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Abstract

Automatic Fingerprint Identification Systems (AFIS) are usually
based on minutiae matching. Minutiae are the terminations and
bifurcations of the ridge lines in a fingerprint image. Detection of
ridge lines from a noisy gray-scale fingerprint image is a challeng-
ing task. In this work, a novel combinatorial approach is proposed
for classifying each pixel into one of the three classes (crest, val-
ley, and slope) based on its gray-scale topographical relationship
with its neighbors. A two-pass algorithm is developed for the pixel
classification scheme. The ridge lines are then detected as formed
by the thinned version of the crest pixels. The algorithm is ro-
bust, performs very well in the presence of noise, and has minimal
dependence on thresholding. It has been tested on several finger-
print images in the NIST Special Database 14 and NIST Special
Database 4, and is observed to produce good results both in terms
of quality of solutions and CPU time.

1. Introduction

In a fingerprint image, the spatial distribution of gray-level
intensity values can be understood from the ridge and val-
ley classification of pixels. A ridge (or valley) occurs when
there is a connected sequence of pixels having gray-tone in-
tensity values that are significantly higher (or lower) in the
sequence than those pixels in the neighborhood of the se-
quence [5]. In [5], ridges and valleys in a digital image were
found by looking for zero-crossings of the first directional
derivative in a suitable direction. Ridge like structures in a
digital image can also be extracted by convolving the image
with different derivatives of Gaussians. In [10], two ridge-
ness measuring differential operators were studied with re-
spect to their usability in CT/MRI matching of human brain
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scans. López et al. in [9] discusses the use of some discrete
multilocal measures for ridge finding.

Automatic fingerprint identification systems (AFIS) are
a class of biometric techniques widely used for personal
identification. They are usually based on minutiae matching
[3, 6, 7, 8]. Minutiae, or Galton’s characteristics [4] are lo-
cal discontinuities in terms of terminations and bifurcations
of the ridge lines that constitute a fingerprint pattern. These
two types of minutiae are considered by Federal Bureau of
Investigation for identification purposes [18]. AFIS based
on minutiae matching involve different stages:
1. fingerprint image acquisition,
2. preprocessing of the fingerprint image,
3. feature extraction (e.g. minutiae) from the image,
4. matching of fingerprint images for identification.

In [13], Mehtre described the steps for handling noise
in a fingerprint image, enhancement and restoration of the
image, and a parallel thinning procedure. A detailed discus-
sion on all the aspects of personal identification using fin-
gerprints as an important biometric technique can be found
in Jain et al. [7]. In their method, a segmentation algorithm
based on the local certainty level of the estimated orienta-
tion field of the fingerprint image is used to locate the re-
gion of interest. Ridges in these zones are then detected by
convolving the original image with two masks for increas-
ing the local maximum gray value along a direction normal
to the local ridge direction. In O’Gorman and Nickerson’s
[14] work, a ���	� spatial filter mask, designed based on user
inputs, is used with an appropriate orientation for labeling
the pixels as foreground (crest) or background. Thinning is
done on the binary image obtained before minutiae extrac-
tion. In [12], Mehtre and Chatterjee described a method of
segmenting a fingerprint image into ridge zones and back-
ground based on some statistics of the local orientations
of the ridges of the original image. A gray-scale variance
method is used in the image blocks having uniform gray-



level where the directional method of segmentation fails.
A one-pixel thick skeletonized binary image obtained from
ridge lines are used for minutiae extraction. Thinning is a
useful preprocessing step to transform a digital image to a
1-pixel wide skeletonized image so that the significant fea-
tures of the original image are retained and highlighted [16].
A recent and comprehensive work for extracting minutiae
from such a binary image is due to Farina et al. [3]. De-
riving a one-pixel thick binary image from the original gray
level image is a difficult task as noise and different levels
of contrast in the image may produce false minutiae or hide
real minutiae. Lately, Maio and Maltoni [11] have devel-
oped a gray level ridge line tracing algorithm for minutiae
extraction directly from the gray scale domain. The algo-
rithm treats a fingerprint image as a gray level zone of ridges
and background, whereas, such an image actually consists
of three regions - ridges, valleys, and background. Based
on the three regions of an image, a statistical analysis of the
gray level histogram is used to extract the global informa-
tion about the range of ridges, valleys and background [2].
A robust ridge detection procedure for minutiae extraction
should not miss any ridge. False ridges leading to spurs and
bridges [3] may be taken care of by a preprocessing stage
prior to minutiae extraction.

In this work, thinning of a gray-level fingerprint image
is viewed as a twofold process: a new combinatorial pixel
classification scheme for ridge extraction followed by a bi-
nary thinning of the ridges. Ridges or crests (henceforth
the term ridge or crest will be used interchangeably) are ex-
tracted from a fingerprint image by classifying each pixel
combinatorially. A two-pass algorithm is developed to clas-
sify a pixel into three classes, namely crest (CR), valley
(VA), or slope (SL). The proposed crest finding algorithm
is based on the use of a Look-Up-Table(LUT). The crest
pixels necessarily trace out the ridge lines in the image. Fi-
nally, any standard binary thinning algorithm can be applied
on the crest pixels as object and the rest as background to
extract the one-pixel thick ridge lines.

2. Theme

2.1 Directions and gradients

Let � be an � ��� gray-scale image with � gray lev-
els. Let ���	��
��� denote the intensity level of a pixel � .
Denote the boundary pixels � of � as �����	����� � , ������� � � ,
�!�"��� � �#��� , ������� � ����� , ���"� �#��� , ���	� ���$� , �!�%��� � �#��� , ���	����� ���$�'& re-
spectively with corresponding directions � N, S, NW, SE,
W, E, SW, NE & as shown in Figure ( . We fix the direc-
tion of a straight line walk from each point in � to an-
other point in � through � . It is obvious that ) such di-
rections are possible (see Figure ( ). The directions * , are
� �+
-,.�0/1�2�"�3
-45�#
6�"�879
-4;:<� 
6�79
�:<� 
6�4579
-�3:=��& , where
� �+
-,.� is a fixed direction of walk from � to , . We define
two types of elementary walks, >?� and >A@ . A movement
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Figure 1: Intensity profiles of crest and valley.

from any point in � to � is defined as >?� ; >A@ is defined as
a movement from � to any point in � . A walk along any of
the directions of * consists of a walk >B� followed by a walk
>A@ in the same direction (e.g., a walk along �"�C
�45� consists
of a walk >�� from �!�"��� � � to � followed by a walk >D@ from
� to ���%����� � ). Note that the sign of the gradient changes for
walks >E� and >A@ if there is a crest (valley) (See Figure ( ) in
a particular direction. The gradient along >?� is measured as
the difference between ���	��
��� and the intensity level at any
point on � , where > � starts. Similarly, the gradient along
> @ is the difference between the intensity level at any point
on � and �E�"��
��� e.g., along � �+
�,�GFH�.�C
-4I� , the gradient
for > � is measured as �KJL+M?FN�E�"��
���;OP�E�"��OQ(R
��� and for
>A@ , it is measured as �KJL�S FT�E�"�KUV(W
X�2�EOY�E�"��
��� . We
define first difference pairs along any direction � �+
�,�</Z*
as []\%^ � _a` Fb�c� JL�M � \%^ � _a` 
�� JL!S � \%^ � _a` & ; and d6���e5�.[]\%^ � _a` �fF
�'d6��2e5�.� JL M � \%^ � _a` � 
-d6���e5�"� JL S � \%^ � _a` ��& , where,

d6���e5�"� JL+g � \%^ � _�` �hF U<
 if � JL+g � \%^ � _a`jilk 

F Om
 if � JL g � \%^ � _a`jn k 

F k 
 if � JL g � \%^ � _a` F k 
 for opF1(W
�qsr

2.2 Combinatorial possibilities

For a point to be a crest �.tBum� along any particular direction
*v\%^ � _�` , there can be three cases:

(i) > � reaches a crest and > @ falls off signifying a change
in the sign of gradient, i.e., d6���e5�.[p\%^ � _ �KFN�wU<
6OB& ;

(ii) > � reaches a crest and > @ is on the crest with no
gradient change, i.e., d6��2e5�[x\%^ � _ �IFy�wU<
 k & ;

(iii) >�� is on the crest with no gradient change, and
>A@ falls off the crest, i.e., d6��2e5�[x\%^ � _ �IFN� k 
zOB& .



Similarly for a valley (VA), the three cases are:

(i) >E� reaches a valley and >D@ rises signifying a change
in the sign of gradient, i.e., d6��2e5�[p\%^ � _ �5Ff�ROm
 U=& ;

(ii) >�� reaches a valley and >D@ is on the valley with
no gradient change, i.e., d6���e5�.[x\ ^ � _ �5Fy�2Om
 k & ;

(iii) > � is on the valley with no gradient change, and > @
rises from the valley, i.e., d6�.��e5�.[p\%^ � _ �5Fy� k 
 U=& .

A pixel � that is on the slope of the intensity landscape is
called a slope (SL) point. Obviously, there would be no
change in the sign of gradients:
(i) d6��2e5�[]\%^ � _ �5Ff�wU<
 U=& , (ii) d6��2e5�[]\%^ � _ �IFN�2Om
zOB& .

See Figures ( and q for the possibilities along the direc-
tions. Note that, considering pairs from the set � U<
zOm
 k & ,
we have

� @ F�� cases out of which � (
�

cases of tBu ,
�

cases of ��� , and q cases of 4;� ) have been taken care of,
and for the last case, i.e., where d6�.��e5�.[p\%^ � _ ��F � k 
 k & , we
label � as undecidable �	�B� � .

Along any direction � �+
�,�j/]* , we can label � from any
one of the elements of set t F �wtBu<

���=
-4;�E

�B�9& , i.e.
t ^ � _ �"� �?F tBu������� 4;�����B� . If � is found to be a crest
along majority of the directions � �+
-,.�=/P* , then there is a
high probability of � to be a crest. Thus, we define the la-
bel of t �.� � as: t �"� �mF���\%^ � _�`	��� �wtE\%^ � _a` �.� ��& , where � is
a function as follows: ���It�\�� � �R` �.� � � tD\���� � ����` �"� � �
tD\ � � � ` �"� � �ItE\ � � � � � ` �"� �"! t �"� � . As an example,
we can take a majority vote among the different directions
to finally assign � to any element from the set t , i.e.,
t �"� �DF�#%$2o�\ ^ � _a`	��� �'tE\%^ � _a` �"� � &Rr The upper bound on the
number of combinatorial possibilities of the elements of t
along directions � �+
�,�G/ * is )�&xF q('�) , with ) possibili-
ties along each of the ) directions. Since, the definition of
t �"� � does not take into account the effect of directionality,
several combinations become identical (e.g., q tBu s along
any q directions are the same). To tighten the count, we
define o � 
c�	�</Qt ), as the number of directions having the
label ‘ � ’. Clearly, o � can take integral values in * k 
 )�+ . Fur-
ther, the total number of directions is bounded by ) . Thus,, �-��. o!�AF o/.10 Ulo32548Ulo3��6xUlo37 � F ) . Finding the
number of possible integral solutions of the above equation
is equivalent to finding the coefficient of o3& in the generat-
ing function [15] �	o98 U o � UPo @ UPo9:KU o;&w�<&

= coefficient of o & in � (AO8o+� � & � (AO8o9=c� & F � 'sr
Fact 1 The number of combinatorial possibilities, thus de-
termined, depends on the cardinality of the set * ( � �+
�,�m/
* ) of directions and not on the set � of boundary pixels.
Generalizing, if e directions are chosen and along each
direction the number of possibilities is ) , then the num-
ber of combinatorial possibilities is the coefficient of o1> in
� (�OGo�� � &R� (�O<o9> ��� �?&KFY�"eAU3(c�z�	eDU]qR�#�"eAU � �@�A) . Thus, the
size of the Look-Up-Table (LUT) is �"ejUp(c�z�	ejUvqW�#�"ejU � �B�A)
FDC �"eE:c� . In our case, the LUT will therefore, have

� ' rows
(see Table ( ). F

3. Classification of a pixel

3.1 Classification along a direction

The relative gray-scale topographical configuration of � in
its locality can be viewed from four possible directions as
shown in Figure ( . To calculate the first difference pairs
along the walks >�� and >A@ defined in Section 2, we take
directional averages along the directions � �+
-,.�j/ * for cal-
culating �KJL�M and �IJL�S . The calculation of �jJL�M and �KJL!S at
� using directional averages for a ' �G' neighborhood along
a direction �"� 79
�4;:=� is as follows:
�IJL�M � \��H� � ��� ` F
�E�"�-
X���$Ol�.�E�	��O (R
� O ('��U ���	� OPqs
X�mOPqW���B� q 

�IJL�S � \��H� � ��� ` F
�"���	�+UY(W
X��UY(c��UZ�E�"�+U qs
�?UZqR� �@� q�O ���	��
���#r
Consider a neighborhood of � as defined above and using
directional averages, the first difference pairs are:

[]\�� � �2` F �-$�
@Iz� :
$GFY�E�"�-
X���$Ol�.�E�	��OQ(W
����UZ�E�"��O9q 
��� �@� q ,
I F1�.�E�	��U (R
����UZ�E�	��UZq 
��� �@� q?O9�E�"�-
X��� ,

[]\��H� � �(��` F �-J 
BK�� :
JDF ���	��
���$OQ�"�E�"��Ol(W
X�BOl(c� UZ�E�"��O qs
�mO9qR� �B�Wq ,
K<F �"���	�+UY(W
X��UY(c��UZ�E�"�+U qs
�?UZqR� �@� q�O ���	��
��� ,

[]\L� � � ` F1�NM2
@��� :
M?FY�E�"�-
X���$Ol�.�E�	��
X�mOl(c��UZ�E�	��
X�mOPqW� �@� q ,
�xF �"���	��
�?U ('��U ���	��
�?UZqR� �@� q?O9�E�	��
X�2� ,

[]\ � � � � ��` F � �+
@O�� :
�GF��E�	��
X�2�$OQ�"���	��U (R
�mOl(c��UZ�E�"�+U qs
X�mOPqW� �@� q ,
O]F1�"�E�"� Ol(W
X��UY(c� UZ�E�"��O9q 
�?UZqR� �B�Wq?O ���	��
��� .

Directional averages are considered for noise immunity
which is a desirable property [9] of a ridge finding method.
Each of the eight parameters $�
@I'
@Jw
zr6rzr 
@O , can either be
positive, or negative, or zero. Now, based on the definition
of walks >�� and >A@ in the previous section, we consider the
pairwise property of the eight parameters (i.e., a and b, c
and d, e and f, g and h) and, therefore, each pair of parame-
ters along the direction of the walks can have � possibilities
as shown in Figure q .

The fourth column (‘Gray Levels’), in Figure q ex-
hibits various pictorial representations of the three points
� 
��mJ.
��mJ J , where � J and �mJ J are the adjacent pixels of � in
the concerned pair of parameters. The values of these four
pairs indicate the topographical configuration of � in its lo-
cality. As shown in the rightmost column of Figure q , the
d6�.��e (as defined in Section 2.1) of each of the four pairs of
parameters ( �N$�
@I#� , �-Jw
@K2� , �-M2

��� , �	��

O!� ) is used to assign a
class out of the four classes tBu , ��� , 45� and �m� , to the
respective pixel � . Thus, each pixel � is assigned to any
one of the four preliminary classes along a single direction.
After the preliminary classification pass, � can be either
strongly classified or weakly classified as discussed next.



Figure 2: Relative position of � w.r.t. ��� and ��� ���

3.2 Preliminary classification of a pixel

For preliminary classification of a pixel � , we implement
the function t �.� �vF ��\%^ � _a`	��� �'tE\%^ � _a` �"� ��& as a Look-Up-
Table with a bias towards crest as shown in Table ( . This
bias stems from the need of fingerprint analysis as the minu-
tiae are defined as the discontinuities on the ridge lines. The
cases that cannot be topographically classified are processed
further. We define four intermediate classes t� , tm4 , �=4
and ��� ; they include the unresolvable pixels requiring fur-
ther processing. Thus, a pixel � is classified to one of the
classes among tBu , �� , 4;� , t� (can be crest or valley),
tm4 (crest or slope), � 4 (valley or slope), ��� (crest, val-
ley or slope) depending on their topographical configura-
tion. The exhaustive

� ' cases (as deduced in Section 2.2)
are shown in Table ( . It may be observed that even if along
any direction at least one tBu is present, it is labeled as
either t� , tm4 or ��� , thus keeping the option of being
classified as tBu at the next stage of classification.

3.3 Final classification

In Table ( , the criteria of strong classification is not sat-
isfied by the ambiguous classes t� , �=4 , tm4 and ��� .
These pixels are finally classified in the second pass by in-
specting the presence of other pixels that are classified un-
ambiguously in its neighborhood. This method is similar
to the multilocal approach suggested in [9]. For a pixel �
belonging to t� , tm4 , �<4 or ��� , we define a neighbor-
hood � �.� � whose size is determined by certain criteria as

Table 1: Classification of a pixel
No. of No. of classes in preliminary set Preliminary
cases CR VA SL UN Class

1 0 0 0 4 XX
2 0 0 1 3 XX
3 0 0 2 2 XX
4 0 0 3 1 SL
5 0 0 4 0 SL
6 0 1 0 3 XX
7 0 1 1 2 XX
8 0 1 2 1 XX
9 0 1 3 0 VS
10 0 2 0 2 VA
11 0 2 1 1 VA
12 0 2 2 0 VS
13 0 3 0 1 VA
14 0 3 1 0 VA
15 0 4 0 0 VA
16 1 0 0 3 XX
17 1 0 1 2 XX
18 1 0 2 1 CS
19 1 0 3 0 CS
20 1 1 0 2 CV
21 1 1 1 1 CV
22 1 1 2 0 CV
23 1 2 0 1 CV
24 1 2 1 0 CV
25 1 3 0 0 VA
26 2 0 0 2 CR
27 2 0 1 1 CR
28 2 0 2 0 CR
29 2 1 0 1 CR
30 2 1 1 0 CR
31 2 2 0 0 CV
32 3 0 0 1 CR
33 3 0 1 0 CR
34 3 1 0 0 CR
35 4 0 0 0 CR

discussed in Section 3.3.1. Let in � �.� � , the average gray
value of the pixels belonging to tBu be ��	 M��.tBum� . Simi-
larly, let ��	 M��N� ��� and �
	�M��4;�K� be the average gray value
of pixels classified as valley and slope respectively. For
any pixel � / t� , we classify it to either crest or val-
ley based on the closeness of the gray value ���	��
��� of �
to ��	 M2�tBum� or �
	�M��N����� , i.e., if � ���	��
���KOD��	 M��.tBum����
� ���	��
���!O �
	�M�� ������� , then assign � to tBu , else assign it to
��� . Similarly, assign tm4 to tBu or 4;� ; and �<4 to ��� or
4;� . The pixel � /���� is assigned to either tBu , ��� or
4;� for which its gray-value difference is minimum.

3.3.1 Determination of � �.� �

P

λ

w

w

R(P)

M

lN

Figure 3: Determination of � �.� � .

Let � �"� � be a square region of size > �C> centered at
� . Let the number of ridges be approximately � in a typical
fingerprint. The size of the fingerprint image is � �=� . Let
, be the width of the ridges in terms of pixels. Thus, the im-
age size can be estimated in terms of � , , and the inter-ridge



distance � . Therefore, the approximate inter-ridge distance
� can be estimated roughly as (see Figure

�
)

���GU ,� � F
�

� @ U � @

or � F
� � @ U � @

� O9,

The size of � �.� � should be such that it includes at least
some of the crest lines. To include � crest lines, > should
therefore, be equal to �����!�@� � q .

4 Evaluation and results

After the final classification, the image reduces to 2/3-pixel
thick crest lines, valley lines, and the rest consisting of slope
regions, (see Figure ) (b)). The valley and slope pixels are
treated as background, and the crest pixels are treated as
foreground object. To obtain one-pixel thick crest lines, the
resulting binary image can now be thinned by any stan-
dard thinning technique reported in literature [16]. Re-
sults shown in Figures ) - ) were obtained by running our
algorithm on some image samples from the NIST Special
Database 14 [1] and NIST Special Database 4 [17]. The
samples are of size )�� k � ' (cq with ' kRk dpi resolution and
q�'�) gray levels. Figure ) shows the original image, classi-
fied ternary image and the thinned ridge lines for one sam-
ple. Figures ' (a) and ) (a) show the original image, and Fig-
ures ' (b) and ) (b) show the thinned ridge line superimposed
on the original image for two samples from the NIST (z)
and NIST ) databases. The proposed algorithm was imple-
mented in C on a Sun Ultra 5 10, Sparc, q ��� ���
	 , the OS
is SunOS Release 5.7 Generic. The total CPU time for the
entire classification was found to be on an average q r ' secs.

5 Conclusions and discussions

In this work, we have enumerated the exhaustive combina-
torial possibilities that a particular pixel can have in a digital
image landscape in terms of the first difference pairs. Based
on the possibilities, the pixels are classified into three differ-
ent classes using a two-pass algorithm. The combinatorial
possibilities stored as a LUT provide us an efficient tool for
VLSI implementation of the first pass of the classification
scheme on-chip. The construction of the LUT is based on
some empirical observations, and relevant experiments have
been performed on the NIST14 and NIST4 databases. The
proposed method provides a very convenient technique for
extracting ridge lines from a fingerprint image. A better de-
sign of the LUT including magnitudes in addition to signs
needs further investigation. The generating function has to
be suitably tailored for calculating the combinatorial possi-
bilities accordingly.
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(a) Original image (b) Ternary image (c) Binary image

Figure 4: A fingerprint image sample from NIST 14 sdb showing the stages of classification.

(a) (b)

Figure 5: A fingerprint image sample from NIST 14 sdb.

(a) (b)

Figure 6: A fingerprint image sample from NIST 4 sdb.
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