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Abstract

The Partial Differential Equations (PDEs) play major role in mathemat-

ical modeling of problems in engineering and science. The engineering

disciplines such as electro-magnetics and fluid dynamics use PDEs heav-

ily and development of products in these engineering fields employs com-

putational intensive numerical methods. These computational intensive

methods takes reasonable amount of time on state of the art computers.

Nowadays a Graphics Processing Unit (GPU) offers state of the art parallel

computing resources and alternative for supercomputing power on desktop

computer. In this report various numerical methods for PDEs have been

implemented on GPU hardware using NVIDIA’s Compute Unified Device

Architecture (CUDA). The simulation of propagation of Gaussian pulse

in 2-dimension is implemented on GPU using finite difference time do-

main method. The computation of eigenvalue and eigenvector involving

inverse-iteration, Lanczos and bisection method is implemented on GPU

for time dependent Schrödinger equation. The Navier-Stokes equations is

solved by finite difference method. Various iterative methods for systems

of linear equation in finite difference methods are accelerated on GPU. An

unstructured grid based finite volume solver is implemented on GPU. Var-

ious optimization and renumbering techniques are employed to achieve the

average speed-up of 27x for double precision over CPU implementation.
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Chapter 1

Introduction

Partial differential equations (PDEs) are used for mathematical modeling

of problems in engineering and science. The analytical methods or exact

solution of partial differential equation are good for simple problems in

real-life. The analytical methods are not suitable for large problems with

complex solution region, mixed type or time-varying dependent boundary

conditions, either inhomogeneous or anisotropic medium.

Numerical Methods or approximate solutions of PDEs are suitable

where PDE is non-linear or application of analytical method is difficult.

Numerical methods for PDE have been explored rapidly with the develop-

ment of digital computers. State of the art digital computers have been

employed to solve computational intensive application in the field of com-

putational electromagnetic and Computational Fluid Dynamics (CFD).

Following methods are among the most commonly used in engineering ap-

plications.

1. Finite Difference Methods (FDM) - based on approximating differen-

tial operators with difference operators

2. Finite Element Methods (FEM) - based on a discretization of the



space of solutions

3. Finite Volume Method (FVM) - based on dividing the domain in many

small domains

4. method of lines - reduces the PDE to a large system of ordinary dif-

ferential equations

Most of the above techniques employed discretization of the solution

region in to element, volume or nodes and constructing the linear systems

of equations. Normally the numerical program spends most of it’s execu-

tion time in solving these linearized equations. Thus efficiency of solution

method as whole depends mainly on the efficiency of the linear equation

solvers. Some of the linear equation solvers have been implemented in

parallel computing resources and simulation time has been reduced con-

siderable. Nowadays Graphics Processing Unit (GPU) has been employed

for parallel computing. During this work several computational intensive

problems are identified in Computational Fluid Dynamics (CFD), Com-

putational Electromagnetic and eigenvalue-value problem for Schrödinger

equation. Following chapters discuss techniques of solving PDEs and vari-

ous computation aspects on GPU. Second chapter discusses the Compute

Unified Device Architecture (CUDA). Third chapter discusses the simula-

tion of Navier-Stokes equations for laminar flows of viscous, incompress-

ible fluids by finite difference method. Fourth chapter discusses unstruc-

tured grid based finite volume solver for compressible, inviscid fluid using

AUSM+-UP technique. Fifth chapter discusses Finite Difference Time Do-

main (FDTD) method for Maxwell equation. Sixth chapter discusses the

eigenvalue value problem for Schrödinger equation in quantum mechanics.
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Chapter 2

Graphics Processing Units

Earlier Graphics Processing Units (GPUs) were used to render the ab-

stract geometric objects created by various programs running on the CPU

so they could be displayed to the user. The GPU includes programmable

shader units namely vertex shader to process vertices’s of 3-dimensional

objects supplied by user and Fragment or Pixel Shader to apply colors

from textures as well as additional complex effects like scene lightning to

each fragment/pixel. Both of these shading units are programmable and

parallel. With advance of semiconductor industry above highly parallel

processing units are placed in one single central unit, called Unified Shad-

ing Units combining all the features on a higher abstraction level. These

Unified Shading Unit consists of a group of parallel processing units (often

called multiprocessors), each composed of several stream processors along

with special function units for memory access, instruction fetching and

scheduling. While the first shader worked in a single-instruction multiple-

data (SIMD) fashion, later on support for branching was added So the

new streaming processors are best described as single-program multiple-

data (SPMD) units [1].
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2.1 CUDA Hardware Architecture

A GPU is an example of a Single Instruction, Multiple Data (SIMD) mul-

tiprocessor. In the CUDA programming model, compute-intensive tasks

of an application are grouped into an instruction set and passed on to the

GPU such that each thread core works on different data but executes the

same instruction [2]. The CUDA memory hierarchy is almost same to the

one for a conventional multiprocessor. Closer to the core, the local regis-

ters allow fast arithmetic and logical operations. The shared memory, seen

by all the cores of a single multiprocessor, can be compared to a first-level

cache (L1), as it provides a memory closer to the processors that will be

used to store data that tend to be used over time by any core. The differ-

ence in CUDA is that the programmer is responsible for the management of

this GPU cache. The last level in this hierarchy is the global memory, the

RAM of the device shown in Fig. 2.1. It can be accessed by any processor

of the GPU, but for a higher latency cost. Threads can actually perform

simultaneous scatter or simultaneous gather operations if those addresses

are aligned in memory and called coalesced memory access [2]. Coalesced

memory access is crucial for superior kernel performance as it hides the

latency of the global memory. Each multiprocessor also has read-only con-

stant cache and texture cache. The constant cache can be used by the

threads of a multiprocessor when trying to read the same constant value

at the same time. Texture cache on the other hand is optimized for 2-D

spatial locality and should be preferred over global device memory when

coalesced read cannot be achieved [2].
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Figure 2.1: CUDA enabled Graphics Processing Unit’s memory model

2.2 CUDA Programming Model

The computation core of the CUDA programming is the kernel, a set of

instruction having some inherent parallelism, which is passed on to the

GPU and executed by all the processor units, using different data streams.

Each kernel is launched from the host side (CPU), and it is mapped to a

thread grid on the GPU. Each grid is composed of thread blocks. All the

threads from a particular block have access to the same shared memory and

can synchronize together. On the other hand, threads from different blocks

cannot synchronize and can exchange data only through the global (device)

memory. A single block can only contain a limited number of threads,

depending on the device model. But different blocks can be executed in

parallel. Blocks executing the same kernel are batched together into a grid.

Blocks are managed by CUDA and executed in parallel in a batch mode.

The programmer needs to define the number of threads per block and

5



the grid size (number of blocks) before launching the kernel. The CUDA

programming model is supported by CUDA Runtime API (Application

Programming Interface) and CUDA Driver API [2]. These API provides

various high level and low level functions to dynamically allocate memory,

free memory, transfer the data between host and device or between devices

in both direction. It includes instruction for synchronizing the execution

of kernels and threads within a kernels. In addition to the above, NVIDIA

provides CUBLAS and CUFFT library to handle various of linear algebraic

and Fast Fourier Transformation operations respectively.

The challenge for a CUDA software developer is then, not only the par-

allelization of the code, but also the optimization of the memory accesses

by making the best use of the shared memory and the coalesced access to

the global (device) memory.
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Part I

Computational Fluid Dynamics on

GPU Hardware
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Chapter 3

CFD Solver based on Finite

Difference Method

Computational Fluid Dynamics (CFD) methods are concerned with the

solution of equations of motion of the fluid as well as with the interaction

of the fluid with solid bodies for real-life problems. The real-life fluid prob-

lems are difficult to solve by analytical methods. The mathematical equa-

tions (systems of differential equations or integral equations), modeling of

real-life fluids problems, are discretized in grid or finite-dimensional spaces.

Then the underlying continuous equations are solved approximately. The

data of approximate solution is processed by visualization techniques for

interpretation and co-related with experimental data if available. With

the development of digital computers the numerical computation of fluid

dynamics have evolved fast, but most of the CFD programs runs slow on

state of the art supercomputers. Recently introduced programmable GPUs

have provided very good parallel computing resources to desktop comput-

ers at much cheaper rate than supercomputers. This chapter discusses

the numerical simulation of laminar flows of viscous, incompressible fluids

by mathematical model named Navier-Stokes equations and next chapter
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discusses inviscid compressible fluid flow by AUSM+-UP techniques based

Finite Volume Method (FVM).

3.1 Numerical Simulation of Navier-Stokes Equations

The laminar flows of viscous, incompressible fluids is mathematically mod-

eled by Navier-Stokes equations. The flow of fluid in a region Ω ⊂ RN , (N ∈

2, 3) throughout time t ∈ [0, tend] is characterized by the following quanti-

ties and systems of partial differential equations [3].

1. ~u : Ω× [0, tend]→ RN velocity field,

2. p : Ω× [0, tend]→ R pressure,

3. % : Ω× [0, tend]→ R density,

4. Momentum equation,

∂

∂t
~u+ (~u· ∇)~u+∇p =

1

Re
4~u+ ~g (3.1)

5. Continuity equation,

∇ · ~u = 0 (3.2)

Here the quantity Re ∈ R is the dimensionless Reynolds number, and

~g ∈ RN denotes body forces such as gravity acting throughout the bulk of

the fluid.
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3.1.1 Discretizing the Navier-Stokes Equations in 2-D

In two-dimensional case (N = 2) for ~x = (x, y)T , ~u = (u, v)T , ~g = (gx, gy)
T ,

Eq. (3.1) and Eq. (3.2) become initial-boundary value problem and follow

as below:

Momentum equations:

∂u

∂t
+
∂p

∂x
=

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
− ∂(u2)

∂x
− ∂(uv)

∂y
+ gx (3.3)

∂v

∂t
+
∂p

∂y
=

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
− ∂(uv)

∂x
− ∂(v2)

∂y
+ gy (3.4)

Continuity equation:
∂u

∂x
+
∂v

∂y
= 0. (3.5)

The detailed derivation of Navier-Stokes equations is given in numerical

(a) Staggered grid (b) domain with boundary cells (c) discretization of

the u-momentum

equations

Figure 3.1: Structured grid for finite difference solver

simulation in fluid dynamics [3]. In solving the Navier-Stokes equations,

the region Ω is discretized using a staggered grid, in which the different

unknown variables are not located at the same grid points. Thus the

discrete values of u, v and p are actually located on three separate grids;

each shifted by half a grid spacing to the bottom, to the left, and to the
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lower left, respectively. The staggered grid, domain with boundary cells

and discretized values for finite difference equation are shown in Fig. 3.1

Applying central difference and donor-cell discretization [4], we obtain the

following discrete expressions.

For Eq. (3.3) for u at the midpoint of the right edge of cell (i, j),

i = 1...imax − 1, j = 1...jmax, we get,

[
∂(u2)

∂x

]
i,j

:=
1

δx

((
ui,j + ui+1,j

2

)2

−
(
ui−1,j + ui,j

2

)2
)

+γ
1

δx

(
|ui,j + ui+1,j |

2

(ui,j − ui+1,j)

2
− |ui−1,j + ui,j |

2

(ui−1,j − ui,j)
2

)
(3.6)

[
∂(uv)

∂y

]
i,j

:=
1

δy

((
(vi,j + vi+1,j)

2

(ui,j + ui,j+1)

2

)
−
(

(vi,j−1 + vi+1,j−1)

2

(ui,j−1 + ui,j)

2

))

+γ
1

δy

(
|vi,j + vi+1,j |

2

(ui,j − ui,j+1)

2
− |vi,j−1 + vi+1,j−1|

2

(ui,j−1 − ui,j)
2

)
(3.7)[

∂2u

∂x2

]
i,j

:=
ui+1,j − 2ui,j + ui−1,j

(δx)2
,

[
∂2u

∂y2

]
i,j

:=
ui,j+1 − 2ui,j + ui,j−1

(δy)2

(3.8)[
∂p

∂x

]
i,j

:=
pi+1,j − pi,j

δx
(3.9)

Similarly for Eq. (3.4) for v at the midpoint of the upper edge of cell (i, j),

i = 1...imax, j = 1...jmax − 1, we get,

[
∂(v2)

∂y

]
i,j

:=
1

δy

((
vi,j + vi,j+1

2

)2

−
(
vi,j−1 + vi,j

2

)2
)

+γ
1

δy

(
|vi,j + vi,j+1|

2

(vi,j − vi,j+1)

2
− |vi,j−1 + vi,j |

2

(vi,j−1 − vi,j)
2

)
(3.10)

[
∂(uv)

∂x

]
i,j

:=
1

δx

((
(ui,j + ui,j+1)

2

(vi,j + vi+1,j)

2

)
−
(

(ui−1,j + ui−1,j+1)

2

(vi−1,j + vi,j)

2

))

+γ
1

δx

(
|ui,j + ui,j+1|

2

(vi,j − vi+1,j)

2
− |ui−1,j + ui−1,j+1|

2

(vi−1,j − vi,j)
2

)
(3.11)
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[
∂2v

∂x2

]
i,j

:=
vi+1,j − 2vi,j + vi−1,j

(δx)2
,

[
∂2v

∂y2

]
i,j

:=
vi,j+1 − 2vi,j + vi,j−1

(δy)2

(3.12)[
∂p

∂y

]
i,j

:=
pi,j+1 − pi,j

δy
(3.13)

The parameter γ in the above formulas lies between 0 and 1 [4].

Now for discretization of the time derivatives δu/δt and δv/δt, the time

interval [0, tend] is discretized into equal subintervals [nδt, (n + 1)δt], n =

0..., tend/δt−1. Using Euler′s method for first-order difference quotations,[
∂u

∂t

](n+1)

:=
u(n+1) − u(n)

δt
,

[
∂v

∂t

](n+1)

:=
v(n+1) − v(n)

δt
(3.14)

where the subscript (n) denotes the time level.

3.1.2 Algorithm

Substituting the time discretization Eq. (3.14) of the terms ∂u
∂t and ∂v

∂t in

the momentum equations Eq. (3.3) and Eq. (3.4), we get following equa-

tion. This equations are known as time discretization of the momentum

equations Eq. (3.3) and (3.4)

u(n+1) = F (n) − δt∂p
(n+1)

∂x
, v(n+1) = G(n) − δt∂p

(n+1)

∂y
(3.15)

where F (n) and G(n) are evaluated at time level n with following F and G

F := u(n) + δt

[
1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
− ∂(u2)

∂x
− ∂(uv)

∂y
+ gx

]
G := v(n) + δt

[
1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
− ∂(uv)

∂x
− ∂(v2)

∂y
+ gy

]
(3.16)
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This type of discretization may be characterized as being explicit in the

velocities and implicit in the pressure; i.e, the velocity field at time step

tn+1 can be computed once the corresponding pressure is known. The pres-

sure is determined by evaluating the continuity equation Eq. (3.5) at time

tn+1. Now substituting the relationship of Eq. (3.15) for the velocity field

(u(n+1), v(n+1))T into the continuity equation Eq. (3.5) we get a Poisson

equations for the pressure p(n+1) at time tn+1.

∂2p(n+1)

∂x2
+
∂2p(n+1)

∂y2
=

1

δt

(
∂F (n)

∂x
+
∂G(n)

∂y

)
(3.17)

The fully discrete momentum equations will be obtained by discretiza-

tion of the spatial derivatives occurring in the time-discretized momentum

equations Eq. (3.15) with the help of Eq. (3.6) to (3.9) and Eq. (3.10) to

(3.13),

u
(n+1)
i,j = F

(n)
i,j −

δt

δx
(p

(n+1)
i+1,j − p

(n+1)
i,j ); i = 1, ..., imax − 1, j = 1, ..., jmax

v
(n+1)
i,j = G

(n)
i,j −

δt

δy
(p

(n+1)
i,j+1 − p

(n+1)
i,j ); i = 1, ..., imax, j = 1, ..., jmax − 1

(3.18)

The quantities F and G from Eq. (3.16) are discretized at the right and

upper edges of cell (i, j), respectively

13



Fi,j := ui,j + δt

[
1

Re

([
∂2u

∂x2

]
i,j

+

[
∂2u

∂y2

]
i,j

)
−
[
∂(u2)

∂x

]
(i,j)

−
[
∂(uv)

∂y

]
(i,j)

+ gx

]

i = 1, ..., imax − 1, j = 1, ..., jmax

Gi,j := vi,j + δt

[
1

Re

([
∂2v

∂x2

]
i,j

+

[
∂2v

∂y2

]
i,j

)
−
[
∂(v2)

∂y

]
(i,j)

−
[
∂(uv)

∂x

]
(i,j)

+ gy

]

i = 1, ..., imax, j = 1, ..., jmax − 1 (3.19)

Substituting the discrete quantities introduced in Eq. (3.17), Poisson equa-

tion for the pressure, we get discrete Poisson equation as below,

p
(n+1)
i+1,j − 2p

(n+1)
i,j + p

(n+1)
i−1,j

(δx)2 +
p

(n+1)
i,j+1 − 2p

(n+1)
i,j + p

(n+1)
i,j−1

(δy)2

=
1

δt

(
F

(n)
i,j − F

(n)
i−1,j

δx
+
G

(n)
i,j −G

(n)
i,j−1

δy

)

i = 1, ..., imax, j = 1, ..., jmax (3.20)

Applying the boundary conditions in [3] above equation becomes as follow,

εEi (p
(n+1)
i+1,j − p

(n+1)
i,j )− εWi (p

(n+1)
i,j − p(n+1)

i−1,j )

(δx)2
+

εNj (p
(n+1)
i,j+1 − p

(n+1)
i,j )− εSj (p

(n+1)
i,j − p(n+1)

i,j−1 )

(δy)2

=
1

δt

(
F

(n)
i,j − F

(n)
i−1,j

δx
+
G

(n)
i,j −G

(n)
i,j−1

δy

)

i = 1, ..., imax, j = 1, ..., jmax (3.21)
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The parameters,

εWi :=

 0 i = 1,

1 i > 1,
εEi :=

 1 i < imax,

0 i = imax,

εSj :=

 0 j = 1,

1 j > 1,
εNj :=

 1 j < jmax,

0 j = jmax,

As a result, Eq. (3.21) represents a linear system of equations containing

imaxjmax equations and imaxjmax unknowns pij, i = 1...imax, j = 1...jmax to

be solved using a suitable algorithm. For the solution of the very large,

sparse linear systems of equations arising from the discretization of par-

tial differential equations, iterative solution methods are generally applied.

Various iterative solutions methods have been discussed in subsequent sec-

tions. These iterative solution methods have been ported on graphics pro-

cessing unit for acceleration. For stability of numerical algorithm and elim-

ination of oscillations, stability have been imposed on the step-sizes δx, δy

and δt. An adaptive step-size control has been implemented by selecting

δt for the next time step as below,

δt := τmin

(
Re

2

( 1

δx2
+

1

δy2

)−1

,
δx

|umax|
,
δy

|vmax|

)
(3.22)

The factor τ ∈ [0, 1] is a safety factor.

The basic algorithm [3] is shown below,
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Algorithm 1 :- Algorithm for solving Navier-Stokes equation

1: Set t := 0, n := 0

2: Assign initial values to u, v, p

3: while t < tend do

4: Select δt (according to Eq. (3.22)) if step-size control is used)

5: Set boundary values for u and v

6: Compute F (n) and G(n) according to Eq. (3.19)

7: Compute the right-hand side of the pressure equation Eq. (3.20)

8: Set it := 0

9: while it < itmax and ‖ rit ‖> eps (resp., ‖ rit ‖> eps ‖ po ‖ ) do

10: perform an iterative methods for system of linear equations (SOR cycle according

to Eq. (3.29))

11: Compute the residual norm Eq. (3.30) for the pressure equation ‖ rit ‖

12: it := it+ 1

13: end while

14: Compute u(n+1) and v(n+1) according to Eq. (3.18)

15: t := t+ δt

16: n := n+ 1

17: end while

3.2 Iterative Methods

Iterative solution methods work by applying a series of operations to an

approximate solution to the linear system (i.e. Ax = b), with the error

in the approximate solution being reduced by each application of the op-

erations. Semantically, each application of the operations is an iteration,

and the scheme iterate towards a solution. Iterative methods may require

less memory and be faster than direct methods (i.e. Gaussian elimination,

LU decomposition), and handle special structures (such as sparsity) in a

simple way. Iterative methods mostly consists of

1. Stationary or simple methods (or classical iterative methods)
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e.g. Jacobi, Gauss-Seidel, Successive Over-relaxation (SOR), and

Symmetric Successive Over-relaxation (SSOR)

2. Krylov subspace methods e.g. Conjugate Gradient (CG), Bi-conjugate

Gradient (BiCG), Generalized Minimal Residual (GMRES)

3. Multi-grid schemes

The stationary methods finds a splitting A = M −K with non-singular M

and iterates x(k+1) = M−1(Kx(k) + b) = Rx(k) + c. The iteration x(k+1) =

Rx(k) + c converges to the solution x = A−1b if and only if the spectral

radius ρ(R) < 1, the spectral radius of an n by n matrix G is defined by

ρ(G) = max{|λ| : λ ∈ λ(G)},

3.2.1 The Jacobi Method

It is the simplest iterative scheme and defined for matrices that have non-

zero diagonal elements. For general n system Ax = b,

for i = 1 : n

x
(k+1)
i =

(
bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k)
j

)/
aii (3.23)

end

Where, x
(k)
j is the jth unknown in x during the kth iteration, i = 1, 2, ..., n

and k = 0, 1, 2, .....;

x
(0)
i is the initial guess for the ith unknown in x,

aij is the coefficient of A in the ith row and jth column,

bij is the ith value in b.

Here Jacobi iteration does not use the most recently available information
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when computing x(k+1). Thus it is highly suitable for parallel computing.

It converges with a constant factor every O(n2).

In matrix term, splitting is done as M = D and K = L+ U and

x
(k+1)
i = D−1((L+ U)x(k) + b) (3.24)

Where,

x(k) is the kth iterative solution to x, k = 0, 1, 2, .....;

x(0) is the initial guess at x,

D is the diagonal of A,

L is the strictly lower triangular portion of A,

U is the strictly upper triangular portion of A,

b is the right-side vector.

3.2.2 The Gauss-Seidel Method

It is defined for matrices that have non-zero diagonal elements. For general

n system Ax = b,

for i = 1 : n

x
(k+1)
i =

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)/
aii (3.25)

end

Here iteration use the most recently available information when computing

x(k+1). So it is faster than the Jacobi method. It is not suitable for parallel

computing. In matrix term, splitting is done as M = D − L and K = U

and

x(k+1) = (D − L)−1(Ux(k) + b) (3.26)
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3.2.3 The Successive Over-relaxation Method

It is the variant of Gauss-Seidel Method. The Gauss-Seidel Method is slow

if the spectral radius of M−1K is close to unity. With ω ∈ R a modification

of the Gauss-Seidel step gives the Successive Over-relaxation method.

for i = 1 : n

x
(k+1)
i = (1− ω)x

(k)
i + ω

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)/
aii (3.27)

end

In matrix terms, splitting is done as Mω = D+ωL and Kω = (1−ω)D−ωU

and the SOR step is given by

x(k+1) = (D + ωL)−1(((1− ω)D − ωU)x(k) + ωb) (3.28)

Here the parameter ω decides the convergence rate, if ω = 1 then it is the

Gauss-Seidel method. if ω > 1 then the convergence rate is faster than

the Gauss-Seidel method and called Over-relaxation method. Similarly

if ω < 1 then the convergence rate is slower and called under-relaxation

method.

3.2.4 Red-Black Gauss-Seidel Method

The Red-Black Gauss-Seidel method can be considered as a compromise

between Jacobi and Gauss Seidel. It is like a red-black ordering in a

checkerboard pattern. In this method, red-black coloring scheme is ap-

plied on the staggered grid. First update the red cells from k to k + 1,

which only depends on black cells at n. Similarly then update black cells

from k to k+ 1, which depends on the red cells at n+ 1. Thus this method

is highly suitable for parallel computation with the most recently available

information when computing x(k+1).
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3.3 Implementation of Iterative Methods on GPU

For viscous, incompressible laminar flow described in previous section, the

discrete Poisson pressure equation takes following form by applying Suc-

cessive Over-relaxation (SOR) methods as described in previous sections,

for it = 1 : itmax

for i = 1 : imax

for j = 1 : jmax

pit+1
i,j = (1− ω)piti,j +

ω(
εEi +εWi
(δx)2 +

εSj +εNj
(δy)2

)
(
εEi p

it
i+1,j + εWi p

it+1
i−1,j

(δx)2
+
εSj p

it+1
i,j−1 + εNj p

it
i,j+1

(δy)2
− rhsi,j

)
end

end

end (3.29)

riti,j :=
εEi (piti+1,j − piti,j)− εWi (piti,j − piti−1,j)

(δx)2

+
εNj (piti,j+1 − piti,j)− εSj (piti,j − piti,j−1)

(δy)2
− rhsi,j

i = 1, ..., imax, j = 1, ..., jmax (3.30)

The iteration is terminated either once a maximal number of steps itmax has

been taken or when the norm of the residual has fallen below an absolute

tolerance eps or a relative tolerance eps ‖ p0 ‖. Above algorithm become

simple when the boundary condition is updated by the nearby pressure

value to the boundary. As Gauss-Seidel method is not suitable for parallel

computation, it is replaced by Jacobi and Red-Black SOR methods and

shown in algorithm 2 and 3 respectively.
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Algorithm 2 :- Algorithm for Jacobi iteration method

1: for it = 1 to itmax do

2: Update boundary condition.

3: for i = 1 to imax do

4: for j = 1 to jmax do

5: tempi,j = 1(
1

(δx)2
+ 1

(δy)2

)(pi+1,j+pi−1,j

(δx)2
+

pi,j+1+pi,j−1

(δy)2
− rhsi,j

)
6: end for

7: end for

8: pi,j = tempi,j

9: Compute residue riti,j as per Eq. (3.30)

10: end for

Algorithm 3 :- Algorithm for Red-Black Successive Over-relaxation iteration method

1: for it = 1 to itmax do

2: Update boundary condition.

3: for i = 1 to imax do

4: for j = 2− (i%2) to jmax do

5: pi,j = (1− ω)pi,j + ω(
1

(δx)2
+ 1

(δy)2

)(pi+1,j+pi−1,j

(δx)2
+

pi,j+1+pi,j−1

(δy)2
− rhsi,j

)
6: j = j + 2

7: end for

8: end for

9: for i = 1 to imax do

10: for j = 1 + (i%2) to jmax do

11: pi,j = (1− ω)pi,j + ω(
1

(δx)2
+ 1

(δy)2

)(pi+1,j+pi−1,j

(δx)2
+

pi,j+1+pi,j−1

(δy)2
− rhsi,j

)
12: j = j + 2

13: end for

14: end for

15: Compute residue riti,j as per Eq. (3.30)

16: end for
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3.4 Results and Analysis

Table - 3.1 shows the speed-up factor of Red-Black Successive Over-relaxation

method over equivalent CPU code. Average speed-up factor of 21x is

achieved for Red-Black SOR method with Over-relaxation rate (ω)= 1.7

in double precision on NVIDIA GeForce GTX280 on desktop computer

with intel i7-920 processor.

Table 3.1: Speed-up results for Red-Black Successive Over-relaxation method for double

precision on NVIDIA GeForce GTX 280

Numbers of

Cells in x & y

direction

Memory (MB)

Time (s) per iteration

Speed-up
SOR CPU

Red-Black

SOR CPU

Red-Black

SOR GPU

2000 122.0 0.25 0.27 0.01 27

3000 274.7 0.61 0.59 0.0275 21.45

4000 488.3 1.09 1.05 0.0475 22.11

5000 762.9 1.69 1.53 0.07 21.86

Table - 3.2 shows the speed-up factor of Jacobi method and Red-Black

Gauss-Seidel method over equivalent CPU code in double precision. The

speed-up performance of Red-Black Gauss-Seidel (GS) iteration method is

less than that of Jacobi method. But the convergence rate of Red-Black

Gauss-Seidel iteration method is higher than Jacobi iteration method. If we

use Successive Over-relaxation method with Red-Black technique, then the

convergence rate of Red-Black Successive Over-relaxation method is much

higher than that of Jacobi method. Thus, Red-Black Successive Over-

relaxation iteration method is more preferable for parallel computation on

GPU.
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Table 3.2: Speed-up results for Jacobi and Red-Black Gauss-Seidel methods for double

precision on NVIDIA GeForce GTX 280

Numbers of

Cells in x & y

direction

Time (s) per iteration Speed-up

Gauss-Seidel

CPU

Jacobi

CPU

Red-Black

GS CPU

Jacobi Red-Black

GS

2000 0.28 0.38 0.25 38 25

3000 0.64 0.85 0.61 42.5 30.5

4000 1.06 1.58 1.09 43.05 27.17

5000 1.47 2.30 1.58 38.33 22.57
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Chapter 4

Unstructured cell-centered

AUSM+-UP based Finite Volume

Solver

The 3-dimensional simulation of internal flow field of a turbine start-up

system of space launch vehicle is required for designer to select the mate-

rial and propellant, calculate hardware thickness, arriving at appropriate

geometry for optimum design and predicting the turbine performance. A

computational fluid dynamics solver has been developed mainly for pre-

diction and simulation of flow and thermal characteristics of the turbine

startup motor to meet the thermal and mass flow requirements. Heat

transfer was predicted using appropriate engineering correlations [5]. This

CFD tool is based on unstructured cell-centered AUSM+-UP based finite

volume solver. The major requirement is to accelerate this unstructured

grid based CFD tool. This chapter discusses the analysis of the code, im-

plementation of computational intensive part to many-core GPU as well

as multi-core CPU and various reordering schemes for improving coalesced

memory access.
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4.1 AUSM+-UP-based finite volume solver

For this finite volume solver, the domain was divided into hexahedral con-

trol volumes with unstructured grid. The basic conservation equation is

∂U

∂t
+∇·F = S (4.1)

where U = Vector of conservative variables,

F = Inviscid Flux vector,

S = Source term.

Integrating this equation,∫ (
∂U

∂t
+∇·F

)
dΩ =

∫
SdΩ (4.2)∫

∂U

∂t
dΩ +

∫
∇·FdΩ =

∫
SdΩ (4.3)

Applying Green’s theorem∫
Ω

∂U

∂t
dΩ +

∫
Γ

F · ndΓ =

∫
Ω

SdΩ (4.4)

where Γ and Ω are respectively the surface area and volume of the cell.

The above equation can be written as

Vi
∂Ui
∂t

+
∑
faces

F · ds = SiVi (4.5)

Here Vi is the cell volume and ds is the area of elemental sides.

For the simple explicit scheme the time stepping is done using Runge-Kutta
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method as below,

U
(0)
i = U

(n)
i

U
(1)
i = U

(0)
i − α1

4ti
Vi

(
R

(0)
i

)
U

(2)
i = U

(0)
i − α2

4ti
Vi

(
R

(1)
i

)
U

(3)
i = U

(0)
i − α3

4ti
Vi

(
R

(2)
i

)
U

(4)
i = U

(0)
i −

4ti
6Vi

(
R

(0)
i + 2R

(1)
i + 2R

(2)
i +R

(3)
i

)
U

(n+1)
i = U

(4)
i (4.6)

where the superscripts n and n+ 1 indicate the current and the next time

steps. The values of coefficients in Runge-Kutta integration procedure are

α1 = 0.5, α2 = 0.5 and α3 = 1.0. This method is only conditionally

stable, as it is an explicit method. Local time stepping was employed for

accelerating convergence. Thus, each control volume can march with its

own maximum allowable time step specified by the explicit stability criteria

given by

4ti ≤
4li
qi + c

(4.7)

where qi is the magnitude of fluid velocity of ith cell, given by

qi =
√
u2
i + v2

i + w2
i

and c =
√
γRT , the sound velocity and 4li is the characteristic dimension

of the hexahedral element. Now the time step of the explicit solution

procedure is given by,

4ti = CFL× 4li
qi + c

(4.8)

where CFL is the Courant-Friedrichs-Lewy number.

In upwind schemes, the discretization of the equations on a mesh is per-

formed according to the direction of propagation of information on that
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mesh, thereby incorporating the physical phenomena into the discretization

schemes. In all Advection Upstream Splitting Methods (AUSM schemes),

the inviscid flux is explicitly split into two parts i.e. convective and pres-

sure terms by considering convective and acoustic waves as two physically

distinct processes [6].

F = F (c) + P (4.9)

where F (c) = Ma


ρ

ρu

ρht

 and P =


0

p

0


Here the convective flux F (c) is expressed in terms of the convective speed

M and the passive scalar quantities indicated in the brackets. The pres-

sure flux P contains nothing but the pressure. Numerical flux fi+1/2 can

be expressed as the sum of the numerical convective flux f
(c)
i+1/2 and the

numerical pressure flux pi+1/2, at the interface i + 1/2 straddling the ith

and the i+ 1th cells.

fi+1/2 = f
(c)
i+1/2 + pi+1/2 (4.10)

where one can further write f
(c)
i+1/2 = mi+1/2 ·Φi+1/2 and Pi+1/2 =


0

pi+1/2

0

.

In AUSM+-UP scheme, the interface fluxes are calculated based on the sign

of the interface mass flow rate and pressure (evaluated using polynomial

Fit) [6].
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4.2 Implementation on Graphics Processing Unit

The computational intensive portion of this CFD solver consists of a loop

which repeatedly computes the time derivatives of the conserved variables,

given by Eq. (4.5). The classical Runge-Kutta (R-K) method is applied to

integrate the non-linear coupled partial differential equation. Algorithm-4

shows various steps in the implementation of this scheme. The iteration

loop is divided in to various functions as described in Algorithm-4. These

functions are called as follows.

1. Time-step function :- Compute time interval δtmin

2. Bound-cond function :- Evaluate boundary condition for each cells at

boundary

3. Fou-Inviscid function :- Compute inviscid flux (i.e density, momentum

in x, y and z direction and momentum energy) using AUSM+-UP

technique.

4. Com-param-1 :- Compute the first step of Runge-Kutta method using

constant α1

5. Com-param-2 :- Compute the second step of Runge-Kutta method

using constant α2

6. Com-param-3 :- Compute the third step of Runge-Kutta method using

constant α3

7. Com-param-4 :- Compute the fourth step of Runge-Kutta method

8. Comp-diff :- Update the old conserved variable with newly computed

conserved variable through R-K method
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Algorithm 4 :- Algorithm for Cell-centered AUSM+-UP based CFD Solver

1: Read initial value of physical parameters from file flow.in

2: Read data of hexahedral mesh from files grid.dat, bc.in and compute geometrical data

for unstructured mesh

3: Initialize the physical parameters or update from file restart.in, if iteration is restarted.

4: for iter = 1 to no. of iterations do

5: Compute time interval δtmin

6: for STEP k = 1 to 4 do

7: Apply boundary conditions.

8: Compute inviscid parameters

9: Compute the slope for given time interval, as per classical Runge-Kutta (R-K)

method for each inviscid parameters

10: Compute physical parameters (u, v, w,E, T,Ro, P ) with the help of slope variables

for given time interval of classical Runge-Kutta method

11: end for

12: Update variable TIME with incremental time interval and R-K coefficients

13: end for

14: Write computed physical parameters (u, v, w, P, T,Ro,Mach no.) to file flowc.out

Among these functions, a function Fou-Inviscid is computational inten-

sive part of the complete solver due to random memory access. Algorithm

for computing inviscid parameters is shown in algorithm-5. The code is

suitable for parallel computation and ported to GPU. The parallel compu-

tation is based on per-element basis, with one thread per element. Various

kernels are grouped to above functions depending up on the functionality.

The Fou-Inviscid function computes the inviscid flux parameters for

each side of hexahedral element as well as for each common side of neigh-

bour elements. In parallel computation each thread computes the inviscid
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flux parameters for each element. To avoid race condition in parallel im-

plementation the computed flux for each neighbour element is stored in

different vectors. At the end of inviscid flux computation, the inviscid flux

of neighbour elements is aggregated.

Fig. 4.1 shows the relative computation time of each individual func-

tion for sequential and parallel program. Two data set of unstructured

grid is used for testing the parallelized code. Grid data-1 consists of 26,901

nodes, 24,000 hexahedral elements and 5,600 ghosts cells (elements). Sim-

ilarly grid data-2 consists of 564,417 nodes, 540,000 hexahedral elements

and 48,200 ghosts cells. So, as element size increases, the arithmetic com-

putation hides the memory latency and provides good acceleration.

Figure 4.1: Computational time profile of an unstructured grid based CFD Solver

Apart from above technique, various performance optimization strate-

gies are implemented in GPU computation. Optimization of memory usage

to achieve maximum memory throughput and maximization of parallel ex-

ecution to achieve maximum utilization are most important performance

optimization strategies.

The first step in maximizing overall memory throughput for the ap-

plication is to minimize data transfers with low bandwidth. This means
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minimizing data transfers between the host and the device, as well as mini-

mizing data transfers between global memory and the device by maximizing

use of on-chip memory: shared memory, constant cache and texture cache

for NVIDIA GeForce GTX280 GPU. Shared memory is used to avoid re-

dundant global memory access amongst threads within a block, but the

GPU does not automatically make use of shared memory. So, information

must be made available which specifies which global memory access can be

shared by multiple threads within a block. This information is not known

priori due to data dependent memory access pattern of unstructured grid

based solver. With the per-element/thread based connectivity data struc-

ture, the use of shared memory is not applicable to this case. The off-chip

constant memory space provides cache facility. Thus an optimized code

is developed to take advantage of constant cache. The second step is the

coalesced global memory access. Coalesced global memory access reduces

the memory transactions and increases the instruction throughput. A bet-

ter global memory access can be achieved by re-numbering the elements in

unstructured grid such that the elements nearby in space remain nearby in

memory. Next section discusses few renumbering strategies developed for

better coalesced global memory access.

To maximize utilization the application should be structured in a way

that it exposes as much parallelism as possible and efficiently maps this

parallelism to the various components of the system to keep them busy

most of the time. Maximization of utilization at microprocessor level is

done by hiding the memory latency by arithmetic instruction. In our case

the function Fou-Inviscid is not arithmetic bound. Secondly occupancy

management is important to maximize parallel utilization. The number
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of blocks and warps residing on each multiprocessor for a given kernel call

depends on the execution configuration of the call, the memory resources of

the multiprocessor, and the resource requirements of the kernel. With the

help of occupancy calculator, execution configuration of each kernel call is

optimized. The number of registers used by a kernel can have a significant

impact on the number of resident warps and occupancy. In our case by

limiting maximum registers to 64 for Fou-Inviscid kernel, it’s occupancy

is increased to 25 %, which results 10 % improvement in speed-up. The

Table - 4.1 shows the comparison of solver’s computation time for both

data sets.

Table 4.1: Speed-up results for finite volume CFD solver for double precision on NVIDIA

GeForce GTX280

Number of

elements

Time (s) per element per iteration Speed-up

Single core NVIDIA GPU
Un-optimized Optimized

CPU Un-optimized Optimized

24,000 5.21E-6 3.76E-7 3.37E-7 13.86 15.47

540,000 5.42E-6 2.26E-7 1.98E-7 24.00 27.36
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Algorithm 5 :- Finding Inviscid Flux Parameters using AUSM+-UP Scheme

1: for i = 1 to no. of elements do

2: for j = 1 to 5 do

3: inviscid[i][j] = 0

4: end for

5: end for

6: for i = 1 to no. of elements do

7: for j = 1 to 6 ( no. of surface of hexahedral element) do

8: N = jth neighbor of ith element

9: if N > i then

10: if N is not a ghost cell then

11: Compute left & right state variables and m1/2, p1/2

12: if m1/2 > 0 then

13: Compute inviscid[i][1] to inviscid[i][5] and inviscid[N ][1] to

inviscid[N ][5] using left side variable.

14: else

15: Compute inviscid[i][1] to inviscid[i][5] and and inviscid[N ][1] to

inviscid[N ][5] using right side variable.

16: end if

17: else

18: Compute inviscid[i][2] to inviscid[i][4] and inviscid[N ][2] to inviscid[N ][4]

using m1/2

19: end if

20: end if

21: end for

22: end for
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4.3 Renumbering the elements in Unstructured Grid

A detailed study of algorithm suggest that memory access to the ghost cells,

which are neighbour cells of the exterior or interior boundary cells of the

complete control volume, is expensive and their computation is not useful

further. Thus first modification is removal of the inviscid flux computation

for ghost cells and their memory access. This changed new computation

is called modified computation. Secondly cache-misses in computing sys-

tem are directly linked to the bandwidth of the equivalent matrix system

(or graph). Point renumbering to reduce bandwidths has been an impor-

tant theme for many years in traditional finite element applications [7].

Each element is represented by node of a graph and the common surface

between two elements is represented by an edge of the graph. With this ar-

rangement and application of few algorithm from graph theory gives good

re-numbering of the elements in unstructured grids. Fig. 4.2a show the

structure of the adjacency matrix represented by the graph of elements of

unstructured grid. From fig. 4.2a, it is clear that the ghost cells are far

part in memory from other cells and we have to apply the renumbering

scheme such that the adjacency matrix of elements of unstructured grid

have minimum bandwidth. The techniques discussed here do not require

spatial location of points in the unstructured grid. Following techniques

require only connectivity table of the grid i.e elements and list of their

neighbour’s elements.

Bandwidth of an N by N symmetric positive definite matrix A, with entries

ai,j, is given by

β(A) = max{|i− j| | ai,j 6= 0} (4.11)
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and number βi(A) is called the i-th bandwidth of A. The envelope of A,

denoted by Env(A) [8], is defined by

Env(A) = {{i, j} | 0 < (i− j) ≤ βi(A), i ≥ j} (4.12)

The quantity |Env(A)| is called the profile or envelope size of A, and is

given by

Pr(A) = |Env(A)| =
N∑
i=1

βi(A) (4.13)

(a) Matrix with all elements (b) Matrix with all elements excluding ghost elements

Figure 4.2: Structure of adjacency matrix formed by the elements with and without ghost

elements of unstructured grid data - 1

All of the bandwidth minimization strategies are heuristic by nature.

Initially an reverse Cuthill-McKee (RCM) reordering is applied as band-

width minimization strategy. Reverse Cuthill-McKee algorithm is most

widely used profile reduction ordering algorithm and variant of the Cuthill-

McKee algorithm. Cuthill-McKee algorithm is designed to reduce the

bandwidth of a sparse symmetric matrix via a local minimization of the

35



βi’s. An ordering obtained by reversing the Cuthill-McKee ordering often

turns out to be much superior to the original ordering in terms of profile

reduction, although the bandwidth remains unchanged. Thus, obtained

reverse ordering is called reverse Cuthill-McKee ordering (RCM) [10]. In

this scheme at each stage, the node with the smallest number of surround-

ing unrenumbered nodes is added to the renumbering table. The profile

resulting from this ordering is quite sensitive to the choice of the starting

node. A good choice for a starting node will be to choose a peripheral node,

that is one whose eccentricity equals the diameter of the graph as this will

generate a narrow level structure where the difference in number for a node

and its neighbors is minimal. Peripheral nodes are not easy to find quickly.

Therefore, heuristics were devised to find “pseudo-peripheral” nodes, i.e.

nodes whose eccentricities are close to the diameter of the graph. Gibbs,

Poole and Stockmeyer [11] and George and Liu [10] have provided vari-

ous heuristics algorithm to find the pseudo-peripheral node of given graph.

The detailed algorithm of reverse Cuthill-Mckee is shown as algorithm - 6.

Here the degree of a node in a graph is the number of nodes adjacent to it.

Fig. 4.2b and 4.3a shows the structure of adjacency matrix before

and after applying RCM algorithm respectively. The reverse Cuthill Mc-

Kee algorithm is implemented with Boost C++ library package [9]. This

renumbering gives good bandwidth and profile of adjacency matrix of ele-

ments of unstructured grids.

The second strategy is re-ordering the adjacency matrix by fill-reducing

orderings, suited for Cholesky-based direct factorization algorithms. This

METIS algorithm is based on a multilevel nested dissection algorithm and

produce low fill orderings for a wide variety of matrices [12]. Fig. 4.3b
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Algorithm 6 :- Reverse Cuthill-McKee Algorithm

1: Prepare a Graph G(n) from the adjacency list of elements in unstructured grid

2: Prepare an empty queue Q and an empty result array R

3: Find a pseudo-peripheral starting node, that hasn’t previously been inserted in the

result array R. Let us name it P (for Parent)

4: Add P in the first free position of R

5: Add to the queue all the nodes adjacent with P in the increasing order of their degree

6: Extract the first node from the queue and examine it. Let us name it C (for Child)

7: If C hasn’t previously been inserted in R, add it in the first free position and add to

Q all the neighbour of C that are not in R in the increasing order of their degree

8: If Q is not empty repeat from line 6

9: If there are unexplored nodes (the graph is not connected) repeat from line 3

10: Reverse the order of the elements in R. Element R[i] is swapped with element R[n+1-i]

11: The result array will be interpreted like this: R[L] = i means that the new label of

node i (the one that had the initial label of i) will be L

shows the structure of adjacency matrix after applying METIS matrix

re-ordering algorithm. The renumbering by METIS algorithm gives poor

bandwidth and profile of adjacency matrix of elements of unstructured

grids.

The third strategy is based on matrix reordering technique used in par-

titioning and global routing subproblems in Very Large Scale Integrated

(VLSI) design. This technique is used to reorder a binary m by n matrix

Q, such that in the reordered matrix, the ones are clustered along the geo-

metric diagonal as tightly as possible [13]. The matrix reordering technique

is based on the calculation of the second largest eigenvalue and the corre-

sponding eigenvector of a related matrix and called a spectral partitioning.

An implementation of spectral partitioning involves the construction of

incidence matrix of hyper-edge representing node and edge structure, cal-
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(a) Matrix after RCM Algorithm (b) Matrix after METIS Algorithm

Figure 4.3: Structure of adjacency matrix after application of RCM and METIS algorithm

for unstructured grid data - 1

culation of second largest eigenvalue and eigenvector, and re-ordering the

incidence matrix from the eigenvector. The hyper-graph is constructed by

different strategies. Various hyper-graph schemes is listed below.

1. Spectral partitioning - 1: Hyper-edges are constructed from neighbour

cells of a given elements excluding ghosts cells.

2. Spectral partitioning - 2: Hyper-edges are constructed from neighbour

cells of given elements along with itself and excluding ghosts cells.

3. Spectral partitioning - 3: Hyper-edges are constructed from neighbour

cells of same side and excluding ghosts cells.

4. Spectral partitioning - 4: Hyper-edges are constructed between given

cell and their neighbour cell with excluding ghosts cells.
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(a) Matrix after spectral partitioning - 1 (b) Matrix after spectral partitioning - 2

Figure 4.4: Structure of adjacency matrix after application of spectral partitioning scheme

1 and 2 for unstructured grid data - 1

Hyper-graph generated by spectral partitioning scheme number 4 is

similar of the hyper-graph represented by the scheme number 2, as edges

of one elements with their neighbour’s elements represent one hyper-edge.

Fig. 4.4a, 4.4b, 4.5a and 4.5b shows the structure of adjacency matrix after

reordering by spectral partitioning algorithm.

Table 4.2 shows the comparison of bandwidth and profile obtained by

various renumbering schemes. The relative value of bandwidth and profile

is with respect to original ordering. An reverse Cuthill-McKee reordering

algorithm gives best reduction in bandwidth and profile for adjacency ma-

trix represented by the graph of unstructured grid. While reordering by

METIS algorithm gives the worst reduction in bandwidth and profile for

adjacency matrix. For re-ordering by spectral partitioning algorithm, the

bandwidth and profile depends upon the choice of hyper-edges of hyper-

graph.
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(a) Matrix after spectral partitioning - 3 (b) Matrix after spectral partitioning - 4

Figure 4.5: Structure of adjacency matrix after application of spectral partitioning scheme

3 and 4 for unstructured grid data - 1

Table 4.2: Bandwidth and profile of adjacency matrix of unstructured grid after renum-

bering techniques

Ordering methods

Grid data-1 ( 24,000 element ) Grid data-2 (540,000 elements)

Band-

width

Relative

Bandwidth

Relative

Profile

Band-

width

Relative

Bandwidth

Relative

Profile

Original 1200 1.00 1.00 10800 1.00 1.00

Reverse Cuthill-Mckee 420 0.35 0.31 2550 0.24 0.21

Spectral Partitioning-1 23701 19.75 5.50 533259 49.38 13.00

Spectral Partitioning-2 796 0.66 0.35 4996 0.46 0.23

Spectral Partitioning-3 22796 18.00 3.12 529100 49.00 3.77

Spectral Partitioning-4 796 0.66 0.35 4996 0.46 0.23

METIS 23685 19.74 5.71 536090 49.64 9.20
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4.4 Implementation on Multi-core CPU

This computational fluid dynamics solver is implemented on multi-core

Intel i7 processor using OpenMP parallel programming model. OpenMP is

an Application Programming Interface (API) extension to the C, C++ and

Fortran languages to write parallel programs for shared memory machines

[30]. OpenMP supports the fork-join programming model. Under this

approach, the program starts as a single thread of execution, just like a

sequential program. The thread that executes this code is referred to as the

initial thread. Whenever an OpenMP parallel construct is encountered by

a thread while it is executing the program, it creates a team of threads (this

is called the fork), becomes the master of the team, and collaborates with

the other members of the team to execute the code dynamically enclosed

by the construct. At the end of the construct, only the original thread, or

master of the team, continues; all others terminate (this is called the join).

Each portion of code enclosed by a parallel construct is called a parallel

region.

OpenMP is based on the shared-memory model; hence, by default,

data is shared among the threads and is visible to all of them. Also data

can be shared or private to each thread. Shared data is accessible by

all, while private data is accessed only by the thread that owns it. In

OpenMP data transfer is transparent to the programmer and implicit syn-

chronization takes place. OpenMP has small set of explicit synchroniza-

tion. Synchronizing, or coordinating the actions of, threads is sometimes

necessary in order to ensure the proper ordering of their accesses to shared

data and to prevent data corruption. OpenMP provides directives or con-

41



structs, library functions, and environment variables to create and control

the execution of parallel programs. Few of constructs and library functions

are mainly parallel construct, work-sharing constructs (i.e. loop, sections,

single construct ), data-sharing, no-wait, and schedule clauses as well as

synchronizing constructs (i.e. barrier, critical, atomic, locks and master

construct). This constructs make parallel program much powerful and

easy to implement. The independent computational intensive part of the

code is parallelized using the loop work-sharing constructs.

Fig. 4.6 and 4.7 shows the computational performance measurement

of the solver for data-2 on Intel i7-920 processor with GNU GCC compiler

4.1.2, running one to nine threads. An average speed-up of 3.10x and 3.3x

is achieved for double and single precision respectively for both unstruc-

tured grid data. The maximum speed-up is achieved for 7-thread parallel

computation on Intel’s i7 processor.

Figure 4.6: Multi-threaded computational performance of unstructured grid based CFD

Solver on i7-920 processor - 1
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Figure 4.7: Multi-threaded computational performance of unstructured grid based CFD

Solver on i7-920 processor - 2

4.5 Results and Analysis

Table - 4.3 shows the speed-up for unstructured grid based finite volume

CFD solver for double precision over equivalent openMP code running

on one core after reordering the elements in unstructured grid. An re-

verse Cuthill-McKee reordering algorithm gives lower running time than

original ordering with modified computation for sequential code on i7-920

processor. Unstructured grid data-1 gives least running time on GPU, but

unstructured grid data-2 gives running time very close to that of original

ordering with modified computation. While other re-ordering gives poor

running times than that of original ordering and inconsistent as well as

unpredictable with their bandwidth and profile properties. This confirms

that better global memory access is achieved by ordering the elements
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such that nearby elements in space remain nearby in memory and have

least bandwidth and profile. NVIDIA’s latest Fermi compute architecture

having on-chip cache and off-chip cache will offer good performance to

unstructured grid based CFD solver with reverse Cuthill-McKee ordering.

Secondly it is observed that modified computation, i.e. without ghosts

cell’s inviscid flux computations, gives better performance than that of

original computation with ghosts cell’s inviscid flux computations. This is

due to the reduced global memory access.

Table 4.3: Speed-up results of CFD solver after renumbering schemes for double precision

on NVIDIA GeForce GTX280

Ordering methods

Grid data-1 Grid data-2

Time (s) per

Speed-up

Time (s) per

Speed-upelement per iteration element per iteration

CPU GPU CPU GPU

Original Computation 5.35E-6 3.36E-7 15.91 5.43E-6 1.98E-7 27.40

Modified Computation 5.34E-6 3.31E-7 16.09 5.31E-6 1.96E-7 27.02

Reverse Cuthill-McKee 5.03E-6 2.83E-7 17.80 5.07E-6 2.00E-7 25.31

Spectral-Partitioning-1 4.94E-6 2.87E-7 17.18 6.12E-6 2.06E-7 29.71

Spectral-Partitioning-2 5.45E-6 3.67E-7 14.84 5.02E-6 2.75E-7 18.26

Spectral-Partitioning-3 5.24E-6 3.34E-7 15.71 5.47E-6 1.98E-7 27.69

METIS 6.17E-6 4.13E-7 14.94 8.96E-6 3.56E-7 25.18

Table - 4.4 shows the speed-up for unstructured grid based finite vol-

ume CFD solver for single precision over equivalent openMP code running

on one core. The single precision gives better speed-up than double pre-

cision at the cost of error in results due to the reduced precision during

computation. Secondly NVIDIA GeForce GTX280 have one double pre-

cision processing unit per stream multiprocessor. NVIDIA’s latest Fermi

compute architecture having double precision processing unit per stream
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processor, will provide better performance than current GPU hardware.

Table 4.4: Speed-up results of CFD solver after renumbering schemes for single precision

on NVIDIA GeForce GTX280

Ordering methods

Grid data-1 Grid data-2

Time (s) per

Speed-up

Time (s) per

Speed-upelement per iteration element per iteration

CPU GPU CPU GPU

Original Computation 4.25E-6 1.16E-7 36.72 1.04E-5 1.71E-7 60.61

Modified Computation 4.08E-6 1.08E-7 37.68 1.03E-5 1.66E-7 62.24

Reverse Cuthill-McKee 3.55E-6 1.03E-7 34.64 9.02E-6 1.66E-7 54.26

Spectral-Partitioning-1 3.54E-6 1.57E-7 22.58 1.17E-5 3.18E-7 36.76

Spectral-Partitioning-2 4.15E-6 1.23E-7 33.72 9.08E-6 2.38E-7 38.19

Spectral-Partitioning-3 4.21E-6 1.09E-7 38.43 1.03E-5 1.63E-7 63.01

METIS 4.66E-6 1.91E-7 24.4 1.83E-5 6.06E-7 30.12

The parallel code for unstructured grid data - 2 with 540,00 elements

and double precision shows an average speed-up of 27x in comparison to the

OpenMP code running on one core and 9.0x in comparison to the OpenMP

code running on seven cores. Similarly the parallel code for unstructured

grid data - 1 with 24,000 elements with double precision shows an average

speed-up of 16x in comparison to the OpenMP code running on one core

and 5.3x in comparison to the OpenMP code running on seven cores.
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Part II

Electromagnetic Computation on

GPU Hardware
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Chapter 5

Finite Difference Time Domain

(FDTD) Method

The finite-difference time-domain (FDTD) formulation of electromagnetic

field problem is a convenient tool for solving scattering problems. In 1966

Yee [14] proposed a technique to solve Maxwell’s curl equations using the

FDTD which was later developed by Teflove. The equations are solved in a

leapfrog manner: the electric field is solved at a given instant in time, then

the magnetic field is solved at the next instant in time, and the process

is repeated over and over again. However, FDTD runs too slow for some

simulations to be practical, even when carried out on supercomputers.

The development of dedicated hardware to accelerate FDTD computation

has been investigated. This chapter discusses the current trend of FDTD

computations on GPU and a simulation of propagation of Gaussian pulse

in 2-dimensions on GPU.
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5.1 History of FDTD Computation on Dedicated Hard-

ware for Acceleration

In earlier years of introduction of programmable graphics card, Krakiwsky

et al. have demonstrated approximately 10x speed-up for 2-D FDTD com-

putation on NVIDIA GeForce FX 5900 Ultra GPU [19, 20]. Valcarce et al.

have describe the simulation of radio coverage prediction for two dimen-

sions using FDTD with Convolutional Perfectly Matched Layer (CPML)

with CUDA [21]. Balevic et al. have demonstrated accelerated simulations

of light scattering based on FDTD with transverse magnetic (TM) mode

in 2-D with CUDA on GPU [22]. Some of the other numerical solution

with FDTD on GPU are referenced at Baron et al. 2005; Humphrey et al.

2006; Adams et al. 2007 [23, 24, 25].

5.2 Finite Difference Time Domain (FDTD) Tech-

nique

The finite-difference technique is based upon approximations which per-

mit replacing differential equations by finite difference equations. These

finite difference approximations are algebraic in form and they relate the

value of the dependent variable at a point in the solution region to the

values at some neighboring points [15] [16]. The basic steps involved are:

1. Dividing the solution region into grid of nodes.

2. Approximating the given differential equation by finite difference equiv-

alent that relates the dependent variable at a point in the solution

region to its values at the neighboring points
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3. Solving the difference equations subject to the prescribed boundary

conditions and initial conditions

The course of action taken in the above three steps is decided by the

nature of the problem being solved, the solution region and the boundary

conditions.

5.2.1 Yee’s FDTD algorithm

Maxwell’s equations for an isotropic medium can be written as [14] [15]

∇× ~E = −µ∂
~H

∂t
(5.1)

∇× ~H = σ ~E + ε
∂ ~E

∂t
(5.2)

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z
− σEx

)
(5.3)

∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂x
− σEy

)
(5.4)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(5.5)

∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
(5.6)

∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(5.7)

∂Hz

∂t
=

1

µ

(
∂Ex

∂y
− ∂Ey

∂x

)
(5.8)

Where,

~E = Electric Field Intensity,

~H = Magnetic Filed Intensity,

Ex, Ey, Ez are Electric Field Intensity in x, y, z direction,
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Figure 5.1: Positions of the field components in a unit cell of the Yee’s lattice

Hx, Hy, Hz are Magnetic Field Intensity in x, y, z direction,

σ = Electrical Conductivity, µ = Permeability, ε = Permittivity

Following Yee’s notation, we define a grid point in the solution region

as

(i, j, k) = (i4x, j4y, k4z) (5.9)

and any function of space and time as

φn(i, j, k) = φ(iδ, jδ, kδ, n4t) (5.10)

Where δ = 4x = 4y = 4z is the space increment, 4t is the time incre-

ment, and i, j, k, n are integers. Applying central difference approximation

for space and time derivatives that are second order accurate to Eq. (5.9)

and Eq. (5.10) we get,

∂φn(i, j, k)

∂x
=
φn(i+ 1

2 , j, k)− φn(i− 1
2 , j, k)

δ
+O(δ2) (5.11)

∂φn(i, j, k)

∂t
=
φn+ 1

2 (i, j, k)− φn− 1
2 (i, j, k)

4t
+O(4t2) (5.12)
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By applying Eq. (5.11) and Eq. (5.12) to all time and space derivatives,

Yee positions the components of ~E and ~H about a unit cell of the lattice

as shown in the Fig. 5.1. ~E and ~H field are evaluated at alternate half

time steps, such that all field components are calculated in each time step

4t.

Cell Size

The choice of cell size is critical in applying FDTD technique. It must be

small enough to permit accurate results at the highest frequency of interest

and yet be large enough to be implemented on computer. The cell size is

directly affected by the materials present. The fundamental constraint

is that the cell size must be much less than the smallest wavelength for

which accurate results are desired. Size of each cell should 0.1λ or less at

the highest frequency (shortest wavelength) of interest [16].

Accuracy and Stability

For the accuracy of the computed results, the spatial increment δ must

be small compared to the wavelength. To ensure the stability of the finite

difference scheme the increment 4t must satisfy the following stability

criteria [16].

umax4t ≤
[

1

4x2 +
1

4y2 +
1

4z2

]−1/2

(5.13)

where umax is the maximum wave phase velocity within the model. An

electromagnetic wave propagating in free space cannot go faster than speed

of light. To propagate a distance of one cell it requires minimum time of

4t = 4x/co where 4x is the cell size and co is the velocity of light. When
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we proceed to n dimension [17]

4t =
4x√
nco

(5.14)

approximated here as,

4t =
4x
2co

(5.15)

Absorbing Boundary Condition

Absorbing boundary conditions (ABC) are necessary to keep outgoing E

and H fields from being reflected back into the problem space. The basic

assumption of FDTD is that when calculating E field we need to know the

surrounding H field. But at the edge of the problem space we will not have

the value to one side however we know that there are no sources outside

the problem space. Therefore the fields at the edge must be propagating

outwards. A more elegant ABC is the Perfectly Matched Layer (PML).

The implementation of FDTD algorithm and simulations will be discussed

in the next section.

5.3 Simulation of Gaussian Pulse Propagation by FDTD

Method

This section deals with formulation and simulation of Gaussian pulse prop-

agation in two dimension. The medium specific parameters are included

and the absorbing boundary condition is incorporated using the perfectly

matched layer (PML) proposed initially by Berenger [18].
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5.3.1 Two dimensional FDTD theory and formulation

In doing two-dimensional simulation one of the two groups of three fields

each, namely Transverse magnetic (TM) mode composed of Ez, Hx, and Hy

or Transverse Electric mode (TE), composed of Ex, Ey and Hz is selected

[14] [17]. TM mode is used for this work. Eqs. 5.1 and 5.2 are reduced

with the above assumptions in the form,

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
,
∂Hx

∂t
= −1

µ

∂Ez

∂y
,
∂Hy

∂t
=

1

µ

∂Ez

∂x
(5.16)

Taking the central difference approximations for both the temporal and

spatial derivate,

Ez
n+1(i, j) =

(
1− σ(i, j)4t

ε(i, j)

)
Ez

n(i, j)

+
4t

ε(i, j)δ
[Hy

n+1/2(i+ 1/2, j)−Hy
n+1/2(i− 1/2, j)

+Hx
n+1/2(i, j − 1/2)−Hx

n+1/2(i, j + 1/2)] (5.17)

Hx
n+1/2(i, j+1/2) = Hx

n−1/2(i, j + 1/2)+
4t

µ(i, j + 1/2)δ
[Ez

n(i, j)−Ez
n(i, j+1)]

(5.18)

Hy
n+1/2(i+1/2, j) = Hy

n−1/2(i+ 1/2, j)+
4t

µ(i+ 1/2, j)δ
[Ez

n(i+1, j)−Ez
n(i, j)]

(5.19)

The formulation of the above equation assumes that the E and H fields

are interleaved in both space and time. This is the fundamental paradigm

of the finite-difference time-domain (FDTD) method. Eq. (5.17), (5.18),

(5.19) are very similar but ε and µ differ by several orders of magnitude.

Thus applying change of variables [17]

Ẽ =

√
εo
µo
E (5.20)

The normalized ‘Ẽ ’ field unit is called Gaussian units. The ‘Ez ’ field

should be understood as in the normalized units in the subsequent sections.
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Substituting Eq. (5.20) to (5.17), (5.18), (5.19),

Ẽn+1
z (i, j) =

(1− q(i, j))
(1 + q(i, j))

Ẽn
z (i, j)

+
qi(i, j)

(1 + q(i, j)
[Hy

n+1/2(i+ 1/2, j)−Hy
n+1/2(i− 1/2, j)

+Hx
n+1/2(i, j − 1/2)−Hx

n+1/2(i, j + 1/2)] (5.21)

Hx
n+1/2(i, j+1/2) = Hx

n−1/2(i, j + 1/2)+q2(i, j+1/2)[Ẽn
z (i, j)−Ẽn

z (i, j+1)]

(5.22)

Hy
n+1/2(i+1/2, j) = Hy

n−1/2(i+ 1/2, j)+q2(i+1/2, j)[Ẽn
z (i+1, j)−Ẽn

z (i, j)]

(5.23)

where,

q(i, j) =
σ(i, j)4t
2εoεr(i, j)

, q1(i, j) =
4tco
δεr(i, j)

, q2(i, j) =
4tco

δµr(i, j)
(5.24)

5.3.2 Simulation of 2-D Gaussian Pulse Propagation in unbound

medium without Absorbing Boundary Conditions (ABC)

The simulation of two dimensional unbounded medium is similar to free

space simulation without any constraints. The simulation is done with

Gaussian source at the center of the problem space. The permittivity and

permeability of the region is taken as one. A program is implemented in C

language with the Eq. (5.22), (5.23) and (5.24). Fig. 5.2 is the result for 30

time steps and the pulse has not reached the boundary yet. After 100 time

steps the pulse is seen to have reached the boundary and reflected as seen

in Fig. 5.3. The contour in Fig. 5.4 is neither concentric nor symmetric

about the center due to reflections. The same code is implemented on GPU

and good speed-up achieved. Table 5.1 shows the speed-up for various size

of the cell over equivalent serial code.
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Table 5.1: Speed results of FDTD algorithm without absorbing boundary condition on

NVIDIA GeForce GTX280

Numbers of

Cells in x & y

direction

Nos. of Steps GPU Time (s) CPU Time (s) Speed-up

64 1000 0.0525 0.18 3.43

160 1000 0.08 1.13 14.13

320 1000 0.1425 5.3825 37.77

480 1000 0.2825 14.605 51.70

640 1000 0.43 24.43 56.81

64 5000 0.2525 0.805 3.19

160 5000 0.37 5.6425 15.25

320 5000 0.7275 24.825 34.12

480 5000 1.4175 60.7825 42.88

640 5000 2.18 126.8125 58.17

5.3.3 Formulation in two dimensions with ABCs

The formulation in the further sections has been done using Maxwell’s

equation with flux density D. The overall procedure which has been

adopted in previous sections remain the same and for the E and D values,

normalized form of the equations are used for the change of variables. The

detailed derivation can be found in [17]. The advantage of this formulation

is when one wants to simulate frequency dependent media. The set of two

dimensional TM mode equations implemented in C code are:

Dz[i][j] = Dz[i][j]+0.5(Hy[i][j]−Hy[i−1][j]−Hx[i][j]+Hx[i][j−1]) (5.25)

Ez[i][j] = q1z[i][j](Dz[i][j]− sum[i][j]) (5.26)

sum[i][j] = sum[i][j] + q1z[i][j]Ez[i][j] (5.27)
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Figure 5.2: Ez field after 30 time steps with Gaussian pulse at center

Figure 5.3: Ez field after 100 time steps with Gaussian pulse at center without ABC’s

Hx[i][j] = Hx[i][j] + 0.5(Ez[i][j]− Ez[i][j + 1]) (5.28)

Hy[i][j] = Hy[i][j] + 0.5(Ez[i+ 1][j]− Ez[i− 1][j]) (5.29)

where,

q1z[i][j] =
1

εr + (σ∗4t)
εo

q2z[i][j] =
(σ ∗ 4t)

εo
(5.30)

Absorbing boundary conditions are needed to keep outgoing electric field

E and magnetic field H from being reflected back into the problem space.

A basic difficulty encountered in applying the FDTD method to scat-

tering problems is that the domain in which the field is to be computed
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Figure 5.4: Contour of Ez field after 100 time steps with Gaussian pulse at center without

ABC’s

is open or unbounded. Since no computer can store an unlimited amount

of data, a finite difference scheme over the whole domain is impractical.

We must limit the extent of our solution region or an artificial boundary

must be enforced to create the numerical illusion of an infinite space. The

solution region must be large enough to enclose the scatterer, and suitable

boundary conditions on the artificial boundary must be used to simulate

the extension of the solution region to infinity. Outer boundary condi-

tions of this type is called Absorbing Boundary Conditions (ABC). The

accuracy of the ABC dictates the accuracy of the FDTD method. For sim-

plicity we have consider only Berenger’s Perfectly Matched Layer (PML)

type of ABC. The PML has been the most widely accepted and is set to

revolutionize the FDTD method.

If a wave is propagating in medium-A and it strikes upon medium-B,

the amount of reflection is dictated by the intrinsic impedances of the two

media, which is given by

Γ =
ηA − ηB
ηA + ηB

(5.31)
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The impedance are determined by ε and µ of the two media:

η =

√
µ

ε
(5.32)

If any medium is lossy, the EM wave dies out. Hence for a certain thick-

ness close to the boundary, the medium is modeled as lossy to avoid the

reflections from being generated. This is accomplished by making ε and

µ complex and the decay caused is represented by the imaginary terms.

The detailed derivation can be found in [17, 18]. The formulation will be

applicable to a certain number of cells in the boundary. Thus the thickness

of PML layer can be specified in the program. Once the wave reaches the

defined PML points (cells) it will get attenuated and will not be reflected

back. Complete set of parameters associated with PML is defined in the

developed code and by setting the values that are found empirically to be

the most effective value which satisfy stability and variation are used [17].

The fig. 5.5 shows the parameters related to PML used in code.

Figure 5.5: Representation of parameters related to PML [17]

5.3.4 Two dimensional simulation results with PML

A code with perfectly matched layer from [17] has been implemented on

GPU and compared with serial execution. The GPU has shown higher
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speed-up than simulation without absorbing boundary condition because

memory latency has been hide with more arithmetic computation. Table

5.2 shows the speed-up of the FDTD simulation with PML. A comparison

of fig. 5.6 and 5.7, shows how the reflections get eliminated with PML. The

outgoing contour of fig. 5.7 is circular and only when the wave gets within

eight points (PML) of the problem space, does the phase front depart from

its circular nature.

Table 5.2: Speed-up results of FDTD algorithm with Perfectly Matched Layer type of

ABC on NVIDIA GeForce GTX280

Numbers of

Cells in x & y

direction

Nos. of Steps GPU Time (s) CPU Time (s) Speed-up

64 1000 0.1 0.34 3.4

160 1000 0.1325 2.28 17.21

320 1000 0.2725 15.7325 57.73

480 1000 0.5925 60.1625 101.54

64 5000 0.46 1.6925 3.68

160 5000 0.66 11.8575 17.97

320 5000 1.355 80.195 59.18

480 5000 2.97 277.7375 93.51
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Figure 5.6: Ez field after 90 time steps with Gaussian pulse at center and 8 point PML

Figure 5.7: Contour of Ez field after 90 time steps with Gaussian pulse at center and 8

point PML
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Part III

Eigenvalue Problem on GPU

Hardware
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Chapter 6

Computation of Eigenvalue and

Eigenvector for Banded Sparse

Matrix

A banded matrix is generated from the discretization of partial differen-

tial equation in 1-D, 2-D and 3-D of physical systems. The eigenvalue

and eigenvector models the important parameter in physics and engineer-

ing. For example, the time-dependent Schrödinger equation in quantum

mechanics is

HψE = EψE (6.1)

where H, the Hamiltonian, is a second-order differential operator and ψE,

the wave-function, is one of its eigenfunctions corresponding to the eigen-

value E, interpreted as its energy. The wave-functions associated with

the bound states of an electron in a hydrogen atom can be seen as the

eigenvectors of the hydrogen atom Hamiltonian as well as of the angular

momentum operator. They are associated with eigenvalues interpreted as

their energies and angular momentum [29]. The symmetric banded matrix

have been generated from the discretization of partial differential equation
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of Schrödinger equation. The computation of eigenvalue and eigenvector

involve the Inverse Iteration method, Lanczos method and bisection algo-

rithm.

6.1 The Inverse Iteration Method

Inverse iteration method for selected eigenvalue and eigenvector is just the

power method applied to (A− µI)−1. For (A− µI) ∈ Rn×n, a nonsingular

matrix, given a unit 2-norm q(0) ∈ Cn, following algorithm produces a

eigenvalue nearest to the given µ shift [27]. Where,

q(k) is the kth normalized eigenvector for λ(k) eigenvalue, k = 0, 1, 2, .....;

r(k) is the kth residual for λ(k) eigenvalue, k = 0, 1, 2, .....;

c is a constant of order unity.

Algorithm 7 :- Inverse Iteration Algorithm

1: repeat

2: Solve (A− µI)z(k) = q(k−1)

3: q(k) = z(k)/‖ z(k) ‖2
4: λ(k) = [q(k)]TAq(k)

5: r(k) = (A− µI)q(k)

6: until ‖ r(k) ‖∞ ≤ cu‖ A ‖∞

Here the system of linear equations (A− µI)z(k) = q(k−1) is solved by

Conjugate Gradient (CG) algorithm. A special algorithm has been devel-

oped for multiplication of sparse banded matrix with vector and Conjugate

Gradient method for banded sparse matrix [28]. This algorithm treats the

diagonal, sub-diagonal and super-diagonal elements as vectors and compu-

tation involves only multiplication & addition of vectors.
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6.2 The Lanczos Method

Lanczos method is used for partial tridiagonalizations of the given matrix

A. Long before the tridiagonalization is complete, A’s extremal eigenvalues

tend to emerge. Thus Lanczos algorithm is particular useful to find a few

of A’s largest or smallest eigenvalues.

The Lanczos Algorithm

Given a symmetric A ∈ Rn×n and ω ∈ Rn having unit 2-norm, the following

algorithm computes a k-by-k symmetric tridiagonal matrix Tk with the

property that λ(Tk) ⊂ λ(A). The diagonal and sub-diagonal elements of

Tk are stored in α(1 : k) and β(1 : k − 1) respectively [27]. A few results

Algorithm 8 :- The Lanczos Algorithm

1: v(1 : n) = 0; β0 = 1; k = 0;

2: while βk 6= 0 do

3: if k 6= 0 then

4: for i = 1 to n do

5: t = wi;

6: wi = vi/βk;

7: vi = −βkt

8: end for

9: end if

10: v = v + Aω; k = k + 1;

11: αk = wTv; v = v − αkw; βk = ‖ v ‖2
12: end while

for speed-up has shown in Table 6.1. The computation has been carried

out on NVIDIA GeForce GTX 280.
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Table 6.1: Results of speed-up of Lanczos algorithm with double precision on NVIDIA

GeForce GTX280 GPU.

Matrix Size Nos. of Threads GPU Time (s) CPU Time (s) Speed-Up

40,000 x 40,000 256 25.94 138.58 5.34

1,000,000 x 1,000,000 256 160.86 1982.03 12.32

6.3 Algorithm for eigenvalue of banded sparse matrix

on GPU

NVIDIA’s software development kit (SDK) contains a program for compu-

tation of all eigenvalues of tridiagonal symmetric matrix of arbitrary size

using bisection algorithm with CUDA [26]. Our algorithm consists of con-

verting banded matrix to symmetric tridiagonal using Lanczos algorithm,

finding the eigenvalue of symmetric tridiagonal matrix using bisection al-

gorithm and finding the accurate eigenvalue and eigenvector using inverse

iteration method.
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Algorithm 9 :- The Pseudo-Code for Computation of Eigenvalue and Eigenvector (GPU)

1: Get Matrix size, nos. of thread per block

2: Allocate memory dynamically for banded matrix

3: Allocate device memory and copy all variables from host to device

4: Set-up the execution configuration i.e parameters of Lanczos’s kernel

5: Call kernel to compute Lanczos algorithm

6: Copy only diagonal and sub-diagonal elements to host and free device memory

7: Compute eigenvalue from bisection algorithm

8: Sort the eigenvalues in ascending orders

9: Allocate device memory and copy all elements of banded matrix to device

10: Set-up the execution configuration i.e parameters of Inverse iteration’s kernel

11: for i = 1 to size of Matrix do

12: Call kernels to compute inverse iteration algorithm for eigenvectors & eigenvalues.

13: end for

14: Free device and host memory
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Chapter 7

Conclusions and Future works

7.1 Conclusions

During this work various scientific problems have been studied with em-

phasizing on numerical solution of partial differential equation. The partial

differential equation can be solved in many ways depending on it’s nature

and boundary conditions. It is shown that substantial speed-up (≥ 20)

has been achieved for GPU implementation in double as well as single pre-

cision over equivalent single core CPU implementation. An unstructured

grid based finite volume solver have been implemented on many-core GPU

and multi-core CPU using OpenMP programming model. It is shown that

many-core graphics processing computing is much better than multi-core

processor computing. Various optimization techniques, i.e GPU optimiza-

tion and algorithmic strategies, have been employed for unstructured grid

based finite volume solver and provided better speed-up performance. With

NVIDIA’s next generation Fermi compute architecture unstructured grid

based scientific applications will provide better speed-up due to availability

of cache at on & off chip level and double precision floating point unit per

stream processors.
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7.2 Future Works

We have implemented renumbering scheme for unstructured grid, which is

based on the connectivity table of elements and their neighbour’s elements.

There are other renumbering schemes, which are based on the spatial and

cell information of the unstructured grid. Implementation of those schemes

may give better speed-up than our implementation. Secondly we have im-

plemented computational fluid dynamics solver on single GPU, it will be

useful to implement on multi-GPU configuration with OpenMP program-

ming model to accelerate the finite volume solver on unstructured grid with

very large elements.
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