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Abstract

This paper addresses the problem of pattern classification
using neural networks. Applying neural network classifiers
for classifying a large volume of high dimensional data is
a difficult task as the training process is computationally
expensive. A parallel implementation of the known train-
ing paradigms offers a feasible solution to the problem. By
exploiting the massively parallel structure of the Levenberg-
Marquardt algorithm for non-linear optimization a training
algorithm for neural networks has been implemented on a
Linux cluster using LAM (Local Area Multi-computer) MPI
(Message Passing Interface). The implementation, besides
facilitating the main objective of maximising computational
speedup, is also portable and scalable. A standard bench-
mark for neural network training comprising a sufficiently
large volume of satellite image data has been utilized to
present and discuss the properties of the implementation.

1. Introduction

The goal of pattern classification is to assign input patterns
to one of a finite number of classes. Parametric Bayesian
classifiers, described in [4], are the most widely used as they
are simple to implement. On the other hand, the applied re-
search in this field has paid more attention to practical issues
of implementing classifiers for real world problems. Further
explorations in this direction have revealed that adaptive
non-parametric neural network classifiers are well suited for
real world problems. As explained in [10], neural network
classifiers allow selection of differing practical characteris-
tics and provide reduced error rates. This special feature
exhibited by neural network classifiers makes them suitable
for handling complex problems like analyzing and classify-
ing satellite image data.

Satellite image analysis involves tasks like pre-
processing, segmentation and edge detection. Moreover ac-
quiring such data involves recording the intensity values at
different spectral bands. Due to this and other such reasons,

satellite image data tends to be high dimensional. Results
reported by some researchers for satellite image analysis,
[16], show that neural network classifiers have performed
well for various tasks involved in the analysis process.

For applications like satellite image analysis, as the input
dimension grows large, handling such data for training neu-
ral networks becomes a time consuming task as shown in
[15]. The solution would be to go in for some kind of paral-
lel implementation of the neural network training process.
Implementations like [11, 17] are effective in terms of train-
ing speed, but are hardware specific, hence lack portability
to a variety of architectures. Given that there is wide ap-
plicability of neural networks for pattern classification [10],
there is a lot of need for portable implementations of paral-
lel neural network training algorithms.

Linux clusters are fast becoming popular platforms for
the development of parallel & portable programs. Estab-
lishing a Linux cluster involves connecting computers run-
ning Linux operating systems with an appropriate network
switch and then installing the requisite parallel libraries on
each of them. This method is basically a way of establishing
a loosely coupled parallel computing environment in which
different processes communicate with each other by means
of messages. Message passing is a paradigm widely used
on parallel machines since it can be efficiently and portably
implemented. This way of developing parallel programs has
caught the attention of many application developers as it of-
fers a cost effective solution.

This paper describes parallel implementation of a neu-
ral network training algorithm based on the Levenberg-
Marquardt (LM) algorithm for non-linear optimization. In
section 2 we describe the structure of the algorithm and
some important issues related to its implementation. Sec-
tion 3 includes a brief note on the Linux cluster that was
established and the LAM MPI parallel libraries used. Sec-
tion 4 and 5 present our results in terms of classification
accuracy and computational speedups attained through im-
plementation.



2. The Levenberg-Marquardt Algo-
rithm

Pattern Classification with neural classifiers basically in-
volves understanding the class boundaries by the classifier.
To attain this capability, the classifier has to undergo a
training phase. The same is achieved with the help of a
training algorithm.

Gradient-based training algorithms, like back-
propagation, are most commonly used by researchers.
They are not efficient due to the fact that the gradient
vanishes at the solution. Hessian-based algorithms used
as reported in [8], allow the network to learn more subtle
features of a complicated mapping. The training process
converges quickly as the solution is approached, because
the Hessian does not vanish at the solution.

To benefit from the advantages of Hessian based train-
ing, we focused on the Levenberg-Marquardt Algorithm
reported in [9, 12, 6]. The LM algorithm is basically
a Hessian-based algorithm for nonlinear least squares
optimization. For neural network training the objective
function is the error function of the type
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where ��� is the actual output at the output neuron � for the
input � and ��� is the desired output at the output neuron
� for the input �. � is the total number of training patterns
and �� represents the total number of neurons in the output
layer of the network. � represents the weights and biases of
the network.

The steps involved in training a neural network in batch
mode using the Levenberg-Marquardt algorithm are as fol-
lows:

1. Present all inputs to the network and compute the cor-
responding network outputs and errors. Compute the
mean square error over all inputs as in equation 1.

2. Compute the Jacobian matrix , ���� where � repre-
sents the weights and biases of the network.

3. Solve the Levenberg-Marquardt weight update equa-
tion to obtain ��. (Refer to equation 2)

4. Recompute the error using � � ��. If this new error
is smaller than that computed in step 1, then reduce
the training parameter 	 by 	�, let � � � � ��,
and go back to step 1. If the error is not reduced, then
increase 	 by 	� and go back to step 3. 	� and 	�

are predefined values set by the user. Typically 	� is
set to 10 and 	� is set to 0.1.

5. The algorithm is assumed to have converged when the
norm of the gradient is less than some predetermined

value, or when the error has been reduced to some error
goal.

In the above algorithm, the weight update vector �� is cal-
culated as

�� � ��� ������� � 	
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where � is a vector of size ��� calculated as follows
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�� ������� is referred to as the Hessian matrix. Let the
dimension of the input space be ��. Suppose there are ��
classes that the input data is to be classified into. Also let
the total number of patterns be �. If the popular Multi-Layer
Perceptron (MLP) is used to do the classification it will
necessarily comprise an �� dimensional input layer and an
�� dimensional output layer. If �� is the number of hidden
neurons that the single hidden layer of the MLP has, then
the total number of weights and biases in the MLP will be

 � ���� � ���� � �� � �� (3)

With the above notation the dimension of the Jacobian
will be ��� x  while that of the Hessian will be  x 
where  is as computed in equation 3.

Since the properties of the algorithm and its parallel im-
plementation are best discussed with reference to a suffi-
ciently high-dimensional, large volume data, the neural net-
work benchmark comprising satellite data [1] has been
used. The database consists of the multi-spectral values
of pixels in 3x3 neighborhoods in a satellite image and
the classification associated with the central pixel in each
neighborhood. The aim is to predict this classification given
the multi-spectral values. In the sample database, the class
of a pixel is coded as a number. There are a total of 36
numerical attributes in the range 0 to 255 and there are 6
decision classes. The training set consists of 4435 patterns
while the test set consists of 2000 patterns. Appropriately
mapping these values to the notation discussed above we
have � � 

��� �� � � and �� �  .

The best results in our experiments were obtained with
�� � �� i.e. 27 hidden layer neurons. Therefore, if the
Levenberg-Marquardt algorithm is employed for the neu-
ral network training, the dimension of the Jacobian will be
26610x1167 while that of the Hessian will be 1167x1167.



For practical problems (particularly comprising image data)
these dimensions will be even higher since the dimensions
for the Jacobian scale both with the input dimension (� �)
and the training data size (�). Needless to say the computa-
tion time also increases. Consequently, both for constrain-
ing space requirements as well as for adequate speedups
parallel distributed computing is not only desirable but es-
sential. The computation of the Jacobian lends itself to par-
allelization and this allows for practical high dimensional
large volume problems to be handled using the LM-based
training algorithm. In what follows we discuss one such
implementation on a 17 node LAM MPI-based Linux clus-
ter.

3. Linux Cluster Setup
A cluster of 17 personal computers working with the Linux
(Debian GNU/Linux 3.0, Woody binary) operating system
was established to carry out the implementation. Connectiv-
ity between the computers was achieved via a 3-Com switch
and the Ethernet protocol. As already mentioned Mes-
sage Passing Interface (MPI) is a paradigm that provides
the facility to develop parallel and portable algorithms. An
MPI program consists of autonomous processes, executing
their own code, in an MIMD style, as described in [13].
The codes executed by each process need not be identical.
The processes communicate via calls to MPI communica-
tion primitives. Typically, each process executes in its own
address space, although shared-memory implementations
of MPI are possible. LAM stands for Local Area Multi-
computer and is an implementation of the MPI standard. It
is a parallel processing environment and development sys-
tem, described in [2], for a network of independent com-
puters. It features the MPI programming standard for devel-
oping parallel programs. The LAM MPI parallel libraries
were installed on each computer in the cluster to implement
parallel constructs based on MPI.

One of these computers was designated as the master.
The master monitors the overall execution of the applica-
tion program. The rest of the computers were designated
as slave nodes. (Henceforth a slave node will simply be re-
ferred to as node.) Basically a setup consisting of a master-
slave environment with 16 slave nodes was established.

4. Parallelizing the LM Algorithm
As already discussed, the Jacobian and the Hessian matrix
computations are computationally expensive. Moreover,
even for moderately sized problems and moderately sized
neural network architectures, the size of the Jacobian can
become prohibitively large. Addressing this issue, the LM
algorithm is parallelized for neural network training by ap-
propriately distributing the computation and space require-
ments over the cluster. SPMD (Single Program and Multi-

ple Data) strategy was used in the parallelization process.
Steps involved in training a neural network in batch

mode using the parallelized LM algorithm are as follow:

1. Read the training data/patterns for which the neural
network classifier has to be designed.

2. Consider a neural network architecture (MLP) with � �

input layer neurons, �� hidden layer neurons and ��

output layer neurons, by making use of the details like
input dimension and the number of classes into which
the training data have to be classified.

3. If the number of nodes in the cluster under consid-
eration is �, divide the training data into � groups,
such that each group has a number of patterns equal
to � � ���.

4. Present all inputs to the network and compute the cor-
responding network outputs and errors. Compute the
mean square error over all the inputs as shown in the
equation 1.

5. For each node in the cluster, execute the following
steps

(a) Let����� be a matrix corresponding to � number
of the training patterns made available at node �
represented as
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where ���� � �������
�
��� represents the error value

at the output neuron � for the input pattern �.
Construct a vector �� of size ��� by taking the
elements of the matrix ����� in column major
order.

(b) Compute the row block of the Jacobian matrix
corresponding to the node � as
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and the same is represented as
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where  is as calculated in equation 3 and � ���
is the element at �th row and �th column of the
Jacobian matrix computed at node �.

(c) Then compute the matrix � � as follows

� � � �� ��� � � �

(d) Also compute the gradient of the error corre-
sponding to the node � as

�� � �� ��� ���

6. Construct the Hessian matrix � , by adding the cor-
responding components of the matrix elements com-
puted at the nodes in the cluster as
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7. Similarly construct the gradient as
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8. Solve the equation below to obtain the weight update
vector �� corresponding to the network weights � as

�� � �� � 	
 	���

9. Recompute the error using � � ��. If this new error
is smaller than that computed in step 4, then reduce 	
by 	�, let � � � � ��, and go back to step 4. If
the error is not reduced, then increase 	 by 	� and go
back to step 8. 	� and 	� are predefined values set by
the user. Typically 	� is set to 10 and 	� is set to 0.1.

10. The algorithm is assumed to have converged when the
norm of the gradient is less than some predetermined
value, or when the error has been reduced to less than
some predefined error.

The implementation program has been developed in the C
language using MPI programming constructs. The program
basically consists of two procedures named as ��������
and ������ that are intended to run on the master computer
and the node computers respectively. These two procedures
are called by the main program within the MPI environment
to complete the algorithm. Pseudo code indicative of the
algorithmic organization of the implementation, as shown
in Figure 1, is presented below.

mpi lm() //...main program on MPI for LM algorithm
MPI Initialize();
master() //...tasks to be done by the master

get network info();
initialize weights();
load training data();
calc error();
distribute data();
recv node Hessian();
update weights();

end
node() //...computation at each node

recv node data();
calc node Jacobian();
calc node Hessian();
send node Hessian();

end
MPI Finalize();

end

Read the training data
& the network details

Master

Distribute data to the nodes

...

...jacobian jacobian jacobian

hessian hessian hessian

Update Weights 

Nodes

repeat until
stopping criterian

is met

Figure 1: SPMD parallel strategy for LM algorithm

5. Performance Accuracy
As already mentioned in section 2, the satellite image
benchmark from the UCI Machine Learning Repository has
been used for discussing the cluster setup and the parallel
implementation. An multi layer perceptron consisting of
36 input neurons and 6 output neurons to handle the 36
dimensional, 6 class classification problem was considered.
The multi layer perceptron had a single hidden layer. The
standard sigmoid activation, defined as

���� �
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was used for all the neurons.
To begin with, a smaller number of neurons were

introduced in the hidden layer. The training set consists
of 4435 patterns. Since clusters of 4, 8, 16 nodes were
considered for presenting our results it would be convenient



to have the number of patterns in the training set as a
multiple of 16. The number of patterns belonging to class 6
in the training was larger as compared to the other classes.
Therefore the last 3 patterns in the training set belonging
to class 6 were dropped. As a result the only 4432 patterns
were used for training. When all 16 nodes of the cluster
were used to train the neural network with LM algorithm,
each node had a share of 277 training patterns. As a result
the dimension of the Jacobian matrix at each node was
1662x1167 only. As already discussed, if all the training
patterns were trained on one single node then the dimension
of the Jacobian matrix would have been 26592x1167 which
is significantly larger. After training, the performance of
the neural network on the prescribed test set, consisting
of 2000 patterns was observed. Gradually the number of
hidden neurons was increased. The performance accuracy
of the trained neural network on the test set for 20, 24
and 27 hidden nodes has been presented in Table 1. No
significant improvements in the performance accuracy
were observed on increasing the number of neurons in the
hidden layer beyond 27.

Num. of hidden Classification
layer neurons accuracy

20 78.65%
24 79.1%
27 82.6%

Table 1: Classification accuracy with varying number of
hidden layer neurons.

We have employed the threshold-margin criterion
advocated by Fahlman [5], to present our results. As the
criterion suggests, the actual output of a neuron in the
output layer, namely � was taken to match with that of the
desired output � if �� � �� � ��
. Therefore for neurons
with desired output as � � � the actual output was con-
sidered to match only if � � ��. Similarly for � � �, the
actual output was considered to match only if � � ��
. This
criterion is more stringent as compared to the simplistic
criterion of the highest output node indicating the class to
which the pattern belongs, employed by most researchers.
For example, in the MLP with 27 hidden neurons the
classification accuracy using the simplistic approach of
the highest neuron indicating the class membership of the
input pattern would lead to an accuracy of 86.05%. On
the test set this is significantly better than the accuracy
of 82.6% reported using the threshold-margin criterion.
The MLP with 27 hidden nodes converged in 20 iterations
with a mean squared error (MSE) of 0.02. Training was
terminated because the decrease in the MSE in successive
iterations after 20 iterations was not significant.

Many researchers have used the satellite data to
benchmark their algorithms. In [3], the authors have
reported the results of their implementation on satellite data
for different algorithms like SMIFE2, MMIP, MIFS, PCA
and LDA. Methods like PCA and LDA have been discussed
and tested on satellite data as shown in [14]. In Table 2, we
give a comparison of the classification accuracy obtained
with our Parallel implementation of Levenberg-Marquardt
training algorithm for Neural Network with that of the
other reported results on satellite data. We denote our
algorithm with the string PLMNN. Needless to say that the
Hessian information utilized by the Levenberg-Marquardt
algorithm for optimization plays a significant role in the
quality of the solution obtained.

Algorithm Num. of hidden Classification
name layer neurons accuracy

PLMNN 27 82.6%
SMIFE2 150 77.6%
MMIP 150 79.0%
MIFS 150 79.3%

IG 150 85.1%
GR 150 85.1%

PCA 150 78.9%
LDA 150 78.7%

Table 2: Comparison with other algorithms. The classifi-
cation accuracy of PLMNN will be 86.05% if the highest
neuron is considered for indicating class membership.

6. Speedup Measure
The next phase of our experimentation focused on measur-
ing the time speedup of our parallel implementation of the
training algorithm discussed in the previous section. As
discussed in the implementation, the training algorithm is
parallelized to compute Jacobian and Hessian matrices in
parallel at each node of the cluster. Different number of
nodes in the cluster were considered in different trials to
run the training algorithm and the turnaround times of those
trials for one complete iteration of the training process were
recorded. This is shown in Table 3.

Num. of Nodes Training Time
in Cluster (in seconds)

1 1270.296
4 319.019
8 169.566
16 100.993

Table 3: Training times with varying number of nodes



Speedup is a measure of the cluster setup that shows the
computational advantage gained by using several nodes in
the cluster over the amount of computation needed to run
the same program on a single processor. The speedup (��)
value can be calculated as below.

�� �
 �
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where  � is the execution time on single processor and  �

is the execution time on a cluster. The implementation per-
formed well on the cluster setup with considerably good
computational speedups, as is evident from the Table 4.

Num. of nodes Speedup
in Cluster

4 3.982
8 7.49
16 12.578

Table 4: Cluster speedups with varying number of nodes.

When the number of nodes in the cluster is small (4
nodes) the speedup achieved with the implementation is lin-
ear. This characteristic remained consistently till up to 8
nodes. As the number of nodes is increased to a large num-
ber (16 nodes), the speedup observed is sub-linear. This
is because as the number of nodes increases the amount of
computation done by each node reduces and at the same
time the communication overheads between the larger num-
ber of nodes increases. This observation is consistent with
Minsky’s conjecture discussed in [7].

The parallel implementation of the LM-algorithm was
made in such a way that there was no inter-process com-
munication needed between the nodes. However, the Hes-
sian matrix and the gradient were accumulated at the mas-
ter by receiving the corresponding values computed at the
nodes. This accumulation process introduced some amount
of communication between the master and the nodes. Hence
with the increase in the number of nodes in the cluster the
communication overhead also increased.

7. Conclusion
The proposed parallel neural network training algorithm
for classifying large volume of training data speeds up the
training process without the requirement for any special
hardware. The speed up capability of this technique is
evident from the implementation results. Since the data is
distributed over all the nodes of the cluster, this method
can also bring down the space requirements on a single
computer to manageable limits.
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