

Content Based Image Search over the World Wide Web

Vibha Rathi
Indian Institute of Technology,

Kharagpur.
vrathi@cse.iitkgp.ernet.in

A.K.Majumdar
Indian Institute of Technology,

Kharagpur.
akmj@cse.iitkgp.ernet.in

Abstract
Most web pages typically contain both images and text.
However, most current search engines index documents
based on text only. In order to facilitate effective search for
images on the web, we need to complement text with the
visual content of the images. We often look for images
containing specific objects having some particular spatial
and topological relations among them. In this paper, we
describe a system which enables the user to effectively
search for images using the image content information
including color, component objects and their relations in
addition to associated text.

1. Introduction
Considering the highly visual and graphical nature of the
world wide web, the number of image search engines is
very limited. Several image search engines like Google
Image Search, WebSEEk [7], WebSeer [8] etc. have been
developed in the last few years. While earlier image
search engines used text only, WebSEEk and WebSeer
use content based information like color, texture, shape
etc. for indexing and query.

But we often look for images containing specific objects
having specific spatial and topological relations among
them. For instance, consider an advertising professional
looking for images of a red car flanked by a tree on its left
or an archaeology student looking for images of
monuments having arches or domes. The currently
available search engines cannot cater to such queries as
they lack semantic description of an image as a collection
of objects with relations amongst them. In this paper, we
present a system that indexes images based on its
component objects and supports queries based on them.

The main components of the system include (1) a crawler
that works offline and scours the web for images,
automatically extracts features like color, associated text,
size, etc. and then relies on an administrator for manually
identifying the objects and labeling, (2) the image
database which is a repository of the collected information
and (3) a query module which searches the database of
images matching a given query image/ sketch.

The rest of the paper is organized as follows. Section 2
describes the process of image collection from the web.
Section 3 describes the model used to describe an image
as a collection of objects and relations between them.
Section 4 describes the design of the image database. The
image loading and querying mechanism is detailed in
Section 5. In Section 6, we provide the results of
preliminary evaluation of the system.

2. Image Collection from the Web
The image collection process is carried out by a semi-
automated crawler or web robot which autonomously
traverses the hypertext structure of the web following
links and downloading images. The basic idea is to
recursively traverse referenced links found in HTML
pages.

A crawler or spider is the essential backend of any search
engine. It collects information from the web, classifies it
and creates appropriate directories or databases which can
be later searched when there is a query from the user. This
enables faster response to the query rather than searching
the web afresh every time there is a query.

2.1 Focused Crawling
The sheer diversity and volume of content on the internet
coupled with the growing community of intelligent users
who use the web for serious search, requires specialized
search tools that delve deeply into a particular topical area.

For the above reasons, our system allows the crawler to
focus on a particular topical area or subject class (for eg.
Landscapes or Animals) to a certain extent using the text
associated with a given URL. We use a static set of
keywords to characterize a subject class. The relevance of
a URL is calculated by matching the text associated with it
with the keywords specified for the subject class and
determining its relevance index. The link denoted by the
URL is followed if and only if the relevance index is
greater than a predetermined threshold value. The process
of keyword extraction and relevance index calculation is
detailed in the sections below. Thus, we can easily change
the focus of the crawler by using different sets of
keywords corresponding to different subject classes.

2.1.1 Key term extraction

When the spider finds a URL it extracts the text associated
with it which includes –

• The URL itself

• The alternate text associated with it

• The hyperlink text (if any)

Key terms are extracted from this text by chopping the text
at non alpha characters. For instance consider the HTML
tag:

<A HREF="http://www.photonet.com/images-2/tn31.jpg”
ALT=”Temple in India”> Contains gold statue

The following key words can be extracted from it –
photonet, tn, Temple, in, India, Contains, gold, statue.

Common keywords like http, jpeg, www etc. are eliminated.

2.2.2 Relevance Index Calculation

Each of the keywords ke extracted above is matched against
each keyword k* of the keyword set after ignoring case. We
define the keyword match value of ke and k* as –

Keyword Match (ke, k*) = Number of characters in the same
position in both strings/ Max (Length(ke), Length(k*))

The total match value of a keyword is –

Total_Match (ke) = ∑ Keyword_Match(ke, k*)
 k*
The relevance index is then given by –
Relevance Index = ∑ Total Match (ke) / Number of
 ke extracted keywords

The URL is processed further only if its relevance index is
greater than 0.1. This threshold was determined after a lot of
experimentation. This approach though simple, seems to
work well. More detailed approaches to focused crawling
are illustrated in [2].

2.2 Crawler Implementation
The chief components of the crawler are illustrated in the
figure below. Starting with the seed URL(s), the crawler
takes one URL at a time from the URL buffer. It classifies
the URL into a HTML page, an image file or others using
its MIME type.
If it is an image URL, the image is downloaded, its content
information is extracted, and after manual object
identification by the administrator it is added to the
database.
If it is an HTML page, it is downloaded using the HTML
Scanner. This is basically a specialized input stream that
also looks for specific tags (containing URLs embedded in
them) like , etc. Each instance
of a Scanner has an HTML Observer associated with it. This
is a call back interface that is implemented by the Spider. It
defines one function for each specific tag. Once a tag is
encountered the corresponding function in the Spider is
invoked and the appropriate action is taken. In most cases it
is just to check the relevance of the URL found and add it to
a to do list. Finally, before adding this URL to the URL
Buffer, we check if it has already been processed. This is
done by maintaining a Hashtable of processed URLs – the
Done table. It has a fixed size and flushes out old entries
keeping only the most recently encountered URLs.

Figure 1: Basic components of the Crawler

3. The Image Retrieval Model
An image is basically described as a collection of objects
having certain spatial and topological relations amongst
them. The spatial and topological relations that may exist
between two objects of an image are described below.
These are automatically calculated by the system after the
user identifies the objects.

3.1 Spatial Relations
The directional relations used in our model are the strict
positional relations left, right, above and below. An object
A is said to be to the left of another object B if and only if
each pixel of A is to the left of each pixel of B. The same
applies for each of the other spatial relations. Two objects
may or may not have a spatial relation (if they overlap or
touch). Also, the same pair of objects may also satisfy two
spatial relations. For instance, object A may be to the left of
and above object B. (left, right) and (above, below) pairs of
relations are duals.

3.1 Topological Relations
Topological relations always exist between two objects
and exactly one relation may exist between any two
objects. It can be shown that in a 2-D planar region, a
binary topological relation, existing between two regions
(without holes), can be determined uniquely by analyzing
the intersections (or non-intersections) between their
interiors and boundaries. The framework for describing
the topological relation between two objects A and B is
the ordered set of these four intersections, called the 4-
Intersection Model [4]. It is represented as a 2x2 matrix
as shown below.

 R(A, B) =

The notation A° stands for the interior area of the region
A, while the notation δA stands for the boundary of the
region A. Thus eight different topological relations may
be defined between two regions as shown below:

It is easy to see from the above definitions that the
relations disjoint, meet, overlap and equal are symmetric,
while the (covered-by, covers) and (inside, contains) pairs
of relations are duals.

3.2 The Graph Model
Using the above definitions, we may describe an image as
a labeled graph with each image corresponding to an
object in the image. An edge between two nodes, say A
and B, is labeled by the positional (if any) and topological
relations that hold between the objects corresponding to A
and B. We also associate with an edge, the Euclidean
distance between the centroids of the two objects it
relates. Thus, the problem of finding image similarity is
reduced to one of graph matching.

3.3 Image Similarity Measure
With the logical representation of images thus defined, we
are now in a position to examine the problem of
associative retrieval of images from image databases. In
order to support such retrievals, it is necessary to define a
suitable similarity measure between the query image and
the target image stored in the database. The objects of the
query image may be assigned weights to specify their
relative importance. In image database literature, several
such similarity measures have been proposed for
associative retrieval of images [5]. In our model, based on
[6], we define the similarity measure (SIM) between two
images I1 (query image), and I2 (an image stored in the
database), as follows.
Here, the notations used are:
P = {left-of, right-of, above, below}, the set of positional
relations between the objects,
T = {disjoint, meet, equal, overlap, covered-by, covers,
inside, contains}, the set of topological relations between
the objects,
G (OI, EI) = the graph of an image I, where OI is the set of
nodes and EI is the set of edges.
An edge e Є EI between two objects A, B Є OI is
associated with the values of the positional Pe Є P, and
topological relations Te Є T that hold between the objects
A and B, and the Euclidean distance De between the
centroids of the objects A and B.
Given two images I1 and I2 with the associated graphs
G(O1, E1) and G(O2, E2), to find the similarity between
them, we first need to find a suitable mapping between the
objects in the images. For example, if both the images
have two objects, we may match any of the objects from
the first image to any object in the second image. Such an

Disjoint Equal Overlap Meet

Ø Ø
Ø ¬Ø

¬Ø Ø
 Ø ¬Ø

¬Ø ¬Ø
¬Ø ¬Ø

 Ø Ø
 Ø Ø

Contains Inside Covers Covered By

¬Ø ¬Ø
 Ø Ø

¬Ø Ø
¬Ø Ø

¬Ø ¬Ø
 Ø ¬Ø

¬Ø Ø
¬Ø ¬Ø

 A° ∩ B° A° ∩ δB
 δA ∩ B° δA ∩ δB

 Meet

association can be expressed in terms of a graph
homomorphism:

 Ψ: G (O1, E1) G(O2, E2)

The graph homomorphism ψ maps a node (object) A Є O1
to a node ψ(A) Є O2 and similarly maps an edge e1 Є E1 to
an edge ψ(e1) Є E2. Once a mapping is selected, we can
measure the similarity between I1 and I2. Such a similarity
measure is assumed to consist of following four
components:

3.4.1 Object Similarity
It determines the extent of similarity between the objects
A and ψ(A), for all A Є O1. Accordingly, it is,

Obj_Sim(O1, ψ(O1)) = ∑ wa χ(A, ψ(A)) / Σwa

where χ(A, B) is a similarity between two objects A and
B, which is based on the similarity in color of the two
objects, and wa is the weight of object A. The color
similarity is computed by comparing the average R, G and
B color values of the objects A and B.

3.4.2 Positional Similarity
This determines to what extent the positional relations
between objects in I1 match those between the
corresponding objects in ψ(I1). It is given by,

Positional_Simψ(E1, ψ(E1)) =
 ∑ e Є E1 ∑ s Є S equal(χs(A, B), χs(ψ(A), ψ(B)) / ∑ e Є E1 ∑s

Є S

where the edge e Є E1 is assumed to be between the
nodes(objects) A and B in O1 and χs(A, B) is the
positional relation between the objects A and B, while the
equal function is true only if its parameters are equal, that
is, the positional relation between A and B is the same
in I1 and ψ(I1).

3.4.3 Topological Similarity
It determines to what extent topological relations
between the objects in II match with those between the
corresponding the objects in ψ(II).

Topo_Simψ(El, ψ(E1)) =
 ∑ e Є E1 ∑ t Є Te equal(χt(A, B), χt(ψ(A), ψ(B)) / ∑ e Є El ∑t

ЄTe

where χt(A, B) is the topological relation between the
objects A and B.

3.4.4. Distance Similarity
It gives the similarity in distance between a pair of objects
in I1 and that between the corresponding objects in ψ(I1).

Dist_Simψ(E1, ψ(E1)) = ∑ e Є E1 χdist(e,ψ(e)) / ∑ e Є E1

where for a pair of edges e1 and e2 between the pair of

objects (A1, B1) and (A2, B2) respectively, χdist (e1, e2) =
e–d and d is the absolute value of the difference in
Euclidean distance between the centroids of A1, B1 and
A2, B2.

3.4.5 Final Similarity Measure
The four similarity measures defined above are combined
to find the similarity between the image I1 and its
homomorphic map ψ(I1) according to the following
expression.

SIMψ(I1,ψ(I1)) = α Obj_Simψ(O1, ψ(O1)) + β
Spatial_Simψ(E1, ψ(E1)) + γ Topo_Sim ψ(E1, ψ(E1)) + δ
Dist_Sim ψ(E1, ψ(E1))

where α + β + γ + δ = 1 whereas α, β, γ and δ are the
Object Factor, Spatial Factor, Topological Factor and
Distance Factor respectively.
Finally, the similarity between any pair of images I1 and I2
is defined with respect to the best mapping by:

SIM(I1, I2) = maxψ (SIMψ(I1,ψ(I1)))

The problem of associated retrieval of images has thus
been reduced to finding a best possible mapping between
the graph of the query image and that of the target images
in the database using the above functions.

4. The Image Database
The information extracted form the image including its
color histogram, size and file type (gif/jpeg) is stored
along with the identified objects and a thumbnail (130 x
130 pixels) in the image database. The image itself is not
stored, it is only downloaded for feature extraction. The
design of the database is basically object-oriented.
The database consists of the following tables –

• Images – Stores the image information including
color, URL, width, height and number of objects.

• ObjRelns – Stores the relations among two objects
ofan image and the Euclidean distance between their
centroids.

• Category – The object categories are organized in a
hierarchical tree-like structure. This table basically
stores each category and its immediate parent. For
e.g. Category Nature is the parent of Category Tree
and Category Sky. The user may dynamically add a
new category or delete an existing one during the
image loading phase.

• Obj < category > tables – for each of the object
categories. These tables store the objects belonging to
the particular category. The tables are dynamically
created/deleted as and when a new category

is added/ removed. The object attributes like parent
image, color and total number of pixels is stored
along with each object.

In order to make the retrieval process faster, indexes are
defined on the database.

5. Image Loading and Query
These are the two front ends of the system. The Image
Loader is just an interface to the crawler and is used for
populating the database while the Image Query system
forms the user interface of the search engine.

5.1 Image Loading
The crawler works offline and periodically scours the web
for URLs. As and when it finds an image URL it extracts
some features of the image automatically and then
presents it to an administrator for object identification.
The user identifies the objects by drawing contours on the
image and assigns categories to each of the identified
objects. The system then automatically computes the
spatial and topological relations among the identified
objects and adds all this information to the database.

5.2 Image Query
The system supports two query modes – query using a
hand sketch and query using a sample image. In the first
mode, the user draws the objects in appropriate colors on a
drawing board using a toolbar, keeping in mind the spatial
and topological relations he requires. Each object is also
assigned a category. The relative importance of different
objects may be specified by assigning integer weights to
them. In the second query mode the user identifies the
objects on a sample image file or URL instead of
sketching them manually. Figure 2 shows a sample query
using an image file. The user identifies three objects and
assigns them the categories – sunrise, lake and rock. Here
we are looking for objects having sunrise above a lake
containing a rock inside it. All objects in the image are
given equal weight. Also, all four similarity factors are
given equal importance.

5.2.1 Query Parameters
The user can specialize the search further by specifying
several query parameters including maximum height and
width of the result images, relative weights of the four
similarity factors namely object color matching, spatial
relations, topological relations and distance between
objects. Moreover, the spatial relations are broken up into
horizontal and vertical positional relations, for which
weights can be given separately. Finally, the number of
images that the user wishes to see as the result of the
query or the Result Size can also be changed.

Figure 2: A sample query using an image file.

5.2.2 Search and Retrieval
The images are first filtered based on the maximum height
and width constraints. Then, the image histograms are
matched. Next, the images in the database are matched
with the query image/sketch in accordance with the
weights assigned to the different similarity factors and the
final similarity measure is computed for each image.
These are then ranked by maximum match values and
Result Size image URLs and their thumbnails (which
were earlier stored in the database) are presented to the
user as the result set. The user may then click on any of
the result images for a quick download. The result
images for the query in Figure 2 are shown in Figure 3
below.

6. Results
In this section, we present the results of running some
sample queries. By changing the search parameters we can
alter the results. For instance, one of the query objects
may be given greater weight, or object matching may be
given greater importance than spatial and topological
matching. The following are the results of a query by
sketch containing two objects namely a Monument and the
Sky. 15% of the images in the database were retrieved (i.e.
had at least one of these two objects). The effect of
varying the query parameters is shown in Table 1 below.

The main bottleneck to scaling up the system is that it
requires an administrator to manually identify the objects.
Hence, the database can only be built up gradually. To test

Figure 3: Results of the query shown in Figure 2

the scalability, we automated this process by random
object selection and assignment to one of 45 categories.

We catalogued 10096 images. The storage requirement of
the image database (created using Microsoft SQL 2000)
including 4 KB thumbnails of each image, was found to
be 780 MB. The response time for a query containing
three objects was around 7.5 seconds.

Table 1: Effect of varying query parameters
Object
Weights

Similarity Factor
Weights

Search results

Both objects
have equal
weight

Both objects - 6%
Sky – 12%
Monument – 8%

Monument
has twice the
weight

Object Color
Matching has
more weight than
other factors

Both objects - 6%
Sky – 6%
Monument – 10%

7. Conclusions
We have presented an effective content based image
search engine that catalogues the plethora of images on
the web based on text, visual data and component objects
and relations between them. Any common user of the
internet looking for images containing specific objects
will find this system very useful.
In its current version, the system requires manual object
identification and labeling which cannot be fully
automated. This problem can be partially alleviated by
using image segmentation algorithms to automatically
divide the image into its main component objects which
can then be manipulated by the administrator. The
BLOBWORLD system [1], for instance uses automatic
segmentation to divide the image into regions or blobs
which are then matched. Another approach described in
[3], also attempts automatic categorization or object
recognition using template matching and EM based
learning.
Also, the text associated with the image may be used to
group images into hierarchical subject classes. That is, as
in text based engines like Google and Yahoo, we can

allow the user to focus his search by providing an
effective directory-based navigation.
Finally, we also plan to add texture and shape to the
content information about each image.

8. References
[1] Chad Carson, Megan Thomas, Serge Belongie,

Joseph M. Hellerstein, Jitendra Mallik, ”Blobworld:
A System for region-based image indexing and
retrieval” Visual Information Systems. 1999

[2] Soumen Chakrabarti, Martin Van Den Berg, Dom
Byron, “Focussed Crawling: A New Approach to
Topic Specific Web Resource Discovery”, WWW8
Conference,1999.

[3] P. Duygulu, K. Barnard, J.F.G. de Freitas and D. A.
Forsyth, “Object Recognition as Machine Translation
:Learning a lexicon for a fixed image vocabulary”,
ECCV ,2002.

[4] M. Egenhofer, J. Herring, “Categorizing Binary
Topological Relations between Regions, Lines and
Points in Geographic Databases”, Department of
Survey Engineering, Technical Report, University of
Maine, 1990.

[5] E. A. El-Kwae, M. R. El-Kwae, “A Robust
Framework for Content-Based Retrieval by Spatial
Similarity in Image Databases”, ACM Transactions
on Information Systems, Vol. 17, No. 2, April 1999.

[6] A. K. Majumdar, Indrajit Bhattacharya, A. K. Saha,
“An Object Oriented Fuzzy Data Model for Similarity
Detection in Image Databases” – to appear in IEEE
Transactions on Knowledge Engineering.

[7] J. R. Smith, S. F. Chang “An Image and Video Search
Engine for the World-Wide Web”, IS&T/SPIE
Proceedings, Storage & Retrieval for Image and
Video Databases V, February 1997.

[8] M. J. Swain, Charles Frankel, Vassilis Athitsos,
“WebSeer - An Image Search Engine for the World
Wide Web, IEEE Conference on Computer Vision
and Pattern Recognition, 1997.

	Back

