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CHAPTER 7                                                      
 

 

REFLECTOR ANTENNAS 
 

 

                            

7.1 INTRODUCTION 
 

The radiation pattern of a radiating antenna element is modified using reflectors. A 

simple example is that the backward radiation from an antenna may be eliminated with a 

large metallic plane sheet reflector. So, the desired characteristics may be produced by 

means of a large, suitably shaped, and illuminated reflector surface. The characteristics of 

antennas with sheet reflectors or their equivalent are considered in this chapter. 

 

Some reflectors are illustrated in Figure 7.1. The arrangement in Figure 7.1a has a large, 

flat sheet reflector near a linear dipole antenna to reduce the backward radiation. With 

small spacing between the antenna and sheet this arrangement also yields an increase in 

substantial gain in the forward radiation. The desirable properties of the sheet reflector 

may be largely preserved with the reflector reduced in size as long as its size is greater 

than that of the antenna. 

                     

With two flat sheets intersecting at an angle α (<180o ) as in Figure 7.1b, a sharper 

radiation pattern than from a flat sheet reflector (α =180o ) can be obtained. This 

arrangement, called corner reflector antenna, is most practical where apertures of 1 or 2λ 
are of convenient size. A corner reflector without an exciting antenna can be used as a 

passive reflector or target for radar waves. In this application the aperture may be many 

wavelengths, and the corner angle is always90o . Reflectors with this angle have the 

property that an incidence wave is reflected back toward its source, the corner acting as a 

retroreflector. 

 

When it is feasible to build antennas with apertures of many wavelengths, parabolic 

reflectors can be used to provide highly directional antennas. A parabolic reflector 

antenna is shown in Figure 7.1c. The parabola reflects the waves originating from a 

source at the focus into a parallel beam, the parabola transforming the curved wave front 

from the feed antenna at the focus into a plane wave front. A front fed and a cassegrain –

feed parabolic reflectors are depicted in Figures 7.1c and d. Many other shapes of 

reflectors can be employed for special applications. For instance, with an antenna at one 

focus, the elliptical reflector produces a diverging beam with all reflected waves passing 

through the second focus of the ellipse. Examples of reflectors of other shapes are the 

hyperbolic and the spherical reflectors. 
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Figure 7.1 Some configurations of reflector antennas  

 

 

The plane sheet reflector, the corner reflector, the parabolic reflector and other reflectors 

are discussed in more detail in the following sections. In addition, feed systems, aperture 

blockage, aperture efficiency, diffraction, surface irregularities, gain and frequency-

selective surfaces are considered. 

 

7.2 PLANE REFLECTORS 

 

Let an omnidirectional antenna is placed at a distance h above an infinite, flat, perfect 

electric conductor as shown in Figure 7.2. Power from the actual source is radiated in all 

directions in a manner determined by its unbounded medium directional properties. For 

an observation point 1p , there is a direct wave. In addition, a wave from the actual source 

radiated toward point 1R  of the interface undergoes a reflection. The direction is 

determined by the law of reflection ( )1 1
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homogeneous media travels in straight lines along the shortest paths. This wave will pass 

through the observation point 1p . By extending its actual path below the interface, it will 

seem to originate from a virtual source positioned a distance h below the boundary. For 

another observation point 2p  the point of reflection is 2R , but the virtual source is the 

same as before. The same is concluded for all other observation points above the 

interface. 

 

 
 

Figure 7.2 Antenna above an infinite, flat, perfect electric conductor. 

 

The amount of reflection is generally determined by the respective constitutive 

parameters of the media below and above the interface. For a perfect electric conductor 

below the interface, the incidence wave is completely reflected and the field below the 

boundary is zero. According to the boundary conditions, the tangential components of the 

electric field must vanish at all points along the interface. Thus for an incident electric 

field with vertical polarization shown by the arrows, the polarization of the reflected 

waves must be as indicated in the figure to satisfy the boundary conditions.  

 

For a vertical dipole, to excite the polarization of the reflected waves, the virtual source 

must also be vertical and with a polarity in the same direction as that of the actual source 

(thus a reflection coefficient of +1). Another orientation of the source will be to have the 

radiating element in a horizontal position, as shown in Figure 7.3. As shown in Figures 

7.3, the virtual source (image) is also placed at a distance h below the interface. For 

horizontal polarized antenna, the image will have a 180o  polarity difference relative to 

the actual source (thus a reflection coefficient of -1). 
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In addition to electric sources, artificial equivalent “magnetic” sources have been 

introduced to aid in the analyses of electromagnetic boundary value problems. Figure 7.3 

displays the sources and their images for an electric plane conductor. The single arrow 

indicates an electric element and the double a magnetic one. The direction of the arrow 

identifies the polarity.  

 

 
Electric conductor 

 

Figure 7.3 Electric and magnetic sources and their images near electric conductors. 

 

7.2.1 Vertical Electric Dipole 

 

The analysis procedure for vertical and horizontal electric and magnetic elements near 

infinite electric plane conductors, using image theory, was illustrated graphically in the 

previous section. Based on the graphical model of Figure 7.2, the mathematical 

expressions for the fields of a vertical linear element near a perfect electric conductor will 

now be developed. For simplicity, only far-field observations will be considered. 

 

Referring to the geometry of Figure 7.4(a), the far-zone direct component of the electric 

field of the infinitesimal dipole of length l, constant current 0I , and observation point P is 

given by 
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The reflected component can be accounted for by the introduction of the virtual source 
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Since the reflection coefficient vR  is equal to unity. 

 

                                    

 

                                       

Figure 7.4  (a) Vertical electric dipole above infinite perfect electric conductor and its (b) 

Far-field observations 

 

The total field above the interface (z ≥ 0) is equal to the sum of the direct and reflected 

components as given by (7.1) and (7.2a). Since a field cannot exist inside a perfect 

electric conductor, it is equal to zero below the interface. To simplify the expression for 

the total electric field, it is referred to the origin of the coordinate system (z = 0). 

                In general, we can write that 
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For far-field observations ( )r h� , (7.3a) and (7.3b) reduce using the binomial expansion 

to  

                                 1 cosr r h θ−�                                                                           (7.4a)    

                                 2 cosr r h θ+�                                                                           (7.4b)     

 

As shown in Figure 7.4(b), geometrically (7.4a) and (7.4b) represent parallel lines. Since 
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                             1 2r r r� �            for amplitude variations                                      (7.5) 

 

Using (7.4a)-(7.5), the sum of (7.1) and (7.2a) can be written as 
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The shape and amplitude of the field is not only controlled by the field of the single 

element but also by the positioning of the element relative to the ground. To examine the 

field variations as a function of the height h, the normalized (to 0 dB) power patterns for 

h = 0, λ/8, λ/4, 3λ/8, λ/2, and λ are plotted in Figure 7.5. Because of symmetry, only half 

of each pattern is shown. For h > λ/4 more minor lobes, in addition to the major ones, are 

formed. As h attains values greater than λ, an even greater number of minor lobes are 

introduced. The introduction of the additional lobes is usually called scalloping. In 

general, the total number of lobes is equal to the integer that is close to 
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Figure 7.5 Elevation plane amplitude patterns of a vertical infinitesimal electric dipole 

for different heights above an infinite perfect electric conductor. 
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Since the total field of the antenna system is different from that of a singe element, the 

directivity and radiation resistance are also different. The directivity can be written as 
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Whose value for kh = 0 is 3. The maximum value occurs when kh = 2.881 (h = 0.4585λ), 
and it is equal to 6.566 which is greater than four times that of an isolated dipole element 

(1.5).  The directivity is displayed in Figure 7.6 for 0 ≤ h ≤ 5λ. 
              

Similarly, from radiated power, the radiation resistance can be written as 
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Whose value for kh → ∞ is the same and for kh = 0 is twice that of the isolated element 

as given by (7.9). When kh = 0, the value of rR   is only one-half the value of an 2l l′ =  

isolated element.  

 
Figure 7.6  Directivity and radiation resistance of a vertical infinitesimal electric dipole 

as a function of its height above an infinite perfect electric conductor.  

 

7.2.2 Horizontal Electric Dipole 

 

Another dipole configuration is when the linear element is placed horizontally relative to 

the infinite electric ground plane, as shown in Figure 7.7. The analysis procedure of this 

is identical to the one of the vertical dipole. Introducing an image and assuming far-field 

observations, as shown in Figure 7.7(a, b), the direct component can be written as  
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and the reflected one by 
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since the reflection coefficient is equal to 1hR = − . 

 

Figure 7.7 Horizontal electric dipole above an infinite perfect electric conductor and its 

far-field observations. 

 

To find the angleψ , which is measured from the y-axis toward the observation point, we 

first form 
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from which we find 
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                      1 2r r r� �                        for amplitude variations                             (7.14b)   

 

The total field, which is valid only above the ground plane 

( )0;0 / 2,0 2 ,z θ π φ π≥ ≤ ≤ ≤ ≤ can be written as  
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Equation (7.15) again consists of the product of the field of a single isolated element 

placed symmetrically at the origin and a factor (within the brackets) known as the array 

factor. This again is the pattern multiplication rule. 

  

To examine the variations of the total field as a function of the element height above the 

ground plane, the two dimensional elevation plane patterns (normalized to 0 dB) for 

90φ = o (y-z plane) when h = 0, λ/8, λ/4, 3λ/8, λ/2, and λ are plotted in Figure 7.8. Since 
this antenna system is not symmetric, the azimuthal plane (x-y plane) pattern will not be 

isotropic. 

 

As the height increases beyond one wavelength (h > λ), a larger number of lobes is again 

formed. The total number of lobes is equal to the integer that most closely is equal to 
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With unity being the smallest number. 
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Figure 7.8 Elevation plane ( )90φ = o  amplitude patterns of a horizontal infinitesimal 

electric dipole for different heights above an infinite perfect electric conductor. 
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For small values of ( )0 ,kh kh → (7.17a) reduces to 
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For h = 0 the element is shorted and it does not radiate. The directivity is plotted for 

0 5h λ≤ ≤ in Figure 7.9. It exhibits a maximum value of 7.5 for small values of h. A 

values of 6 occurs when ( )0.725 / 2 ,h n λ+� n = 1, 2, 3,… 

 

The conductivity has a more pronounced effect on the impedance values, compared to 

those of the vertical dipole on input impedance. The values of the resistance and 

reactance approach, as the height increases, to the corresponding values of the isolated 

element of length λ/2 (73 ohms for the resistance and 42.5 ohms for the reactance). 

 

 
 

Figure 7.9 Radiation resistance and directivity of a horizontal infinitesimal electric 

dipole as a function of its height above an infinite perfect electric conductor. 

 

7.3 CORNER REFLECTOR 
 

For better collimination of the power in the forward directions, an arrangement can be 

made with two plane reflectors joined so as to form a corner, as shown in Figure 7.10 (a). 

This is known as the corner reflector. Because of its simplicity in construction, it has 

many unique applications. For example, if the reflector is used as a passive target for 

radar or communication applications, it will return the signal exactly in the same 

direction as it received it when its included angle is90o . This is illustrated geometrically 

in Figure 7.10(b). Because of this unique feature, military ships and vehicles are designed 

with minimum sharp corners to reduce their detection by enemy radar.  

 

In most practical applications, the included angle formed by the plates is usually90o ; 

however other angles are also used. To maintain a given system efficiency, the spacing 

between the vertex and the feed element must increase as the included angle of the 
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the included angle between the planes decreases. This, however, may not be true for 

finite size plates. For simplicity, in this chapter it will be assumed that the plates 

themselves are infinite in extent (l = ∞). However, since in practice the dimensions must 

be finite, guidelines on the size of aperture aD , length (l), height (h) is given.           

  

 
   Figure 7.10 Side and perspective views of solid and wire-grid corner reflectors. 

 

The feed element for a corner reflector is almost always a dipole or an array of collinear 

dipoles placed parallel to the vertex distance s away, as shown in in Figure 7.10 (c). 

Greater bandwidth is obtained when the feed elements are cylindrical or biconical dipoles 

instead of thin wires. In many applications, especially when the wavelength is large 

compared to tolerable physical dimensions, the surfaces of the corner reflector are 

frequently made of grid wires rather than solid sheet metal, as shown in Figure 7.10 (d). 

One of the reasons for doing that is to reduce wind resistance and overall system weight. 

The spacing g between wires is made a small fraction of a wavelength (usually g  ≤  
λ/10). For wires that are parallel to the length of the dipole, as is the case for the 
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arrangement of Figure 7.10(d), the reflectivity of the grid-wire surface is as good as that 

of a solid surface. 

 

In practice, the aperture of the corner reflector ( aD ) is usually made between one and two 

wavelengths ( )2aDλ λ< < . The length of the sides of a 90o  corner reflector is most 

commonly taken to be about twice the distance from the vertex to the feed ( )2l s� . For 

reflectors with smaller included angles, the sides are made larger. The feed-to-vertex 

distance (s) is usually taken to be between λ/3 and 2λ/3 (λ/3 < s < 2λ/3). For each 
reflector, there is an optimum feed-to-vertex spacing. If the spacing becomes too small, 

the radiation resistance decreases and becomes comparable to the loss resistance of the 

system which leads to an inefficient antenna. For very large spacing, the system produces 

undesirable multiple lobes, and it loses its directional characteristics. It has been 

experimentally observed that increasing the size of the sides does not greatly affect the 

beamwidth and directivity, but it increases the bandwidth and radiation resistance. The 

main lobe is somewhat broader for reflectors with finite sides compared to that of infinite 

dimensions. The height (h) of the reflector is usually taken to be about 1.2 to 1.5 times 

greater than the total length of the feed element, in order to reduce radiation toward the 

back region from the ends. 

 

The analysis for the field radiated by a source in the presence of a corner reflector is 

facilitated when the included angle (α) of the reflector is α = π/n, where n is an integer (α 
= π, π/2, π/3, π/4, etc.). For these cases ( )180 ,90 ,60 , 45 , .etcα = o o o o it is possible to find a 

system of images, which when properly placed in the absence of the reflector plates, form 

an array that yields the same field within the space formed by the reflector plates as the 

actual system. The number of images, polarity, and position is controlled by included 

angle and the polarization of the feed element. The geometrical and electrical 

arrangement of the images for corner reflectors with included angles of 

90 ,60 ,45 30ando o o o  and feed with perpendicular polarization are displayed in Figure 

7.11. 
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Figure 7.11 Corner reflectors and their images (with perpendicularly polarized feeds) for 

angles of 90 , 60 , 45 30 .ando o o o  

 

The procedure for finding the number, location, and polarity of the images is 

demonstrated graphically in Figure 7.12 for a corner reflector with a90o  included angle. 

It is assumed that the feed element is a linear dipole placed parallel to the vertex. A 

similar procedure can be followed for all other reflectors with an included angle of 

180α = o /n, where n is an integer.  
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Figure 7.12 Geometrical placement and electrical polarity of images for a 90o  corner 

reflector with a parallel polarized feed. 

 

7.3.1 A 90o
 Corner Reflector 

 

For the corner reflector with an included angle of90o , the total field of the system can be 

derived by summing the contributions from the feed and its images. Thus 
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since ˆ ˆ ˆ ˆsin cos sin sin cosr x y za a a aθ φ θ φ θ= + + . Equation (7.18) can also be written, 

using (7.19a)-(7.19d), as  
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where 0 / 2φ α≤ ≤  0 θ π≤ ≤  2 / 2 2π α φ π− ≤ ≤      (7.21a) 

 

                                                                                  

Letting the field of a single isolated (radiating in free-space) element to be   
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(7.20) can be rewritten as 
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Equation (7.23) represents not only the ratio of the total field to that of an isolated 

element at the origin but also the array factor of the entire reflector system. In the 

azimuthal plane (θ = π/2), (7.23) reduces to  
 

                   ( ) ( ) ( )
0

/ 2, 2 cos cos cos sin
E

AF ks ks
E

θ π φ φ φ= = = −                        (7.24)  

The normalized patterns for a 90α = o  corner reflector for spacings of s = 0.1λ, 0.7λ, 
0.8λ, 0.9λ, and 1.0λ is shown in Figure 7.13. It is evident that for the small spacing the 

pattern consists of a single major lobe whereas multiple lobes appear for the larger 

spacings (s > 0.7λ). For s = λ the pattern exhibits two lobes separated by a null along the 
0φ = o  axis. 

 

Another parameter of performance for the corner reflector is the field strength along the 

symmetry axis ( )90 , 0θ φ= =o o  as a function of feed-to-vertex distance s. The 

normalized (relative to the field of a single isolated element) absolute field strength peaks 

when s = 0.5λ, and it is equal to 4. The field is also periodic with a period of / 1s λ∆ = . 
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Figure 7.13 Normalized radiation patterns for 90α = o corner reflector for various values 

of s. 
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θ φ
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                                 (7.25) 
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X Y
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α
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=
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                      (7.26) 

 

                                                           30α = o  
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X
Y Y

θ φ
    = −         

  − +        

                                 (7.27) 

 

where 

                                   sin cosX ks θ φ=                                                                     (7.28) 

                                    sin sinY ks θ φ=                                                                      (7.29) 

 

The array factor for a corner reflector has a form that is similar to the array factor for a 

uniform circular array. This should be expected since the feed sources and their images in 

Figure 7.11 form a circular array. The number of images increases as the included angle 

of the corner reflector decreases.  

 

Patterns have been computed for corner reflectors with included angles 

of 60 , 45 30ando o o . It has been found that these corner reflectors have also single-lobed 

patterns for the smaller values of s, and they become narrower as the included angle 

decreases. Multiple lobes begin to appear when 

 

                      0.95s λ�             for 60α = o  

                      1.2s λ�               for 45α = o  

                      2.5s λ�              for 30α = o  

 

The maximum field strength increases as the included angle of the reflector decreases. 

This is expected since a smaller angle reflector exhibits better directional characteristics 

because of the narrowness of its angle. The maximum values of  0/E E  for 

60 ,45 , 30andα = o o o  are approximately 5.2, 8, and 9, respectively. The first field strength 

peak, is achieved when 

 

                                0.65s λ�                 for 60α = o  

                                0.85s λ�                 for 45α = o                  
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                                1.20s λ�                  for 30α = o        

 

       

The gain in the direction φ = 0 are shown in Figure 7.12 for each corner angle. The solid 
curve in each case is computed for zero losses ( 1LR = 0), while the dashed curve is for an 

assumed loss resistance 1LR  = 1Ω. It is apparent that for efficient operation too small 

spacing should be avoided. A small spacing is also objectionable because of narrow 

bandwidth. On the other hand, too large a spacing results in less gain.                                               

 

 

              

              

              

              

              

              

              

              

              

              

              

              

              

              

 

                             Antenna-to-corner spacing, λ  
Figure 7.14 Gain of corner reflector antennas over a λ/2 dipole antenna in free space 
with the same power input as a function of the antenna-to-corner spacing. Gain is in the 

direction φ = 0 and is shown for zero loss resistance (solid curves) and for an assumed 

loss resistance of ( )11 1LRΩ = Ω  (dashed curves).   

 

The gain of a 90o  corner reflector with antenna-to-corner spacing 0.5S λ�  is nearly 10 

dB over a reference λ/2 antenna or 12 dBi.  
 

Restricting patterns to the lower-order radiation mode (no minor lobes), it is generally 

desirable that S lie between the following limits: 

                         α                                                         S 

                         90o                                                    0.25-0.7λ 
                        180o (flat sheet)                                    0.1-0.3λ 
 

 

In the above discussions, it is assumed that the reflectors are perfectly conducting and of 

infinite extent, with the exception that the gains with a finitely conducting reflector may 

be approximated with a proper choice of 1LR . 
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Although the gain of a corner reflector with infinite sides can be increased by reducing 

the corner angle, it does not follow that the gain of a corner reflector with finite sides of 

fixed length will increase as the corner angle is decreased. To maintain a given efficiency 

with a smaller corner angle requires that S be increased. Also on a  60o  reflector, for 

example, the point at which a wave is reflected parallel to the axis is at a distance of 

1.73S from the corner as compared to 1.41S for the 90
0 
type. Hence, to realize the 

increase in gain requires that the length of the reflector sides be much larger than for a 

90o  corner reflector designed for the same frequency. Usually this is a practical 

disadvantage in view of the relatively small increase to be expected in gain. 

 

If the length or arm of the reflector is reduced to values of less than 0.6λ, radiation to the 
sides and rear tends to increase and the gain decreases. When R is decreased to as little as 

0.3λ, the strongest radiation is no longer forward and the “reflector” acts as a director. 
 

7.4 PARABOLIC REFLECTOR 

 

If a beam of parallel rays is incident upon a reflector whose geometrical shape is a 

parabola, the radiation will converge or get focused at a spot which is known as the focal 

point. In the same manner if a point source is placed at the focal point, the rays reflected 

by a parabolic reflector will emerge as a parallel beam. The symmetrical point on the 

parabolic surface is known as the vertex. Rays that emerge in a parallel formation are 

usually said to be collimated. In practice, collimation is often used to describe the highly 

directional characteristics of an antenna even though the emanating rays are not exactly 

parallel. Since the transmitter (receiver) is placed at the focal point of the parabola, the 

configuration is usually known as front fed. 

 

A parabolic reflector can take two different forms. One configuration is that of the 

parabolic right cylinder, whose energy is collimated at a line that is parallel to the axis of 

the cylinder through the focal point of the reflector. The most widely used feed for this 

type of a reflector is a linear dipole, a linear array, or a slotted waveguide. The other 

reflector configuration is that which is formed by rotating the parabola around its axis, 

and it is referred to as a paraboloid (parabola of revolution). A pyramidal or a conical 

horn has been widely utilized as a feed for this arrangement.    

 

7.4.1 Front-Fed Parabolic Reflector 
 

Parabolic cylinders have widely been used as high-gain apertures fed by line sources. The 

analysis of a parabolic cylinder (single curved) reflector is similar, but considerably 

simpler than that of a paraboidal (double curved) reflector. The principle characteristics 

of aperture amplitude, phase, and polarization for a parabolic cylinder, as contrasted to 

those of a paraboloid, are as follows: 

 

1. The amplitude taper, due to variations in distance from the feed to the surface of the 

reflector, is proportional to 1/ρ in a cylinder compared to 1/ 2r  in a paraboloid. 

2. The focal region, where incident plane waves converge, is a line-source for a cylinder 

and a point source for a paraboloid. 
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3. When the fields of the feed are linearly polarized parallel to the axis of the cylinder, no 

cross-polarized components are produced by the parabolic cylinder. That is not the case 

for a paraboloid. 

  

The surface of a paraboloidal reflector is formed by rotating a parabola about its axis. Its 

surface must be a paraboloid of revolution so that rays emanating from the focus of the 

reflector are transformed into plane waves. The design is based on optical techniques, and 

it does not take into account any deformations (diffractions) from the rim of the reflector. 

Referring to Figure 7.15 and choosing a plane perpendicular to the axis of the reflector 

through the focus, it follows that 

   

 
 

Figure 7.15 Two-dimensional configuration of a paraboloidal reflector. 

 

                      OP + PQ = constant = 2 f                                                                    (7.30) 

 

Since 

                          OP = r’                                                                                            (7.31) 

                          PQ = r’cos θ’  
 

(7.30) can be written as  

 

                            r’ (1+ cosθ’) =2f                     (7.32) 

or 
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Since a paraboloid is a parabola of revolution (about its axis), (7.32a) is also the equation 

of a paraboloid in terms of the spherical coordinates r ′ ,θ ′ ,φ ′ . Because of its rotational 
symmetry, there are no variations with respect toφ ′ . 
 

Another expression that is usually very prominent in the analysis of reflectors is that 

relating the subtended angle 0θ  to the f/d ratio. From the geometry of Figure 7.15 

 

                         1

0

0

/ 2
tan

d

z
θ −  

=  
 

                                                                              (7.33) 

 

where 0z  is the distance along the axis of the reflector from the focal point to the edge of 

the rim. 
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                                    (7.34) 

 

It can also be shown that another form of (7.34) is 

 

                        0cot
4 2

d
f

θ  =    
   

                                                                      (7.35) 

 

Aperture antennas usually have an obvious physical aperture of area pA  through which 

energy passes on its way to the far field. The maximum achievable gain for an aperture 

antenna is 

 

                          max 2

4
u pG D A

π
λ

= =                                                                          (7.36) 

 

This gain is possible only under the ideal circumstances of a uniform amplitude, uniform 

phase antenna with no spillover or ohmic losses present. In practice, these conditions are 

not satisfied and gain is decreased from ideal, as represented through the following: 

 

                         
2

4
ap u ap pG D A

π
ε ε

λ
= =                                                                     (7.37) 

 

It is found that for a given feed pattern  

 

• There is only one reflector with a given angular aperture or f/d ratio which leads 

to a maximum aperture efficiency. 
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• Each maximum aperture efficiency is in the neighborhood of 82-83%. 

• Each maximum aperture efficiency, for any one of the given patterns, is almost 

the same as that of any of the others. 

• As the feed pattern becomes more directive, the angular aperture of the reflector 

that leads to the maximum efficiency is smaller.  

 

The aperture efficiency is generally the product of the  

 

o fraction of the total power that is radiated by the feed, intercepted, and collimated 

by the reflecting surface (generally known as spillover efficiency S∈ )  

o uniformity of the amplitude distribution of the feed pattern over the surface of the 

reflector (generally known as taper efficiency t∈ ) 

o phase uniformity of the field over the aperture plane (generally known as phase 

efficiency p∈ ) 

o polarization uniformity of the field over the aperture plane (generally known as 

polarization efficiency x∈ ) 

o blockage efficiency b∈  

o random error efficiency r∈ over the reflector surface 

 

This in general 

                            ap s t p x b r∈ =∈ ∈∈ ∈ ∈ ∈                                                                           (7.38) 

  

An additional factor that reduces the antenna gain is the attenuation in the antenna feed 

and associated transmission line. 

 

The two main factors that contribute to the aperture efficiency are the spillover and 

nonuniform amplitude distribution losses. Because these losses depend primarily on the 

feed pattern, a compromise between spillover and taper efficiency must emerge. It has 

been depicted pictorially in Figure 7.16.  
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Figure 7.16 Illustration of the influence of the feed antenna pattern on reflector aperture 

taper and spillover. 

 

Very high spillover efficiency can be achieved by a narrow beam pattern with low major 

lobes at the expense of a very low taper efficiency. Uniform illumination and ideal taper 

efficiency can be obtained when the feed power pattern Gf (θ’) is given by 
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                                            (7.39) 

 

which is plotted in Figure 5.17. Although such a pattern is “ideal” and impractical to 

achieve, much effort has been devoted to develop feed designs which attempt to 

approximate it. 

 

 
Figure 7. 17 Normalized gain pattern of feed for uniform amplitude illumination of 

paraboloidal reflector with a total subtended angle of80o . 
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To develop guidelines for designing practical feeds which results in high aperture 

efficiencies, it is instructive to examine the relative field strength at the edges of the 

reflector’s bounds ( 0θ θ′ = ) for patterns that lead to optimum efficiencies.  

 

In practice, maximum reflector efficiencies are in the 65-80% range. To demonstrate that 

paraboloidal reflector efficiencies for square corrugated horns feeds were computed and 

are shown in Figure 7.18(a). For the data of Figures 7.18 (a)and (b), each horn had 

aperture dimensions of 8λ × 8λ, their patterns were assumed to be symmetrical (by 

averaging the E- and H-planes). From the plotted data, it is apparent that the maximum 

aperture efficiency for each feed pattern is in the range of 74-79%, and that the product of 

the taper and spillover efficiencies is approximately equal to the total aperture efficiency. 
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Figure 7.18 Parabolic reflector aperture efficiency as a function of angular aperture for 

8λ × 8λ square corrugated horn feed with total flare angles of 02 70 ,85 , and 100ψ = o o o . 

 

Phase Errors 

 

Any departure of the phase, over the aperture of the antenna, from uniform can lead to a 

significant decrease in its directivity. For a paraboloidal reflector system, phase errors 

result from 

 

1. displacement (defocusing) of the feed phase center from the focal point 

2. deviation of the reflector surface from a parabolic shape or random errors at the 

surface of the reflector 

3. departure of the feed wave fronts from spherical shape 

 

The defocusing effect can be reduced by first locating the phase center of the feed 

antenna and then placing it at the focal point of the reflector. It is found that the phase 

center for horn antennas, which are widely utilized as feeds for reflectors, is located 

between the aperture of the horn and the apex formed by the intersection of the inclined 

walls of the horn. Very simple theory has been derived to predict the loss in directivity 

for rectangular and circular apertures when the peak values of the aperture phase 

deviation is known. When the phase errors are assumed to be relatively small, it is not 

necessary to know the exact amplitude or phase distribution function over the aperture.      

 

7.5  CASSEGRAIN REFLECTORS 
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The disadvantage of the front-fed arrangement is that the transmission line from the feed 

must usually be long enough to reach the transmitting or the receiving equipment, which 

is usually placed behind or below the reflector. This may necessitate the use of long 

transmission lines whose losses may not be tolerable in many applications, especially in 

low-noise receiving systems. In some applications, the transmitting or receiving 

equipment is placed at the focal point to avoid the need for long transmission lines. 

However, in some of these applications, especially for transmission that may require 

large amplifiers and for low-noise receiving systems where cooling and weatherproofing 

may be necessary, the equipment may be too heavy and bulky and will provide 

undesirable blockage. 

 

The arrangement that avoids placing the feed (transmitter and/or receiver) at the focal 

point is that shown in Figure 7.1(d) and it is known as the Cassegrain feed. Through 

geometrical optics, Cassegrain, a famous astronomer (N. Cassegrain of France, hence its 

name), showed that incident parallel rays can be focused to a point by utilizing two 

reflectors. To accomplish this, the main (primary) reflector must be a parabola, the 

secondary reflector (Subreflector) a hyperbola, and the feed placed along the axis of the 

parabola usually at or near the vertex. Cassegrain used this scheme to construct optical 

telescopes, and then its design was copied for use in radio frequency systems. For this 

arrangement, the rays that emanate from the feed illuminate the Subreflector and are 

reflected by it in the direction of the primary reflector, as if they originated at the focal 

point of the parabola (primary reflector). The rays are then reflected by the primary 

reflector and are converted to parallel rays, provided the primary reflector is a parabola 

and the subreflector is a hyperbola. Diffraction occurs at the edges of the subreflector and 

primary reflector and they must be taken into account to accurately predict the overall 

system pattern, especially in regions of low intensity. Even in regions of high intensity, 

diffraction must be included if an accurate formation of the fine ripple structure of the 

pattern is desired. With the Cassegrain-feed arrangement, the transmitting and/or 

receiving equipment can be placed behind the primary reflector. This scheme makes the 

system relatively more accessible for servicing and adjustments. 

 

Cassegrain designs, employing dual reflector surfaces, are used in applications where 

pattern control is essential, such as in satellite ground-based systems, and have 

efficiencies of 65-80%. They supersede the performance of the single-reflector front-fed 

arrangement by about 10%. Using geometrical optics, the classical Cassegrain 

configuration, consisting of a paraboloid and hyperboloid, is designed to achieve a 

uniform phase front in the aperture of the paraboloid. By employing good feed designs, 

this arrangement can achieve lower spillover and more uniform illumination of the main 

reflector. In addition, slight shaping of one or both of the dual-reflector’s surfaces can 

lead to an aperture with almost uniform amplitude and phase with substantial 

enhancement in gain. These are referred to as shaped reflectors. Shaping techniques have 

been employed in dual-reflectors used in earth station applications.  

 

Two reflectors with ray geometry, with concept of equivalent parabola, are shown in 

Figure 7.19  The use of a second reflector, which is usually referred to as the subreflector 
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or subdish, gives an additional degree of freedom for achieving good  performance in a 

number of different applications. For an accurate description of its performance, 

diffraction techniques must be used to take into account diffractions from the edges of the 

subreflector, especially when its diameter is small. 

 

In general, the Cassegrain arrangement provides a variety of benefits, such as the  

 

1. ability to place the feed in a convenient location 

2. reduction of spillover and minor lobe radiation 

3. ability to obtain an equivalent focal length much greater than the physical length 

4. capability for scanning and/or broadening of the beam by moving one of the 

reflecting surfaces 

 

 
                                                 

                                                      

Figure 7.19 Equivalent parabola concepts.  

 

To achieve good radiation characteristics, the subreflector must be few wavelengths in 

diameter. However, its presence introduces shadowing which is the principle limitation of 

its use as a microwave antenna. The shadowing can significantly degrade the gain of the 

system, unless the main reflector is several wavelengths in diameter. Therefore the 

Cassegrain is usually attractive for applications that require gains of 40 dB or greater. 

There are, however, a variety of techniques that can be used to minimize the aperture 

blocking by the subreflector. Some of them are minimum blocking with simple 

Cassegrain, and twisting Cassegrains for least blocking. 

 

Sub-reflectors offer flexibility of design for reflecting telescopes. Referring to Figure 

7.20, it is required that all rays from the focal point F form a spherical wave front (circle 
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of radius CF’) on reflection from the (hyperbolic) subreflector (as though radiating 

isotropically from the parabola focus F’) or by Fermat’s principle of equality of path 

length that 

 

                                 C A FA CA FA′ ′ ′+ = +                                                                  (7.40) 

 

Noting that CA CF AF′ ′= − and that 2FA AF OA′− =  we obtain 

 

                               2FA A F OA BA′ ′ ′− = =                                                                 (7.41) 

 

which is the relation for an hyperbola with standard form  

 

 
 

Figure 7.20 Geometry for Cassegrain reflector. 

 

                           
2 2

2 2 2
1

x y

a f a
− =

−
                                                                               (7.42) 

 

where ,a OA OB f OF OF′= = = = , and x and y are as shown in Figure 7.20. Or  
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                            ( )
2

2 2 2

2
1

x
y f a

a

 
= − − 
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                                                                   (7.43) 

 

The parabolic sub-reflector is then truncated at point P for which a ray reflected from the 

hyperbola hits the edge of the parabolic reflector. The hyperbolic reflector then subtends 

an angle θ from the feed location at the focal point F while the (main) parabolic reflector 

subtends an angle θ ′ from the focal point F’ of the parabola. Thus, the feed horn beam 

angle is increased in the ratio /θ θ′  to fill the parabola aperture. 

 

 

The surface of the hyperbola is deformed to enlarge or restrict the incremental ray 

bundle, thereby decreasing or increasing the watts per steradian in the bundle and finally 

the watts per square meter in the aperture plane of the parabola. This shaping technique 

may be extended over the entire sub-reflector and often both sub-reflector and parabola 

are shaped. As a result a more uniform aperture distribution and higher aperture 

efficiency can be achieved but with higher first sidelobes and also more rapid loss as the 

feed is moved off-axis to squint the beam. 

 

A constraint on the Cassegrain arrangement is that to minimize blockage the sub-reflector 

should be small compared to the parabola, yet the sub-reflector must be large compared 

to the wavelength. 

  

In Figure 7.21 a parabola is given by 

 

                                                       2 4y fx=                                                                 (7.44) 

 

where f = focal distance = VF    
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Figure 7.21 Circle and parabola compared, with radius of circle equal to twice the focal 

length of the parabola. 

 

This parabola is compared with a circle of radius R =VC. It may be shown that for small 

values of x, the circle is of nearly the same form as the parabola when 

 

                                            R = 2f                                                                                (4.45) 

 

Over an angle θ and aperture radius 
 

                                    sinr R θ=                                                                                 (4.46) 

 

The circle differs from the parabola by less than R∆ . If R λ∆ � (or specifically /16λ< ) 

the field radiated from a point source at F within an angle θ ′  and reflected from the circle 

will be within 45 ( 2 360 /16)= ×o o of the phase of a field radiated from F and reflected 

from the parabola. Then a feed antenna at the focal point F which illuminates the sphere 

only within the angle θ ′  will produce a plane wave over the aperture of diameter 2r 

having a phase deviation of less than 45o , this amount of deviation occurring only near 

the edge of the aperture.  
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