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Abstract

Several decomposition formats exist for image data: prin-
cipal components, independent components, non-negative
components, etc. These decompositions have been applied
mainly to natural image data. In this paper, we study the
above decompositions for hand-written devanagari charac-
ter data. We propose a new measure – spatial entropy – for
characterizing datasets. Datasets with high spatial entropy
are likely to give rise to local features.

1. Introduction

There is a resurgence of interest in techniques which extract
“interesting” information from large databases containing
images and video. Since the databases are typically un-
structured, it is necessary to use unsupervised learning tech-
niques. In particular, unsupervised feature extraction and
classification are called for.

Several unsupervised feature extraction techniques exist:
principal components, independent components, etc. Most
of these techniques have been applied on natural images and
the resulting features are shown to be interesting. For exam-
ple,eigenfaces represent prototypical faces,edges are inde-
pendent components, etc. Most of the 2D-datasets on which
these techniques are applied are reasonably homogeneous
like face datasets. In this paper we apply these techniques
to synthetic data: handwritten devanagari characters. Indian
language orthography is interesting: there is certain amount
of compositionality. Strokes can be composed resulting in
complex characters. For example, from the base character
k, we can derive characterskA , Ek , kF, etc. We can de-
compose any character to the basic strokes it contains. Our
goal is to identify decompositions which correspond to this
intuition.

This paper is organized as follows. Section 2 describes
the decompositions used in this paper. Section 3 describes
the results of experiments. Section 4 concludes the paper.

Figure 1: Sample characters. The top row contains scanned
inverted-binary64 � 64 examples and the bottom contains
the corresponding Gaussian-smoothed gray scale versions.

2. Matrix decompositions
Many datasets can be represented as matrices. Consider a
collection of images having the same size. This can be rep-
resented as a matrix: the rows (or columns) represent each
image. There are as many rows (or columns) as the num-
ber of images. This matrix can be subjected to several ma-
trix decompositions. The results of the decompositions are
then interpreted in terms of the problem domain. The most
popular decomposition is the eigen decomposition which is
discussed below.

2.1 Eigen decomposition

The covariance matrix of the data matrix is subjected to
eigen value decomposition. Letx1, x2, � � �, xn be the data
vectors. The covariance matrix,C, is defined as

C =
1

n

X
(xi � �)(xi � �)

T

where� = (1=n)
P
xi is the mean value of the vectors. We

now look for bases which diagonalizeC (or decorrelate the
vectorsx1, x2, � � �, xn). This is given by

C = UT�U



Figure 2: Eigen components ofk-family andg-family

Figure 3: Singular components ofk-family andg-family

The columns ofU correspond to the eigenvectors ofC and
the diagonal entries of� correspond to the eigen values.
The eigenvectors are orthonormal. The eigenvectors are or-
dered according to their importance - as indicated by the
associated eigenvalues.

Eigen decomposition has been applied to face im-
ages [8]. The eigenfaces (eigen vectors of the covariance
matrix of face images) correspond to prototypical faces.

2.2 Singular value decomposition

While eigen decomposition works on the covariance matrix,
SVD work with the data matrix itself. Them�n data matrix
X is decomposed as

X = USV T

whereU ism�m, V isn�n, andS ism�n. The diagonal
entries ofS are known as singular values. (While eigen de-
composition is defined only for square matrices, SVD is de-
fined for rectangular matrices too. SVD is a generalization
of eigen decomposition.) The columns ofU corresponding
to the singular values form a basis for the column space of
X and those ofV form the basis for the row space ofX .
If the input images form the rows ofX , then the columns
of V form a basis of that space. These basis vectors can
also be ordered according to their “importance” as given by
the singular values. Singular value decompositions are very
popular in document analysis [1].

2.3 Independent Component Analysis

Independent Component Analysis (ICA) is a generalization
of stochastic interpretation of matrix diagonalization. Di-
agonalization, when applied to stochastic vectors, produces
mutually uncorrelated basis. ICA produces astatistically
independent basis. Thus the independent components of a
matrixX can be thought of a collection of statistically in-
dependent sources for the rows (or columns) ofX [5]. The
decomposition reveals the sources as well as mixing coeffi-
cients. Them� n matrixX is decomposed as

X =WS +N

whereS is ther � n source signal matrix,W is them � r
mixing matrix, andN is the matrix of noise signals. Here
r is the number of independent sources. The above decom-
position can be performed for any number of independent
components and the sizes ofW andS vary accordingly. We
use the Fast ICA algorithm for performing the decomposi-
tion [2].

2.4 Non-negative Matrix Factorization

All the above decompositions have a problem of interpre-
tation. Usually the data matrix has only positive values.



But the components extracted can have negative entries. It
is difficult to interpret negative entries. In particular, we
cannot interpret them asparts of objects like documents.
Non-negative matrix factorization (NMF) [3] [4] attempts
a factorization in which the components have non-negative
entries. The NMF ofX is given by

X =WH

where the factorsW andH contain only non-negative en-
tries. The interpretation in [3] for the above decomposition
is as follows: The columns of them � n matrixX are the
signals, the columns of them � r matrixW are the basis
signals, and ther�n matrixH is the mixing matrix. (Here
r is the number of parts or non-negative components.) We
can use the columns ofW as the new basis. NMF has been
applied on face datasets and it has been shown that they
learn parts of faces [3].

2.5 Local NMF

Though it is claimed that NMF produces localized parts of
faces in [3], in the examples shown in [6], they produce
holistic representations. It is desirable to have decomposi-
tions which are guaranteed to produce more local represen-
tations. Hence [6] proposes a constrained NMF which is
called LNMF. The constraints on the basis vectors are

1. The basis vectors should have as many non-zero en-
tries as possible and orthogonal.

2. The components capture as much information as pos-
sible about the input vectors.

LNMF has been shown to produce localized representations
for face datasets. We show that for certain datasets LNMF
also produces global features (section 3.3). We resolve the
paradox by proposing a measure - spatial entropy – which
characterizes which datasets are likely to produce local rep-
resentations (section 4).

3. Results
We first created a database containing handwritten devana-
gari characters. The database contained the characters from
k , g , c , j , V , X , t , d , p , b , y , r , l ,
andv families. k-family, for example, consists of the fol-
lowing characters:k , kA , Ek , kF , k� , andk� . Samples
were created from 28 persons. Hence the database has 2352
characters. The characters are available as64� 64 bitmaps.
The characters were inverted (white-on-black from black-
on-white) before processing.

We also created a derived dataset by smoothing images
using a 2D Gaussian mask. Some sample characters from
the database are shown in figure 1.

Figure 4: Independent components ofk-family and g-
family

Figure 5: Non-negative factors ofk-family andg-family



Figure 6: LNMF ofk-family andg-family

3.1 k -g family decompositions

The above five decompositions were performed onk and
g-families. 32-components were extracted in all cases. The
results are displayed based on the following notions.

1. As mentioned before, some decompositions produce
components containing negative entries. For visualiza-
tion, these components were transformed to the pixel
value range (0-255) by subtracting the minimum value
in the component and then dividing by the range.

2. ED, SVD, and ICA produce components which can be
ordered according to their importance. For NMF, we
use the cumulative contribution of components to rank
them. The contributions can be obtained from theH
matrix.

The resulting components are shown in figures 2 to 6. Fig-
ures 2 and 3 confirm the well-known feature of eigen and
singular value decompositions: they produce global repre-
sentation of the prototypes. For example, it is possible to
identify k andg in the figures. ICA representations (fig-
ure 4) can not be readily interpreted in our case. The seem
to high light end points and intersections. NMF basis func-
tions (figure 5) are holistic. They correspond to input char-
acters with some noise. LMNF basis functions (figure 6)
are the closest to our intuitive idea of strokes. But there is
an absence of curves: straight line features are emphasized.

Figure 7: Non-negative factors of smoothedk-family and
g-family

3.2 Smoothing

To extract common features in images, similar regions
(like similar strokes) should spatially overlap across images.
Since the scanned images have very thin lines, such overlap
is unlikely across images. If the images are smoothed, such
overlaps are more likely. Hence we subjected the smoothed
images to the above decompositions. There was no quali-
tative difference in the behavior of ED, SVD, and ICA in
these cases. The results for NMF and LNMF are shown in
figures 7 and 8. It can be seen that NMF is able to extract
straight lines as well as curves to certain extent. In contrast,
LNMF features are more localized.

3.3 EV-jF features

In the above experiments, there is a paucity of curves in ex-
tracted features. So we decided to extract features only for
the two characters:EV andjF. These two characters have
lot of curved strokes. Eight basis vectors were extracted
for NMF and LNMF. (Other decompositions were not per-
formed.) The results are shown in figure 9. It can be seen
that LNMF extracts stroke-like features only for smoothed
images. For other images, the features are holistic.



Figure 8: LNMF of smoothedk-family andg-family

4. Discussion

We have performed several linear decompositions on de-
vanagari characters. NMF and LNMF are better at pro-
ducing part-like decompositions. The behavior of these
algorithms depends heavily on the nature of the dataset.
Smoothed datasets are more likely to produce part-like fea-
tures. It will be useful if we can characterize a dataset’s
potential for producing local representations –before sub-
jecting it to decompositions.

We now present a quantitative measure – spatial entropy
– which characterizes the datasets which are likely to pro-
duce local part-like representation. We define spatial en-
tropy as follows. Consider a dataset which is represented
as a matrix with the rows corresponding to images. The
columns correspond to pixels. We can calculate the proba-
bility mass function for each pixel value and hence the en-
tropy for each pixel. We define the spatial entropy as the
sum of pixel entropies. If the spatial entropy of the dataset
is small, the dataset is likely to produce global, holistic fea-
tures. If the spatial entropy is large, then the dataset is likely
to produce local, part-like features.

To test the effectiveness of this measure, we randomly
selected varying number of images from the database and
calculated the spatial entropy. The number of images and
the corresponding spatial entropies are shown in figure 10.
It can be seen that the spatial entropy increases with the
number of images. (The entropy calculated without con-

(a) Scanned images

(b) Smoothed images

Figure 9: Decompositions ofEV andjF. Eight features were
extracted in each decomposition. For (a), the scanned im-
ages are used. The top two rows correspond to NMF and
the next two rows correspond to LNMF. For (b), smoothed
images are used. Here also, the top two rows correspond to
NMF and the next two rows correspond to LNMF.
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Figure 10: Spatial entropy vs. data set size. The im-
ages were randomly chosen. Spatial entropy increases with
dataset size.

sidering the spatial information does not increase with the
number of images.) Datasets with low entropy produce
global representations and datasets with high entropy pro-
duce global representations.

We also calculated the spatial entropy of smoothed
datasets. In this case, the characters used were from the
k andp family. Thesame set of characters were subjected
three levels of smoothing. The spatial entropy values for the
resulting datasets were: 3923, 6883 and 10038. Here also,
higher spatial entropy resulted in localized representations
(data not shown here).

5 Conclusions

In this paper, we studied the decompositions of characters
by various techniques. NMF and LNMF produce part-like
representations when the datasets have “high” spatial en-
tropy. The spatial entropy thresholds above which local
representations emerge has to be calculated. It is likely that
this threshold is higher for NMF. Also, calculation of this
threshold for different datasets (faces, logos, etc.) is will be
an interesting extension of the work reported here.

The decompositions considered here are linear. It will
also be interesting to extend the decompositions to non-
linear transforms [7].
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(a) Highly holistic representations are formed when the
dataset has small spatial entropy.
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(b) Part like representations emerge when the spatial en-
tropy of the dataset is large.

Figure 11: NMF decompositions of randomly chosen char-
acter data. (a) Size of dataset = 30 (b) Size of dataset =
336.
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