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ABSTRACT A problem of current interest in interval analysis [24] is the construction of inclusion
function forms for multidimensional functions, having the property of higher order convergence.
Higher order inclusion function forms have applications, for example, in the solution of equa-
tions, quadrature, and global optimization problems, where faster convergence could possibly be
obtained with their aid. Recently, Lin and Rokne [19] introduced the so-called Taylor-Bernstein
(TB) form as a higher order inclusion function form. However, Lin and Rokne’s TB form is seized
with overwhelming computational difficulties when the domain width is small. In this work, we
present the following. (a) First, we propose an improvement of Lin and Rokne’s TB form that
makes it more practical for small domain widths. We then show that with the improved TB
form, higher order convergence can be quite easily obtained through several low to medium di-
mensional examples. (b) Then, we propose an unconstrained global optimization algorithm that
incorporates the improved TB form as an inclusion function form for the objective function. The
cut-off test and termination condition are also suitably modified in the proposed algorithm. The
performance of the proposed algorithm is then numerically tested and compared with those of
the basic Moore-Skelboe algorithm [29] and the Moore-Skelboe algorithm with the Taylor model
as an inclusion function. Test results on six benchmark examples of low to medium dimensions
show the superior performance of the proposed algorithm. (¢) Next, we propose a further im-
proved TB form called the ‘combined’ TB form, that is more effective than either of the above
two TB forms in application problems where the domain shrinks from large to small widths.
The combined TB form inherits the higher order convergence property. Through numerical tests
involving the six benchmark examples, the combined TB form is shown to compute the range
enclosures most efficiently over entire range of domain widths. (d) Lastly, we propose an im-
proved algorithm for unconstrained global optimization in the framework of the Moore-Skelboe
algorithm. A novel and powerful feature of the proposed algorithm is that a variety of inclusion
function forms for the objective function are incorporated into it - the combined TB form, the
Taylor model, and the simple natural inclusion form. Several improvements are also made in the
Bernstein step of the combined TB form, such as selection of a more efficient direction for subdi-
vision, and use of cut-off test and monotonicity property to discard those boxes where the global
minimizer cannot lie. Further, the incorporation of several inclusion function forms allows the
cut-off test and termination condition in the MS algorithm to be made even more effective than
in our earlier proposed optimization algorithm. The performance of the improved optimization
algorithm is numerically tested and compared on eleven benchmark examples with those of the
MS algorithm, the MS algorithm with the Taylor model as inclusion function, and our earlier
proposed optimization algorithm. The results of these tests indicate that the proposed algorithm
is usually considerably superior to the rest, in terms of the various performance metrics chosen

for comparison.



+This is page iii
Printer: Opaque th

Contents

1 Introduction 1
1.1 Motivation . . . . . . . .. e e e e 1
1.2 Objectives . . . . . . . . e e e e e 3
1.3 Contributions . . . . . . . . . .. e e 3
1.4 Organization of the thesis . . . . . . . ... ... ... ... ... )

2 An improved Taylor-Bernstein form for higher order convergence 7
2.1 Introduction . . . . . . . . . . L e e e 7
2.2 Bernstein, Taylor, and TB forms . . . ... ... ... ... ... ....... 8

2.2.1 The Bernstein form . . . . . ... . ... ... ... ... ..., 8
2.2.2 The Taylor form . . . . . .. .. . . ... . . .. 12
2.2.3 The TB form of Lin and Rokne . . . . . . ... ... ... ....... 13
2.3 Proposed improved TB form . . . . . .. ... ... oL 14
2.4 Numerical tests . . . . . . . . . . e 16
2.5 DiSCussion . . . . . ... e e e e 18
2.6 Conclusions . . . . . . . o i i i e e e e e e e e e 19

3 Global optimization using the improved Taylor-Bernstein form 33
3.1 Introduction . . . . . . . . . . . . e 33
3.2 Background . . . ... 34

3.2.1 Algorithm MS . . . . . . .. . 34

3.2.2 Algorithm TMS . . . . . ... 35



iv

Contents

3.3 Proposed optimization Algorithm TBMS. . . . . .. .. ... ... ... ... 35
3.4 Numerical tests . . . . . . .. oL 38
3.0 Discussion . . . . . ... e e e e e 42
3.6 Conclusions . . . . . . . . L 43
A combined Taylor-Bernstein form for higher order convergence 45
4.1 Introduction . . . . . . . . . L L 45
4.2 Proposed combined TB form . . ... ... ... ... ... ... ... 46
4.3 Numerical tests . . . . . . . . e 48
4.4 DISCUSSION . . . . . . o e e e e e e e 50
4.5 Conclusions . . . . . . . L 51

Global optimization using the natural inclusion, Taylor model, and com-

bined Taylor-Bernstein forms 105
5.1 Introduction . . . . . . . . . . L 105
5.2 [Initial developments . . . . . . . ..o 106
5.2.1 Monotonicity test for Bernstein patches . . . . . ... ... ... ... 107
5.2.2 Direction selection for Bernstein patches . . . . . .. ... . ... ... 107
5.2.3 Cut-off test for Bernstein patches . . . . . . ... ... ... ... ... 108
5.2.4  Algorithm for bounding polynomial range . . . . .. . ... ... ... 108
5.2.5 A tighter enclosure of the function minimum . . .. .. ... ... .. 109
5.3 Proposed optimization Algorithm CTBMS . . . . . ... ... ... ... ... 110
5.4 Numerical tests . . . . . . . . L 113
5.5 Discussion . . . . . ... e e e 115
5.5.1 Ranking . . . . . . . .. 116
5.5.2 Statistical measures . . . .. ... L 116
5.5.3 Minimum, mean, and maximum measures . . . . . . . ... ... ... 117
5.5.4 Performance profiles . . . . . . .. ... 118
5.6 Conclusions . . . . . . . . L 121
Conclusions 131
References 135
Bernstein approach - univariate case 139
A1 Vertex property . . . . . . . . L e e 141
A.2 Bernstein Subdivision . . . ... ..o oL Lo 143

A.3 Combining vertex property and subdivision . . . .. .. ... ... ... .. 146



+This is page v
Printer: Opaque th

List of Figures

5.1 Performance profile plot of the number of iterations, for small factors. . . .. 126
5.2  Performance profile plot of the number of iterations, for large factors. . . .. 126
5.3 Performance profile plot of computational time, for small factors. . . . . .. 127
5.4 Performance profile plot of computational time, for large factors. . . . . . .. 127
5.5 Performance profile plot of maximum list length, for small factors. . . . . .. 128
5.6 Performance profile plot of maximum list length, for large factors. . . . . .. 128
5.7 Performance profile plot of final list length, for small factors. . . .. ... .. 129

5.8 Performance profile plot of final list length, for large factors. . . . . . . . . .. 129



vi LIST OF FIGURES



List of Tables

2.1

2.2

2.3

24

2.5

2.6

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, and Algorithm TB in Example 2.1 Gritton
(L—=dim). . .o

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, and Algorithm TB in Example 2.2 Jennrich

and Sampson (2 —dim). . . ...

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, and Algorithm TB in Example 2.3 Levy
(B—dim). . ..

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, and Algorithm TB in Example 2.4 Trigono-

metric (4 —dim). . . ...

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, and Algorithm TB in Example 2.5 Griewank
(B—dim). . . . e

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, and Algorithm TB in Example 2.6 Trigono-

metric (6 —dim). . . ...

+

This is page vii
Printer: Opaque th



viii

LIST OF TABLES

2.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Average execution times with various algorithms. The time is in seconds, unless
otherwise stated. The average is taken over all ¢, and all Taylor orders m. Note
that with Algorithm LR, mostly only one subdivision (i = 1) is found possible

in the problems. . . . . . . . ..

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, Algorithm TB and Algorithm CTB in Ex-
ample 4.1 Gritton (1 —dim). . . .. ... ...

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, Algorithm TB and Algorithm CTB in Ex-

ample 4.2 Jennrich and Sampson (2 —dim). . . . ... ...

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, Algorithm TB and Algorithm CTB in Ex-
ample 4.3 Levy (3 —dim). . . . ... .. o

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, Algorithm TB and Algorithm CTB in Ex-

ample 4.4 Trigonometric (4 —dim). . . . ... .. o

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, Algorithm TB and Algorithm CTB in Ex-
ample 4.5 Griewank (5 —dim). . . . . ... L. L L o

Overestimations and their reduction ratios for various Taylor orders obtained
with Taylor model, Algorithm LR, Algorithm TB and Algorithm CTB in Ex-
ample 4.6 Trigonometric (6 —dim). . . . ... ... ... ..

Domain width parameter ¢ and time taken by Algorithms TB and CTB to

reach an accuracy of 1E — 10 for various Taylor orders in Examples 4.1 to 4.6.

Overestimations and their reduction ratios obtained with the natural inclusion

function form in Example 4.1 Gritton (1 —dim). . . . ... ... ... ....

Overestimations and their reduction ratios obtained with the natural inclusion
function form in Example 4.2 Jennrich and Sampson (2 —dim). . . ... ..
Overestimations and their reduction ratios obtained with the natural inclusion
function form in Example 4.3 Levy (3 —dim). . . ... ... ... .. ....
Overestimations and their reduction ratios obtained with the natural inclusion
function form in Example 4.4 Trigonometric (4 —dim). . ... ... ... ..

Overestimations and their reduction ratios obtained with the natural inclusion

function form in Example 4.5 Griewank (5 —dim). . . . . ... ... ... ..

100

103



LIST OF TABLES

4.13 Overestimations and their reduction ratios obtained with the natural inclusion

5.1
5.2
5.3

5.4
5.5
5.6
5.7
5.8

Al

function form in Example 4.6 Trigonometric (6 —dim). . ... ... ... ..

Rankings obtained by proposed Algorithm CTBMS. . ... ... ... . ...
Comparison of performance of various algorithms using statistical measures.
Minimum, mean, and maximum of ratios and reductions, with respect to Al-
gorithm MS. . . . . . . o
Domains used, dimensions and the global minimum over the given domain.
Comparison of number of iterations required by various algorithms. . . . . .
Comparison of computation time required by various algorithms. . . . . . . .
Comparison of maximum list length required by various algorithms. . . . . .

Comparison of final list length required by various algorithms. . . . ... ..

Range enclosures obtained with Bernstein form of various degrees in Example

AL e

ix

123



x LIST OF TABLES



+

1

Introduction

1.1 Motivation

Let R be the set of reals, X C R be a right parallelepiped parallel to the axes (also called as
a box), and let f (X) denote the set of all values of an arbitrary function f : X — R on X.
Let I (X) be the set of all boxes contained in X. Let the width of an interval X be defined
as w (X) := maxX —minX if X € IT(R), and as w(X) = max {w (X;1),...,w(Xy)}, if
X eI (R,

Definition 1.1 [30] A function F : I (X) — I (R) is said to be an inclusion function for f,
if

f(Y)CF(Y) forall Y € I(X)
Definition 1.2 [30] An inclusion function F for f is said to have convergence order o, if
w(F (Y)) —w(f(Y)) < Lw(Y)* for all'Y € I (X),
where L and o are some positive constants.

An important problem in interval analysis of Moore [24] is the construction of inclusion
functions for multidimensional functions having the property of higher order convergence, i.e.,
having a convergence order « that is greater than quadratic. Such inclusion functions have
applications, for example, in the solution of equations, quadrature and global optimization
problems.

In particular, we consider the global optimization problem of determining arbitrarily good

lower bounds for the minimum of f (X). Many algorithms based on interval analysis (IA) are

This is page 1
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2 1. Introduction

available to solve the global optimization problem, see for example, [13], [17], [31] and the
references cited therein. IA methods are usually based on branch and bound techniques, that
is, they start from the initial box X , subdivide X and store the subboxes in a list, discarding
subboxes which are guaranteed not to contain a global minimizer until the desired accuracy in
terms of the width of the intervals in the list is achieved. A basic branch and bound algorithm
of TA is the so-called Moore-Skelboe (MS) algorithm [31]. Although the MS algorithm is
reliable, it is somewhat slow to converge in ‘difficult’ problems, when inclusion functions
of first and sometimes even second orders are used. Faster convergence could possibly be
obtained with higher order inclusion functions.

The first paper in the literature concerning construction of inclusion functions with higher
order convergence is that of Herzberger [14], who shows that higher order convergence can be
obtained for a certain class of intervals. However, his requirement on the function is unreal-
istically strong. Cornelius and Lohner [6] propose the interpolation and remainder forms for
multidimensional functions that enable any convergence order to be obtained in theory. How-
ever, in practice, convergence order of at most 4 or 5 is recommended even for unidimensional
functions, see [6] and [30, pg. 9]. The same holds for the improved version of these forms for
unidimensional functions, as proposed by Neumaier in [28, sec. 2.4]. Alefeld and Lohner [1]
propose centered forms with higher order convergence for unidimensional functions. However,
because of the strong condition on the functional representation, these higher order centered
forms have limited practical value [1, pg. 8]. Berz et al. [3], [21] propose the so-called Tay-
lor models for multidimensional functions. Although the accuracy of the so-called remainder
interval part of the Taylor model increases in a higher order convergent fashion, the Taylor
model itself is known to exhibit only quadratic convergence, see also Kearfott and Arazyan
[18]. Lin and Rokne [19] combine the Bernstein form with the Taylor form to obtain the
so-called Taylor-Bernstein (TB) form as an inclusion function form of f. However, as the do-
main width becomes smaller, the required degree of the Bernstein polynomials becomes very
large. As a consequence, the Bernstein step becomes very computationally intensive when the
domain intervals shrink in widths. Therefore, as an inclusion form for obtaining higher order
convergence, the practical utility of the Lin and Rokne’s TB form is severely restricted.

It is seen from the foregoing that there is a lack of higher order inclusion function forms
that are practically effective, even for low to medium (i.e., even up to say, six) dimensional

problems.
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1.2 Objectives

Motivated by the above concerns, we have set mainly the following two objectives for the

present work:

1. To develop higher order inclusion function form for multidimensional functions that are

practically effective, and

2. To develop unconstrained global optimization algorithm with the developed higher order
inclusion function form, for efficient determination of arbitrarily good lower bounds on

the minimum of f (X).

In each case, the practical effectiveness of the proposed tool is to be numerically tested and

compared with existing techniques on several ‘difficult’ problems of different dimensions.

1.3 Contributions

The main contributions of this work can be summarized as the following.

1. An improved TB form is proposed as a higher order inclusion function form for multi-
dimensional functions that are sufficiently differentiable'. The improved TB form uses
Bernstein polynomials [9] for bounding the range of the polynomial obtained from the
Taylor form [30] of the given function f. The improved TB form has some important

differences from Lin and Rokne’s TB form, in the practical way it is constructed.

The higher order convergence behavior of the improved TB form is numerically tested
and compared with that of Lin and Rokne’s TB form and also with that of the Taylor
model. For the numerical testing, six benchmark examples with dimensions varying
from 1 to 6 are considered. In all examples, unlike with the Taylor model and Lin and
Rokne’s TB form, higher order convergence of orders up to 9 are exhibited with the
improved TB form. Moreover, such high orders of convergence are rather easily obtained

for up to 5 — dim problems with the improved TB form.

2. An algorithm for unconstrained global optimization is proposed in the framework of
the MS algorithm. The proposed optimization algorithm uses the improved TB form
as an inclusion function form for the objective function. The improved TB form also
allows the cut-off test and termination condition of the MS algorithm to be made more

effective, and these modifications are incorporated into the proposed algorithm.

I The function must be at least (m + 1) times differentiable for achieving (m + 1) — th convergence order.
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The performance of the proposed optimization algorithm is numerically tested and com-
pared with those of the MS algorithm and the MS algorithm with the Taylor model
as inclusion function. For the numerical testing, six benchmark examples of varying di-
mensions are considered. The results of these tests indicate that the proposed algorithm
with the improved TB form as inclusion function is considerably more effective for the

low to medium dimension problems considered.

. A combined TB form is proposed as a higher order inclusion function form for multidi-

mensional functions that are sufficiently differentiable. In application problems where
the domain shrinks from large to small widths, the combined TB form is more effective
than either Lin and Rokne’s TB form or the improved TB form. The combined TB
form switches between the Lin and Rokne’s and improved TB forms depending on the
domain width - i.e., it reduces to Lin and Rokne’s TB form for large domain widths,

and to the improved TB form for small domain widths.

The higher order convergence behavior of the combined TB form is numerically tested
and compared with that of Lin and Rokne’s TB form, the improved TB form, and
also with that of the Taylor model. For the numerical testing, six benchmark examples
with dimensions varying from 1 to 6 are considered. In all examples, while the Lin and
Rokne’s TB form as well as the improved TB form fail to compute the range enclosures
for some domain widths, the combined TB form succeeds in computing the same for any
domain width and for any problem dimension. It is also found in these examples that
the maximum list length needed by the combined TB form is nil, for any domain width
and for any problem dimension; moreover, for large to intermediate domain widths, the
combined TB form is faster than the improved TB form by as much as 2 — 4 orders of

magnitude.

. An improved algorithm for unconstrained global optimization is proposed in the frame-

work of the MS algorithm. A novel and powerful feature of the proposed algorithm is
that a variety of inclusion function forms for the objective function are incorporated
into it - the combined TB form, the Taylor model, and the simple natural inclusion
form. Several improvements are also made in the Bernstein step of the combined TB
form, such as selection of a more efficient direction for subdivision, and use of cut-off
test and monotonicity property to discard those boxes where the global minimizer can-
not lie. Further, the incorporation of several inclusion function forms allows the cut-off
test and termination condition in the MS algorithm to be made even more effective

than in our earlier proposed optimization algorithm.
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The performance of the improved optimization algorithm is numerically tested and
compared with those of the MS algorithm, the MS algorithm with the Taylor model as
inclusion function, and our earlier proposed optimization algorithm. For the numerical
testing, eleven benchmark examples with varying dimensions are considered. The results
of these tests indicate that the proposed algorithm is superior to the rest, in terms of

the various performance metrics chosen for comparison.

1.4 Organization of the thesis

The rest of the thesis is organized as follows.

In Chapter 2, an improved TB form having the higher order convergence property is pro-
posed. In section 2.2, the essentials of the Bernstein form, Taylor form, and TB form of Lin
and Rokne are given. In section 2.3, an improved TB form that is more effective than that of
Lin and Rokne’s TB form is proposed. In section 2.4, the higher order convergence behavior
of the improved TB form is numerically tested and compared with that of the latter and also
with that of the Taylor model. In section 2.5, the obtained test results are discussed, and in
2.6, the conclusions of the chapter are given.

In Chapter 3, an algorithm is proposed for global optimization in the framework of the
MS algorithm. In section 3.1, the global optimization problem is introduced. In section 3.2,
an outline of the MS algorithm is given. In section 3.3, an algorithm is proposed for global
optimization with the improved TB form as an inclusion function form. In section 3.4, the
performance of the proposed algorithm is numerically tested and compared with those of the
MS algorithm and the MS algorithm with the Taylor model as an inclusion function form.
The obtained test results are discussed in section 3.5, while the conclusions of the chapter
are given in section 3.6.

In Chapter 4, a combined TB form having the higher order convergence property is pro-
posed. In section 4.1, the need for a further improved TB form is presented. In section 4.2,
a combined TB form is presented that combines the TB form in Chapter 2 and that of Lin
and Rokne’s. In section 4.3, the performance of the combined form is numerically tested and
compared with those of the constituent forms, as well as with those of the Taylor model and
the simple natural inclusion form. The obtained test results are discussed in section 4.4, while
the conclusions of the chapter are given in section 4.5.

In Chapter 5, an improved algorithm is proposed for global optimization in the framework
of the MS algorithm. In section 5.2, several improvements concerning the Bernstein step are
introduced. In section 5.3, the proposed algorithm for global optimization is given. In section

5.4, the performance of the proposed algorithm is numerically tested and compared with those
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of the MS algorithm, the MS algorithm with the Taylor model as an inclusion function form,
and the earlier proposed optimization algorithm. The obtained test results are discussed in
section 5.5, while the conclusions of the chapter are given in section 5.6.

In Chapter 6, the conclusions of the work are given. In Appendix A, an outline of the

Bernstein approach for the univariate case is given.
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An improved Taylor-Bernstein form for higher
order convergence

2.1 Introduction

As seen in Chapter 1, in the interval analysis literature there is a lack of higher order inclusion
function forms that are practically effective, even for low to medium dimensional problems.

In this chapter, we attempt to fill in this gap by proposing an inclusion function form
having the higher order convergence property for multidimensional functions. The proposed
inclusion function form uses Bernstein polynomials for bounding the range of the polynomial
obtained from the Taylor form of the function f. The Bernstein form [9] is combined with the
Taylor form [30] to obtain the resulting so-called Taylor-Bernstein (TB) form as an inclusion
function form of f. The proposed TB form has some important practical differences in the
way it is constructed from the TB form of Lin and Rokne [19]. Specifically, the range of
polynomial part of Taylor expansion is computed in the former using Bernstein subdivision,
and a vertex condition check is done on every subdivision.

Further, we also numerically test and compare the higher order convergence behavior of
the improved TB form with those of Lin and Rokne’s TB form and the Taylor model. For
the testing, we consider six benchmark examples with dimensions varying from one to six,
and examine convergence orders up to nine.

The rest of this chapter is organized as follows. In section 2.2, we outline the essentials of
the Bernstein form, Taylor form, and TB form of Lin and Rokne. In section 2.3, we propose
an improved TB form that is more effective in practice. In section 2.4, we numerically test

and compare the higher order convergence behavior of the improved TB form with that of
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the TB form of Lin and Rokne, and also with that of the Taylor model. In section 2.5, we

summarize the obtained test results. In section 2.6, we draw the conclusions of the chapter.

2.2 Bernstein, Taylor, and TB forms

2.2.1 The Bernstein form

The Bernstein form has established itself as an important tool for finding bounds on the range
of multivariate polynomials, see, for instance, [11], [33] and the references cited therein. An
introduction to the Bernstein form is given in the book [30]. The salient features of the

Bernstein form approach are:

1. The computation of the bounds conveys the information about the sharpness of these

bounds.

2. The approach avoids functional evaluations which might be costly if the degree of the

polynomial is high.

3. When bisecting a box and applying the Bernstein form to one of the two subboxes to
get an enclosure for the range over this subbox, we obtain without any extra cost an

enclosure for the range over the other subbox.

4. For sufficiently small boxes the Bernstein form gives the exact range.

In this subsection, we follow the notation in [11]. Let [ be the number of variables and x =

(w1,...,7;) € R A multi-index I is an ordered [-tuple of non-negative integers I = (i1, . . .,1).
For two given multi-indices I, N we write I < N if 0 < i < ng, k=1,...,1. With [ =
(41, Ir—1, %, br41, - - -, i) We associate index I, given by I, = (i1,...,%—1, % + K, irg1,. ..

where 0 < i, + k < n,. Also, we write (]}7) for (7.“) ...

2 ()

We can expand a given multivariate polynomial into Bernstein polynomials to obtain
bounds for its range over an [-dimensional box X. Without loss of generality, consider the
unit box U = [0, 1}1 since any nonempty box X of %! can be mapped affinely onto this box.

Let p(x) be a multivariate polynomial in [ variables with real coefficients. Denote by
N = (ny,...,n;) the tuple of maximum degrees so that ny is the maximum degree of xj in
p(x) for k =1,...,1. Denote by S = {I: I < N} the set containing all the tuples from R
which are ‘smaller than or equal’ to the tuple N of maximum degrees. Then, we can write

an arbitrary [-variate polynomial p in the form

p(x) =) ax', xe® (2.1)

IeS

7il)
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where for x = (21,...,7;) € R we set x! = x?m?...x?l, where a; € R represents the
corresponding coefficient to each 2! € R!. We refer to N as the degree of p. The I'" Bernstein

polynomial of degree N is defined as
By (x) = B/ (x1)...B!" (1) x € R’

where, for i; =0,...,n;,7=1,...,1
BY () = (924 (1 — g\
ij (z5) = is x_j( j)
J

The Bernstein coefficients by (U) of p over the unit box U are given by

bI(U):Z%aJ, IesS
J<i \J

Thus, the Bernstein form of a multivariate polynomial p is defined by
p(x) =Y b (U) B} (x)
IeS

The Bernstein coefficients are collected in an array B (U) = (b; (U));.g, called a patch. Based
on the above, we can have an algorithm for finding a patch of Bernstein coefficients.
Algorithm Patch : B (U) =Patch(X, ay)
Inputs: A box X, a polynomial p as in (2.1) of degree N in [-variables with coefficients a;.
Outputs: A patch B (U) of Bernstein coefficients of p on U.
BEGIN Algorithm

1. Transform the polynomial p (with coefficients a;) on X to a polynomial on U. Denote

the coefficients of the latter as a’I .

2. Find the Bernstein coefficients of p on U as

bI(U):Z%af}, Ies
J<i \J

3. Return the patch B (U) = (b; (U)),cg-

END Algorithm

The following result describes the range enclosure property of the Bernstein coefficients.

Lemma 2.1 [5] : Let p be a polynomial of degree N, and let p(X) denote the range of p
on the given domain X. Then, the following property holds for a patch B (U) of Bernstein
coefficients :

P (X) C [min B (U), max B (U)]
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We can find an enclosure of the range of the multivariate polynomial p on X by transforming
the polynomial into Bernstein form. Then, by Lemma 2.1, the coefficients of the expansion
in the Bernstein form provide lower and upper bounds for the range.

The obtained range enclosure can be further improved either by degree elevation of the
Bernstein polynomial or by subdivision. The subdivision strategy is generally more efficient
than the degree elevation strategy [9] and is therefore preferred.

Let D be any subbox of U generated by bisection, and suppose the patch B (D) has
been already computed. Further suppose D is bisected along the r-th component direction

(1 <r <) to produce two further subboxes D 4 and Dp given by
Dy = [dy,di] x...x[d,,m(d)] x...x [d,d]
Dp = [dy,di] x...x [m(d),d.] x...x [d,di]

Then, the patches B (D4) and B (D g) can be obtained from B (D) by executing the following
algorithm.

Algorithm Subdivision : [B(D4),B(Dg),D4,Dp] = SD(D, B (D),)

Inputs: The box D C U, its patch B (D), and a component direction 7 (1 < r <) in which
D is to be bisected.

Outputs: Subboxes D4 and Dp, with respective patches B (Dy4) and B (Dp)

BEGIN Algorithm

1. Bisect D along the r-th component direction to produce the two subboxes D4 and Dp.

2. Compute patch B (Dy) as follows.

(a) Set : B (D) — B (D)
(b) FOR k=1,...,n, DO

b (D) i <k

b(k) (D) = k-1 k-1 .
L 1 {bgnfg (D) + iV (D)} iy >k
To obtain the new coefficients, we apply formula given above for i; = 0,...,nj, j =

1,...,r—1,r+1,...,L
(c) Set : B(D,) « B("™) (D)

3. Find patch B (Dg) from intermediate values in above step, as follows
(a) FOR k£ =0 to n, DO

k
bis.or—ii D) =0 (D)
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(b) Set : B(Dyg) — (b; (Dg)),cg
4. RETURN Dy , Dy, B(D,) and B (Djp)

END Algorithm

The following result gives a condition called the wvertex condition, which can be used to

verify if the enclosure given by the Bernstein coefficients is the range.

Lemma 2.2 [5] : Let p be a polynomial of degree N. Let B (U) be a patch on U. Then,

p(U) = [minB (U),max B (U)]

< min B (U) resp. max B (U) occurs at some I € S
where, Sy is a special subset of the index set S defined by
So={0,n1} x ... x{0,n}

The above vertex condition also holds for any subbox D C U, see [22]. Combining the tool
of Bernstein subdivision and the vertex condition, we can repeatedly improve the bounds till
they are exact, i.e., till the vertex condition is satisfied on every subdivision. This leads to
the following algorithm for computing the range of p on X.

Algorithm Bounder : p (X) = Bounder(X, ay)

Inputs: A box X, a polynomial p as in (2.1) of degree N in [-variables and having coefficients
aj.

Outputs: The range p (X).

BEGIN Algorithm

1. (Compute patch B (U) ) Execute Algorithm Patch

B (U) = Patch (X, ay)

2. (Initialize lists) Set £ « {(U, B (U))}, £ « {}.

3. (Select item for processing) If £ is empty, go to step 7. Otherwise, pick the first item
from £, denote it as (D, B (D)), and delete the item entry from L.

4. (Check vertex condition on patch) If (D, B (D)) satisfies the vertex condition in Lemma
2.2, that is, if min B (D) resp. max B (D) occurs at some I € Sp, enter the item in list

£°°" and return to previous step.
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5. (Subdivide and find new patches) Execute Algorithm Subdivision
[B(D4),B(Dp),D4,Dp]=SD(D,B(D),r)
where, r is chosen to vary cyclically! from 1 to I.

6. (Add new entries to list) Enter the new items (D4, B (D4)) and (D, B (Dp)) at end
of list £, and return to step 3.

7. (Compute the polynomial range) Compute the range p(X) as the minimum to maxi-

mum over all the second entries of the items present in list £5.

8. RETURN j (X).

END Algorithm

2.2.2  The Taylor form

In this subsection, we first introduce some further notation as in [30]. Let

a>\1+--.+>\1f (.’E)
A={A, A, =X+ N, Al=NLA, DM (r) = ———— % (22)
oxy'...0x]!
1 l
Let I (X) be the set of all boxes contained in X. Let the width of an interval X be defined
as w(X) = maxX —minX if X € T(R), and as w(X) = max{w (Xy),...,w(X;)}, if
X € I (R'). Let the midpoint of an interval X be defined as m (X) = (min X + max X) /2 if
X €I (R),and as m (X) = {m(Xy),...,m(X;)}, if X € I (R'). Let f(X) denote the range
of f on X. A function F : I (X) — I (R) is an inclusion function for f, if f(Y) C F(Y)
for all Y € I(X). An inclusion function F for f is said to have convergence order «, if
w(F(Y)) —w(f(Y)) < Lw(Y)* for all Y € I (X), where L and « are positive constants.
Let f : X — R be a function that is m + 1 times differentiable on X. Then, the Taylor

expansion of f of order m is given as

mooA )
f(x)=f(c)+ |A§|—:1 & I!(c) (x—c)* + |)\|§+1 fT@ (x—o)™ xeX (2.3)
PE;) ) TZ),()

where, ¢ = m (X) and £ € X. We call p(x) the polynomial part and r (x) the remainder part

of the Taylor expansion.

IThat is, r varies starting from 1 through I, and then again from 1 through I, and so on. Besides cyclical, other

strategies for subdivision exist, and their efficiency investigated in [10].
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Assume an inclusion function of (m + 1)-th derivative of f exists and is bounded, and
furthermore that it has the isotonicity property [30]. Then, the corresponding Taylor form of

order m, denoted by Frgyor, can be expressed as [19] :
FTaylor (X) =D (X) + R (X) (24)

where p (X) is the range of the polynomial part p(x) on X, and R (X) is any inclusion for
the range of the remainder part 7 (x) on X. Lin and Rokne [19] show that the Taylor form

has convergence order m + 1.

Theorem 2.3 [19] Assume that the Taylor form of order m is as defined above. Then,

f(X) Frayior (X)
w(Frayior (X)) —w(f(X)) = O(w(X)™) (2.5)

N

2.2.3 The TB form of Lin and Rokne

The Taylor form provides an enclosure for the range of f over X with convergence order
m+ 1. However, it requires the computation of the range of a multivariate polynomial p (X).
Lin and Rokne [19] proposed an algorithm that uses Bernstein form to find a (generally non-
sharp) enclosure of p (X), so that the resulting TB form, still possesses the property of m + 1
convergence order given by (2.5).

We give below the Lin and Rokne algorithm for finding an enclosure of the range of f on
X. Note that this algorithm uses the Taylor form of order m and Bernstein polynomials of
sufficiently high degree N’ given by (2.7) below, and that a generally non-sharp enclosure of
the range of the polynomial part p of Taylor expansion is computed and used.

Algorithm LR [19] : Fz (X) = LR(X, f,m)

Inputs: The box X, an expression for the function f, and the order m of Taylor form to be
used.

Output: An enclosure Fr g (X) of the range of f on X.

1. For the given function f, compute the coefficients of p in (2.3) and also the remainder
interval R (X). This may be done automatically on a computer equipped with interval
arithmetic using Moore’s recursive technique for Taylor coefficients computation, see
(23], [24].

2. Relate the obtained Taylor coefficients to those of the power form in (2.1), and denote

the coefficients in this form as ay .
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3. Compute the [-tuple of indices D given by
D= (dy,...,d;), where di,... d; > [1/w (X)]"" (2.6)
and then the [-tuple of indices N’ given by
N'=(nf,...,n;), wherenj =max{ng,dp}, k=1,...,1 (2.7)
and construct 8" ={I: I < N'}.

4. Find a patch B (U) of Bernstein coefficients of p on U by executing Algorithm Patch :
B (U) =Patch(X,a;) with S" used in place of S in this Algorithm. Then, compute an

enclosure for the range of p (X) as

B* = [min B (U),max B (U)] (2.8)

5. Compute an enclosure for the range of f over X as

Fir(X) = B* + R(X) (2.9)

6. RETURN Fpp (X).

END Algorithm
Lin and Rokne [19] showed that the TB form computed in the above algorithm retains the

property of m + 1 convergence order shown by the Taylor form:

Theorem 2.4 [19] Let Frp (X) be as computed in Algorithm LR. Then,

f(X) € Frr(X)

w(FLr (X)) —w(f(X)) = Ow(X)™*)

2.3 Proposed improved TB form

As seen from (2.6), D becomes large quite quickly as w (X) becomes smaller, leading to high
degrees N’ > N of the Bernstein polynomials in (2.7). As a consequence, the Bernstein step
of Algorithm LR becomes very computationally intensive as the domain intervals shrink in
widths.

We therefore propose an algorithm that uses a different Bernstein step based on Bernstein
polynomials of degree N (note that N is the minimum degree of Bernstein polynomials we

can possibly use) and is equipped with the tools of subdivision and vertex condition checks.
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We further propose to use in step 1 of our algorithm, the Taylor model technique of Berz
et al. [3], [20] for computing the Taylor coefficients in parallel with the remainder interval.
Berz et al. have shown that the Taylor model technique is more computationally efficient and
gives tighter results than a direct implementation of Moore’s recursive techniques.

The algorithm proposed below computes an enclosure for the range of f on X using the
Taylor form of order m and Bernstein polynomials of degree N. We emphasize that the
range of polynomial part of Taylor expansion is computed in this algorithm using Bernstein
subdivision, and a vertex condition check is done on every subdivision.

Algorithm TB : Frp (X) =TB (X, f,m)

Inputs: The box X, an expression for the function f, and the order m of Taylor form to be
used.

Output: An enclosure Frp (X) of the range of f on X.

1. For the given function f, compute Taylor coefficients of p in (2.3) in parallel with the
remainder interval R (X) using the Taylor model technique of Berz et al. [3].

2. Relate the obtained Taylor coefficients to those of the power form in (2.1), and denote

the coefficients in this form as aj .

3. Find the range p (X) on X using Algorithm Bounder :

P (X) = Bounder (X, ay) (2.10)

4. Using R (X) obtained in step 1 and p (X) obtained in step 3, compute an enclosure for
the range of f over X as
Frp(X)=p(X) + R(X) (2.11)

5. RETURN Frg (X).

END Algorithm
It is trivial to show that the TB form computed in the proposed algorithm also has the

property of m + 1 convergence order :

Theorem 2.5 Let Frp(X) be as computed in Algorithm TB. Then,

f(X) C Frp(X)
w(Frp (X)) —w(f(X)) = O(w(X)™)

Proof. >From (2.4) and (2.11), Frp is a Taylor form Frayior. Now apply Theorem 2.3. W



16 2. An improved Taylor-Bernstein form for higher order convergence

2.4 Numerical tests

We numerically investigate the higher order convergence property of the above inclusion
function forms on some benchmark examples. The selected examples are of low to medium
dimensions. For all our computations, we use a PC/Pentium III 800 MHz 256 MB RAM
machine with a FORTRAN 90 compiler, and version 8.1 of the COSY-INFINITY package of
Berz et al. [2], [15]. We also investigate the performance of the Taylor model as an inclusion
function form in these examples.

In each example, we compute the intervals

Frp (X) - using Taylor model of Berz et al. [20], computed with the COSY-INFINITY
package.

Frr(X) - using TB form of Lin and Rokne.

Frp (X) - using the proposed TB form.

Finner(X) - using inner estimates of the range computed with the well-known Moore-
Skelboe optimization algorithm of interval analysis (see, for instance, [31]).

Let X = [a,b0],Y = [¢,d] be any two intervals. Then, following [6], as a measure of the

overestimation we use the Hausdorfl metric
H(X,Y) = |[a,b],[c,d]| =max{|]a — |, |b—d|}

Consider a sequence of nested intervals {X(i)}. We wish to find and compare for each
form, the reduction in overestimation with decrease in the domain interval widths. Consider
first the form Frpps. Let

Mo (X(H)) =M ( FXEDY, By, (X(i_l))) (2.12)

As a measure of the reduction in overestimation obtained with form Frj,; over successive

nested intervals X1 and X, we use the ratio

HTM( (ifl)) H(f X (-1, ( (ifl)))
Hrm (X(i)) B H(f(X(Z)) (X(ZJ))

w (XO)

If Fry is an inclusion function form having convergence order m + 1, then

Rou <X<z D X(z))

Define

R (X(i_l),X(i)) R (X@—U,X(i)) (2.13)

(where the tending is from above) for “small” enough w (X(Fl)) , W (X(i)).
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In practice, the exact range f is generally difficult to compute, so the overestimation can
be generally found relative only to some inner estimate Finner of the range. However, we
can easily show that if the (m + 1)- th convergence order property holds relative to Fipner,
then it implies that the same holds relative to the exact range f. That is, it is sufficient if we
can show the (m 4+ 1)- th convergence order property with Fipner used in place of f in above
definitions. To avoid introducing more notation, in the sequel we use the quantities given in
(2.12) through (2.13), with Fj,per replacing f throughout.

Similarly, we can define Hyr, Hrg, RLr, Rrp for the forms Fjr and Frg. For brevity of
notation, we drop the arguments X1, X @ of all H and R.

Example 2.1 Gritton’s second problem in Chemical Engineering [18]: The 1 —dim function

18

f(z) = —371.93625 — 791.2465656 * x + 4044.944143 % 2 + 978.1375167 * 23
—16547.8928 * 2 4 22140.72827 * 25 — 9326.549359 * 2° — 3518.536872 * 27
+4782.532296 * 2 — 1281.47944 * 27 — 283.4435875 * 210 + 202.6270915 !
—16.17913459 * 2 — 8.88303902  21* + 1.575580173 * % + 0.1245990848 * x5
—0.03589148622 * 1% — 0.0001951095576 * 17 + 0.0002274682229 * 2

The domain is X = [-1+ 271 [-1,1]].

Example 2.2 Jennrich and Sampson function [26, problem 6]. The 2 — dim function is
10
fl@) =" fi(x)*,  filx) =2+ 2i — (exp(iz1) + exp(izy))
i=1

The domain is X = [-1+277[—1, 1}]2.

Example 2.3 Levy function [32, Problem LS8, pp. 204] The 3— dim function is

2

fl@) = ) (3= 1)°(1+10sin*(wyiy)) +sin’(my) + (ys — 1),
=1
yi = 1+L‘:1) i=1..3

The domain is X = [-12 + 27 [~1,1]]°.

Example 2.4 Trigonometric function [26, problem 26]. The 4 — dim function is
4

4
f(z) = Zfz(ﬂU)Q,fz(x) =4 Zcosmj + (1 — cosx;) — sinx;
i=1

j=1

The domain is X = [1.75 + 274 [-1, 1]]4.
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Example 2.5 Griewank function [32, Problem Griew5, pp. 205] The 5 — dim function is

f(z) = 25: 4%@20 - f[lcos <%) +1

1= 1=

The domain is X = [-600 4+ 27 [~1,1]]°.

Example 2.6 Trigonometric function [26, problem 26]. The 6 — dim function is
6 6
flz)= Zfi(ﬂU)Q, filx) =6— Zcosxj + (1 — cosx;) — sin x;
i=1 j=1

The domain is X® = [1.75 + 274 [~1,1]]°.

The results for examples 2.1 and 2.6 with the various forms are given? in Tables 2.1 to 2.6.
Note that the results in all the Tables are rounded purely for display purposes. The average

timings for all examples are reported in Table 2.7.

2.5  Discussion

>From the results given in the Tables, we observe that

1. With the Taylor model® as an inclusion function form, we obtain only quadratic con-

vergence in all problems, irrespective of the chosen Taylor order m.

2. With the Lin and Rokne’s TB form Fj i as an inclusion function form, in all cases
(except for Taylor orders m = 2) we are unable to proceed after just one subdivision,
i.e., with ¢ > 1, due to the excessive memory requirements arising from high degrees
of the associated Bernstein polynomials. For Taylor orders m = 2, we are unable to
proceed after just two subdivisions, i.e., with 7 > 2, for the same reason. Therefore, as
an inclusion form for obtaining higher order convergence, the practical utility of Fg is

found to be severely restricted.

3. With the proposed TB form Fjpz as an inclusion function form, in problems of up to
4 —dim we quite easily obtain* higher order convergence of orders up to 9. In problems
of 5 and 6— dim, we do obtain higher order convergence of orders up to 9; however,
the computational demands are somewhat large for the 5 — dim problem, and become

excessive for the 6— dim one.

2In the Tables, a starred entry denotes that the execution is aborted due to excessive memory requirements.

3Tn version 8.1 of COSY-INFINITY package made available to us, the range of the polynomial part is evaluated by
simple interval arithmetic, see also [18].

4until we have overestimations of very small magnitudes (of order of E — 10 or less).
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2.6 Conclusions

We proposed a new inclusion function form for multidimensional functions. With the proposed
form, we could quite easily obtain higher order convergence (of orders up to 9) for low to
medium dimensional problems. To our knowledge, it is perhaps for the first time that higher
order convergence of such high orders has actually been demonstrated on multidimensional
problems. The new higher order convergent form can be constructed on a computer with the
fully automated algorithm presented, without any need for hand computations.

For a problem of higher dimensions (I = 6), the proposed form was found to be computa-
tionally inefficient. This strongly suggests the need for further improvements in the proposed

algorithm for dealing with higher dimensional (I > 6) problems.
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TABLE 2.1. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor
model, Algorithm LR, and Algorithm TB in Example 2.1 Gritton (1 — dim).

For Taylor order m = 2:
1 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 | 2%272 | 24273 | 24274 | 24279 [ 25270 | 24277
Horwm 1E4+6 | 1E4+5 | 2E4+4 |4E+3 |9FE+2 |2E+2 |6E+1 | 1E+1

Hrr 1E+6 | 8E+4|b5E+3 * * * * *
Hrp 1E+6|8E+4|bE+3|bE+2|bE+1|6E+0|7TE—-1|1E-1

R* — 8 8 8 8 8 8 8

Rrm - 14.2 5.8 4.5 4.2 4.1 4.0 4.0

Rrr — 17.9 15.5 — — — — —

Rre — 19.0 14.6 11.2 9.6 8.8 8.4 8.2

For Taylor order m = 4:
1 0 1 2 3 4 5 6 7

w(X(i)) 242701 2%x271 [ 2427224273 | 2%x27% [ 24279 | 2%x276 | 2277
Horm SE+5 | 8E+4 | 1E+4 |4E+3 |9E+2 |2E+2 | 2E+1 | 1E+1

‘Hrr TE+5|2E +4 * * * * * *
Hrps TE+5|2E4+4|6FE+2|2E+1|8E—-1|1E—-2|5FE—-4|1E -5
R* — 32 32 32 32 32 32 32
R - 10.8 5.0 4.1 4.0 4.0 4.0 4.0
RLr — 38.0 — - - - - -

RrB — 38.0 35.9 33.9 32.9 32.4 32.2 32.1
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Table 2.1 (contd.): For Taylor order m = 6:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 242711 2%272 | 2%273 | 25274 [ 25275 | 25270 | 24277
Hrr TE+5|TE+4 | 1E+4 | 4E4+3 | 9E+2(2E+2 | 6E+1| 1E+1
Hir S5E+5| 3E+2 * * * * * *
‘Hrp 1E+5|3E+2|2E4+0|1E—-2|8E—-5|6E—-T|5E—-9|2FE—-10
R* — 128 128 128 128 128 128 128
R — 9.9 5.0 4.1 4.0 4.0 4.0 4.0
Rrr — 1375.0 — — — — — —
Rrp — 291.0 179.6 158.8 145.3 137.2 128.5 22.0
For Taylor order m = 8:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 242711 2%272 | 25273 | 25274 | 2%x27% | 2%x276 | 2x2°7
Hras TE+5|TE+4 | 1E+4 | 4E+3 | 9E4+2 | 2E+2 | 6E4+1 | 1E+1
Hir 2E+5 | 3E+0 * * * * * *
‘Hrs 2E+4 | 3E+0|4E—-3|6E—-6 | 1E—-8|2E—-10|2E—-10 | 2E—10
R* — 512 512 512 512 512 512 512
R — 9.3 4.9 4.1 4.0 4.0 4.0 4.0
RLr — 6F +4 — — — — — —
R — 5170.6 | 805.8 671.7 587.7 518.4 12.1 0.9
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TABLE 2.2. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor

2. An improved Taylor-Bernstein form for higher order convergence

model, Algorithm LR, and Algorithm TB in Example 2.2 Jennrich and Sampson (2 — dim).

For Taylor order m = 2:

i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 | 2x272 | 24273 | 24274 | 2%27° [ 25270 | 24277
Hrr 3E4+5|1E+2 |4E+0 | 5FE—-1|1E—-1|3E—-2 | T7TE—-3 | 2E -3
Hir SE+5|1E+2 | 2E+0 * * * * *
Hrs SE4+5|1E+2 |2E+0|8E -2 |5E—-3|3E—-4|2E—-5|2E—6
R* — 8 8 8 8 8 8 8
R — SE+3| 256 6.7 4.5 4.1 4.0 4.0
Rrr — 3E+3 | 50.2 — — — — —
Rrs — SE+3 | 483 22.6 17.1 14.6 12.7 11.1
For Taylor order m = 4:
i 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 1 242711 2%272 | 2%273 | 25274 [ 25275 | 25270 | 24277
Hoa 4E+6 | 7TE+1|2E+0|bE—-1|(1E—-1|3E—-2|7TE—-3| 2E -3
Hir 4F 4+6 | 6E + 1 * * * * * *
‘Hrp 4E+6 |6E+1 | 2E—-1|2FE—-3|3E—-5|5E—-7|9E -9 | 2FE - 10
R* — 32 32 32 32 32 32 32
R — 6E+4| 299 4.7 4.1 4.0 4.0 4.0
Rrr — TE+4 — — — — — —
Rrp — TE+4 ] 251.7 104.4 74.4 61.9 53.7 47.6
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Table 2.2 (Contd.) For Taylor order m = 6:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 1 2272 | 24273 | 24274 | 25275 | 25276 | 24277
Hry 2E4+T7|4E+1 | 2E+0 | B3E—-1|(1E—-1| 3E—-2 | TE—-3 | 2E—3
Hrr 2E+T | 2E+1 * * * * * *
Hrs 2E+7|2E+1 |2E—-2 |4E—-5|1E—-7|5E—-10| 1EF—-12 | 3E —12
R* — 128 128 128 128 128 128 128
R — S5E +5 16.7 4.4 4.1 4.0 4.0 4.0
Rrr — 8E +5 — — — — — —
Rrs — S8E+5 | 1E+4+3 | 456.8 311.2 256.2 495.6 0.3
For Taylor order m = 8:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 1 24272 | 2%273 | 2274 | 2%x275 | 2%x270 | 24277
Hr 4E+T7 |2E4+1 | 2E+0|bE—-1| 1E—1 | 3E—-2 | TE—-3 | 2E—3
Hrr 4E +7 | TE+0 * * * * * *
Hrs AE+T7T|7TE+0|1E-3|6E—-T7|5F—-10|2E—-12 | 2E—12 | 3E — 12
R* — 512 512 512 512 512 512 512
Rom — 2E+6 8.6 4.3 4.1 4.0 4.0 4.0
Rrr — 5E +6 — — — — — —
Rrs — SE+6|5E+3|2E+3| 1E+3 205.6 1.0 0.7
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TABLE 2.3. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor

model, Algorithm LR, and Algorithm TB in Example 2.3 Levy (3 — dim).

For Taylor order m = 2:

2. An improved Taylor-Bernstein form for higher order convergence

i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 | 2%272 | 24273 | 24274 | 24279 [ 25270 | 24277
Horwm 2E+2 |3E+1 |b5E+0|1E+0|2E—-1|3E—-2|1E-2|3E -3
Hrr 2E+2 | 2E+1 | 2E+0 * * * * *
Hrp 2E4+2 | 2E+1 |2E+0|3E—-1|3E—-2 |4E -3 |5E—-4 | TE -5
R* — 8 8 8 8 8 8 8
R — 6.7 5.8 5.0 4.6 4.3 4.1 4.0
Rrr — 9.3 8.7 — — — — —
Rrs — 9.3 8.8 8.4 8.2 8.1 8.1 8.0
For Taylor order m = 4:
1 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 1 24272 | 24273 | 24274 | 24275 | 2276 | 2%2°7
Hrwm 2E+2 |3E+1|b5E+0|1E4+0|2E—-1|5E-2| 1E-2 | 3E-3
Hrr 2FE+1 | 1FE -1 * * * * * *
Hrp TE+0|1E—-1|2FE—-3|4E—-5|1E—-6|3E—-8|8E—-10 | 2E —11
R* — 32 32 32 32 32 32 32
Rrm — 6.5 5.6 5.0 4.6 4.3 4.1 4.1
Rrr — 203.0 — — — — — —
Rrp — 72.0 53.2 46.1 40.6 36.8 34.9 51.5
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Table 2.3 (Contd.) For Taylor order m = 6:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2270 | 25272 | 2x273 | 2%27% | 2%27° | 2%x270 | 24277
Hrr 2E+2 | 3E+1| 53E+0 |1E4+0|2E—-1| BbE—-2 | 1E—2 | 3E—-3
Hir 1E4+0| 8E -3 * * * * * *
HrB 1E+0|8E—-3|7T6E—-5|bFE—7|4E—-9 | 2E—11 | 9F —12 | 9E — 12
R* — 128 128 128 128 128 128 128
R — 6.4 5.6 5.0 4.6 4.3 4.1 4.0
Rrr — 143.4 — — — - — _
Rrp — 143.4 135.7 132.0 130.3 185.4 2.26 0.96
For Taylor order m = 8:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 124271 2%272| 25273 | 2x274 2% 275 2276 | 25277
Hras 242 |3E4+1|8E40| 1IE+0 | 2B -1 5K —2 1EF—-2 | 3E -3
Hir 1E -2 | 2E -5 * * * * * *
‘Hrs 1E—-2|2E—-5|3E—-8|4E—-11 |9F —-12 | 10E—-12 | 9E —12 | 9F — 12
R* — 512 512 512 512 512 512 512
Rom — 6.4 5.6 5.0 4.6 4.3 4.1 4.1
RLr — 738.8 — — — — — —
Rrp — 738.9 704.2 643.3 4.6 0.9 1.0 0.9
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TABLE 2.4. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor

2. An improved Taylor-Bernstein form for higher order convergence

model, Algorithm LR, and Algorithm TB in Example 2.4 Trigonometric (4 — dim).

For Taylor order m = 2:

i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 | 2%272 | 24273 | 24274 | 24279 [ 25270 | 24277
Horwm AE+2 (9E+1 | 2E+1 |SE+0 | 1E+0 | 3E—-1 | TE—-2|2E -2
Hrr 3E4+2|3E+1|3E+0 * * * * *
Hrp 3E4+2|3E+1|3E+0|3E—-1|3E—2|4FE -3 |5E—-4|TE -5
R* — 8 8 8 8 8 8 8
R — 4.9 4.5 4.2 4.1 4.1 4.0 4.0
Rrr — 10.5 9.5 — — — — —
Rrs — 10.5 9.5 8.8 8.4 8.2 8.1 8.1
For Taylor order m = 4:
1 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 1 24271 2%272 | 2%273 | 25274 [ 25275 | 25270 | 24277
How AE+2 |9E+1 | 2E+1 | b5E+0|1E+0|3E—-1|TE—-2| 2E -2
Hir 1E+1|2E -1 * * * * * *
Hrp 1IE+1|2E—-1|5E—-3|1E—4|3E—-6|8E—-8|2FE—-9 | 7TE—11
R* — 32 32 32 32 32 32 32
Ry — 4.9 4.4 4.2 4.1 4.1 4.0 4.0
Rir — 56.3 — — — — — —
Rrp — 56.3 50.4 44.5 39.8 36.5 34.3 30.6
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Table 2.4 (Contd.) For Taylor order m =6 :
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 1 2272 | 24273 | 24274 | 25275 | 25276 | 24277
Hry AE+2|(9E+1|2E+1 |bE+0|1E+0| 3E—-1 | TE—2 | 2E -2
Hrr 2E+0 | 9FE -3 * * * * * *
Hrs 2E4+0|9F -3 |6E—5 |4E -7 |3E—-9 | 3E—-11 | 7TE—-12 | TE—12
R* — 128 128 128 128 128 128 128
R — 4.9 4.4 4.2 4.1 4.1 4.0 4.0
Rrr — 189.0 — — — — — —
Rrp — 189.0 167.6 151.3 140.5 99.2 3.6 1.0
For Taylor order m = 8:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 | 2271 | 2272 | 2%273 | 2%27% | 2x275 | 2%276 | 24277
Hr AE+2 (9E+1|2E+1 | BE4+0 | 1E4+0 | 3E—-1 | TE—-2 | 2E -2
Hrr 5F —1 | 6FE -5 * * * * * *
‘Hrp SE—1|6FE—-5|8E—8|1E—-10|8E—-12 |7TE—-12 |TE—-12 | TE —12
R* — 512 512 512 512 512 512 512
R — 4.9 4.4 4.2 4.1 4.1 4.0 4.0
Rrr — 828.6 — — — — — —
Rrp — 828.6 734.6 623.2 17.2 1.1 1.0 0.9
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TABLE 2.5. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor

2. An improved Taylor-Bernstein form for higher order convergence

model, Algorithm LR, and Algorithm TB in Example 2.5 Griewank (5 — dim).

For Taylor order m = 2:

i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 | 2%272 | 24273 | 24274 | 24279 [ 25270 | 24277
Horwm 9F —1|1E—-1|2E—-2 |bE—-3|1E—-3|3E—4|7TE—-5|2E -5
Hrr 9F —1 | 6E -2 | bE -3 * * * * *
Hrp 9F -1 |6FE -2 |bE -3 |6E -4 |6E—-5|TE—6 | 9E -7 | 1E -7
R* — 8 8 8 8 8 8 8
R — 8.2 5.0 4.4 4.2 4.1 4.0 4.0
Rrr — 14.3 11.2 — — — — —
Rrs — 14.3 11.2 9.7 8.9 8.5 8.2 8.1
For Taylor order m = 4:
1 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 1 24272 | 24273 | 24274 | 24275 | 2276 | 2%2°7
Hrwm 9F -1 |1E—-1|2E-2|5F—-3|1E—-3|3E—-4| TE-5 | 2E-5
Hrr 4F —1 | 9F -3 * * * * * *
Hrps 4FE -1 |(9F -3 |2E—-4 |TE—-6 |2E—-T7|6FE—-9 | 2E—10 | 3£ —12
R* — 32 32 32 32 32 32 32
Rrm — 8.3 5.0 4.4 4.2 4.1 4.0 4.0
Rrr — 43.0 — — — — — —
Rrp — 43.0 37.8 35.1 33.6 32.9 32.6 67.3
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i 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 1 2271 |1 25272 2%273 | 2274 | 2%x275 | 2%x270 | 2%2°7
Hrr 9E -1 |1E—-1|2E-2|5F—-3 | 1E-3 | 3E—4 | TE—-5 | 1IE—-5
Hir 6F —2 | 3E -4 * * * * * *
HrB 6F—2|3E—-4|2E—-6 | 1F—-8|9F—-11 |6E—-12 | 1E—11 | 9E — 12
R* — 128 128 128 128 128 128 128
R — 8.1 5.1 4.4 4.2 4.1 4.0 4.0
Rrr — 196.1 — — — — — —
Rrp — 196.1 166.2 148.6 143.4 14.3 0.53 1.3
For Taylor order m = 8:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 | 2271 | 2272 | 2%273 | 2%27% | 2x275 | 2%276 | 24277
Hr 9F -1 |(1E-1|2E-2 | bE-3 | 1E—-3 | 3E—-4 | TE-5 | 1E-5
Hrr 1E—-2|2E -5 * * * * * *
Hrp 1E—-2|2FE -5 |4F -8 |7TE—-11 | 1EF—-11 |7TE—-12 | 1E—11 | 9F — 12
R* — 512 512 512 512 512 512 512
R — 8.1 5.1 4.4 4.2 4.1 4.1 4.0
Rrr — 599.2 — — — — — —
Rrp — 599.2 583.4 557.5 7.2 1.4 0.6 1.3




30 2. An improved Taylor-Bernstein form for higher order convergence

TABLE 2.6. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor

model, Algorithm LR, and Algorithm TB in Example 2.6 Trigonometric (6 — dim).

For Taylor order m = 2:

i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 | 2%272 | 24273 | 24274 | 24279 [ 25270 | 24277
Horwm 1IE+3|3E+2|6E+1|2E+1|3E+0|1E+0|2E—1|5FE —2
Hrr 9E+2 | 9E+1 | 9E+0 * * * * *
Hrp 9F+2 |9FE+1 |9E+0 | 1E+0 | 1E—-1|2E—-2 | 2E -3 | 2E -4
R* — 8 8 8 8 8 8 8
R — 5.0 4.5 4.3 4.1 4.0 4.0 4.0
Rrr — 10.1 10.1 — — — — —
Rrs — 10.1 9.3 8.7 8.4 8.2 8.1 8.1
For Taylor order m = 4:
1 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 1 24271 2%272 | 2%273 | 25274 [ 25275 | 25270 | 24277
How 1IE+3|3E+2|6E+1|1E4+1|3E+0|1E+0|2E—-1| 5E—2
Hir 4F +1 | 7TEF —1 * * * * * *
Hrp 4E+1|7TE—-1|1E—-2|2FE—-4|5E—-6|2E—7|3E—-9 | 1E—-10
R* - 32 32 32 32 32 32 32
R - 5.0 4.5 4.2 4.1 4.1 4.0 4.0
Rir — 61.3 — — — — — —
Rrp — 61.3 56.9 51.6 46.2 41.2 37.1 28.5
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Table 2.6 (Contd.) For Taylor order m =6 :
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 1 2272 | 24273 | 24274 | 25275 | 25270 | 24277
Horwm 1E+3|3E+2|6FE+1|1E4+1|3E+0| 1E4+0 | 2E—1 | bE -2
Hir TE+0|4FE — 2 * * * * * *
Hrp TE+0|4FE -2 |2E—4 |2E—-6 |1E—-8 | 1E—-10 | 3F—11 | 3E —-11
R* — 128 128 128 128 128 128 128
R — 5.0 4.5 4.3 4.1 4.1 4.0 4.0
Rrr — 176.4 — — - - _ _
Rrp — 176.4 157.8 144.9 136.8 103.7 4.4 1.0
For Taylor order m = 8:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 [ 2271 | 2272 | 2%273 | 2%27% | 2%27% | 2%276 | 24277
Horm 1E+3|3FE+2|6E+1| 1E+0 | 3E4+0 | 1E4+0 | 2E—1 | BE—2
Hir 1F—-1|2F -4 * * * * * *
Hrp 1FE—1|2E—4|2E—-7|3E—-10|2F—-11 |3FE—-11 | 3E—-11 | 3F —11
R* — 512 512 512 512 512 512 512
R — 5.0 4.5 4.3 4.1 4.1 4.0 4.0
Rrr — 931.7 — — — — — —
Rrp — 931.7 852.5 700.7 10.7 0.9 0.8 1.2

TABLE 2.7. Average execution times with various algorithms. The time is in seconds, unless otherwise

stated. The average is taken over all ¢, and all Taylor orders m. Note that with Algorithm LR, mostly

only one subdivision (¢ = 1) is found possible in the problems.

Average Execution Time
Example Name dim | Taylor model | Algorithm LR | Algorithm TB
2.1 Gritton 1 0.01 0.07 0.04
2.2 Jennrich & Sampson | 2 0.11 0.01 0.15
2.3 Levy 3 0.12 0.09 0.20
2.4 Trigonometric 4 0.12 0.35 3.60
2.5 Griewank ) 0.20 3 183
2.6 Trigonometric 6 0.23 6 3 hours
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Global optimization using the improved
Taylor-Bernstein form

3.1 Introduction

Let f: X C R — R be a m + 1 times differentiable function for some positive integer m.
We seek global optimization algorithms that are able to efficiently determine arbitrarily good
lower bounds for the minimum of f (X).

Many algorithms based on interval analysis (IA) are available to solve this global optimiza-
tion problem, see for example, [13], [17], [31] and the references cited therein. IA methods are
usually based on branch and bound techniques, that is, they start from the initial box X ,
subdivide X and store the subboxes in a list, discarding subboxes which are guaranteed not
to contain a global minimizer until the desired accuracy in terms of the width of the intervals
in the list is achieved. A basic branch and bound algorithm of TA is the Moore-Skelboe (MS)
algorithm [31]. Although the MS algorithm is reliable, it is somewhat slow to converge in ‘dif-
ficult’ problems, when inclusion functions of first and sometimes even second orders are used.
Faster convergence could possibly be obtained with higher order inclusion functions, and it
is of interest in this work to investigate their effectiveness in some such ‘difficult’ problems.

Our proposed algorithm for global optimization uses the TB form proposed in Chapter 2 as
an inclusion function form for the objective function f in the MS algorithm. As the TB form
is an inclusion function form having high order convergence property, we expect to obtain
faster convergence with this form. The TB form also allows us to make the cut-off test and
termination condition more effective, and we incorporate these modifications in the proposed

algorithm.
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We can also have the Taylor model of Berz et al. as an inclusion function form in the MS
algorithm as done, for instance, in the preliminary work in [18]. We call such an algorithm as
Algorithm TMS below. We also test and compare the performance of the proposed algorithm
with that of Algorithms TMS and MS on six ‘difficult’ examples.

3.2 Background

3.2.1 Algorithm MS

We first outline the well-known MS algorithm of TA. Actually, the algorithm below is the MS
algorithm augmented with the monotonicity test and the cut-off test of Ichida and Fujii [16].

However, for convenience we refer to it as just the MS algorithm.

MS Algorithm for Global Optimization [31]

Inputs: The box X, natural inclusion functions [24] F and F'’ for the function f and its
Jacobian, respectively, and an accuracy parameter ¢.

Output: A lower bound, of accuracy e, on the global minimum of f over X. This lower

bound is output as the value of variable y in the last but one step below.
BEGIN Algorithm

1. Set Y = X.

2. Calculate F (Y).

3. Set y = min F (Y).

4. Initialize the list L = ((Y,y)) and the cut-off value z = max F' (Y).

5. Choose a coordinate direction k parallel to which Y has an edge of maximum length!,
i.e., choose k as
E={i:w(Y)=w(Y;)}

6. Bisect Y in direction k getting boxes V! and V? such that Y = V! |J V2

7. Monotonicity test (see Remark 3.1): discard any box V' if 0 ¢ FJ/ (V) for any j €
{1,2,...,l} and i =1,2.

8. Calculate F (Vl) and F' (VQ) .

I For other bisection strategies that have often been found more efficient, see, for instance, [7]. The same remark also

holds for the bisection step in Algorithms TMS and TBMS described in the sequel.
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9. Set v' = min F’ (VZ) fori=1,2.
10. Update the cut-off value z as

z = min {z,maxF (Vl) ,max F' (VQ)}

11. Remove (Y,y) from the list L.

12. Add the pairs (Vl, vl) , (VQ, v2) to the list L such that the second members of all pairs

of the list do not decrease.
13. Cut-off test: discard from the list all pairs whose second members are greater than z.
14. Denote the first pair of the list by (Y, y).
15. If the width of F (Y) is less than ¢, then print y and EXIT algorithm.

16. Go to step 5.

END Algorithm

The first pair (Y, y) of the list in each algorithmic iteration is called the leading pair, and
Y the leading box.

Remark 3.1 In the monotonicity test if 0 ¢ FJ/ (VY then the interior of V' cannot contain
a global minimizer. The edge of V* still can contain global minimizer if that part of the edge
which has the smallest function values is also part of the edge of X. Otherwise, no global

minimizer lies in V. For details, see [31].

3.2.2  Algorithm TMS

In this algorithm, we simply use the Taylor model of Berz et al. [3] as an inclusion function
form for the objective function f in Algorithm MS. As this involves using Taylor model in
the Moore-Skelboe algorithm, we call it as Algorithm TMS. Algorithm TMS is not new in

the literature, and has been proposed and investigated, for instance, in [18].

3.3 Proposed optimization Algorithm TBMS

Consider the leading box Y in a given iteration of the MS algorithm, and apply Algorithm
TB for finding an enclosure of f(Y) using Frp (Y). From (2.11) and Theorem 2.5,

F(Y) € Fra(Y) = p(Y) + R(Y) = [minp (Y) ,max5 (Y)] + [min B (Y) , max R (Y)]
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F(Y) C minp(Y) +min R (Y) ,maxp (Y) +max R (Y)] (3.1)

Since we obtain the exact range of p (Y) in Algorithm TB, we can also construct the so-called

inner enclosure of f(Y) as
[minp (Y) + max R (Y),maxp (Y) +min R (Y)] C f(Y) (3.2)
>From (3.1) and (3.2),

minp (Y) + max R (Y),maxp(Y) +min R(Y)]

which implies
ming (Y) +minR(Y) < minf(Y) < minp(Y)+maxR(Y) (3.3)

Therefore, with Frp as an inclusion function, we can redefine the cut-off level in the MS
algorithm as z = minp (Y) + max R (Y) which is obviously smaller and hence more effective
than the original cut-off level of max F'(Y) = maxp (Y) + max R (Y) . Further, the error on

min f(Y) is seen from the above inequality to be no greater than
{minp (Y) + maxR(Y)} — {minp(Y)+minR(Y)} =max R (Y) —min R(Y) = w (R(Y))

This means that using Frrp, we can redefine the termination condition in MS algorithm based
on the width of R (Y), which is smaller and hence more effective than the original one based
onw (F(Y)) =w(p(Y)) +w(R(Y)).

Based on these ideas, we make the following modifications to the MS algorithm:

1. The TB form Fpp is used as an inclusion function form for f. Using this form, an

enclosure of the range of f over a given box can be obtained using Algorithm TB.
2. The cut-off value is now defined as z = minp (Y) + max R(Y).

3. The termination criterion is modified, based on the width of the remainder interval
R(Y).

Since this global optimization algorithm involves using Taylor - Bernstein form in Moore-
Skelboe algorithm, we call it as Algorithm TBMS.

Algorithm TBMS

Inputs: The box X, order m of the Taylor form to be used, natural inclusion function F’

for the Jacobian of the function f, and an accuracy parameter e.
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Output: A lower bound, of accuracy e, on the global minimum of f over X. This lower

bound is output as the value of variable y in the last but one step below.
BEGIN Algorithm

10.

11.

12.

13.

14.

15.

16.

. Set Y =X,
. Calculate Frp (Y) using Algorithm TB : [Frg (Y),p(Y),R(Y) =TB(Y, f,m)

. Set y = min Frp (Y).

Initialize the list L = ((Y,y)) and the cut-off value z as

z=minp(Y)+maxR(Y)

. Choose a coordinate direction k parallel to which Y has an edge of maximum length,

i.e., choose k as
E={i:w(Y)=w(Y;)}

. Bisect Y in direction k getting boxes V! and V? such that Y = V1| J V2.

Monotonicity test (see Remark 3.1): discard any box V' if 0 ¢ FJ/(Vz) for any j €
{1,2,...,1} and i =1, 2.

. Calculate Frp (Vl) and Frpg (Vz) using Algorithm TB.

. Set v' = min F (Vz) fori=1,2.

Update the cut-off value z as
z = min {z, min p (Vl) + max R (Vl) ,min p (VZ) + max R (VQ)}

Remove (Y,y) from the list L.

Add the pairs (Vl, vl) , (VQ, v2) to the list L such that the second members of all pairs

of the list do not decrease.

Cut-off test: discard from the list all pairs whose second members are greater than z.
Denote the first pair of the list by (Y,y).

If the width of R(Y) is less than e, then print y and EXIT algorithm.

Go to step 5.
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END Algorithm

The convergence properties of Algorithm TMS as well as that of Algorithm TBMS follow
immediately from the convergence results for inclusion functions of higher order in the MS
algorithm, as given by Moore and Ratschek in [25] and Ratschek in [29].

3.4 Numerical tests

We test and compare the performances of Algorithms TBMS, TMS, and MS on some exam-
ples. We use two values of accuracy, ¢ = 107% and 107%. We choose the following measures
for the tests: number of iterations, computational time, space-complexity in terms of maxi-
mum list length, and the final list length. For all our computations, we use a PC/Pentium
ITT 800 MHz 256 MB RAM machine with a FORTRAN 90 compiler, and version 8.1 of the
COSY-INFINITY package of Berz et al. [2], [15].

Example 3.1 Gritton’s second problem in Chemical Engineering [18]: The function is

f(z) = —371.93625 — 791.2465656 * = 4 4044.944143 * 2 + 978.1375167 23
—16547.8928 2 + 22140.72827 * 2° — 9326.549359 * 2% — 3518.536872 * x”
+4782.532296 * 2° — 1281.47944 % 7 — 283.4435875 * 210 + 202.6270915 !
—16.17913459 * % — 8.88303902 * '3 + 1.575580173 * z'* + 0.1245990848 * z°
—0.03589148622 * % — 0.0001951095576 * 7 + 0.0002274682229 * '®

This is a unidimensional problem, with | = 1. We take the initial domain as X = ([1,2]).

Algorithm MS is unable to provide a solution, even after 1 hour, and is therefore aborted.
The performances of Algorithms TMS and TBMS are given in the below Table?.

2In the Tables to follow, m denotes Taylor order, € - accuracy, It - iterations, t - time in seconds, MLL - maximum
list length, FLL - final list length. Moreover, a starred entry denotes that the algorithm is aborted due to excessive

computation time taken (greater than an hour).
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TBMS TMS
m| e It | t |MLL|FLL|It| t |MLL |FLL
2 1079 | 50| 041 37 1 | 58(0.32]| 47 2
1079 | 52 | 0.43 | 37 1 |64]034]| 47 1
4 11079 7 1008| 6 1 |[18]014| 8 2
100% |9 |011]| 6 1 |24(018| 8 1
6 11079 | 3 |006| 2 1 17017 | 7 2
107% | 4 |0.06] 2 1 [23]021| 7 1
8 107 | 2 |0.04| 2 1 | 17020 7 2
107% | 3 [0.06] 2 1 [23]026| 7 1

Both Algorithms TMS and TBMS are able to find the global minimum fairly quickly, as
—0.11811...... It may be noted that Kearfott and Arazyan report in [18] that the software
GLOBSOL had some difficulty in tackling this problem.

Example 3.2 Jennrich and Sampson function [26, problem 6]. The two dimensional function
18
10
@)=Y fil@)?,  filw) =2+ 2i = (exp(izn) + exp(ia2))
i=1
We take the initial domain as X = ([—1,1],[—1,1]).

The performances of the various Algorithms are as under.

TBMS TMS
m| e It t | MLL | FLL | It t | MLL | FLL
2 11079 | 136 | 1.75 | 18 3 |354| 156 | 32 23
1079 | 141 | 2.00 | 18 2 432 2.00 | 32 24
4 11079 62 | 1.20| 14 1 349 | 3.11 | 32 23
1009 | 65 | 145 | 14 1 [427] 395 | 32 | 24
6 1079 | 53 | 1.66 | 14 1 [349] 6.24 | 32 23
1079 | 55 [ 1.81| 14 1 | 427 | 784 | 32 24
8 1079 | 29 | 1.66 | 10 1 |349]11.35| 32 23
1009 | 31 [ 1.83| 10 1 | 427| 1412 32 | 24
MS

€ It t | MLL | FLL

10793 | 1443 | 6.71 | 81 42

1079 | 1961 | 10.20 | 81 37
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The global minima is found in each case as 124.36218.....

Example 3.3 Bard function [26, problem §8]. The three dimensional function is

Uj
VT + Wi T3

15
fa) =3 Fi@? file) =i <x +
=1

) Ui = 1,v; = 16 — 1, w; = min(u;, v;)

where, the values of y; for i = 1,...,15 are given in the cited paper. We take the initial
domain as X = ([—0.25,0.25],[0.01, 2.5}, [0.01, 2.5]).

The performances of the various Algorithms are as under.

TBMS TMS
m| e It t | MLL|FLL | It t MLL | FLL
2 11079 | 406 | 16.64 | 74 45 | 3145 | 76.13 | 822 | 772
1079 | 520 | 32.13 | 74 7 x| > 3600 | = *
411079 | 191 | 35.00 | 38 7 | 3124 | 86.13 | 818 | 772
1079 | 202 | 60.65 | 38 1 x| > 3600 | x *
6 | 1079|162 | 67.80 | 38 2 | 3123 | 122.81 | 818 | 772

1079 | 165 | 90.22 | 38 1 x| > 3600
8 | 10793 | 157 | 79.90 | 38 2 | 3122 | 181.05 | 818 | 772
1079 | 159 | 92.03 | 38 1 x| > 3600 | x *

MS
£ It t MLL | FLL

10793 | 6122 | 466.56 | 1643 | 1622
1079 | % | > 3600 * *

The global minima found using each of the algorithms is 8.21487....F — 03.

Example 3.4 Multidimensional function of Makino and Berz [21, first example]. The func-

tion s
4t
flz) = B2 9p 9y — Tas(1 + 2a9) —
3z1 + 1,/ %
) 6o (39 + 13)* 51 tanh(0.923) )
h(0. -2 2z3 — -2
sinh(0.5 + 823+ 7) + 323 Oxs(2z3 — 5) + N Oxg sin(3z3)

This is a three dimensional problem with | = 3. We take the initial domain as given in the
paper cited, i.e.,

X = (]1.95,2.05],]0.95, 1.05], [0.95, 1.05])
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Algorithm MS is unable to provide a solution even after 1 hour, and is aborted. The

performances of Algorithms TMS and TBMS are as under.

TBMS TMS
m| e It | t |MLL|FLL|It| t |MLL |FLL
211079 | 5 |012]| 2 1 |44(017| 15 12
107% [ 15030 2 1 [64]030]| 15 11
4 11079 0 |004]| 1 1 |44 (047 15 12
107% | 2 [0.07] 2 1 [64]064| 15 11
6 {1079 0 | 004 | 1 1 [44]095| 15 12
1070% | 0 [005] 1 1 [64]135] 15 11
8 11079 ] 0 |0.06| 1 1 [44|175| 15 12
107% | 0 [0.08] 1 1 [64]246| 15 11

The global minimum is given in the cited paper as —2.31166..... Algorithms TMS and
TBMS are able to find this global minimum successfully and quickly.

Example 3.5 Brown and Dennis function [26, problem 16]. The function is

20 .
. i
J@) =) fi@)?  fi(w) = (w1 + tiwy — exp (4))* + (w3 + wasin (t) — cos (1)), =g
i=1
This is a 4—dimensional problem. Following [12], we take the initial domain as

X = ([-10,0,—100, —20], [100, 15,0,0.2])

Algorithm MS is unable to provide a solution, even after 1 hour, and is aborted. The

performances of Algorithms TMS and TBMS are as under.

TBMS TMS

m € It t MLL | FLL | It t | MLL | FLL
211079 | 250 | 35.95 23 418 | 2.53 | 40 18
1079 | 259 | 85.18 23 476 | 3.09 | 45 24
411079 | 66 7.08 15 397 | 4.38 | 40 18
107% | 66 7.46 15 455 [ 5.35 | 45 24
6 | 1079 | 47 | 29.67 15 397 | 5.37 | 40 18
1079 | 47 | 31.23 15 455 [ 6.64 | 45 24

8 11079 | 40 | 11336 | 15 397 | 6.67 | 40 18
1079 | 40 | 116.57 | 15 455 | 8.14 | 45 24

— == == == =
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The global minimum is given in the above cited paper as 88860.47976.... Algorithms TMS
and TBMS are able to find this global minimum successfully and fairly quickly, for m > 4.

Example 3.6 Kowalik and Osborne function [26, problem 15]. The function is

xl(u? + ui:cg)
(%2 + uizs + x4)

11
f@) =Y h@R fi@) = -

where, the values of y; and u; for i = 1,...,11 are given in the cited paper. We take the

initial domain as

X = ([0.1,0.2],]0.1,0.2],[0.1,0.2],0.1,0.2))

The performances of the various Algorithms are as under.

TBMS TMS
m € It t MLL | FLL | It t MLL | FLL

2 11079 | 33| 21.57 5 5 | 422 2.47 219 | 219
1079 | %« | > 3600 * s x | > 3600 s *

4 11079 | 6 | 16.49 5 5 5.60 211 | 211
1079 | 23| 571.60 | 14 1 * | > 3600 | = *
6 1079 | 0 7.16 1 1 12.28 | 211 | 211
1079 | 8 | 822.73 6 2 * | > 3600 | = *
8 [107% | 0 | 11.60 1 1 24.31 | 211 | 211
1079 | 6 | 1294.16 | 5 1 x| > 3600 | *
MS
€ It t MLL | FLL

10793 {204 | 0.25 174 | 173
10705 * > 3600 * *

The global minima of this function over the given domain is 1.02734E — 03.

3.5  Discussion

Based on the results of the above tests, we make some general observations.

Algorithm MS: takes excessive computation time in all examples, except example 3.2,
and for lower accuracy in examples 3.3 and 3.6. Algorithm MS generally requires more time,
iterations and list lengths than Algorithms TMS and TBMS.

Algorithm TMS: gives the results in reasonable computational time in all examples for

lower accuracy, but needs excessive time in two examples for higher accuracy (examples 3.3
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and 3.6). The computational time increases as the order m increases. An interesting feature is
that the number of iterations remains almost the same for m > 4, though in a few examples
there is a drop in this number when m is increased from 2 to 4. The same holds for the
space-complexity in terms of maximum list length and final list length.

Algorithm TBMS: the number of iterations decreases as the order m is increased. A
considerable reduction is obtained between m = 2 and 4. The maximum list length also
decreases considerably between m = 2 and 4, but decreases little thereafter. In most examples
(examples 3.2, 3.4, 3.5, and 3.6), the computational time first decreases, then increases with
m, with the least time required for m = 4.

Algorithm TBMS is much faster than Algorithm TMS in all examples, except example
3.5. The speed-up is about 3 — 4 times in Examples 3.1, 3.2, and 3.6, and is as high as
10 — 40 in examples 3.3 and 3.4. The speed-up gets better with accuracy. In all examples,
Algorithm TBMS requires much smaller list lengths and much lesser number of iterations
than Algorithm TMS.

3.6 Conclusions

In summary, the preliminary tests indicate that Algorithms TMS and TBMS are quite effec-
tive compared to Algorithm MS, for lower accuracy problems. For higher accuracy problems,
Algorithm TBMS is the most effective one.

The best overall choice, in terms of the number of iterations, space-complexity, and speed

seems to be Algorithm TBMS with a medium Taylor order m = 4.
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A combined Taylor-Bernstein form for higher order
convergence

4.1 Introduction

In Chapter 2, an improved TB form Frp having the property of higher order convergence
was presented. As the domains shrink to small widths, the form Fpp usually successfully
computes the range enclosure with the property of higher order convergence, while the TB
form Fpp of Lin and Rokne [19] ‘fails’ to compute the range enclosures, due to excessively
high degrees of the involved Bernstein form (by ‘fail’ we mean that the computations are
aborted because of excessive memory and /or time requirements).

On the other hand, for large domain widths we find that the form Fpp usually fails to
compute the range enclosures, due to the excessive number of Bernstein subdivisions required.
Now, there are many application problems, for example, global optimization problems, where
the domain widths are initially quite large, but solution boxes of small widths are eventually
required. For such problems, neither of these two TB forms may be really effective over
the entire range of domain widths. However, it may be advantageous to introduce a new
inclusion form that appropriately switches between these two TB forms depending on the
domain widths, i.e., behaves as F i for ‘large’ domain widths, and as Frpg for ‘small’ domain
widths. As the domain shrinks from large to small widths, the new TB form is likely to be
more effective than the two existing TB forms Fpp and Fp g.

In this chapter, such a ‘combined’ TB form is proposed and numerically tested. In section
4.2, an algorithm to compute the combined TB form is presented. In section 4.3, the per-
formance of the combined TB form is numerically tested and compared with those of the

existing TB forms Frp and FLg, the Taylor model, and the simple natural inclusion form.
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For the testing, six benchmark examples with dimensions varying from 1 to 6 are considered,
and the higher order convergence property for orders up to 9 is examined. The results are

discussed in section 4.4. The concluding remarks of the chapter are given in section 4.5.

4.2 Proposed combined TB form

In Chapter 2, we observed that typically the Frp form requires excessive subdivisions for
‘large’ w (X), whereas the Fpz form requires excessively high degrees of Bernstein form for
‘small” w (X). It may be advantageous to have a new inclusion form that switches between
these two forms depending on the domain widths, i.e., behave as Frr for ‘large’ domain
widths, and as Frg for ‘small’ domain widths.

Let D be as in (2.6) and recall that N is the tuple of maximum degrees of x in p (x) given
by (2.1). The basic idea of the combined form is as follows. From (2.6) and (2.7),

e for ‘large’ w (X), D << N, so N’ = N. Therefore, for such domain widths, it would be
simpler and more efficient to use Frr based on a Bernstein form of degree N, rather
than Frp that involves successive subdivisions till the vertex property is satisfied on

every subdivision.

e for ‘small’ w (X), D >> N, so N’ >> N. Therefore, for such domain widths, it would
be more efficient to use Fp based on Bernstein form of degree N, rather than Fjp

that involves Bernstein form of high to very high degree.

Therefore, if N > D, we invoke Algorithm LR given in section 2.2.3 except that S is used in
place of S’. That is, we compute a non-sharp enclosure of the exact range of the polynomial
part of Taylor expansion using Bernstein polynomials of degree N. Otherwise, we invoke
Algorithm TB given in section 2.3, i.e., we compute the exact range of polynomial part of
Taylor expansion using subdivision and a vertex condition check on every subdivision. The
combined algorithm is called as Algorithm CTB and the resulting form as the combined TB
form, denoted Forp.

As Fopp uses either of the existing TB forms Fp iz or Fpp to enclose the function range
for any given domain width, and since Fr and Frp have the (m + 1)- th convergence order
property (see Chapter 2) , it follows that Forp also has the (m + 1)- th convergence order
property.

We next present Algorithm CTB to compute the combined TB form.

Algorithm CTB : [Forp (X),p(X),B* R(X),if] = CTB(X, f,m)

Inputs: The box X, an expression for the function f, and the order m of Taylor form to be

used.
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Output: Enclosure Fopp (X) of the range of f on X, the range p (X) of the polynomial part

of the Taylor form of f, an enclosure B* of the same, an enclosure R (X) of the remainder

part of the Taylor form, and a flag iy that takes the value zero resp. unity depending on

whether Frg resp. Frp form is used in the algorithm.

Note: Depending on whether F i resp. Fpp is used, the quantity p (X) resp. B* is set to

the empty interval.

1.

10.

For the given function f, compute Taylor coefficients of p in (2.3) in parallel with the

remainder interval R (X), using the Taylor model technique of Berz et al. [3].

. Relate the obtained Taylor coefficients to those of the power form in (2.1), and denote

the coefficients in this form as aj.

. Compute the [—tuple of indices D given by

D =(dy,...,d)), where dy,...,d; > [1/w(X)]™"
If N > D then go to the following step, else go to step 8.

Set flag iy = 0 and p (X) to the empty interval.

. Find a patch B (U) of Bernstein coefficients of p on U by executing Algorithm Patch:

B (U) = Patch (X, ay)
then compute an enclosure B* for the range of p (X) as

B* = [min B (U) ,max B (U)]

. Compute an enclosure for the range of f over X as

Forp (X) = B* + R(X)

Go to step 11.

. Set flag iy = 1 and B* to the empty interval.

. Compute the range p (X) using Algorithm Bounder :

P (X) = Bounder (X, ay)

Using R (X) obtained in step 1 and p (X) obtained in above step, compute an enclosure

for the range of f over X as

Ferp (X) =p(X) + R(X)
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11. RETURN Fyyp(X), p(X), B*, R(X), i; and EXIT.

END Algorithm

4.3 Numerical tests

The performance of the proposed inclusion function form is tested on the same six benchmark
examples chosen in Chapter 2. However, the centers of the domains are now taken differently
in some examples. Moreover, the domains also vary from fairly large to small widths.

A PC/Pentium IIT 800 MHz 256 MB RAM machine with a FORTRAN 90 compiler, and
version 8.1 of the COSY-INFINITY package of Berz et al. [15] are used for the testing.

In each example, the following are computed:

Fn1g (X) - using the simple natural inclusion function.

Frp (X) - using Taylor model of Berz et al. [20], computed with the COSY-INFINITY
package.

Frr (X) - using TB form of Lin and Rokne [19].

Frp (X) - using TB form in Chapter 2.

Forp (X) - using proposed combined TB form.

Finner(X) - using inner estimates of the range computed with the well-known Moore-
Skelboe optimization algorithm of interval analysis.

The examples are

Example 4.1 Gritton’s second problem in Chemical Engineering [18]: The 1 —dim function

18

f(z) = —371.93625 — 791.2465656 * = 4 4044.944143 * 2 + 978.1375167 23
—16547.8928 2% + 22140.72827  2° — 9326.549359 * 2% — 3518.536872 * z”
+4782.532296 * 2® — 1281.47944 % 2 — 283.4435875 * 210 + 202.6270915 1
—16.17913459 * 12 — 8.88303902 * '3 + 1.575580173 * 214 + 0.1245990848 * x1°
—0.03589148622 * ¢ — 0.0001951095576 * 17 + 0.0002274682229 * 1

The domain is X = [-14+27[-1,1]].
Example 4.2 Jennrich and Sampson function [26, problem 6]. The 2 — dim function is

10
flz) = Zfi(ac)z, fi(x) =24 2i — (exp(iz1) + exp(iz2))

The domain is X = [-1427[-1, 1H2.
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Example 4.3 Levy function [32, Problem LS8, pp. 204] The 3— dim function is

2
fle) = > (g —1)’(1+10sin®(wyiy1)) +sin® (7y1) + (y3 — 1),
=1
o (-1 . _
yio = 1+, i=1.3

The domain is X® = [9.5 + 27 [~1,1]]°.

Example 4.4 Trigonometric function [26, problem 26]. The 4 — dim function is

4

Zfz 2 filz —4—Zcoswj +i(1 —cosx;) —sinz;

j=1
The domain is X® = [1.75 + 274 [-1,1]]".
Example 4.5 Griewank function [32, Problem Griew5, pp. 205] The 5 — dim function is

x):Zi)io ﬁcos< >+1

1=1 1=1

The domain is X = [0.5427"[-1 1H5.

Example 4.6 Trigonometric function [26, problem 26]. The 6 — dim function is

6

Zfz =6— Zcosa:] + (1 — cosx;) — sinx;

7=1
The domain is X = [1.75 + 274 [—1, 1]]6.

The results for Examples 4.1 and 4.6 with the various forms are given' in Tables 4.1 to 4.6.
Table 4.7 gives domain width parameter ¢ and time taken by Algorithms TB and CTB to reach
an accuracy of 1E —10 for various Taylor orders in these examples. The data for Fi,z, Firay are
not given in the table because Fp g fails to produce results of this accuracy due to excessive
memory demands, whereas Frjps requires the domain width parameter ¢ >> 7, exceeding
the scope of the present investigations.The results using the natural inclusion function for
the examples are reported in Tables 4.8 to 4.13. In the Tables, the quantities H, R are
defined analogously to section 2.4. The new quantities M LL,t and SD denote the maximum
list length, computational time in seconds and the number of subdivisions required in the
Bernstein step. The subscripts for these quantities refer to the inclusion function form used.

Note that the results in all the Tables are rounded purely for display purposes.

ITn the Tables, a starred entry denotes that the execution is aborted due to excessive memory requirements.
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4.4 Discussion
>From the results given in the Tables, we observe that

1. With the Taylor model? as an inclusion function form, only quadratic convergence is
obtained in all problems, irrespective of the chosen Taylor order m. This is in line with

our earlier observations given in section 2.5.

2. For large domains, the form Fpp requires comparatively large times and memory than
Frr, and fails to compute the range enclosure for higher dimensional problems; the
form Ff i does not fail for any problem dimension. For small domains, the situation is
the reverse: the form Fpp fails for any problem dimension, while the form Frp does

not fail for any problem dimension.

3. In view of the above, the practical utility of F g is severely restricted as an inclusion
form for obtaining higher order convergence. Further, the form Fpg is not satisfactory
for large domain widths. Hence, neither of existing TB forms is really satisfactory in
application problems where the domain varies from large to small widths, due to any

domain splitting or subdivision techniques that may be employed.

4. The proposed form Forp does not fail to compute the range enclosure for any domain

width and for any problem dimension !

5. With the proposed form Fopp as an inclusion function form, in problems of up to 4—dim
higher order convergence of orders up to 9 is quite easily obtained?. In problems of 5
and 6— dim, higher order convergence of orders up to 9 is again obtained; however,
the computational demands are somewhat large for the 5 — dim problem, and become
excessive for the 6— dim one. This behavior is identical to that of Frg as observed in
section 2.5, and moreover is expected to be so, because Forpg reduces to Frg for small

domains.

6. With the existing TB form Frp, for large domains the maximum list length increases
with the problem dimension, and becomes excessive for the 6 — dim example. As the
domain width decreases, the maximum list length for Frg decreases and tends to zero.
On the other hand, the maximum list length with the combined form Forp is nil, for

any domain width and for any problem dimension !

2In version 8.1 of COSY-INFINITY package made available to us, the range of the polynomial part is evaluated by

simple interval arithmetic, see also [18].
3until we have overestimations of very small magnitudes (of order of E — 10 or less).



4.5 Conclusions 51

7. The computation time taken for Forp is smaller than that for Frg by as much as
12,000 times for large domain widths, by as much as 73 times for intermediate domain

widths, and is the same for small domain widths.

8. The overestimation given by Forp is usually about the same as that given by Frp - in
those cases where Frp succeeds in computing the range enclosures. A similar remark

holds with respect to the overestimation given by F g.

9. As seen from the Table 4.7 the best performance in terms of computational time and
number of iterations is given by the form Forp for Taylor order m = 4. This observation

is in line with the findings given in section 3.6.

10. For large domain widths, the natural inclusion form Fpy;p usually gives much less
overestimation than any of the more sophisticated Taylor or TB forms. This behavior
is perhaps expected. However, it is quite remarkable that the same is observed in a few

problems, even for small domain widths.

4.5 Conclusions

In all the examples considered, the proposed combined TB form indeed numerically exhibited
the higher order convergence property. The overestimation given by the combined TB form
was usually about the same as that given by existing TB forms Frp and Fppr - in all those
cases where the latter forms successfully computed the range enclosures.

Whereas the existing TB forms failed to compute the range enclosures for some domain
widths, the combined TB form did not fail to compute the same for any domain width and
for any problem dimension (in the context of the low to medium dimensions considered for
testing). The maximum list length needed by the combined TB form was nil, for any domain
width and for any problem dimension. Moreover, for large to intermediate domain widths,
the combined TB form was significantly faster than Frp, by as much as 2 — 4 orders of
magnitude.

A rather surprising behavior was exhibited by the simple natural inclusion form. For small
domain widths, the natural inclusion form sometimes gave much less overestimation than any
of the more sophisticated Taylor or TB forms. Since computation of the natural inclusion
form is relatively very cheap, the behavior suggests that it may be worthwhile computing
the range enclosure with this form for any domain width, and then intersecting it with that

found by a more sophisticated form. We pursue this point in the following chapter.
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TABLE 4.1. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor
model, Algorithm LR, Algorithm TB and Algorithm CTB in Example 4.1 Gritton (1 — dim).

For Taylor order m = 2:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2% 24 2% 23 2 % 22 2% 2!
Hrwm 2E4+34 |1E+29 |6E+23 [5E+18 | 2E+14 | 3E4+10 | 8E 47
Hrr 2E+34 | 1E429 |[6E+23 |SE+18 | 2E4+14 | 3E+10 | 8E+T7
Hrs 2E+34 | 1E4+29 |[6E+23 |SE+18 | 2E4+14 | 3E+10 | 8E+T7
Hers 2E4+34 | 1E+29 |6E+23 [5E+18 | 2E+14 | 3E4+10 | 8E 47
R* — 8 8 8 8 8 8
Rrm — 2E+5 | 2E4+5 | 1E+5 | 3E+4 | 5BE+3 | 4264
Rrr — 2E+5 | 2E4+5 | 1E+5 | 3E+4 | BE+3 | 426.5
Rrp — 2E+5 | 2E4+5 | 1E+5 | 3E+4 | bE+3 | 4265
Rers — 2E+5 | 2E4+5 | 1E+5 | 3E+4 | bBE+3 | 426.5
trag 1F-2 | 1E-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1IE-2 | 1E -2
LR 1F—-2 | 1IE-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1IE-2 | 1E -2
tre 1F-2 | 1E-2 | 1IE-2 | 1E—-2 | lIE-2 | 1IE-2 | 1E -2
tors 1F—-2 | 1IE-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1IE-2 | 1E -2
MLL7y — — — — — — —
MLLpR — — — — — — —
MLLrg
MLLcrB
SDrr — — — — — — —
SDrr — — — — — — —
SDrp 36 35 34 33 32 31 30
SDcrs 0 0 0 0 0 0 0
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i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 1 2%272 | 24273 | 2427 | 25270 [ 25270 | 24277
Hrm 1E+6 | 1E+5|2E+4|4E+3|9E+2 |2E+2 | 6E+1 | 1E+1
Hrr 1E+6 | 8E+4|H5E+3 — — — — —
Hrs 1E+6 | 8E+4|5E+3|5E+2|5E+1|6E+0|7E—-1|1F—1
Hers 1E4+6 | 8E+4|5E+3|5E+2|5E+1|6E+0|7TE—-1|1F—1
R* 8 8 8 8 8 8 8 8
Rim 50.6 14.2 5.8 4.5 4.2 4.1 4.0 4.0
RLr 50.6 17.9 15.5 — — — — —
RrB 50.6 19.0 14.6 11.2 9.6 8.8 8.4 8.2
Rers 50.6 19.0 14.6 11.2 9.6 8.8 8.4 8.2
trv 1E-2|1E-2|1E-2|1E-2|1E-2|1E-2|1E—-2 | 1E -2
tLR 1E—-2|1E—-2|1E -2 — — — — —
tre 1E—-2|1E—-2|1E-2|1E-2|1E—-2|1E-2|1E-2 | 1E -2
tors 1E—-2|1E—-2|1E-2|1E-2|1E-2|1E-2|1E-2|1F -2
MLL7 — — — — — — — —
MLL; R - - - - - — — —
MLL7p
MLLcrs
SDrm - - - - - - - -
SDrr — — — — — — — —
SDrp 29 28
SDcra 0 0

93
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Table 4.1 (Contd.) For Taylor order m = 4:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2% 24 2% 23 2 % 22 2% 2!
Hrwm 2E4+34 | 1E+29 |6E+23 (5E+18 | 1E+14 | 2E410 | SE+ 7
Hir 2E+34 | 1E4+29 |[6E+23 |SE+18 | 1E4+14 | 2E+10 | SE+7
Hrs 2E+34 | 1E4+29 |6E+23 |SE+18 | 1E4+14 | 2E+10 | SE+7
Hors 2E4+34 | 1E+29 |6E+23 (5E+18 | 1E+14 | 2E410 | SE 47
R* — 32 32 32 32 32 32
Rrm — 2E+5 | 2E4+5 | 1E+5 | 4E+4 | 6E+3 | 5E+2
Rrr — 2E+5 | 2E4+5 | 1E+5 | 4E+4 | 6E+3 | 5E +2
Rrp — 2E+5 | 2E4+5 | 1E+5 | 4E+4 | 6E+3 | 5E+2
Rers — 2E+5 | 2E4+5 | 1E+5 | 4E+4 | 6E+3 | 5E +2
trag 1F-2 | 1E-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1IE-2 | 1E -2
LR 1F—-2 | 1IE-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1IE-2 | 1E -2
tre 1F-2 | 1E-2 | 1IE-2 | 1E—-2 | lIE-2 | 1IE-2 | 1E -2
lers 1F—-2 | 1IE-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1IE-2 | 1E -2
MLL7y — — — — — — —
MLLRr — — — — — — —
MLLyrg
MLLcrp
SDrr — — — — — — —
SDrr — — - — — — —
SDrp 43 39 37 35 33 31 29
SDcrp 0 0 0 0 0 0 0
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i 0 1 2 3 4 ) 6 7
w (X(i)) 2%x270 124271 2%272 | 2%273 | 25274 | 25275 [ 2%270 | 25277
Hoag SE+5|8E+4|1E+4|4E+3 | 9E+2 | 2E4+2 | 2E+1 | 1E+1
HrLr "E+5|2FE+4 — — — — — —
Hrp TE+5|2E+4|6FE+2|2E4+1|bE—-1|(1E—-2|5E—-4|1FE -5
Hers TE+5|2FE+4|6E+2|2E4+1|E—-1|(1E—-2|5E—-4|1E -5
R* 32 32 32 32 32 32 32 32
R 57.7 10.8 5.0 4.1 4.0 4.0 4.0 4.0
Rir 71.2 38.0 — — — — — —
Rrs 7.2 38.0 35.9 33.9 32.9 32.4 32.2 32.1
Rers 71.2 38.0 35.9 33.9 32.9 32.4 32.2 32.1
tra 1E—-2|1E-2|1E-2|1E-2|1E-2|1E—-2|1E—-2|1FE -2
tLR 1E—-2 | 1E -2 — — — — — —
tre 1E—-2|1E-2|1E-2|1E-2|1E—-2|1E—-2|1E—-2|1FE -2
tors 1FE—-2|1E—-2|1E—-2|1E—-2|1E-2|1E-2|1E-2|1E -2
MLL7yy — — — — — — — —
MLL R — — — — — — — —
MLLrp
MLLcrs
SDry — — — — — — — —
SDrr — — — — — — — —
SDrp 27
SDcr 0

95
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Table 4.1 (Contd.) For Taylor order m = 6:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2% 24 2% 23 2 % 22 2% 2!
Hrwm 2E4+34 |1E+29 |6E+23 (5E+18 | 1E+14 | 2E410 | 3E+ 7
Hir 2E+34 | 1E4+29 |6E+23 |SE+18 | 1E4+14 | 2E+10 | 3E+T7
Hrs 2E+34 | 1E429 |[6E+23 |SE+18 | 1E4+14 | 2E+10 | 3E+T7
Hors 2E4+34 | 1E+29 |6E+23 (5E+18 | 1E+14 | 2E410 | 3E+ 7
R* — 128 128 128 128 128 128
Rrm — 2E+5 | 2E+4+5 | 1E+5 | 4E+4 | 6E4+3 | 574.0
Rrr — 2E+5 | 2E4+5 | 1E+5 | 4E+4 | 6E4+3 | 528.9
Rrp — 2E+5 | 2E+4+5 | 1E+5 | 4E+4 | 6E4+3 | 619.3
Rers — 2E+5 | 2E4+5 | 1E+5 | 4E+4 | 6E4+3 | 619.3
trag 1F-2 | 1E-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1IE-2 | 1E -2
LR 1F—-2 | 1IE-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1IE-2 | 1E -2
tre 1F-2 | 1E-2 | 1IE-2 | 1E—-2 | lIE-2 | 1IE-2 | 1E -2
lers 1F—-2 | 1IE-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1IE-2 | 1E -2
MLL7y — — — — — — —
MLLRr — — — — — — —
MLLyrg
MLLcrB
SDrr — — — — — — —
SDrr — — — — — — —
SDrp 41 39 36 36 34 32 30
SDcrp 0 0 0 0 0 0 0




Table 4.1 (Contd.) For Taylor order m = 6:

4.5 Conclusions

o7

i 0 1 2 3 4 ) 6 7
w (X(i)) 2x270 | 2271 | 2272 | 2x273 | 24274 | 2%27° [ 2%270 | 2x277
Ho TE+5|TE+4 | 1E+4 |4E4+3 |9E+2 |2E+2 |6E+1 | 1E+1
HrLr 5E+5 | 3K+ 2 — — — — — —
Hrp 1IE+5|3E+2 | 2E+0|1E—-2 |8E—-5|6E—-T7|5FE—-9|2E—10
Hers SE+5|3E+2|2E+0|1E—-2|8E—-5|6E—-T7|b5F—-9|2E—-10
R* 128 128 128 128 128 128 128 128
R 41.8 9.9 5.0 4.1 4.0 4.0 4.0 4.0
Rir 71.1 1375.0 — — — — — —
Rrs 286.8 291.0 179.6 158.8 145.3 137.2 128.5 22.0
Rers 71.1 1375.0 | 179.6 158.8 145.3 137.2 128.5 22.0
tra 1E—-2|1E-2|1E-2|1E-2|1E-2|1E-2|1E—-2| 1E -2
tLR 1E—-2|1E -2 — — — — — —
tre 1E—-2|1E-2|1E-2|1E—-2|1E-2|1E-2|1E—-2| 1E -2
tors 1E—-2|1E—-2|1E-2|1E-2|1E-2|1E-2|1E-2| 1E—-2
MLL7yy — — — — — — — —
MLL R — — — — — — — —
MLLrp
MLLcrs
SDry — — — — — — — —
SDrr — — — — — — — —
SDrp 28
SDcr 0
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.1 (Contd.) For Taylor order m = 8:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2 % 26 2% 2° 2% 24 2% 23 2 % 22 2% 21
Horwm 2E+34 | 1E+29 |bE+23 |4E+18 | 1E+ 14 | 1E4+10 | 2E+7
Hrr 2E4+34 | 1E+29 |bE+23 |4E+18 | 1E+14 | 1IE4+10 | 1IE+ 7
Hrs 2E4+34 |1E+29 |bE+23 |4E+18 | 1E+14 | 1IE4+10 | 1IE+ 7
Hors 2E+34 | 1E+29 |bE+23 |4E+18 | 1E+ 14 | 1E4+10 | 1IE+T7
R* — 256 256 256 256 256 256
R — 2E+5 | 2E+5 | 1E4+5 | 4E+4 | TE+3 | 6E+2
Rir — 2E+5 | 2E+5 | 1E4+5 | 4E+4 | TE+3 | 1E+3
Rrs — 2E+5 | 2E+5 | 1E4+5 | 4E+5 | TE+3 | 1E+3
Rers - 2E+5 | 2E+5 | 1E4+5 | 4E+5 | TE+3 | 1E+3
tra 1F-2 | 1E-2 | 1E-2 | 1E—-2 | 1E-2 | 1IE-2 | 1E -2
tLR 1F—-2 | 1IE-2 | 1IE-2 | 1E—-2 | 1E-2 | 1IE-2 | 1E -2
tre 1F-2 | 1E-2 | 1E-2 | 1E—-2 | 1E-2 | 1E-2 | 1E -2
lers 1F—-2 | 1E-2 | 1IE-2 | 1E—-2 | 1E-2 | 1IE-2 | 1E -2
MLL7 — — — — — — —
MLLpR — — — — — — —
MLLrg
MLLcrp
SDry — — — — — — —
SDrr — — — — — — —
SDrp 40 38 36 33 31 29
SDcrp 0 0 0 0 0 0
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Table 4.1 (Contd.) For Taylor order m = 8:

7 0 1 2 3 4 5 6 7

w(X(i)) 25270 [ 2%271 [ 2%x272 | 25273 | 24274 | 2%27% | 24270 | 24277
Hoag TE+5|TE+4 | 1E+4 | 4E+3 | 9E4+2 | 2E+2 | 6E4+1 | 1E+1
Hir 2E+5 | 3E+0 — — — — — —
Hrs 2E4+4 | 3E+0|4F -3 |6E—-6|1E—-8|2E—-10|2E—-10| 2E —10
Hers 2E+5|3E+0|4FE—-3|6E—-6|1E—8|2E—-10|2E—10| 2E —10

R* 512 512 512 512 512 512 512 512
Rrm 35.8 9.3 4.9 4.1 4.0 4.0 4.0 4.0
RLr 69.0 | 6E+4 - - - — — —
Rrs 619.3 | 5170.6 | 805.8 671.7 o87.7 018.4 12.1 0.9
Rers 69.0 |6E+4| 8058 671.7 587.7 518.4 12.1 0.9

trm 1FE-2|1EF-2|1F-2|1E-2|1E-2| 1E-2 | 1IE-2 | 1E-2
LR 1 -2 | 1E -2 — — — — — —

trs 1FE-2|1EF-2|1FE-2|1E-2|1E-2| 1E-2 | 1IE-2 | 1E-2
tcrs 1 -2 |1E-2|1E-2|1E-2|1E-2| 1E-2 | 1IE-2 | 1E—-2

MLLry | — — — — — — — —
MLLig | - - - - - - - -
MLLyp

MLLors

SDry — — — — — — — —
SDir - - - - - - - -
SDrp 27
SDcrp 0
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TABLE 4.2. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor
model, Algorithm LR, Algorithm TB and Algorithm CTB in Example 4.2 Jennrich and Sampson
(2 — dim).

For Taylor order m = 2:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 227 | 2x26 2% 25 2 %24 2% 23 2% 22 2 % 21
Hrr — — 2E+283 | 4E+142 | 2E 471 | bE+34 | 4E+ 15
Hir — — 2FE +283 | 4E + 142 | 2E 471 | bE+34 | 4E + 15
‘Hrp — — 2E+283 | 4E+142 | 2E 471 | bE+34 | 4E+ 15
Hors - — 2FE +283 | 4E + 142 | 2E 471 | bE+34 | 4E+ 15
R* — — — 8 8 8 8
R — — — 6F+140 | 2E+71 | 4E+36 | 1E 419
Rir — — — 6F+140 | 2E+T71 | 4E+36 | 1E 4+ 19
Rrs — — — 6F+140 | 2E+71 | 4E+36 | 1E 419
Rers — — — 6F+140 | 2E+T71 | 4E+36 | 1E 4+ 19
tra — — 1E -2 1E -2 1E—-2 | 1IE-2 | 1E—-2
tLR — — 1E -2 1E -2 1E—-2 | 1IE-2 | 1IE—-2
tre — — 3E —2 3E —2 2E—-2 | 2E—-2 | 1E—-2
ters — — 1E -2 1E -2 1E—-2 | 1IE-2 | 1IE—-2
MLLyy - - - - - - -
MLLRr — — — — — — —
MLLrg — — 10 10 10 10 10
MLLcTB — — 0 0 0 0 0
SDrr — — — — — — —
SDrr — — — — — — —
SDrp — — 237 231 225 219 213
SDers — — 0 0 0 0 0




Table 4.2 (Contd.) For Taylor order m = 2.

4.5 Conclusions

61

i 0 1 2 3 4 5 6 7
w (X(i)) 2%270 [ 25271 [ 25272 [ 25273 | 2274 | 2x27% | 2276 | 24277
Horw 3E+5 |1E+2|4E+0|bE—-1|1E—-1|3E—-2|7TE—-3|2E -3
Hrr SE+5 | 1E+2 | 2E4+0 — — — — —
Hrp 3E+5 |1E+2|2E+0|8E—-2|5E—-3|3E—4|2E—-5|2E—6
Hers 3E+5 |1E+2|2E+0|8E—-2|bE—-3|3E—4|2E—-5|2E—6
R* 8 8 8 8 8 8 8 8
R 1E+10 | 3E+3 | 256 6.7 4.5 4.1 4.0 4.0
Rir 1E4+10 | 3E+3 | 50.2 — — — — —
Rrp 1E+10 | 3E+3 | 48.3 22.6 17.1 14.6 12.7 11.1
Rers 1E+10 | 3E+3 | 48.3 22.6 17.1 14.6 12.7 11.1
trag 1E—-2 |1IE-2|1E—-2|1FE-2|1E-2|1E—-2|1E—-2 | 1E -2
LR 1E—2 |1E—-2 | 1E -2 — — — — —
tre 2E -2 |1E—-2 | 1E—-2|1E-2|1E-2|1E-2|1E—-2| 1FE -2
ters 1E—-2 |1IE-2|1E-2|1E-2|1E-2|1E—-2|1E—-2 | 1E -2
MLL7 — — — — — — — —
MLL; R — — - - - — — —
MLL7pp 10 10
MLLcrp 0 0
SDrm - - - - - - - -
SDrr — — — — — — — —
SDrp 204 191
SDcrp 0 0




62

4. A combined Taylor-Bernstein form for higher order convergence

Table 4.2 (Contd.) For Taylor order m = 4:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 227 | 2x26 2% 25 2 %24 2% 23 2% 22 2 % 21
Hoa — — 6F +290 | 6E+ 148 | 2E4+76 | 3E+38 | 1E + 18
Hrr — — 6FE+290 | 6E+148 | 2E4+76 | 3E+38 | 1E + 18
‘Hrp — — 6FE+290 | 6E+148 | 2E4+76 | 3E+38 | 1E+ 18
Hors - — 6F +290 | 6E+ 148 | 2E4+76 | 3E+38 | 1E + 18
R* — — — 32 32 32 32
R — — — 1E+142 | 3E+72 | 6E+ 37 | 3E+ 20
Rir — — — 1E+142 | 3E+ 72 | 6E+37 | 3E+ 20
Rrs — — — 1E+142 | 3E+72 | 6E+ 37 | 3E+ 20
Rers — — — 1E+142 | 3E+ 72 | 6E+37 | 3E+ 20
trag — — 1E -2 1E -2 1E—-2 | 1IE-2 | 1E—-2
tLR — — 2F — 2 2F — 2 2E—-2 | 2E—-2 | 2E—2
trp — — 3E —2 3E —2 3E—2 | 3E—-2 | 3E -2
lers - — 2E -2 2F —2 2E—-2 | 2E—-2 | 2E—2
MLL7y — — — — — — —
MLLRr — — — — — — —
MLLyrg — — 12 12 11 12 11
MLLcrg — — 0 0 0 0 0
SDr — — — — — — —
SDrr — — — — — — —
SDrp — — 201 190 184 178 172
SDerp — — 0 0 0 0 0
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Table 4.2 (Contd.) For Taylor order m = 4:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 [ 24271 [ 25272 | 25273 [ 25274 [ 2%x27° | 2x276 | 24277
Hrn 4E+6 |TE+1|2E+0|5FE—1|1E—1|3E—-2|7TE-3| 2E—3
Hrr 4E+6 | 6E+1 — — — — — —
Hrp 4E+6 |6E4+1|2E—1|2E—-3|3E—-5|bE—-T7T|9FE -9 |2E—-10
Hers 4E+6 |6E+1|2FE—-1|2E—-3|3FE—-5|bE—-T7T|9F -9 |2FE—-10
R* 32 32 32 32 32 32 32 32
Rim 3E+11 | 6E+4| 299 4.7 4.1 4.0 4.0 4.0
RLr 3E+11 | TE+4 — — — — — —
RrB 3E+11 | TE+4 | 251.7 104.4 74.4 61.9 53.7 47.6
Rors 3E+11 | TE+4| 2539 104.4 74.1 61.9 53.7 47.6
tra 1E-2 |1IE-2|1E-2|1E-2|1E—-2|1E—-2|1E—-2| 1E—-2
trr 2E —2 | 2E —2 — — — — — —
tri 3E—-2 |2E—-2|2E—-2|2E—-2|2E—-2|1E—-2|1E—-2| 1E-2
ters 2E—2 |2E—-2|2E—-2|2E—-2|2E—-2|1E—-2|1E—-2| 1E -2
MLLyyp — — — — — — — —
MLL g - - - - - - - -
MLL7p 10 10
MLLcrp 0 0
SDrm - - - - - - - -
SDrr — — — — — — — -
SDrp 165 156
SDcrp 0 0
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.2 (Contd.) For Taylor order m = 6:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 227 | 2x26 2% 25 2 %24 2% 23 2% 22 2 % 21
Hoa — — 3E+297 | 2E+ 154 | 4E+80 | 5E+41 | 1IE+20
Hrr — — SE+297 | 2E+154 | 4E+80 | 5E+41 | 1IE+20
‘Hrp — — SE+297 | 2E+154 | 4E+80 | 5E+41 | 1IE+20
Hors - — 3E+297 | 2E+ 154 | 4E+80 | 5E +41 | 1E+20
R* — — — 128 128 128 128
R — — — 2E+143 | bE+ 73 | 9E +38 | 4E 4+ 21
Rir — — — 2E+143 | bE+ 73 | 9E + 38 | 4E 4+ 21
Rrs — — — 2E+143 | bE+ 73 | 9E +38 | 4E 4+ 21
Rers — — — 2E+143 | bE+ 73 | 9E + 38 | 4E 4+ 21
trag — — 2F —2 2F — 2 2E—2 | 2E—-2 | 2E—2
tLR — — 3E —2 3E —2 3E—-2 | 3E-2 | 3E -2
trp — — 6F — 2 4F — 2 5E—2 | bBE—2 | 4E -2
lers - — 3E —2 3E —2 3E—-2 | 3E-2 | 3E -2
MLL7y — — — — — — —
MLLRr — — — — — — —
MLLypg — — 23 17 12 12 12
MLLcrg — — 0 0 0 0 0
SDr — — — — — — —
SDrr — — — — — — —
SDrp — — 223 206 192 177 170
SDerp — — 0 0 0 0 0
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Table 4.2 (Contd.) For Taylor order m = 6:
i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 [ 25271 [ 25272 [ 25273 [ 2274 | 2%27° | 2%270 | 24277
Hrnr 2E+7 |4E+1|2E4+0|5E—-1|1E—-1|3E—-2 | TE-3 | 2E—-3
Hrr 2E+7 | 2E+1 — — — — — —
Hrp 2E+7 |2E+1|2E—-2|4E-5|1E-T7|5E—-10|1FE—12 | 3E — 12
Hers 2E+7 |2E+1|2E—-2|4E-5|1E-T7|E—-10|1F —-12 | 3E — 12
R* 128 128 128 128 128 128 128 128
R 6FE+12 | bE+5| 16.7 4.4 4.1 4.0 4.0 4.0
Rrr 6F+12 | 8E+5 — — — — — —
Rrp 6F+12 | 8E+5 | 1E+3 | 456.8 311.2 256.2 495.6 0.3
Rers 6F+12 | 8E+5 | 1E+3 | 456.8 311.2 256.2 495.6 0.3
trag 2E -2 |2E—2|2E—-2 |2E—-2|2E—-2| 2FE—-2 | 2E—-2 | 2E—2
tLr 3E -2 | 3E -2 — — — — — —
tri 5F—2 |3E—-2|3E—-2|3E—-2|3FE—-2| 3E—-2 | 3E—2 | 3E -2
tors 3F—-2 |3E—-2|3E—-2|3E—-2|3E—-2| 3E—-2 | 3E—-2 | 3E -2
MLLry — — — — — — — —
MLL R - - - - - - - —
MLLrp 12
MLLcrp 0
SDry - - - - - - — —
SDrr — — — — — — — —
SDpp 162
SDcrp 0
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.2 (Contd.) For Taylor order m = 8:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 227 | 2x26 2% 25 2 %24 2% 23 2% 22 2 % 21
Hoa — — TE+303 | 3E+159 | 3E+84 | 2E+44 | 4E + 21
Hrr — — TE+303 | 3E+159 | 3E+84 | 2E+44 | 4E + 21
‘Hrp — — TE+303 | 3E+159 | 3E+84 | 2E+44 | 4E + 21
Hors - — TE+303 | 3E+159 | 3E+84 | 2E+44 | 4E + 21
R* — — — 512 512 512 512
R — — — 2E+144 | S8E+ 74 | 1E+40 | 6E 4 22
Rir — — — 2E+144 | 8E+ 74 | 1E+40 | 6FE 4 22
Rrs — — — 2E+144 | 8E+ 74 | 1E+40 | 6E 4 22
Rers — — — 2E+144 | 8E+ 74 | 1E+40 | 6F 4 22
trag — — 2F —2 2F — 2 2E—2 | 2E—-2 | 2E—2
tLR — — 4F — 2 4F — 2 4F -2 | 4E—2 | 4F -2
trp — — SE — 2 S8E — 2 TE—2 | 8E—2 | TE -2
lers - — 4F -2 4F — 2 4F -2 | 4E—2 | 4F -2
MLL7y — — — — — — —
MLLRr — — — — — — —
MLLypg — — 23 17 12 12 11
MLLcrg — — 0 0 0 0 0
SDr — — — — — — —
SDrr — — — — — — —
SDrp — — 222 193 193 185 176
SDerp — — 0 0 0 0 0




Table 4.2 (Contd.) For Taylor order m = 8:
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i 0 1 2 3 4 5 6 7
w (X(i)) 2%270 | 24271 | 24272 [ 2273 | 24274 | 2x275 | 2%x27°C 2%277
Hoa 4E+7 |2E+1|2E+0|5E—-1| 1E—-1 | 3E—-2 | TE—-3 | 2E -3
Hrr AE+7 | TE+0 — — — — — —
Hrp 4E+7 |TE+0|1E-3 |6E—-T7|5E—10|2E—-12 | 2E—12 | 3E — 12
Hors 4E+7 |TE+0|1E-3 |6E—-T7|5E—10|2E—-12 | 2E—12 | 3E — 12
R* 512 512 512 512 512 512 512 512
R 1E+14 | 2E+6 8.6 4.3 4.1 4.0 4.0 4.0
Rir 1E+14 | BE+6 — — — — — —
Rrs 1E4+14 | S3E+6 |SE+3 | 2E+3 | 1E43 205.6 1.0 0.7
Rers 1E+14 [5E4+6 |SE+3 | 2E4+3 | 1E+3 205.6 1.0 0.7
tra 2E -2 |2E—-2|2E—-2|2E—-2| 2E—-2 | 2E—-2 | 2E—2 | 2E —2
tLR 4F —2 | 4E -2 — — — — — —
trp S8E -2 |bE—-2|5E—-2|5E—-2| 4E—-2 | 4E—-2 | 4E—2 | 4FE —2
tors 4F —2 |4E -2 |bE—2 |bE—2 | 4E -2 | 4E—2 | 4E -2 | 4E -2
MLL7y — — — — — — — —
MLL R — — — — — — — —
MLLyrg 11
MLLcTB 0
SDr — — — — — — — —
SDrr — — — — — — — —
SDrp 168
SDcr 0
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TABLE 4.3. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor
model, Algorithm LR, Algorithm TB and Algorithm CTB in Example 4.3 Levy (3 — dim).

For Taylor order m = 2:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2 % 26 2% 2° 2 % 24 2% 23 2 % 22 2% 21
Horwm TE+14 |4E+12 |2E4+10 | 1IE+8 | 1E+6 |2E+4 | 1E+3
Hrr TE+14 |3E+12 |2E+10 | 1IE+8 | 1E+6 | 2E+4 | 9E+2
Hrs TE+14 |3E+12 |2E+10 | 1IE4+8 | 1E+6 | 2E+4 | 9E+2
Hors TE+14 |3E+12 |2E4+10 | 1IE+8 | 1E+6 | 2E+4 | 9E+ 2
R* — 8 8 8 8 8 8
Ry — 221.1 193.7 153.3 103.0 53.9 20.9
Rir — 221.1 193.7 153.3 103.0 53.9 20.9
Rre — 221.1 193.7 153.3 103.0 53.9 20.9
Rors - 221.1 193.7 153.3 103.0 53.9 20.9
tra 1E-2 | 1E-2 | 1IE-2 |1E-2|1E—-2|1E—-2|1E -2
tLR 1FE—-2 | 1E-2 | 1IE-2 |1E-2|1E—-2|1FE—-2|1E -2
trp SE—1 | 8E—-1 | 8E—-1 |8E—-1|8E—-1|8E—-1|7FE -1
tors 1FE—-2 | 1IE-2 | 1IE-2 |1E-2|1FE—-2|1FE—-2|1E -2
MLL7 — — — — — — —
MLLR — — — — — — —
MLLypp 99 99 99 99 99 99 99
MLLcrB 0 0 0 0 0 0 0
SDry — — — — — — —
SDrr — — — — — — —
SDrp 3686 3619 3550 3465 3343 3213 2905
SDcrs 0 0 0 0 0 0 0




Table 4.3 (Contd.) For Taylor order m = 2:

4.5 Conclusions

i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 24271 2%272 | 2%273 | 25274 | 25275 [ 2%270 | 25277
Hoag 1E+2|2E4+1|5E4+0|1E+0|3E—-1|6E—-2|2E—-2|4F -3
Hir S8E+1|7TE+0 | 8E—1 — — — — —
‘Hrp TE+1|7TE+0|8E—-1|9F -2 | 1E—-2|1E—-3|2E—-4|2E -5
Hors SE+1|7TE+0|8E—-1|9F -2 | 1E—-2|1E—-3 | 2E—-4|2E -5
R* 8 8 8 8 8 8 8 8
R 8.6 4.8 4.6 4.3 4.2 4.1 4.0 4.0
Rir 11.7 10.5 9.3 — — — — —
RrB 11.9 10.3 9.3 8.7 8.4 8.2 8.1 8.0
Rers 11.7 10.5 9.3 8.7 8.4 8.2 8.1 8.0
tra 1E—-2|1E-2|1E-2|1E—-2|1E—-2|1E—-2|1E—-2 | 1FE -2
tLR 1E—-2|1E—-2 | 1E -2 — — — — —
tre 2E—-1|1E—-1|1E—-2|1E—-2|1E—-2|1E—-2|1E—-2 | 1FE -2
lers 1FE—-2|1E—-2|1E—-2|1E—-2|1E-2|1E-2|1E-2|1E -2
MLL7yy — — — — — — — —
MLLRr — — — — — — — —
MLLyrg 24
MLLcTB 0
SDr — — — — — — — —
SDrr — — — — — — — —
SDrp 393 69
SDcrB 0 0
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.3 (Contd.) For Taylor order m = 4:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2 % 26 2% 2° 2 % 24 2% 23 2 % 22 2% 21
Horwm 2E+20 | 5E+16 |2E+13 |S8E+9 |8E+6 | 3E+4 | 9E+2
Hrr 2E+20 | 5E+16 |2E+13 |SE+9 | 8E+6 | 3E+4 | bE+2
Hrs 2E+20 | 5E+16 |2E+13 |SE+9 |8E+6 | 3E+4 | 3E+2
Herp 2E+20 | 5E+16 |2E+13 |S8E+9 |8E+6 | 3E+4 | bE+2
R* — 32 32 32 32 32 32
R — 3E+3 | 3E+3 |2E4+3 | 1E+3| 2738 32.5
Rir — 3E+4 | SE+3 |2E+3 | 1E+3| 2844 55.9
Rrp — 3E+3 | 3E+3 |2E+3 | 1E+3 313 77T
Rers - 3E+4 | SE+3 |2E+3 | 1E+3| 2844 55.9
tra 1E-2 | 1E-2 | 1IE-2 |1E-2|1E—-2|1E—-2|1E -2
tLR 1FE—-2 | 1IE-2 | 1IE-2 |1E-2|1FE—-2|1E—-2|1E -2
trp 3E—-1 | 3E—-1 | 3E—-1 |3E—-1|3E—-1|2E—-1|2FE -1
lers 1FE—-2 | 1E-2 | 1IE-2 |1E-2|1FE—-2|1E—-2|1E -2
MLL7 — — — — — — —
MLLpR — — — — — — —
MLLyppg 75 75 55 23 36 36 18
MLLcTR 0 0 0 0 0 0 0
SDry — — — — — — —
SDrr — — — — — — —
SDrp 424 425 422 379 460 107 105
SDcra 0 0 0 0 0 0 0
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Table 4.3 (Contd.) For Taylor order m = 4:

? 0 1 2 3 4 5 6 7

w(X(i)) 2x270 | 2271 | 2272 | 2x273 | 24274 | 2%27° [ 2%270 | 2x277
Ho 1E+2|2E4+1|5E4+0|1E+0|3E—-1|6FE—-2|2E—-2| 3E—-3
Hrr 2E+1|2F -1 — — — — — —
Hrp 6E+0|2E—1|bE—-3|1FE—-4|4E—-6|1E—-7|4E -9 | 1E—-10
Hers 2E4+1|2E—-1|bFE -3 |1E—4 |4E -6 |1E—-T7|4F -9 | 1E—-10

R* 32 32 32 32 32 32 32 32
Rorm 8.5 4.9 4.6 4.3 4.2 4.1 4.0 4.0
Rir 26.0 108.7 — — — — — —
Rrs 51.0 36.2 36.0 34.1 33.1 32.5 32.3 31.6

Rers 26.0 108.7 36.0 34.1 33.1 32.5 32.3 31.6

trv 1E-2|1E-2|1E-2|1E-2|1E-2|1E-2|1E -2 | 1E -2
LR 1 -2 | 1E -2 — — — — — —

tre 2E-1|(1FE-2|1E-2|1E-2|1E-2|1E-2|1E-2| 1E -2
ters 1E-2|1E-2|1E-2|1E-2|1E-2|1E-2 |1E -2 | 1E -2

MLL7ry, - - - - - — — —
MLL, - - - - - - - -
MLL7g 14

MLLcrg | 0

SDry - - - — — — — —
SDrr — — — — — — — —
SDrp 289
SDcrp 0
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.3 (Contd.) For Taylor order m = 6:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2 % 24 2% 23 2 % 22 2% 2!
Ho 1E+25 |2E+20 |4E+15 | 2E4+11 | 2E+7 | 3E+4 | 9FE +2
Hrr 1E+25 |2E4+20 |4E+15 |2E+11 | 2E4+7 | 2E+4 | 2E +2
‘Hrp 1E+25 |2E420 |4E+15 | 2E+11 | 2E+7 | 2E4+4 | 8E+1
Hers 1E+25 |2E+20 |4E+15 | 2E4+11 | 2E+T7 | 2E+4 | 2E+2
R* — 128 128 128 128 128 128
R — bE+4 | 4E+4 | 3E+4 |8E+3 |6E+2 | 4E+1
Rir — 5E+4 | 4E+4 | 3E+4 |8E+3 | 8E+2|2E+2
Rrs — SE+4 | 4E+4 | 3E+4 |8E+3 |9E+2 | 3E+2
Rers — 5E+4 | 4E+4 | 3E+4 |8E+3 | 8E+2|2E+2
trag 1IE-2 | 1E-2 | 1IE-2 | 1E—-2 |1E-2|1E—-2 | 1FE -2
tLR 1E—-2 | 1E-2 | 1IE-2 | 1IE—-2 |1IE-2|1E-2|1E -2
tre 5E—-1 | 8E—-1 | 5FE—1 | bBE—1 |5E—1|5E—1|9E—1
lers 1E—-2 | 1E-2 | 1IE-2 | 1IE—-2 |1IE-2|1E—-2|1E -2
MLL7)yy — — — — — — —
MLLRr — — — — — — —
MLLrg 54 54 34 34 33 14 45
MLLcTB 0 0 0 0 0 0 0
SDr — — — — — — —
SDrr — — — — — — —
SDrp 207 180 114 114 108 164 624
SDcrp 0 0 0 0 0 0 0




4.5 Conclusions 73

Table 4.3 (Contd.) For Taylor order m = 6:

{ 0 1 2 3 4 5 6 7

w(X(i)) 2x270 1 2x271 | 2x272 | 2273 | 24274 | 25275 2276 2% 277
Howm 1IE+2 | 2E+1|4E40|1E+0|3E—-1| 6E—2 | 2E—2 | 4E—3
Hrr 9E +0 | 3E -3 — — — — — —
Hrps SE—1|3E—-3|2E—-5|2E—7|1E—-9|1E—-11|3E—-12 | 2FE —12
Hers 9E4+0|3E -3 |2FE—-5 |2E—-T7T|1E—-9 |1E—-11 | 3E—-12 | 2FE —12

R* 128 128 128 128 128 128 128 128
R 8.4 4.8 4.6 4.3 4.2 4.1 4.0 4.0
Rir 188 [ 3E+3 - - - - — —
Rrs 94.8 273.6 142.6 135.2 131.7 100.3 4.5 1.1
Rers 188 | 3E+3 | 142.6 135.2 131.7 100.3 4.5 1.1

trv 1FE-2|1EFE-2|1E-2|1E-2|1E-2 | 1E-2 | 1IE-2 | 1E—-2
LR 1E -2 | 1E -2 — — — — — —

tre O E—-1|1E-2|1EF-2|1E-2|1E-2| 1E-2 | 1IE-2 | 1E-2
tcrs 1 -2 |1E-2|1E-2|1E-2|1E-2 | 1E—-2 | 1IE-2 | 1E—-2

MLLry | — — — — — — — —
MLL. g - - - - - - - -
MLLTR 15
MLLcrg 0

SDrym - - - - - - - -
SDrr — — — — — — — —
SDrp 300

SDcrp 0
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.3 (Contd.) For Taylor order m = 8:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2 % 24 2% 23 2 % 22 2% 2!
Ho 2E+29 | 3E+23 |4E+ 17T | 1E+12 | 3E+T7 | 3E+4 | 9E +2
Hrr 2E+29 | 3E+23 |4E+17 | 1E+12 | 3E+T7 | 1E+4 | 6E+1
‘Hrp 2E+29 | 3E+23 |4E+17 | 1E+12 | 3E+T7 | 1E+4 | 1E+1
Hers 2E+29 |3E+23 |4E+ 17T | 1E+12 | 3E+T7 | 1E+4 | 6E+1
R* — 512 512 512 512 512 512
R — SE+5 | 6E4+5 | 3E+5 |4E4+4 | 9E+3 | 371
Rir — S8E+5 | 6E+5 | 3E+5 |4E+4 | 2E4+3 | 211.5
Rrs — S8E+5 | 6E4+5 | 3E+5 |bE4+4|3E+3 | 1E+3
Rers — S8E+5 | 6E+5 | 3E+5 |4E+4 | 2E4+3 | 211.5
trag 1IE-2 | 1E-2 | 1IE-2 | 1E—-2 |1E-2|1E—-2 | 1FE -2
tLR 3E—-2 | 3E-2 | 3E—2 | 3E—-2 |3E—2|3E—-2|3E—2
tre 2E—-1 | 2E—-1 | 2E—-1 | 3E—-1 |3E—1|3E—-1|2E+0
lers 3E—-2 | 3E—-2 | 3E—2 | 3E—-2 |3E—2|3E—-2|3E—2
MLL7)yy — — — — — — —
MLLRr — — — — — — —
MLLrg 18 45
MLLcTB 0 0
SDr — — — — — — —
SDrr — — — — — — —
SDrp 4 4 82 71 97 627
SDcrp 0 0 0 0 0 0
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i 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 1 2x271 | 2x272| 2%273 2%x274 | 2x27% | 2%276 2%277
Hoa 1IE+2|2E+1|5E+0| 1E4+0 | 3E—1 | 6E—-2 | 2E—2 | 4E—3
HrLr 5E+0|4F -5 — — — — — —
Hrs 4F —1 | 4E -5 |T7TE—-8 | 1E—-10|3E—-13 |3E—12 | 3E—12 | 2E — 12
Hors 5 E4+0|4E -5 |T7TE—-8 | 1E—-10|3E—-13 |3E—12 | 3E—12 | 2E — 12
R* 512 512 512 512 512 512 512 512
Ry 8.4 4.8 4.6 4.3 4.2 4.1 4.0 4.0
Rir 11.5 1E+5 — — — — — —
Rrs 286 |9E+3 | 5394 518.7 47.3 1.1 1.1 1.0
Rers 11.5 1E+5| 5394 518.7 47.3 1.1 1.1 1.0
tra 1FE—-2|1E-2|1EF—-2| 1E-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1E—-2
tLR S5E -2 | 3FE -2 — — — — — —
trp S5 E—1|3E—-2|3E—-2| 3E—-2 | 3E—-2 | 3E—-2 | 3E—2 | 3E -2
ters S5E—-2|3E—-2|3F—-2| 3E—-2 | 3F-2 | 3E—-2 | 3E—-2 | 3E -2
MLL7y — — — — — — — —
MLL R — — — — — — — —
MLLyrg 14
MLLcTB 0
SDr — — — — — — — —
SDrr — — — — — — — —
SDrp 281
SDcrp 0
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TABLE 4.4. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor
model, Algorithm LR, Algorithm TB and Algorithm CTB in Example 4.4 Trigonometric (4 — dim).

For Taylor order m = 2:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2% 24 2% 23 2 % 22 2% 21
Hrwm SE+13 |4E+11 |TE+9 | 1E4+8 | 2E+6 | 5E+4 | 3E+3
Hrr SE4+13 |4E+11 |TE+9 | 1E+8 | 2FE+6 |5E+4 | 3E+3
Hrs SE4+13 |4E+11 |TE+9 | 1E+8 | 2FE+6 |5E+4 | 3E+3
Hors SE+13 |4E+11 |TE+9 | 1E4+8 | 2E4+6 | 5E+4 | 3E+3
R* — 8 8 8 8 8 8
Rrm — 63.7 63.0 61.3 55.5 38.0 17.5
Rrr — 63.7 63.0 61.3 55.5 38.0 17.5
Rrp — 63.7 63.0 61.3 55.5 55.5 17.5
Rers — 63.7 63.0 61.3 55.5 38.0 17.5
trag 1F—-2 | 1IE-2 |1E-2|1E—-2|1E—-2|1E—-2|1E -2
LR 1F—-2 | 1IE-2 |1E—-2|1E—-2|1E-2|1E-2|1E -2
tre 125 124 123 122 120 114 109
tors 1F—-2 | 1IE-2 |1E—-2|1E—-2|1E-2|1E-2|1E -2
MLL7y — — — — — — —
MLLpR — — — — — — —
MLLypg 235 235 235 235 235 235 235
MLLcrB 0 0 0 0 0 0 0
SDrr — — — — — — —
SDrr — — — — — — —
SDrp 12745 12507 12266 | 11996 | 11671 | 11210 | 10646
SDcrs 0 0 0 0 0 0 0




Table 4.4 (Contd.) For Taylor order m = 2:

4.5 Conclusions

i 0 1 2 3 4 ) 6 7
w (X(i)) 2%x270 124271 2%272 | 2%273 | 25274 | 25275 [ 2%270 | 25277
Hoag AE +2 |9E+1 | 2E+1 | bE+0|1E+0|3E—-1|TE—-2|2E -2
HrLr 3E4+2|3E+1|3E+0 — — — — —
Hrp 3BE+2|3E+1|3E+0|3FE—-1|3E—2|4E—-3|5E—-4|7E -5
Hers SE+2|3E+1|3E+0|3F—1|3E—2|4E—-3 | bE—4|7TE -5
R* 8 8 8 8 8 8 8 8
R 7.0 4.9 4.5 4.2 4.1 4.1 4.0 4.0
Rir 11.5 10.5 9.5 — — — — —
Rrs 11.5 10.5 9.5 8.8 8.4 8.2 8.1 8.1
Rers 11.5 10.5 9.5 8.8 8.4 8.2 8.1 8.1
tra 1E—-2|1E-2|1E-2|1E-2|1E-2|1E—-2|1E—-2|1FE -2
tLR 1E—-2 | 1E -2 1.9 — — — — —
trp SE—2|3E—-2|3E—-2|3FE—-2|3E—-2|3E—-2|3E—-2|3E—-2
tors 1FE-2|1F-2|3E—-2|3E—-2|3E-2|3E—-2|3F—-2|3E -2
MLL7y — — — — — — — —
MLL R — — — — — — — —
MLLrp
MLLcrs
SDry — — — — — — — —
SDrr — — — — — — — —
SDrp

SDcr

7
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.4 (Contd.) For Taylor order m = 4:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2 % 24 2% 23 2 % 22 2% 2!
Ho 2E+19 | 2E+16 |2E4+13 |2E+10 | 3E+T7|1E+5 | 3E+3
Hrr 2E+19 | 2E+16 |2E4+13 |2E+10 | 3E+T7|1E+5 | 2E+3
‘Hrp 2E+19 | 2E+16 |2E4+13 |2E+ 10| 3E+T7 | 1E+5 | 9E +2
Hers 2E+19 | 2E+16 |2E4+13 |2E+10 | 3E+T7|1E+5 | 2E+3
R* — 32 32 32 32 32 32
R — 1E+3 987.1 906.1 670.4 261.3 39.0
Rir — 1E+3 987.1 906.1 671.5 276.3 68.6
Rrs — 1E+3 987.1 906.1 674.5 302.4 115.0
Rers - 1E+3 987.1 906.1 671.5 276.3 68.6
trag 1IE-2 | 1E-2 | 1IE-2 | 1E—-2 |1E-2|1E—-2 | 1FE -2
tLR 3E—-2 | 3E-2 | 3E—2 | 3E—-2 |3E—2|3E—-2|3E—2
tre 16.0 14.6 14.2 13.9 16.6 14.5 62.5
lers 3E—-2 | 3E—-2 | 3E—2 | 3E—-2 |3E—2|3E—-2|3E—2
MLL7)yy — — — — — — —
MLLRr — — — — — — —
MLLypg 87 84 82 84 117 112 120
MLLcTB 0 0 0 0 0 0 0
SDr — — — — — — —
SDrr — — — — — — —
SDrp 1455 1322 1312 1300 1258 1250 2906
SDcrp 0 0 0 0 0 0 0
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i 0 1 2 3 4 ) 6 7
w (X(i)) 2x270 | 2271 | 2272 | 2x273 | 24274 | 2%27° [ 2%270 | 2x277
Ho AE +2 (9E+1 | 2E+1 |B5E+0 | 1E4+0|3E—-1|TE—-2| 2E—2
Hrr 1E+1|2E—-1 — — — — — —
Hrp 1IE+1|2E—-1|5E—-3|1E—4|3E—-6|8E—-8|2FE—-9 | 7TE—11
Hers 1IE+1|2FE—-1|5E—-3|1E—4|3E—-6|8E—-8|2FE—-9 | 7TE—-11
R* 32 32 32 32 32 32 32 32
Rom 7.2 4.9 4.4 4.2 4.1 4.1 4.0 4.0
Rir 114.4 56.3 — — — — — —
RrB 62.1 56.3 50.4 44.5 39.8 36.5 34.3 30.6
Rers 114.4 56.3 50.4 44.5 39.8 36.5 34.3 30.6
tra 1E—-2|1E-2|1E-2|1E-2|1E-2|1E-2|1E—-2| 1E -2
tLR 3E—-2 |3E -2 — — — — — —
trp 6FE—2|6E—2|6FE—-2|6FE—2|6FE—2|6E—2|6E—2| 6E—2
ters SE—2|3E—-2|6FE—-2|6F—-2|6FE—-2|6E—-2|6E—-2| 6F—2
MLL7y — — — — — — — —
MLL R — — — — — — — —
MLLrp
MLLcrs
SDry — — — — — — — —
SDrr — — — — — — — —
SDrp

SDcr
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.4 (Contd.) For Taylor order m = 6:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2 % 24 2% 23 2 % 22 2% 2!
Ho S3E+24 | 2E4+20 |2E+16 |9E+11 | 1IE+8 | 1E4+5 | 3E+3
Hrr S3E+24 | 2E420 |2E+16 |9E+11 | 1IE4+8 | 1E+4+5 | 4E+2
‘Hrp S3E+24 | 2E4+20 |2E+16 |9E+11 | 1IE4+8 | 1E+4+5 | 4E+2
Hors S3E+24 | 2E4+20 |2E+16 |9E+11 | 1E4+8 | 1E4+5 | 4E+2
R* — 128 128 128 128 128 128
R — 2E+4 | 2E4+4 | 1IE4+4 |TE+3 | 9E+2| 47.0
Rir — 2E+4 | 2E+4 | 1E+4 |TE4+3|1E+3| 270.3
Rrs — 2E+4 | 2E4+4 | 1IE4+4 |TE+3 | 1E+3| 3615
Rers - 2E+4 | 2E4+4 | 1E+4 |7TE+3|1E+3| 270.3
trag 2E—-2 | 2E—-2 | 2E—2 | 2E—-2 |2E—2 | 2E—2 | 2E—2
tLR 2E—-1 | 2E—-1 | 2E—1 | 2E—-1 |2E—1|2E—1|2E—1
tre 226.6 224.5 244.7 397.9 186.1 201.0 229.3
lers 2E—-1 | 2E—-1 | 2E—1 | 2E—-1 |2E—1|2E—1|2E—1
MLL7)yy — — — — — — —
MLLRr — — — — — — —
MLLrg 214 216 285 319 224 274 109
MLLcTB 0 0 0 0 0 0 0
SDr — — — — — — —
SDrr — — — — — — —
SDrp 2183 2164 2055 2253 1737 1839 3172
SDcrp 0 0 0 0 0 0 0
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Table 4.4 (Contd.) For Taylor order m = 6:

{ 0 1 2 3 4 5 6 7

w(X(i)) 2x270 1 2x271 | 2x272 | 24273 | 24274 | 25275 2276 2% 277
Howm 4E+2 |9E+1 | 2E+1 |bE+0 | 1E+0| 3E—-1 | TE—2 | 2E—2
Hrr 2E+0 | 9F -3 — — — — — —
Hrp 2E4+0|9F -3 |6E -5 |4E—T7|3E—-9 |3E—-11 |TE—-12 | TE — 12
Hers 2E4+0|9F -3 |6FE -5 |4E—-T7T|3E—-9 |3E—-11 |7TE—-12 | TE —12

R* 128 128 128 128 128 128 128 128
Rorm 7.3 4.9 4.4 4.2 4.1 4.1 4.0 4.0
Rir 234.1 189.0 — — — — — —
Rrs 175.0 189.0 167.6 151.3 140.5 99.2 3.6 1.0
Rers 234.1 189.0 167.6 151.3 140.5 99.2 3.6 1.0

trv 2E -2 |2E-2 |2E-2|2E-2|2E-2| 2E-2 | 2E-2 | 2E -2
LR 2E—-1|2FE -1 — — — - - -

tre SE-1|3E-1|3F—-1|3E—-1|3E—-1| 3E—-1 | 3E—-1 | 3E—-1
tcrs 2E-1|2E—-1|3E—-1|3E—-1|3E—-1| 3E—-1 | 3E—-1 | 3E -1

MLLpy | - — — — — — — —
MLL, - - - - - - - -
MLLyp
MLLcyg

SDry - - - - - - - -
SDin | - - - - - - - -
SDrp
SDcrs
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.4 (Contd.) For Taylor order m = 8:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2 % 24 2% 23 2 % 22 2% 2!
Ho 2E+29 | 6E+23 |3E+18 | 1E+13 | 3E+8|1E+5|3E+3
Hrr 2E+29 |6E+23 |3E+18 | 1E+13 | 3E+8|T7TE+4 | 1E+2
‘Hrp 2E+29 | 6E+23 |3E+18 | 1E+ 13 |3E+8 | T7TE+4 | 1E+2
Hers 2E+29 |6E+23 |3E+18 | 1IE+13|3E+8 | T7TE+4 | 1E+2
R* — 512 512 512 512 512 512
R — SE+5 | 2E45 | 2E+5 |BE+4 | 2E4+3 | 43.7
Rir — 3E+5 | 2E+5 | 2E+5 |bE+4 | 4E43 | 514.5
Rrs — 3E+5 | 2E45 | 2E+4 |BE+4|5E+3 | 1E+3
Rers — 3E+5 | 2E+5 | 2E+5 |bE+4 | 4E43 | 514.5
trag 4F —2 | 4B -2 | 4E—2 | 4E -2 |4E -2 | 4FE —2 | 4E — 2
tLR 14 14 1.4 14 1.4 1.4 1.4
trp 3960 4148 3721 3442 1039 760 457
tors 1.4 1.4 14 1.4 1.4 1.4 1.4
MLL7)yy — — — — — — —
MLLRr — — — — — — —
MLLrg 410 411 411 411 378 256 76
MLLcTB 0 0 0 0 0 0 0
SDr — — — — — — —
SDrr — — — — — — —
SDrp 9446 9483 8734 8029 2214 3043 2533
SDcrp 0 0 0 0 0 0 0




Table 4.4 (Contd.) For Taylor order m = 8:
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i 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 1 2x271 | 2x272| 2%273 2%x274 | 2x27% | 2%276 2%277
Hoa 4E +2 |9E+1|2E+1| B3E+0 | 1IE+0 | 3E—-1 | TE—-2 | 2E —2
HrLr 5FE —1|6FE -5 — — — — — —
Hrp 5E—-1|6E—-5|8E—-8|1E—10|8E—-12 |7TE—-12 |TE—-12 | TE — 12
Hers 5E—-1|6E—-5|8E—-8|1E—10|8E—-12 |7TE—-12 |TE—12 | TE — 12
R* 512 512 512 512 512 512 512 512
R 7.3 4.9 4.4 4.2 4.1 4.1 4.0 4.0
Rir 3E+3 | 828.6 — — — — — —
Rrs 909.9 828.6 734.6 623.2 17.2 1.1 1.0 0.9
Rers 3E+3 | 828.6 734.6 623.2 17.2 1.1 1.0 0.9
tra A4F —2 |4E -2 |4E -2 | 4E -2 | 4E—2 | 4E—-2 | 4E -2 | 4F —2
tLR 1.4 1.4 — — — — — —
tre 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
tors 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5
MLL7)y — — — — — — — —
MLL R — — - - — — — —
MLLyrg
MLLcrB
SDr — — — — — — — —
SDrr — — - — — — — —
SDrp
SDcrs
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TABLE 4.5. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor
model, Algorithm LR, Algorithm TB and Algorithm CTB in Example 4.5 Griewank (5 — dim).

For Taylor order m = 2:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 25 2 % 24 2% 23 2% 22 2% 21
Hry S5E+24 |2E+20 | 6E+15 | 3E+11 |3E+T7T | TE+3 | 3E+1
Hrr AE +24 | 1E4+20 |6E+15 |3E+11 | 3E4+7 | TE+3 | 3E+1

Hrp - - - - - — —
Hers AE +24 | 1IE+20 | 6E4+15 | 3E+11 | 3E+T7T | TE+3 | 3E+1

R* — 8 8 8 8 8 8
Rrm — SE+4 | 3E+4 | 2E+4 |1E4+4 | 3E4+3 | 3E+2
RLr — 3E+4 | 2E4+4 | 2E+4 |1E4+4 | 3E4+3 | 3E+2

Rrs - - - - - - -
Rers — 3E+4 | 3E+4 | 2E+4 |1E4+4 | 3E4+3|3E+2
trm 1E-2 | 1E-2 | 1IE-2 | 1IE-2 |1IE—-2|1E—-2 | 1E -2
tLr 2E—-2 | 2E-2 | 2E—-2 | 2E—-2 |2E—-2|2E -2 | 2E -2

tre - - - - - - -

torg | 2E—2 | 2E—2 | 2E—2 | 2E—2 |2E—2|2E—-2|2E—2
MLLry, - - - - - - -
MLLpg - - - - - - -
MLLyy - - - - - - -
MLLcrp 0 0 0 0 0 0 0

SDras — — — - - - -
SDpr - - - - - - -
SDrp — — — - - - -
SDcrp 0 0 0 0 0 0 0




Table 4.5 (Contd.) For Taylor order m = 2:

4.5 Conclusions

i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 1 2%272 | 24273 | 2427 | 25270 [ 25270 | 24277
Horm 1E4+0|1E—-1|3E—-2|7TE—-3|2E—-3|4FE -4 |1E—-4|3E -5
Hrr 1E4+0|6E—-2|5E—3 — — — — —
Hrp — 6F -2 |5FE—-3|6FE—4|6E—-5|TE—6|9E -7 | 1E -7
Hers 1E4+0|6E—-2|5E—-3|6E—4|6E—-5|7TE—-6|9F -7 |1E—-7
R* 8 8 8 8 8 8 8 8
R 26.3 7.0 4.7 4.3 4.1 4.1 4.0 4.0
Rir 30.4 14.2 11.2 — — — — —
Rrp — — 11.2 9.7 8.9 8.5 8.2 8.1
Rers 30.4 14.2 11.2 9.7 8.9 8.5 8.2 8.1
trv 1E-2|1E-2|1E-2|1E-2|1E-2|1E-2|1E—-2 | 1E -2
tLR 2E -2 | 2E—-2| 81.0 — — — — —
tre — 5E—1|b5E—-1|5E—1|5E—1|bE—1|5E—1|5E—-1
tors 2E—-2|2E—-2|bFE—1|bE—-1|5E—1|5E—-1|5E—-1|5FE—1
MLL7 — — — — — — — —
MLL; R — — — — - — — —
MLL7p —
MLLcrg 0
SDrm - - - - - - - -
SDrr — — — — — — — —
SDrp —
SDcri 0
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.5 (Contd.) For Taylor order m = 4:

1 -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 20 2 % 24 2% 23 2% 22 2% 21
Hrn 1E+37T|5FE+29 |2E+22 |2E+15 | 9FE+8 | 1E+4 | 3E+1
Hrr 1E+37T|5FE+29 |2E+22 |2E+15 | 9FE+8 | 1E+4 | 2E+1
Hrp - - - - - - -
Hors 1E+37T|5FE+29 |2E+22 |2E+15 | 9FE+8 | 1E+4 | 2E+1
R* — 32 32 32 32 32 32
Ry — SE+7 | 2E4+7 | 1IE+7 |2E4+6|6FE+4 | 5FE +2
RLr — 3E+7 | 2E+7 | 1E4+7 |2E+6 | 6E+4| 6E+2
Rrs - - - - - - -
Rers - 3E+7 | 2E+7 | 1E4+7 |2E+6 | 6E+4| 6E+2
trm 1E -2 1E -2 1E -2 1F—-2 |1E—-2 | 1E -2 | 1E -2
tLR 3E—-1 | 3E—1 3E—1 3E—-1 |3E—-1|3F—-1|3E—-1
lre - - - - - - -
tors 3E—-1 | 3£ -1 3E—1 3E—-1 |3E—-1|3F—-1|3E—-1
MLL7y | — - - - - - -
MLLyp - - - - - - -
MLLyg - - - - - - -
MLLcrp 0 0 0 0 0 0 0
SDry — — — — — - -
SDir - - - - - - -
SDrp — — — — — - -
SDcrs 0 0 0 0 0 0 0
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Table 4.5 (Contd.) For Taylor order m = 4:

7 0 1 2 3 4 5 6 7

w(X(i)) 2x270 [ 2x271 [ 2%x272|2x273|2%x27%|2%x2%| 24276 2%2°7
Horm 1E+0|1E—-1|3E-2|7TE—-3|2E -3 |4FE -4 | 1E—-4 | 3E -5
Hir 4F —1 | 9F -3 — — — — — —

Hrp - - 2E—-4 |TE—-6|2E—-7|6E—-9|2E—-10 | 3E —12
Hors 4E-1|(9E -3 |2E—-4 |7TE—-6 |2E—-7|6E—-9 | 2E—-10 | 3E —12
R* 32 32 32 32 32 32 32 32
Rrm 25.9 7.2 4.8 4.3 4.1 4.1 4.0 4.0
RLR 62.8 42.9 — — — - — -
Rrs - - - 35.1 33.6 32.9 32.6 67.3
Rers 62.8 42.9 37.8 35.1 33.6 32.9 32.6 67.3

trm 1E-2|1EFE-2|1E-2|1E-2|1E-2|1E-2 | 1E-2 | 1E -2
LR SE—-1|3E -1 — — — — — —

trp — — 9E-1|9E—-1|9F—-1|9FE—-1| 9E—-1 | 9E -1
tcrs SE-1|3E-1|9E—-1|9FE—-1|9E -1 |9E—-1| 9E—-1 | 9E -1

MLLry | - - - - - - - -
MLLig | - - - - = = - =
MLLpg — —
MLLcrB - -

SDr — — — — — — — —
SDir - - - — — — — —
SDrp —
SDcrp 0
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.5 (Contd.) For Taylor order m = 6:

l =7 —6 -3 —4 -3 -2 -1
w(XO) | 227 | 2x20 | 2425 | 2x2% | 2x23 | 2422 | 242!
Hry | 1E+48 | 5E+37 | 3E+27 |5E+17 | 3E+9 | 2E+4 | 3E+1
Hig |1E+48 | 5E+37|368+27 |5E+17|3E+9|2E8+4| 268 +1
Hrp - - - - - - -
Hers 1IE+48 | SE+37T | SE+27 | SE+17 | 3E+9 | 2E+4 | 2E +1
R* — 128 128 128 128 128 128
R — SE+10 | 2E+10 | BE+9 |2E+8 | 2E+5 | SE+2
RLr — 2E4+10 | 2E+10 | TE+9 |4E+8 | 2E+5 | 4E+2
Rrp - - - - - - -
Rers — 2E+10 | 2E+10 | TE+9 |4E+8 | 2E+5 | 4E+2
trym 2E-2 | 2E-2 | 2E—-2 | 2E -2 |2E -2 | 2E -2 | 2E -2
LR 7.5 7.5 7.5 7.5 7.5 7.5 7.5
lrp — — - - — — —
tcrs 7.5 7.5 7.5 7.5 7.5 7.5 7.5
MLLyy - - - - - - -
MLLyp - - - - - - -
MLLyg - - - - - - -
MLLcTp 0 0 0 0 0 0 0
SDrym - - - - - - -
SDpx = = = = - - -
SDrp - - - - - - -
SDcrp 0 0 0 0 0 0 0
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Table 4.5 (Contd.) For Taylor order m = 6:
i 0 1 2 3 4 ) 6 7
w (X(i)) 2%270 12271124272 | 2%273 | 2274 | 2%x275 | 2%x270 | 24277
Hoa 1IE4+0|1E—-1|3E—-2|7TE—-3| 2E—-3 | 4E—4 | 1IE—4 | 3E-5
HrLr 6F—2 | 3FE—4 — — — — — —
Hrp — 3E—4|2E—6|1E—-8|9F—-11 |6E—-12 | 1E—11 | 9F — 12
Hers 6F—2|3FE—4|2E—-6|1F—-8|9F—-11 |6E—-12 | 1E—11 | 9F — 12
R* 128 128 128 128 128 128 128 128
R 29.7 7.4 4.8 4.3 4.1 4.1 4.0 4.0
Rrr 255.2 196.1 — — — — — —
Rrp — — 166.2 148.6 143.4 14.3 0.5 1.3
Rers 255.2 196.1 166.2 148.6 143.4 14.3 0.5 1.3
trag 2E -2 |2FE—-2|2E—-2|2E—-2 | 2E—-2 | 2E—2 | 2E—2 | 2E—2
tLr 7.5 7.5 — — — — — —
trp — 8.0 8.0 8.0 8.0 8.0 8.0 8.0
tors 7.5 7.5 8.0 8.0 8.0 8.0 8.0 8.0
MLLry — — — — — — — —
MLL R — — — — — - — —
MLLrp —
MLLcrg 0
SDry — — — — — - — —
SDrr — — — — — — — —
SDrp —
SDcrs 0
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.5 (Contd.) For Taylor order m = 8:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2 % 24 2% 23 2 % 22 2% 2!
Hrn TE4+57|3E+44 | 2E+31 | 1E4+19 | 5E+9 | 2E+4 | 3E+1
Hrr TE4+57 | 3E+44 | 2E+31 [ 1E4+19 | 5E+9 | 2E+4 | 1IE+1
Hrp - - - - - - -
Hors TE4+57|3E+44 | 2E+31 | 1E4+19 | 5E+9 | 2E+4 | 1E+1
R* — 256 256 256 256 256 256
R — 2E+13 | 1E+13 |2E+12 | 3E+9 | 3E+5 | bE +2
RLr — 2E+13 |1E+13 |2E+12 | 3E+9 | 3E+5|2E+3
Rrr - - - - - - -
Rers - 2E+13 |1E+13 |2E+12 | 3E+9 | 3E+5|2E+3
trag 3E—-2 | 3E—-2 | 3E—2 | 3E—-2 |3E—-2|3E—-2|3E—-2
trr 82.4 82.4 82.4 82.4 82.4 82.4 82.4
lre - - - - - - -
lers 82.4 82.4 82.4 82.4 82.4 82.4 82.4
MLL7)yy — — — — — — —
MLL g — — — — — - -
MLLypg - - - - - - -
MLLcTB 0 0 0 0 0 0 0
SDry — — — — - - -
SDir - - - - - - -
SDrp — — — — - - -
SDcrp 0 0 0 0 0 0 0




Table 4.5 (Contd.) For Taylor order m = 8:
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i 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 1 2x271 | 2x272| 2%273 2%x274 | 2x27% | 2%276 2%277
Hoa 1IE+0|1E—-1|3E—-2| 7TE—-3 | 2E—3 | 4E—-4 | 1E—4 | 3E—5
Hrr 1E—-2|2F -5 — — — — — —
Hrp — 2E -5 |4E -8 | TE—-11 | 1E—-11 |7TE—-12 | 1E—11 | 9F — 12
Hers 1E—-2|2E—-5|4FE—-8 |7E—-11 |1E—-11 |7TE—-12 | 1E—11 | 9F — 12
R* 512 512 512 512 512 512 512 512
R 31.6 7.4 4.8 4.3 4.1 4.1 4.1 4.0
Rir 700 599.2 — — — — — —
Rrs — — 557.5 583.4 7.1 1.3 0.7 1.3
Rers 700 599.2 557.5 583.4 7.1 1.3 0.7 1.3
tra SE—2|3E—-2|3E—-2| 3E—-2 | 3E-2 | 3E—-2 | 3E—2 | 3E -2
tLR 82.4 82.4 — — — — — —
trp — 83.6 83.6 83.6 83.6 83.6 83.6 83.6
ters 82.4 82.4 83.6 83.6 83.6 83.6 83.6 83.6
MLL7y — — — — — — — —
MLL R — — — — — — — —
MLLyrg —
MLLcTB 0
SDr — — — — — — — —
SDrr — — — — — — — —
SDrp —
SDcr 0
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TABLE 4.6. Overestimations and their reduction ratios for various Taylor orders obtained with Taylor
model, Algorithm LR, Algorithm TB and Algorithm CTB in Example 4.6 Trigonometric (6 — dim).

For Taylor order m = 2:
i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2 % 24 2% 23 2 % 22 2 % 21
Horwm SE+13|1E+12 | 2E+10 | 3E+8 | 6FE+6 | 2E+5 | 1E+4
Hrr SE+13 | 1E+12 | 2E+10 | 3E+8 |6E+6 | 2E+5 | 1E+4
Hrp - - - - - - -
Hors SE+13|1E+12 | 2E+10 [ 3E+8 | 6FE+6 | 2E+5 | 1E+4
R* — 8 8 8 8 8 8
R — 63.6 63.0 61.2 55.8 37.7 16.7
Rir — 63.6 63.0 61.2 55.8 37.7 16.7

Rrs - - - - - - -
Rors - 63.6 63.0 61.2 55.8 37.7 16.7

trn 2E—2 | 2E—2 | 2E—2 |2E-2|2E-2|2E-2|2E -2
tor 1E—1 | 1E—-1|1E—-1|1E—-1|1E—1|1E—1|1E—1
tre - - - - - - -
tors 1E—1 | 1E—-1|1E—-1|1E—-1|1E—1|1E—1|1E—1

MLLyy — — — — — — —

MLLp - - - - - - -

MLLyy - - - - - - -

MLLcrs 0 0 0 0 0 0 0

SDry — — — — — — —
SDpr - - - - - - -
SDrp — — — - - - -
SDcra 0 0 0 0 0 0 0




Table 4.6 (Contd.) For Taylor order m = 2:

4.5 Conclusions

i 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 1 2%272 | 24273 | 2427 | 25270 [ 25270 | 24277
Horm 1E+3|3E+2|6E+1|2E+1|3E+0|1E+0|2E—-1|6FE —2
‘Hrr 9E+2 |9F +1 | 9E+0 — — — — —
Hrp OE+2 |9FE+1 |9E+0 | 1E+0|1E—-1|2E—-2|2E—-3 | 2FE -4
Hers 9K +2|9F+1|9F+0|1E4+0|1E—-1|2FE—-2|2E—-3|2FE -4
R* 8 8 8 8 8 8 8 8
R 6.7 5.0 4.5 4.3 4.1 4.1 4.0 4.0
Rir 10.9 10.1 9.3 — — — — —
Rrp — 10.1 9.3 8.7 8.4 8.2 8.1 8.1
Rers 10.9 10.1 9.3 8.7 8.4 8.1 8.1 8.1
trv 2E -2 |2E -2 |2FE -2 |2E—-2|2E—-2|2E—-2|2E—-2|2E—2
tLR 1E—-1|1E—-1 9.4 — — — — —
tre 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
tors 1E—-1|1E—-1 1.1 1.1 1.1 1.1 1.1 1.1
MLL7 — — — — — — — —
MLL; R — — — - - — — —
MLL7p
MLLcrs
SDrm - - - - - - - -
SDrr — — — — — — — —
SDrp

SDcrp
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.6 (Contd.) For Taylor order m = 4:

1 -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2 % 24 2% 23 2 % 22 2% 2!
Hrn 6E+19 | 6E+16 |6E+13 |6E+ 10| 1IE+8 | 4E+5| 1E+4
Hrr 6FE+19 | 6E+16 |6E+13 |6E+ 10| 1E+8 | 4E+5| 5E+3
Hrp - - - - - - -
Hors 6FE+19 | 6E+16 |6E+13 |6E+ 10| 1E+8 | 4E+5| 5E+3
R* — 32 32 32 32 32 32
R — 1E+3 983.9 899.3 659.1 251.0 37.1
RLr — 1E+3 983.9 899.3 661.1 271.4 66.5
Rrs - - - - - - -
Rers - 1E+3 983.9 899.3 661.1 271.4 66.5
trm 4F —2 | 4E -2 | AE—2 | 4FE -2 |4F -2 |4E —2 | 4FE — 2
tLr 6.0 6.0 6.0 6.0 6.0 6.0 6.0
lre - - - - - - -
lers 6.0 6.0 6.0 6.0 6.0 6.0 6.0
MLL7y | — - - - - - -
MLLyp - - - - - - -
MLLyg - - - - - - -
MLLcrp 0 0 0 0 0 0 0
SDry — — — — — - -
SDir - - - - - - -
SDrp — — — — — - -
SDcrs 0 0 0 0 0 0 0
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Table 4.6 (Contd.) For Taylor order m = 4:

? 0 1 2 3 4 5 6 7

w(X(i)) 2x270 | 2271 | 2272 | 2x273 | 24274 | 2%27° [ 2%270 | 2x277
Ho 1IE+3|3E+2|6E+1|1E4+1|(3E+0|1E+0|2FE—-1| 5E—2
Hrr 4E+1 | 7TE -1 — — — — — —
Hrp 4E+1|7TE—-1|1E—-2|2E—-4|5E—-6|2E—7|3E—-9 | 1E—-10
Hers A4E+1|7TE—-1|1E—-2|2FE—-4 | 3E—-6|2E—-7|3E—-9 | 1E—-10

R* 32 32 32 32 32 32 32 32
Rorm 7.1 5.0 4.5 4.3 4.1 4.1 4.0 4.0
Rir 128.2 61.3 — — — — — —
Rrs — 61.3 56.9 51.6 46.2 41.2 37.1 28.5

Rers 128.2 61.3 56.9 51.6 46.2 41.2 37.1 28.5

trv AE -2 |AE -2 |4E -2 |4E -2 |4AE -2 |4E -2 |4E -2 | 4E -2
LR 6.0 6.0 - - - - - -
tre 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
tcrB 6.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0

MLLyy | — - - - - — — —
MLLg - - - - - - - -
MLLyg
MLLcrs

SDry | - - N N N N N N
SDin | - - - - - - - -
SDrpg
SDcrs
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.6 (Contd.) For Taylor order m = 6:

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 2° 2 % 24 2% 23 2 % 22 2% 2!
Hrn 9F +24 | 5BE+20 |4E+16 | 3E+12 | 4E+8 | 5E+5 | 1E+4
Hrr 9F +24 | 5E+20 |4E+16 | 3E+12 | 4E+8 | 4E+5 | 1E+3
Hrp - - - - - - -
Hors 9F +24 | 5E+20 |4E+16 |3E+12 | 4E+8 | 4E+5 | 1E+3
R* — 128 128 128 128 128 128
R — 2E+4 | 2E+4 | 1IE+4 |TE+3|9E+2 | 4E+1
RLr — 2E+4 | 2E+4 | 1IE+4 |7TE+3|1E+3 | 3E+2
Rrr - - - - - - -
Rers - 2E+4 | 2E+4 | 1IE+4 |7TE+3|1E+3 | 3E+2
try 6FE—2 | 4AE—2 | 4E -2 | 4E -2 | 4E -2 | 4E -2 | 4E —2
tLr 283 283 283 283 283 283 283
lre - - - - - - -
lers 283 283 283 283 283 283 283
MLL7)yy — — — — — — —
MLL g — — — — — - -
MLLypg - - - - - - -
MLLcTB 0 0 0 0 0 0 0
SDry — — — — - - -
SDir - - - - - - -
SDrp — — — — - - -
SDcrp 0 0 0 0 0 0 0
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Table 4.6 (Contd.) For Taylor order m = 6:

) 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 | 2x272 | 24273 | 24274 | 25275 2276 2% 277
Hrn 1E+3|3E+2|6E+1|1E+1|3E+0| 1E+0 | 2E—1 | BE—2
HrLr TE+0|4FE —2 — — — — — —
Hrs TE+0|4FE -2 |2E -4 |2E—-6 |1E—-8 |1E—-10|3FE—11 | 3E—11
Hers TE+0|4F -2 |2F -4 |2FE—-6|1FE—-8 | 1F—10 | 3FE—11 | 3E —11
R* 128 128 128 128 128 128 128 128
Rim 7.5 5.0 4.5 4.3 4.1 4.1 4.0 4.0
RLr 206.1 176.4 — — — — — —
RrB — 176.4 157.8 144.9 136.8 103.7 4.4 1.0
Rers 206.1 176.4 157.8 144.9 136.8 103.7 4.4 1.0
tra AF —2 |4E -2 |4E -2 |4E -2 |4E -2 | 4E -2 | 4E -2 | 4E —2
trr 283 283 — — — — — —
tre 284.2 284.2 284.2 284.2 284.2 284.2 284.2 284.2
tors 283 283 284.2 284.2 284.2 284.2 284.2 284.2
MLLypy — — — — — — - -
MLLg - - - - - — - -
MLLrg
MLLcrs
SDrm - - - - - - - -
SDrr — — — — — - - -
SDrg
SDcrs
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4. A combined Taylor-Bernstein form for higher order convergence

Table 4.6 (Contd.) For Taylor order m = 8:

1 -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 20 2 % 24 2% 23 2 % 22 2% 21
Hrn AFE+29 | 2E+24 |8E+18 |4E+13 | 9E+8 | 5E+5 | 1E+4
Hrr A4FE +29 | 2E+24 | 8+18 |4E+13 | 9E+8 | 2E+5 | 3E+3
Hrp - - - - - - -
Hors AFE+29 | 2E+24 |8E+18 |4E+13 | 9E+8 | 2E+5 | 3E+3
R* — 256 256 256 256 256 256
Rrum - 2E+5 | 2E+5 | 2E+5 |5E+4|2E+3 | 4E+1
RLr — 2E+5 | 2E+5 | 2E+5 |BE+4 | 4E+3 | 8E+1
Rrs - - - - - - -
Rers - 2E+5 | 2E+5 | 2E+5 |BE+4 | 4E+3 | 8E+1
trm S8E—-2 | 8E—2 | 8E—-2 | 8E—-2 |8E—-2|8E -2 | 8FE -2
tLr 5397.7 | 5397.7 | 5397.7 | 5397.7 | 5397.7 | 5397.7 | 5397.7
tre — — — — — — —
lers 5397.7 | 5397.7 | 5397.7 | 5397.7 | 5397.7 | 5397.7 | 5397.7
MLL7y | — - - - - - -
MLLR — — — — — — —
MLLpg — — — — — — —
MLLcrg 0 0 0 0 0 0 0
SDry — — — — - - -
SDir - - - - - - -
SDrp — — — — - - -
SDcrs 0 0 0 0 0 0 0




Table 4.6 (Contd.) For Taylor order m = 8:
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i 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 1 2x271 | 2x272| 2%273 2%x274 | 2x27% | 2%276 2%277
Hoag 1F+3|3E+2|6E+1| 1E+0 | 3E4+0 | 1E4+0 | 2E—-1 | 3E—2
Hrr 1E—1|2FE—4 — — — — — —
Hrp 1E—1|2E—4|2E—-7|3E—-10|2FE—11 |3E—-11 | 3E—11 | 3F —11
Hers 1E—-1|2E—4|2E—-7|3E—-10|2F—11 |3FE—-11 | 3E—11 | 3E —11
R* 512 512 512 512 512 512 512 512
R 7.4 5.0 4.5 4.3 4.1 4.1 4.0 4.0
Rir 2FE +4 | 931.7 — — — — — —
Rrs — 931.7 852.5 700.7 10.7 0.9 0.8 1.2
Rers 2E +4| 931.7 852.5 700.7 10.7 0.9 0.8 1.2
tra 8E -2 |8E—-2|8E—-2| 8E—-2 | 8E8—2 | 8E—-2 | 8E—-2 | 8E —2
tLr 5397.7 | 5397.7 — — — — — —
trp 5400 5400 5400 5400 5400 5400 5400 5400
tors 5397.7 | 5397.7 | 5400 5400 5400 5400 5400 5400
MLL7yy — — — — — — — —
MLLRr — — — — — — — —
MLLyrg
MLLcrB
SDrr — — — — — — — —
SDrr — — — — — — — —
SDrp
SDcrs
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TABLE 4.7. Domain width parameter ¢ and time taken by Algorithms TB and CTB to reach an
accuracy of 1E — 10 for various Taylor orders in Examples 4.1 to 4.6.

Frp Fers
Example Name Order, m ) time ) time
4.1 Gritton 2 > 7 — > 7 —
> 7 - > T —

7 0.15 7 0.15
5 0.13 5 0.13

> 7 — > 7 —

0.27 7 0.23
5 0.44 5 0.33
0.65 4 0.42

4.2 Jennrich & Sampson

4.3 Levy > 7 — > 7 —
2.17 7 0.15
4.45 5 0.13
4.09 3 0.35

4.4 Trigonometric > 7 - >7 -

153 7 0.39
1712 5 3.0
487hr | 3 15.6

4.5 Griewank > 7 00 > 7 —

DI (ND]O]DN]|INN[COIDN]I N[N0 O] &~

o0 91.5
00 909
4.6 Trigonometric > 7 o0 > 7 -
o0 96
00 3679
00 16.5 hr
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TABLE 4.8. Overestimations and their reduction ratios obtained with the natural inclusion function

form in Example 4.1 Gritton (1 — dim).

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2 % 20 2% 25 2% 24 2% 23 2 % 22 2 % 21
Hyie |2E+34 | 1E4+29 | 6E+23 [5E+18 | 1E4+14 | 3E+ 10| 7TE+7
RNIE — 2E+5 | 2E+5 | 1E4+5 | 3E+4 | 5E+3 | 4251
tNIE 1FE-2 | 1E-2 | 1IE-2 | 1E—-2 | 1E-2 | 1IE-2 | 1E -2
i 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 124271 2%272 | 2%273 | 25274 | 25275 [ 2%270 | 25277
Hyie |1E+6|2E+5|3E+4|8E+3|3E+3|1E+3|5E+2|3E+2
RNIE 47.2 8.5 5.8 3.7 2.8 2.4 2.2 2.1
INIE 1FE—-2|1E—-2|1E—-2|1E-2|1E-2|1E-2|1E-2|1E -2

TABLE 4.9. Overestimations and their reduction ratios obtained with the natural inclusion function

form in Example 4.2 Jennrich and Sampson (2 — dim).

i -7 | -6 -5 —4 —3 —2 ~1
w(XD) | 2x27 [ 2526 | 2x2° 2% 24 2x25 | 2x22 | 2x2!
HN1E - - |1E+258 | TE+118 [ 1IE+49 | IE+19 | 132.1
RNIE - - — 2E+139 | TE+69 | 8E+29 | 9E+16
tNig - - IE—-2 | 1IE—-2 | 1IE-2 | 1IE—-2 | 1E -2
i 0 1 2 3 4 5 6 7
w(X(i)) 2270 | 2271 | 2%272 | 2%273 | 227 | 2x270 | 24270 | 24277
Hyip |2E—13|2E—13 |2E—13 |4E—13 |4E—13 |2E—13 | 2E—13 | 4E — 13
Ryie |6E+14| 1E+0 | 1IE4+0 | 5E—1 | 1E4+0 | 2E+0 | 1E40 | 5E—1
tnig | 1IE—2 | 1IE—-2 | 1IE-2 | 1IE-2 | 1IE—-2 | 1IE—-2 | 1IE—-2 | 1E -2
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TABLE 4.10. Overestimations and their reduction ratios obtained with the natural inclusion function

form in Example 4.3 Levy (3 — dim).

4. A combined Taylor-Bernstein form for higher order convergence

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2 % 26 2% 2° 2 % 24 2% 23 2 % 22 2 % 21
Hyieg |IE+3|6E+2 (4E+2 | 1E+2 | 9K +1 | TE+1|2E+1
RNIE — 1.9 1.7 3.0 14 1.2 3.3
tNIE 1E—-2|1E—-2|1E-2|1E-2|1E-2|1E—-2 | 1E -2
) 0 1 2 3 4 5 6 7
w (X(i)) 2x270 1 2x271 | 2x272 | 2x273 2%x27% | 2x27% | 2%27F 2% 277
Hnyie | 2E-3 0.0 0.0 4F —14 | 3E—-14 |6E—14 | 7TE—14 | 6E — 14
Rnie | 9E+3 - - - - - - -
tNIE 1F—-2|1F—-2|1E-2| 1E-2 | 1IE-2 | 1E—-2 | 1IE-2 | 1E—-2

TABLE 4.11. Overestimations and their reduction ratios obtained with the natural inclusion function

form in Example 4.4 Trigonometric (4 — dim).

i -7 —6 -5 —4 -3 —2 ~1
w(XD) | 2%27 | 2x26 | 2x25 | 2x2% | 223 | 222 | 2x2!
Hyie |1E+2|1E+42|1E+2|1E+2|1E+2|1E+2|5E+1
RNIE — 1.0 1.0 1.0 1.0 1.0 1.9
tnig |1E—2|1E-2|1E-2|1E-2|1E-2|1E—-2|1E -2
i 0 1 2 3 4 5 6 7
w (X(i)) 24279 | 24271 | 24272 | 2x273 | 2x27% | 2275 | 2x270 | 24277
Hyiep |2E+0|1E+0|1E-1|1E-11 |1E—11|1E—-11 |1E—11|1E—11
Rnie | 23.0 1.6 140 | 7E+9 | 10 1.0 1.0 1.0
tnig |1E-2|1E-2|1E-2| 1E-2 | 1IE-2 | 1IE—-2 | 1IE—2 | 1E -2
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TABLE 4.12. Overestimations and their reduction ratios obtained with the natural inclusion function

form in Example 4.5 Griewank (5 — dim).

i -7 —6 -5 —4 -3 -2 -1
w(X(i)) 2% 27 2% 26 2% 25 2% 24 2% 23 2 % 22 2 % 21
Hyeg |IE+0|1E+0|(1E+0|1E+0|1E+0|1E4+0|9E -1
RNIE — 1.3 0.87 0.96 1.2 1.1 1.1
tNIE 1E—-2|1E—-2|1E-2|1E-2|1E-2|1E—-2 | 1E -2
i 0 1 2 3 4 5 6 7
w (X(i)) 2%x270 124271 2%272 | 2%273 | 25274 | 25275 [ 2%270 | 25277
Hyie |3E—1|9E -2 |2E—-2|4F -3 |bE -4 |2E—-5|8E—-6|3FE—6
RNIE 3.0 3.4 4.2 5.0 8.8 23.6 2.6 2.3
INIE 1FE—-2|1E—-2|1E—-2|1E-2|1E-2|1E-2|1E-2|1E -2

TABLE 4.13. Overestimations and their reduction ratios obtained with the natural inclusion function

form in Example 4.6 Trigonometric (6 — dim).

i -7 —6 -5 —4 -3 —2 ~1
w(XD) | 2%27 | 2x26 | 2x25 | 2x2% | 223 | 222 | 2x2!
Hnip |2E+3|2E+3|2E+3|2E+3|2E+3|2E+3 | 2E+3
RNIE — 1.0 1.0 1.0 1.0 1.0 1.0
tnig |1E—2|1E-2|1E-2|1E-2|1E-2|1E—-2|1E -2
i 0 1 2 3 4 5 6 7
w (X(i)) 24279 | 24271 | 24272 | 2x273 | 2x27% | 2275 | 2x270 | 24277
Hnig |7TE+0|3E+0|2E—1|5E—11|5E—11|5E—11 | 5E—11 | 5E —11
Rnie | 2551 | 1.9 144 | BE+9 | 10 1.0 1.0 1.0
tnig |1E-2|1E-2|1E-2| 1E-2 | 1IE-2 | 1IE—-2 | 1IE—2 | 1E -2
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5

Global optimization using the natural inclusion,
Taylor model, and combined Taylor-Bernstein
forms

5.1 Introduction

In the previous chapter, we presented a combined TB form Forp that is more effective than
either of its two constituent TB forms Fppg, Fr when the domain shrinks from large to
small widths. The combined form Forp, of course, inherits the useful property of higher
order convergence from its constituent forms. Moreover, we also saw in the previous chapter
that the simple natural inclusion form sometimes yields tighter enclosures of the range than
the more sophisticated Taylor and TB forms.

In this chapter, we propose an improved algorithm for unconstrained global optimization in
the framework of the MS algorithm. A novel and powerful feature of the proposed algorithm
is that a variety of inclusion function forms for the objective function are incorporated into
it - the combined TB form, the Taylor model, and the simple natural inclusion form. Several
improvements are also made in the Bernstein step of the combined TB form, such as selection
of a more efficient direction for subdivision, and the use of cut-off and monotonicity tests to
discard those boxes where the global minimizer cannot lie. Further, the incorporation of
several inclusion function forms allows the cut-off test and termination condition in the MS
algorithm to be made even more effective than in our earlier proposed optimization algorithm
in Chapter 3. The performance of the proposed Algorithm is then numerically tested and
compared with those of Algorithms MS, TMS, and TBMS on several benchmark examples.

The rest of this chapter is organized as follows. In section 5.2, some initial developments
and improvements are given. In section 5.3, the proposed algorithm for global optimization

is presented. In section 5.4, the performance of the proposed algorithm is numerically tested
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and compared with those of the MS algorithm, the MS algorithm with the Taylor model as an
inclusion function form, and our earlier proposed optimization algorithm. The obtained test
results are discussed in section 5.5, while the conclusions of the chapter are given in section

5.6.

5.2 Initial developments

In section 2.2.1, we presented Algorithm Bounder to compute the range p (X) of the polyno-
mial part p on X. For global optimization problems, where the computation of min f (X) is
of interest, this algorithm can be tailored and improved as given below. We call the resulting
improved algorithm as Algorithm NewBounder.

A study of the optimization Algorithm TBMS presented in section 3.3 reveals that the
quantity max p (Y), where Y is the current leading box, is never used in the algorithm and
is therefore not of interest. Note that the quantity max p (Y) required in step 8 of Algorithm
TBMS is actually found in step 4 of Algorithm Bounder, through the application of the vertex
condition to max B (D).

Since max p (Y) is not of interest in Algorithm TBMS, in step 4 of Algorithm Bounder we
may avoid applying the vertex condition to max B (D) and instead apply it only to min B (D).
With this modification, a new Algorithm NewBounder arises from Algorithm Bounder. It

computes an enclosure P (X) of the range p (X), with P (X) such that
min P (X) = minp (X); maxP (X) > minp(X) (5.1)
We can also incorporate some more improvements into Algorithm NewBounder:

e A monotonicity test similar to that used in the MS algorithm, for discarding boxes

where surely no global minimizer of p lies.

e A cut-off test, similar to that used in the MS algorithm, for discarding boxes where

surely no global minimizer of p lies.

e An improved strategy for selection of subdivision direction of boxes.

We discuss below each of these improvements.
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5.2.1 Monotonicity test for Bernstein patches

On a box D C U, the partial derivative with respect to x, of a polynomial p (x) in Bernstein

form is [11]
9p
ox,

(x)=n, »_  [by,(D)=b;(D)]By,_,, (%), 1<r<l, x€D (5.2)
I<SN, 1

Remark 5.1 Let P, (D) denote an enclosure of the range of the above partial derivative on
D. In the monotonicity test if 0 ¢ P! (D) then the interior of D cannot contain a global
manimizer of p on U. The edge of D can still contain global minimizer if that part of the edge
which has the smallest polynomial value is also part of U. Otherwise, no global minimizer of

p lies in D, and D can be discarded.

The enclosure P/ (D) can be found by evaluating the natural interval inclusion of the RHS

expression in (5.2). However, in some cases, the evaluation can be avoided:

Remark 5.2 From the fact that the Bernstein polynomials By, are always non-negative,

—1.1
it is easy to see from (5.2) that if all [b;, , (D) — by (D)]| are positive resp. negative, then
P/ (D) > 0 resp. P/ (D) < 0 = p is monotonic with respect to direction r on box D = the

interior of D cannot contain global minimizer of p.

5.2.2  Direction selection for Bernstein patches

In step 5 of Algorithm Bounder in section 2.2.1, the direction in which the boxes are subdi-
vided is varied cyclically from 1 to . A more efficient strategy for selection of the subdivision
direction could result in considerably fewer boxes being created and significant overall speed
up of this algorithm.

Zettler and Garloff [33] suggest selection of the subdivision direction as the one along
which the maximum absolute value of the partial derivatives of p occurs. Applying the tri-
angle inequality and properties of Bernstein polynomials to (5.2), the authors show that the

quantity
Jp
ox,

max
xsD

(%)

can be estimated as

I = e |bs,., (D) — b; (D)

The direction selected for subdivision rq is such that

I, = max I, (5.3)

A similar strategy can be given based on the second partial derivatives. In Algorithm New-

Bounder, we use the above direction selection strategy based on the first partial derivatives.
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5.2.83 Cut-off test for Bernstein patches

The list £ in Algorithm Bounder consists of pairs (D, B (D)). Suppose we arrange this list at
every iteration such that the minimums of the second members, i.e., min B (D), of all pairs
of the list do not decrease.

Now, consider the leading box D of the list £ at any given iteration of the algorithm. If
min B (D) satisfies the vertex condition, then by the range enclosure property of Bernstein
coefficients, min p (D) = min B (D). As minp (D) > minp (X), we may discard all boxes D’
in the list £ for which min B (D) > min B (D).

Suppose instead that min B (D) does not satisfy the vertex condition. Then, D is subdi-
vided into two subboxes D 4, Dp and the patches B (Dy4), B (Dg) computed. By the range

enclosure property of Bernstein coefficients given in section 2.2.1,
p(Da) C [minB(Dy),max B (D4)]; p(Dp) C [min B (Dp),max B (Dpg)]

So, if min B (Dp) > max B (D4) then the box Dp can be discarded in the search for the
global minimum. In fact, we may also discard all other boxes D’ in the list £ for which
min B (D) > max B (D4).

5.2.4  Algorithm for bounding polynomial range

We are now ready to present the improved Algorithm NewBounder. This algorithm is specially
meant for global optimization problems where the primary interest is in obtaining sharp values
for minp (X) whereas the quantity max p (X) can be overestimated.

Algorithm NewBounder : P (X) = NewBounder(X, a;)

Inputs: A box X, a polynomial p as in (2.1) of degree N in [-variables and having coefficients
aj.

Output: An enclosure P (X) of the range p (X), where P (X) is as in (5.1).

BEGIN Algorithm

1. (Compute patch B (U) ) Execute Algorithm Patch
B (U) = Patch (X, ay)
2. (Initialize lists) Set £ « {(U, B (U))}, £5% « {}. Set cut-off value 2’ = max B (U).

3. (Select item for processing) If £ is empty, go to step 11. Otherwise, pick the first item
from L, denote it as (D, B (D)), and delete the item entry from L.

4. (Check vertex condition for the min on patch) If (D, B (D)) is such that min B (D)
satisfies the vertex condition in Lemma 2.2, that is, min B (D) occurs at some I € Sp,

then
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(a) Update the cut-off value as 2z’ = min {2/, min B (D)}.

(b) Enter the item in list £5° and return to previous step.
5. (Subdivide and find new patches) Execute Algorithm Subdivision
[B(D4),B(Dg),D4,Dg] =SD (D, B(D),r)
where, 7 is chosen as in (5.3).

6. (Monotonicity test, see Remarks 5.1 and 5.2): discard box D4 if 0 ¢ P (Dj4) for any
r€{1,2,...,l}. Do likewise for box Dp.

7. Update the cut-off value as z/ = min {2/, max B (D4),max B (Dg)}.

8. (Add new entries to list) Enter the new items (D4, B(D4)) and (Dp, B (Dg)) to the
list £ such that minimums of the second members, i.e., min B (D), of all pairs of the

list do not decrease.

9. Cut-off test: discard from the list all pairs whose minimums of the second members are

greater than 2/.
10. Return to step 3.

11. Compute an enclosure P (X) of the range p(X) as the minimum to maximum over all

the second entries of the items present in list £5%.

12. RETURN P (X).

END Algorithm

5.2.5 A tighter enclosure of the function minimum

In the proposed algorithm for optimization given below, we are interested in computing an
enclosure that is as tight as possible for the global minimum of the objective function f.
This quantity is given by min f (Y), where Y is the leading box at any given iteration of the
algorithm. Suppose we compute the combined TB form using Algorithm CTB and obtain
an enclosure of f(Y). If w(Y) happens to be small enough, then the improved TB form

Frp(Y) is in turn invoked in Algorithm CTB. In this case, we can use the interval
minp (Y) +min R (YY), minp(Y) + max R(Y)]

instead of the interval Forp (Y) to get a tighter enclosure of min f (Y).
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Algorithm MIN CTB below encapsulates this idea.

Algorithm MIN CTB : Fyi,cr (X) = MIN_CTB(X, f,m)

Inputs: The box X, an expression for the function f, and the order m of Taylor form to be
used.

Output: An enclosure Fiin crp (X) for min f (X).

BEGIN Algorithm

1. Call Algorithm CTB:
[Fers (X),p(X),B*, R(X),if] = CTB(X, f,m)
2. If iy =0 set

Fuincrs (X) = Forp (X)

else set

Fain,crs (X) = [minp (X) 4+ min R (X) , min p (X) + max R (X)]

3. RETURN Fapin o7 (X) and EXIT.

END Algorithm

5.3 Proposed optimization Algorithm CTBMS

The proposed algorithm is based on the following ideas. As before, let Y be the leading box
at any given iteration of the MS algorithm. Then,

1. Since the computation of Fy;p (Y) is relatively inexpensive, and since sometimes
Fnre (Y) gives sharper enclosures than the sophisticated TB forms even for small

domains (see previous chapter), we always compute Fy;g (Y).

2. If w(R(Y)) > w(Fnre (Y)), then Fyrp (Y) gives a sharper enclosure of the range
than the TB forms. Since the effort to bound the polynomial range p(Y) may not be

worthwhile in these cases, we do not use the TB forms and instead use Fng (Y).

3. If the Taylor model technique of Berz et al. [3], [20] is used for computing R (Y) needed
in the above step, then we concurrently also obtain the Taylor model Firps (Y). Then,
as anyway the cost of computing Frjs (Y) is incurred in the Taylor model technique,

instead of using only Fng (Y) we can use Fnrg (Y) () Fras (Y).
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4. fw (R(Y)) <w (Fynig (Y)), we also use the combined TB form and get an enclosure of
the global minimum min f (Y) using Foyinors (Y). We then intersect the result with
Fnie (YY) Fra (Y) to obtain a (hopefully) sharper enclosure F (Y) of the global

minimum min f (Y).
5. A lower bound on the global minimum min f (Y) is obtained as y = min F (Y).

6. The global minimum min f (Y) cannot exceed max F' (Y). Hence, the cut-off value z in

the MS algorithm can be updated accordingly.

7. Thus, the global minimum min f (Y) is bounded by [min F (YY), max F (Y)]. The max-

imum possible error in computing the global minimum is therefore given by w (F (Y)).

8. This leads to the termination condition for the algorithm as w (F (Y)) <e¢ .

We can now present our algorithm for global optimization. Since our global optimization
algorithm involves the Combined Taylor - Bernstein form in Moore-Skelboe type algorithm,
we call it as Algorithm CTBMS.

Algorithm CTBMS

Inputs: The box X, order m of the Taylor form to be used, natural inclusion function Fn;g
for the function f : X — R, an inclusion function F for the Jacobian of f, and an accuracy
parameter €.

Output: A lower bound, of accuracy e, on the global minimum of f over X. This lower

bound is output as the value of variable y in the last but one step below.
BEGIN Algorithm

1. Set Y = X.
2. Calculate Fyrg (Y) and Frp (Y) =p(Y) + R(Y).
(a) fw(R(Y)) >w (Fyie (Y)), set
F(Y)=Fnie (Y ﬂ Fry (Y
and go to the following step, else compute Finin o7 (Y) using Algorithm MIN _CTB
Fuincrs (Y)=MIN_CTB(Y, f,m)

and set

F(Y FNIE ﬂFTM )ﬂFmimCTB (Y)

3. Set y = min F (Y).
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10.

11.

12.

13.

14.

15.

16.
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. Initialize the list L = ((Y,y)) and the cut-off value z = max F (Y).

. Choose a coordinate direction k parallel to which Y has an edge of maximum length,

i.e., choose k as
E={i:w(Y)=w(Y;)}

. Bisect Y in direction k getting boxes V! and V? such that Y = V1| J V2,

Monotonicity test (see Remark 3.1): discard any box V' if 0 ¢ FJ/(Vz) for any j €
{1,2,...,1} and i =1, 2.

. For i = 1,2 do the following: Calculate Fy ;g (Vz) and Fryy (VZ) =D (VZ) + R (VZ)

(a) Ifw (R (V') >w (Fyie (V')), set
F (V') = Fyie (V') () Fru (V9)
else compute Fin crp (V') using Algorithm MIN _CTB :
Fuincrs (V') = MIN_CTB (V', f,m)

and set
F (V') = Fyig (V') ﬂ Fra (VY) m Fincrs (V')

. Set v = min F (VZ) fori=1,2.

Update the cut-off value z as

z = min {z,maxF (Vl) ,max F' (VQ)}

Remove (Y,y) from the list L.

Add the pairs (Vl, vl) , (VQ, v2) to the list L such that the second members of all pairs

of the list do not decrease.

Cut-off test: discard from the list all pairs whose second members are greater than z.
Denote the first pair of the list by (Y,y).

If w(F(Y)) < € then print y and EXIT algorithm.

Go to step 5.
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END Algorithm

From section 3.3, especially (3.3), it is straightforward to prove that y is a lower bound on
the global minimum of f over X. The convergence properties of Algorithm CTBMS follows
immediately from the convergence results for inclusion functions of higher order in the MS
algorithm, as given by Moore and Ratschek in [25] and Ratschek in [29)].

5.4 Numerical tests

We test and compare the performances of Algorithms CTBMS, TBMS, TMS, and MS on
eleven benchmark examples. We set the accuracy € = le — 05 and the Taylor order m = 4.
For all computations, we use a PC/Pentium III 800 MHz 256 MB RAM machine with a
FORTRAN 90 compiler, and version 8.1 of the COSY-INFINITY package of Berz et al. [2],

[15].
To compare the performances of the various Algorithms, we use the following performance

metrics:

e Number of algorithmic iterations
e Computational time, seconds
e Maximum list length

e Final list length

The examples are as under:

Example 5.1 Jennrich and Sampson function [26, problem 6]. The 2 — dim function is
10
fl@) =" fix)*,  filx) =2+ 2i — (exp(iz1) + exp(izy))
i=1

We take the initial domain as X = ([—1, 1]2) i
Example 5.2 Bard function [26, problem §]. The 3— dim function is

Uj

15
f@) =Y F@P, i) =i (xl +

— ) ,u; = 4,v; = 16 — i, w; = min(u;, v;)
VT + W;iT3

where, the values of y; for i = 1,...,15 are given in the cited paper. We take the initial
domain as X = ([—0.25,0.25],[0.01, 2.5]?) .
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Example 5.3 Box 3 — dim function [26, problem 12]. The function is
10 .
2 /L
f@) =" fix), fi(x) = exp(—tiz1) — exp(—tiwa) — m3[exp(—t;) — exp(—10t;)],t; = 10
1=1

We take the initial domain as X = ([—20,20], [1,20]?) .

Example 5.4 Brown and Dennis function [26, problem 16]. The 4— dim function is
20 i
f@)=>"fi@)?,  fi(@) = (21 + tiwa — exp (t:))* + (w3 + zasin () — cos (t:))°,  t; = R
=1

We take the initial domain as X = ([—10,0,—100, —20], [100, 15,0, 0.2]) .

Example 5.5 Variably dimensioned function [26, problem 25]. The 2— dim function is

2
4 2

2
f(z) = Zfi(x)Q, fiz) = 21-1, fo() = 22-1, f3(z) = Zj(xj—l), fa(z) = Zj(%‘ —-1)

We take the initial domain as X = ([—1.5,1.5]%) .

Example 5.6 Linear - rank 1 with zero columns and rows, [26, problem 34]. The 2 — dim

function is
4

f(z) = Zfi(x)Q;fl(x) = -1, fo(z) = 2z1+332) -1, f3(x) =2(2z1+322) -1, fa(z) = -1
i=1

We take the initial domain as X = ([—10, 10}2) .

Example 5.7 Linear function - full rank [26, problem 32]. The 4— dim function is
4 1 (&
f(x) Zz;fi(w)Z’ filz) =z — 5 z;%‘ =1
= j=

We take the initial domain as X = ([—1, 1]4) i

Example 5.8 Extended Rosenbrock function [26, problem 21]. The 2 — dim function is

2

f) =) fil@)? fi(z) =10(xz — 1), folx) =1—m

i=1

We take the initial domain as X = ([—12, 12}2) i
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Example 5.9 Discrete boundary value function [26, problem 28]. The 2 — dim function is

R (@ 4+ t; +1)° 1 ,
=Y e 50 =2 s + I L i a0

We take the initial domain as X = ([-5, 5]?) .

Example 5.10 Brown almost - linear function [26, problem 27]. The 4 — dim function is

4

f(m):Zfz(w)Q, fi(z )—mZ+Z$J 5,1 =1..3,and fi(z HLL‘] -

i=1 j=1
We take the initial domain as X = ([—2.5,2.5]*) .

Example 5.11 Chebyquad function [26, problem 35]. The 4 — dim function is

4

1 -1
Zfz @) =3 Ty~ [ Tia)da

=1

where T; is the i Chebyshev polynomial shifted to the interval [0,1]. Hence,

1
/ Ti(x)dx = 0 fori odd
J0
1 _1
Ti(z)dr = ——-= '
'/0 i(x)dx =1 for i even

We take the initial domain as X = ([-2,2]*).

5.5 Discussion

Table 5.4 lists the global minimum obtained using Algorithm CTBMS in each example. Tables
5.5 to 5.8 give the obtained results in terms of these performance metrics for the various test
examples!. For each metric, we give the values of ratio and the percent reduction computed

as

. Perf. metric with basic algorithm
Ratio =

Perf. metric with proposed algorithm
Perf. metric with basic algorithm - Perf. metric with proposed algorithm
Perf. metric with basic algorithm

% reduction =

LA starred entry in the following Tables indicates that a solution is not obtained with the corresponding algorithm

for the prescribed accuracy, due to excessive time and /or memory requirements.

x 100
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TABLE 5.1. Rankings obtained by proposed Algorithm CTBMS.
Number of problems

Performance metric | 1% Rank | 2" Rank | 3¢ Rank | 4" Rank

Iterations 9 2 0 0
Computational time 8 3 0 0
Maximum list length 10 1 0 0
Final list length 8 3 0 0

Based on the data in these Tables, we compare the performance of the four algorithms

using different evaluation methods: ranking, statistical measures, average and other measures,

and performance profiles. These various methods are incorporated in the analysis to avoid

dominance of any one test function on the final conclusions about the relative performance

of the algorithms.

At the outset, we note that for the considered domains and accuracy, the proposed Al-
gorithm CTBMS is able to solve all the test examples, whereas Algorithms MS, TMS, and
TBMS are able to solve only 54.45%, 45.45%, and 90.90% of the test examples, respectively.

5.5.1 Ranking

Ranking of algorithms has been used for performance comparison, see, for instance, [4], [27].

Ranking is based on the number of times an algorithm comes in the k™ place, here k =

1,...,4. A higher rank is assigned to the algorithm with lesser performance metric value.

Table 5.1 gives the ranking of the CTBMS algorithm for the various performance metrics.

Table 5.1 shows that in a majority of the solved test examples, proposed Algorithm CTBMS

is superior to the rest in terms of number of iterations, computational time, maximum list

length and final list length metrics. Especially, the proposed algorithm is able to achieve
the 1%¢ rank in 81.81% of the test examples for the iterations metric, in 72.72% of the test

examples for the computational time metric, in 90.90% of the test examples for the maximum

list length metric, and in 72.72% of the test examples for the final list length metric.

5.5.2 Statistical measures

Next, we compare the performance of the algorithms based on the distribution of the difference

between the performance metrics. Such a comparison has been done, for instance, in [4]. The

minimum, first quartile, median, third quartile and maximum of this distribution are reported
in Table 5.2.
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TABLE 5.2. Comparison of performance of various algorithms using statistical measures.

Perf. metric Alg. Minimum | 1% Quartile | Median | 2" Quartile | Maximum
Iterations TMS —2820 —2147 —96 1134.50 1534
TBMS 4 16 403 2569.75 4591
CTBMS 18 42 | 582.50 2584.50 4635
Computational | TMS —10.74 —8.10 —0.06 4.66 6.2
time TBMS —17.8 -519 | -0.13 63.50 228.10
CTBMS —0.35 —0.13 3.54 67 241.3
Maximum TMS —320 —247.75 —15 37 49
list length TBMS —23 -2 36.5 517 1465
CTBMS 2 5.75 38 560.75 1484
Final TMS —185 —139 1 10.50 13
list length TBMS 4 8.5 25 475.5 1143
CTBMS 4 8.5 25 465 1143

Number of iterations: Largest positive minimum value is obtained for Algorithm CTBMS,
indicating that the number of iterations are least with Algorithm CTBMS in a majority

of the test examples.

Computational time: The only positive median value is obtained for Algorithm CTBMS
indicating that the least computational time is taken by Algorithm CTBMS in more
than half the test examples.

Maximum list length: The only positive minimum value is obtained for Algorithm
CTBMS, indicating that it requires the least maximum list length in a majority of

the test examples.

Final list length: Equal positive minimum values are obtained for Algorithms CTBMS
and TBMS, indicating that these algorithms require the least final list length in a

majority of the test examples.

5.5.83  Minimum, mean, and mazximum measures

In Table 5.3, we give the averages of the ratio and percent reduction over all the test examples.
The Table shows that for a majority of the test problems, Algorithm CTBMS gives large

reduction in maximum list length, number of iterations, and final list length, while it gives

improvement in computation time for more than half the test problems.
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TABLE 5.3. Minimum, mean, and maximum of ratios and reductions, with respect to Algorithm MS.

Ratio % Reduction
Perf. metric Alg. Min. | Mean | Max. Min. Mean | Max.
Tterations TMS 0.03 1.32 | 4.59 | —556.52 —224.74 | 78.23
TBMS 1.05 | 12.28 | 30.17 4.65 69.76 | 96.69
CTBMS | 3.58 | 15.83 | 38.99 72.09 84.75 | 97.44
Computational | TMS 0.002 1.61 | 3.68 —5F4 —1FE4 | 72.86
time TBMS 0.02 227 | 6.87 —4900 —961.18 | 85.45
CTBMS | 0.05 3.55 | 6.25 —1750 —268.32 | 88.12
Maximum TMS 0.06 097 | 2.53 —1600 —493.51 | 60.49
list length TBMS 0.47 6.16 | 18.87 —115 42.99 | 94.70
CTBMS 1.4 7.21 | 24.56 28.57 65.43 | 95.93
Final TMS 0.08 0.96 | 1.54 —20 7.52 | 35.13
list length TBMS 51 244.34 | 1144 80 93.51 | 99.91
CTBMS 51 204.82 | 1144 80 92.59 | 99.91

5.5.4 Performance profiles

Performance profile is proposed as a tool for evaluating and comparing performance of algo-

rithms in [8]. The performance profile for an algorithm is the cumulative distribution function

for a given performance metric. Performance profiles eliminate the influence of a small number

of problems on the final evaluation conclusions.

For computational time as the performance metric, performance profiles can be generated

as follows. Let P be the test set of examples, n; be the number of algorithms and 7, be the

number of examples. For each test function p and algorithm s, define

tp,s = computing time required to solve a test function p by algorithm s

The performance ratio for computation time is calculated as

r _ tp75
P2 min {tps : 1 <5 <ng}

We choose a parameter 7y, > 7,5 for all p, s, such that r, s = ) if and only if algorithm

does not solve the test function p. Now, the performance profile for computing time can be
defined as

1
ps(T) = —size{p e P :rps <1}
p
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Similarly, performance profiles for other performance metrics can be defined.

The following observations are made from the performance profile plots computed for
various performance metrics.

Number of iterations: Performance profile plots for the number of iterations are given
in Figures 5.1 and 5.2. These show that

e Within a factor 7 = 1 of the best algorithm, Algorithm MS, TMS, TBMS, and CTBMS
are able to solve 0%, 0%, 18%, 82% of the test examples.

e Algorithm MS, TMS, TBMS, and CTBMS are able to solve 54.54%, 45.45%, 90.90%, 100%
of the test examples, within a factor of 7 = 39, 152, 23,2 of the best algorithm.

e The proposed Algorithm CTBMS is able to solve all the test examples for 7 < 2, and

that it requires less number of iterations for 81.81% of the test examples compared to
Algorithms MS, TMS and TBMS.

Computational time: Performance profile plots for the computational time are shown in
Figures 5.3 and 5.4. These show that

e Within a factor 7 = 1 of the best algorithm, Algorithm MS, TMS, TBMS, and CTBMS
are able to solve 18.18%,9.09%, 0%, 72.72% of the test examples.

e Algorithm MS, TMS, TBMS, and CTBMS are able to solve 54.54%, 45.45%, 90.90%, 100%
of the test examples, within a factor of 7 = 9,540, 51,19 of the best algorithm.

e The proposed algorithm CTBMS is able to solve all the test examples for 7 < 19, and
that it requires less computational time for 72.72% of the test examples compared to
Algorithms MS, TMS, and TBMS.

Maximum list length: Performance profile plots for the maximum list length are given
in Figures 5.5 and 5.6. These show that

e Within a factor 7 = 1 of the best algorithm, Algorithm MS, TMS, TBMS, and CTBMS
are able to solve 0%, 0%, 18.18%,90.90% of the test examples.

e Algorithm MS, TMS, TBMS, and CTBMS are able to solve 54.54%, 45.45%, 90.90%, 100%
of the test examples, within a factor of 7 = 25,39, 8,6 of the best algorithm.

e The proposed algorithm CTBMS is able to solve all the test examples for 7 < 6, and
that it requires less computational time for 90.90% of the test examples compared to
Algorithms MS, TMS, and TBMS.
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Final list length: Performance profile plots for the final list length are shown in Figures
5.7 and 5.8. These show that

e Within a factor 7 = 1 of the best algorithm, Algorithm MS, TMS, TBMS, and CTBMS
are able to solve 0%, 0%, 90.90%, 72.72% of the test examples.

e Algorithm MS, TMS, TBMS, and CTBMS are able to solve 54.54%, 45.45%, 90.90%, 100%
of the test examples, within a factor of 7 = 1145, 210, 16 of the best algorithm.

e The proposed algorithm CTBMS is able to solve all the test examples for 7 < 16, and
that it requires less computational time for 72.72% of the test examples compared to
Algorithms MS, TMS, and TBMS.

Summary of the performance profile studies:

e If we are interested in an algorithm that can solve a given problem successfully, then the
proposed Algorithm CTBMS stands out, as displayed by the height of its performance

profile plot for every performance metric.

e If we are interested in an algorithm that can solve 90% of the problems with greatest
efficiency, then the proposed Algorithm CTBMS stands out, for every performance
metric except the final list length metric for which Algorithm TBMS is better.

e If we are interested in an algorithm that can solve all the problems with greatest effi-
ciency, then the proposed Algorithm CTBMS again stands out for every performance

metric.

e The probability that the proposed Algorithm CTBMS is a winner in a given problem
is about 0.91 for the number of iterations, 0.82 for the computational time, 0.90 for the

maximum list length, and 0.72 for the final list length metrics.

e The probability that the proposed Algorithm CTBMS can solve a given problem within
a factor of 2 of the best algorithm (among the four considered) is about 100% for the
number of iterations, 90% for the computational time, 92% for the maximum list length,
and 75% for the final list length metrics.

e Algorithm CTBMS gives improvements in number of iterations, computation time,
maximum list length and final list length in 81.81%, 72.72%, 90.90% and 72.72% of test

examples, respectively.
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TABLE 5.4. Domains used, dimensions and the global minimum over the given domain.

Ex. | Test Function dim Domain Global minimum
5.1 | Jennrich & Sampson | 2 [—1,1)2 124.36217 . ..
5.2 | Bard 3 | [-0.25,0.25](0.01, 2.5)2 8.213...E — 3
5.3 | Box 3 — dim 3| [~20,20][1, 20]2 0.00000 ...

5.4 | Brown & Dennis 4 [—10,100][0, 15][—100, 0][—20, 0.2] | 88860.47976 ...
5.5 | Variably dim. 2 [—1.5,1.5)* 0.00000.. .

5.6 | Linear - rankl 2 [—10,10]? 2.19999. ..

5.7 | Linear- full rank 4 [—1,1]* 0.00000. ..

5.8 | Extended Rosenbrock | 2 [—12,12]? 0.00000. ..

5.9 | Discrete boundary 2 [—5, 5] 0.00000. ..
5.10 | Brown almost -linear | 4 [—2.5,2.5]4 0.00000. ..
5.11 | Chebyquad 4 [—2, 2] 0.00000. ..

5.6 Conclusions

We presented a novel algorithm for global optimization that combines the sophisticated TB
forms, Taylor model, and the simple natural inclusion function. The performance of the pro-
posed algorithm was tested and compared with those of existing MS algorithms on a collec-
tion of eleven benchmark problems. The proposed algorithm stands out for every performance

metric, as the one that can solve all considered problems with the greatest efficiency.
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TABLE 5.5. Comparison of number of iterations required by various algorithms.

Ex. | Test Function | dim | Iterations MS | TMS TBMS | CTBMS
5.1 | Jennrich 2 Number: 1961 427 65 60
and Ratio: - 4.59 30.17 32.68
Sampson % Reduction: — 78.23 | 96.69 96.94

5.2 | Bard 3 Number: * * 202 46
Ratio: — — — —

% Reduction: - - - -

5.3 | Box 3 —dim 3 Number: 1208 * 451 105
Ratio: — — 2.68 11.5

% Reduction: — — | 62.67 91.31

5.4 | Brown 4 Number: * 455 66 3
and Ratio: - — — —
Dennis % Reduction: - - — —

5.5 | Variably 2 Number: 23 151 3 5
dimensioned Ratio: - 0.15 7.67 4.6

% Reduction: — | —556.52 | 86.96 78.26

5.6 | Linear 2 Number: * * 133 134
- rank1 Ratio: - — — —

% Reduction: - - - -

5.7 | Linear 4 Number: 4757 * 166 122
- full rank Ratio: — — 28.66 38.99

% Reduction: — — | 96.51 97.44

5.8 | Extended 2 Number: 86 2906 82 24
Rosenbrock Ratio: — 0.03 1.05 3.98

% Reduction: — | —327.91 4.65 72.09

5.9 | Discrete 2 Number: 69 133 20 19
boundary Ratio: — 0.52 3.45 3.63

value % Reduction: — | —=92.75 71.01 72.46

5.10 | Brown 4 Number: * * 669 331
-almost linear Ratio: — - - —

% Reduction: - - - -

5.11 | Chebyquad 4 Number: * * * 1448
Ratio: — — — —

% Reduction:
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TABLE 5.6. Comparison of computation time required by various algorithms.
Ex. | Test Function | dim | Time MS TMS TBMS CTBMS
5.1 | Jennrich 2 Number: 10.1 3.9 1.47 1.2
and Ratio: - 2.59 6.87 8.42
Sampson % Reduction: - 61.39 85.45 88.12
5.2 | Bard 3 Number: > 1 hr > 1 hr 60.1 48.2
Ratio: — — — —
% Reduction: - - - -
5.3 | Box 3 —dim 3 Number: 11.1 * 28.9 4.08
Ratio: — — 0.38 2.72
% Reduction: - — | —160.36 63.24
5.4 | Brown 4 Number: > 1 hr 5.31 7.35 2.88
and Ratio: - — - —
Dennis % Reduction: - - - -
5.5 | Variably 2 Number: TE—-2|19FE -2 | 8E—-2| 2E—-2
dimensioned Ratio: - 3.68 14 3.5
% Reduction: - 72.86 28.57 71.43
5.6 | Linear 2 Number: >10hr | > 10 hr 3559.9 3011.9
- rank1l Ratio: - — - —
% Reduction: - - - -
5.7 | Linear 4 Number: 287.3 * 59.2 46.0
- full rank Ratio: — — 4.85 6.25
% Reduction: — 79.39 83.99
5.8 | Extended 2 Number: 2F —2 10.76 1.0 0.37
Rosenbrock Ratio: — 0.002 0.02 0.05
% Reduction: — —5FE4 —4900 —1750
5.9 | Discrete 2 Number: 3E —2 2E—-1| 3E—-1 8E — 2
boundary Ratio: — 0.15 0.1 0.38
value % Reduction: — | —566.67 | —900.1 | —166.67
5.10 | Brown 4 Number >10hr | > 10 hr 4914.0 | 3112.72
almost Ratio: — - — -
linear % Reduction: - - - -
5.11 | Chebyquad 4 Number >10hr| >10hr | > 10 hr 2963.6
Ratio: — - — -
% Reduction: - - - -
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TABLE 5.7. Comparison of maximum list length required by various algorithms.

Ex. | Test Function | dim | Max. list length | MS | TMS TBMS | CTBMS
5.1 | Jennrich 2 Number: 81 32 14 13
and Ratio: - 2.53 5.79 6.23
Sampson % Reduction: — 60.49 | 82.72 83.95

5.2 | Bard 3 Number: * * 38 15
Ratio: — — — —

% Reduction: - - - -

5.3 | Box 3 —dim 3 Number: 295 * 94 42
Ratio: — — 3.14 7.02

% Reduction: - — | 68.14 85.76

5.4 | Brown 4 Number: * 44 15 2
and Ratio: - — - —
Dennis % Reduction: - - - -

5.5 | Variably 2 Number: 7 38 1 )
dimensioned Ratio: - 0.18 7.0 1.4

% Reduction: — | —442.86 | 85.71 28.57

5.6 | Linear 2 Number: * * 53 53
- rank1 Ratio: - — - —

% Reduction: - - - -

5.7 | Linear 4 Number: 1547 * 82 63
- full rank Ratio: — — 18.87 24.56

% Reduction: — — | 94.70 95.93

5.8 | Extended 2 Number: 20 340 43 12
Rosenbrock Ratio: — 0.06 0.47 1.67

% Reduction: — —1600 | —115 40

5.9 | Discrete 2 Number: 12 11 7 5)
boundary Ratio: — 1.1 1.71 2.4

value % Reduction: — 8.33 | 41.67 58.34

5.10 | Brown 4 Number: * * 370 60
almost Ratio: — - — -

linear % Reduction: - - - -

5.11 | Chebyquad 4 Number: * * * 305
Ratio: — - — -

% Reduction: - - - -
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TABLE 5.8. Comparison of final list length required by various algorithms.

Ex. | Test Function | dim | Final list length | MS | TMS TBMS | CTBMS
5.1 | Jennrich 2 Number: 37 24 1 1
and Ratio: — 1.54 37 37
Sampson % Reduction: — 35.13 | 97.30 97.30

5.2 | Bard 3 Number: * * 1 3
Ratio: — — — —

% Reduction: - - - -

5.3 | Box3—dim |3 Number: 254 * 1 15
Ratio: — — 254 16.9

% Reduction: — — 1 99.60 94.09

5.4 | Brown 4 Number: * 24 1 1
and Ratio: — - — —
Dennis % Reduction: - - - -

5.5 | Variably 2 Number: ) 6 1 1
dimensioned Ratio: — 0.83 5) 5)

% Reduction: — —20 80 80

5.6 | Linear 2 Number: * * 11 11
- rank1 Ratio: — - — —

% Reduction: — — — _

5.7 | Linear 4 Number: 1144 * 1 1
- full rank Ratio: — — 1144 1144

% Reduction: — -1 99.91 99.91

5.8 | Extended 2 Number: 15 200 1 1
Rosenbrock Ratio: — 0.08 15 15

% Reduction: — | —12.33 | 93.33 93.33

5.9 | Discrete 2 Number: 11 8 1 1
boundary Ratio: — 1.38 11 11

value % Reduction: — 27.27 | 90.90 90.90

5.10 | Brown 4 Number: * * 2 7
almost Ratio: - — - -

linear % Reduction: - - - -

5.11 | Chebyquad 4 Number * * * 1
Ratio: - — - -

% Reduction:

125
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FIGURE 5.1. Performance profile plot of the number of iterations, for [1, 25].

FIGURE 5.2. Performance profile plot of the number of iterations, for [1,160].
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FIGURE 5.3. Performance profile plot of computational time, for [1, 50].

FIGURE 5.4. Performance profile plot of computation time, for [1, 550].
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FIGURE 5.5. Performance profile plot of maximum list length, for [1, 10].

FIGURE 5.6. Performance profile plot of maximum list length, for [1, 40].
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FIGURE 5.7. Performance profile plot of final list length, for [1,50].

FIGURE 5.8. Performance profile plot of final list length, for [1,1150].
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6

Conclusions

A problem of great theoretical and practical interest in the area of interval analysis of Moore
[24] is the construction of inclusion functions having the property of higher order conver-
gence for multidimensional functions. Higher order inclusion functions have applications, for
example, in the solution of equations, quadrature, and global optimization, where faster con-
vergence could possibly be obtained with their aid. A study of the interval analysis literature
reveals the lack of higher order inclusion function forms that are practically effective, even
for low to medium (i.e., even up to say, six) dimensional problems.

Motivated by this concern, we set the following two objectives for the present work:

1. To develop higher order inclusion function form for multidimensional functions that are

practically effective, and

2. To develop unconstrained global optimization algorithm with the developed higher order
inclusion function form, for efficient determination of arbitrarily good lower bounds on

the minimum of f (X).

In each case, we desire to numerically test and compare the practical effectiveness of the
proposed tool with existing techniques, on several ‘difficult’ problems of different dimensions.
In this work, we first presented the improved TB form as a higher order inclusion function
form for multidimensional functions. The improved TB form uses Bernstein polynomials for
bounding the range of the polynomial obtained from the Taylor form of the given function
f- The improved TB form has some important differences from Lin and Rokne’s TB form

[19] in the way it is constructed, and makes it more effective in practice. The higher order
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convergence behavior of the proposed form was numerically tested and compared with that
of Lin and Rokne’s TB form and also with that of the Taylor model of Berz et al. [3]. For the
testing, we considered six benchmark examples with dimensions varying from 1 to 6. In all
examples, unlike with the Taylor model and Lin and Rokne’s TB form, we indeed obtained
higher order convergence of orders up to 9 with the improved TB form. Moreover, with the
improved form we could quite easily obtain these high orders of convergence for up to 5 —dim
problems.

Then, we investigated the performance of the improved TB form in the framework of the
Moore-Skelboe (MS) algorithm of interval analysis for unconstrained global optimization. We
used the improved TB form as an inclusion function in a prototype or basic MS algorithm,
and also modified the cut-off test and termination condition in the algorithm. We numerically
tested and compared the performances of the proposed algorithm, the MS algorithm, and
the MS algorithm with the Taylor model as inclusion function on six benchmark examples.
The results of these tests indicated that the proposed global optimization algorithm with
the improved TB form as inclusion function is superior to the rest, for the low to medium
dimension problems studied.

In several application problems, the typically large initial domain is sooner or later re-
duced to small solution domains through domain splitting or subdivision techniques. In such
applications, both Lin and Rokne’s TB form and the improved TB form were found to be
unsatisfactory for some domain widths, due to excessive memory and /or time requirements.
We therefore proposed next the so-called ‘combined’ TB form that is more effective than
either of the above TB forms when the domain shrinks from large to small widths. The com-
bined form inherits the key property of higher order convergence from its constituent forms.
We numerically tested and compared the performance of the combined TB form with those
of the existing TB forms, the Taylor model, and the simple natural inclusion function. For
the testing, we considered six benchmark examples with dimensions varying from 1 to 6. The
results of the tests showed that the new combined form was indeed more effective than either
of the existing TB forms over the entire range of domain widths considered. Test results also
revealed that the simple natural inclusion form sometimes surprisingly yielded tighter range
enclosures than the more sophisticated Taylor and TB forms, even for small domain widths.

Lastly, we proposed an improved algorithm for unconstrained global optimization in the
framework of the Moore-Skelboe algorithm. A novel and powerful feature of the proposed
algorithm was that a variety of inclusion function forms for the objective function were
incorporated into it - the combined TB form, the Taylor model, and the simple natural
inclusion form (the surprising observation referred above regarding the natural inclusion

form led to its incorporation in to the proposed algorithm). Several improvements were also
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proposed in the Bernstein step of the combined TB form, such as an improved direction
selection strategy for subdivision, and use of cut-off and monotonicity tests. Moreover, the
cut-off test and termination condition in the MS algorithm were refined. The performance
of the proposed Algorithm was then numerically tested and compared with those of the
MS algorithm, the MS algorithm with the Taylor model as inclusion function, and our earlier
proposed optimization algorithm, on a collection of eleven benchmark examples. The proposed
algorithm was found to be superior for every performance metric as the one that could solve

all considered test examples with the greatest efficiency.
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Appendix A

Bernstein approach - univariate case

We outline the Bernstein approach for the unidimensional case. Consider the nth degree

polynomial p in a single variable z € U = [0, 1]

n
p(x) = Z a;x’
1=0

The Bernstein form of order k for p is

where k is any integer > n, and where Bf (z) are the Bernstein polynomials of degree k

defined as
k

By (z) := (j.):cj (1= )k

and bf are the Bernstein coefficients defined as

b? = ;ai%

Note that the Bernstein coefficients can also be expressed in the form

& G- (- G—-1)
bﬁ—;“ik(/{_l)...(k:—(i—l)) .

The Bernstein polynomials Bf (z),..., Bf (z) span the space of all polynomials of degree

smaller than or equal to k.

This is page 139
Printer: Opaque th
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The Bernstein coefficients provide bounds for range of p over U = [0, 1]. The unit interval
is not really a restriction as any finite interval X can be linearly transformed to it. Let p

denote the range of p. Then,

Lemma A.1 (Range lemma) [5/The range p([0,1]) is bounded by the Bernstein coeffi-
cients as:

_ . k k
p([0,1]) € |:Hb.1nb‘j7m]aij:|

The proof of the range lemma relies manly on the fact that the Bernstein form shows p ()

as a convex combination of the Bernstein coefficients, because
k ko
X . o
55w =3 ([)r 0=
§=0 =0
and all the terms in the sum are positive.

Example A.1 To illustrate the Bernstein approach for bounding the ranges of polynomials,

consider the simple polynomial
p() =2 (1-a)

whose range p([0,1]) is easily found (say, using basic calculus) to be [0,3].

In the Bernstein approach, we first express the above polynomial in standard sums of power

form
n
p(x) = Z a;T;
=0

to get

n=2a =0,a1 =1,a2 =—1

The formula (A.1) for the Bernstein coefficients now simplifies to

G- i, -1
B0 phmdg dUZD (il
0=0 by =gat a2 T h o

For k = 2 this gives
so that

and the range lemma implies
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Tighter bounds on ([0, 1]) can be obtained by elevating the degree k of the Bernstein

polynomial. For instance, for k£ = 3 the formula (A.1) gives

1 2 1 1
by =0, ﬁ:§,b}:50—§>:? b3 =0

and

) 1
min b:; =0, max b? ==
J J

By the range lemma,
_ 1
p(o0.1) € o]

Ratschek and Rokne [30] prove that the range overestimation can be made small as the
degree k is elevated:

4

J k

o ( |minthmax] ) = o (0.1)) <

where

A:zﬁé@—1f@@an/a
s=2

with p(®) denoting the sth derivative of p. So, while the degree of p (x) stays fixed at n, we
can use the Bernstein polynomial forms of higher degree £ > n, and even get convergence of

min; b?,maxj b? to the range p ([0,1]). For instance, if k is an odd integer k = 2p + 1, we

max b2P = 1 (p_H) > le

obtain

i 4\p+3

with the range overestimation being bounded by % (ﬁ

1)- In general, for a given k the
computation takes about k? arithmetic operations, and no évaluations of the given polynomial
p(x) are required. Table A.1 gives the range enclosures in Example A.1 for various value of
k, up to k = 1000. Because the convergence is linear in the degree k, the degree elevation

approach is not really efficient when tight bounds on the range are desired.

A.1 Vertex property

A remarkable feature of the Bernstein method is that criteria can be obtained to indicate
whether the calculated estimation is the range or not. Cargo and Shisha [5] give such a criteria

based on the vertex property.
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TABLE A.1. Range enclosures obtained with Bernstein form of various degrees in Example A.1.

Degree | Range index j index j Range
k Enclosure | for min bf for max bf overestimation
2 [0,0.5] 0 1 0.2500
3 [0, 1] 0 1 0.0833
4 [0, 1] 0 2 0.0833
5 [0,0.3] 0 2 0.0500
6 [0,0.3] 0 3 0.0500
7 [0,0.2857] | O 3 0.0357
10 [0,0.2778] | O 5 0.0278
20 [0,0.2632] | O 10 0.0132
30 [0,0.2586] | O 15 0.0086
100 [0,0.2525] | O 50 0.0025
1000 [0,0.2503] | 0 500 0.00025

Lemma A.2 (Vertex lemma) [5/ : p([0,1]) = {minj b?,maxj b? if and only if min; b? =
min {bk, b’,:}cmd max; b? = max {b'g, b',:}

An elegant proof of the vertex lemma is given by Ratschek and Rokne [30], based on the

relations .
b= a0 =p(O): H=Y a=p() (A2)
i=0

The vertex lemma also holds for any subinterval of [0, 1], see [22].

Consider again Example A.1. For k = 4 the formula (A.1) gives
1 1
bi==, bi=-, b1=0 (A.3)

and the range lemma implies
_ 1
p.1) € [o.g] (A4

Now, we may also apply the vertex lemma to ascertain if the enclosure given by (A.4) is the
range itself or not. From (A.3), the minimum Bernstein coefficient is b¢ or b} which occurs at
vertices j € {0,4}, while the maximum Bernstein coefficient is b5 which occurs at j = 2. The
property in the vertex lemma is thus satisfied for the minimum, but is not satisfied for the
maximum as max; bf # max {b‘é, bj}. Therefore, by the vertex lemma, the enclosure given by
(A.4) is not the range.

It is interesting to apply the vertex lemma to Table A.1 and ascertain if any of the range

enclosures given there is the range or not. We find from the table that for any k, the index j
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for max b? (in column 4) is not from the vertex set {0, k}. By the vertex lemma, none of the

enclosures in column 2 is the range.

A.2 Bernstein Subdivision

A generally more efficient approach than degree elevation of the Bernstein form is subdivision
[9]. Let D = [c_l, cﬂ C U and assume we have already the Bernstein coefficients on D. Suppose
D is bisected to produce two subintervals D4 and Dg given by

Dy= [C—lam(D)];DB = [m(D)aCﬂ

Then, the Bernstein coefficients on the subintervals D4 and Dpg can be obtained from those
on D, by executing the following algorithm.

Algorithm Subdivision:

Inputs: The interval D C U and the associated set of Bernstein coefficients {E?}

Outputs: Subintervals D4 and Dpg and the associated set of Bernstein coefficients {i)ﬁ}

and {I;f}, respectively.
BEGIN Algorithm

1. Bisect D to produce the two subintervals D4 and Dg.

2. Compute Bernstein coefficients on subinterval D 4 as follows.

(a) Set:b9<—l_)§, for j=0,..., k.
(b) FORi=1,...,k DO

b;'fl for j <t

b= - - o (A.5)
J % {b;_ll + b; 1} for j>1
To obtain the new coefficients, apply the formula given above for j =0,... k.

(c¢) Find the Bernstein coefficients on subinterval D 4 as
ik _ gk o
by =05, forj=0,...,k

3. Find Bernstein coefficients on subinterval Dp from intermediate values in above step,

as follows.

lA)f:b,i, for j=0,...,k

4. RETURN D4, D3, and the associated Bernstein coefficients {i)f} and {i)f}
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END Algorithm

Let us run through Algorithm Subdivision for Example A.1. For k = 4, we have already the
Bernstein coefficients l;f given in (A.3) for the interval D = [0, 1]. With these as the inputs

to Algorithm subdivision, the results at the various steps are

e step 1: D is bisected to produce two subintervals D4 = [0,0.5] and D = [0.5, 1].

e step 2: The Bernstein coefficients on subinterval D 4 are computed as follows.

— step 2a: Set : bg <—l§§, for j =0,...,4, to get

W=i=0 W=Bl= W=F=z
W=ti=1; H=bi=0
— step 2b: Applying formula (A.5), we obtain
for i =1,
by =0y =0
bi:%(b8+b?):%<o+i :é
=i =3(1ed) -1
430 =5 (51) = o
b}l:%(b§+b2)=%<i+o> :é
for i =2,
b5 =1by=0
b%:b}:%



A.2 Bernstein Subdivision 145

for ¢ = 3,
by =b5=0
b = b} = %
@:ﬁ:g
43 0 =5 (5 ) =
H-3 e = (55 -
and for ¢ = 4,
b =by=0
bl =0} = %
@:@:%
b =03 = 411
g e =3 (5+1) -3
— Step 2c: The Bernstein coefficients on the subinterval D4 are therefore
h=th=0 B=bog Bedo
M=bi=g H=ii=g

e step 3: The Bernstein coefficients on the neighboring subinterval Dp are obtained as

. . 1 . 10
bg=1b3=0; bi=by==; by=0]=—;
0 4 ) 1 4 8’ 2 4 48 Y
. 1 - 1
b4:b3:—' b4:b4:—
3=00=7 u=0=7
Finally,
Fi binterval D4 : DBernstei fficient 0 11011
or subinterval D4 : Bernstein coefficients are | 0,2, -2, -, 7
. . . 11011
For subinterval Dp : DBernstein coefficients are {0, VT (A.6)

(it is coincidental here that the Bernstein coefficients for both the subintervals are the

same). By the range lemma

ﬁﬂlng[ai];zﬂDB)g{ai} (A7)
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A.3 Combining vertex property and subdivision

By successively subdividing U, we can eventually make the polynomial to be monotonic
(within machine precision) on every subinterval. Then, the range of p on any such subinterval
D =[d,d] C U is obtainable from the endpoint values p(d) and p (d). >From (A.2), the
latter values are nothing but the Bernstein coefficients at the vertices {0, k}. Thus, we see
that by combining the tool of Bernstein subdivision and the vertex property, we can repeatedly
improve the bounds till the vertex condition is satisfied (within machine precision) on every
subdivision.

Consider the Bernstein coefficients given in (A.6). For subinterval D 4, the minimum Bern-
stein coefficient is I;é while the maximum Bernstein coefficient is I;ﬁi. Both these occur at the
vertices, i.e., for j € {0,4}. By the vertex lemma, the range of p (D 4) is given by (A.7) and is
[O, %] . An identical situation holds for the other subinterval Dg. Thus, we obtain the range
p(0.1) = [0,4].

In this example, using just one subdivision and application of the vertex lemma to the
subintervals, we have been able to obtain the range of the given polynomial. Further, we
are also able to assert that the obtained enclosure is indeed the range. Note that it was not
possible to get the range through degree elevation, even with Bernstein form of as high a

degree as k = 1000, that produced an overestimation of about 2.5¢ — 04 !



