset A ⊆ T2− T1 belongs to the former iff (A∪T1) belongs
to the latter and has the same critical value. We show below that a
similar situation prevails in the case of the principal lattice of parti-
tions.
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We use the following notation:
f⊕Π(·) denotes

⊕

i f/Ni(·), Ni ∈ Π, ffus·Π(·) is as defined earlier (Sec-
tion 9.3). (Let Π be a partition (≡ S1, · · · , Sk) of S. Then the fusion
of f(·) relative to Π, denoted by ffus.Π(·), is defined on subsets of Π
by

ffus.Π(X) ≡ f(
⋃

T∈X

T ), X ⊆ Π).

If Π ≡ {N1, · · · , Nk}, a partition of Π may be visualized as

{{N1, · · · , Nr}, · · · , {Nk−t, · · · , Nk}}.

If Π′ ≥ Π then Π′
fus·Π denotes the partition of Π with Nfus as one of

its blocks iff the members of Nfus are the set of blocks of Π contained
in a single block of Π′. In other words, if in the partition Π′ we treat
the blocks of Π as singletons, we get the partition Π′

fus·Π of Π. Let Π
be a partition of S and let Πfus, a partition of Π. Then (Πfus)exp.Π

denotes the partition Π” of S with N a block of Π” iff N is the union
of all blocks of Π which are members of a single block of Πfus. In other
words, if in the partition Πfus of Π we expand the elements in each
block into the corresponding block of Π and take their union, we get
the blocks of (Πfus)exp.Π. Thus ((Πfus)exp.Π)fus·Π = Πfus. As usual Lλ
denotes the collection of partitions that minimize (f − λ)(·).

Let partition Π1 of S minimize (f − θ)(·) and let partition Π2 of S
minimize (f − β)(·) with β ≥ θ. We know that Π1 ≥ Π2.
We now describe the PLP of

i. f1(·) ≡ f⊕Π1(·) when f(∅) = 0

ii. f2(·) ≡ f/S1(·), where S1 is a block in a partition Π in the PLP
of f(·)

iii. f3(·) ≡ ffus·Π2(·)

iv. f4(·) ≡ (f⊕Π1)fus.Π2(·) when f(∅) = 0.

i. Let L1
λ denote the collection of partitions that minimize (f1 − λ)(·).

Since f(∅) = 0, we must have θ ≥ 0.
If θ = 0, the blocks of Π1 are separators of f(·). Hence, f(·) = f1(·).
If θ > 0, the only minimizing partition coarser than Π1 for (f1 − θ)(·)
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would be Π1 itself (by the definition of f1(·)). Hence, the minimiz-
ing partitions for (f1 − θ)(·) (by Theorem 12.3.5) must be finer than
Π1. On partitions finer than Π1 both f(·) and f1(·) coincide. We
know that (f − θ)(·) is a minimum at Π1. We conclude therefore,
that (f1 − θ)(·) reaches a minimum at those partitions of the PLP
of f(·) which correspond to critical value θ and which are finer than
Π1. Thus, L1

θ = Lθ ∩ {Π : Π ≤ Π1}. By a similar argument we con-
clude that L1

λ = Lλ ∩ {Π : Π ≤ Π1} whenever λ > θ. But by PLP2,

Πλ, the unique maximum partition in Lλ, is finer than Π1. Hence,

L1
λ = Lλ, λ > θ. For λ = 0, (f1 − λ)(Π1) = (f1 − λ)(Π) ∀ Π ≥ Π1

since f1(·) has the blocks of Π1 as separators.
For λ = θ we have already seen that Π1 minimizes (f1 − λ). It is clear
therefore, that if ΠS > Π1, the next critical value after θ is 0 and
L1

0 = {Π : Π ≥ Π1}. To summarize

i. if θ > 0 for f⊕Π1(·) (f(∅) = 0)

• (λ > θ) L1
λ = Lλ

• (λ = θ) L1
λ = Lλ ∩ {Π : Π ≤ Π1}

• (0 < λ < θ) L1
λ = {Π1}

• (λ = 0) L1
λ = {Π : Π ≥ Π1}.

ii. if θ = 0, f⊕Π1(·) = f(·)

ii. Let S1 be a block of a partition Π in the PLP of f(·) and let
f2(·) ≡ f/S1(·). Let Π minimize (f − θ)(·). We know that for λ > θ
minimizing partitions of (f − λ)(·) are finer than Π while for λ < θ
minimizing partitions of (f − λ)(·) are coarser than Π. Use of Lemma
12.2.2 shows us that the partitions of S1 which minimize (f2 − λ)(·)
are precisely the partitions of S1 which are contained in a minimizing
partition of (f − λ)(·). To summarize,
collection of minimizing partitions of (f2 − λ)(·)
≡ partitions of S1 contained in partitions of Lλ.

iii. We observe, if Π2 is a partition of S, that

f̄3(Πfus·Π2) = f̄fus·Π2(Πfus·Π2) = f̄(Π), whenever Π ≥ Π2.
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If Π2 is a partition in the PLP of f(·) minimizing (f − β)(·), then for
λ < β, any minimizing partition Π of (f − λ)(·) is coarser than Π2.
Hence,

• (λ < β) Π is a minimizing partition of (f − λ) iff (Πfus·Π2) is a
minimizing partition for (f3 − λ)(·).

• (λ = β) the minimizing partitions of (f3 − λ)(·) are of the form
Πfus·Π2 where Π is a minimizing partition for (f − λ)(·) coarser
than Π2.

• (λ > β) (Π2)·fus·Π2 is the only minimizing partition.

iv. Let L4
λ ≡ collection of partitions which minimize (f4 − λ)(·).

f4(·) ≡ (f⊕Π1)fus·Π2(·).
By using the ideas of the previous sections of this discussion we con-
clude that

L4
λ = {(Π2)fus·Π2}, λ > β

= {Πfus·Π2 : Π ∈ Lλ,Π ≥ Π2}, λ = β

= {Πfus·Π2 : Π ∈ Lλ}, θ < λ < β

= {Πfus·Π2 : Π ∈ Lλ,Π ≤ Π1}, λ = θ

= {(Π1)fus·Π2}, 0 < λ < θ

= {Πfus·Π2,Π ≥ Π1}, λ = 0.

Exercise 12.15 (Compare second part of Lemma 10.4.5). Let f(·) be
a submodular function on subsets of S and let S1 ⊆ S be s.t.

(f − λ)(S1) = (f − λ)t(S1).

Then there is a partition Π in Lλ s.t. S1 is contained in a block of Π.

In particular Πλ has a block that contains S1.

We now restate Theorem 12.3.2 (Uniqueness Theorem) in the lan-
guage of this section.

Theorem 12.6.1 Let f(·) be a submodular function on subsets of S.
Let Π0 < Π1 < · · · < Πt = ΠS be a strictly increasing sequence of
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partitions of S and let λ1, · · · , λt be a strictly decreasing sequence of
real numbers satisfying the following condition for each Πi,Πi+1 and
each block T of Πi+1 :
Πi(T ), the partition of T in Πi is Π−molecular relative to (f/T)fus·Πi(T )(·),
corresponding to critical value λi+1.
Then

i. Π0, · · · ,Πt is the principal sequence of partitions of f(·) and λ1, · · · , λt

is its decreasing sequence of critical values.

ii. if Πi+1 ≡ {T 1, · · · , T t}, Πi ≡
⊎

j Πi(T
j)

then a partition Π is in Lλi+1
iff

(a) Π ≡ Π(T 1) ⊎ · · · ⊎ Π(T t), where Π(T j) is a partition of
T j , j = 1, · · · , t.

(b) (Π(T j))fus·Πi(T j) lies in the PLP of (f/Tj)fus·Πi(T j).

12.7 Building Submodular Functions with

desired PLP

The following exercises describe ways of building submodular func-
tions with desired PLP. We begin with Π−atomic and Π−molecular
structures.

Exercise 12.16 Let f(·) be submodular on subsets of S. Show that

i. there exists a partition strictly coarser than Π0 minimizing (f − λ)(·)
iff there exists N ⊆ S, | N |> 1 s.t.

f(N)− λ ≤
∑

e∈N

f(e)− λ | N | . (∗)

ii. S is Π−atomic relative to f(·) iff there exists no proper non-
singleton subset of S satisfying the above condition (∗) for

λ =

∑

e∈S f(e)− f(S)

| S | −1
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i.e., for each such proper subset of S,

∑

e∈N f(e)− f(N)

| N | −1
<

∑

e∈S f(e)− f(S)

| S | −1
.

Exercise 12.17 Let us say that a graph G is Π−atomic (Π−molecular)
iff E ≡ E(G) is Π−atomic (Π−molecular) relative to the rank function
r(·) of G. Show that a complete graph on n ≥ 2 nodes is Π−atomic.

Exercise 12.18 Show that with respect to the rank function of the
graph

i. a circuit graph is Π−atomic,

ii. a tree graph is Π−molecular,

iii. every Π−atomic graph is connected.

iv. if a simple (no parallel edges) graph G is Π−atomic then the
graph G′, obtained by adding a node n′ and joining it to each of
the nodes of G by an edge, is Π−atomic.

Exercise 12.19 Let G be a graph of nonzero rank such that E ≡ E(G)
is atomic relative to (r(·), w(·)), i.e.,

w(X)

r(X)
<
w(E)

r(E)
, ∅ ⊂ X ⊂ E,

where w(·) is a positive weight function on the edges. Show that

i. E is Π−atomic relative to (wI)(·), where (wI)(Y ) ≡ weight of
edges incident on the vertex set Y .

ii. the critical value of the PP of (r(·), w(·)) is the same as the crit-
ical value of the PLP of (wI)(·).

Exercise 12.20 i. Let G be a graph atomic with respect to (r(·), w(·)).
Let bipartite graph B ≡ (VL, VR, EB) be associated with G with VL ≡
V (G), VR ≡ E(G) and e ∈ EB iff its right end point (as an edge of
G) is incident on its left endpoint (as a vertex of G). Show that VL is
Π−atomic relative to (wΓL)(·), ((wΓL)(X) ≡ sum of weights of vertices
adjacent to vertices in X,X ⊆ VL).
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ii. Let B ≡ (VL, VR, E) have every vertex of VR adjacent to every
vertex in VL. Let (wΓL)(X) ≡ number of vertices adjacent to vertices
in X,X ⊆ VL. Show that

(a) VL is Π−molecular relative to (wΓL)(·),
(b) every partition of VL is a minimizing partition for ((wΓL)− | VR |)(·).

iii. Let us say that a bipartite graph (VL, VR, E) is Π−atomic (Π−molecular),
if VL is Π−atomic (Π−molecular) relative to (wΓL)(·).
Let B1, B2 be two bipartite graphs (VL, V

1
R, E1), (VL, V

2
R, E2). Let B3

≡ (VL, V
1
R⊎V 2

R, E1⊎E2). Show that B3 is Π−atomic if B1 is Π−atomic
and B2 is Π−molecular.

Building Submodular functions with given principal sequence
of partitions

We now present a simple scheme for constructing a submodular func-
tion with prescribed principal sequence and critical values. It is as-
sumed that we know how to build a submodular function on a given
set which makes the set Π-molecular with a given critical value. Es-
sentially the same scheme would work even if we wish to build with
prescribed PLP and critical values.

ALGORITHM 12.3 Algorithm Build Submod for PLP
INPUT Sequence of partitions Π1, · · · ,Πt to be the principal sequence of

partitions on S and a sequence λ1, · · · , λt to be the decreasing
sequence
of critical values.

OUTPUTThe function f(·) on subsets of S with given principal sequence
of partitions and sequence of critical values.
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STEP 1 For j = 0, · · · , t− 1 repeat the following:
Let Πj ≡ {S1, · · · , Sk} and let Π(Si) be the partition of
Si, i = 1, · · · , k, in Πj−1 so that

Πj−1 =
⊎

Π(Si)

For i = 1, · · · , k repeat the following:
On Π(Si) (note that elements of Π(Si) are blocks of

Πj−1)
build a submodular function f(j−1)i(·)
s.t. Π(Si) is Π−molecular
with respect to f(j−1)i(·) with critical value λj .
Let fj−1(·) ≡

⊕

i f(j−1)i(·)

STEP 2 Build f̂1(·) on S as follows:
Let Π1 ≡ {T1, · · · , Tr}

f̂1(X) ≡
∑

X∩Ti 6=∅

f0(X ∩ Ti) + f1(
⋃

X∩Ti 6=∅

{Ti}) ∀ X ⊆ S

STEP 3 Do for j = 2, · · · , t− 1
Build f̂j(·) on S as follows:
Let Πj ≡ {S1, · · · , Sk}

f̂j(X) ≡
∑

X∩Si 6=∅

f̂j−1(X ∩ Si) + fj(
⋃

X∩Si 6=∅

{Si}) ∀ X ⊆ S

Output f̂(·) ≡ f̂t−1(·) as the submodular function with the given
principal sequence and critical values.

Justification
Let Πj ≡ {S1, · · · , Sk}, Πj+1 ≡ {T1, · · · , Tr}.
We observe that (by STEP 3)
f̂fus·Πj

(X) = fj(X) + ωj−1(X) + ki, X ⊆ (Ti)fus.Πj
, where ωj−1(·)

is the weight function defined by ωj−1({Si1, · · · , Sim}) ≡
∑m

n=1 f̂j−1(Sin)
and ki is an appropriate constant (sum of the values of fj+1(·), · · · , ft−1(·)
on an element that ‘touches’ Ti). If T is a block of Πj+1 and Πj(T ) is

its partition in Πj, then it is clear that (f̂/T)fus·Πj(T )(·) differs from
fj/(Πj(T ))(·) only by the sum of a weight function and a constant.
Hence, both these functions have the same PLP and critical value.
The validity of the algorithm now follows from Theorem 12.6.1.
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2

Exercise 12.21 Show that Algorithm 12.3 yields a polymatroid rank
function if fj(·) are polymatroid rank functions.

Exercise 12.22 Let S ≡ {1, · · · , 10} and let
Πo,Π1 ≡ {{1, 2, 3}, {4, 5}, {6, 7}, {8, 9, 10}}Π2 ≡ {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}} ,
Π3 ≡ ΠS be the principal sequence. Let the critical values be 5, 4, 2.
Build a submodular function on subsets of S with the given principal
sequence and critical values.

12.8 Notes

Although the operation of truncation was introduced earlier in the lit-
erature
[Dilworth44], it has not received the kind of attention that convolution
operation has received. It is a curious fact that the first application
to electrical networks in the case of both convolution and truncation
was for the solution of versions of the hybrid rank [Kishi+Kajitani68],
[Ohtsuki+Ishizaki+Watanabe68],[Narayanan90]. Once the first appli-
cation was found the analogy between the two operations became too
strong to be missed and this led to the notion of the PLP [Narayanan91].
This chapter and the next have been written according to the plan of
this latter reference. The operation of truncation is an essential tool if
we wish to study functions which might be defined to be submodular
over restricted classes of subsets [Frank+Tardos88]. This area has not
been touched upon in the present book.

12.9 Solutions of Exercises

E 12.1:
i. This is immediate.

ii. (lower truncation) If Π,Π1,Π2 minimize λf + βg(·), λf(·), βg(·),
over partitions of S we must have

λf + βg(Π) = λf(Π) + βg(Π)

≥ λf(Π1) + βg(Π2).
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The result follows. The statement about weight function follows when
we observe that
ḡ(Π) = g(S)) ∀Π ∈ PS.

E 12.2: Let X ⊆ Y ⊆ S. Let Π,Π′ minimize f̄(·) over PX , f̄(·) over
PY respectively such that each block of Π is contained in a block of
Π′ (Theorem 12.2.3). Then, ft(X) ≡ f̄(Π) and ft(Y ) ≡ f̄(Π′). Let M
be a block of Π′ and let N1, · · · , Nk be the blocks of Π contained in it.
We must have

k
∑

i=1

f(Ni) ≤ f(
⋃

Ni) ≤ f(M)

(Using Lemma 12.2.2 and the fact that f(·) is increasing).
Hence, f̄(Π′) ≥ f̄(Π) as required.

E 12.3:
i. If {X1, X2, · · · , Xk} is a partition of X ⊆ S, then we have, by the
submodularity of g(·) and by the fact that g(∅) = 0,

k
∑

i=1

g(Xi) ≥ g(X).

Hence ΠX minimizes ḡ(·) over PX .
Hence, gt(X) = g(X).
ii. We will show that gt(·) ≤ ft(·).
Let Π minimize f̄(·) over PX . Then ft(X) = f̄(Π). Now ḡ(Π) ≤ f̄(Π)
since g(·) ≤ f(·). But gt(X) ≤ ḡ(Π). Hence, gt(X) ≤ ft(X).

E 12.4: We have,

(pf − q)t(e) = pk − q = 1 ∀e ∈ S.

Further, (pf − q)(·) is an increasing integral submodular function.
Hence, so must (pf − q)t(·) be (Exercise 12.2). By definition (pf −
q)t(∅) = 0 and

(pf−q)t(X∪e)−(pf−q)t(X) ≤ (pf−q)t(e)−(pf−q)t(∅) = 1 ∀e ∈ S−X.

We conclude that (pf − q)t(·) is a matroid rank function.

E 12.5:
i. We have the rank function rk(·) defined as follows:

rk(Xk) ≡ (r′ − (k − 1))t(Xk),
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where Xk is a collection of k-rank flats of M. We need to show that
rk(·) is the rank function of the matroidMk.

We first show that the function (r′− (k−1))(·) is integral, submod-
ular and increasing.
Let Xk, Yk ⊆ Sk, the collection of all k-rank flats ofM. Let X, Y ⊆ S
be the union of the k-rank flats ofM in Xk, Yk respectively. Let rM(·)
be the rank function of the matroidM. We then have

r′(Xk) + r′(Yk) ≡ rM(X) + rM(Y ) ≥ rM(X ∪ Y ) + rM(X ∩ Y ).

It is clear that union of all the k-rank flats of M which are members
of Xk ∪Yk is simply X ∪Y. On the other hand, the union of the k-rank
flats which are members of Xk ∩ Yk is contained in, but may not be
equal to, X ∩ Y. Hence, rM(X ∩ Y ) ≥ r′(Xk ∩ Yk).
Thus,

r′(Xk) + r′(Yk) ≥ r′(Xk ∪ Yk) + r′(Xk ∩ Yk).

This is clearly also true of (r′ − (k − 1))(·). This function is integral
and increasing since rM(·) is integral and increasing.
Further, if Xk is a k-rank flat, (r′ − (k − 1))t(Xk) = 1. Now we can
use Exercise 12.4 and infer that (r′ − (k − 1))t(·) is a matroid rank
function.

ii. Let AM be a flat ofM with rank p > k. Let Ak be the collection of
all k rank flats contained inAM. We will show that rk(Ak) = p−(k−1)
and that Ak is a flat inMk.

We need some preliminary notation and a lemma.
Let two k rank flats of a matroid M on S be said to be adjacent iff
their intersection has rank (k − 1). We say a collection of k rank flats
is connected iff between any two distinct k rank flats x1, xs in the
collection we can find a sequence x1, x2, · · · , xt−1, xs whose successive
terms are adjacent. We then have the following lemma.

Lemma 12.9.1 Let A be a p-rank flat in M with p ≥ k. Then the
collection Ak of all k rank flats contained in A is connected.

Proof : If p = k the result is trivially true. Let p > k.
Let x1, xs ∈ Ak. Let b1, bs be maximally independent sets contained in
x1, xs respectively, such that b1∩bs is a maximum. Suppose | b1∩bs |<
k − 1. Let e ∈ bs − b1 be such that b1 ∪ e has rank k + 1. Then there
exists an element e′ ∈ b1 − bs s.t. b2 ≡ b1 ∪ e − e′ has rank k. The
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closure x2 of b2 has rank k and is a member of Ak. Further,
r(x2 ∩ x1) = r(b2 ∩ b1) = k − 1 and | b2 ∩ bs |>| b1 ∩ bs | . Repeating
this process we can build a sequence x1, x2, · · · , xs of members of Ak

whose successive terms are adjacent.

2

We first show that

(r′ − (k − 1))t(Ak) = r′(Ak)− (k − 1) = p− k + 1.

Let A be any p-rank flat in M and let Π ≡ {Xk
1, · · · , Xk

s} be any
partition of Ak, the collection of k rank flats contained in A. We know
that Ak is connected. Hence, without loss of generality we may assume
there are pairs of adjacent elements (x11, x21), (x22, x31), (x32, x41), · · ·,
(x(s−1)2, xs1) s.t.

xi1 ∈ Xk
i, xi2 ∈

i
⋃

j=1

Xk
j ∀ i.

Now r′(Xk
i) ≡ rM(X i

M), where X i
M is the union of all the k-rank

flats which are members of Xk
i. Hence,

r′(Xk
1) + r′(Xk

2) = rM(X1
M) + rM(X2

M)

≥ rM(X1
M∪X

2
M) + rM(X1

M∩X
2
M)

≥ rM(X1
M∪X

2
M) + (k − 1)

(since rM(X1
M∩X

2
M) ≥ rM(x11 ∩ x21) ≥ (k − 1))

≥ r′(Xk
1 ∪Xk

2) + (k − 1).

More generally,

r′(Xk
1∪· · ·∪Xk

j)+r′(Xk
j+1) ≥ r′(Xk

1∪· · ·∪Xk
j+1)+(k−1) j = 1, · · · s−1

Hence,

r̄′(Π) ≥ r′(Ak) + (s− 1)(k − 1)

i.e., r̄′(Π)− (k − 1)s ≥ r′(Ak)− (k − 1),

i.e., (r′−(k−1))t(Ak) = r′(Ak)−(k−1) = p−k+1 as required.
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Next we need to show that Ak is a flat ofMk. Let x ∈ Sk−Ak. We
will show that

(r′ − (k − 1))t(Ak ∪ x) > r′(Ak)− (k − 1).

If Π is a partition of Ak that minimizes (r′ − (k − 1))(·) over par-
titions of Ak, there exists a partition Π′ of Ak ∪ x that minimizes
(r′ − (k − 1))(·) over partitions of Ak ∪ x and is such that each block
of Π is contained in a block of Π′ (Theorem 12.2.3). We know that the
single block partition {Ak} minimizes (r′ − (k − 1))(·) over partitions
of Ak.
So either {Ak ∪ x} or {Ak, {x}} minimizes (r′ − (k − 1))(·) over parti-
tions of Ak ∪ x. Now x (as a subset of S) contains elements of S − A
and A is a flat ofM. So

r′(Ak ∪ x)− (k − 1) = rM(A ∪ x)− (k − 1)

> rM(A)− (k − 1)

> r′(Ak)− (k − 1).

Further,

r′(Ak) + r′(x)− 2(k − 1) = (r′(Ak)− (k − 1)) + 1.

We thus see that

(r′ − (k − 1))t(Ak ∪ x) > (r′ − (k − 1))t(Ak) as required.

E 12.6: Let g(∅) = λ0. Then (g−λ0)(·) is a weight function which takes
the same value on all partitions of S. Hence, λ0 is the only critical value
of the PLP of g(·) and Π0,ΠS, the principal sequence of partitions. The
PLP contains all partitions of S.

E 12.7:

i. βf(Π) = β(f̄(Π)).

ii. ((f + g)− λ)(Π) = (f − λ)(Π) + g(S)

iii. Observe that (f − λ)(Π) = (f + k − (λ+ k))(Π).
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E 12.8: Let Π minimize (f − λ)(·) over partitions of S.
Now (f − λ)(Π) = f̄(Π)− λ | Π |.
Hence, f̄(Π′) − λ | Π′ |≥ f̄(Π) − λ | Π |, the equality holding only if
Π′ belongs to the PLP of f(·). Since | Π′ |=| Π |, the required result
follows.

E 12.9: We only prove the λ−gain rate case. Let Π1,Π2 have the
λ−gain property. Let N be a block of Π2. We have by Theorem 12.2.1,

(f − λ)(ΠN) + (f − λ)(Π1) ≥ (f − λ)(ΠN ∨Π1) + (f − λ)(ΠN ∧Π1).

By the λ−gain rate property of Π1,

(f − λ)(Π1) ≤ (f − λ)(ΠN ∨ Π1).

Hence, (f − λ)(ΠN ) ≥ (f − λ)(ΠN ∧ Π1).
Let {N1, · · · , Nk} be the partition of N within ΠN ∧Π1. We can replace
N by {N1, · · · , Nk} in Π2 and repeat the procedure for each block of
Π2. At the end we get

(f − λ)(Π1 ∧ Π2) ≤ (f − λ)(Π2)

Interchanging Π1,Π2 we get

(f − λ)(Π1 ∧Π2) ≤ (f − λ)(Π1).

E 12.10: Using the result in Exercise 12.9 it follows that since Π1,Π2

have the λ−gain rate property

(f − λ)(Π1) ≥ (f − λ)(Π1 ∧ Π2).

Hence, Π1 ∧ Π2 minimizes (f − λ). Similarly, since, Π1,Π2 have the
λ−cost rate property

(f − λ)(Π1) ≥ (f − λ)(Π1 ∨ Π2).

The result follows.

E 12.11: We will show that Π1 satisfies the strict λ2 cost rate property.
The result then follows from Theorem 12.3.5.
Let Π3 < Π1. We have

f̄(Π3)− λ1 | Π3 |≥ f̄(Π1)− λ1 | Π1 | .
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Hence,

f̄(Π3)− λ2 | Π3 | −(λ1 − λ2) | Π3 |≥ f̄(Π1)− λ2 | Π1 | −(λ1 − λ2)|Π1|.

But, | Π3 |>| Π1 | and λ1 > λ2.
Hence, f̄(Π3)− λ2 | Π3 |> f̄(Π1)− λ2 | Π1 |, which is the strict λ2 cost
rate condition for Π1.

E 12.12:
i.

∑

v∈X(wI)(v) counts weight of edges with both end points in X
twice while weights of remaining edges incident on vertices in X are
counted only once. Hence,

∑

v∈X(wI)(v)− (wE)(X) counts weight of
each edge incident on vertices in X once which is also what (wI)(X)
does.

ii. f ′(·) ≡ f/S1(·) is the weighted incidence function of the graph
G · S1, f

2(·) = (f ′
fus·Π(S1)

)(·) is the weighted incidence function of the

graph G′, obtained from G · S1, by fusing the vertices in each block
of Π(S1) into single vertices. In the process some edges with both
points in the same block of Π(S1) would become self loops. The weight
(wI)(Π(S1))−(wI)(Π(S1)−{N}) at the fused vertex {N} is the weight
of self loops incident at it. Let G” be the graph obtained from G ′ by
deleting self loops. Hence, f 3(·) is the weighted incidence function of
the graph G” on Π(S1). Since this graph has no self loops, we must
have
∑

v∈V (G”)(wI)(v) = 2∗(sum of weights of edges in E(G”)),
while f 3(Π(S1)) = (sum of weights of edges in E(G”)). The required
result follows.

E 12.13: Similar ideas may be found in [Narayanan+Roy+Patkar96].

i. follows from the fact that

(wREL)(X) = wRΓL(VL)− wRΓL(VL −X)

ii. The first part is obvious. We now show that f 3(·) is the weighted
left adjacency function of a bipartite graph that satisfies this condition.
f(·) is the weighted left adjacency function of B. Next f ′(·) ≡ f/S1(·)
is the weighted left adjacency function of the bipartite graph B1, that
is the subgraph of B on S1 ∪ Γ(S1). f

′
fus·Π(S1)

(·) is the weighted left

adjacency function of the bipartite graphB′ obtained fromB1 by fusing
the vertices in each block of Π(S1)) and replacing parallel edges by a
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single edge. There may now be vertices in VR which are adjacent only
to single left vertices of B′. The weight (wRΓ)(Π(S1))−(wRΓ)(Π(S1)−
{N}) at the fused vertex {N} is the sum of the weights of the vertices
in VR which are adjacent only to the left (fused) vertex {N}.
Let B” be obtained from B′ by deleting such vertices from VR. Hence,
f 3(·) is the weighted left adjacency function of B”.
Now,

∑

v∈Π(S1)
f 3(v) ≥ 2∗(sum of weights of right side vertices in B”),

since no right vertex in B” is adjacent to only one left vertex, while
f 3(Π(S1)) = sum of weights of right vertices in B”.
The result follows.

iii.
wRΓ∗

L(VL) =
∑

v∈VL

wRΓL(v)− (wREL)(VL)

wRΓ∗
L(VL − v1) =





∑

v∈(VL−v1)

wRΓL(v)− (wREL)(VL − v1)





wRΓ∗
L(VL)− wRΓ∗

L(VL − v1) = wRΓL(v1)− wRΓL(v1) = 0.

iv. Let us call

f(X) ≡
(

∑

v∈X

wRΓL(v)− (wREL)(X)

)

the dual weighted left adjacency function of the bipartite graph.
Then as in the case of wRΓL(·), f ′(·) ≡ f/S1(·) would turn out to be
the dual weighted left adjacency function of B1 but f 2(·) = f ′

fus·Π(S1)
(·)

is not associated naturally with a bipartite graph. However, f 3(·) is
the dual weighted left adjacency function of the bipartite graph B′

obtained from B1 by fusing the vertices in each block Ni of Π(S1) into
a single vertex (replacing parallel edges by a single edge). The bipartite
graphs B′ and B” have the same dual weighted left adjacency function.
Thus in this case,

β =
∑

v∈Π(S1)

f 3(v) =
∑

qiwR(ei)−
∑

vj∈Π(S1)

(wREL)(vj)

where the first summation is over all right vertices ei of B′ and qi is
the degree of ei in B′ and

f 3(Π(S1)) =
∑

qiwR(ei)−
∑

wR(ei)
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Thus,
β

β − f 3(Π(S1))
=

∑

qiwR(ei)−
∑

(wREL)(vj)
∑

wR(ei)−
∑

(wREL)(vj)

The numerator and denominator omit all right vertices which are ad-
jacent only to single left vertices of B′. Thus, the ratio

=

∑

q”iwR(ei)
∑

wR(ei)
,

where q”i is the degree of right vertex ei in B” (obtained by omitting
the above mentioned right vertices from B′). Now q”i ≤ q ≡ the
maximum degree of a right vertex in B. The result follows.

E 12.14:
i. This follows immediately from Theorem 12.5.1. But we give below
a direct proof.

If Π2 is a partition of E(G) with its blocks, the edge sets of 2-connected
components of G, then

r̄(Π2) = r(G) = r̄(ΠE).

Since r(∅) = 0 and r(·) is submodular, r̄(Π2) ≥ r(G).
Thus, Π2 minimizes r̄(·) and ΠE is the maximum minimizing partition
of r̄(·).
Now if a graph G′ is 2-connected and X is not null, r(X) + r(E(G ′)−
X) ≥ r(G ′) + 1. So if N is any block of Π2 and {N1, · · · , Nk} is a
partition of N we must have

r(N) < r(N1) + r(N −N1) ≤ r(N1) + · · ·+ r(Nk).

Hence, r̄(Π2) < r̄(Π′) whenever Π′ < Π2.
Hence, Π2 is the minimum minimizing partition of r̄(·).
Next r(X) =| V | - number of components of the subgraph on X
with vertex set V (G). Hence, r̄(Π) ≤ (| V | −1)(Π) ∀Π ∈ PE . So
(| V | −1)(Π) ≥ r̄(Π) ≥ r̄(Π2) = (| V | −1)(Π2).
Further, (| V | −1)(Π′) ≥ r̄(Π′) > r̄(Π2) if Π′ < Π2.
Hence, Π2 is the minimum minimizing partition of (| V | −1).

ii. Let Π1 be the maximum minimizing partition of (| V | −1)(·). Then
(| V | −1)(Π1)
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= (| V | −1)(Π2) = r̄(Π2) = r̄(Π1), since the blocks of Π2 are sep-
arators of G. It follows that the subgraph on any block M of Π1

must be connected (only then would r(M) = (| V | −1)(M)) On the
other hand if E1, · · · , Ek are the edge sets of the components of G and
Π1

′ ≡ {E1, · · · , Ek}, then Π1
′ ≥ Π1 and

(| V | −1)(Π1) = r̄(Π1) = r̄(Π2) = r̄(Π1
′) = (| V | −1)(Π1

′).

We conclude therefore, that Π1
′ = Π1.

E 12.15: We observe that there can be no partition finer than ΠS1

whose (f − λ)(·) value is lower than that of ΠS1 . The required result
then follows from Theorem 12.3.5.

E 12.16:
i. Let Π > Π0 minimize (f − λ)(·) and let N be a non-singleton block
of Π. By Lemma 12.2.2 we must have (f − λ)(Π(N)) ≥ (f−λ)(N), for
any partition Π(N) of N. The required condition now follows taking
Π(N) to be the partition of N into singletons. On the other hand,
if any non-singleton set T satisfies the given condition (f − λ)(ΠT ) ≤
(f − λ)(Π0). So there must exist a partition strictly coarser than Π0

that minimizes (f − λ)(·).
ii. If S is Π− atomic relative to f(·), the PLP of f(·) has only Π0,ΠS

as members. The only value of λ for which (f − λ)(Π0) = (f − λ)(ΠS)
is

λ =

∑

e∈S f(e)− f(S)

| S | −1
.

Hence, for this value of λ, (f − λ)(·) reaches a minimum at Π0,ΠS and,
since S is Π−atomic, at no other partition. This is equivalent to the
non-existence of a proper non-singleton subset satisfying the condition
(∗) for the above value of λ.

E 12.17: We use the ideas in Exercise 12.16. We need to show that if
N ⊂ S and | N |> 1

| N | −r(N)

| N | −1
<
| E | −(n− 1)

| E | −1
.

We have, | E |= n(n−1)
2

. If a violation is to occur for a given value of
r(N), | N | must be as large as possible. We may, therefore, take N to
be the set of edges of the subgraphs on some k nodes, for 2 < k < n.
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This would be the complete graph on k nodes. The above inequality
is equivalent in this case to

k(k − 1)− 2(k − 1)

n(n− 1)− 2(n− 1)
<
k(k − 1)− 2

n(n− 1)− 2

which is easily seen to be true.

E 12.18:
i. For each proper non-singleton subset N we need to show that

| N | −r(N)

| N | −1
<
| E | −r(E)

| E | −1

<
n− (n− 1)

n− 1
=

1

n− 1
,

where n is the number of nodes in the graph.
Now the subgraph on N has to be a forest. So r(N) =| N | . Hence,
LHS is zero and the inequality is strict.

ii. In this case it is easily seen that for each partition of E(G).

r̄(Π) =| E(G) | .

Thus, E(G) is Π−molecular with critical value 0.

iii. Suppose G on E ≡ E(G) is disconnected and has components
N1, · · · , Nk. Since r(E) =

∑

r(Ni), it is easily verified that

| Ni | −r(Ni)

| Ni | −1
≥ | E | −r(E)

| E | −1

for at least one of the Ni.
But this contradicts the fact that G is Π−atomic.

iv. We may assume by the previous part that G is connected. Further,
it may be directly verified that the result is true if r(E) = 1. The critical

value λG, for r(·) ≡ rank function of G, is |E|−r(E)
|E|−1

. Let E ′ ≡ E(G′),
r′ ≡ rank function of G′. When r(E) ≥ 2, we will show that

| E ′ | −r′(E ′)

| E ′ | −1
>
| E | −r(E)

| E | −1
.

Now LHS =
| E |

| E | +r(E)
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We would be done if we could show that

| E |
| E | +r(E)

>
| E | −r(E)

| E | −1

i.e., | E |< (r(E))2, equivalently,
n

2
< (n− 1).

The last is clearly true for n > 2, i.e., for r(E) ≥ 2.

Next let N ′ 6= E ′ contain k 6= 0 edges incident on the node n′ and
let N be the subset obtained by deleting such edges from N ′. We will
show that

| E ′ | −r′(E ′)

| E ′ | −1
>
| N ′ | −r(N ′)

| N ′ | −1
.

We have

| N ′ | −r(N ′)

| N ′ | −1
≤ | N | −r(N) + k − 1

| N | −1 + k
, · · · (!)

We consider two cases

i. (E ⊃ N). In this case

RHS of (!) <
| E | −r(E) + n− 1

| E | −1 + n
,

ii. (E = N). In this case k < n. Once again

RHS of (!) <
| E | −r(E) + n− 1

| E | −1 + n
.

Since
|E ′| − r′(E ′)

|E ′| − 1
=
| E | −r(E) + n− 1

| E | −1 + n
,

the result is proved.

E 12.19: We first show that

w(X)

r(X)
<
w(E)

r(E)
, ∅ ⊂ X ⊂ E, (∗)
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is equivalent to

w(E(Y ))

| Y | −1
<

w(E)

| V | −1
, Y ⊂ V = V (G), | Y |> 1, (∗∗)

where E(Y ) is the set of edges with both endpoints in Y . We note
that the graph G must be connected since it is atomic (if X1, · · · , Xk

are the components we must have

w(Xi)

r(Xi)
≥ w(E)

r(E)
, for some i).

Hence, r(E) =| V | −1. Next w(E(Y ))
|Y |−1

≤ w(E(Y ))
r(E(Y ))

. So if (∗) holds so will

(∗∗) hold.

Next let w(X)
r(X)
≥ w(E)

r(E)
for some X, ∅ ⊂ X ⊂ E. Then if V1 is the vertex

set of the subgraph G ′ on X

w(X)

r(X)
≤ w(E(V1))

r(E(V1))

since X ⊆ E(V1) and r(X) = r(E(V1)). If V11, · · · , V1k are the vertex
sets of the components of G ′ we must have

w(E(V1i))

| V1i | −1
=
w(E(V1i))

r(E(V1i))
≥ w(E(V1))

r(E(V1))
for some i.

G has no self loops since it is atomic and has non-zero rank. Hence,
w(E(Y )) > 0 only if | Y |> 1. We thus see that for some i, | V1i |> 1
and

w(E(V1i))

| V1i | −1
≥ w(E)

| V | −1
,

thus violating (∗∗). Thus (∗∗) implies (∗).
Therefore, (∗) and (∗∗) are equivalent. Now,

w(E(Y )) =
∑

v∈Y

(wI)(v)− (wI)(Y ).

Hence, (∗∗) is equivalent to

∑

v∈Y (wI)(v)− (wI)(Y )

| Y | −1
<

∑

v∈V (wI)(v)− (wI)(V )

| V | −1
, Y ⊂ V, | Y |> 1.
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By Exercise 12.16 this implies that V is Π−atomic relative to (wI)(·).
Further, the critical value of the PLP equals

∑

v∈V (wI)(v)− (wI)(V )

| V | −1
,

which equals w(E)
r(E)

. The latter is the critical value of the PP of (r(·), w(·)).
E 12.20:
i. This is simply a restatement of Exercise 12.19.

ii. Let | VR |= m and let Π ≡ {N1, · · · , Nk} be a partition of VL. We
then have

(wΓL)(Π) =
∑

(wΓL)(Ni) = k | VR | .

Hence, ((wΓL)− | VR |)(Π) = 0.

iii. Let (wΓ1
L)(·), (wΓ2

L)(·), (wΓ3
L)(·) be the respective left weighted ad-

jacency functions of B1, B2, B3. Clearly (wΓ3
L)(·) = ((wΓ1

L)+(wΓ2
L))(·).

Let λ1, λ2 be the critical values for (wΓ1
L)(·), (wΓ2

L)(·). Then,

((wΓ3
L)− (λ1 + λ2))(Π) = ((wΓ1

L)− λ1)(Π) + ((wΓ2
L)− λ2)(Π).

Thus, a partition minimizes ((wΓ3
L)− (λ1 + λ2)(·) if it minimizes both

((wΓ1
L)− λ1)(·) and ((wΓ2

L)− λ2)(·).Also it is clear that both ((wΓ1
L)− λ1)(·)

and
((wΓ2

L)− λ2)(·) reach their minimum at Π0,ΠVL
and never simultane-

ously at any other partition.. Hence, Π0,ΠVL
are the only minimizing

partitions for
((wΓ3

L)− (λ1 + λ2))(·).
E 12.21: Consider STEP 3 of Algorithm Build Submod for PLP.

f̂j(X) ≡
∑

X∩Si 6=∅

f̂j−1(X ∩ Si) + fj(
⋃

X∩Si 6=∅

{Si}).

Define f ′
j(X) ≡ fj(

⋃

X∩Si 6=∅{Si}).
It is easily verified that f ′

j(·) is a polymatroid rank function if fj(·)
is one. By induction we may assume f̂j−1(·) is a polymatroid rank

function (f̂o(·) may be taken to be the polymatroid rank function fo(·)).
Now f̂j(·) is the sum of two polymatroid rank functions and therefore,
is also one.
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E 12.22: For all the bipartite graphs described below (wΓL)(X), where
X is a subset of left vertices, denotes the number of right vertices
adjacent to X. We first build the function fo(·), f1(·), f2(·). We will
take these to be left adjacency functions. Let B01 ≡ (VL01, VR01, E01).
Let

VL01 ≡ {1, 2, 3}, VR01 ≡ {101, 201, · · · , 501}
Connect each vertex of VL01 to each vertex of VR01. Use of second
part of Exercise 12.20 reveals that {1, 2, 3} is Π−molecular relative to
(wΓL01)(·) with a critical value =| VR01 |= 5.
We can similarly build B02, B03, B04 with VLO2 ≡ {4, 5}, VRO2 ≡ {102, · · · , 502}
etc.

f0(·) ≡ (wΓL0)(·) ≡ (wΓL01)(·)⊕ (wΓL02)(·)⊕ (wΓL03)(·)⊕ (wΓL04)(·).

Similarly,
B11 ≡ (VL11, VR11, E11)

VL11 ≡ {a{1, 2, 3}, a{4, 5}} , VR11 ≡ {111, 211, 311, 411}.
Connect each vertex of VL11 to each vertex of VR11.This gives Π−molecularity
to VL11 with critical value 4.
We similarly build B12. f1(·) ≡ (wΓL1)(·) ≡ (wΓL11)(·)⊕ (wΓL12)(·).

B21 ≡ (VL21, VR21, E21)

VL21 ≡
{

b{1, 2, 3, 4, 5}, b{6, 7, 8, 9, 10}
}

, VR21 ≡ {121, 221, 321}.
Each vertex of VL21 is connected to each vertex of VR21. VL21 is Π−molecular
relative to (wΓL21)(·) with critical value 3.
We build the overall bipartite graph B̂ as follows.
Firstly, B̂o ≡ B01 ⊕ B02 ⊕ B03 ⊕B04.
B̂1 is built as follows. Split a{1, 2, 3} into three copies of itself a1, a2, a3

(If a{1, 2, 3} is connected to vR by e then a1, a2, a3 would be connected
to vR by e1, e2, e3). Fuse a1 with 1 of VL01, a2 with 2 and a3 with 3. Sim-
ilarly, a{4, 5} is split into copies a4, a5 which are fused respectively with
4, 5 of VL02. Let VL12 ≡ {a{6, 7}, a{8, 9, 10}} ; VR12 ≡ {112, 212, 312, 412}.
a{6, 7} is split into copies a6, a7 which are attached to vertices 6, 7 of
B03. Vertex a{8, 9, 10} is split into copies a8, a9, a10 which are attached
to vertices 8, 9, 10 of B04.
The result is B̂1. Let the left vertex set of B̂1 be called {1, · · · , 10}.
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B̂ ≡ B̂2 is now built by making copies b1, b2, b3, b4, b5 of b{1, 2, 3, 4, 5}
and fusing these with vertices 1, 2, · · · , 5, respectively of B̂1 and making
copies b6, b7, b8, b9, b10 of b{6, 7, 8, 9, 10} and fusing these with vertices
6, 7, 8, 9, 10 respectively of B̂1. The result is B̂. The left adjacency func-
tion of this submodular function has the desired principal sequence and
critical values.
We can reduce the number of edges in the above graph by making VRij

into singletons of appropriate weight and defining (wΓLij)(X) ≡ sum
of the weights of right side vertices adjacent to X.

12.10 Solutions of Problems

P 12.1: i. This is a direct consequence of Theorem 12.2.2.

ii. We need the following lemma.

Lemma 12.10.1 Let f(·), g(·) be submodular functions on subsets of
S. Let hλ(·) ≡ (f + λg)(·). Let N ⊆ S. Let Π be any partition of S.
Then

h̄λ2
(Π) + h̄λ1

(ΠN) ≥ h̄λ2
(Π ∨ ΠN) + h̄λ1

(Π ∧ ΠN)

+(λ2 − λ1)(ḡ(Π ∧ ΠN)− ḡ(ΠN)).

Proof : We have, by the definition of h̄λi
(·),

h̄λ2
(Π ∨ΠN) + h̄λ1

(Π ∧ ΠN) = h̄λ2
(Π ∨ ΠN) + h̄λ2

(Π ∧ΠN )

−(λ2 − λ1)(ḡ(Π ∧ ΠN))

By Theorem 12.2.1, the RHS is

≤ h̄λ2
(Π) + h̄λ2

(ΠN)− (λ2 − λ1)(ḡ(Π ∧ΠN))

≤ h̄λ2
(Π) + h̄λ1

(ΠN)− (λ2 − λ1)(ḡ(Π ∧ΠN)− ḡ(ΠN ))

The required result now follows immediately.

2

Let N be a block of Π1. By the definition of Π2 we have

h̄λ2
(Π2 ∨ΠN ) ≥ h̄λ2

(Π2).
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Hence, by Lemma 12.10.1 we have

h̄λ1
(Π2 ∧ ΠN) ≤ h̄λ1

(ΠN )− (λ2 − λ1)(ḡ(Π2 ∧ΠN)− ḡ(ΠN )).

Now, since g(·) is submodular and g(∅) = 0, ḡ(Π2∧ΠN ) ≥ ḡ(ΠN). Since
λ2 > λ1, it follows that h̄λ1

(Π2∧ΠN) < h̄λ1
(ΠN) unless ḡ(Π2∧ΠN ) =

ḡ(ΠN ). The former eventuality would allow us to construct a partition
with lower h̄λ1

(·) value than Π1 has, which would be a contradiction.
Hence,

ḡ(Π2 ∧ΠN ) = ḡ(ΠN)

and h̄λ1
(Π2 ∧ΠN ) = h̄λ1

(ΠN).

By repeating this argument for each block of Π1 we find that

h̄λ1
(Π2 ∧Π1) = h̄λ1

(Π1).

On the other hand, starting with

h̄λ1
(Π2 ∧ ΠN) ≥ h̄λ1

(ΠN )

we get ḡ(Π2 ∧ ΠN) = ḡ(ΠN)

and h̄λ2
(Π2 ∨ ΠN) ≤ h̄λ2

(Π)− (λ2 − λ1)(ḡ(Π ∧ΠN )− ḡ(ΠN))

≤ h̄λ2
(Π2).

Hence, Π2 ∨ ΠN minimizes h̄λ2
(·). Repeating this argument for each

block of Π1, we find that Π2 ∨ Π1 minimizes h̄λ2
(·).

iii. In this case, using the inequality of Lemma 12.10.1, we would get,
unless Π2 ∧ ΠN = ΠN that

h̄λ1
(Π2 ∧ΠN ) < h̄λ1

(ΠN).

This would allow us to build a partition of lower h̄λ1
(·) value than Π1.

To avoid this contradiction we must have Π2 ∧ ΠN = ΠN . Thus N is
contained in a block of Π2. Hence, Π1 ≤ Π2.
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Chapter 13

Algorithms for the PLP of a
Submodular Function

13.1 Introduction

In this chapter we first present algorithms for the PLP of a general
submodular function and later specialize these to important instances
of functions based on bipartite graphs. The general algorithms of this
chapter are parallel to the algorithms for principal partition in Section
10.6.

The main algorithms here are

i. Algorithm Min(f̄ , S) which finds the minimum partition mini-
mizing f̄(·) (the analogous algorithm in the case of PP is Convolve(f1, f2)),

ii. Algorithm P-sequence of partitions which is a direct translation
of algorithm P-sequence for PP,

iii. Algorithm DTL(f − λ) which is analogous to Algorithm Bλf,g
.

At the heart of the algorithms in the case of both PP and PLP is the
problem of minimizing a submodular function. As mentioned before
this problem has been solved in the general case ([],[]) but the solution
is not useful for large sized problems (size of set greater than say 100).
However, for the instances which are of interest to us in this book,
efficient algorithms are indeed available.

691
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We next specialize the general PLP algorithms to the important
cases of weighted adjacency and weighted exclusivity functions associ-
ated with a bipartite graph. In both these cases the minimization of
the basic submodular function reduces to appropriate flow problems
which can be solved extremely efficiently. After this we consider some
useful techniques for improving the efficiency of our algorithms in those
cases where the maximum value of the (integral) submodular function
is less than the size of the underlying set. Due to technical reasons we
postpone consideration of algorithms for the PLP of a matroid rank
function, which exploit the matroid character of the function, to the
next chapter.

Finally we consider the relation between PP and PLP associated
with a submodular function. Although, in a strict sense, it can be
argued that the two entities are unrelated, we show that the PLP
of certain functions associated with the bipartite graph are strongly
related to the PP of certain other functions across the bipartite graph.
Using this relation we show how to build fast algorithms for the PP of
the rank function of a graph.

The reader might like to review the notation used in Section 12.6
(e.g. ffus·Π(·),
Π′

exp.Π etc.).

13.2 Minimizing the Partition Associate

of a Submodular function

We begin by considering the problem of minimizing the partition as-
sociate f̄(·) of a submodular function f(·) on subsets of S. We know
that subtracting a weight function w(·) from f(·) does not alter the
minimizing partitions (since w̄(Π) remains unaltered over all partitions
of S). If w(e) ≡ f(e) ∀e ∈ S, the submodular function (f −w)(·) takes
zero value on singletons. We will call such a function zero singleton
submodular (z.s.s). The minimization of the partition associate of
such functions reduces to the detection of ‘fusion sets’ which we define
below:

Definition 13.2.1 Let f(·) be a z.s.s. function on the subsets of S. A
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set T ⊆ S is a fusion set of f(·) iff

i. f(T ) < 0.

ii. f(T ) ≤ f(R), R ⊆ T

iii. All subsets of T on which f(·) takes negative value have a com-
mon element.

A fusion set is strong if f(T ) < f(R), R ⊂ T.

The next theorem shows that fusion sets can be ‘fused’ in the process
of finding minimizing partitions for f̄(·).
Theorem 13.2.1 Let f(·) be a z.s.s. function on subsets of S.

i. Let N be a fusion set of f(·). Then there exists a partition Π of
S such that f̄(·) reaches a minimum on it and N is contained in
one of the blocks of Π, i.e. Π ≥ ΠN .

ii. If N is a strong fusion set of f(·) then every partition Π on which
f̄(·) reaches a minimum contains N in one of its blocks.

Proof :
i. Let f̄(·) reach a minimum on partition Π′ of S. Since N is a fusion
set, whenever Π(N) is a partition of N, f̄(Π(N)) ≥ f(N) since all but
atmost one block N ′ of Π(N) would have nonnegative f(·) value and
f(N ′) ≥ f(N).
Consider the partition Π′ ∧ ΠN . Now N is a disjoint union of some of
the blocks of Π′ ∧ ΠN . By the above argument the sum of the values
of f(·) on these blocks is greater or equal to f(N). Further both ΠN

and Π′∧ΠN have S−N partitioned into singletons. We conclude that

f̄(ΠN ) ≤ f̄(Π′ ∧ΠN ).

Now by Theorem 12.2.1 we have

f̄(Π′) + f̄(ΠN ) ≥ f̄(Π′ ∨ΠN ) + f̄(Π′ ∧ ΠN)

Hence, f̄(Π′) ≥ f̄(Π′ ∨ ΠN).
Clearly Π′ ∨ ΠN minimizes f̄(·) and Π′ ∨ΠN ≥ ΠN .
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ii. If N is a strong fusion set, unless Π′ ∧ ΠN is equal to ΠN , we
must have f̄(ΠN) < f̄(Π′ ∧ ΠN) and therefore, f̄(Π′) > f̄(Π′ ∨ ΠN), a
contradiction. We conclude that ΠN = Π′∧ΠN , i.e., N is contained in
a block of Π′.

2

The following corollary is an immediate consequence. (See Section
12.6 for definition of f̄fus·Π(·) and Πexp·ΠN

).

Corollary 13.2.1 Let f(·) be a z.s.s. function defined on subsets of
S. Let N be a fusion set of f(·). Let f̄fus·ΠN

(·) reach a minimum at Π.
Then f̄(·) reaches a minimum at Πexp·ΠN

.

We will use the technique, of repeatedly fusing fusion sets (converting
the resulting function into z.s.s. functions) until there are no more
fusion sets, to minimize the partition associate of the given submodular
function. By definition, fusion sets are nonsingletons. So fusing them
will reduce the size of the problem.

13.2.1 Find (Strong) Fusion Set

This pair of subroutines, described below, depends on finding the min-
imum of a submodular function f(·) over supersets of a given subset
T of S. If we have a polynomial algorithm for minimizing an arbitrary
submodular function then it can be adapted to this problem as fol-
lows:
Consider the submodular function ffus·ΠT

(·) defined over subsets of
ΠT . Let f1(·) ≡ ffus·ΠT

(·) + wT (·), where wT is the weight function on
ΠT which takes the value (lower bound on minimum value of f(·)−1−
f(T )) on {T} and zero on all other singletons. Clearly f1(·) will reach
a minimum only over subsets of ΠT which have {T} as a member. If
f1(·) reaches a minimum on K, a subset of blocks of ΠT , then f(·)
reaches a minimum over subsets containing T, on the subset K ′ of S
which is the union of blocks in K.

The Subroutines Find Fusion Set and Find Strong Fusion Set differ
very little from each other. They are therefore presented below in a
combined form with the statements of the latter given within brackets
only where they differ from the corresponding statements of the former
subroutine.
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Subroutine Find Fusion Set (f, S)
(Subroutine Find Strong Fusion Set(f, S))
INPUT A z.s.s. function f(·) on subsets of S.

OUTPUTA fusion set of f(·)
(A strong fusion set of f(·))
or a declaration that none exist.

Initialize T ← ∅ or T ←[ a subset of S known not to contain a fusion set ].

STEP 1 If
S − T = ∅, then S contains no fusion set.
(then S contains no strong fusion set).
Declare this and STOP.
Else
let e ∈ S − T . Minimize f(·) on subsets of T ∪ e that contain e.
Let the minimum be reached on Te.
(Let Te be the unique minimal set on which f(·) reaches a minimum).

STEP 2 If f(Te) ≥ 0, then T ∪ e contains no fusion set.
(If f(Te) ≥ 0, then T ∪ e contains no strong fusion set).
T ← T ∪ e. GOTO STEP 1.

STEP 3 If f(Te) < 0, then Te is a fusion set .
(If f(Te) < 0, then Te is a strong fusion set).

STOP

Observe that the two subroutines Find Fusion Set and Find Strong
Fusion Set differ from each other only in STEP 1 where for the latter
case we have to find a minimal minimizing set.

Justification
If T contains no fusion set of f(·) and e 6∈ T, then every set K, con-
tained in T ∪e and such that f(K) < 0, necessarily has e as a member.
So if f(Te) < 0, since f(·) reaches a minimum, among subsets of T ∪ e
containing e, on Te, it follows that Te is a fusion set. Suppose in addi-
tion Te is a minimal such set. Then every proper subset of Te will have
an f(·) value greater than f(Te) and Te would, therefore, be a strong
fusion set.

2
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Complexity
Subroutine Find (Strong) Fusion Set clearly requires O(| S |) submod-
ular function minimizations.

13.2.2 Min(f̄ , S)

We next present an algorithm for minimizing the partition associate
f̄(·) of a submodular function f(·). The algorithm outputs the unique
minimal partition which minimizes f̄(·).

ALGORITHM 13.1 Algorithm Min(f̄ , S)
INPUT A z.s.s. function f(·) over subsets of S.

OUTPUTA minimal partition that minimizes f̄(·) over partitions of S.

Initialize Π← Π0, fTemp(·)← f(·), T ← ∅.
COMMENT: T is the set at which Subroutine Find Strong Fusion
set is initialized.

STEP 1 Find Strong Fusion Set (fTemp,Π) initializing at T .
If none exist, declare that f̄(·) reaches a minimum at Π and Π is
the minimal such partition and STOP.

STEP 2 Let N be a strong fusion set of fTemp(·). (N is a set of blocks of Π).
Let N ′ ≡ ⋃Ni∈N Ni.

Π← Π ∨ ΠN ′ ,

fTemp(·)← (ffus·Π − w)(·),
where w(·) is a weight function on Π with
w(Ni) = ffus·Π(Ni) ∀Ni ∈ Π,

T ← (T −N) ∪ {N},

GOTO STEP 1.

STOP

Justification
This algorithm is justified directly by Theorem 13.2.1 and Corollary
13.2.1. We need to explain the setting of T to T −N ∪{N} in STEP 2.
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For simplicity, suppose N is the first strong fusion set so far detected. T
contains no fusion set but T ∪e contains N . fTemp(·) = (ffus·ΠN

−w)(·)
where w(·) is a weight function on ΠN s.t. w(e) = f(e) = 0, e 6∈ N
and w({N}) = f(N). Consider the set (T − N) ∪ {N} in ΠN . If
this contains a fusion set K of fTemp(·), then N must be a member
of that fusion set, since T − N contains no fusion set. Further K
would have a negative fTemp(·) value. But by the definition of N ,
f(N) ≤ f((K − {N}) ∪N) = ffus·ΠN

(K). Hence

fTemp(K) = ffus·ΠN
(K)−w(K) = ffus·ΠN

(K)−w(N) = ffus·ΠN
(K)−f(N) ≥ 0.

This contradiction shows that K cannot be a fusion set of fTemp(·).
2

Maximal min (f̄ , S)

The problem of determining the unique maximal partition that min-
imizes (f − λ)(·) needs a slight modification of the notion of a fusion
set

Definition 13.2.2 Let f(·) be a z.s.s. function on the subsets of S. A
set T ⊆ S is a quasi-fusion set of f(·) iff

i. T is a nonsingleton set,

ii. f(T ) ≤ 0,

iii. f(T ) ≤ f(R), R ⊆ T,

iv. all subsets of T on which f(·) takes negative value have a common
element.

As in the case of fusion sets (Theorem 13.2.1), and using the same
ideas, we can prove that if N is a quasi-fusion set then there exists
a partition Π of S such that f̄(·) reaches a minimum on it and N is
contained in one of its blocks (i.e. Π ≥ ΠN ).

Let Algorithm Maximal min(f̄ , S) denote the algorithm that,
given a z.s.s. function f(·) over subsets of S, finds a maximal partition
that minimizes f̄(·) over partitions of S. This algorithm can be obtained
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from Algorithm Min(f̄ , S) essentially by replacing ‘strong fusion set’
by ‘quasi- fusion set’. In particular STEP 1 of the new algorithm would
read:
‘Find Quasi Fusion Set(fTemp,Π). If none exist f̄(·) reaches a minimum
at Π and Π is the maximal such partition. STOP’.
However in STEP 2, we should update T to T − N instead of to
(T −N) ∪ {N}.
The subroutine Find Quasi Fusion Set(f, S) is given below.

Subroutine Find Quasi Fusion Set(f, S)
INPUT A z.s.s. function f(·) on subsets of S.

OUTPUTA quasi-fusion set of f(·)
or a declaration that none exist.

Initialize T ← ∅ or T ← (a subset of S known not to contain a quasi-fusion
set).

STEP 1 If
S − T = ∅, then S contains no quasi-fusion set.
Declare this and STOP.
Else
let e ∈ S − T . Minimize f(·) on nonsingleton subsets of T ∪ e that
contain e. Let the minimum be reached on Te.

STEP 2 If f(Te) > 0, then T ∪ e contains no quasi-fusion set.
T ← T ∪ e. GOTO STEP 1.

STEP 3 If f(Te) ≤ 0, then Te is a quasi-fusion set.

STOP
Complexity of Algorithm Min(f̄ , S)
We show later in Section 13.5 that the complexity of AlgorithmMin(f̄ , S)
is the same as that of Subroutine Find Strong Fusion Set. The essen-
tial reason for this is that after the detection of a strong fusion set
and the construction of the ‘fused’ function, one does not have to start
again from the null set. By similar arguments one can show that the
complexity of Algorithm Maximal min(f̄ , S) is also the same.
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13.3 Construction of the P-sequence of

Partitions

Our next algorithm constructs the P-sequence of partitions of a sub-
modular function f(·). As mentioned before this is analogous to Algo-
rithm 10.1 for the principal partition.

Informally, Algorithm 13.2 proceeds as follows. We start with the
partition interval (Π0,ΠS). If for every partition Π between the end
partitions, the value of (f − λ)(Π), does not exceed its value at the
end partitions, then we are done - the principal sequence is (Π0,ΠS)

and the critical value is f(Π0)−f(ΠS)
|Π0|−|ΠS |

. Otherwise we find the minimal
partition, say Π1, that minimizes the above expression. Now we work
with the intervals (Π0,Π1), (Π1,ΠS) and look for minimizing partitions
within the interval in question. In each case we use a value of λ for
which (f − λ)(·), reaches the same value at both ends of the interval.
When we are unable to subdivide the intervals any further we get a
sequence of partitions and a sequence of values which, the Uniqueness
Theorem (Theorem 12.3.2) assures us, are respectively the principal
sequence and the sequence of critical values of f(·).

This algorithm makes use of the subroutine Subdividef(Π1,Π2),
which subroutine is analogous to Subdividef,g(A,B) in the case of the
principal partition.

Subdividef(Π1,Π2)
INPUT A submodular function f(·) on subsets of S and a pair of partitions

Π1,Π2 s.t. Π1 ≤ Π2 ≤ ΠS.

OUTPUTThe unique minimal minimizing partition Πmin for (f − λ)(Π) over

the interval Π1 ≤ Π ≤ Π2, where λ = f̄(Π1)−f̄(Π2)

|Π1|−|Π2|
.
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STEP 1 λ← f̄(Π1)−f̄(Π2)

|Π1|−|Π2|
.

Let f ′(·) ≡ ffus·Π1(·).
Let (Π2)fus·Π1 have N1, · · · , Nk as blocks.
Let f ′

j(·) ≡ f ′/Nj(·), j = 1, · · · , k.
For j = 1, · · · , k, do

Min(f̄ ′
j , Nj),

Let Πj be the unique minimal minimizing partition output.
Let Π ≡ ⊎k

j=1 Πj . Output Πexp·Π1 as the partition Πmin.

STOP
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ALGORITHM 13.2 Algorithm P-sequence of Partitions
INPUT A submodular function f(·) on subsets of S.

OUTPUTThe principal sequence of partitions of f(·).

Initialize Current Partition Sequence← (Π0,ΠS)

λ1 ← f̄(Π0)−f̄(ΠS)
|Π0|−|ΠS |

Current Lambda Sequence← (λ1), j ← 0,Π0 is unmarked.

STEP 1 Let Current Partition Sequence be (Πj
1, · · · ,Πj

rj
) and let Current

Lambda Sequence be (λj
1, · · · , λj

rj−1).

If Πj
m, 1 ≤ m ≤ rj − 1, is unmarked
then Subdividef(Π

j
m,Π

j
m+1).

Else GOTO STEP 3.

STEP 2 Let (Πj
1, · · · ,Πj

rj
) = (Π1, · · · ,Πk)

and let (λj
1, · · · , λj

rj−1) = (λ1, · · · , λk−1)

Let Π be the min partition output by Subdividef (Π
j
m,Π

j
m+1)

If Π = Πj
m then

j ← j + 1 , rj ← k

(Πj
1, · · · ,Πj

rj
) ← (Π1, · · · ,Πk)

(λj
1, · · · , λj

rj−1) ← (λ1, · · · , λk−1)

Mark Πj
m & GOTO STEP 1
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Else ( Π 6= Πj
m)

j ← j + 1 , rj ← k + 1

Πj
i ← Πi , i ≤ m

Πj
m+1 ← Π

Πj
i+1 ← Πi , m < i < rj

λj
i ← λi , i < m

λj
m ← λ′ =

(

f̄(Πj
m)− f̄(Π)

| Πj
m | − | Π |

)

λj
m+1 ← λ” =

(

f̄(Π)− f̄(Πj
m+2)

| Π | − | Πj
m+2 |

)

λj
i+1 ← λi , m < i < rj − 1

The Current Partition Sequence

(Πj
1, · · · ,Πj

m,Π
j
m+1,Π

j
m+2, · · · ,Πj

rj
)← (Π1, · · · ,Πm,Π,Πm+1, · · · ,Πk)

The Current Lambda Sequence

(λj
1, · · · , λj

m, λ
j
m+1, · · · , λj

rj−1)← (λ1, · · · , λ′, λ”, · · · , λk−1)

GOTO STEP 1.

STEP 3 Output Current Partition Sequence as the principal sequence of
partitions and Current Lambda Sequence as the Critical Value
Sequence.

STOP

Justification of Algorithm P-sequence of partitions is directly by use
of Uniqueness Theorem (PLP) (Theorem 12.3.2).

2

Complexity
Clearly Algorithm P-sequence of partitions calls AlgorithmMin(f − λ,Πλ)
atmost | S | times and thus requires O(| S |2) submodular function
minimizations.

Exercise 13.1
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Show that Subdivide (Π1,Π2) requires O(| Π1 | α(| Π1 | − | Π2 | +1))
elementary steps, where submodular function minimization over a set
of size k is O(α(k)) elementary steps. Assume that α(k) is superlinear.

Speeding up Algorithm Principal Sequence of Partitions through
Balanced Bisection

The following technique used in [Imai83] in connection with the con-
struction of principal partition of the rank function of a graph can
also be used to speed up the construction of the principal sequence
of partitions [Patkar+Narayanan92b]. We will call this the method of
balanced bisection.

Suppose we can find beforehand a set of numbers within which all
the critical values are known to lie. Let k be the size of the set.
We can sort the values of this set as λ1 < · · · < λk. Our aim is to
pick a λ for which | Πλ | and | Πλ | lie on either side of |S|

2
(or are

equal to |S|
2

). We do this by binary search among λ1, · · · , λk and it
takes log k calls to Subdivide, using λj in place of λ of the subroutine,
i.e., O(nα(n) log k) elementary steps, where α(n) is the number steps
needed to solve a submodular minimization problem over a set of size n

(see Exercise 13.1). Suppose we have found λ1,Πλ
1

and Πλ1 . Now we

search in the interval [λ1, λ
1], [λ1, λk] for λ2, λ3 s.t. | Πλ2 |, | Πλ

2

| are

on either sides of |S|
4

and | Πλ3 |, | Πλ
3

| are on either side of 3|S|
4
. Using

Exercise 13.1 the complexity at this level is O((nα(n
2
) + n

2
α(n

2
)) log k)

where n =| S | .
Repeating this procedure we see that the overall complexity is

O((nα(n) + 2nα(
n

2
) + 4nα(

n

4
) + · · ·) log k).

If for some constant p, pα(n) > n2 ∀n, then the above reduces to
O(nα(n)(logn)(log k)), where n =| S | and k = number of possible
values (known
before hand) that the critical values can take.

Exercise 13.2
Let f(·) be an integral submodular function on subsets of S.
Let b ≤ f(X) ≤ a ∀X ⊆ S. Show that every critical value has the
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form p
q

where p, q are integers with −n(a − b) ≤ p ≤ n(a − b) and

0 < q ≤ n =| S | . Hence, show that all the critical values are contained
in a set with n(2n(a− b) + 1) elements.

13.4 Construction of the DTL

By building the P-sequence of partitions, we would have determined
the unique minimal and maximal partitions which minimize (f − λ)(·)
where f(·) is submodular and λ an arbitrary real number. We now
consider the problem of determining all such partitions.
Let Π1,Π2 be the minimal and maximal partitions minimizing (f − λ)(·).
It is clear that Π is in the DTL of (f − λ)(·) iff Πfus·Π1 is in the DTL
of (ffus·Π1 − λ)(·). The DTL of the latter function does not change
by subtracting a weight function (on Π1). We may assume the weight
function to be such that the subtraction results in a z.s.s. function.
Let f0(·) ≡ (ffus·Π1 − λ)(·)−w(·) where the weight function is defined
by w(e) ≡ ffus·Π1(e) − λ ∀e ∈ Π1. The function f0(·) is z.s.s. on Π1

and f̄0(·) takes minimum value zero on (Π1)fus.P i1. Hence, f0(·) cannot
take negative value on any subset of Π1. For, if it does so on N ⊆ Π1,
then the partition of Π1 which has N as a block and the others as sin-
gletons would have a negative f̄0(·) value. Further, arguing similarly,
a subset of Π1 can appear as a block of a minimizing partition of Π1

iff f0(·) takes zero value on it. Thus, the problem of determining the
DTL of the z.s.s. function f0(·) reduces to that of determining the
subsets of Π1 on which f0(·) takes zero value. Each such subset must
be contained in a block of (Π2)fus·Π1. This block is also a zero subset.
We, therefore, consider the problem of determining the zero sets of a
z.s.s. function of type (000) (defined below).

Definition 13.4.1 A submodular function f1(·) defined on subsets of
T is of type (000) iff (a) f1(·) is z.s.s. (b) f1(T ) = 0, (c)minR⊆T f1(R) =
0.
The sets on which a type (000) function takes zero value are called
zero sets.

Definition 13.4.2 Let f1(·) be a submodular function of type (000)
on subsets of T. The zero bipartite graph B(f1) ≡ (VL, VR, E) of
f1(·) is defined as follows.
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VL ≡ T, VR is the family of all nonsingleton zero subsets Cvivj
of T

which are minimal with respect to the property of containing {vi, vj} ⊆
T, vi 6= vj. A vertex v ∈ VL would be adjacent to Cvivj

∈ VR iff v ∈ Cvivj
.

We can now characterize the zero sets of a type (000) function.

Theorem 13.4.1 Let B(f1) ≡ (VL, VR, E) be the zero bipartite graph
of a type (000) function f1(·) on subsets of T . A set R ⊆ T is a zero
set of f1(·) iff it is the union of the right vertices (each of which is a
subset of T ) of a connected subgraph of B(f1).

Proof : If We will prove this by induction on the number n of right
vertices of the connected subgraph of B(f1). The result is obviously
true for n = 1. Let it be true for n < k. Let e1, · · · , ek be the right
vertices of the connected subgraph Bk of B(f1) and let

⋃k
i=1 ei = R.

Let Bk−1 denote a connected subgraph of Bk on (k − 1) of the right
vertices and the left vertices which are adjacent to them. We lose no
generality in assuming that the right vertices are e1, · · · , ek−1. By the
induction assumption R′ ≡ ⋃k−1

i=1 Ei is a zero set of f1(·).
By the submodularity of f1(·) we have, f1(R

′) + f1(ek) ≥ f1(R) +
f1(R

′ ∩ ek).
Since Bk is connected we have R′ ∩ ek 6= ∅ (equivalently, a left vertex
is adjacent to right vertices in R′ as well as to the right vertex ek).
Further, f1(·) is of type (000) and ek is a zero set. Hence, f1(ek) ≤
f1(R

′∩ek) and therefore, f1(R
′) ≥ f1(R). Thus, R is a zero set of f1(·).

Only if Suppose R is a zero set of f1(·). Let R = {v1, · · · , vt}. Let eij be
a right vertex of B(f1) such that eij ⊆ R and vi, vj ∈ eij . Consider the
subgraph of B(f1) on the set of left vertices R and set of right vertices
{eij : i 6= j, i, j ∈ {1, · · · , t}}. Clearly this subgraph is connected and
⋃

eij = R.

2

The algorithm for constructing B(f1) is based on the following simple
lemma whose routine proof is omitted.

Lemma 13.4.1 Let f1(·) be a submodular function of type (000) de-
fined on subsets of T. Then there is a unique minimal zero set Cvivj

containing a given distinct pair vi, vj of elements of T. If f1(·) is a type
(000) function on subsets of T , to determine Cvivj

we have to find the
minimal set that minimizes f1(·) over subsets of T that are supersets of
{vi, vj}. The zero bipartite graph needs O(| T |2) such minimizations.
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ALGORITHM 13.3 Algorithm DTL (f − λ)
INPUT A submodular function (f − λ)(·) on subsets of S.

OUTPUTAll the zero bipartite graphs needed to determine DTL (f − λ).

STEP 1 Determine Π1,Π2, the minimum and maximum partitions minimiz-
ing
(f − λ)(·)

STEP 2 Let T1, · · · , Tk be the blocks of (Π2)fus·Π1. Build type (000) functions
f1(·), · · · fk(·) on these sets:

fj(·) ≡ f0/Tj(·), f0(·) ≡ (f − λ)fus·Π1(·)− w(·),

where w(e) ≡ (ffus·Π1(e)− λ) ∀e ∈ Π1.

STEP 3 Build zero bipartite graphs for each fj(·). Output these as the zero
bipartite graphs needed to determine DTL (f − λ).

STOP

Thus, the complexity of computing the DTL of (f − λ)(·) is O(
∑ |

Ti |2) submodular function minimizations. Hence, (see Exercise 13.4)
the complexity of computing the DTL of all the (f − λ)(·), λ a
critical value, is O(| S |2) submodular function minimizations.

Remark: Instead of building the zero bipartite graph, the DTL(f−λ)
can also be stored in the form of |S| Hasse Diagrams (see page 643).

Exercise 13.3
Show that Cvivj

= {vk : T − vk contains no zero set which contains
{vi, vj}}.

Exercise 13.4
If Π1,Π2 are minimal and maximal partitions of S minimizing (f − λ)(·)
and (Π2)fus·Π1 has blocks N1, · · · , Nk, we saw that the zero bipartite
graphs corresponding to the critical value λ can be constructed by per-
forming

∑

O(| Ni |2) submodular function minimizations.
Show that constructing the zero bipartite graphs for all the critical val-
ues requires O(| S |2) submodular function minimizations.
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13.5 Complexity of construction of the PLP

Let f(·) be a submodular function on subsets of S. We will assume
that we have an algorithm for minimizing, over supersets of a given
subset, an arbitrary submodular function. Further we would assume
that the algorithm can return the minimal set on which the minimum
occurs.
Let this algorithm be O(α(n)). Then Subroutine Find Strong Fusion
Set can be seen to have a worst case complexity of O(nα(n)). The
algorithm Min(f̄ , S) is better analyzed directly in terms of the number
of submodular function minimizations. Suppose a subset T of size
p has no fusion set, but T ∪ e has a strong fusion set N. Then the
computational labour thus far is

∑p+1
j=1 α(j). After this step N would

be treated as a single element and we would look for strong fusion
subsets of the new set. We would now initialize T , in Subroutine Find
Strong Fusion Set for the new problem, to {N} ∪ {T −N} instead of
∅. Thus, the complexity of Min(f̄ , S) is also O(nα(n)).
Next Algorithm P-sequence of partitions invokes Algorithm Min(f̄ , S)
at most n times. Therefore, it has complexity O(n2α(n)). (If it is
possible to use the method of balanced bisection the complexity would
be O(nα(n)(logn)(log k)) where k is a set of numbers within which the
critical values are known to lie). The procedure for constructing all the
zero bipartite graphs is O(n2α(n)). Hence, the overall complexity
for constructing the PLP of f(·) is O(n2α(n)).

Space requirement for the construction of PLP
The P-sequence of partitions of f(·) requires O(| S |2) space since
atmost | S | partitions of S have to be stored. If Π1,Π2 are minimum
and maximum partitions minimizing (f − λ)(·) for a critical value λ
and (Π2)fus·Π1 ≡ {N1, · · · , Nk} then DTL of (f − λ)(·) requires

∑

(O(|
Ni |2) zero sets of size atmost | S |). Using the argument of the solution
of Exercise 13.4 we conclude that the DTL of all (f − λ)(·) requires
O(| S |2) zero sets of size atmost | S | i.e., O(| S |3) space. Thus, the
overall space requirement for PLP of f(·) is O(| S |3).
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13.6 Construction of the PLP of the dual

In practical situations, it is often the case that a submodular function
f(·) is easy to handle algorithmically, while the PLP of f c(·) (f c(X) ≡
f(S−X)) may be of importance. We briefly sketch the essential parts
of the construction of the latter PLP using subroutines which are in
terms of f(·).

Let us consider the problem of determining the fusion set of f c(·).
Suppose T ⊆ S has no fusion set. Let e ∈ T. We wish to check if T ∪ e
contains a fusion set. Let h(·) ≡ (f c − λ) − w(·) where w(·) is the
weight function which agrees with (f c − λ)(·) on singletons. (Clearly
h(·) is a z.s.s. function). We need to minimize h(X), X ⊆ T ∪ e and
check if this minimum value is negative. Now

minX⊆T∪eh(X) = minX⊆T∪e(f(S −X)− λ− w(X))

= minX⊆T∪e(f(S −X) + w′(X)− λ)

where w′(X) = −w(X)

= minY ⊇(S−(T∪e))(f(Y ) + w′(S − Y )− λ)

Let w”(ei) = ∞, ei ∈ S − (T ∪ e)
= w′(ei), ei ∈ T ∪ e.

Then the above problem reduces to computing the convolution (f ∗
w”)(·). For finding a strong fusion set we need to find a maximal Y s.t.

(f ∗ w”)(S) = f(Y ) + w”(S − Y ).

Thus, Subroutine Find Strong Fusion set for h(·) and AlgorithmMin(f c, S)
require computation of | S | such convolutions of f(·) with appropriate
weight functions.

13.7 PLP Algorithms for (wRΓ)(·) and −(wREL)(·)
We now specialize the PLP algorithms thus far described to two impor-
tant situations viz. weighted adjacency function and the weighted ex-
clusivity function associated with a bipartite graph. The reader would
notice that the specializations go through very routinely. However we
spell them out in detail because
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• the situations are very commonly encountered and these algo-
rithms compete very well with tailor made algorithms for prob-
lems relevant to instances (e.g. principal partition for the rank
function of a graph [Narayanan90], [Patkar+Narayanan92b], the
rigidity matroid of a graph (ibid.)) of these functions

• it becomes clearer that the PLP algorithms are particularly nat-
ural for bipartite graphs.

Let B ≡ (VL, VR, E), let wR(·) be a positive weight function on VR,
let Γ(X), X ⊆ VL, denote the set of vertices adjacent to those in X
and let EL(X), X ⊆ VL, denote the set of vertices adjacent only to
those in X. We denote wR(Γ(·)), wR(EL(·)), respectively by (wRΓ)(·)
and wREL(·). The reader may find it convenient to review Subsections
3.6.10 and 10.6.3.

13.7.1 PLP of (wRΓ)(·)

Detection of Strong Fusion set for (wRΓ)(·) through flow max-
imization

Let us consider the detection of a strong fusion set for this case. First
convert ((wRΓ) − λ)(·) to a z.s.s. function h(·). Let g(·) be a weight
function with

g(v) ≡ ((wRΓ)− λ)(v) ∀v ∈ VL

Let h(·) ≡ ((wRΓ)−λ)(·)− g(·). Suppose we know that the left vertex
subset T contains no fusion set (T could be ∅ for instance) of the z.s.s.
function h(·). Let e 6∈ T.We minimize (wRΓ)(X)−g(X), X ⊆ T∪e, e ∈
X, and test whether the minimum value is less than λ. The minimal
minimizing set is a strong fusion set if the minimum value is less than
λ. Otherwise T ∪ e has no fusion set.

The problem of minimizing (wRΓ)(X)− g(X) is equivalent to min-
imizing
(wRΓ)(X)+g(VL−X) which has already been shown to be a maximum
flow problem in Subsection 10.6.3 and also, with a slightly different no-
tation, in Subsection 3.6.10 (see Figure 10.3).
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The minimum cut (which has the form (s⊎X⊎Γ(X), t⊎(T ∪e−X)
⊎(VR−Γ(X)) in this flow graph would have capacity = minimum value
of (wRΓ)(X) +
g((T ∪ e)−X), X ⊆ T ∪ e (T ∪ e is the left vertex set of the current
subgraph Bcurr of B and the flow graph is (using the notation of Sub-
section 3.6.10)
F (Bcurr,wL/T ∪ e,wR/Γ(T ∪ e)), where wL(·) ≡ g(·)).

We modify the network flow formulation (as in Exercise 10.33) since
we need to find X ′ that minimizes (wRΓ)(X) + wL(T ∪ e−X) under
the condition that e ∈ X. We ensure this by making the capacity of the
edge (s, e) large so that the cut (s, (T ∪e)⊎VR⊎t) has a capacity larger
than the capacity of the cut (s⊎ e⊎Γ(e), T ⊎ (VR−Γ(e))⊎ t). It turns
out that we need only increase the capacity of e from (wRΓ)(e)− λ to
(wRΓ)(e) + δ, δ > 0 (see Exercise 13.6) . Figure 13.1 indicates the flow
graph with the modification. The original capacity of the edge (s, e) is
wL(e) ≡ (wRΓ)(e)− λ.
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Figure 13.1: Flow graph modification for fusion set detection

There is a minor point that has to be clarified. Since wL(v) ≡
(wRΓ)(v)−λ, this value can turn out to be negative. (Strictly speaking
this needs the introduction of a new source vertex ŝ and an edge (ŝ, s)
of capacity ∞). It is easily verified that such an element can always
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be put in the t-part of the cut (see Exercise 13.5). Hence, if there
is a fusion set containing v there must also be one not containing it.
Therefore, in general, if K has no fusion set, e 6∈ K and g(e) (= wL(e))
negative, then neither will K ∪ e contain a fusion set. It is also easy to
see this directly since, if we minimize (wRΓ)(X)+g(VL−X), an element
e for which g(e) is negative should clearly figure in the g(VL−X) term.
Thus, informally the Subroutine Find Strong Fusion Set reduces
to the following:
Let T be a subset of VL known not to contain a fusion set of wRΓ(·)−λ
and let e 6∈ T . If g(e) is negative we declare that T ∪ e contains no
fusion set. Let Bcurr be the subgraph of B on (T∪e)⊎Γ(T ∪e), let gcurr

on T ∪ e agree with g on T and let gcurr(e) = g(e) + λ+ δ, δ > 0. Let
wcurr denote wR/Γ(T ∪ e). Build the flow graph F (Bcurr, gcurr,wcurr).
(For the edge from source to left vertex v, the edge capacity is gcurr(v),
all bipartite graph edges directed from left to right with edge capacity
∞, right vertex vR to t with edge capacity wR(vR).)
Maximize flow and find a min cut of the form

(s ⊎X ⊎ Γ(X), t ⊎ ((T ∪ e)−X) ⊎ (VR − Γ(X)))

such that X is minimal, i.e., find the nearest source side min cut (see
Theorem 3.6.2).
(Now since we raised the capacity of (s, e) to g(e) + (λ + δ) it would
turn out that X 6= ∅. Further e ∈ X or there is no fusion set.)
If (wRΓ)(X) − g(X) < λ, then we declare that X is a strong fusion
set. Otherwise T ∪ e contains no fusion set.

We thus see that detection of a strong fusion set requires
O(| VL |) flow maximizations in a flow graph that has
O(| VL | + | VR |) vertices
O(| E | + | VL | + | VR |) edges and
longest path from source to sink of length O(min(| VL |, | VR |)).
Observe that if the problem were to determine a quasi-fusion set the
algorithm is essentially the same as above. The difference is

i. a min cut of the above form has to be found s.t. X is maximal
(i.e., the nearest sink side cut has to be found).

ii. if ((wRΓ)(X)− g(X)) ≤ λ and X is not a singleton, we declare
that X is a quasi-fusion set.
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Algorithm Min(f̄ , S) for (wRΓ)(·)

Next we consider the specialization of Algorithm Min(f̄ , S) to this
case. We will begin with a crude version where the Subroutine Find
Strong Fusion Set is initialized to null set after detection of a strong
fusion set.
Let BΠ denote the bipartite graph obtained from B by fusing the blocks
of the partition Π of VL into single vertices. Let ΓΠ(·) be the left
adjacency function of this graph. It can be verified that

(wRΓΠ)(·) = (wRΓ)fus·Π(·)

Let N be a strong fusion set that has just been detected. We now
fuse N to a single element. We use Subroutine Find Strong Fusion
Set, on the z.s.s. function obtained from the weighted left adjacency
function of the bipartite graph BΠN

by subtracting λ and a suitable
weight function. This procedure is repeated until in the last bipartite
graph the function (weighted left adjacency function −λ) has no fusion
set. The left vertex set of this bipartite graph can be associated with a
partition of VL (each vertex of the last bipartite graph is obtained by
fusing a block of the partition of VL). This partition is the minimum
partition that minimizes ((wRΓ)− λ)(·).

According to (the efficient version of) Algorithm Min(f̄ , S) we do
not start from scratch when the bipartite graph BΠN

is formed. Sup-
pose, before the fusion set is detected we have the flow graph corre-
sponding to the subgraph of B on (T ∪e)⊎Γ(T∪e). After N is detected
and fused into the vertex vN we form the new flow graph in which all
capacities of edges which are not leading into N remain as before. The
capacity of the edge (s, vN) is taken to be (wRΓ)(N)−λ. We know that
for the new weighted left adjacency function, (T −N) ∪ {N} does not
contain a fusion set. The new flow graph corresponds to the subgraph
of BΠN

on

((T −N) ∪ {N} ∪ e) ⊎ Γ((T −N) ∪ {N} ∪ e).

We now run Subroutine Find Strong Fusion set on the function wRΓΠ(·)−
λ associated with BΠN

, initializing it at (T − N) ∪ {N}. The actual
complexity would depend upon the algorithm used for flow maximiza-
tion (see Subsection 3.6.10).
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It is therefore clear that, in order to complete AlgorithmMin(f̄ , VL),
we have to perform O(| VL |) flow maximizations in a flow graph that
has
O(| VL | + | VR |) vertices and
O(| VL | + | VR | + | E |) edges and
length O(min(| VL |, | VR |)) of longest path from source to sink,

Subdividef(Π1,Π2) for (wRΓ)(·)
Let B ≡ (VL, VR, E) be the bipartite graph under discussion. Then

Π1,Π2 are partitions of VL. In this case f(·) ≡ (wRΓ)(·). In STEP 1
of Subdividef(Π1,Π2), f

′(·) ≡ ffus·Π1(·). Let BΠ1
denote the bipartite

graph obtained from B by fusing the blocks of Π1 into single vertices.
Let ΓΠ1

(·) denote the left adjacency function of BΠ1
. It is clear that

f ′(·) = (wRΓΠ1
)(·). As in STEP 2, let (Π2)fus·Π1 have N1, · · · , Nk as

blocks and let f ′
j(·) ≡ f ′/Nj(·), j = 1, · · · , k. Let BNj

denote the sub-
graph of BΠ1

on (Nj ∪ΓΠ1
(Nj)). Let ΓNj

(·) denote the left adjacency

function of BNj
. Then f ′

j(·) = (wRΓNj
)(·). Now we can do Algorithm

Min(f̄ ′
j , Nj) using a suitable flow graph on BNj

as described above.

Thus, it is clear that Subroutine Subdividef(Π1,Π2) requires
O(
∑k

j=1 | Nj |) flow maximizations on a flow graph of size
O(| VL | + | VR |)) vertices,
O(| VL | + | VR | + | E |) edges and
longest path from source to sink of length O(min(| VL |, | VR |)).
Thus, Algorithm P-sequence of partitions requires atmost O(|
VL |2) flow maximizations on a flow graph of the above size.

Exercise 13.5
In Figure 13.1, suppose wL(v) ≡ (wRΓ)(v)− λ is negative. Show that
we can always find a min cut such that v belongs to the t side of the
cut.

Exercise 13.6
In page 710 it is remarked that increasing the capacity of (s, e) from
((wRΓ)(e) − λ) to ((wRΓ)(e) + δ), δ > 0, is adequate to ensure that
the min cut will contain at least one element of VL on the source side.
Prove this statement.
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DTL of ((wRΓ)− λ)(·)

Let B ≡ (VL, VR, E) be the bipartite graph under discussion. We
follow the notation of Algorithm 13.3. Let Π1,Π2 be the minimal
and maximal partitions of VL minimizing ((wRΓ)− λ)(·). We denote
(wRΓ)(·) by f(·), (ffus·Π1−λ−w)(·) by f0(·) (where w(·) is the weight
function defined by w(e) ≡ ffus·Π1(e) − λ ∀e ∈ Π1), the blocks of
(Π2)fus·Π1 by N1, · · · , Nk and f0/Nj(·) by fj(·).

Let us consider the problem of determining the zero bipartite graph
of the type (000) function fj(·), equivalently, that of determining
all Cvivk

(the minimal zero set of fj(·) containing {vi, vk}). This re-
quires the building of BΠ1

from the bipartite graph B by fusing each

block Π1 into a single vertex. (See the discussion on page 713.) Let
BNj

be the subgraph of BΠ1
on Nj ∪ Γ(Nj). The network associ-

ated with BNj
is built as described earlier (edge (s, v) has capacity

((wRΓ)(v) − λ), v ∈ Nj, edges of BNj
are from left to right and have

capacity ∞, edge (vR, t) has capacity wR(vR), vR ∈ Γ(Nj)). We maxi-
mize flow and find a min cut corresponding to X such that X is mini-
mal under the condition that {vi, vk} ⊆ X. As in the case of fusion set
detection this can be done by increasing the capacity of (s, vi), (s, vk)
to (wRΓNj

)(vi)+ δ and (wRΓNj
)(vk)+ δ, δ > 0. One flow maximization

thus yields one set Cvivj
. Thus to determine the zero bipartite graph

for BNj
corresponding to λ requires | Nj |2 flow maximizations. By ar-

guing as in the case of a general submodular function we conclude that
computing the DTL of all the (f − λ)(·) for all critical values
requires
O(| VL |2) flow maximizations in a flow graph that has
O(| VL | + | VR |) vertices,
O(| VL | + | VR | + | E |) edges and
longest path from source to sink of length O(min(| VL |, | VR |)).
Thus, the construction of the PLP of (wRΓ)(·) requires O(| VL |2)
flow maximizations in the above flow graph.
We remind the reader that Sleator’s algorithm [Sleator80] for this prob-
lem would have complexity (as given in Subsection 3.6.10)
O(| VL |2 (min(| VL |, | VR |))(| E | log | E |)).



13.7. PLP ALGORITHMS FOR (WRΓ)(·) AND −(WREL)(·) 715

13.7.2 PLP of (−wREL)(·)
We use a flow formulation for this problem also. The function EL(·)
(of the bipartite graph B ≡ (VL, VR, E)) is inconvenient to work with
directly for such a formulation. So we use the fact that

EL(X) ≡ Γ(VL)− Γ(VL −X).

Hence, (wREL)(X) = (wRΓ)(VL)− (wRΓ)(VL −X).
Let f(X) ≡ (wRΓ)(VL −X), X ⊆ VL. Then,
minimizing (−wREL − λ+ (wRΓ)(VL))(·) is equivalent to minimizing
(f − λ)(·).
We concentrate on the construction of PLP of the function f(X) ≡
(wRΓ)(VL −X).

Find Strong Fusion Set for −wREL(·)− λ+ (wRΓ)(VL)

We first convert (f − λ)(·) to a z.s.s. function. Let q′(·) be a weight
function with q′(v) ≡ (f − λ)(v) ∀v ∈ VL. Denote −q′(v) by q(v). Let
p(·) ≡ (f − λ)(·) + q(·).
Suppose we know that the left vertex subset T contains no fusion set
of the z.s.s. function p(·). Let e 6∈ T. We minimize f(X) + q(X), X ⊆
T ∪ e, e ∈ X, and test whether the minimum value is less than λ. The
minimal minimizing set is a strong fusion set if the minimum value is
less than λ. Otherwise T ∪ e has no fusion set.

Let us consider the problem of minimizing

f(X)+q(X) ≡ (wRΓ)(VL−X)−
∑

v∈X

(wRΓ)(VL−v)+λ | X |, X ⊆ Z ⊆ VL.

This can be posed as the flow problem of Figure 13.2 as we showed in
Subsection 10.6.3 (and by the result in Exercise 10.33).

The flow graph can be seen to be F (B,wZ ,wR) (Z is the set cur-
rently being tested for containing a strong fusion set), where

wZ(v) ≡ ∞, v ∈ VL − Z
wZ(v) ≡ λ− (wRΓ)(VL − v), v ∈ Z

Maximizing flow yields a min cut of the form

(s ⊎ Y ⊎ Γ(Y ), t ⊎ (VL − Y ) ⊎ (VR − Γ(Y )),
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Figure 13.2: Flow graph for minimization of f(X) + q(X), X ⊂ Z

where Y ≡ (VL − X), VL ⊇ Y ⊇ (VL − Z). Next we need X 6= ∅ i.e.
Y ⊂ VL. When Z grows from T to T ∪ e, the capacity of (s, e) falls
from ∞ to (λ − (wRΓ)(VL − e)). Instead if we make the capacity of
(s, e) equal to zero then it is easily verified that the capacity of the cut
(s ⊎ VL ⊎ VR, t) is not less than the capacity of the cut

(s ⊎ (VL − e) ⊎ Γ(VL − e), t ⊎ e ⊎ (VR − Γ(VL − e))).

Now if X is a fusion set, then the capacity of the cut, corresponding
to VL − X, is less than that corresponding to VL − e in the original
flow graph. This would hold true in the modified flow graph also since
e ∈ X, if X is a fusion set. Hence in the modified flow graph, if X
is a fusion set, the cut corresponding to Y ≡ VL − X has a lower
capacity than the cut (s ⊎ VL ⊎ VR, t). We can find the maximal Y
by finding the nearest sink side cut (Theorem 3.6.2). We now check if
f(X) + q(X) < λ where X ≡ VL − Y . If so, X is a strong fusion set.
Otherwise T ∪ e contains no fusion set.

One final remark needs to be made for the case where q(a) is nega-
tive for some a ∈ VL. If such an element is in Y then (wRΓ)(Y − a)+
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∑

v∈(VL−Y )∪a q(v) cannot have higher value than (wRΓ)(Y )+
∑

v∈(VL−Y ) q(v).
So we lose no generality in assuming that a ∈ Y in the first place when
q(a) is negative. In particular it follows that if q(e) is negative T ∪ e
does not contain a fusion set.

Thus the Subroutine Find Strong Fusion Set reduces to the fol-
lowing.
Suppose we know that T contains no fusion set. Let e 6∈ T . If
(λ − (wRΓ)(VL − e)) is negative T ∪ e contains no fusion set. Oth-
erwise build the flow graph F (B,w′

T ,wR) corresponding to T ⊆ VL:
where

w′
T (v) ≡ ∞, v ∈ VL − T − e

w′
T (v) ≡ λ− (wRΓ)(VL − v), v ∈ T

w′
T (e) ≡ 0.

Maximize flow and find the nearest sink side min cut. By theorem
3.6.2 this has the form

(s ⊎ Y ⊎ Γ(Y ), t ⊎ (VL − Y ) ⊎ (VR − Γ(Y )).

Take X ≡ VL − Y. Check if f(X) + q(X) < λ.
If Yes declare X to be a strong fusion set.
Otherwise T ∪ e contains no fusion set.

We thus see that detection of a strong fusion set in this case
requires
O(| VL |) flow maximizations in a flow graph that has
O(| VL | + | VR |) vertices,
O(| E | + | VL | + | VR |) edges and
longest path from source to sink of O(min(| VL |, | VR |)).

If the problem were to determine a quasi-fusion set the algorithm is
essentially the same as above. The difference is

i. Y must be made minimal.

ii. if f(X) + q(X) ≤ λ and X is a nonsingleton set we declare that
X is a quasi-fusion set.

Exercise 13.7
In order to ensure that the minimization of (wRΓ)(Y ) + q(VL − Y )
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takes place over Y ⊇ VL − Z, we put capacity of (s, v) =∞ whenever
v ∈ VL−Z. Show that it is adequate to make this capacity λ instead of
∞ provided λ ≥ (wRΓ)(VL).

Exercise 13.8
In the flow graph of Figure 13.2 show that it is unnecessary to consider
the case where (λ− (wRΓ)(VL − v)) is negative.

Algorithm Min(f̄ , S) for (−wREL)(·)

Let BΠ denote the bipartite graph obtained from B by fusing the
blocks of the partition Π of VL into single vertices. Let wREΠ(·) be the
weighted left exclusivity function of this graph. It can be verified that

(wREΠ)(·) = (wREL)fus·Π(·)

Let N be a strong fusion set that has just been detected. We fuse
N to a single element and use Subroutine Find Strong Fusion Set
on the function (-weighted left exclusivity function of the bipartite
graph BΠN

− λ). This procedure is repeated until in the last bipar-
tite graph this function has no fusion set. The left vertex set of this
bipartite graph can be associated with a partition of VL (each vertex
of the last bipartite graph is obtained by fusing a block of the parti-
tion of VL). This partition is the minimum partition that minimizes
(−(wREL)− λ)(·).

A few remarks on the initialization of Find Strong Fusion Set. Sup-
pose T has no fusion set. But T ∪ e has the strong fusion set N .
This is fused to the vertex vN and we work thenceforward with the
bipartite graph BΠN

. The flow graph (for PLP of −(wREL)(·)) cor-
responding to BΠN

would have capacities of all edges which are not

leading into N unchanged. The capacity of the edge (s, vN) is taken
to be λ− (wRΓ)(VL −N). We know that for the new function derived
from the current weighted left exclusivity function, (T−N)∪{N} does
not contain a fusion set. Subroutine Find Strong Fusion Set is now run
initializing it at (T −N) ∪ {N}.
It is therefore clear that, in order to complete AlgorithmMin(f̄ , VL),
we have to perform O(|VL|) flow maximizations in a flow graph that
has
O(| VL | + | VR |) vertices,
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O(| VL | + | VR | + | E |) edges,
longest path from source to sink of length O(min(| VL |, | VR |)).
Subdividef(Π1,Π2) for −(wREL)(·)
Let B ≡ (VL, VR, E) be the bipartite graph under discussion. Then

Π1,Π2 are partitions of VL. In this case f(·) = −(wREL)(·). In STEP
1, f ′(·) ≡ ffus·Π1(·). Let BΠ1

denote the bipartite graph obtained from

B by fusing the blocks of Π1 into single vertices. Let EΠ1
(·) denote the

left exclusivity function of BΠ1
. It is clear that f ′(·) = −(wREΠ1

)(·).
As in STEP 2, let (Π2)fus·Π1 have N1, · · · , Nk as blocks and let f ′

j(·) ≡
f ′/Nj(·), j = 1, · · · , k. Let BNj

denote the subgraph of BΠ1
on (Nj ∪

ΓΠ1
(Nj)). Let ENj

(·) denote the left exclusivity function of BNj
. Then

f ′
j = −(wRENj

)(·). Now we can do Algorithm Min(f̄ ′
j , Nj) using a

suitable flow graph on BNj
as described above.

Thus, it is clear that Subroutine Subdividef(Π1,Π2) requires
O(
∑k

j−1 | Nj |) flow maximizations on a flow graph of size
O(| VL | + | VR |) vertices,
O(| VL | + | VR | + | E |) edges,
and longest path from source to sink of length O(min(| VL |, | VR |)).
Thus, Algorithm P-sequence of partitions requires atmost | VL |2
flow maximizations on a flow graph of the above size.

DTL of (−(wREL)(·)− λ̂)

Let B ≡ (VL, VR, E) be the bipartite graph under discussion. Let

Π1,Π2 be the minimal and maximal partitions of VL minimizing h− λ̂(·)
where h(·) = −(wREL)(·). Let (Π2)fus·Π1 have blocks N1, · · · , Nk. Let
BΠ1

, BNj
, EΠ1

, ENj
, etc. have the same meanings as above. It is clear

that hfus·Π1(·) = −(wREΠ1
)(·) and

hfus·Π1/Nj(·) = −(wRENj
)(·).

Let f ′
j(X) ≡ (wRΓNj

)(Nj −X), X ⊆ Nj where ΓNj
(·) is the left adja-

cency function ofBNj
.The minimizing partitions ofNj for (−(wRENj

)− λ̂)(·)
are identical to those for (f ′

j − (λ̂+ (wRΓNj
)(Nj))(·). Let λ ≡ λ̂ +

(wRΓNj
)(Nj) and let fj = (f ′

j − λ)(·) − w(·), where w(·) is a weight
function on Nj with w(e) = (f ′

j − λ)(e) ∀e ∈ Nj .
The function fj(·) is a type (000) function. Our problem is to find
minimal zero sets containing given {vi, vk} ⊆ Nj . This problem is the
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same as the flow problem considered on page 715 with the added con-
dition that {vi, vk} ⊆ X. (Note that in this case Z = Nj = left vertex
set of BNj

. The flow graph is as in Figure 13.2.) This can be handled
by putting the capacities of edges going into vi and vk equal to zero,
while maximizing flow. We look for a nearest sink side min cut, i.e.,
a min cut of the form (s ⊎ Y ⊎ Γ(Y ), t ⊎ (Nj − Y ) ⊎ (Γ(Nj)− Γ(Y )))
such that Y is maximal under the condition that {vi, vk} ∩ Y = ∅ (see
Remark below). Then Cvivk

= Nj−Y. Thus, to determine all the Cvivk

corresponding to λ and Nj requires O(| Nj |2) flow maximizations on
the flow graph associated with BNj

as given in page 715. To determine
all the zero bipartite graphs corresponding to λ requires O(

∑ | Nj |2)
flow maximizations.
To determine all such graphs for all the λ requires
O(| VL |2) flow maximizations on a flow graph that has
O(| VL | + | VR |) vertices,
O(| VL | + | VR | + | E |) edges
and length of longest path from source to sink equal to O(min(| VL |
, | VR |)).
Remark: Since fj(·) is a type (000) function, we can show the follow-
ing:

• When λ̂ = 0, fj(·) is a modular function and therefore all subsets
of Nj are zero sets.

• When λ̂ > 0, if the capacities of (s, vi), (s, vk) are made equal to
zero, the capacity of the cut separating t from the rest is greater
than the capacity either

– of the cut separating s from the rest, or

– of the cut (s ⊎ Z ⊎ Γ(Z), t ⊎ (Nj − Z) ⊎ (Γ(Nj) − Γ(Z))),
where Z = VL − {vi, vk}.

Thus in any case the nearest sink side min-cut would yield a
subset Y s.t. (vi, vk) ∩ Y = ∅, and, as mentioned above, we can
take Cvivk

= Nj − Y.

As in the case of (wRΓ)(·) the construction of the PLP in this case
also has complexity (using Sleator’s flow algorithm [Sleator80])

O(| VL |2 (min(| VL |, | VR |))(| E | log | E |)).
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13.8 Structural Changes in Minimizing Par-

titions

In this section we study the structural changes in maximal and mini-
mal minimizing partitions of f̄(·) (f(·) submodular) as the set grows
and how to exploit these changes for improving the efficiency of the
PLP algorithms. The key result which we need is Theorem 12.2.3
which assures us that the blocks of both the minimal minimizing par-
tition and the maximal minimizing partition grow as the set grows. We
have already seen that the blocks of minimal minimizing partitions of
(f − σ)(·) are elementary separators of (f − σ)t(·) (Theorem 12.5.1).
The maximal minimizing partition of (f − σ)(·) would of course have
this property with respect to (f−σnext)t(·) where σnext is the next lower
critical value after σ. But it also has an interesting and useful property
when the set grows without changing its (f −σ)t(·) value, which is the
main result of this section. This result, given below, is a routine gen-
eralization of ideas present in [Patkar+Narayanan91],[Patkar92]. We
denote the maximal (minimal) partition that minimizes f̄(·) over par-
titions of X ⊆ S, by Πmax(X)(Πmin(X)).

Theorem 13.8.1 Let f(·) be an increasing submodular function over
subsets of S. Let X ⊆ S and let e ∈ S − X. Then ft(X) = ft(X ∪ e)
iff there is a block N of Πmax(X) s.t. f(N) = f(N ∪ e) and N ∪ e is a
block of Πmax(X ∪ e).
Proof : Since f(·) is an increasing submodular function so must ft(·)
be (Exercise 12.2). Further by Theorem 12.2.3 the blocks of Πmax(X)
are each contained in some block of Πmax(X ∪ e).
If Clearly the blocks other than N,N ∪ e are identical in Πmax(X)
and Πmax(X ∪ e). Further f(N) = f(N ∪ e). Hence, f̄(Πmax(X)) =
f̄(Πmax(X ∪ e))
and ft(X) = ft(X ∪ e).
Only If Let ft(X) = ft(X ∪ e). Let M be the block of Πmax(X ∪ e)
that has e as a member. Since each block of Πmax(X) is contained in
a block of Πmax(X ∪ e) it follows that

M = N1 ∪ · · · ∪Nk ∪ e,
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where N1, · · · , Nk are blocks of Πmax(X). The remaining blocks of
Πmax(X), if any, would be blocks also in Π(X∪e).We have f̄(Πmax(X∪
e)) = f̄(Πmax(X)). Hence,

f(M) = f(N1) + · · ·+ f(Nk).

But

f(M) ≥ f(M − e) = f(
k
⋃

i=1

Ni).

Hence, the partition Π ofX which has
⋃k

i=1Ni as a block and the others
as in Πmax(X) also satisfies ft(X) = f̄(Π). If k > 1,Π 6< Πmax(X),
which is a contradiction. We conclude that k = 1 and, therefore,
M = N ∪ e where N is a block of Πmax(X) and further f(M) = f(N)
as required.

2

Theorem 13.8.1 is algorithmically useful in the case of an integral
submodular function f(·) on subsets of S whose lower truncation ft(·)
is a polymatroid rank function with ft(S) <| S | . (The reader may
like to review Section 13.2 before proceeding further). For instance to
build the maximal minimizing partition of f̄(·) over subsets of S:
We start with X = {e1} ⊆ S s.t. f(e1) 6= 0. Suppose we have built
Πmax(X) and e′ 6∈ X we check if for any N ∈ Πmax(X), f(N ∪ e′) =
f(N). If so, we set e′ aside. If however f(N ∪ e) 6= f(N) for each
N we grow X to X ∪ e. Let Π ≡ Πmax(X) ∪ {{e}}. Then Π is a
partition of X ∪ e. Let f1(·) = f/X ∪ e(·). Let f2(·) ≡ (f1)fus·Π(·).
Let f3(·) ≡ f2(·) − w(·) where w(·) is a weight function on Π so that
f3(·) becomes z.s.s. Observe that Π − {{e}} contains no fusion set of
f3(·). We now find the maximal set Te minimizing f3(·) over subsets
of Π containing e. Let M =

⋃

Ni∈Te
Ni. Then Πmax(X ∪ e) has M as

a block and the remaining blocks from Πmax(X). (Here we have used
Theorem 12.2.3).

Observe that to build Πmax(X ∪ e) from Πmax(X) takes only one
submodular function minimization (with the additional condition that
we find the maximal such set). We repeat this process until we reach
a set Y s.t. for each e′ 6∈ Y , there exists a block N of Πmax(Y ) s.t.
f(N ∪ e′) = f(N). By Theorem 13.8.1 and by the submodularity of
f(·), this happens when ft(Y ) = ft(S). It follows that to reach this
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stage we need perform no more than ft(S) minimizations. In addition
of course we have to compute f(·) on O(| S | ft(S)) sets (no Πmax that
we encounter can have more than ft(S) blocks.) Direct application of
the algorithms of Section 13.2 would involve | S | submodular function
minimizations.

Example 13.8.1 [Patkar92],[Patkar+Narayanan92b] Consider the func-
tion
| V | (·) acting on edge subsets of graph G. The function (k | V |
−(2k−1))t, where k is a positive integer, is easily seen to be a matroid
rank function if G has no selfloops. So if f(·) ≡ (k | V | −(2k−1))t(·),
then Πmax(S) of f̄(·) can be computed using (k | V | −(2k − 1))t(S)
submodular function minimizations (in this case these are max flow
computations). We remark that when k = 2 we get the function
(2 | V | −3)t(·) which is the ‘rigidity matroid’ rank function (currently
an active area of research [Asimow+Roth78],[Asimow+Roth79]).

The algorithm for computing Πmax(S) also yields, if ft(·) is a ma-
troid rank function, a basis for the matroid. For, our mode of construc-
tion of set Y ensures that there is a sequence of elements e1, e2, · · · , ek

s.t. Y = {e1, · · · , ek} and ft(e1) < ft(e1, e2) < · · · < ft(Y ) = ft(S).
Algorithms based on these ideas are competitive with the best algo-
rithms for rigidity matroid computations [Patkar+Narayanan92b],
[Patkar+Narayanan92c]. They further have the advantage of being
very general and being easy to implement.

Minimizing partitions of f(·) where ft(·) is a matroid rank
function

The special case where ft(·) is a matroid rank function deserves study.
The following theorem (a routine generalization of the ideas found in
[Patkar92],
[Patkar+Narayanan92b]) captures the essential ideas. We note that if
Πmin(X) is known, to find Πmin(X ∪ e), we have to find the minimal
minimizing set containing e, for a suitable z.s.s. function on Πmin(X)∪
{{e}}, just once.

Theorem 13.8.2 Let X be independent in the matroidM whose rank
function is ft(·). Then
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i. Πmin(X) has only singleton blocks.

ii. if ft(X ∪ e) = ft(X), e 6∈ X, the f-circuit of e with respect to X
is the block containing e in the partition Πmin(X ∪ e).

Proof :
i. If X is independent in M then ft(X) =| X | . For each ei ∈ X we
have, f(ei) = ft(ei) = 1. Hence, if Π(X) is the partition of X with
singleton blocks, then f̄(Π(X)) =| X |= ft(X). Hence, Πmin(X) =
Π(X).

ii. Let N be the block of Πmin(X ∪ e) containing e, the remaining
blocks being singletons. We have ft(N) = f(N). Now N − e ⊆ X and
hence N − e is independent inM, i.e., ft(N − e) =| N − e | . Thus,

ft(X) =| X |= ft(X ∪ e) =| X −N | +f(N).

Therefore,
f(N) = ft(N) =| N − e | .

Hence, the f-circuit N ′ of e with respect to X is contained in N . Let
M be the block containing e in Πmin(N ′), the remaining blocks being
singletons. Thus

| N ′ − 1 |= ft(N
′) = f̄(Πmin(N ′)) =| N ′ −M | +f(M).

We conclude that f(M) =|M−1 | . But then the partition Π(X∪e) of
X ∪ e which has M as a block and the remaining as singletons clearly
satisfies

f̄(Π(X ∪ e)) = f(M)+ | X −M |=| X |= ft(X ∪ e).
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Hence, Π(X ∪ e) ≥ Πmin(X ∪ e). We conclude that N ′ ⊇ M ⊇ N.
Hence, N = N ′.

2

The following is an immediate corollary.

Corollary 13.8.1 Let f(·) be a submodular function on subsets of S
s.t. ft(·) is a matroid rank function. Then a nonsingleton subset C ⊆ S
is a circuit of the matroid iff

i. f(e) = 1 ∀e ∈ C.

ii. Πmin(C) = {C}

iii. Πmin(C − e) has only singleton blocks for each e ∈ C.

Further if (i) and (ii) are satisfied (iii) need be satisfied only for any
one e ∈ C. Then it would be satisfied for all e ∈ C.
Exercise 13.9
Let B ≡ (VL, VR, E) be a bipartite graph. Show that

i. no more than | VR | flow maximizations are required to compute
a partition that minimizes (| ΓL | −1)(·) and

ii. no more than (q | VR | −p) flow maximization are required in the
case of (| ΓL | −p/q)(·).

Exercise 13.10 Let ft(·) be a matroid rank function
on subsets of S and let X be a basis of the matroid. If N1, N2 are two
intersecting f-circuits with respect to X, then N1 ∪ N2 is contained in
a block of Πmin(S) of f̄(·).
Exercise 13.11
Let f(·) be a submodular function on subsets of S. Let X ⊆ S, e 6∈ X
and let {e} not be a separator of (f − λ)t/(X ∪ e)(·). Show that

(f − λ)t(X ∪ e)− (f − λ)t(X) ≥ f(X ∪ e)− f(X)

Exercise 13.12
Let f(·)be a polymatroid rank function on subsets of S s.t. f(e) =
k + 1 ∀e ∈ S, where k is a positive integer. Show that
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i. (f − k)t(·) is a matroid rank function

ii. the circuits of this matroid are the strong fusion sets of (f−k)(·)
iii. a nonvoid set T is independent in the matroid iff its minimal

minimizing partition for (f − k)(·) is the singleton block partition
Π0.

Exercise 13.13
(This exercise needs familiarity with Chapter 11). LetM1, · · · ,Mk be
self loop free matroids on S with rank functions r1(·), rk(·) respectively.
Show that

i. a set K is independent in M1 ∨ · · · ∨Mk iff
∑k

i=1 ri(X) ≥| X |
∀X ⊆ K.

ii. a set K is independent in the matroid M ≡ (M1, · · · ,Mk)t

whose rank function is (r1+· · ·+rk−(k−1))t(·), iff
∑k

i=1 ri(X) ≥|
X | +(k−1) ∀X ⊆ K. (Thus K is independent inM1∨· · ·∨Mk,
if it is independent in (M1, · · · ,Mk)t).

iii. A circuit of (M1,M2)t is a minimal nonvoid subset of S s.t. the
restriction of M1,M2 on it have disjoint bases.

Remark: The reader might wonder why the important problem of
constructing the PLP of a matroid rank function has been avoided so
far. The reason is that the fusion operation is not natural for matroids
- when we fuse subsets of the underlying set the matroid rank function
loses its matroid character. In order to use the PLP algorithms so far
described we need a method by which algorithms involving polyma-
troid rank functions can be redone in terms of the underlying ‘fused
matroid rank function’. Such an algorithm is presented in the next
chapter (Section 14.3).

13.9 Relation between PP and PLP

In general the principal lattice partitions of a submodular function is
unrelated to its principal partition with respect to any simply con-
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structed weight function (see examples below). Curiously, however,
the problem of construction of the principal partition of the rank
function of a graph relative to a positive weight function w(·) can
be posed as that of construction of the principal lattice of partitions
of the weighted incidence function w(I)(·), where w(I)(X) ≡ weight
of edges incident on vertices in X or of the weighted edge function
w(E)(X)(≡ weight of edges with both end points within X). The fact
is algorithmically useful since instead of working with edge sets we can
work with vertex partitions. The fastest algorithm presently available
for principal partition of the rank function of a graph uses this idea
([Patkar+Narayanan92c]). In this section we present a general result
which relates the PLP of a certain natural submodular function on the
left vertex subsets of a bipartite graph to the principal partition of a re-
lated submodular function on the right vertex subsets. We begin with
a couple of examples to show that the PLP of a submodular function
is unrelated to its PP with respect to a natural weight function.

Example 13.9.1 [Narayanan91] Consider the submodular function σ(X)
= r(X)− 1

2
| X | −1

2
on the edge subsets of the graph G in Figure 13.3.

We see that σ(∅) = −1
2
, σ(S) = 0, σ(ei) = 0 ∀ei ∈ S. We may further

verify that for X ⊆ S we always have | X |< 2r(X). Hence, the mini-
mum value of σ(·) on nonvoid sets is zero. Each partition in the PLP
of this function will have blocks on which σ(·) takes zero value. The
right vertex set of the zero bipartite graph of σ(·) is as follows. (These
are minimal zero sets of σ(·) with respect to the property of containing a
given pair of elements). {{1, 2, 3}, {6, 7, 8}, {3, 4, 5}, {2, 6, 11}, {8, 9, 10}, {1, 2, 3, 4, 5},
{6, 7, 8, 9, 10}, {1, 2, 3, 6, 11}, {6, 7, 8, 2, 11}, {1, 2, 3, 6, 7, 8, 11}, {1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11}, E(G)}

An examination of this family reveals that {11}, {12, 13}
are invariant under the automorphisms of the zero bipartite graph of
σ(·) and are distinguishable from each other. Thus, the PLP of σ(·)
discriminates between these sets. Now the PLP of σ(·) is the same
as that of r(·). So the PLP of r(·) discriminates between 11 and 12.
However, the PP of r(·) with respect to | · | has only E(G) and ∅ as
members (i.e., E(G) is atomic relative to (r(·), | · |). Thus, the PP of
r(·) cannot discriminate between 11 and 12.

Example 13.9.2 Consider the submodular function ρ(·) defined on
the subsets of {1, 2, 3} as follows:
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Figure 13.3: The Graph G:PP and PLP Unrelated
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ρ(∅) = −4, ρ({1}) = −3, ρ({2}) = −4, ρ({3}) = 7, ρ({1, 2}) = −5, ρ({2, 3}) =
5, ρ({1, 3}) = 5, ρ({1, 2, 3}) = 0. This submodular function reaches its
minimum at {1, 2}. The PP of (ρ(·), | · |) discriminates between {1,2}
and {3} (Consider sets that maximize | X | −1

2
(ρ(X))). But it is eas-

ily seen by direct inspection that ρ̄(·) reaches its minimum only on
{{1, 2, 3}} and {{1}, {2}, {3}}. So the PLP of ρ(·) is unable to dis-
criminate between {1, 2} and {3}.

The PLP-PP relation across a bipartite graph

Let B ≡ (VL, VR, E) be a bipartite graph. Let w(·) be a positive weight
function on VR.As usual, let EL(X), X ⊆ VL be the subset of vertices of
VR which are adjacent only to vertices in X and let w(EL)(X) denote
the sum of the weights of vertices adjacent only to those in X. let
ΓR(X), X ⊆ VR be the subset of vertices of VL which are adjacent to
vertices in X. We define pR(Y ), the partition of VL associated
with Y , Y ⊆ VR, as follows: Let the components of the subgraph
of B on Y ⊎ ΓR(Y ) meet VL in sets X1, · · · , Xk. Let {e1, · · · , er} =
VL −

⋃k
i=1Xi. Then,

pR(Y ) ≡ {X1, · · · , Xk, {e1}, · · · , {er}}.

Henceforth we denote pR(·) by p(·).
Let Π be a partition of VL. We define EL(Π) to be

⋃

X∈ΠEL(X).

Exercise 13.14 Let B ≡ (VL, VR, E). Let Π1,Π2 be partitions of VL

and let Y ⊆ VR. Prove,

i. p(EL(Π1)) ≤ Π1.

ii. If EL(Π1) = EL(Π2) show that EL(Π1 ∨ Π2) ⊇ EL(Π1 ∧ Π2) =
EL(Π1)

iii. Construct an example where EL(Π1) = EL(Π2), but EL(Π1 ∨
Π2) ⊃ EL(Π1).

We now have the following lemma.

Lemma 13.9.1 Let B ≡ (VL, VR, E) be a bipartite graph. Then

i. EL(p(EL(Π))) = EL(Π),Π ∈ PVL
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ii. p(EL(p(Y ))) = p(Y ), Y ⊆ VR

Proof : By definition of p(·) and EL(·) it is clear that

p(EL(Π)) ≤ Π, (∗)
EL(p(Y )) ⊇ Y. (∗∗)

Further, if Y1 ⊆ Y2 and Π1 ≤ Π2 we have

p(Y1) ≤ p(Y2) (∗3)

EL(Π1) ⊆ EL(Π2) (∗4)

Using (∗∗) we have EL(p(EL(Π))) ⊇ EL(Π). Using (∗) and (∗4) we
have
EL(p(EL(Π))) ⊆ EL(Π). This proves the first part of the lemma.
Next, using (∗) we have p(EL(p(Y ))) ≤ p(Y ). Using (∗∗) and (∗3)
p(EL(p(Y ))) ≥ p(Y ). This proves the second part of the lemma.

2

We denote p(EL(Π)) by Π̄ and EL(p(Y )) by Ȳ . We refer to Π̄ as clo-
sure of Π and Ȳ as closure of Y. If Π = Π̄(Y = Ȳ ) we say that it
is closed. The above lemma states that EL(Π), p(Y ) are closed and
that every closed partition (closed set) can be obtained as the image
of some Y ⊆ VR under p(·) (as the image of some partition Π ∈ PVL

under EL(·)).
It is easily seen (Exercise 9.1) that if w(·) is a positive weight func-

tion on VR, then w(EL)(·) is a supermodular function on subsets of VL.
By our present notation w(EL(Π)) ≡ w(EL)(Π). The following theo-
rem which is the main result of this section, shows that constructing
the PLP of −w(EL)(·) is equivalent to the construction of the PP of
(| ΓR | −1)t(·) with respect to w(·).
Theorem 13.9.1 [Narayanan+Kamath94] Let B ≡ (VL, VR, E) be a
bipartite graph. Let w(·) be a positive weight function on VR. Then

i. Π ∈ PVL
minimizes (−w(EL)− λ)(·), λ > 0, only if it is closed.

ii. Y ⊆ VR minimizes λ(| ΓR | −1)t(·) − w(·), λ > 0, only if it is
closed.
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iii. When λ > 0, X ⊆ VR minimizes λ(| ΓR | −1)t − w(·) iff p(X)
minimizes (−w(EL)− λ)(·) equivalently Π ∈ PVL

minimizes
(−w(EL)− λ)(·) iff EL(Π) minimizes λ(| ΓR | −1)t(·)− w(·).

We need the following lemma for the proof of Theorem 13.9.1.

Lemma 13.9.2 Let B ≡ (VL, VR, E) be a bipartite graph. Let X ⊆ VR.
Let Π(X) be the partition of X induced by the connected components
of the subgraph of B on X ⊎ ΓR(X). Then,

(| ΓR | −1)t(X) = (| ΓR | −1)(Π(X))

= | VL | − | p(X) | .

Proof : In order to show that Π(X) minimizes (| ΓR | −1)(·) among
all partitions ofX we need merely show (by Theorem 12.3.5) that on all
partitions finer and on all partitions coarser than Π(X), (| ΓR | −1)(·)
does not take lower value than on Π(X).
Let Π′ ≥ Π(X). We then have | ΓR |(Π′) = | ΓR |(Π(X)) (by the defi-
nition of Π(X)), while | Π′ |≤| Π(X) | .
Hence, (| ΓR | −1)(Π(X)) ≤ (| ΓR | −1)(Π′).
Next let Π” ≤ Π(X). If Π” 6= Π(X), there exists a block N of Π(X)
which is partitioned into blocks N1, · · · , Nk with k ≥ 2 in Π”. Now the
subgraph of B on N ⊎ΓR(N) is connected. Hence, without loss of gen-
erality we may assume that ΓR(N1),ΓR(N2) have a common element
and in general ΓR(N1 ⊎ · · · ⊎ Nj),ΓR(Nj+1), j < k, have a common
element. Hence

(| ΓR | −1)({N1, · · · , Nk}) ≥ (| ΓR | −1)(N).

This proves that

(| ΓR | −1)(Π”) ≥ (| ΓR | −1)(Π(X)).

We conclude that Π(X) minimizes (| ΓR | −1)(·) and hence,

(| ΓR | −1)t(X) = (| ΓR | −1)(Π(X)).

Let Π(X) ≡ {M1, · · · ,Mn}.
By definition, p(X) ≡ {ΓR(M1), · · · ,ΓR(Mn), {e1}, · · · , {er}}, where
{e1, · · · , er} = VL − ΓR(X). Hence,

(| ΓR | −1)(Π(X)) =
∑

| ΓR(Mi) | −n =| ΓR(X) | −n
= | VL | −n− r =| VL− | p(X) |
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2

Proof of Theorem 13.9.1:
i. We have Π̄ ≤ Π and by Lemma 13.9.1 EL(Π̄) = EL(Π). If Π̄ 6= Π
then | Π̄ |>| Π | . The result follows.

ii. We have Ȳ ⊇ Y and, by the above mentioned lemma, p(Ȳ ) = p(Y ).
If Ȳ 6= Y, then w(Ȳ ) > w(Y ). Using Lemma 13.9.2 we get

(| ΓR | −1)t(Ȳ ) = (| ΓR | −1)t(Y )

= | VL | − | p(Ȳ ) |=| VL | − | p(Y ) | .

Hence,

λ(| ΓR | −1)t(Ȳ )− w(Ȳ ) < λ(| ΓR | −1)t(Y )− w(Y ).

The result follows.

iii. Let λ > 0 and let X ⊆ VR minimize λ(| ΓR | −1)t(·)− w(·). Then
X is closed, i.e., EL(p(X)) = X. Now

λ(| ΓR | −1)t(X)− w(X) = λ | VL | −λ | p(X) | −w(X).

Thus, X minimizes −λ | p(·) | −w(·). Since X = EL(p(X)), we see
that

(−w(EL)− λ)(p(X)) = −w(X)− λ | p(X) | .
We thus see that the minimum value of (−w(EL)− λ)(·) over PVL

is
not greater than the minimum value of (−λ | p(·) | −w(·)) over subsets
of VR. On the other hand let Π minimize (−w(EL)− λ)(·). We know
that Π is closed, i.e., p(EL(Π)) = Π. We have

(−w(EL)− λ)(Π) = −w(EL(Π))− λ | Π |
= −w(EL(Π))− λ | p(EL(Π)) | .

Hence the minimum value of (−w(EL)− λ)(·) over PVL
is not less than

the minimum value of (−λ | p(·) | −w(·)) over subsets of VR.
We conclude that the minimum values of the above two functions are
equal and also that if Π minimizes (−w(EL)− λ)(·), then EL(Π) mini-
mizes (−λ | p(·) | −w(·)+λ | VL |) and if X ⊆ VR minimizes the latter
function then p(X) minimizes (−w(EL)− λ)(·). Since the minimizing
partition of (−w(EL)− λ)(·) (minimizing set of (−λ | p(·) | −w(·))) is
closed, the result follows using the fact that
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λ(| ΓR | −1)t(X)− w(X) = λ | VL | −w(X)− λ | p(X) |

2

Exercise 13.15 Prove the following generalization of Theorem 13.9.1:
Let w(·) be any increasing set function:

i. Π ∈ PVL
minimizes (−w(EL)− λ)(·), λ > 0, only if it is closed.

ii. X ⊆ VR minimizes λ(| ΓR | −1)t(·) − w(·), λ > 0 only if X̄
minimizes the same function.

iii. When λ > 0, X ⊆ VR minimizes λ(| ΓR | −1)t(·) − w(·) only if
p(X) minimizes (−w(EL)− λ)(·).

iv. When λ > 0,Π ∈ PVL
minimizes (−w(EL)− λ)(·) iff EL(Π)

minimizes λ(| ΓR | −1)t(·)− w(·).

v. If w(·) is supermodular, w(EL)(·) acting on subsets of VR, is
a supermodular function. Hence, the minimizing partition of
(−w(EL)− λ)(·), λ > 0 are precisely those in the PLP of the
submodular function −w(EL)(·).

13.10 Fast Algorithms for Principal Par-

tition of the rank function of a graph

As we mentioned before, it is an interesting fact that the fastest algo-
rithm currently available for the principal partition of the rank function
of a graph is by finding the PLP of the weighted interior edge function
on vertex subsets. The basic idea is already outlined in the previous
sections. We do the specialization of this idea explicitly to the rank
function of a graph below. An advantage of this method is simplicity
of implementation.

Let B ≡ (VL, VR, EB),where VL ≡ V (G), VR ≡ E(G) with v ∈ VL

adjacent in B to e ∈ VR iff edge e is incident on vertex v in graph G.
Observe that
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(| ΓR | −1)t(X) = r(X), X ⊆ VR ((| ΓR | −1)t(X) = (| V | −1)t(X),
where V (X) ≡ end point set of X). Thus, as discussed in the previ-
ous section (or even directly), minimizing λr(X)−w(X) is equivalent
to minimizing (−w(EL)− λ)(·) over partitions of VL ≡ V (G). Here
w(EL)(Y ), Y ⊆ V (G) is the weight of edges with both end points
within Y . Thus, constructing the PP of (r(·), w(·)) is equivalent to
constructing the PLP of −w(EL)(·)(= −w(E)(·)).

Exercise 13.16 Do the conversion of the problem of finding the PP
of the rank function of a graph to a PLP problem directly.

Algorithm P-sequence of partitions of wREL(·) yields also the P-sequence
of
(r(·), wR(·)). Here VL ≡ V (G) = V and VR ≡ E(G), wR(·) ≡ w(·).
So the complexity of this algorithm (using Sleator’s flow algorithm
[Sleator80], as shown in Subsection 13.7.2) is O(| V |3| E(G) | log |
E(G) |). The DTL of ((wRE)L(·) − λ) yields Bλr,wR

. The algorithm
given in the above section does this in
O(| V |3| E(G) | log | E(G) |). Using the argument of Exercise 13.4,
computing the DTL of all the λs is also O(| V |3| E(G) | log | E(G) |).
Thus the overall complexity of the construction of PP of (r(·), wR(·))
is O(| V |3| E(G) | log | E(G) |).

Now let us consider the unweighted case where wR(·) =| · | . Here
we use the balanced bisection method given in page 703. Clearly the
set of possible critical values in this case can be confined to {p/q, p, q
integers s.t. 0 < p <| E(G) |, 0 < q < |V |}.
The cardinality of this set is | V || E(G) | .
The Algorithm Min(f̄ , S) in this case has a complexity
O(| E(G) || V |2 log | E(G) |). Using the balanced bisection method
would mean that Algorithm P-sequence of partitions has a complexity
O(| E(G) || V |2 log2 | E(G) |).
Our present version of DTL would give a complexity O(| E(G) || V |3
log | E(G) |) for DTL’s of all critical values. A more sophisticated
version ([Patkar+Narayanan92b],
[Patkar92]) has a complexity of O(| V |2| E(G) | log | E(G) |)).
Thus by the method of transforming the PP problem into a PLP prob-
lem, the complexity for the principal partition of (r(·), | · |), is as
follows:
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P − sequence − O(| E(G) || V |2 log2 | E(G) |)
Complete Principal partition − O(| E(G) || V |2 log2 | E(G) |)

The complexity by direct edge set based methods, earlier available,
in [Imai83] for this (unweighted) case of PP of the rank function of a
graph was as under:

P − sequence − O(| E(G) |3 log | E(G) |)
overall PP − O(| E(G) |3 log | E(G) |)

For fixed k the unweighted problem is better solved by ‘remember-
ing’ the flow before fusion takes place. By such methods when k is an
integer Xk, the minimum set minimizing kr(X) + |E(G) −X| can be
computed in
O(min(k(k + 1) | V |2, | E(G) |2)) [Patkar+Narayanan91].

Exercise 13.17 Show that

i. the packing number of a graph G (maximum number of disjoint
spanning forests contained in G) can be determined in

O(| E(G) || V | log | V | log(| E(G) | / | V |)) time

and

ii. the covering number of graph G (minimum number of disjoint
subforests needed to cover E(G)) can be determined in O(| E(G) ||
V | log2 | V |) time.

13.11 Solutions of Exercises

E 13.1: Clearly (Π2)fus·Π1 can have a block of maximum size atmost
(| Π1 | − | Π2 | +1). To find the min partition within this block
takes O(k1α(k1)) elementary steps where k1 = (| Π1 | − | Π2 | +1).
If k2, · · · , kr are the sizes of the remaining blocks of (Π2)fus·Π1

, the

overall complexity of Subdivide (Π1,Π2) is
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O(k1α(k1) + · · · krα(kr)).
Since α(k) is superlinear

k2α(k2) + · · ·+ krα(kr) ≤ (k2 + · · ·+ kr)α(k1)

Thus, the overall complexity in O((| Π1 | α(| Π1 | − | Π2 | +1)).

E 13.2: For every critical value λ, the function (f − λ)(·) reaches a
minimum on atleast two partitions Π1,Π2 of S with Π1 ≤ Π2 so that

λ =
f̄(Π1)− f̄(Π2)

| Π1 | − | Π2 |
.

The numerator clearly lies between −n(a − b) and n(a − b) and the
denominator between 0 and n. The possible values p

q
can take is there-

fore in {p
q

: −n(a− b) ≤ p ≤ n(a− b), 0 < q ≤ n}. This set clearly has

cardinality n(2n(a− b) + 1).

E 13.4: Suppose Π1, · · · ,Πn = ΠS is the principal sequence of parti-
tions. If n = 1 the result is obviously true. Suppose the result is true
for n = (r − 1).
If Π1, · · · ,Πr−1,Πr = ΠS is the principal sequence, then by induction
assumption to build the zero bipartite graphs of all the partition pairs
(Πj ,Πj+1) from Π0 to Πr−1 we require O(

∑k
i=1 | Ni |2) submodular

function minimizations, where N1, · · · , Nk are the the blocks of Πr−1.
To build the zero bipartite graph corresponding to (Πr−1,Πr) we re-
quire O(k2) minimizations. Assume for simplicity that the sets Ni are
nonsingletons. Now for any positive number β,

β(
k
∑

i=1

| Ni |2) + βk2 < β | S |2, k ≥ 2.

Hence, we require O(| S |2) minimizations to build all the zero bipartite
graphs for n = r. (If we wish to argue allowing Ni to be singletons, we
need to show that

m2
1 + · · ·+m2

j + k2 < (m1 + · · ·+mj + k − j)2,

where the mi > 1, i = 1, · · · , j and k ≥ j. This is routine.)

E 13.5: (For reasons of brevity we do not add a new source vertex ŝ
and an edge (ŝ, s) of capacity ∞.)
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Let g(v)(= wL(v)) be negative. Suppose there exists a min cut of the
form

(s ⊎X ⊎ Γ(X), (VL −X) ⊎ (VR − Γ(X)) ⊎ t).
If v ∈ X we shift it from the s-side to the t-side of the cut. The new
cut is

(s ⊎ (X − v) ⊎ Γ(X − v), (VL − (X − v)) ⊎ (VR − Γ(X − v)) ⊎ t).

We thus see that the cut capacity is reduced by wR(Γ(v)− Γ(X − v)).
This reduction cannot be negative and the result follows.

E 13.6: We assume that (wRΓ)(e)−λ > 0, as otherwise it can be seen
that T ∪ e contains no fusion set. We will show that after the edge
capacity of (s, e) is increased to ((wRΓ)(e) + δ) the capacity of the cut
(s, T ∪e⊎VR⊎ t) is greater than that of the cut (s⊎e⊎Γ(e), T ⊎ (VR−
Γ(e)) ⊎ t). From this it would follow that the min cut has the form
(s ⊎X ⊎ Γ(X), ((T ∪ e)−X) ⊎ (VR − Γ(X)) ⊎ t) where X 6= ∅. More
careful analysis would show that δ can be taken to be zero, for the cut
corresponding to a fusion set would have capacity lower than that due
to {e}.
The capacity of the cut (s, (T ∪ e) ⊎ VR ⊎ t)
=
∑

v∈T∪e((wRΓ)(v)− λ) + (λ+ δ) - (capacity of the edges directed to
s)
=
∑

v∈T ((wRΓ)(v)− λ) + (wR(Γ(e)) + δ - (capacity of edges to s).
Capacity of the cut (s ⊎ e ⊎ Γ(e), T ⊎ (VR − Γ(e)) ⊎ t)
=
∑

v∈T ((wRΓ)(v)−λ) + (wR(Γ(e)) -(capacity of edges directed to the
s).
This proves the required result.

E 13.7: Suppose capacity of (s, v) = λ and v 6∈ Y. Compare the
capacity of the cut

(s ⊎ Y ⊎ Γ(Y ), t ⊎ (VL − Y ) ⊎ (VR − Γ(Y )))

with that of

(s ⊎ (Y ∪ v) ⊎ Γ(Y ∪ v), t ⊎ (VL − (Y ∪ v)) ⊎ (VR − Γ(Y ∪ v))).

The former cut has a capacity greater than that of the latter by λ −
wR(Γ(v) − Γ(Y )) which is a positive number. Hence, we may assume
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that the set Y corresponding to the min cut has v belonging to it, i.e.,
Y ⊇ VL − Z.
E 13.8: We will show that the critical value of f(·) cannot be lower
than
(wRΓ)(VL − v). Observe that if λ is a critical value of f(·) then λ −
(wRΓ)(VL) is a critical value of −wREL(·). Now −(wREL)(·) takes zero
value on the null set. Hence, −wREL(·) reaches its minimum at ΠVL

.
Hence, −(wREL)(·) cannot have a critical value lower than zero. Equiv-
alently, f(·) cannot have a critical value lower than 0 + (wRΓ)(VL).
Hence, we do not need to minimize (f − λ)(·) for λ < (wRΓ)(VL) and
therefore, we may take λ ≥ (wRΓ)(VL − e) since wR(·) ≥ 0.

E 13.11: Consider Πmax(X),Πmax(X ∪ e) for (f − λ)(·). Since {e}
is not a separator of (f(·)− λ)/X ∪ e)(·) it is clear that Πmax(X ∪ e)
cannot have e in a singleton block. Let M be the block of Πmax(X ∪e)
containing e. Then M = N1 ⊎ · · · ⊎ Nk ∪ e where the Ni are blocks
of Πmax(X). The remaining blocks of Πmax(X) and Πmax(X ∪ e) are
identical. So

(f − λ)t(X ∪ e)− (f − λ)t(X) = (f − λ)(M)−
∑

(f − λ)Ni

≥ (f − λ)(M)− (f − λ)(∪Ni)

≥ f(X ∪ e)− f(X)

(by submodularity off(·)).

E 13.12:
i. (f − k)t(·) is increasing, integral, submodular with zero value on
null set and 1 on singletons.
ii. We know that circuits of (f − k)t(·) are minimal sets s.t.

(f − k)t(X) <| X | · · · (∗).

Let X ′ be a strong fusion set. Then,

(f − k)(X ′) <
∑

e∈X′

(f − k)(e) =| X ′ |

Hence,
(f − k)t(X

′) ≤ (f − k)(X ′) <| X ′ |
Hence X contains a minimal set satisfying (∗).
Next let Y be s.t. (f − k)t(Y ) <| Y | . Let Π be a partition of Y that
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minimizes (f − k)(·). Then (f − k)(Π) <| Y |= (f − k)(Π0), where Π0

is the singleton block partition of Y . Thus Π has a nonsingleton block
say Z. Now Z contains a minimal subset X whose (f − k)(·) value is
less than its size (=

∑

e∈X(f −k)(e)). Clearly this set is a strong fusion
set. So Y contains a strong fusion set.
iii. We have, (f − k)(Π0) =| T |, where Π0 is the partition of T
with singleton blocks. Hence, Π0 is the minimal minimizing partition
for (f − k)(·) iff (f − k)t(T ) =| T |, i.e., iff T is independent in the
matroid.

E 13.13:
i. Follows from Nash-Williams’ rank formula.

ii. We use the results in Exercise 13.12. Hence, K is independent
(M1, · · · ,M2)t iff it contains no strong fusion set, i.e., iff there exists
no X ⊆ K s.t.

(
∑

ri − (k − 1))(X) <
∑

e∈X

((
∑

ri − (k − 1)))(e) =| X |,

i.e., s.t.
∑

ri(X) <| X | +(k − 1).
Equivalently, K is independent iff

∑

ri(X) ≥| X | +(k − 1) ∀X ⊆ K.

iii. We use Exercise 13.12 Circuits of (M1,M2)t are minimal nonvoid
sets that satisfy,
(r1 + r2)(X) <| X | +1, equivalently, (r1 + r2)(X) ≤| X | . Thus, X is
a circuit of (M1,M2)t iff

0 =| X | −(r1 + r2)(X) >| Y | −(r1 + r2)(Y ) ∀Y ⊂ X, Y 6= ∅

i.e., iff

((r1 + r2)∗ | · |)(X) = (r1 + r2)(X)

< (r1 + r2)(Y )+ | X − Y | , ∀Y ⊂ X, Y 6= ∅

i.e., iff X is a minimal nonvoid set which is covered by disjoint bases of
restrictions ofM1,M2 on it (i.e., any pair of elements of X is mutually
approachable relative toM1 ·X,M2 ·X).

E 13.14:
i. & ii. Let Π1 ≡ {N1, · · · , Nk}, Π2 ≡ {M1, · · · ,Mr}. Suppose
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EL(Π1) = EL(Π2).
Let NRi ≡ EL(Ni), i = 1, · · · , k and let MRi ≡ EL(Mi), i = 1, · · · , r.
Let B1 be the direct sum of the subgraphs of B on NRi ⊎ΓR(NRi). Let
B2 be similarly obtained from the subgraphs of B on MRi ⊎ ΓR(MRi).
Observe that ΓR(NRi) ⊆ Ni and ΓR(MRi) ⊆ Mi. We have

⋃

NRi =
⋃

MRi. Hence the edges incident on these sets must be identical. It is
therefore clear that B1 and B2 are identical. All vertices of VL may
not appear in B1. Let such vertices be added as isolated vertices to B1

and let the resulting bipartite graph be B1L. The components of B1L

meet VL in the partition

Π ≡ p(∪NRi) = p(EL(Π1)).

Now the intersection of each component of B1L with VL, by its con-
struction, must be contained in one of the Ni as well as one of the
Mi. Hence, Π ≤ Π1 and Π ≤ Π2. (This proves the first part of the
exercise).
Therefore, Π ≤ Π1 ∧ Π2 ≤ Π1 and hence, EL(Π) ⊆ EL(Π1 ∧ Π2)
⊆ EL(Π1). But EL(Π) = EL(Π1). We conclude that EL(Π1 ∧ Π2) =
EL(Π1).
From the definition of the function EL(·) it follows that EL(Π1∨Π2) ⊇
EL(Π1).
iii. We give an example where EL(Π1 ∨ Π2) 6= EL(Π1). Let Π1 ≡
{N1, N2},
Π2 ≡ {M1,M2,M3}, where M1 ⊆ N1,M3 ⊆ N2,M2 ∩ N1 6= ∅ and
M2 ∩ N2 6= ∅. Let vertex v ∈ VR be adjacent to a ∈ M1 as well as to
b ∈M2∩N2, but to no other vertices. It is clear that v ∈ EL(Π1∨Π2) =
EL(N1 ∪N2) but v 6∈ EL(Π1) and v 6∈ EL(Π2).

E 13.15:
i. Here the proof is identical to part (i) of Theorem 13.9.1.
ii. We have w(Ȳ ) ≥ w(Y ) and p(Ȳ ) = p(Y ). We would then have

λ(| ΓR | −1)t(Ȳ )− w(Ȳ ) ≤ λ(| ΓR | −1)t(Y )− w(Y ),

from which the result follows.
iii.& iv. Proof is similar to part (iii) of Theorem 13.9.1.
v. See Problem 9.3.

E 13.16: Observe first that the minimum of λr(X)−w(X) will occur
only on closed sets (under the formation of circuits). (If X is not
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closed then the closure X̄ has the same rank and greater weight than
X). With each subset X ⊆ E(G) we can associate the partition p(X) of
V (G), whose blocks are the vertex sets of components of the subgraph
G′ of G on X with vertex set V (G).
Now r(X̄) = V (G) - number of components of G ′.

= | VL | − | p(X̄) | .
Hence,

λr(X̄)− w(X̄) = λ(| VL | − | p(X̄) |)− w(E)(p(X̄)),

where we have used the fact that w(X̄) is the weight of edges with both
endpoints within the same block of p(X̄), i.e., w(X̄) = w(E)(p(X̄)).
On the other hand, λ(| VL | − | Π |)−w(E)(Π), for any partition Π of
V (G), is not less than λr(Z)− w(Z), where Z is the set of edges each
of which has both end points within the same block of Π. Hence, min-
imizing λr(X)−w(X) is equivalent to minimizing w(E)(Π)− λ | Π | .

E 13.17: We assume the graph is connected. Otherwise we test each
component in turn.(Better bounds for these problems is available. See
for instance [Patkar92],[Patkar+Narayanan91],[Patkar+Narayanan92c]).

i. We need to find the least integer k in
[

0, |E|
|V |

]

for which | E(V ) |
−k(| V | −1) reaches its maximum on E(G). Let B ≡ (VL, VR, EB) ≡
(V (G), E(G), EB) be the bipartite graph associated with the graph G
in the usual way. Build the flow graph F k

B(B,wL,wR), where wL(v) =
k ∀v ∈ VL, wR(e) = 1 ∀e ∈ VR. If (s, VL ⊎ VR ⊎ t) is a min cut in
this flow graph, then maximum would be reached on E(G). One such
maximization takes O(| E || V | log | V |) time. Finding the least

integer k needs the above maximization to be done log( |E|
|V |

) times.

ii. In this case we have to find the maximum k in [0, | E |] for which
the maximum value of | E(V ) | −k(| V | −1) is not negative. ( The
covering number would be k, if for this maximum value of k the above
expression has the maximum value zero, otherwise the covering number
would be (max value of k + 1)). The flow graph is as above. Flow
maximization has to be done log | E |= log | V | times. So complexity
is O(| E || V | log2 | V |) time.
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Chapter 14

The Hybrid Rank Problem

14.1 Introduction

The hybrid rank problem in its various manifestations provides a strong
link between the theories of submodular functions and of electrical net-
works. In this chapter we present four different non-equivalent formu-
lations of this problem. Each of these formulations is related to a prac-
tically important network problem and each of the first three motivates
an important area of research in submodular function theory. The first
of these formulations - ‘the topological degree of freedom problem’ is
the most basic and is due to G.Kron (see [Kron39],[Kron63] [Amari62]
for related material). It involves the convolution of the rank and nullity
functions of a graph and was solved using Kishi-Kajitani’s ‘principal
partition’ [Kishi+Kajitani68] by Ohtsuki et al.[Ohtsuki+Ishizaki+Watanabe68]
in 1967 (see also [Kishi+Kajitani69] and [Ohtsuki+Ishizaki+Watanabe70]).
The other formulations are generalizations of the first. One of these
involves minimizing the partition associate of a submodular function
while another involves solving the membership problem for a polyma-
troid given a matroid expansion. The last of the formulations is a
vector space generalization which resembles convolution but leads to
an optimization problem for which a solution is presently unknown.

743
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14.2 The Hybrid Rank Problem - First

Formulation

The Problem (first formulation): Given a graph G, partition E(G)
into X and E(G) − X such that r(G . X) + ν(G × (E(G) − X)) is
minimized.

This problem has already been mentioned in Subsection 6.5.6. When
the network is linear, if we write nodal equations for NAL and loop
equations for NBK , the total number of equations would be r(G . A)+
ν(G ×B). So one could ask for the partition A,B for which the above
expression reaches a minimum value. Although the notation used here
is different, this is essentially the reason G.Kron posed the ‘topological
degree of freedom’ problem.
In order to be historically accurate we present five problems from the
literature and give their combined solution, in brief first, and fill in
details subsequently.

i. Forest of minimum size hybrid representation (Kishi and
Kajitani
[Kishi+Kajitani69]). Let a forest t be represented by a pair of sets
(At, Bt) where At ⊆ t,t ∩ Bt = ∅ such that (At1 , Bt1) = (At2 , Bt2)
iff t1 = t2. Observe that there can be several pairs representing the
same forest, for instance (t, φ), (φ,E(G)− t) both represent t. We call
|At

⋃

Bt| the size of the representation (At, Bt). Find a forest which
has the representation of minimum size.

ii. Maximum distance between two trees (Kishi and Kajitani
[Kishi+Kajitani69]) Find two forests in a given graph which have the
maximum distance between them (distance between two forests t1 and
t2 is |t1 − t2|) i.e., the size of their union is the largest possible.

iii. The topological degree of freedom of an electrical network
(Ohtsuki et al [Ohtsuki+Ishizaki+Watanabe70]) Select a minimum
sized set of branch voltages and branch currents from which, by using
Kirchchoff’s voltage equations and Kirchhoff’s current equations, we
can find either the voltage or the current associated with each branch.
The minimum size is called the topological degree of freedom of
the network, equivalently, the hybrid rank of the graph.

iv. The Shannon switching game [Edmonds65b]
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G is a graph with one of its edges say eM ‘marked’. There are two
players - a ‘cut’ player and a ‘short’ player. The cut player, during
his turn, removes (opens) an edge leaving the end points in place.
The short player, during his turn, fuses the end points of an edge and
removes it. Neither player is allowed to touch eM . The aim of the
cut player is to destroy all the paths between the end points of eM

(equivalently, destroy all circuits containing eM). The aim of the short
player is to fuse the end points of eM (equivalently, destroy all cutsets
containing eM). The problem is to analyse this game to characterize
situations where the cut or short player, playing second, can always
win and to determine the winning strategy.

v. The maximum rank of a cobase submatrix (Iri [Iri68],[Iri69])
For a rectangular (m×n) matrix with linearly independent rows, let us
call an m×(n−m) submatrix a cobase submatrix iff the remaining set
of columns are from an identity matrix. The term rank of a matrix
is the maximum number of nonzero entries in the matrix which belong
to distinct rows and distinct columns. Find

• a cobase matrix of maximum rank, and

• a cobase matrix of minimum term rank

among all matrices row equivalent to the given matrix.

For the above five problems the solution involves essentially the
same strategy: Find a set X (or a minimal set Xmin or a maximal set
Xmax) such that

(2r ∗ | · |)(E(G)) = 2r(X) + |E(G)−X|.

Select a forest t which has maximal intersection with X. The rep-
resentation (t ∩X, (E(G)− t)⋂(E(G)−X)) has the least size among
all representations of all forests.

The maximum distance turns out to be the same as the above min-
imum size of representation. In [Kishi+Kajitani69] Kishi and Kajitani
gave an algorithm for building a pair of maximally distant forests which
is essentially the well known algorithm for building a base of the union
of two matroids (see [Edmonds65a] for the case where the matroids are
identical - essentially the same algorithm works for the general case).
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Let tX be a forest of the subgraph on X. Let LX be a coforest of
the graph on G × (E(G) − X) (the graph obtained by fusing the end
points of edges in X and removing them). Select the branch voltages
of tX and the branch currents of LX as the desired set of variables. As
is easily seen, the topological degree of freedom is also the same as the
minimum size of representation of a forest.

If eM ∈ Xmin, the short player can always win. If eM ∈ (E(G) −
Xmax) the cut player can always win. If eM ∈ Xmax −Xmin, whoever
plays first can always win. The winning strategies involve the con-
struction of appropriate maximally distant forests during every turn.

The solution is similar for the last problem. Let S be the set of all
columns and let r(·) be the rank function on the collection of subsets
of S. Then the maximum rank of a cobase matrix = the minimum
term rank of a cobase matrix =
= (2r∗ | · |)(S) − r(S). Select two maximally distant bases (bases ≡
maximally independent columns). Perform row operations so that an
identity matrix appears coresponding to one of these. The submatrix
corresponding to the complement of this base is the desired cobase
matrix which has both maximum rank as well as minimum term rank.

Now we go into details of the solution to the above problems. First
we note that the problem of building two maximally distant forests
is the same as finding two bases of M(G) whose union is a base of
M(G) ∨M(G). This can be solved by using the Algorithm Matroid
Union of Section 11.2. The others are stated as exercises for which we
have provided solutions. We need the following lemma, based on the
matroid union operation. The reader needs to be familiar with Section
11.2 in order to understand the proof of the lemma.

Lemma 14.2.1 Let t1, t2 (t̄1, t̄2) be maximally distant forests (coforests)
of graph G. Let E ≡ E(G). Then

i. there exists a set A ⊆ E(A∗ ⊆ E) s.t.

(a) A ⊇ E − (t1 ∪ t2) (A∗ ⊇ E − (t̄1 ∪ t̄2)),

(b) A ∩ t1, A ∩ t2 are disjoint forests of G . A (A∗ ∩ t̄1, A∗ ∩ t̄2
are disjoint coforests of G × A∗).
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ii. A set A ⊆ E satisfies the above properties iff it satisfies

(2r∗ | · |)(E) = 2r(A)+ | E −A |=| t1 ∪ t2 |

(A set A∗ ⊆ E satisfies the above properties iff it satisfies

(2ν∗ | · |)(E) = 2ν(A∗)+ | E − A∗ |=| t̄1 ∪ t̄2 |,

where ν(A∗) = ν(G × A∗)),

iii. there is a unique minimal set Xmin(Ymin) and a unique maximal
set
Xmax(Ymax) which satisfy the above properties of A(A∗),

iv. An edge e belongs to Xmin (e belongs to Ymin) iff there exist max-
imally distant forests t1, t2 (coforests t̄1, t̄2) s.t. e ∈ (E − (t1 ∪
t2)), (e ∈ (E − (t̄1 ∪ t̄2))),

v. Xmax = E − Ymin and Xmin = E − Ymax.

Proof : It is easily verified that t1, t2 are maximally distant iff t̄1, t̄2 are
maximally distant. We use the Algorithm Matroid Union of Section
11.2 and build a maximally distant pair of forests t1, t2. Let R be the
set of all vertices of G(t1, t2) (which are edges of G) reachable from
E − (t1 ∪ t2).
Let R∗ be the set of all vertices of G(t̄1, t̄2) reachable from E− (t̄1∪ t̄2).
Then

i(a) by definition R ⊇ E − (t1 ∪ t2) and R∗ ⊇ E − (t̄1 ∪ t̄2).
i(b) By Lemma 11.3.3 we have, t1∩R, t2∩R are pairwise disjoint forests
of G . R and t̄1∩ t̄2∩R∗ are pairwise disjoints coforests of G×R∗ (note
that (M(G))∗ · T = (M(G × T ))∗).

ii. By the same lemma, R,R∗ minimize respectively 2r(X)− | X |
, X ⊆ E and
2ν(X)− | X |, X ⊆ E. Hence,

(2r∗ | · |)(E) = min
X⊆E

(2r(X)− | X |)+ | E |= 2r(R)+ | E −R | .

Now, 2r(R)+ | E−R |= 2r(R)− | R | + | E |= − | E−(t1∪t2) | + | E |=| t1∪t2 | .
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Similarly,

(2ν∗ | · |)(E) = 2ν(R∗)+ | E − R∗ |=| t̄1 ∪ t̄2 | .
If A is any other set satisfying properties (i(a)) and (i(b)), then it is
easily seen that

2r(A)− | A |= − | E − (t1 ∪ t2) |
so that

2r(A)+ | E −A |=| t1 ∪ t2 |= (2r∗ | · |)(E).

If A violates (i(a)) it cannot contain R which by Lemma 11.3.3 is the
minimal set s.t.
(2r∗ | · |)(E) = 2r(R)+ | E − R | . If A violates (i(b)), an easy
computation shows that

2r(A)+ | E −A |>| t1 ∪ t2 |= 2r(R)+ | E − R | .
The dual has an identical proof.

iii. The function 2r(X)+ | E − X | is submodular and hence has a
unique minimal and a unique maximal set minimizing it. (The unique
minimal set is in fact R as mentioned above). Minimizing this function
has earlier been shown to be equivalent to possessing the first two
properties stated in this lemma.
Similarly for the dual.

iv. By Lemma 11.3.3, E−R is the set of coloops ofM(G)∨M(G). Thus
every element in R can be put outside some base of M(G) ∨M(G),
equivalently, for each e ∈ R there exist maximally distant forests t′1, t

′
2

of G s.t. e /∈ t′1 ∪ t′2. Similarly for the dual.

v. We have ν(X) =| X | −r(E) + r(E −X). So

2ν(X)+ | E −X |= (2r(E −X)+ | X |)+ | E | −2r(E)

Hence, a set minimizes 2ν(X)+ | E−X | iff its complement minimizes
2r(X)+ | E −X | . The result is an immediate consequence.

2

Exercise 14.1 Show that the minimum size among all representations
of forests in G equals

minX⊆E(r(G . X) + ν(G × (E −X)),

where E ≡ E(G).



14.3. THE HYBRID RANK PROBLEM - SECOND FORMULATION749

Exercise 14.2 Show that a subset A ⊆ E(G) minimizes r(G . X) +
ν(G × (E −X)) iff it minimizes 2r(X)+ | E −X |, where E ≡ E(G).
Exercise 14.3 Show that two forests t1, t2 of a graph G are maxi-
mally distant iff

| t2 − t1 |= minX⊆Er(G . X) + ν(G × (E −X)),

where E ≡ E(G).
Exercise 14.4 Describe the best strategy for the Shannon switching
game for each of the three cases listed in the brief solution to the prob-
lem.

Exercise 14.5 Justify the algorithm given in the brief solution to the
‘maximum rank of a cobase matrix problem’ and hence prove that the
maximum rank of a cobase matrix equals the minimum term rank.

14.3 The Hybrid Rank Problem - Second

Formulation

14.3.1 Introduction

Consider the problem of analyzing a network N whose devices are
naturally partitioned into blocks with the device characteristic of each
block available to us in both the conductance and the resistance form,
i.e.,

vb −Rbib = sb or Gbvb − ib = ŝb

(Rb and Gb are not necessarily diagonal matrices). When we break up
the devices into A and B to use the hybrid analysis of Chapter 6 we
would not like to split the blocks since the variables in each block are
coupled. So we are led to the following second formulation of the
hybrid rank problem:

Let G be a graph and let Π be a partition of E(G). Find a partition
{A,B} of E(G), that minimizes r(G . A)+ν(G×B) under the condition
that A (and therefore B) is a union of blocks of Π.

We know that minimizing r(G . A) + ν(G × B) over any family of
subsets is the same as maximizing | A | −2r(G . A) (= −(r(G . A) +
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ν(G × B) + r(G)− | E(G) |)) over the same family of subsets. This
is an instance of the membership problem for a polymatroid, given a
matroid expansion, described in the next subsection.

In practice, by using the method of multiport decomposition (see
Chapter 8), one can replace each subnetwork by a forest subgraph,
which would be adequate to represent the topological relationship be-
tween different subnetworks. Below, when we model the second for-
mulation in terms of matroids, we therefore assume that the expansion
has an independent set in place of a single element of the polymatroid.
We give two ways of solving the above problem. The first solves a
more general version in terms of matroids. The second converts this
problem into a series of simple flow problems.

14.3.2 Membership Problem with Matroid Expan-
sion

We begin with the matroid version of the second formulation of
the hybrid rank problem:

Let M be a matroid on Ŝ and let S be a partition of Ŝ. Let

f(·) ≡ rfus·S(·) (i.e., f(X) ≡ r(
⋃

Ni∈X

Ni)).

Let g(·) be a weight function on S defined by g(e) ≡ f(e) ∀e ∈ S.
Find the subset of S which minimizes f(X) + f ∗(S −X), where f ∗(·)
is the comodular dual of f(·) relative to the weight function g(·).

The following exercise shows that the above problem is related to
the membership problem for a polymatroid, given a matroid expansion.

Exercise 14.6 Let f(·) be a polymatroid rank function on subsets of
S. Let f ∗(·) be the dual of f(·) relative to the weight function g(·) where
g(e) ≡ f(e) ∀e ∈ S. Let

the hybrid rank of f(·) ≡ min
X⊆S

f(X) + f ∗(S −X).

Show that

i. the hybrid rank f(·) = the hybrid rank of f ∗(·).
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ii. a subset K minimizes f(X)+f ∗(S−X) iff it maximizes g(X)−
2f(X).

iii. the hybrid rank of a contraction, a restriction or a minor of f(·)
cannot be more than the hybrid rank of f(·).

We now state the membership problem for a polymatroid,
given a matroid expansion:

Let M be a matroid on Ŝ and let S be a partition of Ŝ. Let

f(·) ≡ rfus·S(·) (i.e., f(X) ≡ r(
⋃

Ni∈X

Ni)).

Find the subset of S which maximizes g(X)−f(X), X ⊆ S, where g(·)
is a weight function on S.

We give a simple general solution to this problem using the matroid
union operation. For the case where the matroid is graphic, a more
efficient solution is given later. First we introduce some convenient
notation.

Let f(·) be an integral polymatroid rank function on subsets of
S ≡ {e1, · · · , en}. Let Ŝ be the set obtained from S by replacing each
ei by the set êi, with the condition that when ei, ej are distinct we have

êi ∩ êj = ∅. Let H(·) be a function from subsets of S to subsets of Ŝ

defined by H(X) ≡ ⋃ei∈X êi, X ⊆ S. Let M be a matroid on Ŝ whose
rank function r(·) satisfies the following:

f(X) = r(H(X)) ∀ X ⊆ S.

We say that theM or r(·) is an expansion of f(·) while f(·) is a fusion
(aggregation) of r(·). Henceforth we take | ê |= r(ê) = f(e) ∀ e ∈ S.
Let g(·) be a positive integral weight function on S. If for some e′,
g(e′) > f(e′), it is easy to see (Exercise 14.9) that e′ must necessarily
belong to any set that maximizes g(X)−f(X). We can therefore work
with S−e′ in place of S, f ⋄(S− e′)(·) in place of f(·) and g/(S− e′)(·)
in place of g(·). So, without loss of generality, we may assume that
g(e) ≤ f(e) ∀e ∈ S.
Let Mα be the matroid on Ŝ with rank function α(·) defined by

α(·) = re1 ⊕ · · · ⊕ ren
(·),
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where

rei
(X̂) ≡ | X̂ |, X̂ ⊆ êi, | X̂ |≤ r(êi)− g(ei)

≡ r(êi)− g(ei), otherwise.

(i.e.,Mα is a direct sum of uniform matroids on the êi).

Exercise 14.7 Derived matroids are expansions of derived poly-
matroids: Let f(·) be a polymatroid rank function on subsets of S and
letM on Ŝ be a matroid expansion of f(·) with rank function r(·). Fur-
ther let | ê |= r(ê) ∀ e ∈ S. Let T̂ ≡ H(T ). Then

i. f/T(·) has the expansionM · T̂

ii. f⋄T(·) has the expansionM× T̂

iii. let f ∗(·) denote the dual of f(·) with respect to the weight function
g(·) defined by g(e) ≡ f(e) ∀ e ∈ S. ThenM∗ is an expansion of
f ∗(·).

The following theorem assumes the notation of page 751 for g(·), f(·),
r(·), α,M,
Mα etc.

Theorem 14.3.1 Let f(·) be an integral polymatroid rank function
and let g(·) be a positive weight function with g(e) ≤ f(e) ∀e ∈ S. Let
r(·), α(·),M,Mα be as above. Then,

i. g(X)− f(X) =| H(X) | −(r + α)(H(X)), X ⊆ S.

ii. Let R̂ be the set of noncoloops ofM∨Mα and let R̂1 be its closure
relative to α(·). Then R̂1 maximizes | X̂ | −(r+α)(X̂), X̂ ⊆ Ŝ,
R̂1 = H(R1) for some R1 ⊆ S, and
g(R1)− f(R1) =| R̂1 | −(r + α)(R̂1).

iii.

max
X⊆S

g(X)− f(X) = max
X̂⊆Ŝ

| X̂ | −(r + α)(X̂), X̂ ⊆ Ŝ.

iv. The vector g belongs to the polymatroid Pf iff there exists a base
b of M s.t. |b ∩ ê| ≥ g(ê) ∀ e ∈ S.
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We need the following lemma for proving this theorem.

Lemma 14.3.1 Let M1,M2 be matroids on Ŝ and let r1(·), r2(·) re-
spectively, be their rank functions. Let b1, b2 be maximally distant bases
of M1,M2 respectively (i.e., b1 ∪ b2 is a base of M1 ∨M2). Let R̂ be
the set of noncoloops ofM1 ∨M2, and let R̂1 denote its closure in the
matroid M1. Then

i. R̂1 maximizes | X̂ | −(r1 + r2)(X̂), X̂ ⊆ Ŝ,

ii. R̂1 − R̂ is a set of coloops of M2 · R̂1,

iii. R̂1 contains no coloops of M1 · R̂1,

iv. b1∩ R̂1, b2∩ R̂1 are disjoint bases ofM1 · R̂1,M2 · R̂2 respectively.

Proof : By Lemma 11.3.3, R̂ maximizes | X̂ | −(r1 + r2)(X̂), X̂ ⊆ Ŝ.
If R̂1 = R̂ we are done. Let R̂1 ⊃ R̂. We must have

| R̂1 | −(r1 + r2)(R̂1) ≤| R̂ | −(r1 + r2)(R̂).

But r1(R̂1) = r1(R̂). Hence, | R̂1 − R̂ |≤ r2(R̂1) − r2(R̂). Thus, the
inequalities have to be equalities. Hence,
i. R̂1 maximizes | X̂ | −(r1 + r2)(X̂), X̂ ⊆ Ŝ and
ii. R̂1 − R̂ is a set of coloops ofM2 · R̂1.
We know that R̂ contains no coloops ofM1 · R̂ by Lemma 11.3.3 and
R̂1 − R̂ is spanned by R̂ inM1. Hence,
iii. R̂1 contains no coloops ofM1 · R̂1.
Now by the above mentioned lemma, b1 ∩ R̂, b2 ∩ R̂ are disjoint bases
of M1 · R̂,M2 · R̂ respectively and (Ŝ − R̂) ⊆ b1 ∪ b2. Since R̂1 − R̂
is dependent on b1 ∩ R̂ in M1 · R̂, it is clear that b1 ∩ R̂ is a base of
M1 · R̂1. We know that b2 ∩ R̂ is a base ofM2 · R̂. Using (ii) above it
follows that b2 ∩ R̂1 is a base ofM2 · R̂1. Thus,
iv. b2 ∩ R̂1, b1 ∩ R̂1 are disjoint bases ofM1 · R̂1,M2 · R̂1, respectively.

2

Proof of Theorem 14.3.1:
i. By definition H(X) ≡ ⋃ei∈X êi and | êi |= f(ei) = r(êi). Hence,

| H(X) |=|
⋃

ei∈X

êi |=
∑

ei∈X

r(êi).
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We are given that r(·), f(·) satisfy f(X) = r(H(X)), X ⊆ S and that

α(H(X)) =
∑

ei∈X

rei
(êi) =

∑

ei∈X

(r(êi)− g(ei)).

Hence,

| H(X) | −(r + α)(H(X)) =
∑

ei∈X

r(êi)− f(X)− (
∑

ei∈X

(r(êi)− g(ei)))

= g(X)− f(X) as required.

ii. By Lemma 14.3.1, we know that R̂1 maximizes | X̂ | −(r +
α)(X̂), X̂ ⊆ Ŝ. Next let êi ∩ R̂1 6= ∅. We will show that êi ⊆ R̂1.
By the definition of αei

(·) any subset of êi whose size does not exceed
(r(êi)− g(êi)) is independent inMα. If | êi ∩ R̂1 |≤ r(êi)− g(êi), then
êi ∩ R̂1 would be a set of coloops ofMα · R̂1. Since, by Lemma 14.3.1,
R̂1 contains no coloops of Mα · R̂1, we conclude that | êi ∩ R̂1 |>
r(êi) − g(êi) = αei

(êi). Next R̂1 is closed relative to α(·). But all el-
ements in êi are dependent on any subset of êi of cardinality α(êi).
Hence, R̂1 ⊇ êi. Thus, R̂1 = H(R1) for some R1. Hence,

g(R1)− f(R1) =| R̂1 | −(r + α)(R̂1). (∗)

iii. (i) above implies that

maxX⊆Sg(X)− f(X) ≤ maxX̂⊆Ŝ | X̂ | −(r + α)(X̂)

while (ii) implies the reverse inequality. This proves the required result.

iv. The vector g belongs to Pf iff

maxX⊆Sg(X)− f(X) = maxX̂⊆Ŝ | X̂ | −(r + α)(X̂) ≤ 0.

This happens iff there are bases b, bα ofM,Mα respectively s.t. b∪bα =
Ŝ,
i.e., iff

(b ∩ ê) ∪ (bα ∩ ê) = ê ∀ e ∈ S
i.e., iff | b ∩ ê | +r(ê)− g(ê) ≥ r(ê)
i.e., iff | b ∩ ê |≥ g(ê) as required.

2
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Suppose we are given a matroid expansion of f(·). It is easy to
build an expansion of kf(·), k a positive integer, as follows. Build k
disjoint copies Ŝ1, · · · , Ŝk of S. An element ei ∈ S now has kf(ei)
copies in

⋃k
i=1 Ŝi. Let us call this set êi(k). Build copies M1, · · · ,Mk

of the matroid M on Ŝ1, · · · , Ŝk with rank functions r1(·), · · · , rk(·)
respectively. Let r+(·) ≡ ⊕k

i=1 ri(·). Define Hk(X) ≡ ⋃ei∈X êi(k),
X ⊆ S. Since f(X) = r(

⋃

ei∈X êi) we must have

kf(X) = r+(
⋃

ei∈X

êi(k)).

We can, therefore, handle the problem of maximizing g(X)−kf(X), X ⊆
S, k ∈ Z+ which arises in connection with the construction of the prin-
cipal partition of (f(·), g(·)), by using Theorem 14.3.1.

Exercise 14.8 Concerning Theorem 14.3.1 - Good expansion:
Let M be the expansion of f(·). Show that

i. If C is a circuit of M · ê and a ∈ C, then M · (Ŝ − a) is an
expansion of f(·) with ê− a in place of ê.

ii. There exists an expansion of f(·) with no more than
∑

e∈S f(e)
elements.

Exercise 14.9 Concerning Theorem 14.3.1 - Better expansion:
Let h(e) ≡ f(S)− f(S − e), e ∈ S. Prove:

i. If g(e) > f(e) then e belongs to every set that maximizes g(X)−
f(X), X ⊆ S.

ii. (f−h)(·) is an integral polymatroid rank function and a set max-
imizes g(X)− f(X), X ⊆ S iff it maximizes (g − h)(X) − (f −
h)(X), X ⊆ S.

iii. If M is an expansion for f(·), then the expansion of (f − h)(·)
can be built as follows: For each e ∈ S find a base be of M.
s.t. | be ∩ (Ŝ − ê) |= r(M · (Ŝ − ê)). Let h(e) ≡| be ∩ ê | . Let
Mred ≡M× (Ŝ − ⋃e∈S(be ∩ ê)). Then Mred is an expansion of
(f − h)(·).
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Exercise 14.10
Let f(·) be an integral polymatroid rank function on subsets of S.
Let f ∗(·) be the comodular dual of f(·) relative to g(·) where g(e) ≡
f(e), e ∈ S. Let the notation for matroid expansion be as in Theorem
14.3.1. IfM is an expansion of f(·) on Ŝ, we say a pair (T̂1, T̂2), T̂1, T̂2 ⊆
Ŝ is a common independent pair of M,M̂ relative to S iff

• T1, T2 are independent in M,M̂ respectively and

• | T̂1 ∩ ê |=| T̂2 ∩ ê | ∀ e ∈ S.

The size of (T̂1, T̂2) is defined to be | T̂1 | (=| T̂2 |).
Prove:

i. IfM is an expansion of f(·), M∗ is an expansion of f ∗(·). Fur-
ther if f(S) = f(S − e) ∀e ∈ S, then f ∗(e) = f(e).

ii. (Assuming | ê |= f(e) ∀e ∈ S)

minX⊆S(f(X) + f ∗(S −X)) = max (size of common independent

pair of M,M∗ relative to S)

≥ max size of common independent set

of M,M∗.

Further, there is an expansionM1 of f(·) s.t. inequality above becomes
an equality.

Complexity of solving the membership problem given a ma-
troid expansion

Before using the present method, the size of the problem has to be
reduced as in Exercise 14.8 and Exercise 14.9, i.e.,

i. we may assume that | ê |= f(e)

ii. if g(e) > f(e) we work with (S−e) in place of S and f ⋄(S− e)(·)
in place of f(·) and
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iii. we work with (f−h)(·) and (g−h)(·), in place of f(·), g(·) (where
h(e) = f(S)− f(S − e), e ∈ S as in Exercise 14.9).

Without loss of generality, we may assume that g(e) ≤ f(e) ∀e ∈ S
and h(·) = 0. The rank of the matroid expansion of f(·) is f(S) and
the size of Ŝ is

∑

ei∈S f(ei). Let m ≡ maxei∈S f(ei). Now the complexity
of Algorthm Matroid Union is in terms of calls to the independence
oracle and some elementary steps. The independence oracle for Mα

in the present case is trivial since Mα is the direct sum of uniform
matroids. So we will speak only of calls to the independence oracle of
M.

Let r denote r(M). Let b, bα be the current bases of M,Mα. To
build G(b, bα) takes at most (| Ŝ | −r)r calls to the independence
oracle of M. This has to be done at most (| Ŝ | −r) times. So the
number of calls to the independence oracle is O(r(| Ŝ | −r)2).
The complexity in terms of | S |, noting that r, | Ŝ | are not more
than m | S |, is O(m3 | S |3). Next we consider the complexity of
performing the bfs in G(b, bα), which takes us from Ŝ − (b ∪ bα) to an
element in b∩ bα. The number of edges of this graph is O((| Ŝ | −r)r).
So the complexity of the search is also O((| Ŝ | −r)r). Thus, the
number of elementary steps in Algorithm Matroid Union is
O(r(| Ŝ | −r)2) which again reduces to O(m3 | S |3). If m is less
than | S |, the present method compares favourably with that of the
general pseudopolynomial algorithm of Cunningham [Cunningham84]
(O(m | S |6.5 log(m | S |)).)

The membership problem, as it is usually stated, does not assume
the availability of a matroid expansion. So the present algorithm can-
not strictly be regarded as a solution to that problem.

Exercise 14.11 Rewrite the algorithm for the solution of the member-
ship problem given a matroid expansion, using only bases of the matroid
M.
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14.3.3 Membership Problem with Graphic Matroid
Expansion

The special case where we need to maximize g(X) − λf(X), X ⊆ S,
given a graphic matroid expansion of f(·), is more relevant to electrical
network analysis. For this case two alternative flow based procedures
are possible. Neither of these methods attempts to build maximally
distant trees. The optimum set, or a set contained in it, appears either
in the source or the sink side of a min cut in the flow graph. The
first of these procedures is edge based and is given below. The second
procedure would be evident from the discussions in Section 13.9 on
how to convert certain principal partition problems related to one side
of a bipartite graph into principal lattice of partition problems (see
Theorem 13.9.1). The complexity of the procedure, presented here, is
substantially better than the one made possible by Theorem 14.3.1.
We, however, follow the notation of the above mentioned theorem.

The flow technique that we describe below is similar to that of Imai
[Imai83] in that the flow graphs are identical. The difference lies in the
following: We grow sets until a minimal nonvoid set can be found with
positive value of ht(X) (defined below). This we contract and work
with an updated ht(·). We continue this procedure until no sets can
be found with a positive value of current ht(·). At this stage the union
of all the contracted sets gives us the desired optimum set.
Imai computes the optimal set using the ‘fundamental functions’ of the
concerned polymatroid.

Let G be a graph with Ŝ ≡ E(G) and rank function r(·). Let S be
a partition of Ŝ and let H(X) ≡ ⋃ei∈X ei, X ⊆ S. Let f(·) be defined
on subsets of S s.t. f(X) ≡ r(H(X)). Henceforth, in this subsection,
H(X) would be denoted by X̂. Let g(·) be a weight function on S.
We further assume that

the subgraph of G on ê is connected for each e ∈ S. (∗)

This assumption is necessary for the following procedure to work.
(Note that such an assumption would not be required for a proce-
dure based on Theorem 14.3.1).
Let V (X) ≡ set of end points of edges of G in members of X,X ⊆ S.
We then have, using Assumption (∗), f(X) = (| V | −1)t(X). Let
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h(X) ≡
≡ g(X)−λ(| V | −1)(X), X ⊆ S. We remind the reader that ht(X) ≡
≡ maxΠ∈PX

h(Π). In order to maximize g(X)−λf(X), X ⊆ S, we need
to
maximize ht(X) ≡ g(X)− λ(| V | −1)t(X), X ⊆ S.

Let us start with a set Xo s.t. ht(X) ≤ 0 ∀X ⊆ Xo. Let e 6∈ Xo.
We find the minimal nonvoid subset Xe that maximizes h(X) among
subsets of Xo ∪ e by using an algorithm called say Max(S, h).
If h(Xe) ≤ 0, we conclude that Xo∪e satisfies ht(X) ≤ 0 ∀X ⊆ Xo∪e.
For, if Π is any partition of Y ⊆ Xo∪e, then h̄(Π) =

∑

Ni∈Π h(Ni) ≤ 0.

If h(Xe) > 0 we contract G to G × (Ŝ − X̂e). The function V (·) is now
defined over subsets of S−Xe, with V (X) ≡ set of end points of edges
of G × (Ŝ − X̂e) which are present in members of X,X ⊆ S −Xe. The
function r(·) is now the rank function of G × (Ŝ − X̂e) and g(·), the
restriction of the original weight function to (S − Xe). The functions
h(·), ht(·) are defined as before in terms of g(·) and V (·). We initialize
the algorithm Max(S −Xe, h) at Xo −Xe and repeat the process.
The process terminates when the current S−K has no nonvoid subset
at which h(·) takes a positive value. We then declare K to be the
minimal set that maximizes

g(X)− λ(| V | −1)t(X), X ⊆ S.

The flow formulation

(The discussion that follows needs familiarity with Subsection 3.6.10
and Subsection 10.6.3. It would help to have Figure 10.3 at hand. For
the present discussion one may replace, in that figure, X by Xe, the
vertex v1 by e, wL(v1) by ∞, v2 by ei, wL(v2) by g(ei) and wR(v) by
1).

We now consider the problem of maximizing h(X) among nonvoid
subsets of Z. This is equivalent to minimizing λ(| V | (X)) + g(Z −
X), ∅ ⊂ X ⊆ Z. This is a flow problem (as described in Subsection
3.6.10 and in Subsection 10.6.3). But we have to be careful to confine
ourselves only to nonvoid subsets. As in Exercise 10.33 we do this by
forcing the newly added element e to be a member of the sets over
which optimization is carried out. The flow graph for this problem
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is built as follows: First build the bipartite graph B ≡ (Z, V (Z), EZ)
with Z as the left vertex set, G being the current graph, V (Z) in G as
the right vertex set, an edge between v ∈ V (Z) and ei ∈ Z iff in the
graph G there is an edge in êi that is incident on v. Now add a source
vertex s and join it to each vertex in Z, a sink vertex t and join it to
each vertex in V (G). The capacities are:

• edge (s, ei) has capacity g(ei), ei 6= e, ei ∈ Z,

• edge (s, e) has capacity ∞,

• (ei, v) has capacity ∞, ∀v ∈ V (Z),

• (v, t) has capacity λ, ∀v ∈ V (Z).

The nearest source side min cut of this flow graph would have the form
(s⊎Xe ⊎V (Xe), t⊎ (Z−Xe)⊎ (V (Z)−V (Xe))), e ∈ Xe. As discussed
in Subsection 3.6.10, g(Z−Xe)+λ(|V |(Xe)) would have the minimum
value among all nonvoid subsets of Z and Xe would be a minimal
nonvoid such set. Hence, h(Xe) would have the maximum value among
all nonvoid subsets of Z and Xe would be a minimal nonvoid such set.

From this flow graph, we can build the flow graph corresponding to
G × (Ẑ − X̂e) by first building the subgraph B′ of B on Xe ∪ ΓL(Xe).
Next
ΓL(Xe) is partitioned into V1, · · ·Vk corresponding to the connected
components
B′

1, · · · , B′
k of B′. V1, · · · , Vk are now made into single nodes, Xe and all

edges incident on Xe are deleted. Single edges go from V1 to t, · · · , Vk

to t, each with capacity λ. (It can however be shown easily that the
bipartite graph B′ is connected, i.e., k = 1). All other vertices and
edges of the original flow graph and the capacities associated with the
latter are left unchanged.

Justification

To justify the above algorithm for maximizing ht(X) ≡ g(X)−λ(|V )−
1)t(X), we only need to explain the contraction step.
Let h(X) ≤ 0 , ∅ ⊂ X ⊆ Xo and let Xe be the minimal set that
maximizes h(·) among nonvoid subsets ofXo∪e. If h(Xe) > 0, it follows
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that h̄(·) reaches its maximum among partitions of Xe at {Xe} and
h(Xe) = ht(Xe). Further it is clear since h(X) ≤ 0 , ∅ ⊂ X ⊂ Xe that
ht(X) ≤ 0 ∀X ⊂ Xe. Since ht(·) is a supermodular function, use of the
supermodular inequality and the fact that ht(X) < ht(Xe) ∀X ⊂ Xe

would reveal that Xe is a subset of any set that maximizes ht(·) over
subsets of S. So we can work with the contraction of ht(·) over subsets of
S−Xe, and if Y is the minimal set that maximizes the latter function,
Y ∪Xe would be the minimal set that maximizes ht(·). Now

(ht) ⋄ (S−Xe)(X) = g ⋄ (S−Xe)(X)− λr ⋄ (Ŝ− X̂e)(X̂), X ⊆ S.

Since g(·) is a weight function, contraction is the same as restriction.
The function r ⋄ (Ŝ− X̂e)(·) is the rank function of the graph G × (Ŝ−
X̂e).

Exercise 14.12 Improvement of graphic expansion: Let G be a
graph on Ŝ with r(·) as its rank function. Let r(·) be the expansion for
f(·) on subsets of S. We follow the notation of Exercise 14.9. Show
that

i. The matroid Mred ≡ M(G × (Ŝ − ⋃e∈S(be ∩ ê))), where M(G)
denotes the matroid whose independent sets are subforests of G,
is an expansion of f(·).

ii. Let us assume without loss of generality that | ê |= r(e) ∀e ∈ S
(see Exercise 14.8). In the graph Gred ≡ G × (Ŝ − ⋃e∈S(be ∩ ê)),
if G . ê is connected, then Gred · (ê− be ∩ ê) would be a tree with
no node incident only on edges of ê. Further no edge of the tree
would be a cutset of Gred.

iii. Assume, for simplicity, that Gred · (ê − be ∩ ê) is connected for
each e. If we replace each (ê − be ∩ ê) in Gred by a tree on the
same set of nodes, the rank function of the resulting graph would
be an expansion for f(·).

We note that the set Ŝ that occurs in the above discussions would
be the edge set of a reduced network. In the present case it can be built
very easily from the original graph of the network. (For matroids, in
Exercise 14.9, we contracted certain interior ‘hidden’ elements within
each e ∈ S). Here each e represents a connected subgraph. For solving
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the present membership problem we can replace each subgraph by a
tree on the ‘boundary nodes’ of the subgraph (see Exercise 14.12),
contracting branches appropriately to eliminate cutsets. So each e
would represent no more than r(Gred · e) edges in the new reduced
graph. However, g(e) remains the same as before. In most practical
network problems large subnetworks have comparatively few boundary
nodes. Thus the Ŝ specified in the above discussions would be much
smaller in size than the edge set of the original graph (say ≈ 10%). If
this is kept in mind, it would be clear from the discussion below that
the algorithm we have presented is practical in the sense that it can
be included in the preprocessing stage of a circuit simulator.

Complexity

Now we discuss the complexity of the above algorithm - first for general
λ and later for λ = 2, in both cases with g(e) = f(e) = r(ê) ∀e ∈ S.
We remind the reader that |Ŝ| = ∑

e∈S f(e).

i. General λ: We have to perform | S | flow maximizations. The
number of edges in the flow graph is O(| Ŝ |). The complexity of one
flow maximization using the Sleator algorithm is O(| S | (| Ŝ | log |
Ŝ |)) elementary steps. (The Sleator algorithm [Sleator80] proceeds in
stages. Each stage has complexity O(| Ŝ | log | Ŝ |). The number of
stages is the length of the longest undirected path from source to sink
and is of O(min(| S |, | V |)). Here we may assume | S |≪| V |). So
the overall complexity is O(| S |2| Ŝ | log | Ŝ |). If m ≡ maxe∈S f(e),
this reduces to O(m | S |3 log(m | S |)) while the earlier method based

on Theorem 14.3.1 was O(m3 | S |3). When | S |≤
√

| Ŝ |, the above

complexity is O(| Ŝ |2 log | Ŝ |).
ii. λ = 2: We assume that g(e) = f(e) = r(ê) and that |S| is
O(|V (G)|). In the following discussion V (X) denotes the endpoint
set in graph G of edges belonging to members of X, but V (G) denotes
the vertex set of the graph G. (Note that G itself is a reduced graph
built from the original graph by replacing each subnetwork by a tree
on its boundary nodes and contracting some branches of the tree, if
required, to eliminate cutsets).

We note that, at any stage of the algorithm, we have say Xo on the
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left side of the bipartite graph and V (Xo), the end vertex set associated
with Xo, on the right hand side of the bipartite graph. If now we find
that ht(X) ≤ 0 ∀X ⊆ Xo, this means in particular that

g(X)− 2(| V | −1)(X) ≤ 0 ∀X, ∅ ⊂ X ⊆ Xo.

Thus, g(X) < 2(| V | (X)). Now g(e) would be the number of edges
in ê which is one less than the number of edges incident at e in the
bipartite graph (Xo, V (Xo), EX). Hence the total number of edges in
this bipartite graph is not more than
2(| V | (Xo)) + |X0| and the associated flow graph has O(| V | (Xo))
number of edges. When we add a vertex e to Xo either

• g(X)− 2(| V | −1)(X) ≤ 0 ∀X, ∅ ⊂ X ⊆ Xo ∪ e, or

• Xo ∪ e has a subset Xe with g(Xe) > 2(| V | −1)(Xe).

In the former case, by the argument given above, the new bipartite
graph has number of edges not more than 2(| V | (Xo ∪ e)) + |X0|. In
the latter case, we contract Xe, i.e., delete all nodes in Xe and all edges
incident on these nodes, merge all vertices of V (Xe) into one with a
single edge leading to the sink with capacity 2. We further replace
parallel edges from left vertex set to right vertex set by a single edge
of the same capacity (∞). Hence, once again, the new bipartite graph
has number of edges not more than 2(| V | (Xo))+ |X0|. Thus, in both
cases, the new flow graph also has O(| V (G) |) edges. It follows that
the number of edges in the current flow graph is always O(| V (G) |).

Now let us use the naive flow algorithm in which we send units of
flow from source to sink. The cut that separates the sink from the rest
of the nodes has a capacity 2 | VR |, where VR is the right vertex set
of the present bipartite graph. Suppose we find a min cut in the flow
graph associated with the bipartite graph B ≡ (Z, V (Z), EZ). We get
the min cut

(s ⊎Xe ⊎ V (Xe), t ⊎ (Z −Xe) ⊎ (V (Z)− V (Xe))).

If g(Xe) > 2(| V | −1)(Xe), we go through a contraction process.
Observe that this contraction process would not disturb the flow that
is incident on (Z − Xe) ⊎ (V (Z) − V (Xe)). Whatever flow is lost
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touches Xe as well as V (Xe). The single node that is left of V (Xe)
after merging can now be taken to carry zero flow. (Any arcs from
Z −Xe that may be incident on this vertex earlier would have carried
zero flow since they are backward arcs with respect to the cut). In the
flow graph corresponding to the contracted graph the capacity of the
cut that separates sink from the rest of the nodes equals (2(| V (Z) | −
number of nodes that have disappeared during contraction)). For each
contraction the loss of flow cannot exceed 2(number of nodes that have
disappeared +1). It is therefore clear that the total units of flow that
have to be sent from source to sink in all the stages of the algorithm
cannot exceed (arguing conservatively) 4 | V (G) | . To send one unit
of flow from source to sink in a flow graph with integral capacities
takes O(| edge set of flow graph |). In our case this is O(| V (G) |).
Hence the overall complexity of our algorithm for the case λ = 2 is
O(| V (G) |2).
Remark: In Section 13.9, we have shown that maximizing g(X) −
λ(|V | − 1)t(X),
X ⊆ S is equivalent to minimizing (−g(E)− λ)(·), where E(Y ), Y ⊆
V (G) is the set of elements of S all of whose member edges have both
endpoints in Y . The minimization problem has been described in detail
in Subsection 13.7.2. The complexity of this algorithm for this prob-
lem is also the same as that of the method described in the present
subsection.

Exercise 14.13 Why is the assumption, that the subgraph of G on ê
is connected for each e ∈ S, necessary?

Exercise 14.14 Give a procedure for finding the minimal set that min-
imizes

(f − σ)t(X) + g(S −X) ∀X ⊆ S,

where f(·) is a submodular function on subsets of S and g(·) is a posi-
tive weight function on S. You may assume that a subroutine is avail-
able for finding the minimal set that minimizes f(X)+g(Z−X) ∀X ⊆
Z ⊆ S, ∅ ⊂ X.

Exercise 14.15 i. Let f(·) be an integral polymatroid rank func-
tion and let k be an integer. Show that the circuits of the matroid
M whose rank function is (f−k)t∗ | · | are precisely the minimal
sets s.t. (f − k)(X) <| X | .
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ii. Let G be a selfloop free graph and let V (X) denote the set of end
points of edges in X. Show that the circuits of the matroid, whose
rank function is (k | V | −1)t∗ | · |, are precisely the minimal sets
of edges s.t. the subgraphs on them have average degree ≥ 2k.

iii. Let B ≡ (VL, VR, E) be a bipartite graph, with all vertices in VL

having the same degree d. Show that the circuits of the matroid,
whose rank function is (k | ΓL | −1)t∗ | · |, are precisely the
minimal subsets Z of VL s.t. the subgraph on Z ⊎ ΓL(Z) has
average right degree ≥ dk.

14.3.4 PLP of the rank function of a matroid

A good application of the technique of solving the membership prob-
lem for a polymatroid using a matroid expansion, is in the construction
of the PLP of a matroid rank function. We briefly indicate the portion
of the PLP algorithm which needs the above technique. It is recom-
mended that the reader review Section 13.2 and Subsection 14.3.2.

Let r(·) be a matroid rank function on subsets of S. The basic
problem is to minimize (r − λ)(·) over partitions of S. Suppose we
know that the minimal minimizing partition is coarser than a partition
Π of S. Let f(·) ≡ (r − λ)fus·Π(·) and let f ′(·) be the z.s.s function
f(X)−∑ei∈X f(ei). Let it be known that Xo ⊆ Π contains no strong
fusion set of f ′(·). We add e ∈ Π −Xo to Xo and minimize f ′(·) over
subsets of Xo ∪ e that contain e. But this is exactly the same as
maximizing g(X)− f(X), e ∈ X ⊆ Xo ∪ e where g(ei) ≡ f(ei), ei ∈ X
and g(e) > f(e) + λ (since g(∅)− f(∅) + λ = λ). However λ would in
general be a fraction with denominator q. So, in order to make g(·) and
f(·) integral, we have to multiply throughout by q. Once this is done,
the problem reduces to the membership problem for the polymatroid
Pf given a matroid expansion.
Maximizing qg(X)−qf(X) would involve working with the direct sum
of q identical copies of the original matroid. Using the algorithm given
in the solution to Exercise 14.11, we can show that maximizing qg(X)−
qf(X) requires O(rq2(|S| − r)2) calls to the independence oracle and
O(rq2(|S| − r)2) elementary steps. (There are q bases in the different
copies. Information about f-circuits can be put in a graph with q(|S|−
r)r edges. To build such a graph takes O(q(|S| − r)r) calls to the
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independence oracle. Doing bfs in the graph is O(q(|S|−r)r). This has
to be done atmost q(|S| − r) times. So the total number of elementary
steps is O(rq2(|S|−r)2) and the number of calls to independence oracle
is also O(rq2(|S| − r)2)).

The complexity of the PLP algorithm for r(·) using this technique
in terms of calls to the independence oracle of the matroid (which is
weaker than the rank oracle) is as follows (In general q can be as large
as |S|):

i. To minimize (r − λ)(·) –

O(| S |3 (| S | −r)2r).

ii. To build the principal sequence of partitions using balanced bi-
section –

O(| S |3 (| S | −r)2r log | S |).

iii. To build the DTLs –

O(| S |4 (| S | −r)2r).

14.4 The Hybrid Rank Problem - Third

Formulation

14.4.1 Introduction

In this section we discuss the third formulation of the hybrid rank
problem
[Narayanan90],[Narayanan91], which arises naturally when we study
the method of network analysis by topological transformations. This
method has been discussed in Subsection 7.3.3.

Perhaps the most practically useful of topological transformations
are the ones that involve node pair fusion and node fission (see Prob-
lem 7.9). We remind the reader briefly of the method: We attach
‘virtual voltage sources’ across some pairs of nodes and introduce ‘vir-
tual current sources’ between two halves of a split node and solve the
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entire network in terms of the values of these sources. We next find
the values of these sources for which the currents through the virtual
voltage sources and the voltages across the virtual current sources be-
come zero. This would give the solution of the original network. The
point relevant to the present chapter in this procedure is that when
the network N is solved in terms of the sources, the equations corre-
spond to a network Nnew, in which the virtual voltage and current
sources are zero (i.e., in which the pair of nodes associated with a volt-
age source is shorted and the two halves of the node between which the
current source is connected are split). Each virtual source contributes
an additional variable. Our aims are twofold: (i) Nnew should have a
‘good’ topology, and (ii) the number of additional variables should be
a minimum. The third formulation of the hybrid rank problem arises
when we insist that the blocks of a given partition Πs of the edge set of
N should be separators (unions of 2 connected components) in Nnew

and the number of additional variables required to reach Nnew be min-
imized. In practice the subnetworks of N on the blocks of Πs would
be connected. This condition is also mathematically convenient. The
first formulation turns out to be the special case where Πs has singleton
blocks (see Exercise 14.17).

We now state the third formulation of the hybrid rank problem:
Let G be a graph and let Πs be a specified partition of E(G) s.t. G . Ni is
connected for each Ni ∈ Πs. Find a minimum length sequence of node
pair fusions and node fissions which, when performed on G, result in
a graph Gnew in which each circuit intersects only one of the blocks of
Πs (equivalently each cutset intersects only one of the blocks of Πs).

In the above formulation one node pair fusion is the merging of
two nodes into a single node. All edges which were incident on the
original pair of nodes would now be incident on the merged node. An
edge with both the original vertices as end points would now be a self
loop. One node fission is the splitting of one node into two - the
non-selfloop edges which were originally incident on the parent node
would each be incident on precisely one of the two child nodes. The
self loop edges could now be incident on one of the two child nodes as
self loops or become ordinary edges lying between the two child nodes
(see Figure 14.1).

We solve this problem through the following stages:



768 14. THE HYBRID RANK PROBLEM

V1

5ee1

e4 6e

e 73e

e1

2e

2e

3e

e4

5e

e1

2e

3e
e 7

6e

5e
2e

e3

e4

V2

node  pair
fusion 

V ’ V "

e5

e1
4e

node fission

V

V12

Figure 14.1: Node pair fusion and node fission
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• First we show that a fusion followed by fission can always achieve
the effect of a fission followed by fusion – this is routine. So we
lose no generality in assuming that all fusions occur first. A
sequence of fusions has the same effect as fusing the blocks of an
appropriate partition of V (G).

• Next we consider the special case of the above problem where
only fissions are allowed. This problem is similar to that of find-
ing the nullity of a graph and is easy to solve.

• We associate with each partition Π of V (G) a number equal to
the sum of (| V (G) | − | Π |) and the minimum number of fis-
sions required for converting the graph Gfus·Π to a graph which
has Ni as separators.
We now attempt to find the partition Πmin of V (G) which mini-
mizes this number.

It turns out that the minimizing partitions mentioned above are pre-
cisely the ones that minimize (| Γ | −2)(·) where |Γ|(Ni) denotes the
number of blocks of Πs which have edges incident on vertices in Ni.
Equivalently we need to find Π s.t. (| Γ | −2)(Π) = (| Γ | −2)t(V (G)).
In Subsection 13.7.1, the solution to this problem has been described
in detail.
The desired sequence of fusions and fissions would be:
first the fusions corresponding to Πmin then the minimum sequence
of fissions required to convert Gfus·Πmin

to a graph which has Ni as
separators.

14.4.2 Fusions and Fissions

We begin by showing that the effect of a node fission followed by a
node pair fusion can always be achieved by an appropriate fusion fol-
lowed by an appropriate fission. Since the proof is routine but tedious
we simplify it by ignoring arrows.
Let node a have edges ea1, · · · , eak incident on it. Let the node fis-
sion split a into a1 on which ea1, · · · , eat are incident and a2 on which
ea(t+1), · · · , eak are incident. Now let a1 be merged with a vertex d
on which ed1, · · · , edr are incident. (Some of edi could be the same as
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some eaj). If d is a2 there is nothing to prove. So let us assume that d
is different from a2. Suppose d has no common edge with a2. Clearly
this effect can be achieved by first merging d with a and splitting a2

with ea(t+1), · · · , eak incident on it from the combined node. If d has
e1, · · · , ep common with a2, then while a is merged with d these edges
would become selfloops and when a2 has been split away they would
lie between a2 and the merged node containing d. The case where a has
selfloops which become ordinary edges between a1, a2 can be handled
similarly. This proves the required result.

Exercise 14.16 Construct an example to show that fission followed
by fusion can be weaker than fusion followed by fission.

Fusion rank and fission rank of a graph relative to a partition
of its edges

Let G be a graph and Πs, a partition of E(G). The fusion rank of
G relative to Πs is the minimum length of a sequence of node pair
fusions needed to destroy every circuit that intersects more than one
block of Πs. The fission rank of G relative to Πs is the minimum
length of a sequence of node fissions needed to destroy every circuit
that intersects more than one block of Πs. The hybrid rank of G rel-
ative to Πs is the minimum length of a sequence of node pair fusions
and node fissions needed to destroy every circuit that intersects more
than one block of Πs.
Since the effect of a fission followed by a fusion can always be achieved
by a fusion followed by a fission, we lose no generality in confining our-
selves to sequences which have all the node pair fusions first, followed
by the node fissions. So, in order to solve the hybrid rank problem,
we need to first solve the problem of constructing a minimum length
sequence of node fissions which would make the blocks of the partition
into separators. This we do now.

Exercise 14.17 Let G be a graph and let Πs be the partition of E(G)
into singletons. Show that, relative to Πs

i. fusion rank = r(G) - number of coloops

ii. fission rank = ν(G) - number of selfloops
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iii. hybrid rank = minX⊆E(G) r(G . X) + ν(G × (E −X)).

We first present an informal algorithm for constructing a minimum
length sequence of node fissions to make blocks of Πs into separators
and, using it, derive a result about fission rank.

Construction of minimum length sequence of node fissions

i. For each Ni construct a coforest Li of G · Ni. Delete
⋃

i Li from
G. Let Gred ≡ G . (E(G)− ⋃Li). Let N ′

i ≡ Ni − Li, Ni ∈ Πs. Let
Π′

s ≡ {N ′
i , Ni ∈ Πs}.

ii. We will call a node of Gred a ‘boundary node’ if edges of more
than one block of Π′

s are incident on it. For each node common
to more than one block of Π′

s, do the following:

• Replace node v common to blocks N ′
1, · · · , N ′

k by nodes
v1, · · · , vk s.t. vi is incident only on edges of N ′

i . Build a
tree on v1, · · · , vk. We will call such a tree, a ‘fission tree’.

At the end of the above ‘do loop’ we have a graph G ′ derived
from Gred.

iii. Edges in the fission trees contain a coforest of G ′. Delete such a
coforest and short the remaining fission tree edges. The graph
that results is essentially (except for hinged nodes), ⊕(Gred ·N ′

i).
Each Gred ·N ′

i is a forest subgraph of G . Ni.

iv. Add back edges of Li for each Ni. We are now left with the graph
⊕G . Ni (except for hinged nodes). We observe that this graph
could have been obtained without going through the process of
deleting Li and adding them back, but following the rest of the
algorithm regarding construction of fission trees - deleting some
of their edges and shorting the remaining.

The sequence of node fissions in the above algorithm corresponds
to a particular coforest of G ′ contained in the fission trees with each
node fission corresponding to one coforest edge. Hence, length of the
sequence of node fissions = nullity of G ′. Now any coforest of Gred is
also a coforest of G′. Hence nullity of G′ equals

nullity of Gred = ν(G . (E(G)−
⋃

i

Li)) = ν(G)− ν(G × (
⋃

i

Li)).
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We note that G × (
⋃

i Li) is obtained by shorting forests of G . Ni so
that coforest edges become selfloops. Hence,

ν(G × (
⋃

Li)) =|
⋃

Li |=
∑

i

ν(G . Ni).

Hence, length of the above sequence of node fissions = ν(G)−∑ ν(G . Ni).
It is thus clear that the fission rank of G ≤ (ν(G)−∑ ν(G . Ni)).
On the other hand, the fission rank of G cannot be less than that of
Gred. The only circuits of Gred are those that intersect more than one
block of Π′

s. Hence,

fission rank of Gred = nullity of Gred = ν(G)−
∑

ν(G . Ni).

Hence fission rank of G ≥ (ν(G)−∑ ν(G . Ni)). It is a straight forward
computation to check that

ν(G)−
∑

ν(G . Ni) =
∑

r(G . Ni)− r(G).

We therefore have the following result.

Theorem 14.4.1 Let G be a graph and let Πs be a partition of E ≡
E(G) (with G . Ni, Ni ∈ Πs, not necessarily connected). Then the
fission rank of G relative to Πs is equal to

∑

Ni∈Πs

r(G ·Ni)− r(G) = ν(G)−
∑

Ni∈Πs

ν(G . Ni)

For our discussion of the third formulation of the hybrid rank the
fusion rank of G relative to Πs is unimportant. Nevertheless, for com-
pleteness, the result about fusion rank is presented in the following
exercise. We note that fission rank computations do not require any
connectedness assumption on the blocks of Πs whereas those of fusion
rank do require such an assumption.

Exercise 14.18 Fusion rank: Let G be a graph and let Πs be a par-
tition of E(G) s.t. G . Ni, Ni ∈ Πs is connected.

i. Show that the fusion rank of G relative to Πs equals r(G)−∑ r(G×
Ni) =

∑

ν(G ×Ni)− ν(G).

ii. Give a counter example where G . Ni are not connected and the
above formula for fusion rank becomes invalid.
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The fusion - fission number of a partition Π of V (G)
Let us now consider the situation where we use both fusions and fis-
sions, with all the fusions occurring first.
Any sequence of node pair fusions would ultimately fuse certain groups
of nodes into single nodes. Hence, as far as the effect of these node pair
fusions on the graph is concerned, we may identify them with a parti-
tion of V (G) each block of which would be reduced to a single node by
the fusions. The number of node pair fusions required to convert a set
of nodes V to a single node is (| V | −1). Hence, if Π is a partition of
V (G), the number of node pair fusions required to go from G to Gfus·Π

(≡ the graph obtained from G by fusing blocks of Π into single vertices)
is | V (G) | − | Π | . This number we would henceforth call, the fusion
number of Π. The fission rank of Gfus·Π relative to a partition Πs

of E(G) would be called the fission number of Π relative to Πs.
The sum of the fusion number and the fission number of Π relative Πs

would be called the fusion - fission number of Π relative to Πs.
Our task is to find a partition of V (G) which minimizes this number.

We now define a bipartite graph which relates Πs to V (G). Let
BG be the bipartite graph associated with G, with VL ≡ V (G) and
VR ≡ E(G), with e ∈ VR adjacent to v ∈ V iff edge e is incident on
v in G. Let B(Πs) be the bipartite graph obtained from BG by fusing
the right vertices in the blocks of Πs and replacing parallel edges by
single edges.
We then have the following result.

Theorem 14.4.2 Let G be a connected graph. Let Πs be a partition
of E(G) s.t. G . Ni is connected for each Ni ∈ Πs. Let Π be a partition
of V (G). Let |ΓL|(·) be the left adjacency function of B(Πs). Then

i. the fusion - fission number of Π relative to Πs equals

(| ΓL | −2)(Π)+ | V (G) | − | Πs | +1

ii. the hybrid rank of G relative to Πs equals

min((| ΓL | −2)(Π)+ | V (G) | − | Πs | +1),

Π a partition of V (G).
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Proof :
i. The fusion - fission number of Π relative to Πs

= fusion number of Π + fission number of Π relative to Πs

= | V (G) | − | Π | +
∑

Ni∈Πs

r(Gfus·Π ·Ni)− r(Gfus·Π)

(by Theorem 14.4.1 ).
We note that r(Gfus·Π) = (| Π | −1).

We now need to compute r(Gfus·Π · Ni). We have assumed that in
the graph G,G . Ni is connected. Hence, Gfus·Π · Ni must also be
connected. The number of vertices, that this graph has, equals the
number of blocks of Π which meet the vertex set of Ni. Thus the sum
of the cardinalities of the vertex sets of all the Gfus·Π·Ni can be obtained
by summing, over all Vj ∈ Π, the number of Ni which are adjacent to
Vj. In other words

∑

Ni∈Πs

| V (Gfus·Π ·Ni) |=
∑

Vi∈Π

| ΓL | (Vi).

Further we note that

r(Gfus·Π ·Ni) =| V (Gfus·Π) ·Ni | −1.

Thus, the fusion - fission number of Π relative to Πs

= | V (G) | +1− 2 | Π | +
∑

Vi∈Π

| ΓL | (Vi)− | Πs |

= (| ΓL | −2)(Π)+ | V (G) | − | Πs | +1

ii. This is immediate since the hybrid rank of G relative to Πs is the
minimum of the fusion - fission numbers of partitions of V (G).

2

We thus see that finding a partition which has the least fusion -
fission number relative to Πs is equivalent to finding a partition which
minimizes (| ΓL | −2)(Π) over partitions of the left vertex set of the
bipartite graph B(Πs). Finding all such partitions is the problem of
determining the DTL of (| ΓL | −2)(·) and if we have a variable λ in
place of 2 we get the PLP problem. Efficient algorithms for these prob-
lems have been given in Subsection 13.7.1. However, in this particular
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case (λ = 2) the naive algorithm which sends units of flow from source
to sink does very well, provided, after each fusion, we make use of the
previous flow.
We assume that the reader is familiar with the algorithm for (wRΓL)(·)
given in the above mentioned section. We now make a few observations
regarding B(Πs) when it arises from an electrical network subdivided
into subnetworks and thence arrive at some conclusions about a naive
algorithm for minimizing (| ΓL | −2)(·).

i. VL can be taken to be the set of boundary nodes. Internal nodes
(which are touching only one subnetwork) can easily be seen to
appear as singletons in any partition minimizing (| ΓL | −2)(·).
During the optimization process the internal nodes and the (bi-
partite graph) edges incident on them can be deleted from B(Πs).

ii. | VL |≫| VR | since VR is the set of subnetworks.

iii. Number of edges in B(Πs) is O(| VL |) since, typically, a vertex
that is not the ground vertex, would have degree at most 4 or
5 in a large network. In B(Πs) the degree would be even lower
than this.

iv. In the flow graph for this problem (Figure 13.1) the capacity of
the edge (s,v) is |ΓL|(v)−2. So the capacity of the cut separating
the source from the rest of the nodes is O(| VL |).

v. To send (or to withdraw) a unit flow from source to sink we have
to do O(| E |) work where E is the set of edges of the current
flow graph. In this case | E | is O(| VL |). Each time a fusion set
is detected we have to reduce the capacity of the edge between
the source and the merged node. This might necessitate (under
the above mentioned assumption about degree of a boundary
node) withdrawal of units of flow of O(| Xe |) where Xe is the
fusion set. The total withdrawal of units of flow throughout the
algorithm is therefore O(| VL |). Thus the total units of flow sent
and withdrawn is O(| VL |).

It follows that, in practice, to find a partition that minimizes (| ΓL | −2)(·)
for B(Πs) arising from a network, the complexity of the naive algo-
rithm, which sends units of flow from source to sink but remembers
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past flow after fusion, is O(| VL |2). Here VL = set of boundary nodes
which, as we have remarked before, could be as low as 10% of the size
of the vertex set of the network. Such an algorithm can reasonably be
included in the preprocessing stage of a circuit simulator.

Exercise 14.19 When every subnetwork contains the ground
node: Let G be a graph and let Πs be a partition of E(G). Let vg be a
boundary node that is incident on each block of Πs. Show that

i. an optimal sequence of fusions and fissions is simply to fuse all
boundary nodes to vg.

ii. the hybrid rank relative to Πs = number of boundary nodes – 1.

In network analysis by decomposition this situation arises when each
of the subnetworks into which the given network is decomposed has a
ground node.

14.4.3 Relation between the Hybrid Rank of a
Graph and its Hybrid Rank relative to a

Partition

We have already seen that the first hybrid rank formulation is a special
case (by taking Πs to have singleton blocks) of the third formulation.
We bring out yet another relation between the two formulations in this
subsection.
We show that if each block of the partition corresponds to a tree graph,
the hybrid rank relative to Πs is the minimum of the hybrid ranks of
the graphs that one obtains by replacing each of the above trees by
a cospanning tree. (It would then be natural to ask what happens if
we generalize the notion of cospanning trees to the case of cospanning
independent vector sets. This would give us the fourth formulation of
the hybrid rank problem).

We begin with some preliminary definitions and notation. Let G be
graph and let Πs be a partition of E(G) s.t. G . Ni is a tree graph for
each Ni ∈ Πs. Let G′ be another graph with V (G ′) = V (G) and let Π′

s

be a partition of E(G ′) s.t. G′ ·Ni
′ is a tree graph for each Ni

′ ∈ Π′
s. We

say (G,Πs), (G′,Π′
s) are partition equivalent iff there is a bijection
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τ : Πs → Π′
s such that G′ · (τ(Ni)) cospans G . Ni for each Ni ∈ Πs

(i.e., both the tree graphs have the same vertex sets). The hybrid rank
of G relative to Πs is the same as the hybrid rank of G ′ relative to Π′

s

by Theorem 14.4.2 since B(Πs), B(Π′
s) are isomorphic (identical under

the right vertex mapping τ(·)).
Exercise 14.20 Simplifying subnetworks keeping third hybrid
rank invariant: Let G be a graph and let Πs be a partition of E(G)
s.t. G . Ni is connected for each Ni ∈ Πs. Replace Ni by ti, where G . ti
is a tree subgraph of G . Ni. Let the resulting graph be Gt. Show that

i. the hybrid rank of Gt relative to Π′
s, where ti ∈ Π′

s iff Ni ∈ Πs, is
equal to the hybrid rank of G relative to Πs.

ii. there is no loss of generality in assuming that Gt has no cutsets
within each ti.

The following lemma is needed in the proof of the main result.

Lemma 14.4.1 Let G be a graph and let Πs be a partition of E(G)
such that G . Ni is a complete graph for each Ni ∈ Πs. Then, the
hybrid rank of G relative to Πs

= min
X⊆E

2r(X)−
∑

r(X ∩Ni) +
∑

r(Ni)− r(G).

Proof : The expression on the right reaches its minimum on the
closure of Y (with respect to r(·)) if it reaches its minimum on Y ⊆ E.
So let us assume that Y is closed. If Y is closed there is a partition Π
of V (G) s.t. E(Π) = Y (E(Π) ≡ ⋃

Ni∈ΠE(Ni)). Then r(Y ) =| V (G) |
− | Π | . In terms of Π the expression on the right becomes

2 | V (G) | −2 | Π | −
∑

Kj∩Vi 6=φ

(| Kj ∩ Vi | −1) +
∑

r(Ni)− r(G),

where Kj are blocks of Π and Vi, the vertex set of G . Ni

= 2 | V (G) | −2 | Π | −
∑

| Vi | + | Γ̄ | (Π) +
∑

r(Ni)− r(G),

where Γ(Kj) is the collection of Ni’s that Kj meets
= (|Γ| − 2)(Π)− | Πs | + | V (G) | +1, since

∑

(| Vi | −r(Ni)) =| Πs |
and |V (G)| = r(G) + 1. Thus, the minimum of the above expression
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over all partitions of V (G) equals the minimum of the expression on the
RHS of the statement of the theorem over all X ⊆ E. But by Theorem
14.4.2 the minimum of the above expression over all partitions of V (G)
equals the hybrid rank of G relative Πs.
This proves the lemma.

2

Theorem 14.4.3 Let G be a graph and let Πs be a partition of E(G)
such that G . ti is a tree graph for each ti ∈ Πs. Then the hybrid rank of
G relative to Πs = minimum hybrid rank of G′ where (G,Πs), (G′,Π′

s)
are partition equivalent to each other.

Proof : By Theorem 14.4.2, if each of G . ti were replaced by a
complete graph on the same set of nodes the hybrid rank of the new
graph Gnew relative to Πs(new) would be the same as the hybrid rank
of G relative to Πs (where Πs(new) has the edge set Ni of the complete
graph on V (G . ti) as the block in place of ti), since the bipartite
graphs B(Πs), B(Πs(new)) are isomorphic. Now consider a graph G ′
s.t. (G,Πs), (G′,Π′

s) are equivalent. Let E ′ ≡ E(G′). Let A′ ⊆ E ′ be
s.t. hybrid rank of G ′

= r(G′ · A′) + ν(G′ × (E ′ −A′))

= r(G′ · A′)+ | E ′ −A′ | −r(G′) + r(G′ ·A′)

= 2r(G′ · A′)+ | E ′ − A′ | −r(G′).

Let rnew(·) be the rank function of the graph Gnew and let An be the
closure of A′ in this graph. Then, since rnew(An ∩Ni) ≥| A′ ∩ ti |, the
above RHS
≥ 2rnew(An) +

∑

(rnew(Ni)− rnew(An ∩Ni))− r(Gnew)
≥ hybrid rank of G relative to Πs (using Lemma 14.4.1).

We will now build a graph Ĝ and a partition Π̂s for which the above
inequality becomes an equality. Suppose An minimizes the expression
(in X)

2rnew(X)−
∑

rnew(X ∩Ni) +
∑

rnew(Ni)− r(Gnew).

In each Ni, let tAi be a forest of G . (An ∩Ni). Let tAi be grown to the
tree t̂i of G . Ni. Let Â =

⋃

i tAi. Clearly An is the closure of Â in Gnew.
Now build Ĝ by replacing each Ni by t̂i. Let Π̂s have t̂i as the blocks.
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Then the hybrid rank of Ĝ

≤ 2r(Ĝ · Â)+ | Ê − Â | −r(Ĝ)
≤ 2rnew(An) +

∑

(rnew(Ni)− rnew(An ∩Ni))− r(Gnew),

≤ the hybrid rank of Ĝ, relative to Π̂s.

(since | Â∩ ti |= rnew(An∩Ni)). It follows that, for Ĝ, the hybrid rank
equals the hybrid rank relative to Π̂s. This proves the theorem.

2

Example: In Figure 14.2 consider the graphs G and G ′ with partitions
Πs,Π

′
s, respectively, of their edges, with

Πs ≡ {{e11, e12}, {e21}, {e31, e32}, {e41}}
Π′

s ≡ {{e′11, e′12}, {e′21}, {e′31, e′32}, {e′41}} .

It can be seen that, if ti is a block of Πs, there is a corresponding
block t′i of Π′

s s.t. G . ti and G . t′i cospan. Thus, (G,Πs), (G′,Π′
s) are

partition equivalent. The optimum sequence of fusions and fissions is:
fuse (a, c), then split b separating 4th block edges from 1st block edges.
The hybrid rank of G is 3 while that of G ′ equals 2, which latter is also
the hybrid rank of G relative to Πs (also of G′ relative to Π′

s). It may
be observed that G′ has been built the way Ĝ has been in the proof of
Theorem 14.4.3.

14.5 The Hybrid Rank Problem - Fourth

Formulation

14.5.1 Introduction

The ideas in this section are straight-forward generalizations of the cor-
responding notions for the third formulation. The method of network
analysis by topological transformations motivates both the formula-
tions. It is suggested that the reader review Chapter 7, in particular,
Subsection 7.3.3. There we saw that if V ,V ′ are voltage spaces of
graphs G,G′ respectively, and if VEP is s.t. for some VP ,V ′

P

V = VEP ↔ VP
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Figure 14.2: Partition Equivalent Graphs

V ′ = VEP ↔ V ′
P ,

then we can write the KCE, KVE of G in a bordered form with the
thickness of the border equal to | P | and the inner matrix as the
coefficient matrix of KCE, KVE of G ′. We could choose a good inner
matrix structure and for the desired structure try to minimize | P |.
In particular we could partition E into {E1, · · · , Ek} and insist that
V ′ have Ei as separators. The third formulation arises when we insist
that VEP and V ′ be the voltage spaces of graphs. The present (fourth
and last!) formulation arises when we relax this assumption.

We now state the fourth formulation of the hybrid rank prob-
lem:
Given a vector space V on E and a partition Πs of E into {E1, · · · , Ek},
find spaces VEP ,VP on E ⊎ P, P respectively such that

i. VEP ↔ VP = V,

ii. there exists a vector space V ′
P on P s.t. VEP ↔ V ′

P has E1, · · · , Ek

as separators,

iii. | P | is a minimum under the above conditions.

We would call the above minimum size of P the generalized hybrid
rank of V relative to Πs.
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There is a slightly different way of phrasing the above problem which
is illuminating.
If V,V ′ are vector spaces on E the distance d(V,V ′) (≡ r(V + V ′) −
r(V∩V ′)) between them can be equivalently defined to be the minimum
size of a set P for which there exist vector spaces VEP on E⊎P,VP ,V ′

P

on P , s.t.
VEP ↔ VP = V
VEP ↔ V ′

P = V ′

(see Exercises 7.11,7.14). Thus the generalized hybrid rank of V rela-
tive to Πs is the minimum distance from V to another space V ′

on E which has the blocks of Πs as separators.

We do not know how to solve the fourth formulation of the hybrid
rank problem. However, we present evidence in this section that, we
hope, should suggest that the problem is interesting and relevant.

Exercise 14.21 Submodularity of the distance function: Show
that

i. d(V,V1) + d(V,V2) ≥ d(V,V1 + V2) + d(V,V1 ∩ V2)

ii. d(V,V1) = d(V,V ∩ V1) + d(V ∩ V1,V1)

iii. d(V,V1) = d(V,V + V1) + d(V + V1,V1)

14.5.2 Generalized Fusions and Fissions

Notions of fusion rank and fission rank, relative to a partition, are
generalized in this section. We remind the reader that the fusion rank
(fission rank) is the minimum number of node pair fusions (node fis-
sions) needed to make the blocks of the partition into separators. We
note that when such fusions are performed, if G . Ej are connected,
the graph that results is ⊕jG ×Ej , where Ej are the blocks of the par-
tition. When the fissions corresponding to fission rank are performed,
the graph that results is ⊕jG . Ej (in both cases hinged nodes might
be present between the different graphs on the Ej).

We begin with some preliminary definitions. Let V be a vector space
on E and let Πs ≡ {E1, · · · , Ek} be a partition of E. Then the fusion
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rank of V relative to Πs is d(V,⊕j(V × Ej)) and the fission rank
of V relative to Πs is d(V,⊕j(V · Ej)).
Hence, the fusion rank of V relative to Πs is r(V)−∑j r(V×Ej) and the
fission rank of V relative to Πs is

∑

j r(V ·Ej)− r(V) = ν(V)−∑j ν(V ·
Ej), where ν(V) denotes the nullity of V . The reader may verify that
these numbers agree with the fusion and fission rank for a graph when
G . Ej is connected for each Ej ∈ Πs. The problem of constructing
VEP ,VP ,V ′

P in the cases where V ′ ≡ ⊕j(V ×Ej) or V ′ ≡ ⊕j(V . Ej) so
that | P | is minimum is relatively easy to solve (see Subsection 7.3.3
and also Problem 7.9).

Exercise 14.22 Fission and fusion ranks as distances: Let V be
a vector space on E and let Πs ≡ {E1, · · · , Ek} be a partition of E.
Show that

i. if V1 ⊇ V and has Ej as separators, then V1 ⊇ ⊕jV . Ej . Hence
d(V,V1) ≥ fission rank of V.

ii. if V2 ⊆ V and has Ej as separators, then V2 ⊆ ⊕jV ×Ej . Hence
d(V,V2) ≥ fusion rank of V .

Exercise 14.23 Duality of fission and fusion: Let V be a vector
space on E and let Πs be a partition of E. Show that the fission rank
of V relative to Πs is equal to the fusion rank of V⊥ relative to Πs.

We now prove a simple result which gives the ‘range’ over which
the nearest vector space, which has the blocks of Πs as separators, can
vary. We also show that there is a unique largest and a unique smallest
nearest space and finally that the hybrid ranks of V and V⊥, relative
to a partition of the underlying set, are equal.

Theorem 14.5.1 Let V be a vector space on E and let Πs ≡ {E1, · · · , Ek}
be a partition of E. Let vector spaces V1,V2 on E have Ej, j = 1, · · · , k
as separators and further be such that

d(V,V1) = d(V,V2) ≤ d(V,V ′),

whenever vector space V ′ has Ej , j = 1, · · · , k as separators. Then the
following hold.

i. ⊕jV · Ej ⊇ V1 ⊇ ⊕jV × Ej
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ii. d(V,V1) = d(V,V1 + V2) = d(V,V1 ∩ V2)

iii. There is a unique maximal space Vm and a unique minimal space
Vm on E which have the blocks of Πs as separators and are at
the same (minimum) distance from V as V1.

iv. V⊥
1 has Ej, j = 1, · · · , k as separators and d(V⊥,V⊥

1 ) ≤ d(V⊥,V ′)
whenever V ′ has the Ej as separators. Further, d(V,V1) = d(V⊥,V⊥

1 ).

v. The generalized hybrid ranks of V and V⊥ relative to Πs are equal.

Proof : We remind the reader that

d(V,V ′) ≡ r(V + V ′)− r(V ∩ V ′).

i. Suppose V1 ∩ (⊕jV ×Ej) ⊂ ⊕jV × Ej . Consider the space
Vn = V1 + (⊕jV × Ej). Since both V1 and ⊕jV × Ej have Ej as
separators, Vn also will have Ej as separators. Now

⊕j(V × Ej) ⊆ V.

Hence, V + Vn = V + V1. But V ∩ Vn ⊃ V ∩ V1. Hence, d(V,Vn) <
d(V ∩V1), a contradiction. We can similarly prove (using sum in place
of intersection)

V1 ⊆ ⊕j(V . Ej).

The result also follows by using duality, i.e., working with V⊥ in place
of V and using the facts that

(V . Ej)
⊥ = V⊥ × Ej , (V + V ′)⊥ = V⊥ ∩ (V ′)⊥

and d(V,V ′) = d(V⊥, (V ′)⊥).

ii. It can be verified that (see Exercise 14.21), d(V,V ′) + d(V,V”) ≥
≥ d(V, (V +V”)) + d(V, (V ∩V”)), for any spaces V,V ′,V” on E. Now
if V1,V2

both have Ej as separators, so will V1 + V2 as well as V1 ∩ V2 have.
If V1,V2 are used in place of V ′,V” in the above inequality, since
d(V,V1) is the minimum possible under the condition that V1 has Ej

as separators, it follows that the inequality should be an equality. So
V1 + V2,V1 ∩ V2 also are at minimum distance from V under the con-
dition that they have Ej as separators.
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iii. If there are two distinct minimal (maximal) spaces with the speci-
fied property, then their intersection (sum) would have the same prop-
erty and be at the same distance from V. This would contradict mini-
mality (maximality).

iv. Let V3,V4 be vector spaces on E. We have

d(V⊥
3 ,V⊥

4 ) = r(V⊥
3 + V⊥

4 )− r(V⊥
3 ∩ V⊥

4 )

= | E | −r(V3 ∩ V4)− | E | +r(V3 + V4)

= d(V3,V4).

If V1 has Ej as a separator,

V1 ·Ej = V1 × Ej.

So, (V1 · Ej)
⊥ = (V1 × Ej)

⊥

i.e., V⊥
1 ×Ej = V⊥

1 ·Ej .
Hence, V⊥

1 also has Ej as separators. Thus, if V1 is the nearest space
to V with Ej as separators, V⊥

1 is the nearest space to V⊥ with Ej as
separators and, further,

d(V,V1) = d(V⊥,V⊥
1 ).

v. This is immediate from the above.

2

14.5.3 Port Decomposition and Generalized Hy-
brid Rank

In Sections 14.3 and 14.4, we saw that as far as topological interre-
lationships between subnetworks is concerned, one could replace the
subnetworks by forest subgraphs which do not contain cutsets of the
overall graph. We have a similar notion for the present formulation
also. We give a few simple results based on multiport decomposition
from which all such ideas follow. Finally, in Theorem 14.5.2, we show
that, instead of working with VE , we can work with VP , the coupler
space in a minimal multiport decomposition of VE, for all hybrid rank
related algorithms.
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We begin with some preliminary definitions and results. The reader
needs to be familiar with ideas such as generalized minors, matched and
skewed sums etc. from Chapter 7 and with multiport decomposition,
minimal multiport decomposition etc. from Chapter 8. Let VEP ,VPQ

be vector spaces on E ⊎P, P ⊎Q respectively with E ∩Q = ∅. We say
the ordered pair (VEP ,VPQ) is compatible iff VEP ·P ⊇ VPQ ·P and
VEP × P ⊆ VPQ × P (see Section 8.2). Since contraction and restric-
tion are (orthogonal) duals, it is clear that (VEP ,VPQ) is compatible iff
(V⊥

EP ,V⊥
PQ) is compatible. Let VE have the multiport decomposition

((VEjPj
)k,VP ). We say that the multiport decomposition is com-

patible iff VEjPj
·Pj ⊇ VP ·Pj and VEjPj

×Pj ⊆ VP×Pj , for j = 1, · · · , k.
One can show that the decomposition is compatible iff (⊕jVEjPj

,VP ) is
compatible (Exercise 8.11). We now list a few simple lemmas without
proof. These lemmas are parts of exercises or problems as indicated
and their proofs are given in the corresponding solutions.

Lemma 14.5.1 Let VEP ,VPQ,VQR be vector spaces on E ⊎ P, P ⊎
Q,Q ⊎ R with E, P,Q,R pairwise disjoint. Then

(VEP ↔ VPQ)↔ VQR = VEP ↔ (VPQ ↔ VQR)

(for proof see Exercise 7.6).

Lemma 14.5.2 Let (VEP ,VPQ) be a compatible ordered pair of vector
spaces. Then (VEP ,VEP ↔ VPQ) is compatible and VEP ↔ (VEP ↔
VPQ) = VPQ.

(For proof see Exercise 7.7).

Lemma 14.5.3 Let VEP ≡ ⊕jVEjPj
. Then VEP ↔ VP has Ej as sep-

arators, if VP has Pj as separators.

(For proof see Exercise 8.6).

Lemma 14.5.4 Let ((VEjPj
)k,VP ) be a compatible multiport decom-

position of VE . Let the following set functions be defined on subsets of
S ≡ {1, · · · , k} :

ρE(I) ≡ r(VE · (
⋃

i∈I

Ei)),

ωE(I) ≡
∑

i∈I

r(VEiPi
× Ei),



786 14. THE HYBRID RANK PROBLEM

ρP (I) ≡ r(VP · (
⋃

i∈I

Pi)),

ωP (I) ≡
∑

i∈I

r(VEiPi
× Pi).

Then

i. ρE(·), ρP (·) are polymatroid rank functions while ωE(·), ωP (·) are
modular functions

ii. (ρE − ωE)(·) = (ρP − ωP )(·)
iii. the fusion rank of VE relative to {E1, · · · , Ek} is equal to the

fusion rank of VP relative to {P1, · · · , Pk}
iv. the fission rank of VE relative to {E1, · · · , Ek} is equal to the

fission rank of VP relative to {P1, · · · , Pk}.

Proof : For proof of the first two parts see Problem 8.8.

iii. The fusion rank of VE relative to {E1, · · · , Ek} = (ρE − ωE)(S) =
= (ρP − ωP )(S) = fusion rank of VP relative to {P1, · · · , Pk}.
iv. We observe that if ((VEjPj

)k,VP ) is a compatible multiport decom-
position of VE then ((V⊥

EjPj
)k,V⊥

P ) is a compatible multiport decom-

position of V⊥
E (by Theorem 8.2.1 and the facts that contractions and

restrictions are orthogonal duals and that if V1 ⊆ V2 then V⊥
1 ⊇ V⊥

2 ).
We note also that the fission rank of VE relative to {E1, · · · , Ek} equals
the fusion rank of V⊥

E relative to {E1, · · · , Ek} (Exercise 14.23).

Let ρ∗E(·) be defined by replacing VE by V⊥
E in the definition of ρE(·),

ω∗
E(·) by replacing VEiPi

by V⊥
EiPi

in the definition of ωE(·), ρ∗P (·) by
replacing VP by V⊥

P in the definition of ρP (·) and ω∗
P (·) by replacing

VEiPi
by V⊥

EiPi
in the definition of ωP (·). It is clear that (ρ∗E − ω∗

E)(·)
= (ρ∗P − ω∗

P )(·). Hence the fission rank of VE relative to {E1, · · · , Ek}
= the fusion rank of V⊥

E relative to {E1, · · · , Ek} = (ρ∗E − ω∗
E)(S) =

(ρ∗P − ω∗
P )(S) = fusion rank of V⊥

P relative to (P1, · · · , Pk) = fission
rank of VP relative to (P1, · · · , Pk).

2

Theorem 14.5.2 Let (VE1P1, · · · ,VEkPk
;VP ) be a minimal multiport

decomposition of vector space VE on E and let

VEP ≡ ⊕jVEjPj
.



14.5. THE HYBRID RANK PROBLEM - FOURTH FORMULATION787

Then

i. the fusion rank of VE, relative to Πs ≡ {E1, · · · , Ek}, equals the
rank of VP

ii. the fission rank of VE relative to Πs ≡ {E1, · · · , Ek} equals the
nullity of VP

iii. if VPQ,VQ are s.t. (VPQ ↔ VQ) = VP then

(VEP ↔ VPQ)↔ VQ = VE

and further if (VPQ ↔ V ′
Q) has P1, · · · , Pk as separators then

(VEP ↔ VPQ)↔ V ′
Q has E1, · · · , Ek as separators

iv. if VEQ,VQ are s.t. (VEQ ↔ VQ) = VE then

(VEP ↔ VEQ)↔ VQ = VP

and further if (VEQ ↔ V ′
Q) has E1, · · ·Ek as separators then

(VEP ↔ VEQ)↔ V ′
Q has P1, · · ·Pk as separators

v. the generalized hybrid rank of VE relative to Πs equals the gener-
alized hybrid rank of VP relative to {P1, · · · , Pk}.

Proof : We first observe that a minimal decomposition is a com-
patible decomposition (Theorem 8.4.1), and, therefore (Exercise 8.11),
the ordered pair (⊕jVEjPj

,VP ) is compatible. Further, by the above
mentioned theorem, when the decomposition is minimal,

r(VP × Pi) = r(V⊥
P × Pi) = 0, i = 1, · · · , k.

i. Follows from Lemma 14.5.4 when we observe that the fusion rank
of VP relative to {P1, · · · , Pk} is its rank since r(VP × Pi) =
0, i = 1, · · · , k.

ii. Follows from the above mentioned lemma when we observe that
the fission rank of VP relative to {P1, · · · , Pk} is its nullity (r(V⊥

P )),
since r(V⊥

P × Pi) = 0, i = 1, · · · , k.
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iii. We have (VEP ↔ VP ) = VE . Hence, VEP ↔ (VPQ ↔ VQ) = VE.
Hence by Lemma 14.5.1

(VEP ↔ VPQ)↔ VQ = VE .

Next, by the same lemma,

(VEP ↔ VPQ)↔ V ′
Q = VEP ↔ (VPQ ↔ V ′

Q).

By Lemma 14.5.3, since VEP ≡ ⊕jVEjPj
and (VPQ ↔ V ′

Q) has Pj

as separators, VEP ↔ (VPQ ↔ V ′
Q) has Ej as separators.

iv. Since ((VEjPj
)k,VP ) is a minimal decomposition, (⊕jVEjPj

,VP )
is compatible. Then, by Lemma 14.5.2

(⊕jVEjPj
)↔ ((⊕jVEjPj

)↔ VP ) = VP ,

i.e., (⊕jVEjPj
)↔ VE = VP , i.e., ((VEjPj

)k,VE) is a decomposition
of VP . The result now follows by arguing as in (iii) above. (Note
that in (iii) above we did not use minimality of decomposition).

v. This follows directly from (iii) and (iv) above and the definition
of generalized hybrid rank (page 780).

2

Remark: In the above theorem it may be noted that the fifth part
depends only on compatibilty of the decomposition and not on its
minimality.

If VE is the voltage space of a graph G and {E1, · · · , Ek}, a given par-
tition ofE, we can build a minimal multiport decomposition ((VEjPj

)k,VP )
such that VP is the voltage space of a graph GP (see Algorithm (Port
minimization1) of Chapter 8). In GP each GP · Pj, j = 1, · · · , k, would
appear as a forest graph containing no cutsets of GP . By using the
theorems listed in this subsection it follows that for computing the
generalized hybrid rank we can work with GP rather than G. The re-
sults of Section 14.4 imply that the same is true in the case of the third
formulation as well as for computing the minimum length fusions and
fissions sequence.

Exercise 14.24 A polymatroid membership problem: Give a
polynomial algorithm for the following problem:
Find if there exists, an independent set of columns of a representative
matrix of VE that contains precisely kj columns from Ej , j = 1, · · · , k.
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14.5.4 Relation between the Hybrid Rank of a
Representative Matrix of a Vector Space

and its Generalized Hybrid Rank relative
to a Partition

In this subsection we relate the generalized hybrid rank of a vector
space relative to a partition of the underlying set to the hybrid rank of
the matroid of a modified representative matrix. Analogous to the case
of the third formulation (Subsection 14.4.3), we show that the hybrid
rank of a vector space on E, relative to a partition Πs ≡ {E1, · · · , Ek}
of E, is the minimum of the hybrid ranks of the matroids associated
with matrices which are obtained by replacing the columns in Ej by a
set of independent cospanning columns.

A few preliminary definitions:
LetM be a matroid on E. The hybrid rank of M has already been
defined to be

min
K⊆E

r(M ·K) + ν(M× (E −K)).

Let A be a matrix. The matroid M(A) is the matroid on the set
of columns of A where a subset is independent in M(A) iff the cor-
responding set of columns are independent in A. We say M(A) is
associated with A. Let VE be a vector space on E. Then A repre-
sents VE if its rows form a basis for VE . If A represents VE , we denote
by A∗, a representative matrix of V⊥

E . The hybrid rank of VE is the
hybrid rank ofM(A), which can be seen to be

min
K⊆E

r(V . K) + r(V⊥ · (E −K)),

equivalently, min
K⊆E

r(V . K) + ν(V × (E −K)).

Let Πs ≡ {E1, · · · , Ek} be a partition of E. If ((VEjPj
)k,VP ) is a mini-

mal multiport decomposition of VE, we know (by Theorem 8.4.1) that
r(VP ·Pi) =| Pi | and r(V⊥

P ·Pi) =| Pi |, i = 1, · · · , k. Further, by Theo-
rem 14.5.2, the generalized hybrid rank of VE relative to {E1, · · · , Ek}
equals that of VP relative to {P1, · · · , Pk}. More can be said using the
above mentioned theorem: if we know how to find the nearest V ′

P (to
VP ) which has Pi as separators, we also know how to find the nearest V ′

E
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(to VE) which has Ei as separators. So, for all practical purposes, we
may pretend that we are working with VP , {P1, · · · , Pk}, correspond-
ing to a minimal decomposition of VE, relative to {E1, · · · , Ek}. Now if
((VEjPj

)k,VP ) is a minimal multiport decomposition of VE , we know by
Theorem 8.4.1, that the columns corresponding to Pi are independent
in representative matrices of both VP as well as V⊥

P . Therefore, when-
ever convenient, we assume that each set of columns Ei is independent
in A as well as in A∗.

Let A be a matrix withE as its column set and let Πs ≡ {E1, · · · , Ek}
be a partition of E. Let Cj be the vector space spanned by the columns
of Ej . We say a matrix A′ is equivalent to A relative to {Cj, j =
1, · · · , k}, if its columns can be partitioned into {E1

′, · · · , Ek
′} where

the Ej
′ are bases of Cj , j = 1, · · · , k.

If V ′ is a vector space on E, then d(V,V ′) = d(V,V ∩V ′)+d(V∩V ′,V ′)
(see Exercise 14.21). If V ′ is the nearest space to V with blocks
of Πs as separators, it follows that no proper subspace V” of V ′ can
contain V ∩ V ′ as well as have blocks of Πs as separators (other-
wise d(V,V”) ≤ d(V,V ∩ V ′) + d(V ∩ V ′,V”) < d(V,V ′)). Now V ′ =
⊕j(V ′ ·Ej) ⊇ ⊕j((V ∩V ′) ·Ej) ⊇ V ∩V ′. Hence, V ′ = ⊕j((V ∩V ′) ·Ej)
and d(V ∩ V ′,V ′) is the fission rank of V ∩ V ′. The problem of finding
the nearest V ′ with the desired properties is therefore equivalent to
finding a subspace V1 of V for which (d(V,V1) + fission rank of V1) is
a minimum. Let us call this number the fusion - fission number of
V1 relative to (V,Πs). We then have the following simple result whose
routine computational proof we omit.

Theorem 14.5.3 Let V be a vector space on E. Let Πs ≡ {E1, · · · , Ek}
be a partition of E. Let V1 be a subspace of V. Then

i. the fusion - fission number of V1 relative to (V,Πs)

=
∑

j

r(V1 · Ej)− 2r(V1) + r(V)

ii. the generalized hybrid rank of V relative to Πs

= min
V1⊆V

(
∑

j

r(V1 · Ej)− 2r(V1) + r(V))
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Exercise 14.25 Fission - fusion number: We know that d(V,V1) =

= d(V,V + V1) + d(V + V1,V1). One may associate with a superspace
V ′ of V the
‘fission - fusion number’ d(V,V ′) + d(V ′,V1), where d(V ′,V1) is the
fusion number
of V ′ relative to the partition Πs ≡ {E1, · · · , Ek}. Show that

i. the fission - fusion number of a superspace V ′ of V equals

−
∑

j

r(V ′ × Ej) + 2r(V ′)− r(V)

ii. the fission - fusion number of a superspace V ′ of V relative to
(V,Πs) equals the fusion - fission number of the subspace (V ′)⊥

of V⊥ relative to (V⊥,Πs).

iii. the minimum of the fission - fusion numbers of superspaces of V
equals the minimum of the fusion - fission numbers of subspaces
of V= generalized hybrid rank of V relative to Πs.

The reader would notice that the above result is analogous to The-
orem 14.4.2. Both the results may be regarded as of ‘row’ type. (V1 is
a row subspace, the voltage space of Gfus·Π is a subspace of the voltage
space of G). Our ultimate aim is to prove a result analogous to The-
orem 14.4.3 where hybrid rank relative to Πs is shown to be equal to
the minimum of hybrid ranks over ‘equivalent’ spaces. To do this we
need to get a ‘column’ version of the hybrid rank relative to Πs. We
need a few definitions to proceed further.
Let A be the representative matrix of a vector space VE . Then the row
space R(A) = VE . The column space C(A) is the span of the columns
of A. We relate subspaces of R(A) to subspaces of C(A) as follows.
Let V1 ⊆ R(A). Then the column annihilator with respect to A
of V1, denoted by Ac(V1,A), is the collection of vectors of the form Ax
s.t. λTAx = 0 whenever λT A belongs to V1. Similarly the row anni-
hilator with respect to A of C1 ⊆ C(A), denoted by Ar(A, C1), is
the collection of vectors of the form λTA s.t. λTAx = 0 whenever Ax
belongs to C1. When it is clear from the context, we would omit refer-
ence to the matrix A and write Ac(V1),Ar(C1) in place of Ac(V1,A),
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Ar(A, C1) respectively. It is clear that Ac(V1),Ar(C1) are vector spaces
whether or not V1, C1 are vector spaces. By routine linear algebra we
now prove the following simple result.

Lemma 14.5.5 Let A be a representative matrix of VE . Let E ′ ⊆ E.
Let V1 be a subspace of VE and let C1 be a subspace of C(A). Then

i. if C1 = Ac(V1) then

(a) r(C1 ∩ C(A1)) + r(V1 · E ′) = r(VE · E ′)

(b) r(C1) + r(V1) = r(VE).

ii. C1 = Ac(V1) iff V1 = Ar(C1).

Proof :

i(a) Let VE have the representative matrix A ≡ (A′...A”), where A′

denotes the submatrix of A composed of all rows of A and E ′ as the set

of columns. Let V1 have the representative matrix (L)(A′...A”). Then

C1 is the collection of all vectors (A′...A”)x1
x2

s.t. L(A′...A”)x1
x2

= 0 and
C1 ∩ C(A′) is the collection of all vectors A′x1 s.t. L(A′)x1 = 0. Now
the rows of L(A′) span V1 ·E ′. The collection of all vectors orthogonal
to this space is the solution space of (LA′)x1 = 0. Let us call this space
Vx1 . Clearly

r(Vx1) =| E ′ | −r(V1 · E ′).

Consider the linear transformation

A′ : Vx1 → C1 ∩ C(A′)

where x1 ∈ Vx1 is mapped to A′x1. This is an onto mapping and its
null space is the space of all vectors x1 ∈ Vx1 s.t. A′x1 = 0. This space
is (VE · E ′)⊥ ∩ Vx1 . However, (VE · E ′)⊥ ⊆ Vx1. So the null space is
(VE · E ′)⊥. Hence,

r(C1 ∩ C(A′)) = r(Vx1)− r(VE · E ′)⊥

= | E ′ | −r(V1 · E ′)− | E ′ | +r(VE · E ′)

= r(VE · E ′)− r(V1 · E ′).

i(b) This follows from the above by putting E ′ = E.
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ii. By the definition of Ac(·),Ar(·), if C1 = Ac(V1) it is clear that
V1 ⊆ Ar(C1). Further C1 ⊆ Ac(Ar(C1)). Since C1 = Ac(V1), we have
r(C1) = r(VE)− r(V1). If V1 ⊂ Ar(C1), since C1 ⊆ Ac(Ar(C1)) we must
have

r(C1) ≤ r(VE)− r(Ar(C1))
< r(VE)− r(V1),

a contradiction. So V1 = Ar(C1).
The same contradiction results if C1 ⊂ Ac(Ar(C1)). So C1 = Ac(Ar(C1)).
Now if V1 = Ar(C1) we have Ac(V1) = Ac(Ar(C1)) = C1.

2

We now give an expression for the hybrid rank of V relative to Πs in
terms of column subspaces of a representative matrix of V. The result
is analogous to Lemma 14.4.1.

Lemma 14.5.6 Let V be a vector space on E and let Πs ≡ {E1, · · · , Ek}
be a partition of E. Let A be a representative matrix of V and let Cj
denote the space spanned by the columns Ej , j = 1, · · · , k. Then the
generalized hybrid rank of V relative to Πs

= min
C

(2r(C)−
∑

j

r(C ∩ Cj) +
∑

j

r(Cj)− r(V)),

where C is a subspace of C(A).

Proof : By Theorem 14.5.3, the generalized hybrid rank of V relative
to Πs

= min
V ′

⊆V
(
∑

j

r(V ′ · Ej)− 2r(V ′) + r(V)).

Let C′ denote Ac(V ′). We know by Lemma 14.5.5, that every subspace
C′ of C(A) can be written in the form Ac(V ′) for some subspace V ′ ⊆ V.
By the same lemma

r(V ′ ·Ej) = r(V · Ej)− r(C′ ∩ Cj)
r(V ′) = r(V)− r(C′).

So
minV ′

⊆V (
∑

j

r(V ′ · Ej)− 2r(V ′) + r(V))
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= min
C′⊆C(A)

(
∑

j

(r(V . Ej)− r(C′ ∩ Cj))− 2(r(V)− r(C′)) + r(V).

The desired result follows when we note that r(V . Ej) = r(Cj).
2

We now present the main result of this section. We have already
indicated that, restricting oneself to the case where the blocks of Πs

are independent in a representative matrix of VE , does not entail any
loss in generality.

Theorem 14.5.4 Let V be a vector space on E and let Πs ≡ {E1, · · · , Ek}
be a partition of E. Let A be a representative matrix of V with E de-
noting its set of columns. Let Cj be the span of the columns Ej for
j = 1, · · · , k.
Then, the generalized hybrid rank of V relative to Πs = min (hybrid
rank of A′), where A′ is equivalent to A relative to {Cj, j = 1, · · · , k}.
Proof : Let A′ be the matrix with column set E ′, equivalent to A
relative to {Cj , j = 1, · · · , k}. Let M′ ≡ M(A′). Let K be the subset
of columns of A′ s.t. r(M′ ·K) + ν(M′ × (E ′ −K)) = hybrid rank of
A′. Let C(K) be the vector space spanned by the columns of K. Let
{Ej

′, j = 1, · · · , k} be the partition of the columns of A′ s.t. Ej
′ is a

basis for Cj , j = 1, · · · , k. Now

r(M′ ·K) = r(C(K)),

| E ′ −K |=
∑

j

(| Ej
′ | − | K ∩ Ej

′ |) ≥
∑

j

(r(Cj)− r(Cj ∩ C(K)))

and r(M′ × (E ′ −K)) = r(V)− r(V . K) = r(V)− r(C(K)).

Hence

ν(M′ × (E ′ −K)) ≥
∑

j

(r(Cj)− r(Cj ∩ C(K)))− (r(V)− r(C(K))).

Thus, the hybrid rank of A′

≥ 2r(C(K))−
∑

j

r(C(K) ∩ Cj) +
∑

j

r(Cj)− r(V)

≥ hybrid rank of V relative to Πs.

Next suppose Ĉ minimizes the expression

2r(C)−
∑

j

r(C ∩ Cj) +
∑

j

r(Cj)− r(V)
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over all subspaces of C(A). Let us choose Ej
′ so that Ĉ ∩ Cj , has as

basis, a subset K ′
j of columns of Ej

′ for j = 1, · · · , k. Let A′ be the
matrix whose column set is E ′ ≡ ⊎jEj

′. Let K ≡ ⊎jK
′
j . Now

| E ′ −K |=
∑

j

(r(Cj)− r(Ĉ ∩ Cj)).

Hence,

r(M′ ·K) + ν(M′ × (E ′ −K)) = 2r(C(K))−
∑

j

r(Ĉ ∩ Cj) +
∑

j

r(Cj)− r(V)

≤ 2r(Ĉ)−
∑

j

r(Ĉ ∩ Cj) +
∑

j

r(Cj)− r(V).

Hence hybrid rank of A′ ≤ hybrid rank of V relative to Πs. Since A′

is equivalent to A under {Cj , j = 1, · · · , k}, this proves the required
result.

2

Exercise 14.26 Hybrid rank of extension cannot be smaller:
Let V be a vector space on E and let VEP be an extension of V, i.e.,
there exists a vector space VP on P s.t.

VEP ↔ VP = V.

Show that the hybrid rank of V is not greater than the hybrid rank of
VEP .

Exercise 14.27 First and fourth formulations of hybrid rank:
Let V be a vector space on E and Πs be the partition of E into singleton
blocks. Show that the generalized hybrid rank of V relative to Πs equals
the hybrid rank of V.

14.5.5 Nesting Property of Optimal Subspaces

We saw in Subsection 14.5.4 that the generalized hybrid rank problem
involves the (alternative) minimization of two functions:

i.
∑

j r(V . Ej)− 2r(V),V ⊆ VE
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ii. 2r(C)−∑j r(C∩Cj), C ⊆ C(A), where A is a representative matrix
of VE .

We will show that both these functions are submodular, that if the
subspaces are optimal so are their sum and intersection and, finally, if
we replace 2 by λ, the spaces satisfy a nesting property like the sets in
the principal partition of a submodular function defined over subsets
of a given set.

Let VE be a vector space on E and let f(·) be a real valued function
on subspaces of VE. We say f(·) is submodular if

f(V1) + f(V2) ≥ f(V1 + V2) + f(V1 ∩ V2)

and supermodular if

f(V1) + f(V2) ≤ f(V1 + V2) + f(V1 ∩ V2).

The function is modular if it is both submodular and supermodular.
We now prove a simple lemma on the properties of some commonly
encountered functions.

Lemma 14.5.7 Let r(·) be the rank function on the collection of sub-
spaces of VE . Then,

i. λr(·) is a modular function,

ii.
∑

j r(V . Ej), where {E1, · · · , Ek} is a specified partition of E, is
a submodular function on subspaces of VE,

iii.
∑

j r(V ∩ Vj), where V1, · · · ,Vk are specified subspaces of VE , is
a supermodular function on subspaces of VE .

Proof : i. This is well known but we give the proof for completeness.
Let b∩ be a basis of V1∩V2. If we grow b∩ first to a basis b1 of V1, next
grow b∩ to a basis b2 of V2, then it is easy to see that b1 ∪ b2 is a basis
of V1 + V2 and that b∩ = b1 ∩ b2. Since

| b1 | + | b2 |=| b1 ∩ b2 | + | b1 ∪ b2 |,

we have,
r(V1) + r(V2) = r(V1 ∩ V2) + r(V1 + V2).
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ii. We have

r(V1 · Ej) + r(V2 · Ej) = r(V1 · Ej + V2 · Ej) + r((V1 · Ej) ∩ (V2 · Ej)).

Now
V1 ·Ej + V2 · Ej = (V1 + V2) · Ej,

and
(V1 · Ej) ∩ (V2 · Ej) ⊇ (V1 ∩ V2) · Ej .

Hence,

r(V1 · Ej) + r(V2 · Ej) ≥ r((V1 + V2) · Ej) + r((V1 ∩ V2) · Ej).

Let rj(V) ≡ r(V · Ej). It is then clear that
∑k

j=1 rj(·) is a submodular
function.

iii. We have

r(V1 ∩ Vj) + r(V2 ∩ V j) = r((V1 ∩ Vj) + (V2 ∩ Vj)) + r(V1 ∩ V2 ∩ Vj).

Now
(V1 ∩ Vj) + (V2 ∩ Vj) ⊆ (V1 + V2) ∩ Vj .

Hence,

r(V1 ∩ Vj) + r(V2 ∩ Vj) ≤ r((V1 + V2) ∩ Vj) + r((V1 ∩ V2) ∩ V j).

Let rj(V) ≡ r(V∩V j). It is then clear that
∑k

j=1 r
j(·) is a supermodular

function.

2

The following theorem is now immediate.

Theorem 14.5.5 Let VE be a vector space on E and let Πs ≡ {E1, · · · , Ek}
be a partition of E. Let A be a representative matrix of VE. Let
C1, · · · , Ck be subspaces of C(A). Let

fλ(V) ≡
∑

j

r(V . Ej)− λr(V),V ⊆ VE

and
gλ(C) ≡ λr(C)−

∑

j

r(C ∩ Cj), C ⊆ C(A).

Then fλ(·) is submodular over subspaces of VE and gλ(·) is submodular
over subspaces of C(A).
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Exercise 14.28 Give an example where

i. (V1 · Ej) ∩ (V2 · Ej) ⊃ (V1 ∩ V2) · Ej

ii. (V1 ∩ Vj) + (V2 ∩ Vj) ⊂ (V1 + V2) ∩ Vj.

Exercise 14.29 A case where gλ(·) reaches its minimum on the
zero subspace: Let Cs be a vector space and let C1, · · · , Ck be given
subspaces of Cs. Let g(C) ≡ 2r(C)−∑k

j=1 r(C ∩ Cj).
Suppose C1, · · · , Ct are such that

t
∑

j=1

r(Cj) = r(Cs)

and

r(
k
⋃

j=t+1

Cj) =
k
∑

j=t+1

r(Cj).

Show that the function g(·) reaches its minimum, among subspaces of
Cs, at {0}.

Our next result brings out the analogy with principal partition. We
use the notation of Theorem 14.5.5.

Theorem 14.5.6 Let h(·) be a submodular function over subspaces of
a vector space VE on E. Let A be a representative matrix of VE. Let
{E1, · · · , Ek} be a partition of the column set E of A. Let Cj , j =
1, · · · , k be the span of the column set Ej , j = 1, · · · , k. Let

fλ(V) ≡
∑

j

r(V . Ej)− λr(V),V ⊆ VE

and
gλ(C) ≡ λr(C)−

∑

j

r(C ∩ Cj), C ⊆ C(A).

Then,

i. if V1,V2 minimize h(·) over subspaces of VS, then so do V1 + V2

and V1 ∩ V2,

ii. there is a unique minimal and a unique maximal subspace that
minimizes h(·),
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iii. if λ1 > λ2 and V1,V2 minimize fλ1
(·), fλ2

(·) respectively then
V1 ⊇ V2,

iv. if λ1 > λ2 and C1, C2 minimize gλ1
(·), gλ2

(·) respectively then
C1 ⊆ C2.

Proof :

i. We have h(V1) + h(V2) ≥ h(V1 + V2) + h(V1 ∩ V2). So if V1,V2

minimize h(·), the above inequality must reduce to an equality.
Hence V1 + V2 and V1 ∩ V2 minimize h(·).

ii. This is an immediate consequence of the previous part of this
theorem.

iii. By Theorem 14.5.5, we know that fλ(·) is submodular. We have

fλ1
(V1) + fλ2

(V2) = fλ1
(V1) + fλ1

(V2) + (λ1 − λ2)r(V2)

≥ fλ1
(V1 + V2) + fλ1

(V1 ∩ V2) + (λ1 − λ2)r(V2)

≥ fλ1
(V1 + V2) + fλ2

(V1 ∩ V2)

+(λ1 − λ2)(r(V2)− r(V1 ∩ V2)).

Since λ1 > λ2, unless r(V2) = r(V1 ∩ V2), we must have LHS >
fλ1

(V1+V2)+fλ2
(V1∩V2), a contradiction, since V1,V2 minimize

fλ1
(·), fλ2

(·) respectively. We conclude that r(V2) = r(V1 ∩ V2)
and hence V2 ⊆ V1.

iv. The proof is similar to the above and is omitted.

2

14.6 Solutions of Exercises

E 14.1: Let us assume that G does not have self loops or coloops since
these any way do not figure in a minimal representation and do not
affect the minimum value of r(G . X) + ν(G × (E −X)) (by including
all the self loops in X and coloops in (E −X)).
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Let (At, Bt) be the representation of a forest t of G. Let T be the set
of coloops of G . (E −Bt). There can be only one forest (namely, t) of
G . (E − Bt) that contains At (by the definition of a representation).
Hence, t = At ∪ T .
Let L ≡ E−Bt−(At∪T ). In the graph G, edges of L must be spanned
by At (i.e., there must be paths between their endpoints containing
only edges of At) since T is the set of coloops of G . (E − Bt).
Let A ≡ At ∪ L. Now At is a forest of G . A. Hence, T is a forest and
Bt, a coforest of G × (E −A). Hence,

| At ∪Bt |= r(G . A) + ν(G × (E − A)).

On the other hand, given any set A ⊆ E, (At, Bt) is a representation
of a forest if At is a forest of G . A and Bt, a coforest of G × (E −A).
For, there is only one forest T of G × (E − A) that does not intersect
Bt and At∪T is a forest of G. Thus, the problem of finding a minimum
representation is equivalent to finding a partition {A,E −A} of G s.t.
A minimizes r(G . X) + ν(G × (E −X)).

E 14.2: We have, A ⊆ E minimizes r(G . X) + ν(G × (E −X)) iff it
minimizes r(G . X) + ν(G × (E −X)) + r(G), i.e., iff it minimizes

r(G . X) + ν(G × (E −X)) + r(G . X) + r(G × (E −X)),

i.e., iff it minimizes 2r(G . X)+ | E −X | .
E 14.3: Let t1, t2 be two forests of G and let A ⊆ E. Then t2 − t1
is a subforest as well as a subcoforest of G. Hence, (t2 − t1) ∩ A is a
subforest of G . A and (t2−t1)∩(E−A) is a subcoforest of G×(E−A).
Hence,

| t2 − t1 |≤ r(G . A) + ν(G × (E − A)).

Thus, it is clear that, if t1, t2 are two forests of G and A ⊆ E s.t. the
above inequality becomes an equality, then t1, t2 must be maximally
distant and A must be minimizing the expression

r(G . X) + ν(G × (E −X)).

Next let t1, t2 be maximally distant and let A be as in Lemma 14.2.1
(i(a) & i(b)). We have, t2− t1 = ((t2− t1)∩A)⊎ ((t2− t1)∩ (E−A)).
Now, t2 ∩A = ((t2 − t1) ∩ A) is a forest of G . A. Hence, t2 ∩ (E −A)
is a forest of G × (E − A). Similarly t1 ∩ (E − A) is also a forest of
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G × (E −A). Further, t1 ∪ t2 ⊇ (E −A). Hence, (t2 − t1) ∩ (E −A) is
a coforest of G × (E − A).
We thus see that

| t2 − t1 |= r(G . A) + ν(G × (E − A)).

E 14.4: (Original solution due to Lehman, Edmonds [Edmonds65b].
Version in terms of principal partition due to Bruno and Weinberg
[Bruno+Weinberg71]).
Notation: By Xmin(Xmax) of G′ we mean the unique minimal (maxi-
mal) set that satisfies 2r(X)+ | E(G ′)−X | = (2r∗ | · |)(E(G ′)), where
r(·) is the rank function of G ′, i.e., r(T ) = r(G ′.T ). By Ymin(Ymax) of
G′ we mean the unique minimal (maximal) set that satisfies

2ν(X)+ | E(G ′)−X |= (2ν∗ | · |)(E(G ′)),

where ν(·) is the nullity function of G ′, i.e., ν(T ) = ν(G ′ × T ). All the
fundamental circuits are according to the graph G. Lemma 14.2.1 is
used repeatedly.

Case 1: Let eM ∈ Xmin of G.
Then there exist two maximally distant forests t1, t2 of G such that
eM 6∈ t1 ∪ t2 and t1 ∩Xmin, t2 ∩Xmin are disjoint forests of G . Xmin.
If the short player plays first, he contracts a branch e′ ∈ L(eM , t1).
Let e ∈ L(e′, t2). Edges e′, e belong to Xmin of G and t1 − e′, t2 − e are
maximally distant forests of G×(E−e′) ((t1−e′)∪(t2−e) ⊇ E−Xmin

and t1 − e′, t2 − e have the maximum possible intersection, among all
forests of G× (E−e′), with Xmin−e′). Then eM ∈ Xmin of G× (E−e′)
since eM /∈ (t1 ∪ t2 − e− e′).
Let the cut player play first. We consider all the alternative situa-
tions. In each case we show that either after the cut player’s 1st move,
or after the short player has responded, eM belongs to the Xmin of
a reduced graph. Continuing this procedure we would finally reach a
graph in which there are three parallel edges, one of which is eM . For
this graph it is clear that the short player would always win whether
he plays first or second. Let e be the edge that is being deleted.

i. If e /∈ t1 ∪ t2, then t1, t2 continue to be maximally distant forests of
G . (E − e). Hence, eM belongs to E − (t1 ∪ t2) and therefore to Xmin

of G . (E − e).
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ii. Let e not belong to Xmin of G. Then e ∈ t1∪t2−Xmin. Let, without
loss of generality, e ∈ t2 − Xmin. Extend t2 − e to a new forest t′2 by
adding a suitable edge of t1. This latter edge cannot belong to Xmin

since edges of t1 ∩Xmin are spanned by edges of t2 ∩Xmin. Now t1, t
′
2

would be maximally distant forests in the graph G . (E − e) (t1 ∪ t′2 ⊇
E−e−Xmin and t1, t

′
2 have the maximum possible intersection, among

all forest of G . (E − e), with Xmin) and eM ∈ E − e− (t1 ∪ t2). Thus,
eM belongs to Xmin of G . (E − e).
iii. Let e ∈ (t1∪t2)∩Xmin. Now we pick maximally distant forests t′1, t

′
2

of G s.t. e /∈ t′1 ∪ t′2. By Lemma 14.2.1 this is possible since e ∈ Xmin

of G. If eM /∈ t′1 ∪ t′2, it is clear that eM ∈ Xmin of G . (E − e). So
let us assume that eM ∈ t′1 ∪ t′2. Suppose eM ∈ t′2. Then, (t′2 − eM)
can be extended to a forest of G . (E − e) using an edge e′ ∈ t′1
s.t. e′ ∈ L(eM , t

′
1). Now t′1, t

′
2 intersect Xmin in forests of G . Xmin.

Hence, e′ ∈ Xmin. If now we short e′ (i.e., if this is the short player’s
move) t′2 − eM and t′1 − e′ become maximally distant forests of G ′ ≡
G . (E − e) × (E − e− e′) ((t′2 − eM) ∪ (t′1 − e′) ⊇ E − e − e′ −Xmin

and further (t′2−eM), (t′1−e) have maximum possible intersection with
Xmin−e−e′ in G′). Thus, in G′, eM lies outside the maximally distant
pair of forests t1 − e, t′2 − eM . Hence, eM belongs to Xmin of G′. This
completes Case 1.

Case 2: Let eM ∈ Ymin.
We use arguments dual to those used in the previous case to show that
the cut player can always win playing first or second. In particular this
means that in the argument we replace
rank of G . T by nullity of G × T , forests by coforests, Xmin by Ymin,
deletion (contraction) by contraction (deletion), fundamental circuit
with respect to a forest by fundamental cutset with respect to a cofor-
est.
The final graph that we reach in this case will have three series edges
with eM one of them.

Case 3: Let eM ∈ Xmax −Xmin = Ymax − Ymin.
In this case the one who plays first would win. Observe that if t1, t2 are
maximally distant forests of G then G . Xmax has t1 ∩Xmax, t2 ∩Xmax

as disjoint forests. Also (E − (t1 ∪ t2)) ⊆ Xmin. Hence, in this case
eM ∈ t1 ∪ t2. Let eM ∈ t1 and let the short player play first. Let
e ∈ t2 ∩ Xmax s.t. eM ∈ L(e, t1). Let e be contacted by the short
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player. It is then clear that t2−e, t1−eM are maximally distant forests
of G × (E − e). Now we can use the arguments of Case 1 to show that
the short player must win treating the cut player’s next move as the
‘first move’.
The situation where the cut player plays first can be handled by argu-
ments dual to the above.

E 14.5: We first show (in the following Lemma) that the term rank
of a given cobase matrix cannot be less than the rank of any cobase
matrix.

Lemma 14.6.1 Let Q,Q′ be row equivalent matrices of the form given
below:

T1 T2 T3 T4

Q =

[

I1 0 Q13 Q14

0 I2 Q23 Q24

]

T1 T2 T3 T4

Q′ =

[

I1 Q′
12 0 Q′

14

0 Q′
22 I2 Q′

24

]

.

Then the term rank of the matrix

[

Q13 Q14

Q23 Q24

]

is not less than the

rank of the matrix

[

Q′
12 Q′

14

Q′
22 Q′

24

]

.

Proof : Observe that the second set of rows of Q′ is obtained by linear
combination of the second set of rows of Q. Hence, Q23 is a nonsingular
matrix. From this fact it can be inferred that the term rank of

[

0 Q14

I2 Q24

]

must be less than or equal to the term rank of

T3 T4
[

Q13 Q14

Q23 Q24

]

.

But the rank of

[

Q′
12 Q′

14

Q′
22 Q′

24

]

is the same as the rank of

[

0 Q14

I2 Q24

]

,

which must be less than or equal to its term rank. The result follows.
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2

Next we display a cobase matrix where term rank = rank. This cobase
matrix is constructed according to the algorithm given in the brief
solution earlier. So the following lemma justifies the algorithm and
has the consequence that the maximum rank = minimum term rank.

Lemma 14.6.2 Let Q be the matrix shown below with set of columns
S

b1 b2 − b1 c
[

Q11 Q12 Q13

]

,

where column sets b1, b2 are maximally distant bases of the column set
of Q and c ≡ S − (b1 ∪ b2). Let

b1 b2 − b1 c

Q′ =
[

I P R
]

be row equivalent to Q. Then the matrix
[

P R
]

has term rank =
rank.

Proof : By Lemma 14.2.1 there exists a set A of columns s.t. A ⊇ c
and
A ∩ b1, A ∩ b2 are disjoint and span all of A. Hence, perhaps after
rearranging
rows, Q′ would have the form shown below (where the columns corre-
spond from left to right respectively to b1 ∩ A, b1 −A, b2 ∩ A, b2 − b1 − A, S − (b1 ∪ b2))

[

I 0 Q′
13 Q′

14 Q′
15

0 I 0 Q′
24 0

]

,

with Q′
13 being a nonsingular matrix. Clearly the term rank of the

matrix
[

Q′
13 Q′

14 Q′
15

]

equals | b2 ∩A | while that of Q′
24 does not exceed

| b2 − b1 − A | .
Thus the matrix

Q =

[

Q′
13 Q′

14 Q′
15

0 Q′
24 0

]

,

whose columns correspond from left to right to b2 ∩A, b2 − b1 − A, c
respectively, has term rank not exceeding | b2 − b1 |. But this matrix
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has the columns corresponding to b2 − b1 linearly independent and
therefore has rank equal to | b2− b1 |. Since rank of any matrix cannot
exceed its term rank, this proves the result.

2

E 14.6:
i. Immediate from the definition.

ii. We have

f(X) + f ∗(S −X) = f(X) + g(S −X)− f(S) + f(X)

= 2f(X)− g(X) + g(S)− f(S).

The result follows.

iii. We show the result for contraction. Since restriction of f(·) cor-
responds to contraction of f ∗(·), by (i) above the result would be true
also for restriction. Since every minor is a restriction followed by a
contraction the result would follow for minors.
Let f1(·) = f ⋄T(·). We then have, for X ⊆ T ,

f1(X) + f ∗
1 (T −X) = f(X ∪ (S − T ))− f(S − T ) + f ∗(T −X)

≤ f(X) + f(S − T )− f(S − T ) + f ∗(T −X)

≤ f(X) + f ∗(S −X)

(where we have used the facts that f ∗
1 (T −X) = f ∗(T −X) and that

f ∗(·) is an increasing function).
So min of LHS ≤ min of RHS.

E 14.7:
We prove only the statement about the dual. We have

f ∗(T ) = g(T )− f(S) + f(S − T )

=
∑

e∈T

f(e)− r(Ŝ) + r(Ŝ − T̂ )

= | T̂ | −r(Ŝ) + r(Ŝ − T̂ )

= r∗(T̂ ),

where r∗(·) is the rank function ofM∗.

E 14.8:
i. Let r′(·) be the rank function ofM·(Ŝ−a). If e 6∈ X, it is clear that
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f(X) = r′(
⋃

ei∈X êi). If e ∈ X, r′((
⋃

ei∈X−e êi)∪ (ê−a)) = r(
⋃

ei∈X ei) =
f(X) since a is dependent on ê− a in the matroidM. This proves the
result.

ii. Repeating the operation in the previous part, we can destroy all
circuits of M contained in each ê retaining the property of being an
expansion of f(·) for the resulting matroid. So there is no loss of
generality in assuming that M · ê contains no circuit for each e ∈ S.
But then | ê |= r(M · ê) = f(e). Hence, | Ŝ |= ∑ | ê |= ∑

e∈S f(e).

E 14.9:
i. Suppose Y maximizes g(X)− f(X), X ⊆ S and e 6∈ Y. Then

g(Y ∪ e)− f(Y ∪ e) = g(Y )− f(Y ) + [g(e)− (f(Y ∪ e)− f(Y ))]

Since f(·) is a polymatroid rank function we have

f(Y ∪ e)− f(Y ) ≤ f(e) < g(e).

Thus, g(Y ∪ e)− f(Y ∪ e) > g(Y )− f(Y ), a contradiction.

ii. We need only verify that (f − h)(·) is an integral polymatroid
rank function (the other part being valid for any weight function h(·)).
We have (f − h)(e) = f(e) − h(e) = f(e) − (f(S) − f(S − e)). So
(f − h)(e) ≥ 0, since f(·) is a polymatroid rank function. Now h(·)
is a weight function and, therefore, (f − h)(·) is submodular. Further
f(∅) = (f − h)(∅) = 0. We conclude that (f − h)(·) is a polymatroid
rank function. The integrality is obvious.

iii. Let r′(·) denote the rank function of Mred. For each e ∈ S, let e′

denote (ê− be ∩ ê) and let X ′ ≡ {e′, e ∈ X}, X ⊆ S. We need to show
that

(f − h)(X) = r′(
⋃

e′∈X′

e′) ∀ X ⊆ S. (∗)

We need the following preliminary lemma:

Lemma 14.6.3 Let bS−X be a base of M · (⋃e∈S−X ê). Then
(
⋃

e∈X(be ∩ ê)) ∪ bS−X is independent.

Proof : Suppose the set is dependent. Then there is a minimal subset
Y of X s.t. (

⋃

e∈Y (be ∩ ê)) ∪ bS−X is dependent. Let e1 ∈ Y. Let
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K ≡ (
⋃

e∈Y −e1
(be ∩ ê))∪ bS−X . Grow K into a base b2 ofM· (Ŝ − ê1).

Now be1 ∩ ê1 is a minimal intersection of a base of M with ê1 and,
therefore, is a base ofM× ê1. Hence, b2∪ (be1 ∩ ê1) is a base ofM. But
this contradicts the fact that a subset of this set, namely K ∪ (be1 ∩ ê1)
is dependent.

2

Now LHS of (∗) equals

f(X)−
∑

e∈X

(f(S)− f(S − e)) = f(X)−
∑

e∈X

| be ∩ ê |,

while RHS equals (by the definition of contraction),

r((
⋃

e′∈X′

e′) ∪ (
⋃

e∈S

ê ∩ be)) − r(
⋃

e∈S

ê ∩ be)

= r((
⋃

e∈X

ê) ∪ (
⋃

e∈(S−X)

ê ∩ be))− r(
⋃

e∈S

ê ∩ be)

= r(bX ∪ (
⋃

e∈(S−X)

ê ∩ be))− r(
⋃

e∈S

ê ∩ be),

where bX is a base of M · (
⋃

e∈X

ê)

= r(bX) + r(
⋃

e∈(S−X)

ê ∩ be)− r(
⋃

e∈S

ê ∩ be)

(by Lemma 14.6.3)

= f(X)− r(
⋃

e∈X

ê ∩ be), using the same lemma

= f(X)−
∑

e∈X

| be ∩ ê | .

E 14.10:
i. Routine.

ii. By the polymatroid intersection theorem (Theorem 10.2.3)

min
X⊆S

f(X) + f ∗(S −X) = max
x∈Pf∩Pf∗

x(S),

(the equality being satisfied with integral x if f(·) is integral). Now
x is an integral independent vector of Pf (Pf∗), iff there exists an
independent set T1 ofM (independent set T2 ofM∗) s.t.

| T1 ∩ ê |=| T2 ∩ ê |= x(e) ∀e ∈ S
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(by the last part of Theorem 14.3.1). This proves the min max equal-
ity. Now if T is a common independent set of M,M∗ the vector y
defined by y(e) ≡| T ∩ ê | is a vector in Pf ∩ Pf∗. Hence, y(S) ≤
maxx∈Pf∩Pf∗

x(S), as required.

LetM1 be the expansion of f(·) described in page 499. This matroid
is obtained as follows: Replace each e by f(e) (= g(e)) parallel copies
making up the set ê. Let f̂(·) denote the new polymatroid rank func-
tion. The rank function ofM1 is given by r1(·) ≡ (f̂∗ | · |)(·). Now the
minimal set that minimizes f(X) + f ∗(S −X), X ⊆ S can be seen to
be the minimal set that maximizes g(X)−2f(X) X ⊆ S. Let H(Y ) ≡
set of all elements in Ŝ parallel to elements in Y, Y ⊆ S. Now by
symmetry arguments one can show that (Lemma 11.4.1) Y maximizes
g(X) − 2f(X), X ⊆ S, iff H(Y ) maximizes | Z | −2r1(Z), Z ⊆ Ŝ
and further if Y is the minimal set which maximizes g(X) − 2f(X),
H(Y ) is the minimal set maximizing the corresponding expression. By
Lemma 11.4.1, it would also follow that

max
X⊆S

g(X)− 2f(X) = max
Z⊆Ŝ
| Z | −2r1(Z).

Let b∨ be a base ofM1∨M1. If b∨ = b∨ b′ where b, b′ are bases ofM1

we must have b∨−b as a common independent set ofM1 andM∗
1. Now

if Ŷ ≡ H(Y ) is the minimal set that maximizes | Z | −2r1(Z), Z ⊆ Ŝ
then (b∨ − b) ∩ Ŷ would be a base of M1 · Ŷ (Lemma 11.3.3). If
we use a ‘matroid translation’ of Lemma 14.2.1, we can show that
(b∨ − b) ∩ (Ŝ − Ŷ ) would be a base ofM∗

1 · (Ŝ − Ŷ ). Thus

| b∨ − b |= r1(Ŷ ) + r1
∗(Ŝ − Ŷ ) = f(Y ) + f ∗(S − Y ).

This proves the equality we required.

E 14.11: Order the elements of S as (e1, · · · , en). Start from any base
b0 ofM. Let g0i ≡ |b0∩ei|, i = 1, · · · , n. Let e1, · · · , ek be the ‘deficient’
elements for which g0i < g(ei). For each element in ê1− b0, · · · , êk− b0,
construct f-circuits relative to b0. Suppose the f-circuits contain ele-
ments of ê11, · · · , ê1k1 . For each of the elements in ê11− b0, · · · , ê1k1− b0
construct f-circuits relative to b0. Repeat this procedure until you reach
elements of a set êq for which g0q > g(eq) (‘saturated’ element).
We now have a ‘path’ (listing only vertices) say a1, a

′
2, a3, · · · , a′i, ai+1, · · · , at−1, a

′
t,

where the unprimed elements are outside b0, a
′
i, ai+1 belong to the same
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êr and further a′j+1 ∈ L(aj , b0) and a′p 6∈ L(aj , b0) whenever p > j + 1.
Now we push unprimed elements of the path into b0 and drop the
primed ones. If a1 ∈ êi and a′t ∈ êq say, then the resulting base has one
more element of êi and one less element of êq than b0 has. Of all other
sets êk the updated base has the same number of elements as before.
Repeating this procedure we either find a base which has for each e,
number of elements in ê not less than g(e) or a base bf from whose
deficient elements it is not possible to reach saturated elements. The
set of all elements which can be reached from deficient elements gives
the minimal set that maximizes g(X)− f(X), X ⊆ S.

E 14.12:
i. This follows from the fact thatM(G×T ) =M(G)×T and Exercise
14.9 (third part).

ii. Since | ê |= r(e), the graph G . ê, if connected, must be a tree graph.
Now in Gred, it must be true that r′(Ŝred) = r′(Ŝred−(ê−be∩ ê)), where
r′(·) is the rank function of Gred, Ŝred ≡ Ŝ−⋃e∈S(ê∩be) (by the exercise
referred to above). This means that ê−(be∩ ê) cannot contain a cutset
of Gred. In particular, there can be no node in Gred to which only edges
of ê are incident.

iii. Let e′ ≡ ê − be ∩ ê and e” ≡ the tree on the same set of nodes as
e′.
Let Gbig contain both e′ and e” for each e while G”red contains only e”
for each e. It is clear that Gbig · (

⋃

e∈S e
′) = Gred and Gbig · (

⋃

e∈S e”) =
G”red. Let rb(·) be the rank function of Gbig and let r”(·) be the rank
function of G”red. Then it is clear that

r′(
⋃

e∈X

e′) = rb(
⋃

e∈X

(e′ ∪ e”)) = r”(
⋃

e∈X

e”) ∀X ⊆ S.

This proves the required result.

E 14.13: We assume f(X) = (| V | −1)t(X) in the procedure. In par-
ticular, f(e) = (| V | −1)(e). This latter is valid only if the subgraph
of G on ê is connected.

E 14.14: This procedure identical to the one described for finding the
minimal set that minimizes (| V | −1)t(X) + g(S − X) ∀X ⊆ S. We
note that | V | (·) is submodular and replacing 1 by σ does not change
the problem.
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E 14.15:
i. The circuits of M are minimal sets s.t. (f − k)t(X) <| X | . Let
Y be a circuit of M and let Π(Y ) minimize (f − k)(·) over subsets
of Y. If N is any block of Π(Y ) clearly (f − k)t(N) = (f − k)(N).
One of the blocks of Π(Y ), say N1, must satisfy (f − k)(N1) <| N1 | .
Thus, (f − k)t(N1) <| N1 | . By the minimality of Y we must have
N1 = Y. So (f − k)(Y ) <| Y | . So Y contains a minimal set Z s.t.
(f − k)(Z) <| Z | . On the other hand, if (f − k)(Z) <| Z |, we must
have (f − k)t(Z) ≤ (f − k)(Z) <| Z | . Hence, Z contains a circuit of
M.

The remaining parts of the exercise are a direct application of the
above result. We remind the reader that average right degree of the left

regular bipartite graph is d|VL|

|VR|
, where d is the degree of a left vertex.

E 14.16: Consider a node a with e1, e2 incident on it and a node d with
e3, e4 incident on it. Let e1, e2, e3, e4 be distinct elements. Now merge
(a, d) and split it into p, q with e1, e3 incident on p and e2, e4 incident
on q. Clearly this effect cannot be achieved by a fission followed by a
fusion, for, a fission in the beginning can touch only one of the two
nodes a, d whereas both the nodes have to be split in order to achieve
the effect.

E 14.17:
i. Let B be the set of coloops of G. Let G1 = G·(E−B). Select any forest
of G1 and fuse the endpoints of each edge in this forest. Every edge in G1

would then become a selfloop. So fusion rank ≤ r(G1) ≡ r(G)− | B | .
Next suppose a set of fusions reduces the graph to a set of self loops.
Add edges across pairs of nodes in the original graph corresponding to
the fusions. Call the new graph G2. (Note that r(G2) = r(G)). Let this
set be T. Now contraction of T can reduce rank of G2 by at most | T |
and unless rank of G2 is reduced by at least r(G1) there would be a
nonsingleton cutset containing edges of G1 (since the contraction of an
edge in T can reduce the rank of G1 atmost by 1). Hence, | T |≥ r(G1).
So fusion rank ≥ r(G)− | B | .
The result follows.

ii. Let Sl be the set of selfloops of G. Let G3 = G× (E−Sl). Select any
coforest L of G3 and split one of the ends of each edge of L. Each edge
of G3 would then become a coloop. So fission rank ≤ ν(G3) = ν(G)− |
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Sl | .
Next suppose a set of node fissions reduces the graph to a set of coloops.
Split nodes in G and add edges between the split nodes corresponding
to the node fissions. Call the new graph G4. (Note that ν(G4) = ν(G)).
Let the additional set of edges be K. Now deletion of K can reduce
the nullity of G4 by at most | K | and unless nullity of G4 is reduced by
at least ν(G3) there would be a nonsingleton circuit containing edges
of G3. Hence, | K |≥ ν(G3). So fission rank ≥ ν(G)− | Sl | .
The result follows.

iii. Suppose A ⊆ E(G) minimizes

r(G . X) + ν(G × (E −X)), X ⊆ E(G).

Select a forest of G . A and a coforest of G×(E−A). Fuse the end points
of each edge in the forest of G . A and cut one end of each coforest
edge of G × (E −A). This would result in all edges of A becoming self
loops and all edges of (E − A) becoming coloops. Thus, the hybrid
rank relative to Πs ≤ hybrid rank of G. Next any set of node pair
fusions can be associated with a set of additional edges T added across
existing nodes of G which when contracted would perform the same
task as the fusions. Any sequence of node fissions can be associated
with a set of additional edges K, added by splitting nodes (and putting
the edge across), which when deleted would perform the same task as
the fissions. Let the new graph, after addition of such edges, be called
G5. Now G = G5 · (E5 − T ) × (E(G)). If the endpoints of the edges of
T are fused and one end of each edge in K is split every edge of G5

becomes a separator. Hence, | T ⊎K |≥ hybrid rank of G5 ≥ hybrid
rank of G (since G is a minor of G5 and by Exercise 14.6, hybrid rank
of a graph ≥ hybrid rank of G).
This proves the required result.

E 14.18:
i. For each blockNi, we can partition the boundary nodes into Vi1, · · · , Vit,
where Vij is the set of vertices common between Ni and the jth com-
ponent of
G . (E(G) − Ni). On each set Vij of vertices we build a tree tij . We
call such trees ‘fusion trees’. When these trees are added to the graph
G we get a new graph G ′. It is clear that r(G ′) = r(G). If all the tij
were contracted we would be left with the graph ⊕iG×Ni (with hinged
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nodes present between the G×Ni). To see this consider any one of the
Ni, say N1. If each t1j were contracted it is clear that we would be left
with G × N1 since t1j was built on V1j , which is the set of boundary
nodes common between N1 and one component of G . (E −N1). Con-
tracting t1j has the same effect on N1 as contracting this component
of G . (E − N1). Now each edge of tij , i 6= 1 is spanned by a path
in G . (E − N1). Once the t1j are contracted, any further contraction
of tij , i 6= 1 would not affect N1. Let Gred ≡ G′ · (

⋃

i,j tij). It is clear
that contraction of a forest of Gred would convert G to ⊕(G ×Ni) and
node pair fusions less in number than these on G ′ would leave at least
one edge in

⋃

tij of rank one. The end points of this edge have paths
between them using only the edges of some Ni and only the edges of
E − Ni, which means there is a circuit intersecting more than one of
the Ni. We therefore conclude that the fusion rank of G relative to
Πs = r(Gred). Now

r(Gred) = r(G′)−r(G′×E(G)) = r(G)−
∑

r(G×Ni) =
∑

ν(G×Ni)−ν(G).
ii. Let G be a circuit for which one orientation is (e1ae2be3ce4de1). Let
N1 ≡ {e1, e3} and N2 ≡ {e2, e4}. Now G × N1,G × N2 have rank one
each. We have r(G) = 3. Hence, r(G)−∑ r(G×Ni) = 1. But, with one
node pair fusion, two circuits result, at least one of which intersects
both N1 and N2.

E 14.19: Let Vb be the set of boundary nodes. Let Πb be any partition
of Vb. We will show that (|Γ| − 2)(Vb) ≤ (|Γ| − 2)(Πb).
LHS = | Πs | −2. Now Πb has a block Vg containing vg. Further (|Γ| −
2)(Vg) =| Πs | −2. If Vi is any other block of Πb it is clear that |Γ|(Vi) ≥
2 so that (|Γ| − 2)(Vi) ≥ 0 (since each node in Vi is incident on edges
of at least two different blocks of Πs). Hence RHS ≥| Πs | −2. By
using the inequality of Theorem 12.2.1 it is clear that there must be
a minimizing partition Π of (|Γ| − 2)(·) that contains Vb in one of its
blocks. But fusing all boundary nodes to vg is sufficient to make every
block of Πs into a separator. Thus, the fusion - fission rank of ΠVb

(the
partition that has Vb as a block and the others as singletons) relative
to Πs equals (| Vb | −1). Further the fusion rank of ΠVb

=| Vb | −1 and
the fusion rank of any coarser partition would be greater or equal to
this number. We conclude that (i) ΠVb

has the least fusion - fission
rank relative to Πs and (ii) the hybrid rank of G relative to Πs = fusion
- fission rank of ΠVb

relative to Πs =| Vb | −1.



14.6. SOLUTIONS OF EXERCISES 813

E 14.20:
i. The result follows from Theorem 14.4.2 since B(Πs), B(Π′

s) become
identical under the right vertex mapping Ni → ti.

ii. If there are cutsets within some ti, either there would be an internal
vertex in V (G . ti) or a vertex vc at which branches of both ti and tj
come together but the branches of ti by themselves form a cutset. In
the former case B(Π′

s) has left vertices which are adjacent only to one
right vertex. It is easily seen that such vertices should be singletons in
the minimal partition that minimizes (|Γ| − 2)(·). In the second case, if
the cut vertex vc is split, Gt breaks into 2 connected components. The
hybrid rank problem can be solved for each 2-connected component
separately. (This would yield a minimal length fusion - fission sequence
which makes the ti into separators in the original graph).

E 14.21:
Below we have used the fact

r(V) + r(V ′) = r(V + V ′) + r(V ∩ V ′).

i.

LHS = r(V + V1) + r(V + V2)− r(V ∩ V1)− r(V ∩ V2)

= r(V + V1 + V2) + r((V + V1) ∩ (V + V2))

−r(V ∩ V1 + V ∩ V2)− r(V ∩ V1 ∩ V2)

Now
(V + V1) ∩ (V + V2) ⊇ V + (V1 ∩ V2)

and V ∩ V1 + V ∩ V2 ⊆ V ∩ (V1 + V2)

Hence,

LHS ≥ r(V + V1 + V2)− r(V ∩ (V1 + V2)) + r(V + (V1 ∩ V2))− r(V ∩ V1 ∩ V2),

which is the RHS.

ii.

d(V,V1) = r(V + V1)− r(V ∩ V1)

= r(V) + r(V1)− 2r(V ∩ V1)

= r(V + V ∩ V1)− r(V ∩ V1) + r(V1 + V ∩ V1)− r(V ∩ V1)

= d(V,V ∩ V1) + d(V1,V ∩ V1).
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iii.

d(V,V1) = r(V + V1)− r(V ∩ V1)

= r(V + V1)− r(V) + r(V + V1)− r(V1)

= d(V,V + V1) + d(V1,V + V1).

E 14.22:

i. Since V1 ⊇ V, we must have V1 ·Ej ⊇ V . Ej . But V1 = ⊕jV1 ·Ej.
The result follows.

ii. Since V2 ⊆ V we must have V⊥
2 ⊇ V⊥. Hence, V⊥

2 · Ej ⊇ V⊥ · Ej

and therefore (V⊥
2 · Ej)

⊥ ⊆ (V⊥ · Ej)
⊥ i.e., V2 × Ej ⊆ V × Ej.

Since V2 = ⊕jV2 × Ej, the result follows.

E 14.23: We have

∑

r(V · Ej)− r(V) = |E| −
∑

r(V⊥ ×Ej)− |E|+ r(V⊥),

where Ej are the blocks of Πs. The result follows.

E 14.24: Lemma 14.5.4 implies that the matroid associated with a rep-
resentative matrix of VP is an expansion for the function ρP (·)−ωP (·) =
ρE(·)− ωE(·) (using the notation of the same lemma). So we check if
it is possible to find an independent set of columns of a representative
matrix of VP that contains precisely kj − ωE(j) + ωP (j) columns from
Ej , j = 1, · · · , k. (When ((VEjPj

)k;VP ) is a minimal decomposition of
VE , we have ωP (·) = 0). We can do this by using the algorithm given
in the solution to Exercise 14.11.

E 14.25:
i. d(V,V ′) = r(V ′)− r(V), since V ′ ⊇ V
d(V ′,V1) = r(V ′)−∑j r(V ′ × Ej) = fission number of V ′.
So d(V,V ′) + d(V ′,V1) = 2r(V ′)−∑j r(V ′ ×Ej)− r(V).

ii. Let V2 = (V ′)⊥. We then have the fusion - fission number of V2

relative to (V⊥,Πs) equal to

∑

j

r(V2 · Ej)− 2r(V2) + r(V⊥) =
∑

j

r((V ′ × Ej)
⊥)

−2(| E | −r(V ′)) + r(V⊥)
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= | E | −
∑

j

r(V ′ ×Ej) + 2r(V ′)

−r(V)+ | E | −2 | E |
= 2r(V ′)−

∑

j

r(V ′ ×Ej)− r(V).

iii. By Theorem 14.5.2, the generalized hybrid ranks of V and V⊥ are
equal. We know that the minimum of the fusion - fission numbers of all
the subspaces of V⊥ equals the generalized hybrid rank of V⊥ (Theorem
14.5.3). By the previous part of the present exercise, the minimum
of the fusion - fission numbers of all the subspaces of V⊥ equals the
minimum of the fission - fusion numbers of all the superspaces of V.
The result follows.

E 14.26: Let V ′
EP have each element of E ⊎ P as a separator and let

VEPQ be s.t.

VEPQ ↔ VQ = VEP ,

VEPQ ↔ V ′
Q = V ′

EP

for some spaces VQ,V ′
Q where E, P,Q are pairwise disjoint. Now V ′

EP ↔
VP would still have each element of E as a separator. Further,

(VEPQ ↔ VQ)↔ VP = (VEPQ ↔ VP )↔ VQ,

since E, P,Q are pairwise disjoint. Hence, VE = (VEPQ ↔ VP )↔ VQ.
Next, V ′

EP ↔ VP = (VEPQ ↔ V ′
Q)↔ VP = (VEPQ ↔ VP )↔ V ′

Q.
Hence, V ′

E,VE both have the extension (VEPQ ↔ VP ) and V ′
E has each

element of E as a separator. Hence,
d(VEP ,V ′

EP ) ≥ d(V ′
E,VE) ≥ hybrid rank of VE . In particular we could

have chosen V ′
EP so that d(VEP ,V ′

EP ) = hybrid rank of VEP . The result
follows.

E 14.27: We know (by Theorem 14.5.4) that the generalized hybrid
rank of V relative to Πs equals the minimum (hybrid rank of A′),
where A′ is equivalent to the representative matrix A of VE relative
to {Cj , j = 1, · · · , k} where Cj is the span of the column Ej ∈ E. It is
easy to see thatM(A) =M(A′). So hybrid rank of A = hybrid rank
of A′. This proves the result.

E 14.28:
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i. Let V1 be spanned by the vector (1 1 1) and V2 by (0 1 1). Let E2

be the singleton composed of the second column of the matrix

(

1 1 1
0 1 1

)

.

Clearly (V1 · E2 ∩ V2 · E2) is spanned by (1). But (V1 ∩ V2) · E2

has only the zero vector.

ii. Let V1,V2 be as defined above and let V1 be the space spanned
by (1 2 2). Clearly (V1∩V1), (V2∩V1) are both zero spaces, while
(V1 + V2) ∩ V1 is spanned by (1 2 2).

E 14.29: Let Cmin minimize g(·) among subspaces of Cs.
We must have

t
∑

j=1

r(Cj ∩ Cmin) ≤ r(Cs ∩ Cmin) = r(Cmin)

and

r(Cmin) ≥ r((
k
⋃

j=t+1

Cj) ∩ Cmin) ≥
k
∑

j=t+1

r(Cj ∩ Cmin).

Thus, 2r(Cmin) ≥ ∑k
j=1 r(Cj ∩Cmin). So g(Cmin) ≥ 0 while g({0}) = 0.
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adjacent rank flats, 675
adjoint, 297
algorithm Max-Flow, 103
aligned polymatroid rank functions,

545
alternating sequence, 43
approachability, 603
approximation algorithm, 654
approximation algorithms, 652
arcs, 41
atomic, 670
atomic set, 510
augmenting path, 103
automorphism, 508

backward Euler, 201
balanced bisection, 703
BFS forest, 90
bijective map, 20
binary search, 89
Binet Cauchy Theorem, 31
bipartite graph, 97
BITSIM, 3
blocks, 99, 297, 624
bond, 46
branches, 41

capacitor, 183, 229
cardinality of a set, 88
cartesian product, 20
circuit, 45
circuit graph, 45
circuit vector, 58
closed, 146
closure, 146
coarser partition, 99, 624
cobase submatrix, 745
codomain, 20
coforest, 48
collection, 19, 21
coloop, 46, 513
column annihilator, 791
column equivalence, 23
column rank, 23
column space, 23
comodular dual, 426, 658
compatible decomposition, 355
complement of a set, 20
complementary bipartite graph, 424
complementary slackness, 37
components, 352, 353
composition of maps, 20
cone, 35
conjugate gradient methods, 3
connected component, 44
connected rank flats, 675
connectedness, 43

for matroids, 160

837
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for semimodular functions, 444
connection point, 297
consistent base, 532
contraction, 68, 425, 426
contradiction, 33
contramodular dual, 427, 658
controlled sources, 186, 230
convex extension, 451
convolution, 490

polyhedral interpretation, 495
copartition, 663
copartition associate, 664
cospan, 146
cost rate, 645
cotree, 48
coupled inductor, 182, 229
coupled nonlinear inductors, 183
coupler, 352
critical value, 501, 564
crossing edge set, 46
crossing edge vector, 59
current shift, 236
current source, 182, 229
current vector, 59
cut, 101
cut function, 422
cut vertex, 55, 83
cutset, 46
cutset vector, 59

data structures, 89
density of a set, 510
determinant, 27
device characteristic, 229

decoupled, 231
device characteristics, 179, 180
device decoupling, 231
DFS forest, 91
Dijkstra’s Algorithm, 94

Dilworth cotruncation, 664
Dilworth truncation, 623
direct sum, 20, 425
discretization, 201
disjoint set, 20
distance, 296
distributive lattice, 99
domain, 20
dot product, 25
dual, 36
dual polyhedron, 447
dual program, 36
duality, 282

contraction and restriction, 307
integral, 309

dualization operations, 425
dualize, 113
dually polyhedrally tight, 447
Dulmage - Mendelsohn decompo-

sition, 492
dynamic nonlinear network, 198

e-independent, 424
edge

adjacency, 43
edges, 41
electrical network, 179, 180

bipartite graph, 179
constraints, 179, 180
formal description, 228
interconnection, 180
topological transformation, 292

elementary row operations, 24
elementary matrices, 25
elementary vector, 66
elements, 19
end points, 41
end vertex set, 46
end vertices, 41
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even permutation, 27

f-circuit, 49
f-cutset, 49
family, 21
Farkas Lemma, 35, 281, 304
feasible flow, 101
feasible solution, 35
finer partition, 99, 624
finite set, 19
flow graph, 101
forest, 48
fundamental circuit, 50
fundamental circuit matrix, 64
fundamental circuits, 92
fundamental cutset (f-cutset or f-

bond), 50
fundamental cutset matrix, 63
fusion, 425
fusion set, 693

quasi, 697
strong, 693

fusion-fission method, 10

gain rate, 645
general purpose circuit simulator,

201
generalized electrical network, 229
generalized hybrid rank, 780
generalized minor, 277, 282
generalized network, 363
generalized Norton theorem, 216
generalized Thevenin theorem, 216
graph, 41

Π−atomic, 670
Π−molecular, 670
bipartite, 82
complete, 82
contraction of, 68

cutset, 83
cyclically connected, 54
cyclically connected, 83
directed, 42
fission rank, 770
forest, 48
fusion rank, 770, 772
hybrid rank, 744, 770
isomorphic, 53
minors of, 68
multiport decomposition, 353
restriction of, 68
storage, 89
strongly directed, 50
tree, 48
undirected, 42

graph of a permutation, 30
graphic decomposition, 353
greedy algorithm, 164
gyration resistance, 185
gyrator, 185

Hahn-Banach Separation Theorem,
466

Hall’s Theorem, 492
Hasse diagram, 536
head, 42
hinge, 55
hinging, 55
hybrid analysis, 3, 227, 244, 257
hybrid rank, 266, 302, 632
hybrid rank problem, 743, 749, 767,

780
hyperedges, 97
hypergraph, 97

i-shift, 218, 236, 238
ideal, 506
ideal diode, 186
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ideal transformer, 184, 289
Implicit Duality Theorem, 277, 281,

283, 320
Implicit Integral Duality Theorem,

313
Implicit Polarity Theorem, 304
incidence function, 41, 422
incidence matrix, 56
inductor, 182, 229
inequality system, 303
infinite set, 19
injective map, 20
integral polymatroid rank function,

441
integral dual, 309, 310
intersecting submodular function,

625
intersecting supermodular functions,

625
invariant set, 508
invertible matrix, 26
isolated vertex, 42
isomorphisms, 53

join, 99, 505
junctions, 41

k-multiport decomposition, 353
k-multiport decomposition, 352
KCE, 180
Kirchhoff’s

current equation, 59
voltage equation, 61

Kuhn-Fourier Theorem, 31, 33
KVE, 181

Laplace expansion of determinant,
31

lattice, 99

left exclusivity function, 423
legal linear combination, 32
legal linear dependence, 32, 33
linear dependence, 29
linear inequality system, 31
linear program, 35
linear programming problem, 35
linearly dependence, 22
loop analysis, 193

method of planar slices, 195
loop equations, 194
lower convolution, 490
lower Dilworth cotruncation, 664
lower Dilworth truncation, 624

mapping, 20
matched sum, 283
matching, 141, 586
matrix, 22

term rank, 745
matrix inverse, 26
matrix partitioning rules, 24
matroid, 139

axiom systems, 139
base, 140
base axioms, 142
bases, 440
bond, 149
bond matroid, 140
circuit, 141
circuit axioms, 82, 146
circuits, 440
closure axioms, 146, 147
cobase, 140
connected, 161
contraction, 153
cutset, 83
derived, 752
dual matroid, 140, 149
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elementary separator, 161
flats, 146
fundamental bond, 151
fundamental circuit, 141
hybrid rank, 789
hybrid rank problem, 750
independence axioms, 140
independent set, 140
independent sets, 144, 440
lexicographically optimum base,

165
matroid closure operator, 147
matroid rank function, 144
maximally distant bases, 600
minor, 153
polygon matroid, 140
rank, 142
rank axioms, 142, 144
rank function, 440
reduction, 153
representability, 494
restriction, 153
separator, 160

matroid expansion, 499
matroid intersection problem, 494
matroid union, 585, 590, 591

algorithm, 595
matroid union problem, 494
max-flow, 101
Max-Flow Min-Cut Theorem, 104
maximally distant forests, 749
maximally distant trees, 500, 744
meet, 99, 506
members, 19
membership problem, 743
membership problem, 267, 497, 751,

756, 788
min-cut, 101

minimum cover, 493
Minty’s Theorem, 79, 86
modified nodal analysis, 2, 196

defects, 200
sparsity of equations, 199

modular part of function, 513
modular function, 424
modular refinement, 530
modularity, 424
molecular set, 510
monotone decreasing, 432
monotone increasing, 432
multiport, 212, 291
multiport decomposition, 7, 213,

290
minimal, 352
state equation, 388

multiports, 353
multiterminal device, 178

NAL-NBK method, 244
coefficient matrix, 263
constraints, 250
decomposition procedure, 260
minimal L and K, 250–252
structure of the coefficient ma-

trix, 265
structure of the constraints, 250

NAL-NBK theorem, 246
negative end point, 42
negative expression, 552
network analysis, 181
network decomposition, 227, 244
network reduction, 395
Newton Raphson, 202
nodal analysis, 190
nodal equations, 191
node fission, 632, 767
node pair fusion, 632, 767
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nodes, 41
nonlinear capacitor, 184, 229
nonlinear coupled inductor, 230
nonlinear devices, 184
nonlinear inductor, 183
nonlinear resistor, 183, 229
nonsingular matrix, 26
norator, 187, 230
Norton Theorem, 215
NP-complete, 88, 89
NP-Hard, 88
null space, 24
nullator, 187, 230
nullity, 24, 48, 302
nullity function, 430
nullity functions, 440

objective function, 35
odd permutation, 27
one to one map, 20
onto map, 20
oppositely aligned polymatroid rank

functions, 552
optimal solution, 35
optimum cost rate theorem, 646
orientation, 51
orthogonal vectors, 26
overlap between blocks, 651

parallel edges, 43
parallel extension, 442
partial order, 98

dual ideal, 98
greatest lower bound, 98
ideal, 98
least upper bound, 98
lower bound, 98
principal ideal, 98
upper bound, 98

partition, 99, 624
cost, 645
fission number, 773
fusion - fission number, 773
fusion number, 773

partition associate, 624
partition-partial order pair, 508
partitioning, 3, 23
partitioning rules, 28
passive linear devices, 183
path, 44
path graph, 44
permutation, 27
PLP, 634, 638

algorithms, 691
cost of partitioning, 644
critical value, 635, 639
minimizing partition, 636
of duals, 657
of truncation, 660
special fusion, 665
storing, 643
structure of truncation, 662
symmetry properties, 643
uniqueness theorem, 639

polar, 35, 304
polygon graph, 45
polyhedral cone, 35, 303
polyhedrally tight, 447
polyhedron, 447
polymatroid membership problem,

788
polymatroid rank function

base, 532
polynomial time algoritm, 88
port, 212
port connection diagram, 7, 213,

353



INDEX 843

port minimization, 367
ports, 353
positive definite matrix, 29
positive end point, 42
positive expression, 552
positive semidefinite matrix, 30
potential vector, 74
potential vector, 60
PP, 500, 510, 542, 607, 612
preorder, 97
Prim’s algorithm, 93
primal program, 36
prime nullity, 430
prime rank function, 430
principal lattice of copartitions, 657
principal lattice of copartitions, 664,

665
principal lattice of partitions, 623,

634, 635, 638
principal partition, 500, 510, 542,

607, 612
principal sequence, 502
principal sequence of partitions, 639
projection, 30
properly related, 530

q-bilinear operation, 285
q-orthogonal, 286
q-orthogonality, 285, 303
quasi bilinear, 285
quasi orthogonality, 285
quasi-fusion set, 697

range, 20
range of critical values, 641
rank, 48, 302

of a matrix, 25
rank and nullity functions, 423
rank function, 423, 430

refined partial order, 530
regularly generated vectors, 309
representative vector, 25
representative matrix, 25, 76, 85
residual graph, 103
resistor, 182, 229
restricted associativity, 284
restriction, 20, 425, 426
right exclusivity function, 423
rigidity matroid, 633
row annihilator, 791
row equivalence, 23
row rank, 23
row space, 23
RRE form, 25, 29

s,t-cut, 101
Sandwich Theorem, 454
scalar product, 21
scalar field, 21
scalars, 21
searching, 89
self loop, 513
selfloop, 45
selfloops, 41
semimodular, 420, 447
separator, 55, 78, 444

elementary, 444
set, 19
set intersection, 19
set union, 19
Shannon switching game, 744
sign of a permutation, 27
sink side min-cut, 106
skewed sum, 283
solution space, 24
solution space, 28
sorting, 89
source side min-cut, 106
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span, 146
sparse tableau approach, 201
SPICE, 2
standard representative matrix, 25
standard devices, 181
static device characteristic, 229
static nonlinear network, 198
strongly aligned polymatroid rank

functions, 557
strongly compatible decomposition,

377
strongly directed path, 44
subgraph, 43

proper, 43
submatrix, 23
submodular, 420
submodular function

minimization, 497
principal partition, 500

submodularity, 420
substitution theorem, 218
sum of vectors, 21
summer, 297
supermodular, 420
supermodularity, 420
superposition theorem, 218
superposition theorem, 219
support, 21
surjective map, 20
symmetric, 457
system of distinct representatives,

586

tail, 42
Tellegen’s Theorem, 79, 86

strong form, 66
weak form, 60

terminal nodes, 44
Thevenin Theorem, 215

Thevenin-Norton Theorem, 9
topological constraints, 180
topological degree of freedom, 743,

744
transpose, 23
transposition, 27
transversal, 586
transversal matroid, 593
trapped solutions, 387
tree, 48
truncation, 623

polyhedral interpretation, 633
truncation of matroid, 631

uniqueness theorem, 523, 639
upper convolution, 490
upper Dilworth cotruncation, 664
upper Dilworth truncation, 624

v-shift, 218, 238, 241
Van der Waerden’s theorem, 281
vector space

orthogonal duals, 73
basis, 22
contraction, 71
dimension, 22
distance, 302, 781
fission rank, 782
fusion rank, 782
hybrid rank, 789
minimal extension, 302
minimum distance, 781
minors, 71
multiport decomposition, 352
rank, 22
restriction, 71
span, 22
subspace, 22

vector spaces, 71
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vertex
adjacency, 42
degree, 43
incidence, 42

vertex colouring, 82
vertex function, 422
vertices, 41
voltage shift, 236
voltage source, 182, 229
voltage vector, 60, 74

weakening, 32
weight function, 424

zero bipartite graph, 704
zero set, 704
zero singleton submodular, 692
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