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Abstract: Shape from texture has received a great deal of
attention in the past few decades. This paper analyzes the
spectral variations of texture spatial frequencies as a
function of orientation and depth of a 3-D planar surface.
Based on this relationship we attempt to derive an
expression for the extraction of 3-D surface orientation
using texture features alone. Using experimentation on
simulated texture images, we illustrate the advantage of
using 1-D wavelets for this purpose.
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1. Introduction

In the field of computer vision and pattern recognition, the
problem of extrading 3-D surface orientation from a
monocular texture image has receved a grea ded of
attention [1-3, 6, 7, 10, 11, 14-16, 18, 19]. If the surface
exhibits a textured pettern, it is often easy for a human
being to extrad the structure information from the image.
But the problem is ill-posed for a machine to solve. This
paper presents analyticd expressions using separable 1-D
analysis of 2-D images for extradion of surfaceorientation
of atextured planar surface

In this paper we use a model of the viewing geometry
which is similar to that used by Nayar €et. a. [4, 12, 13] in
Curet database {www.cs.columbia.eduw/CAV E/curet}, but
different from the one used by Super and Bovik [18-19],
Ribeiro and Hancock [14] and Leung and Malik [11]. Dana
and Nayar [4, 12] however proposed this model of the
viewing geometry for measurements of surfacerefledance
of textured surfaces, based of different viewing angles and
illumination. A few others [8, 17] have proposed
visualization of surfaces using 3-D textures. The work by
Malik [11] used density, height and ocdusion to derive the
shape from textures. Bovik [18], and Hancock [14] in their
work have dtempted to extrad surface orientation using
spedra gradient, pedks and distortion. Most of the ealier
work [1, 2, 6, 7, 18, 19] involved an exhaustive numericd
seach. Ribeiro and Hancock [14] uses the eigenstructure of
an affine distortion matrix to extrad orientation. The most
recant work by Clerc end Mallat [3] uses Warplets (affine
transformation of the mother wavelets) to recover shape
using statisticd estimates. Texture isredized as a stochastic
process Deformation gadient is estimated uwsing the
‘texture gradient equation’ which models the ‘Warpogram'’
(variance of the wavelet coefficients) of the image.

We present a simpler algorithm and analysis based on 1-D
wavel ets to study the spedral variationsin atextured planar
surface & a function of its depth and orientation. The
advantage with our method will be the separable analysisin
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bath dimensions of the image to extrad the individual
components of the surfaceorientation parameters. This will
be evident in the next sedion, when we present the viewing
geometry and derive the analyticd expresgons. Due to
separable analysis, errors in computation of one of the
orientation anges will not effead the other, which is a
drawbadk in the method suggested in [14]. We then present
the nead and use of a multi-resolution filter (wavelet) for
spedra analysis of texture surfaces to extrad the surface
orientation.

2. Basic texture projective equations

Figure 1. shows the viewing geometry and coordinate
system used. Consider a surface éement S, containing a
simple sinusoidal texture. This smplicity is assumed to
derive the relationship between spedra feaures of the
texture pattern in the image space ad 3D surface
parameters (depth and surfaceorientation) of S.
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Figure 1. Viewing geometry and coordinate system.

Let N be the surfacenormal on S. This vedor is defined
using polar and azmuth angles of N w.r.t the world
coordinate system. The aimuth angle @, is the angle
between the vedor N and its projedion, V, on the
horizontal Zy-X plane. The polar angle, 0 (in the Zy-Xw
plane), is the ange between the vedor V and Z,, axis,
clock-wise looking along the Y-axis from the origin. This
model is smilar to that used in the CURET database [4,
12]. The view axisis aong the —Zy axis and F be the focd
length of the viewing system, assuming a pin-hole amera
configuration and perspedive geometry of the viewing
setup. The image plane (2-D) coordinate system is aligned
with the X\y-Y axis of the world-coordinate system.

Assume a simple sinusoidal texture pattern on a planar
surfacewith frequency f,. Let the surfaceS be & a distance
Zo, from the origin. Let the surfaceinclination be such that
either B or @is zero and the other be a non-zero vaue



0. The avantage of the viewing geometry can be seen
here. Locd spedral gradient or variations along the x-axis
(horizontal diredion) of the image plane vanish when
0 =0. Similarly, when @ = 0, the spedral variations of the
texture dong the y-axis (verticd diredion) of the image
planeiszero.

When only one of the components of the angles of the
surfaceorientation is non-zero (say, ¢), and the other zero,
the locd spedra variations will be only along one of the
principal axis (in this case, y-axis) of the image plane. Let
the frequency content of the sinusoidal texture on a planar
surface at a distance Z, from the origin and oriented
orthogona to the viewing diredion, as observed in the
image spacebe alocd spedral pek at f,. Let f; be assumed
to be known initially (this constraints will be relaxed later
on). Assume orthogonal projedion initially, without any
lossof generdlity. Perspedive projedion and effed of depth
will be onsidered and incorporated next. If the surfaceis
inclined such that, 6= 0 and ¢=q, then the observed

frequency peek will be, f,’ = f,sec(a). €))

This relation is illustrated in figure 2. Egn. (1) gives the
relation between the observed frequency of the texture
surface ad inclination of the surface w.r.t. viewing
diredion. Thus if 8 = B and @=a, then the observed

frequency will be,  f,” = f; sed). seda) 2
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Figure 2. (A) A simple sinusoid texture pattern on a planar
surface S, oriented orthogonal to the viewing direction (6 =
¢@=0). (B) The surface is oriented at ¢=0a and 8 = 0. The
projection of one period of the snusoid is, T' = T
cos(a) . Orthogonal  projection is assumed and the
sinusoidal texture pattern is shown as a dotted curve on the
planar surface S.

Let us now observe the effect of depth of the surface from
the viewer on the frequency peak. From figure 3(A), we can
write using perspective projection models, the following
equation:

H/Zy = hiF 3
where H is the time period of the sinusoid on the object
surface, and h (= 1/ f,) is the observed time period on the
image plane. If the surface is moved away from the viewer
by a distance AZ, then

H/Z' = hIF 4
where Z' = Z 4 + AZ, and h' is the observed time period of
the sinusoid under perspective projection. Combining
equations (3) and (4), we have:
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Z' (Z,+42) Zo(l+¥) 1+82
ZO ZO

The observed frequency, f,, now is:

Figure 3. A planar object surface, S, with a simple
sinusoidal texture pattern and oriented orthogonal to the
viewing direction is projected on the image plane. (A)
Surface is at a distance Z, from the camera and length of
the projected segment is h. (B) Surfaceis at adistance (Z, +
AZ) from the camera and length of the projected segment is
h'. Fisthefocal length of the camera.

From equations (2) and (6), we get the locally observed
frequency f,, of a planar surface at depth (Z, + AZ;), and
orientation® =, ¢=aq, as.

fo = 1, @ —)(se0a) o)
0 @)

= £, (2-)(se0a) )
where, Z; = Zy + AZ;.

Equation 7 is the basic eguation for the observed texture
frequency in the image plane, depending on the surface
parameters (depth (Zo + AZ) and orientation a, 3). The
plot in Figure 4, illustrates the nature of the frequency
variation, given in eguation (7), as a function of relative
depth (AZi/Zy) and one of the orientation angles (a or
), where the normalized observed frequency is (fqi/f;).

If any texture pattern can be considered as a superposition
of several sinusoids (band-limited), then all the individual
components of the signal will also be effected in a similar
manner as in equation (7). We will now derive equations
which estimate these parameters from the observed
frequency f,, on the image plane. Henceforth, the term



‘frequency’ will mean the observed locd spedra peék of
the texture aound a neighborhood d a paint in the image
plane.

3. Method to estimate orientation parameters
Observe Figure 5, which shows the perspedive geometry of
a planar surface S with orientation @=a and 8 = 0. Seled
two pdnts| and J, on the verticd axis on the image plane,
with coordinates (x;, yi) and (x;, y;) respedively. These may
be mnsidered to be the projedions on the image plane of
points P, and P, on S, with depth Z; and Z; respedively.
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Figure 4. Normalized olserved frequency (fq/f;), in the
image texture pattern, as a function of relative depth AZ;
and orientation angle a.

In equation(7), substituting @=a and 6 = 0 at a pointX ;, y;)
in the image plane, we have:

f,=f 1+ ﬁ)(semr) ®
ZO
and at apoint (x;, y;) in the image plane:

fy=f @+ ﬁ)(sem) ©)
ZO

Since the pdar ange 6 = 0, the spedra gradient along the

horizontal (x) axis of the image is zero. Hence we look for

the variations in spedral values along the verticd (y) axis

of the image plane. Thisroleisreversed if =0and 6 = (3.

From equations (8) and (9), we can obtain the differencein

the observed frequencies as:
. N7
AfO"J = foj - fOi = frp "k (20)
ZO
where, AZ” = ZJ' -Z; (: AZJ -AZi) and frp =f, (%CG).
Setti ng AZ; = -AZj = -AZ” 2 (ll)

We have, AZ” = ZJ' —-Zi= AZJ -AZ; = ZAZJ =-2AZ;

Let the fador (AZ;/Zo) be represented by K. K denotes the
relative difference in depth of two pdnts (P, and P)) on S,
which are guidistant from a reference point P, with depth
Zy A method to identify such a pair of points from the
image plane, will be discussed later.

From the constraint given in equation (11) , we can write
from equations (8) and (9):

f.+f . =2f (12

0i 0j rp

Using equations (10) and (12) we can write:
for = foi f,, — f

K = j — 2[ 0j Oi ]
frp ij + fOi
fd _1 fOJ
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Figure 5. Surface Sis oriented at an angle ¢=a. Two points
I and J, selected on the image plane correspond to points P,
and P, on the surface. The viewing axis intersects the
surface at Py, with depth Z,. The image plane is orthogonal
to the view direction, and isviewed in the figure asaline.

It is necessary to identify a pair of points on the image
plane which are projections of a pair of points, say P; and
P,, on S. Once thisis done, K may be computed from the
corresponding spectral values, fy; and fo,, at the projections
of P, and P, on the image plane.

Next we discuss, how K is used to obtain the surface
orientation. From Figure 5 select two appropriate points on
the vertical axis on the image plane, with coordinates (x;, vi)
and (x, y;) (algorithm for the selection of this pair of
appropriate points, is discussed later on in this section).
These may be considered to be the projections of points P,
and P, on the surface S.

From figure 5, using similarity of triangles we can write:
Ay, AY; —AZ; (tany) (14)
F AZ;
Z,-
2
where, tan(y) = yi/F, Ay; =y, -y and AY;; =Y =Y
From equation (14) we obtain (see Appendix):

Then the expression of the azmuthal angleis:
p=a=arctan{/C,)) ifC, is +ve

. . (15
=m-arctan(1C,) if C,is —ve

Similarly the polar angle 8 is:



@ =arctan(1/C,) ifC,is +ve
=m-actan(l/C,) if C,is —ve (16)

(2= Kh%; X |F

2KF .
For determining the value of K, we need to choose a
suitable pair of points on any one of the orthogonal axis of
the image plane (vertical axis for obtaining a, horizontal
axis for obtaining B). Let us consider the case of the
vertical axis (obtain the value a). We need to identify a
pair of points (X1, y1) and (Xy, Y2), with spectral frequencies
fo and fy,, which satisfy equation (12). The frequency at
coordinate (x1,0) isfr,. The steps are as follows:
a) Firgt, select apoint (x4, y1) (Y1 <> 0) and observe its

frequency fo;.
b) Observe the frequency f, at coordinates (x1,0).
c) Searchfory, (yx >0ify;is—ve,

else<0ify,is+ve)

and select y, = yi, where fo, =fo = (2 fp—for)
K is computed using equation (13), F is known from
camera calibration, or may be considered to be unity, in
which case the coordinates of the image plane must be
scaled w.r.t. the focal length of the camera (focal length
normalized image coordinates).

where, C, =

The advantage of the proposed method is the separable
analysis in x and y directions which gives the polar and
azimuth angles of the surface orientation respectively. The
depth information (upto a scale factor [9, 15], in the
absence of any additional information) can also retrieved
using the analytical expressions derived (see equations (8) -
(11) ). In the next section, we illustrate the advantage of
using wavelet transform in detecting spectral differences in
texture images with experimentation on simulated data.

4. Wavelet based texture analysis and results
Let us consider two 1-D signals obtained by scanning along
the horizontal lines of two texture images, of the same
texture surface with difference in one of the angles of
orientation. The images (see figure 6) are smulated as a
superimposition of two simple sinusoidal patterns. Typical
plots (signal | and signal 11) of the horizontal scan lines of
the pair of images in figure 6, are shown in figure 7. The
corresponding spectral plots are shown in figure 8. Most
spectral based methods [14, 18, 19] involves locating and
finding the difference in the local spectral peaks of the
signals. This process if often erroneous and difficult even
for simple signals as shown in figure 8 (note that there are
two separate and almost identical peaks in each plot).
Hence it is necessary to use a multi-rate and multi-
resolution filter bank to discriminate these features, rather
than the use of asimple Fourier based analysis.

We suggest the use of wavelet transform for this purpose.
The plot of the wavelet coefficients for the pair of signalsin
figure 7, are shown in figure 9 (detail coefficients at level 1,
i.e. D1, are negligible and are hence not illustrated).
Daubechies 6-tap dyadic filters [5] with 3 levels of
decomposition are used for this purpose. The wavelet
features exhibit a distinct difference in the response
noticeably at detail levels 2 and 3 (compare the responses
among the pairs of plotsin figures 8 and 9). The process of
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Figure 6. Two simulated texture images of the same surface
with adifference in the orientation angle (¢=0 in both, 8 = -
42 deg. for Image | and 40 deg. for Image 11).
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Figure 7. Two horizontal intensity profiles of the pair of

images shown in figure 6 respectively.
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intensity profiles shown in figure 7 respectively.
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Figure 10. Features of the signals at the corresponding levels derived from the wavelet coefficients (in figure 9).

feature extraction from the wavelet coefficients consists of
two steps. The first step of processing involves mean
subtraction, squaring and Gaussian smoothing. The second
step involves computing the variances of the post-processed
signals, for each level of decomposition (namely, A3, D3
and D2) separately. Plots of the variance of the post-
processed signals are illustrated in figure 10, which are
derived from the wavelet coefficients shown in figure 9.

A weighted (obtained empirically) sum of the differences of
the variances of the post-processed coefficients in the
corresponding bands of the wavelet decomposition is
related to the orientation angle and depth of the surface, as
illustrated in figure 4. A ratio of these weighted sums
computed at the pair of points P, and P,, gives the value of
fq whichis used to compute K asin equation (13).

Normalized observed frequencies, (fy/f,), are computed
using the proposed method for seven different orientations
of the texture surface, with the simulated texture pattern as
in figure 6. The actual and estimated values of the
normalized observed frequencies are shown in figure 11.
Discussions on accuracy and experimentation with real
world data are beyond the scope of this current paper.

5. Conclusion
This paper illustrates the advantage of using wavelet
transform to extract the orientation (in 3-D) of a textured

planar surface. It promises to be powerful than the spectral
based methods used in [1, 2, 6, 10, 11, 14, 16, 18, 19]. The
weighted sum of the differences of the variances of the
post-processed wavelet coefficients in the respective bands,
is used to obtain the orientation of the texture surface.
Expressions relating the orientation and depth of a texture
surface with the spectral contents of the image texture have
been derived. The method will be helpful in cases where the
spectral characteristics of atexture (f,) is known.

The proposed method has some drawbacks. It is assumed
that surface S intersects the X-Z plane of the world
coordinate system. This is necessary for detecting a pair of
points in the image plane which satisfy equations (11-12).
Errors in estimation are high when any of the angles of
orientation of the surface and image resolution are small.
Results are shown using superimposed sinusoidal signals to
illustrate the effectiveness and utility of the proposed
method.

Appendix
From eguation (14)
By; _ AY; -AZ; (tany) (A.2)
AZ.
F z, - i
2



= T T T T
+ X s s
T ey iy Sy S
= \'\ ' . - # - Actual value ’
= T —=i= - Estimated walue p
—
B 1al--"%----b----—-—- b-—--S---f--------F--------f------ 7
o H H : : : -
(e *y : : : : : o
= : : : : : z
= 1 3‘“1; ]
2 Y e 5 5 e
= "2% “““ P S i b A
= : N : : : /)?'/
g AN A R S
£ 5 . S A -
= ; N, S

1 = 3 s 53 s

Image Index -——->
Figure 11. Actual and estimated values of the normalised observed frequncy for a set of seven images of the simulated
texture pattern, with orientation angles (¢= 0 in al cases) 6= -49, -35, -21, 0, 19, 33 and 47 degrees respectively.
Estimation is based on the feature derived from detail level 2 (i.e. D2) coefficients only.

N7
Since —Y =tang, from(A.1), we have:
A

ij

Ay,  2(AZ;)(cota —tany)
F 2z,-07Z,
2Z. —NZ.)Ay.
Thus, cotaz( 0 1 )Y, +tany
2F(AZ;)
— (2_K)AY12 +tany
2KF
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