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1 Why Distributions?

Consider an ordinary linear differential equation with initial conditions set
to zero

p(D)x = u,

where x(·) and u(·) are real functions over the real line.

Figure 1:

Suppose we construct the functions u1, . . . , un . . . with un agreeing with
u over the interval [n∆t, (n + 1)∆t] and elsewhere zero.

It is clear that

u(·) =
∞∑

n=0

un(·)

Let, as stated earlier, x(0) be zero.
Then the response due to u(·) must be the sum of the responses due to

the uj(·). Let p̃τ represent the pulse of width ∆t and a constant height 1
∆t

in the interval [τ, τ + ∆t].
Let us approximate the functions un(·) by ũn(·) = (u(n∆t) · ∆t)p̃n∆t(·),

essentially making the function constant over [n∆t, (n + 1)∆t].
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If ∆t is small we expect

u(·) ≈
∞∑

n=0

ũn(·)

and the response to be approximately the sum of the responses due to the
ũn(·). As ∆t→ 0, one expects the approximation to become exact.

Suppose the response due to p̃τ (·) is h̃τ (·). Then the response due to u(·)
would be

∑∞
n=0 h̃τ (·)u(τ) · ∆t, (approximately) where τ = n∆t, i.e.,

y(t) ≈
∞∑

n=0

(h̃τ (t))u(τ) · ∆t.

So we expect

y(t) =

∫ ∞

0

hτ (t)u(τ)dτ,

where hτ (t) = lim∆t→0 h̃τ (t). If we assume the system is causal i.e., the
response to an input which is non-zero only for t ≥ t0 is also non-zero only
for t ≥ t0, then the above integral would have limits from 0 to t. We remind
the reader that h̃τ (·) is the response due to the pulse p̃τ (·) from τ to τ +
∆t, of width ∆t and height 1

∆t
. We may think of hτ (·) as the response due

to the infinite pulse p̂τ (·) with width ∆t and height 1
∆t

and ∆t→ 0.
Of course there exists no such function. But it is nevertheless very conve-

nient to work with this generalized function. Distribution theory will justify
the use of this construct.

2 Definition of distributions: general and tem-

pered

We begin by generalizing the notion of a function over the real line. The
generalization goes through routinely to the functions over Rn i.e., instead of
f(t) we could have f(t1, t2, . . . , tn) where t1, t2, . . . , tn are real numbers. We
first build a domain that is ’richer’ than the R. This is the space D of test

functions. A test function φ(·) is defined over the real line and takes complex
values and satisfies the following :

• φ(·) vanishes outside a finite interval and

• dkφ

dtk
exists for every positive integer k (in other words, φ(·) is infinitely

differentiable).
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Example of test function:

φ(x) =

{
e

1

x2−1 if |x| ≤ 1

0 if |x| ≥ 0.

It is clear that this function is infinitely differentiable at |x| 6= 1.
Let us examine what happens at x = 1− (i.e., limx→1,x<1). We have

d

dx
e

1

x2−1 =

(
−2x

(x2 − 1)2

)
e

1

x2−1

Now yke−y → 0 as y → ∞ for all k. Hence

lim
x→1−

d

dx

(
e

1

x2−1

)
= 0.

The same idea can be used for all orders of derivatives and it can be proved
that

dk

dxk

(
e

1

x2−1

)
= 0 at x = 1−

Thus the given function is indeed an example of a test function. Observe
that we can shift this function and change its width quite easily. Also its
integral moves from 0 to another constant smoothly from −1 to 1. Therefore
one can build test functions with flat tops (or bottoms) of whatever height
and widthe we please.

A second class of more general functions, namely the class S1 of functions
of rapid decay, is useful in our study. A function of rapid decay φ(·) is defined
over the real line and takes complex values and satisfies the following :

• φ(·) is infinitely differentiable,

• φ(·) together with all its derivatives vanishes at |x| = ∞ faster than
the reciprocal of any polynomial. Thus for each pair of nonnegative
integers k and l,

lim
|x|→∞

∣∣∣∣xk
dlφ

dxl

∣∣∣∣ = 0.

(We may think of φ as being similar to e−x in its power to kill polyno-
mials).

Clearly every test function is a function of rapid decay since it vanishes
outside a finite interval.

We say a sequence φn of test functions is a ’null sequence’ in D iff
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• all φn vanish outside a finite interval,

• φn and all its derivatives approach 0 uniformly in this interval.

Basically the null sequence φn is analogous to a sequence of numbers
tending to zero and we need this idea to talk about small perturbations of a
test function φ̂ by studying φ̂ + φn.

We define a null sequence φm of functions of rapid decay in a similar
manner for each pair of nonnegative integers k and l,

lim
m→∞

max
−∞<x<∞

∣∣∣∣xk
dlφm
dxl

∣∣∣∣ = 0.

Observe that even after being multiplied by a polynomial of any degree

the function dlφm

dxl , must be bounded in the interval −∞ < x <∞ and further
this maximum value must tend to zero as m→ ∞.

We are now in a position to define a distribution. A distribution is a
continuous linear functional on the space of test functions, i.e., a distribution
q

• takes a complex value on each test function φ,
usually denoted as < q, φ >

• is linear i.e. < q, α1φ1 + α2φ2 >= α1 < q, φ1 > +α2 < q, φ2 >,

• is continuous on the space of test functions i.e. limn→∞ < q, φn >= 0,
whenever φn is a null sequence in D.

A special class of distributions called ‘tempered distributions’ or ‘distri-
butions of slow growth’ are of interest to us. These are linear continuous on
the larger class S1 of functions of rapid decay i.e., limn→∞ < q, φn >= 0, for
every null sequence of rapidly decaying functions, whenever q is a tempered
distribution. Henceforth we use [q, φ] in place of < q, φ >.

Distributions are generalizations of ordinary functions on the real line.
Let f be locally integrable over the real line i.e.,

∫ T2

T1

|f(x)| dx

is finite whenever T2 − T1 is finite.
Define

[qf , φ] ≡

∫ ∞

−∞

f(x)φ(x) dx.
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Then qf is linear continuous on D. To see this, first note that

∫ ∞

−∞

f(x)φ(x) dx =

∫ T2

T1

f(x)φ(x) dx,

where φ vanishes outside [T1, T2].
Now since φ is differentiable everywhere it must be continuous in [T1, T2]

and therefore has a maximum value in [T1, T2] say M .
So

∣∣∣∣
∫ ∞

−∞

f(x)φ(x) dx.

∣∣∣∣ ≤
∫ T2

T1

|f(x)||φ(x)| dx.

≤M

∫ T2

T1

|f(x)| dx.

Hence
∫ ∞

−∞
f(x)φ(x) dx exists.

The linearity is clear since

∫ ∞

−∞

f(x)(α1φ1(x) + α2φ2(x)) dx =

α1

∫ ∞

−∞

f(x)φ1(x) dx+ α2

∫ ∞

−∞

f(x)φ2(x) dx.

To prove continuity we need to show limm→∞[qf , φm] → 0 when φm is a
null sequence in D.

We have ∫ ∞

−∞

f(x)φm(x) dx =

∫ T2

T1

f(x)φm(x) dx

for some finite T1, T2, by the definition of null sequence.
Let Mm = maxT1≤x≤T2

φm(x). Hence

∣∣∣∣
∫ ∞

−∞

f(x)φm(x) dx.

∣∣∣∣ ≤ Mm

∫ T2

T1

|f(x)| dx

Since f is locally integrable,
∫ T2

T1
|f(x)| dx is finite. Hence, since limm→∞Mm =

0, we must have limm→∞

∫ ∞

−∞
f(x)φm(x) dx = 0, as needed.

We claim that the action [qf , φ] is indeed a generalization of the value of
the function f . Indeed,we can recover the value of f at points where it is
continuous by making f act on suitable φn and taking limits. Choose φn as a
nonnegative test function with nonnegative values in [a− 1

n
, a+ 1

n
] and zero

outside.
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Further let
∫ a+ 1

n

a− 1

n

φn(x) dx = 1. Observe that
∫ a+ 1

n

a− 1

n

f(x)φn(x) dx gives a

‘weighted average’ of f in the interval [a− 1
n
, a+ 1

n
]. As n→ ∞, provided f

is continuous at a, the integral will therefore converge to f(a).
When the context is clear we will denote the distribution qf ([qf , φ] ≡∫ ∞

−∞
f(x)φ(x) dx) also by f .

A distribution qf that arises from a locally integrable function through
the definition

[qf , φ] =

∫ ∞

−∞

f(x)φ(x)dx

is said to be regular. Not all distributions arise in this manner. These latter
distributions are said to be singular. The convention even in the case of
singular distributions is to write [q, φ] =

∫ ∞

−∞
q(x)φ(x)dx.

3 δ function and δ-sequences

For our purpose, the most important singular distribution is the delta [Dirac

delta] functional δ(x) defined by

[δ, φ] = φ(0),

where φ is a function of rapid decay. (In fact δ functional is linear and
continuous even on the space of functions continuous at 0). One cannot
expect any function f to have the property

∫ ∞

−∞
f(x)φ(x)dx = φ(0). However

a sequence of functions, in the limit, can have such property.
Let fn be a sequence of functions continuous at the origin with the fol-

lowing properties.

1.
∫ ∞

−∞
fn(x)dx = 1 for each n.

2. limn→∞

∫ b

a
fn(x)dx = 0, a, b both positive or both negative and there-

fore limn→∞

∫ b

a
fn(x)dx = 1, if a < 0 < b.

We call such a sequence fn, a delta sequence. Clearly we must have, for every
rapidly decaying φ,

∫ ∞

−∞

fn(x)φ(x)dx =

∫ −ǫ

−∞

fn(x)φ(x)dx

+

∫ ǫ

−ǫ

fn(x)φ(x)dx+

∫ ∞

ǫ

fn(x)φ(x)dx
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where ǫ > 0. We then have

lim
n→∞

∫ ∞

−∞

fn(x)φ(x)dx = lim
n→∞

[∫ −ǫ

−∞

+

∫ ǫ

−ǫ

+

∫ ∞

ǫ

]

= lim
n→∞

∫ ǫ

−ǫ

fn(x)φ(x)dx, for every ǫ > 0.

Since φ is continuous at φ(0) the right side must be equal to φ(0) (taking the
limit ǫ→ 0, ǫ > 0).

So if we define

[q, φ] ≡ lim
n→∞

∫ ∞

−∞

fn(x)φ(x)dx,

where f has the above properties, we will have q = δ.
It is easy to see by the definition that q is a linear functional. Indeed

[q, α1φ1 + α2φ2] = α1φ1(0) + α2φ2(0).

To see that q is continuous on the space of rapidly decaying functions we
need to show that limn→∞[q, φn] = 0 where {φn} is a null sequence of rapidly
decaying functions. This is clear since limn→∞ φn(0) = 0, by the definition
of a null sequence in the space of rapidly decaying functions.

We often write, whenever fn is a delta sequence

lim
n→∞

fn(x) = δ(x).

It is to be interpreted as

[δ, φ] = lim
n→∞

∫ ∞

−∞

fn(x)φ(x) dx.

We now give a couple of examples of delta sequences which are available in
the literature.

1.

sn(x) ≡
1

π

n

1 + n2x2
.

These functions are continuous at the origin. It is clear that

lim
n→∞

∫ b

a

n

1 + n2x2
dx = 0

whenever a, b are both positive or negative.
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We remind the reader that d
dx

arctan(x) = 1
1+x2 and therefore d

dx
arctan(kx) =

k
1+k2x2 . Hence

∫ ∞

−∞

n

1 + n2x2
dx = [arctan(nx)]∞−∞

= π.

Clearly therefore,
∫ ∞

−∞
sn(x) dx = 1. This means that sn is a delta

sequence.

2.

sn(x) ≡
sin(nx)

πx

is a delta sequence.

We claim that

(a) ∫ ∞

−∞

sin(kx)

πx
dx = 1

This result can be proved by using contour integration. Build a
closed contour C moving from −R1 to −R2 along the real axis,
moving from −R2 to +R2 along a semicircle in the upper half
plane, from R2 to +R1 along the real axis and close the contour
by moving from R1 to −R1 along a semicircle in the upper half
plane. Now integrate

∫
C
ejkz

πz
dz, letting R1 tend to ∞ and R2 to

zero. Since within the contour there is no pole of the integrand, the
contour integral will equal zero. The larger semicircle integration
can be shown to become zero while the smaller one yields −j.
Now

∫ ∞

−∞

sin kx

πx
dx = lim

R1→∞,R2→0

∫ R2

−R1

sin kx

πx
dx+

∫ R1

R2

sin kx

πx
dx.

The RHS is the imaginary part of the portion of the above contour
integral along the real axis, which by the above argument equals
+j. The result follows.

We can also prove this using Fourier transform ideas as follows.
Let

pk(t) =1 0 ≤ |k|

0 otherwise.
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Fourier transform of this function is
∫ ∞

−∞

e−jωtpT (t)dt =

∫ T

−T

e−jωtdt

=
e−jωt

−jω

∣∣∣∣
T

−T

=
ejωT − e−jωT

jω

=
2 sin(ωT )

ω

Therefore F[ sinkx
πx

] = πpk(−ω)
π

= pk(ω). Observe that
∫ ∞

−∞

sin(xt)

πt
dt =

∫ ∞

−∞

sin(xt)

πt
e−jωtdt

∣∣∣∣
ω=0

= pk(ω)|ω=0 = 1.

(b) We have,
∫ b

a

sin kx

x
dx =

∫ kb

ka

sin υ

υ
dυ, taking υ = kx.

Let us consider the case when a, b are both positive or both neg-
ative. Using integration by parts as k → ∞, the above integral,

= lim
k→∞

[
−

cos υ

υ

∣∣∣
kb

ka
+

∫ kb

ka

sin(υ)

υ2
dυ

]

≤ 0 + lim
k→∞

∫ kb

ka

1

υ2
dυ

≤ lim
k→∞

−
1

υ

∣∣∣∣
kb

ka

= 0

We thus see that the sequence sn is a δ-sequence.

4 Operations on Distributions

The properties of the integral
∫ ∞

−∞
f(x)φ(x)dx are used to define various

notions related to distributions. In this regard, we will consider the notions
of value over intervals, translations, scaling,derivative and Fourier transform.
We remind the reader that the support of a function is the closure of the set
of points on which it takes non zero values.
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4.1 Equality in an interval:

If two functions f1, f2 have the same value in an interval [a, b] clearly
∫ ∞

−∞
f1(x)φ(x)dx =∫ b

a
f2(x)φ(x)dx, whenever the support of φ is contained in [a, b]. By analogy

we define distributions q1, q2 to be equal over the interval [a, b] provided
[q1, φ] = [q2, φ], whenever the support of φ is contained in [a, b].

4.2 Translation:

Let fa(x) ≡ f(x− a). We say that fa is a translation of f by a. Clearly

∫ ∞

−∞

fa(x)φ(x)dx =

∫ ∞

−∞

f(x− a)φ(x)dx

=

∫ ∞

−∞

f(y)φ(y + a)dy

where y = x− a.
Thus the action of fa on φ is the same as the action of f on φ−a. In the

case of distributions we are thus motivated to define the translation of the
distribution q by a as follows:-

[qa, φ] ≡ [q, φ−a].

4.3 Linear Combination:

If we scale a function f by a to yield g, i.e. if g(x) = af(x), we would have

∫ ∞

−∞

g(x)φ(x)dx =

∫ ∞

−∞

f(x)(aφ(x))dx.

We therefore define, for a distribution q

[aq, φ] = [q, aφ] = a[q, φ].

Similarly the sum of the distributions q1 and q2 is defined to be

[q1 + q2, φ] = [q1, φ] + [q2, φ].
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4.4 Scaling the Domain:

Next suppose we define g by scaling the domain of f , i.e. g(x) ≡ f(ax). In
this case

∫ ∞

−∞

g(x)φ(x)dx =

∫ ∞

−∞

f(ax)φ(x)dx

=
1

a

∫ ∞

−∞

f(y)φ(
y

a
)dy, a > 0

= −
1

a

∫ ∞

−∞

f(y)φ(
y

a
)dy, a < 0.

Hence ∫ ∞

−∞

g(x)φ(x)dx =
1

|a|

∫ ∞

−∞

f(y)φ(
y

a
)dy.

We therefore define for a distribution q (writing it as q(x)),

[q(ax), φ] ≡
1

|a|
[q(x), φ(

x

a
)].

4.5 Differentiation:

Distributions were conceived to handle differential equations in a convenient
manner, particularly impulse response and its derivatives. The entire theory
has been built around the idea that distributions should be differentiable to
all orders. Observe that for a differentiable function f ,

∫ ∞

−∞

ḟ(x)φ(x)dx = −

∫ ∞

−∞

f(x)φ̇(x)dx+ f(x)φ(x)]∞−∞.

Now let f be a function of ‘slow growth’, i.e., some polynomial grows
faster than f(x) as x→ ∞, i.e.,

lim
x→∞

1

(1 + x2)p
f(x) = 0

for some positive integer p. In the above equation, in the RHS f(x)φ(x)]∞−∞ =
0, since φ(x) either has finite support when it belongs to D or, when it
is rapidly decaying, has the property that limx→∞ p(x)φ(x) = 0 for every
polynomial p(x).

We thus have
∫ ∞

−∞

ḟ(x)φ(x)dx = −

∫ ∞

−∞

f(x)φ̇(x)dx
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whenever f is a function of slow growth and φ, a rapidly decaying function.
This motivates us to define dq

dx
, for a distribution as follows:

[
dq

dx
, φ

]
≡ −

[
q, φ̇

]
.

4.6 Multiplication by a function f :

If q is a distribution, by the preceding development, we would like to define

[fq, φ] ≡ [q, fφ].

However fφ would not always be a test function or a rapidly decaying func-
tion when φ is one. In general, therefore, we require f to be infinitely dif-
ferentiable for the above definition to work in the case of test functions.
For rapidly decaying functions we need additionally that f grow slower than
some polynomial, i.e. f(x) ≤ cxp, |x| ≥ x0 for some c, p. In the case of special
distributions, this rule can be relaxed. For instance

[fδ, φ] ≡ [δ, fφ] ≡ f(0)φ(0).

Here fδ is clearly defined, provided f is continuous at 0. Similarly we see
[
f
dkδ

dxk
, φ

]
≡

[
dkδ

dxk
, fφ

]
≡ (−1)k

[
δ,
dk(fφ)

dxk

]

which is defined if f has continuous kth derivatives.

4.7 Fourier transform of distributions:

Suppose f and φ are both Fourier transformable, we have
∫ ∞

−∞

f(y)

∫ ∞

−∞

φ(x)e−jyxdxdy =

∫ ∞

−∞

∫ ∞

−∞

f(y)φ(x)e−jyxdxdy

=

∫ ∞

−∞

φ(x)

∫ ∞

−∞

f(y)e−jyxdydx.

Let us denote the Fourier transform
∫ ∞

−∞
f(x)e−jyxdx by f̂(y). We there-

fore have ∫ ∞

−∞

f(t)φ̂(t)dt =

∫ ∞

−∞

f̂(t)φ(t)dt.

This motivates our definition of the Fourier transform q̂ of a distribution
q:

[q̂, φ] ≡ [q, φ̂],
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whenever φ is a rapidly decaying function. (It is shown below that whenever

φ is a rapidly decaying function so will φ̂ be.)
The reader will note that by making the functions on which distributions

act very ’well behaved’ we are able to define all the above operations on dis-
tributions. In particular because rapidly decaying functions are differentiable
to any order, distributions also become ’differentiable’ to any order. Because
rapidly decaying functions are Fourier transformable, tempered distributions
become ’Fourier transformable’.

4.8 Some properties of rapidly decaying functions:

If φ is rapidly decaying then the following holds

1. xkφ is rapidly decaying.

2. φ is bounded (since φ is differentiable in (-∞,∞) and lim
|x|→∞

φ(x) = 0).

3.

∫ ∞

−∞

|φ(x)|dx exists.

Proof:

∫ ∞

−∞

| φ(x) |dx =

∫ ∞

−∞

1+x2

1+x2 | φ(x) |dx

≤ (maxx∈(−∞,∞)(1 + x2)φ(x))|

∫ ∞

−∞

1

1 + x2
dx|.

Since the RHS is finite the result follows.

4. dφ

dx
is rapidly decaying.

Proof: We need to only show that lim
|x|→∞

| xk dφ

dx
| = 0

We have

∫ ∞

−∞

xk dφ

dx
dx = -

∫ ∞

−∞

k xk−1 φ dx + [xkφ]∞−∞

Of the two terms in the RHS the first integral clearly exists,since xk−1

φ is rapidly decaying and the second is zero since φ is rapidly decaying.

Thus

∫ ∞

−∞

xk dφ

dx
dx exists for all k. But this can only happen if lim

|x|→∞

| xk dφ

dx
| = 0.

5. If φ is a rapidly decaying function so is φ̂.

Proof: We need to show

lim
x→∞

∣∣∣∣∣x
k d

pφ̂

dxp

∣∣∣∣∣ −→ 0

13



for every k and p.

Consider ∣∣∣∣
dp

dxp

[∫ ∞

−∞

e−jxtφ(t)dt

]
xk

∣∣∣∣ .

This expression is equal to
∣∣∣∣
[∫ ∞

−∞

(−jt)pe−jxtφ(t)dt

]
xk

∣∣∣∣

=

∣∣∣∣
∫ ∞

−∞

(−jt)p(−jx)ke−jxtφ(t)dt

∣∣∣∣

=

∣∣∣∣
∫ ∞

−∞

(−jt)pφ(t)
dk

dtk
e−jxtdt

∣∣∣∣

Integrating by parts this becomes

=

∣∣∣∣(−1)k
∫ ∞

−∞

e−jxt
dk

dtk
[(−jt)pφ(t)]dt

∣∣∣∣

≤

∣∣∣∣
∫ ∞

−∞

dk

dtk
(tpφ(t))dt

∣∣∣∣

Since φ is rapidly decaying so is tpφ(t) and therefore so is dk

dtk
(tp φ(t)).

So the integral exists for all p.

This means | xk dp bφ

dxp | is bounded for all x and all k but this can clearly

happen only if for each k, lim
x→∞

| xk dp bφ

dxp | = 0, which proves that φ̂ is a

rapidly decaying function.

4.9 Duality for rapidly decaying functions and tempered dis-

tributions

Suppose f(·) is continuous in (−∞,∞) and its Fourier transform exists. Let

fR(x) =
1

2π

∫ R

−R

f̂(ω)ejωxdω,

where f̂(ω) is the Fourier transform of f(x). We will show that

lim
R→∞

fR(x) = f(x),

or equivalently
̂̂
f(x) = 2π(f(−x)).
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We have

fR(x) =
1

2π

∫ R

−R

ejωx
[∫ ∞

−∞

e−jωtf(t)dt

]
dω.

=
1

2π

∫ ∞

−∞

[[
ejω(x−t)

j(x− t)

]R

−R

]
f(t)dt.

=
1

2π

∫ ∞

−∞

2 sinR(t− x)

t− x
f(t)dt.

=
1

π

∫ ∞

−∞

sinRz

z
f(x+ z)dz.

We have already seen that sinRz
πz

is a δ−sequence with R → ∞. Hence

lim
R→∞

fR(x) =

∫ ∞

−∞

δ(z)f(x+ z)dz = f(x).

[Note that RHS involving δ is just short form for limR→∞

∫ ∞

−∞
sinRz
πz

f(x+z)dz].
In particular we see that if φ is a rapidly decaying function

1

2π

∫ ∞

−∞

φ̂(ω)ejωxdx = φ(x).

An easy consequence of the duality for rapidly decaying functions is the

duality for tempered distributions,i.e., ̂̂q(x) = 2πq(−x). To see this note that[
̂̂q(x), φ(x)

]
=

[
q̂, φ̂

]
=

[
q,

̂̂
φ

]
= [q(x), 2πφ(−x)] = [2πq(−x), φ(x)] .

4.10 Fourier Transform of derivatives

Let f, g be absolutely integrable in (−∞,∞). Suppose d
dx
f(x) = g(x). We

know that ĝ(x) = jxf̂(x). We now show that this relation is valid even if

f, g are tempered distributions. We first remind the reader that d
dx
φ̂(x) =

−jxφ̂(x), when φ(x) is rapidly decaying and therefore Fourier transformable.

We have [ĝ(x), φ(x)] =
[
g(x), φ̂(x)

]
, i.e.,

[
d
dx
f(x), φ̂(x)

]
=

[
f(x), d

dx
φ̂(x)

]

= −
[
f(x),−ĵxφ(x)

]
=

[
f̂(x), jxφ(x)

]
=

[
jxf̂ (x), φ(x)

]
, as required.

Similarly, or by invoking duality, we can prove that d
dx
f̂(x) = −̂jxf (x),

for any tempered distribution f.
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4.11 Convergent sequences of distributions:

For distributions we say lim
n→∞

qn = q, iff for each φ lim
n→∞

[qn,φ] = [q, φ].

Suppose a sequence { qn } has the property that lim
n→∞

[qn,φ] exists for

each φ then we can define a functional q on the space of φ by

[q, φ] ≡ lim
n→∞

[qn, φ].

The linearity of q is clear. Continuity involves showing that lim
n→∞

[q, φn] =

0, whenever φn is a null sequence. We will skip this sophisticated proof. For
practical purposes, the most important such convergent sequences are those
that arise from locally integrable functions. For the specific cases of interest,
we will give alternative proofs of the fact that the limit is a distribution.

Let fn converge to f uniformly over every finite interval. We then have

lim
n→∞

[fn, φ] = [f, φ]

for every test function. We prove this claim as follows:-

lim
n→∞

∫ ∞

−∞

fnφdx = lim
n→∞

∫ b

a

fnφdx

(where [a, b] contains the support of φ).
Since fn converge uniformly to f over [a, b], for each ǫ we can choose Nǫ

such that
|f(x) − fn(x)| ≤ ǫ for x ∈ [a, b], whenever n ≥ Nǫ.
Hence

|

∫ b

a

(f − fn)φdx| ≤

∫ b

a

|f − fn|φdx

≤ |(maxa≤x≤bφ(x))|

∫ b

a

|f − fn|dx

≤ |(maxa≤x≤bφ(x))ǫ(b− a)|, n ≥ Nǫ.

The claim follows.
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5 Some special tempered distributions

5.1 Unit step function

A function that is very commonly encountered in studying the solution of
differential equations is the unit step function

1(x) ≡ 0 , x < 0

≡ 1 , x ≥ 0.

This function is locally integrable. Clearly, the action of 1(·) on a rapidly
decaying function φ is given by

[1(x), φ] ≡

∫ ∞

−∞

1(x)φ(x)dx =

∫ ∞

0

φ(x)dx.

We have already shown that this integral exists for a rapidly decaying func-
tion φ. Thus 1(·) is a tempered distribution. In this distributional sense,

[
d

dx
1(x), φ(x)

]
= −[1(x), φ̇(x)]

= −

∫ ∞

0

φ̇(x)dx

= [φ(x)]0∞ = φ(0).

Thus the distributional derivative of 1(x) is δ(x).
We will call a sequence {rn} of functions a 1-sequence if

(a) rn(·) is locally integrable
(b) limn→∞

∫ ∞

−∞
rn(x)φ(x)dx =

∫ ∞

0
φ(x)dx for every rapidly decaying

function φ(x).
Suppose the functions rn are all differentiable over (−∞,∞). We then have

lim
n→∞

∫ ∞

−∞

ṙn(x)φ(x)dx = −

∫ ∞

−∞

rn(x)φ̇(x)dx

=

∫ ∞

0

φ̇(x)dx

= φ(0).

It follows therefore that

{ṙn(x)} is a δ-sequence.

This gives another interpretation to the expression d
dx

1(x) = δ(x).
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5.2 The tempered distribution 1

x

In signal processing applications, the tempered distribution 1
x

plays an im-
portant role. It is related to the unit step function through the Fourier
transform. Convolution of a rapidly decaying function by this distribution is
called the Hilbert transform and is of use in studying some kinds of modula-
tion of signals.

The tempered distribution 1
x

is defined by, for φ ∈ S1,

[
1

x
, φ

]
≡ lim

ǫ→0,ǫ>0

∫ −ǫ

−∞

φ(x)

x
dx+

∫ ∞

ǫ

φ(x)

x
dx.

Since φ is continuous at 0, the limit in the above expression exists. To see
this, define ψ(x) ≡ φ(x)−φ(−x). The above expression on the RHS reduces
to

lim
ǫ→0,ǫ>0

∫ ∞

ǫ

ψ(x)

x
dx.

Observe that ψ(0) = 0 and further, since φ is rapidly decaying, we need only
examine the convergence of the above integral for some positive b in place of
∞.

We therefore need to show that the limit exists in the following expression.

limǫ→0,ǫ>0

∫ b

ǫ

ψ(x)

x
dx.

In the interval [ǫ, b], we can bound ψ(x) between ψ(0) + k1x and ψ(0) + k2x

for some k1, k2. Noting that ψ(0) = 0, we see that the integral
∫ b

ǫ

ψ(x)
x
dx lies

between k1(b− ǫ) and k2(b− ǫ) and therefore, as ǫ tends to zero, the integral∫ b

ǫ

ψ(x)
x
dx converges.

Further,
[

1
x
, φ

]
is linear in φ and by using the above argument, it can be

seen that limn→∞

[
1
x
, ψn

]
= 0, whenever {ψn} is a null sequence of rapidly

decaying functions (in the limit ψ(0), k1 and k2 go to zero). Thus
[

1
x
, φ

]
is

continuous in φ. It follows that 1
x

is a tempered distribution.

5.3 Fourier transform of 1(x) and 1

x

In what follows we use 1 for the constant function on the real line which
takes value 1 on all real numbers. By 1(·) or 1(x) , we mean the unit step
function which takes value 0 for x < 0 and 1 for x > 1.

Let us first compute the Fourier transform of δ. We have
[
δ̂, φ

]
=

[
δ, φ̂

]
=

φ̂(0) = [1, φ] We therefore conclude δ̂ = 1.
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We have d̂
dx

1(x) = δ̂ = 1. But in Section4.10 we saw that d̂
dx
q(x) = jxq̂(x),

for any tempered distribution q. So jx1̂(x) = 1. We will show that this means
1̂(x) = 1

jx
+ cδ(x) for some constant c and later show that the constant must

be π.
First observe that the tempered distribution 1

jx
satisfies jxq(x) = 1. We

have
[

1

jx
, jxφ

]
= lim

ǫ→0,ǫ>0

[∫ −ǫ

−∞

jx

jx
φdx+

∫ ∞

ǫ

jx

jx
φdx

]

=

∫ ∞

−∞

φ(x)dx =

∫ ∞

−∞

1φ(x)dx.

Consider the equation jxq(x) = 0. ( 1̂(x) − 1
jx

satisfies this equation.)

We have [jxq(x), φ(x)] = 0 i.e., [q(x), jxφ(x)] = 0.
We first show that a test function ψ(x) has the form xφ(x) iff ψ(0) = 0.

Clearly xφ(x) at x = 0 has value 0. Suppose ψ(x) = 0. Consider ψ(x)
x

. Define

φ(x) =
ψ(x)

x
, x 6= 0

= ψ̇(0) = lim
x→0

ψ(x)

x
, x = 0.

It is clear that φ(x) is a test function and ψ(x) = xφ(x).
We will next show that q = cδ for some constant c.

We have [xq(x), φ(x)] = 0, i.e., [q(x), xφ(x)] = 0.
Write φ(x) as φ(0)φ0(x)+[φ(x)−φ(0)φ0(x)], where φ0(x) is any test function
with φ0(x) = 1.
Now, [q, φ] = [q(x), φ(0)φ0(x)] + [q(x), (φ(x) − φ(0)φ0(x))].
But φ(x) − φ(0)φ0(x) = 0 at x = 0 since φ0(0) = 1.
Hence φ(x) − φ(0)φ0(x) has the form xρ(x) for some test function ρ(x).
Hence [q(x), (φ(x) − φ(0)φ0(x))] = [q(x), xρ(x)] = 0.
Hence [q, φ] = [q(x), φ(0)φ0(x)] = φ(0)[q(x), φ0(x)].
So [q, φ] = φ(0)c, where c = [q(x), φ0(x)]. So q = cδ.

It is thus clear that 1̂(x) = 1
jx

+ cδ(x).
We next evaluate the constant c. Consider

1(x) + 1(−x) = 1.

By duality we know that 1̂ = 2πδ, i.e., ̂(1(x) + 1(−x)) = 2πδ,

i.e., 1̂(x) + 1̂(−x) = 2πδ(x). But q̂(−x) = q̂(−x). So 1̂(x) + 1̂(−x) = 1
jx

+
1

−jx
+cδ(x)+cδ(−x) = 2cδ(x). It follows that c = π. Thus 1̂(x) = 1

jx
+πδ(x).
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By duality, we must have 1̂
jx

+π̂δ = 2π1(−x) = 2π−2π1(x). Since π̂δ = π,

it follows that 1̂
jx

= π− 2π1(x), i.e., 1̂
x

= −jπsgn(x), where sgn(x) is −1 for
negative x and 1 for positive x.

6 Multiplication Rule for Distributional Deriva-

tive

As we saw before, under certain conditions, fq would be defined when f is
a function and q is a distribution. For instance, if f has derivatives of all
orders fq is always defined.

[fq, φ] ≡ [q, fφ].

In special cases, the harsh conditions on f can be relaxed. When q is say
the δ-function, fq is defined if f is continuous at the origin. Let us examine
if the usual multiplication rule d

dx
(fq) = q df

dx
+ f dq

dx
works in the case of

distributions when f is a function whose derivatives of all orders exist, and
q, a distribution. We have

[
d

dx
(fq), φ

]
≡ −

[
fq,

dφ

dx

]
= −

[
q, f

dφ

dx

]

= −

[
q,
d(fφ)

dx
− φ

df

dx

]

= −

[
q,
d(fφ)

dx

]
+

[
q, φ

df

dx

]

=

[
dq

dx
, fφ

]
+

[
q, φ

df

dx

]

=

[
f
dq

dx
, φ

]
+

[
q
df

dx
, φ

]

Therefore it follows that

d(fq)

dx
= f

dq

dx
+ q

df

dx

as is the case with functions.
Example:
Consider the function in Figure 2 below
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Figure 2:

g(x) = x(1(x− 1) − 1(x− 2))

dg

dx
= 1(1(x− 1) − 1(x− 2)) + x(δ(x− 1) − δ(x− 2))

= 1(x− 1) − 1(x− 2) + δ(x− 1) − 2δ(x− 2).

(Observe that [f(x)δ(x− a), φ(x)] = [δ(x− a), f(x)φ(x)]

= [δ(x), f(x− a)φ(x− a)] = [f(x− a)δ(x), φ(x− a)]

= [f(a)δ(x), φ(x− a)] = [f(a)δ(x− a), φ(x)].)

Figure 3:

Consider the function f in Figure 3. This function is piecewise continuous
being made up of polynomials in the open intervals (0, 1), (1, 2), (2, 3), (3, 4).

The function has derivatives of all orders (of course the third derivative
is the zero function). However, from the first or second derivative functions

21



(g = ḟ , h = f̈), we cannot recapture f(t) back again if we work with ordinary
functions and use the ordinary notion of derivatives. On the other hand, if
f(·) is treated as a distribution and the derivatives are taken in the distri-
butional sense, f(·) can be fully recovered. Let us denote the distributional
derivative of f by df

dt
.

df

dt
=

d

dt

[
t2(1(t) − 1(t− 1)) + t(1(t− 1) − 1(t− 2))

]

+ [2(1(t− 2) − 1(t− 3)) − (t− 4)(1(t− 3) − 1(t− 4))]

= 2t(1(t) − 1(t− 1)) + 1(1(t− 1) − 1(t− 2))

+0(1(t− 2) − 1(t− 3)) − 1(1(t− 3) − 1(t− 4))

−δ(t− 1) + δ(t− 1) − 2δ(t− 2) + 2δ(t− 2) − 2δ(t− 3) + δ(t− 3)

= g(t) − δ(t− 3)

similarly,
d2f

dt2
=

dg

dt
− δ̇(t− 3)

= h(t) − δ(t− 1) − δ(t− 2) − δ(t− 3) + δ(t− 4) − δ̇(t− 3)

Observe that from the distributional derivative of any order of the function,
we can recover the original function - the δs and the δ̇s do the bookkeeping
for us.

7 Convolution of Distributions

7.1 q1 ∗ q2 when q2 has finite support

In order to define the notion of convolution for distributions we first examine
the concept in the case of absolutely integrable functions. Let f1, f2 be
absolutely integrable, i.e.,

∫ ∞

−∞

|fi(x)| dx, i = 1, 2 ,

be finite. We define the convolution f1 ∗ f2 by

f1 ∗ f2(y) ≡

∫ ∞

−∞

f1(x)f2(y − x) dx

=

∫ ∞

−∞

f1(y − x)f2(x) dx

= f2 ∗ f1(y)
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We see that
∫ ∞

−∞
|f1 ∗ f2(y)| dy exists, since

∫ ∞

−∞

|f1 ∗ f2(y)| dy =

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞

f1(x)f2(y − x) dx

∣∣∣∣ dy

≤

∫ ∞

−∞

|f1(x)|

[∫ ∞

−∞

|f2(y − x)| dy

]
dx

≤

[∫ ∞

−∞

|f1(x)| dx

] [∫ ∞

−∞

|f2(z)| dz

]
, taking z = (y − x).

Let us examine the distribution qf1∗f2 defined by

[qf1∗f2 , φ] ≡

∫ ∞

−∞

f1 ∗ f2(y)φ(y) dy.

We can write the above integral as

∫ ∞

−∞

[∫ ∞

−∞

f1(x)f2(y − x) dy

]
φ(y) dy =

∫ ∞

−∞

f1(x)

[∫ ∞

−∞

f2(y − x)φ(y) dy

]
dx.

This has the form
∫ ∞

−∞

f1(x)ψ(x) dx,

where ψ(x) ≡

∫ ∞

−∞

f2(y − x)φ(y) dy

=

∫ ∞

−∞

f2(z)φ(x+ z) dz (taking z = y − x).

In order to make this appear as the action of a distribution on a test function
we would require ψ(x) to be a test function. It is clear that it is infinitely

differentiable since dψ

dx
=

∫ ∞

−∞
f2(z)

d(φ(x+z))
dx

dz and φ(x + z) is infinitely dif-
ferentiable. But if f2 doesn’t have finite support then ψ(x) can not have
finite support. The above discussion brings out the difficulties in defining
convolution for distributions and suggests we attempt to q1 ∗ q2 only when
q2 has finite support or when q1, q2 have some other special properties.

When q1, q2 are distributions and q2 has finite support [a, b] ( ie [q2, φ] = 0
whenever support of φ doesn’t intersect [a, b]), we define q1 ∗ q2 as follows.

[q1 ∗ q2(x), φ(x)] = [q1(x), [q2(z), φ(x+ z)]] .

For this notion to be well defined we need to verify that ψ(x) = [q2(z), φ(x+
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z)] is a test function. First we observe that

dψ

dx
=

d[q2(z), φ(x+ z)]

dx

= lim
△x→0

[[q2(z), φ(x+ z + △x)] − [q2(z), φ(x+ z)]]

△x

= lim
△x→0

[
q2(z),

φ(x+ z + △x) − φ(x+ z)

△x

]

=

[
q2(z), lim

△x→0

[
φ(x+ z + △x) − φ(x+ z)

△x

]]

(by the continuity of q2)

=

[
q2(z),

dφ(x+ z)

dx

]

Since φ is infinitely differentiable it will follow that ψ will also be. Next let q2
have support [−T1, T2] and let φ have support [−T3, T4]; T1, T2, T3, T4 being
positive. Suppose x /∈ [−T1 − T4, T2 + T3]. We have ψ(x) = [q2(z), φ(x+ z)].

Now φ(x+ z) has support (in terms of variable z) [−T3 + x, T4 + x]. We
must have [−T3 +x, T4 +x]∩ [−T1, T2] 6= ∅, in order that ψ(x+z) is nonzero.
If

x > T2 + T3

or if
x < −T1 − T4

the above intersection is null, i.e., the support of φ(x + z) and q2(z) do not
intersect so that [q2(z), φ(x + z)] = 0. Thus ψ(x) has finite support and is
infinitely differentiable and is therefore a test function. Hence,

[q1(x), [q2(z), φ(x+ z)]]

is well defined.
Linearity of q1 ∗ q2 is clear, since,

[q1 ∗ q2(x), (αφ1 + βφ2)(x)] = [q1(x), [q2(z), (αφ1 + βφ2)(x+ z)]]

= [q1(x), α[q2(z), φ1(x+ z)] + β[q2(z), φ2(x+ z)]]

= α[q1 ∗ q2(x), φ1(x)] + β[q1 ∗ q2(x), φ2(x)].

Continuity of q1 ∗ q2 can be shown as follows. Let φn be a null sequence of
test functions.

lim
n→∞

[q1 ∗ q2(x), φn(x)] = lim
n→∞

[q1(x), [q2(z), φn(x+ z)].
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Since q2 is continuous and has finite support, it is clear that ψn(x) ≡ [q2(z), φn(x+
z)] is a null sequence of test functions so that the limit is zero as required for
continuity.

We next examine the derivative of the convolution of distributions. We
will show that

d(q1 ∗ q2)

dx
= q1 ∗

dq2
dx

.

We have
[
d(q1 ∗ q2)

dx
, φ(x)

]
= −[q1 ∗ q2, φ̇(x)]

to avoid notational confusion we denote φ̇(x) by ψ(x).

= −[q1(x), [q2(z), ψ(x+ z)]]

= −

[
q1(x),−

[
dq2
dz

, φ(x+ z)

]]

=

[
q1(x),

[
dq2
dz

, φ(x+ z)

]]

Let us denote the distribution dq2
dz

by q3(z). It is defined by

[q3(z), φ(z)] = −[q2(z), φ̇(z)].

Thus,
[
d(q1 ∗ q2)

dx
, φ(x)

]
= [q1(x), [q3(z), φ(x+ z)]]

= [q1 ∗ q3(x), φ(x)].

Hence, d(q1∗q2)
dx

= q1 ∗
dq2
dx

.
The way convolution has been defined for distributions does not make the

operation naturally commutative. In special cases, however, this would be
true. For instance, if q1 is δ or its derivative of some order and q2 is of finite
support or regular, it can verified that the operation is indeed commutative.

So, φ ∗ δ = δ ∗ φ = φ.

7.2 Convolution of a distribution with φ ∈ S1.

The special case of a distribution with a rapidly decaying function is of
importance in signal processing- the Hilbert transform, for instance, is of
this kind.

We will show that q ∗ φ is a tempered distribution when φ ∈ S1 and q is
tempered. We need the following preliminary lemma.
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Lemma: Let φ, ψ ∈ S1. Then φ ∗ ψ ∈ S1.
Proof: We have φ̂, ψ̂ ∈ S1 and therefore by the definition of rapidly

decaying functions φ̂.ψ̂ ∈ S1. But we know that φ̂ ∗ ψ = φ̂.ψ̂ and φ ∗ ψ is
continuous in (−∞,∞).

By duality we know that,

(
̂̂
φ.ψ̂)(x) = 2πφ ∗ ψ(−x)

Thus φ ∗ ψ(−x) ∈ S1 and therefore φ ∗ ψ(x) ∈ S1.
QED

Theorem: If q is a tempered distribution and φ ∈ S1, q ∗ φ is a tempered
distribution.

Proof: We have

[q ∗ φ, ψ] ≡ [q(x), [φ(z), ψ(x+ z)]]

when ψ ∈ S1. We have,

[φ(z), ψ(x+ z)] = [φ(y − x), ψ(y)]

= [φ̃(x− y), ψ(y)]

= ψ ∗ φ̃(x), denoting φ(−t) by φ̃(t)

Since ψ, φ̃ ∈ S1, ψ ∗ φ̃(x) ∈ S1. Hence, [q(x), ψ ∗ φ̃(x)] and therefore
[q(x), [φ(z), ψ(x + z)]] is well defined. Hence, [q ∗ φ, ψ] is well defined for
all ψ ∈ S1. Linearity of q ∗ φ over S1 is clear. We need to verify continuity,
i.e., that,

lim
n→∞

[q ∗ φ, ψn] = 0

whenever ψn is a null sequence in S1.
Clearly this would follow if {ψn ∗ φ̃} is a null sequence in S1, whenever

φ ∈ S1 and {ψn} is a null sequence in S1. We need to verify that,

lim
n→∞

max
−∞<x<∞

∣∣∣∣∣x
k d

l(ψn ∗ φ̃(x)

dxl

∣∣∣∣∣ = 0

for every pair of integers k, l.
Now,

xk
dl(ψn ∗ φ̃)(x)

dxl
= ψn ∗

dlφ̃(x)

dxl

Since dlφ̃(x)
dxl ∈ S1 whenever φ ∈ S1, it is adequate to verify that,

lim
n→∞

max
−∞<x<∞

∣∣xk(ψn ∗ φ(x))
∣∣ = 0
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for every φ ∈ S1.
We have,

∣∣xk(ψn ∗ φ(x))
∣∣ =

∣∣∣∣
∫ ∞

−∞

|xkψn(x− τ) ∗ φ(τ) dτ

∣∣∣∣

≤ Mn

∫ ∞

−∞

φ(τ) dτ,

where Mn = max
−∞<τ<∞

∣∣xkψn(x− τ)
∣∣

Since limn→∞Mn = 0, we have

lim
n→∞

max
−∞<x<∞

∣∣xk(ψn ∗ φ(x))
∣∣ = 0.

Thus, ψn ∗ φ̃(x) is a null sequence whenever ψn ∈ S1 and φ ∈ S1 and the
continuity of q ∗ φ on S1 follows. Thus q ∗ φ is a tempered distribution as
required.
QED

7.3 Convolution of a distribution with δ and its derivatives

Let us first examine the convolution of δ with φ ∈ S1. We have
[δ ∗ φ(x), ψ(x)] = [δ(x), [φ(z), ψ(x+ z)] = [φ(z), ψ(z)]. So, δ ∗ φ = φ.
On the other hand, [φ ∗ δ(x), ψ(x)] = [φ(x), [δ(z), ψ(x + z)]] = [φ(x), ψ(x)].
So, φ ∗ δ = δ ∗ φ = φ.

Next, dφ

dx
= d(φ∗δ)

dx
= φ ∗ dδ

dx
.

On the other hand, consider the distribution dδ
dx

∗ φ. We have,

[ dδ
dx

∗ φ, ψ] = [ dδ
dx
, [φ(z), ψ(x+ z)]] = [ dδ

dx
, φ̃ ∗ ψ(x)], where φ̃(x) ≡ φ(−x). Now

[ dδ
dx
, φ̃ ∗ ψ(x)] = −[δ, d(φ̃∗ψ(x))

dx
] = [δ, d̃φ

dx
∗ ψ] = [δ ∗ dφ

dx
, ψ].

Thus, dδ
dx

∗ φ = φ ∗ dδ
dx

= dφ

dx
.

By induction it will follow that the convolution of the kth derivative of δ
with φ ∈ S1 will yield the kth derivative of φ and the order of convolution is
immaterial.

The convolution of a distribution q with δ yields the same distribution.
We have, [q ∗ q2, φ] ≡ [q(x), [q2(x), φ(x+ z)]].
So, [q ∗ δ, φ] = [q(x), [δ(z), φ(x+ z)]] = [q(x), φ(x)].

Next we have d(q1∗q2)
dx

= q1 ∗
dq2
dx

, when q2 has finite support. Hence if q2 is the
kth derivative of δ, q ∗ q2 would be the kth derivative of q ∗ δ = q.
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7.4 Fourier transform of convolution of distributions

We define Fourier transform of convolution of distributions only in the special
case where one of them is tempered and other a rapidly decaying function.
Let q be tempered and let φ ∈ S1. We have seen that q ∗ φ is tempered and
therefore has a Fourier transform. We verify below that q∗̂φ = q̂.φ̂. (We
have denoted φ(−x) by φ̃.)

[(q∗̂φ), ψ] ≡
[
q ∗ φ, ψ̂

]

=
[
q(x),

[
φ(z), ψ̂(z + x)

]]

=
[
q(x),

(
φ̃ ∗ ψ̂

)
(x)

]

=

[
q(x),

̂
2π

(
1

2π
φ̂.ψ

)
(x)

]

=
[
q̂(x),

(
φ̂.ψ

)
(x)

]

=
[
q̂(x), φ̂(x).ψ(x)

]

=
[
q̂(x).φ̂(x), ψ(x)

]
.

By using duality, or directly, we can verify, when q is tempered and φ is
rapidly decaying, that

q̂.φ =
1

2π
q̂ ∗ φ̂.

We remind the reader that the tempered distribution 1
x

is defined by,for
φ ∈ S1, [

1

x
, φ

]
≡ lim

ǫ→0,ǫ>0

∫ −ǫ

−∞

φ(x)

x
dx+

∫ ∞

ǫ

φ(x)

x
dx.

We have shown earlier that
b1
x

= −jπsgn(x).
The distribution 1

x
∗ φ where φ ∈ S1 is tempered and has the Fourier

transform −jπsgn(x)φ̂(x).
In signal processing literature 1

πt
∗ φ(t) is called the Hilbert transform of

φ(t) and has important applications in the study of modulation. We give an
illustration below.

7.5 An application of the Hilbert transform

In the discussion to follow, we follow the convention of signal processing
literature and take signals to be lower case functions of ‘t′ and their Fourier
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transform to be the corresponding upper case functions of ‘jω′. Thus â(t) is
denoted A(jω).

Consider an amplitude modulated wave a(t) cos(ω0t) = α(t). We assume
that A(jω) is zero for |ω| ≥ ω0 and is infinitely differentiable. As a conse-
quence, we have that a(t) and α(t) are rapidly decaying. Given α(t), the
problem is to recover the signal a(t). For simplicity let us take a(t) to be
real. We have

α̂(jω) = A(jω)∗

[
δ(jω − jω0) + δ(jω + jω0)

2

]
=

1

2
(A(jω−jω0)+A(jω+jω0)).

Hence,

A(jω − jω0) = 2α̂(jω).1(jω)

and therefore

A(jω) = [(2α̂(jω).1(jω)) ∗ δ(jω + jω0)] .

We then have

a(t) = F−1 [(2α̂(jω).1(jω)) ∗ δ(jω + jω0)] =

[
(α(t) ∗

(
j

πt
+ δ(t)

)]
e−jω0t.

=
[
α(t) + jαH(t)

]
e−jω0t,

where

αH(t) =
1

πt
∗ α(t).

Since we assumed a(t) to be real, we must have

a(t) = α(t) cos(ω0t) + αH(t) sin(ω0t).

αH(t) is the Hilbert transform of α(t).
As we noted before α(t) is a rapidly decaying function. 1

πt
is a tempered

distribution. 1
πt

∗ α(t) is therefore a tempered distribution. In the present
case it turns out to be a regular distribution.

1

πt
∗ α(t) =

∫ ∞

−∞

1

πτ
α(t− τ)dτ.

lim
ǫ→0

[∫ −ǫ

−∞

1

πt
α(t− τ)dτ +

∫ ∞

ǫ

1

πt
α(t− τ)dτ

]
.
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8 Summary of properties of Fourier Trans-

forms for tempered distributions

For notational convenience, we use the convention of signal processing liter-
ature: a tempered distribution is written as q(t) and its Fourier Transform
is written as q̂(jω).

1. Linearity

̂αq1 + βq2 = αq̂1 + βq̂2.

2. Time shifting:

̂q(t− to) = e−jωto q̂(jω).

3. Frequency shifting:

̂ejω0tq(t) = ̂q(jω − jω0).

4. Time scaling:

q̂(at) =
1

|a|

̂
q(
jω

|a|
).

5. Time differentiation:

d̂q

dt
= jωq̂(jω).

6. Frequency Differentiation:

t̂q(t) = j
dq̂

dω
.

7. Convolution:

̂q ∗ f(t) = q̂.f̂ ,

where q is tempered and f rapidly decaying.

8. Multiplication:

q̂.f(t) =
1

2π
q̂ ∗ f̂(jω),

where q is tempered and f rapidly decaying.
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9. Duality:

̂̂q = 2πq̃,

where ˜q(t) ≡ q(−t).

The proofs are routine with the starting point [q̂, φ] ≡ [q, φ̂] and proceed by
using the corresponding property for Fourier transformable functions.

9 Periodic Distributions

In the discussion to follow, we follow the convention of signal processing
literature and take signals to be lower case functions of ‘t′ and their Fourier
transform to be the corresponding upper case functions of ‘jω′. Thus â(t) is
denoted A(jω).

A distribution q is said to be periodic with period T iff

[q, φ] = [q, φT ].

In signal processing applications it is quite common to encounter the situation
described in Figure 4 over one period.

We wish to show that we can obtain the Fourier series expansion (a
distributional equation that has the same form as the usual Fourier series
expansion) of this generalized function by the usual process valid for the
functions satisfying Dirichlet conditions:

q(t) =
∞∑

n=−∞

cne
jω0nt

where

cn =

∫ T

0
q(t)e−jω0nt dt

< ejω0nt, ejω0nt >
.

The integral on the numerator is to be interpreted appropriately for the
singular distributions which are the constituent parts of q(t). The technique
that we describe is valid for periodic distributions whose ‘average value’ over
one period is zero. Essentially this means that q(t) must be composed of
regular distributions, δ functions and derivatives. In this case the action
[q, 1] would be defined over one period and this can be subtracted out before
we seek an expansion.
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Figure 4:

While we usually treat the above construct as a function it is clearly a
distribution q which is the sum of f, δ(t− 3T

4
) and 2δ̇(t − T

4
). This may be

regarded as periodic with period T in which case we would be working with

fp +

∞∑

n=−∞

δ(t−
3T

4
− nT ) + 2

∞∑

n=−∞

.

δ (t−
T

4
− nT ).

fp being a periodic function agreeing with f over the period [0, T ].
Its action on a rapidly decaying function φ is given by

[q, φ] =

∫ ∞

−∞

f(t)φ(t)dt+
∞∑

n=−∞

φ(
3T

4
+ nT ) − 2

∞∑

n=−∞

.

φ (
T

4
+ nT ).

Let us examine whether we can obtain a Fourier series expansion of this
periodic distribution. By such an expansion we mean that we should be able
to write the following distributional equation

q =

∞∑

n=−∞n6=0

cne
jω0nt + c0, ω0 =

2π

T
.

We will now assume that f in [0, T ] is made up of polynomials over some
subintervals say [0, T1], [T1, T2]...[Tk−1, T ].

Clearly there exist functions f2(t), gδ(t), gδ1(t) such that

(a.) f2(t) is made up of polynomials over [0, T1], . . . , [Tk−1, T ],

(b.) d2f2(t)
dt2

= f(t) in (0, T1), . . . , (Tk−1, T ),

(c.) d2gδ(t)
dt2

= δ(t− 3T
4

),

(d.) d2gδ1(t)
dt2

= +2δ(t− T
4
).
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The Fourier series expansion of m(t) = f2(t) + gδ(t) + gδ1(t) over [0, T ] is
say m(t) =

∑∞
n=−∞ ane

jω0nt. The second derivative of the periodic function
mp(t) would differ from q(t) by a constant.

Let p(t) be such that dkp(t)
dtk

= m(t). then the Fourier series expansion of
p(t) would be

p(t) =

∞∑

n=−∞
n 6=0

an
(jω0n)k

ejω0nt + b0. (**)

Since m(t) is made up of polynomials, for k sufficiently large (actually 2)
we can take the series to be absolutely convergent. It would follow that in
the equation (**) the series on the right converges to p(t) uniformly. Hence
(**) is an equation valid distributionally. Differentiating term by term, we
get,

dk+2p(t)

dtk+2
=

∞∑

n=−∞
n 6=0

an(jω0n)k+2

(jω0n)k
ejω0nt (*)

to be a valid distributional equation. But the left side would be the distribu-
tion q (within a constant) that we began with. Thus ** is a distributionally
valid Fourier expansion for q minus a constant.

We will now show that the coefficients could have directly been obtained
as

cn =
< q(t), ejω0nt >

T
=

∫ T

0
q(t)e−jω0ntdt

T

as though q(t) is an ordinary function satisfying Dirichlet conditions. In the
present case this term would be

∫ T

0

f(t)e−jω0ntdt+

∫ T

0

δ(t−
3T

4
)e−jω0ntdt+

∫ T

0

2
.

δ (t−
T

4
)e−jω0ntdt

where we interpret the second and third terms above as

∫ ∞

−∞

δ(t−
3T

4
)e−jω0ntdt+2

∫ ∞

−∞

.

δ (t−
T

4
)e−jω0ntdt = e−

3

4
(jω0nT )+2(jω0n)e−

1

4
(jω0nT )

Consider the Fourier series expansion for m(t)

m(t) =

∞∑

n=−∞

ane
jω0nt.
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Hence

an =
< m(t), ejω0nt >

< ejω0nt, ejω0nt >
=

∫
m(t)e−jω0ntdt

T

We saw that this was also valid distributionally. The Fourier series ex-
pansion q(t) =

∑∞
n=−∞ cne

jω0nt could be obtained by taking cn = (jω0n)2an.
But this is exactly the same as

(−1)2

∫ T

0

d2

dt2
(e−jω0nt)dt.

If m(t) had a second derivative in the ordinary function sense by integrating
by parts we would get (using m(0) = m(T ), ????) the above to be equal to∫ T

0
d2m(t)
dt2

e−jω0ntdt.

When d2m(t)
dt2

= q, the meaning of
∫ T

0
q(t)e−jω0ntdt would be the same as

(−1)2
∫ T

0
d2

dt2
(e−jω0nt)dt

The above discussion may be summarized as:
If a periodic distribution q is composed of polynomials, delta functions

and its derivatives, the Fourier series coefficient can be obtained directly as

cn =
[q, e−jω0nt]

T

just as though q(t) is a regular function and the integral is over [0, T ].

Let us consider an important special case of periodic distributions.

q(t) =

∞∑

n=−∞

δ(t− nT ).

In the interval (0−, T−) we have the single delta function δ(t). The Fourier
series expansion is therefore q(t) =

∑∞
n=−∞ cne

jω0nt where

cn =
[q(t), e−jω0nt]

< ejω0nt, ejω0nt >

=

∫ T−

0−
δ(t)e−jω0ntdt

T

=
1

T

Thus q(t) = 1
T

∑∞
n=−∞ ejω0nt.
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Distributionally

∞∑

n=−∞

δ(t− nT ) =
1

T

∞∑

n=−∞

ejω0nt

Consider the infinite series of distributions on the right. We know that if

∞∑

i=−∞

qi = q then q̂ =
∞∑

i=−∞

q̂i.

The Fourier transform of ejω0nt is 2πδ(ω − ω0) (by duality). Hence

q̂ =
2π

T

∞∑

i=−∞

δ(ω − ω0).

Thus the Fourier transform of the train of impulses
∑∞

n=−∞ δ(t− nT ) is the
train of impulses ω0

∑∞
n=−∞ δ(ω − ω0)

10 Infinite series of tempered distributions

Our primary interest in infinite series of distributions is in dealing with
Fourier transforms of such series. Therefore we confine ourselves only to
tempered distributions.

We say
∑∞

i=1 qi = q iff the sequence of partial sums sn =
∑n

i=1 qi converges
to q,i.e.,

lim
n→∞

[
n∑

i=1

qi, φ

]
= [q, φ], φ ∈ S1.

We say
∑∞

i=−∞ qi = q when the same thing happens to the partial sum
sn =

∑n

i=−n qi
If a sequence

∑n

i=−n fi of locally integrable functions converges to another
such function f uniformly within (−∞,∞), we know that

lim
n→+∞

[
n∑

i=−n

fi, φ

]
= [f, φ] , φ ∈ S1.

We thus have the distributional equation

∞∑

i=−∞

fi = f.
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Distributional equations involving infinite series have a very convenient
property (which is not shared in general by uniformly convergent series of
functions ) viz. the equations remain valid even if we differentiate both sides
term by term.

The proof is easy to see

Suppose

∞∑

i=−∞

qi = q

Then

[
∞∑

i=−∞

dqi
dx
, φ

]
= −

[
∞∑

i=−∞

qi, φ̇

]

−
[
q, φ̇

]
=

[
dq

dx
, φ

]

This fact is of great importance in signal processing. Suppose the periodic
function f is expanded into Fourier series as

f(t) =

∞∑

n=−∞

cne
jw0nt

When f satisfies Dirichlet conditions we expect pointwise convergence at
t provided f is continuous at t . Sometimes however, the series on the right
converges uniformly to f in (−∞,∞). More often the following situation
occurs.

We consider the sequence,

g(t) =
∞∑

n=−∞

cn
(jω0n)k

ejω0nt, n 6= 0.

For k sufficiently large, the series
∑∞

n=−∞
|cn|

(ω0n)k e
jω0nt, n 6= 0, would often

be convergent (i.e.
∑∞

n=−∞
cn

(jω0n)k , n 6= 0, is absolutely convergent).

In such a case,
∑∞

n=−∞
cn

(jω0n)k e
jω0nt, n 6= 0, converges to g(t) uniformly in

the interval (−∞,∞). We then have the distributional equation

g(t) =
∞∑

n=−∞

cn
(jω0n)k

ejω0nt, n 6= 0.

We know that the distribution dkg

dtk
is then obtained by differentiating the

right side term by term k times.
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We therefore have the distributional equation

f1(t) =
∞∑

n=−∞

cne
jω0nt, n 6= 0,

where f1 = dkg

dtk
, even though regarded as functions the RHS does not converge

uniformly over (−∞,∞) to f1(t). On the other hand, the series

∞∑

n=−∞

cne
jω0nt, n 6= 0,

converges pointwise (at points of continuity) in the interval (−∞,∞) to
f(t) − c0. The function f(t) − c0 and the distribution f1(t) are therefore
equal distributionally. Therefore f(t) has the Fourier series expansion

f(t) =

∞∑

n=−∞

cne
jω0nt,

that is also distributionally valid. Once this happens we can take derivatives
on either side any number of times and get valid distributional equations that
will have the form of a Fourier series expansion. This situation occurs for
instance when 0 < T1 < ..Tm = T and f equals some polynomial in [Ti, Tj]
and the function is periodic with period T .

These polynomials could be different in different subintervals and f could
be discontinuous at the Ti.

Figure 5:

In particular, consider the function f(t) = t, t ∈ [0, T ]. Let fp be the
periodic function which agrees with f over [0, T ] (see Fig 6).

We can show that
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Figure 6:

fp(t) =

∞∑

n=−∞

1

−jω0n
ejω0nt +

1

2
.(∗ ∗ ∗)

We have,

gp(t) =
∞∑

n=−∞

cn
(jω0n)k

ejω0nt , −∞ < t <∞

with the right side converging uniformly to the left side over (−∞,∞). We
can obtain equation (∗ ∗ ∗) from the latter equation by differentiating term
by term k times and adding the term c0. Therefore equation (∗ ∗ ∗) is valid
distributionally.

Therefore, we have the distributional equation,

dfp
dt

= 1 −
∞∑

n=−∞

δ(t− nT ) = −
∞∑

n=−∞

ejω0nt, n 6= 0.

Thus
∞∑

n=−∞

δ(t− nT ) = 1 +
∞∑

n=−∞

ejω0nt, n 6= 0 =
∞∑

n=−∞

ejω0nt.
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