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ABSTRACT Although interval analysis algorithms are reliable and accurate, they are often
found to execute slowly, especially in difficult problems. The speed limitation has been hith-
erto overcome by using special coprocessors, functional hardware units, and parallel processing
techniques on multi-processor machines. However, as single processor machines such as desktop
computers are much more widely used, it would be advantageous to have techniques that speed
up interval analysis algorithms on single processor machines.

In this work, we propose vectorization as a means of speeding up interval analysis algorithms on
single processor machines. Our idea is to process all the boxes present in the list at each iteration,
using vectorization to perform the various tasks such as function evaluations, bisections, and
width checks. Vectorization gives a degree of parallelism in scalar processors, enabling faster
processing of all boxes in the list at a given iteration. We use the toolbox INTLAB [68] and the
Forte FORTRAN 95 compiler [63] for vectorization of interval arithmetic operations. Further,
exploiting the feature that all the boxes in a list are being processed, we also propose some
algorithmic changes wherever possible.

We first apply this new strategy of processing boxes to the interval Newton algorithm [49]
for solving a system of nonlinear equations, Neumaier’s covering algorithm [61] for solving a
parameter - dependent system of nonlinear equations, and the Moore-Skelboe algorithm [51] for
solving the unconstrained global optimization problem. We also incorporate some algorithmic
changes in the last mentioned algorithm, by modifying the cut-off and monotonicity tests. We
show through several test examples that the new strategy considerably speeds up all these
algorithms, sometimes as much by a few orders of magnitude.

We then present a set inversion algorithm for characterizing the domain of a set of nonlinear
inequalities. The proposed algorithm improves on the one recently proposed by Jaulin et al.
[31]. The proposed improvements exploit the powerful tool of monotonicity. We test and com-
pare the performances of the proposed and existing algorithms in characterizing the domains of
robust stability for two problems, including a case study of speed control of a jet engine. The
results of the testing show that the proposed algorithm encloses the domains more accurately
than the existing algorithm - meaning that it gives a larger region for which the system sta-
bility is guaranteed and a smaller region for which the system stability is indeterminate. The
proposed algorithm also requires less space-complexity, but takes more computational time than
the existing algorithm.

We next present a derivative free rule for bisection direction selection. The proposed rule is
based on the philosophy that “the best bisection direction for the random box of a given list is
(likely) the best bisection direction for all other boxes of the list”. We evaluate the performance
of the proposed rule along with those of several widely used rules of interval analysis, in the
context of the template generation problem arising in the QFT approach to robust feedback
system synthesis [27]. We conduct these evaluations on a suite of ten real-world problems taken
from different engineering application areas. From the tests, we find that the proposed bisection
direction selection rule is able to successfully solve all examples, whereas none of the established
rules, such as ‘maximum width’ and ‘maximum smear’ rules, are able to do so. Moreover, the
proposed bisection direction selection rule gives, on the average, about 58% reduction in the

number of solution boxes and 73% reduction in computational time over existing rules. The
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findings of the present work also suggest that it may be fruitful to bring in some amount of
randomization into the body of interval analysis algorithms.

Lastly, we note that there is currently a lack of robust stability analysis methods for polynomi-
als with nonlinear parametric dependencies. We therefore propose a vectorized interval analysis
algorithm for robust stability analysis of polynomials with nonlinear parametric dependencies.
The polynomial coefficients can be any continuous function of the system parameters. The pro-
posed algorithm uses the interval form of the zero exclusion test along with the above proposed
derivative free rule for bisection of all boxes in a given list. On a mass-spring-damper system
involving thirteen uncertain physical parameters [2], the algorithm is found to successfully verify
robust stability in quick time. We believe that the proposed method fills in a significant gap in
the robust stability literature.
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1

Introduction

” The interval concept is on the
border line, linking pure mathematics
with reality and pure analysis with
applied analysis.”

T. Sunaga

Interval analysis enables the design of algorithms that do the approximation and a rigorous
error analysis in a single computation. With interval approaches, one can directly deal with
interval sets containing finitely many points, and perform set operations such as unions,
intersections, subdivisions, find convex hulls, test for set inclusion, etc.

First introduced by Wamus [80] and Sunaga [74], the turning point in the history of interval
analysis came with the appearance of Moore’s book [48]. Since then, several books and papers
describing the evolution of the area have appeared, see, for instance, [4], [25], [34], [49], [62],
and the references cited therein. The tools of interval analysis have been widely applied in
diverse areas of engineering and sciences such as control systems, electrical circuits, finance,
structural analysis, and robotics. An overview of the applications is given in [31], [36], and
[40].

On the other hand, the increasing availability of processors with advanced architecture has
had a significant effect on all spheres of scientific computation, including algorithm research
and software development. Modern complex processors with multiple execution units, super
scalar pipelined architectures, very long instruction word, and vector processing units, etc.,
challenge one to take full advantage of the processing capabilities. Today, general-purpose

processors are so fast that the performance of many applications is limited by the memory
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2 1. Introduction

bandwidth, and not by the processor speed. Advanced cache architectures are an attempt to
overcome this limitation, and proper ‘vectorization’ can be the key to a cost-effective solu-
tion. Vectorization considerably reduces the frequency with which data are moved between
the different levels of the memory hierarchy in order to attain high performance. Conse-
quently, better management of memory and better cache utilization are obtained through
vectorization.

A drawback with existing basic interval analysis algorithms is that although they are reli-
able and accurate, they usually execute slowly for ‘difficult’ problems. The work in this thesis

primarily advances vectorization as a means for speeding up interval analysis algorithms.

1.1 Vectorization

Vectorization, or vectorized programming, uses a single statement to apply an operation to
every element of a list or an array, in contrast to conventional scalar code that is a one-at-a-
time process. In a scalar code, each element must finish the final step of processing before the
next element can begin the first step, that is, each loop iteration begins when the previous
iteration ends. With vectorized code, each element begins the first step when the previous
element finishes the first step rather than the final step. Thus, vectorization is the process
by which many common algorithms can be optimized to maximize processor utilization and

memory bandwidth, yielding much more efficient implementations of the algorithms.

1.1.1 How to vectorize?

The most commonly used approach is to write a wvector library. The library functions may
be written in a high-level language such as C or FORTRAN, or even in assembly language
for a particular processor. The application programmer then uses vectorization in his or her
application by calling these vector library routines. Such types of vector libraries are available,
for instance, with MATLAB [47], FORTRAN [63], and PASCAL / Delphi 1.

1.1.2  Vectorization vs. traditional programming

The DRAM in a computing machine has two types of sequences to access its contents 2:

1. If the current access is in the same page as the previous access, then the memory
location can be selected very rapidly, and the data accessed potentially without wait
states.

Thttp://www.optivec.com
2http://www.skycomputers.com /technical /vectorization.html
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2. If the current access requires some page change, then the page must be selected before
the location of the page. Changing pages like this takes several clocks, and induces
wait states. The time consumed by the wait states can be twice the time used to
actually transfer the data. This wait process is repeated until the entire computation is
performed. Such wait states are unavoidable in normal scalar kind of programming on
the usual desktop computers. The result is that an enormous amount of time is needed

to deal with similar type of elements, one by one, in a long list or array.

The wait states accessing the data from memory must be eliminated if the performance of
a calculation is to be improved. This is done by changing the order in which the operations
are performed. If the processor were to pre-fetch all of the data in a vector at once, loading it
into the L1 cache, then the memory accesses would tend to be in the same page. With a good
memory controller and a good processor, these memory accesses can then be performed with
few, and perhaps no, wait states. The data will stream into the processor at the maximum
bandwidth possible from the memory.

The overall result is a function that performs faster than the original scalar code, as long
as the source and destination vectors all fit into the L1 cache simultaneously. If they do not
fit into the cache, then the cache will start thrashing. For example, if each individual vector
is larger than the cache, loading the vector will discard the previous vector from cache. By
the time the computation is performed, the behavior of the processor will revert back to the
scalar case, and all the work involved in attempting to pre-fetch the data ends up being an
overhead without any benefit. An additional optimization is possible to deal with this issue.

If the source and destination vectors do not fit into cache, the problem is broken down into
pieces so that the pieces do fit into cache, if the maximum performance is to be achieved.
This technique is called “strip mining”. The process involved is to pre-fetch a portion of the
source vectors, and make room for a portion of the destination vector. The computation is
performed, and the result is flushed to memory. Then, the next portions of the input and
output vectors are set up in cache, the computation performed, and the result flushed to
memory. This continues until the entire computation is performed. The vector portions are
called “strips”, hence the name “strip mining”. Ideally, the size of the strips is computed so
that they just fit into the L1 cache. If the strip size is too large, the strips will overflow the
cache, inducing memory bandwidth overhead. If the strips are too small, additional overhead
is induced from managing the smaller strips. Further, the pointers into the vectors must be
managed correctly to produce the correct result with minimum overhead.

There are additional optimizations that are considered when performing a sequence or a
chain of vector computations. If intermediate results can stay in the cache, they do not take
any memory bandwidth at all when they are used later in computations. In addition, if a
vector can somehow get marked as temporary when it will not be used elsewhere in the

program, then it is possible to avoid using memory bandwidth to store it back into memory
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by invalidating those cache lines. Strip mining and careful cache manipulation can make

dramatic improvements in application performance.

1.1.8  Applications of vectorization

Vectorization has applications where similar data held in a list or an array are to be processed.
Some of these applications are in digital signal processing [43], NMR data processing [23],
calculation of molecular properties based on quantum mechanics [21], numerical linear algebra
[18], and load flow analysis [29]. These applications are characterized by having their data
stored in contiguous memory locations as vectors or arrays, and can be optimized through
the use of vectorization to achieve additional performance gains. Another potential use of

vectorization is in the area of interval analysis, where intervals are stored in a list.

1.1.4 SIMD and vectorization

Recently developed processors include ‘Single Instruction, Multiple Data’ (SIMD) commands
that allow computers to do several mathematical computations simultaneously [9], [83]. For
instance, Motorola chips used in the Macintosh series have AltiVec instructions, INTEL chips
support SSE and SSE2 instructions, while AMD chips support 3DNow! instructions. Programs
that support these instructions can potentially run much more quickly. Some compilers, such
as Vector C 3, are able to tap the potential of SIMD features available with the latest series
of microprocessors. The high-performance INTEL C++/FORTRAN compiler is one of the
first commercially available vectorizing compilers that targets the streaming-SIMD-extensions
(SSE/SSE2). A detailed overview of the vectorization techniques used by this compiler can
be found in [10]. This kind of automatic exploitation of SIMD facilities in single processor
machine using vectorization leads to a definite improvement in the speed and efficiency of

scientific computations.

1.2 Motivation

Over the last decade or so, several software packages and libraries have been developed to
perform interval arithmetic and improve the accuracy and reliability of numerical compu-
tations, such as INTLIB [35], INTBIS [37], INTLIB [35], PASCAL-XSC [38], C-XSC [42],
PROFIL/BLAS [39] and INTLAB[68]. The main disadvantage of these self validating inter-
val analysis software is their speed. Since arithmetic operations are simulated in software, a
tremendous amount of overhead is incurred for function calls, memory management, error

and range checking, expression manipulation, changing rounding modes, exception handling,

3http:/ /www.codeplay.com
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etc. The overhead leads to an implementation of interval arithmetic that is considerably slow
to execute on a computer architecture designed to handle only floating point numbers.

The speed limitation can be somewhat overcome by using special purpose coprocessors
[70] or functional units [22] to deal with interval arithmetic. Parallel processing techniques on
multi-processor machines can also be exploited to speed up interval methods [20], [28], [45],
[46], [69] and [72].

However, as single processor based computing machines such as desktop computers are
more widely used, it would be advantageous to have techniques that speed up the algorithm
on single processor machines. In this thesis, the focus is on applying vectorization to speed
up some key interval analysis algorithms implemented on normal desktop computers with

single processors.

1.3 Main Contributions

All basic interval algorithms involve maintenance of a list of boxes to be processed. At each
iteration of a typical interval analysis algorithm, boxes are picked up from the list, one at a
time, and processed. The iterations are continued till the list becomes empty or termination
criteria is satisfied.

In this work, vectorization is proposed as a means of speeding up some basic interval
algorithms. The idea is to process all the boxes present in the list simultaneously at each
iteration, and use vectorization to perform the various tasks such as function evaluations,
bisection, width checking, etc. The toolbox INTLAB [68] and the FORTE FORTRAN 95
compiler [63] are used for vectorization of interval arithmetic operations. Further, exploiting
the feature that all the boxes in a list are being processed , some algorithmic changes are also

made wherever possible.

1.3.1 Nonlinear equations

The interval Newton algorithm [48] reliably computes to a prescribed accuracy all solutions
of a nonlinear system of equations f(x) = 0 for a continuously differentiable function f :
R — R in a given interval vector (or box) X°. In this work, we present a vectorized version
of the interval Newton algorithm. As is well known, in each iteration of the interval Newton
algorithm, we choose only one box from the list for processing. In each iteration of the
proposed algorithm, we choose all boxes from the list for processing. By doing so, we do not
alter the essence of the interval Newton algorithm, because in any case all the boxes in the
list have to be processed sooner or later. However, because no box is kept waiting in the list
for its turn (which may come after many iterations), and instead every box is processed right
away in the very same iteration, we expect our strategy to result in a considerable speed-up

of the algorithm. To perform function and gradient evaluations, zero exclusion checks, Gauss
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- Seidel steps, width checks, and bisections on all boxes in an iteration, we use wectorized
interval arithmetic operations. We test and compare the performances of the proposed and
original algorithms on a set of twenty-one test problems. The test results show the proposed
algorithm to be considerably faster (on the average, more than eleven times faster) and to
require less memory and computational effort than the original interval Newton algorithm in

all problems.

1.3.2 Parameter - dependent equations

Neumaier [61] proposed the so-called covering algorithm for enclosing the solution set of
parameter - dependent systems of nonlinear equations. However, in Neumaier’s covering al-
gorithm only one box is processed in each iteration. Such processing is inherently slow, due
to its sequential nature. On the other hand, in each iteration of the covering algorithm it is
clearly possible to simultaneously process all boxes that are present (this can be done without
altering in any way the essence of the algorithm). The strategy results in greatly speeding
up the algorithm, because all boxes present in every iteration are processed simultaneously.
We call this version of the covering algorithm as the wvectorized covering algorithm. This
work presents a vectorized version of the covering algorithm, in which all boxes present are
processed simultaneously in each iteration. It is shown through several examples that the
vectorized algorithm is significantly faster (by up to 2 orders of magnitude in demanding

problems) than the original algorithm.

1.3.3  Global optimization

A basic branch and bound algorithm of interval analysis to solve the unconstrained global
optimization is the Moore-Skelboe algorithm [51], augmented with the midpoint test of Ichida
and Fuiji [30] and the monotonicity test [65]. Although this basic algorithm is reliable, it is
sometimes slow for ‘difficult’ problems. In this work, we propose some modifications to speed

up the basic interval global optimization algorithm, as follows.

e In the basic algorithm we choose for processing only the first box from the list at each
iteration. In the proposed algorithm, we choose and process all boxes from the list at

each iteration.

e Using the fact that we are processing all the boxes simultaneously, we propose to use
a new cut-off test (also called as the midpoint test) in the algorithm. In the basic
algorithm, the cut-off value is the function value at the midpoint of the leading box
at each iteration. In the proposed algorithm, the cut-off value is the minimum of the
function values at the midpoints of all boxes in the list at each iteration. Hence, the

new cut-off test is expected to discard more irrelevant boxes at each iteration.
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e In the basic algorithm, the monotonicity test is applied to the subboxes obtained by
bisection of the leading box at each iteration. In the proposed algorithm, the monotonic-
ity test is applied to the subboxes obtained by bisection of all boxes in the list at each

iteration.

e To perform function and gradient evaluations, monotonicity test, cut-off test, width
checks, and bisections on all boxes in the list at an iteration, we propose to use vectorized

interval arithmetic operations.

Test results on a collection of fifty standard test functions with two different termi-
nation criteria show that the proposed algorithm uses any extra function evaluations,
computational effort, and maximum list length effectively, yielding considerable savings

in computational time.

1.3.4 Set inversion

We present an algorithm to characterize the set S = {z € R : f(x) > 0} = f~!(]0,00[™) in
the frame work of set inversion using interval analysis. The proposed algorithm improves on
the algorithm of Jaulin et al. [31]. The improvements exploit the powerful tool of monotonicity.
We test and compare the performance of the proposed and existing algorithms in characteriz-
ing the domains of robust stability for two problems, including a case study of speed control of
a jet engine. The results of the testing indicate that the proposed algorithm encloses S more
accurately than the existing one - meaning that it gives a larger region for which the system
stability is guaranteed and a smaller region for which the system stability is indeterminate.
The proposed algorithm also requires less space-complexity, but takes more computational

time than the existing algorithm.

1.3.5 Bisection direction selection

A fundamental problem in numerical analysis is that of computing the range of values of a
function f on a box X, denoted as f (X). Since in general it is not possible to compute the
exact range f (X), we therefore consider the problem of finding an interval enclosure of f (X)
with a desired degree of accuracy €. A recently proposed interval analysis based algorithm
for range computations, shown to be usually more efficient than other similar algorithms, is
the one of Nataraj and Sheela [58].

In this work, we propose a new derivative free rule for bisection direction selection in
the above interval analysis algorithm for range computations. In the proposed rule, at each
iteration of the algorithm, we pick a box randomly from the current list and actually find out
which is the ‘best bisection direction’ for the random box. We then take this ‘best bisection
direction’ for the random box as also the ‘best bisection direction’ for all other boxes of current

list, and bisect all these boxes in the said direction. The philosophy behind the proposed rule
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is that “the best bisection direction for the random box of current list is likely the best
bisection direction for all other boxes of current list”. The performance of the proposed
rule is then compared with those of several widely used bisection direction selection rules
of interval analysis on a suite of ten real-world problems, taken from different engineering
application areas. The performance evaluation is done in the context of template generation
problem arising in the QFT approach to robust feedback system synthesis [27]. It is found
that, on the average, about 58% reduction in the number of solution boxes and 73% reduction
in computational time is obtained with the proposed bisection direction selection rule over

existing rules.

1.3.6 Robust stability analysis

We present an interval analysis algorithm for robust stability analysis of polynomials with
nonlinear parametric dependencies. The proposed algorithm is based on an interval zero exclu-
sion test, the random bisection strategy, and vectorization technique. The proposed algorithm
is applied to a mass-spring-damper system with a large number of uncertain parameters, and

found to verify robust stability in quick time.

1.4 Organization of the thesis

The rest of the thesis is organized as follows. In chapter 2, we present a vectorized version of
the interval Newton algorithm for solving systems of nonlinear equations. We then test and
compare the performances of the proposed and original algorithms on a set of twenty-one
test problems drawn from various fields. In chapter 3, we propose a vectorized version of the
covering algorithm for solving parameter - dependent systems of nonlinear equations. We show
the superiority of the proposed algorithm through several examples. In chapter 4, we propose
a vectorized version of the basic Moore - Skelboe algorithm for solving the unconstrained
nonlinear global optimization problem. We evaluate its performance on a collection of fifty
standard test functions with two different termination criteria. In chapter 5, we present an
improved algorithm for set inversion via interval analysis and demonstrate its capabilities
for speed control of a jet engine. In chapter 6, we propose a new rule for bisection direction
selection in the context of range finding algorithms, and apply it to generate templates or
value sets for ten real-world systems. In chapter 7, we present an algorithm for robust stability
analysis of control systems and demonstrate its capability on a 13 parameter mass -spring -
damper control system. In chapter 8, we gives the conclusions of the present work and some
suggestions for future work. In appendix A, B, and C we give test problems used in chapters
1, 2 and 6 respectively. Appendix D gives notations and definitions of some of the terms of

interval analysis used in this thesis.
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On speeding up the interval Newton algorithm

2.1 Introduction

The problem of finding the solution vectors of a system of nonlinear equations is addressed in
this chapter. The interval Newton algorithm [48] finds all solutions of a nonlinear system of
equations f (x) = 0 for a continuously differentiable function f : ®! — R! in a given interval
vector (or box) X9 C R

In this chapter, we propose a modification that considerably speeds-up the interval Newton
algorithm. As is well known, in each iteration of the interval Newton algorithm, we choose
only one box from the list for processing. In each iteration of the proposed algorithm, we
choose all boxes from the list and use vectorization for processing. This is the only difference
between the proposed and original algorithms, and clearly, it does not alter the essence of
the algorithm.

We also test and compare the performances of the proposed and original algorithms on
twenty-one problems, and show the proposed algorithm to be considerably faster (on the

average more than eleven times faster) than the original one in all examples.

2.2 Basic algorithm

There are several variants and embellishments of the interval Newton algorithm, see, for
instance, [4], [24], [26], [34], [62]. We consider a model interval Newton algorithm that has
the basic features.

A Model Interval Newton Algorithm

Inputs: the initial box X?, inclusion function of the given function and its Jacobian (denoted

respectively as F' and F’), and a parameter ¢ to check if the width of a box is small.
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Begin Algorithm
. (Initialization step) : Initialize list L = {X°} .

. (Start new iteration with a box from L) : If the list L is empty, go to step 8. Else,

choose a box from the list L, denote is as current box X, and remove X from L.

. (Do zero exclusion test on current box) : Evaluate the inclusion function F' on the box

X. If 0 ¢ F(X), discard X, and go to step 2.

. (Set up a linear interval equation for current box, and solve using the interval Gauss-

Seidel method) :

(a) Construct the Jacobian matrix F’(X), and the inverse midpoint preconditioning
matrix R = {m (F’ (X))}, where m (.) denotes the midpoint.

(b) Find the midpoint of the box X as & = m (X), and evaluate f at z.

(c) Using the interval Gauss-Seidel (IGS) method [34], [62], solve the linear interval
equation

RF' (X) (X - &) = ~Rf ()

The solution obtained may be empty, a single box, or several boxes (as when gaps

arise in one or more solution components).

(d) If the solution is empty, discard X. If the solution is a single box, then add the
midpoint z, and replace X with the resulting box as current box. If there are

several solution boxes, do likewise for each, and denote them as current boxes.

. (Check box width and print solution) : For (each) current box X, do the following.

Find the width of X; if the width does not exceed ¢, print out X as a solution box, and

discard it. If no boxes remain, return to step 2.

. (Bisection) : For (each) current box X, bisect box along the maximum width coordinate

direction, and enter the resulting subboxes into the list L.

. (Terminate current iteration) : Go to step 2.

. EXIT algorithm.

End Algorithm.

Remark 2.1 In steps 3 and 4, we discard irrelevant parts of the box using the zero exclusion

test and the interval Gauss-Seidel method.
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2.3 Proposed algorithm

In the model interval Newton algorithm, in each iteration we choose only one box from the list
L for processing. On the other hand, in each iteration we can choose all boxes from the list for
processing. By doing so, we do not alter the essence of the interval Newton algorithm, because
in any case all the boxes in the list have to be processed sooner or later. However, because
no box is kept waiting in the list for its turn (which may come after many iterations), and
instead every box is processed right away in the very same iteration, we expect our strategy
to result in a considerable speed-up of the algorithm.

To perform function and gradient evaluations, zero exclusion checks, Gauss-Seidel steps,
width checks, and bisections on all boxes in an iteration, we use vectorized interval arithmetic
operations. We could have also used FOR loops that run over all the boxes to do the same
things, but we follow [47] which strongly advocates employment of vectorization instead of
FOR loops wherever possible.

In the following example, we illustrate how vectorized function evaluation can be done on

all boxes from a list.

Example 2.1 Consider, for ezample, the 1- dimensional function in [61]
[z, m9) = 23 — 223 + 2% — 2109 — 2

and suppose we want to evaluate F' over all boxes from a list. Then, using the notation of

INTLAB (which is based on MATLAB), we can do this using the single program statement
F = power (X(:,1),3) — X(:,1). % sqr (X(:,2)) +sqr (X(:,1)) = X(:,1). * X(:,2) — sqr (X(:,2))

where, X(:,1) denotes Xy for all bozxes and X(:,2) denotes Xy for all boxes. The function eval-
uation over all the boxes is done with this statement, because the operations +, —, .x, sqr, and
power are performed element-wise between vectors (cf. [47]) and INTLAB overloads these or-

dinary arithmetic operations with the corresponding vectorized interval arithmetic operations

[68].

In a similar way, we can perform gradient evaluations, width checks, etc., on all boxes from
a list.

We next present our algorithm that is based on the above idea.

A vectorized Interval Newton Algorithm

Begin Algorithm
1. (Initialization step) : Initialize list L = {X"} .

2. (Start new iteration with all boxes from L) : If the list L is empty, go to step 8. Else,

choose all boxes from the list L, and remove them from L.
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3. (Do the zero exclusion test on all boxes) : Evaluate the inclusion function F on all
boxes, and discard all those boxes X for which 0 ¢ F(X). If no more boxes remain, go

to step 8.

4. (Set up linear interval equations for all boxes, and solve using the interval Gauss-Seidel

method) :

(a) Construct the Jacobian matrices F’ (X) and the inverse midpoint preconditioning
R={m (F' (X))}, for all boxes.

(b) Find the midpoint & = m (X) and evaluate f (), for all boxes.
(c) Apply the interval Gauss-Seidel (IGS) method to solve the corresponding linear

interval equation
RF'(X) (X — &) = —Rf ()

for all boxes.

(d) Discard all those boxes for which the corresponding linear interval systems are
found incompatible (i.e., solution set is empty). If no more boxes remain, go to
step 8. Else, add the respective midpoint & to each solution box, and proceed with

these as the current boxes.

5. (Check widths of all boxes and print solutions) : Find the widths of all boxes. Print all
those boxes whose widths do not exceed ¢ and discard them. If no more boxes remain,

go to step 8.

6. (Bisect all boxes into two subboxes each) : Find the maximum width coordinate di-
rections for all boxes, and bisect the boxes along the respective directions. Enter the

resulting subboxes into the list L.
7. (Terminate current iteration) : Go to step 2.

8. EXIT algorithm.

END Algorithm.

2.4  Test results

We consider some test problems for comparing the performances of the proposed and model
interval Newton algorithms. The test problems considered are listed in the Appendix A. We
carry out all computations on a single processor PC/Pentium-IIT 800 MHz machine with 256
MB RAM using version 3 of INTLAB [68].
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Tables 2.1 and 2.2 give the results for the various test problems for two values of ¢, that
is, ¢ = 107 and 107%. We use the following efficiency measures (the notation used for the

entries in the tables is given in brackets) :

e Computational time in seconds (t)
e Number of solution boxes (b)

e Maximum list size (ml)

Number of functional evaluations (fe)

Number of gradient evaluations (ge)

Number of floating operations (flops)
From the results given in the Tables, we make the following observations:

1. In all examples, the number of solution boxes obtained is the same with either algorithm.
2. In all examples, the number of function evaluations is the same in either algorithm.

3. In all examples, the number of gradient evaluations is the same in either algorithm.

4. In all examples, the maximum list size is slightly less in the proposed algorithm.

5. In all examples, the computational effort (in terms of flops) is slightly less in the pro-
posed algorithm. This can be attributed to the fact that in INTLAB, interval arithmetic
and slopes are done by operator overloading, which incurs substantial overhead. This
overhead is needed once for each box in the model algorithm, but only once per iteration

in the vectorized version [60].

6. In all examples, the vectorized algorithm is considerably faster than the model algo-

rithm.

e Regarding the speed-up factor obtained with the proposed algorithm relative to the
model algorithm : The minimum speed-up is 1.5 and occurs for problem Toolbox?2.
The maximum speed-up is 22.8 and occurs for problem Neuro6. The average speed-

up over all examples is about 11.2 with either accuracy .

e Regarding the percentage reduction in computational time obtained with the vec-
torized algorithm relative to the model algorithm : The minimum reduction is
31.8% and occurs for problem Toolbox2. The maximum reduction is 95.6% and
occurs for problem Neuro6.The average reduction over all examples is about 84.7%

with either accuracy.
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e A reduction in time above 85% is obtained in most problems.

Remark 2.2 We note that the vectorized algorithm achieves significant speed-ups even on
ordinary desktop PCs (as in our tests). There is no requirement for any parallel or vector

processors.

Remark 2.3 The actual speed-up factor and reduction in computational time perhaps vary
considerably with the computing environment used, and may be less conspicuous in program-

ming languages where control structures are more efficiently implemented than in MATLAB.

2.4.1 Performance profiles

Performance profile is proposed as a tool for evaluating and comparing performance of al-
gorithms in [17]. The performance profile for an algorithm is the (cumulative) distribution
function for a performance metric. Performance profiles eliminate the influence of a small
number of problems on the final evaluation conclusions.

For computational time as the performance metric, performance profiles can be generated
as follows. Let P be the test set of functions, ns be the number of algorithms and n, be the

number of functions. For each test function p and algorithm s, define

tp,s = computing time required to solve a test function p by algorithm s

The performance ratio for computation time is calculated as

tp7s

"ps = min{t,s:1<s<n,}

We choose a parameter 737 > 1,5 for all p, s, such that r, s = rps if and only if algorithm
does not solve the test function p. Now, the performance profile for computing time can be

defined as

1
ps(T) = n—psize {]3 eP: Tp,s < T}

Similarly, performance profiles for any performance metric can be defined.
The following observations are made from the performance profile plots computed for time

and maximum list length efficiency measures (see Figures 2.1 and 2.2).

Computational time and maximum list length.

Performance profile plots for computational time in Figures 2.1 and 2.2 show that the pro-
posed algorithm is able to solve all the problems for 7 = 1, and the basic algorithm solves all
the problems for 7 < 25, using both the accuracies. Performance profile plots for maximum
list length Figures 2.1 and 2.2 show that both the algorithm require almost same maximum

list lengths.
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2.5 Conclusions

A vectorized interval Newton algorithm was proposed for solving finite-dimensional systems
of nonlinear equations. It was demonstrated through several test examples that the proposed
algorithm was considerably faster, on the average, more than eleven times faster than the

model algorithm.



16
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FIGURE 2.1. Performance profiles of time and maximum list length for ¢ = 1074
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TABLE 2.1. Performance comparison of algorithms for = 107

S.No | Problem Soln | Model Proposed | Speed-up | Percentage
Algorithm | Algorithm | factor reduction in time
1 Toolbox1 t 1.76 0.41 4.29 76.73%
b 2 2
ml 13 12
fe 47 47
ge 47 47
flops | 21,580 18,760
2 Toolbox2 t 0.21 0.14 1.5 33.3%
b 1 1
ml 3 2
fe 14 14
ge 7 7
flops | 2886 2805
3 Hansen1 t 1.63 0.52 3.13 68.1%
b 2 2
ml 19 16
fe 117 117
ge 40 40
flops | 17,950 16,590
4 Lotka3 t 15.31 1.57 9.76 89.75%
b 7 7
ml 88 84
fe 784 784
ge 295 295
flops | 264,115 247,662
5 Rediff3 t 1.37 0.48 3.4 70.8%
b 2 2
ml 13 12
fe 76 76
ge 31 31
flops | 25,007 23,867
6 Redcyc4 t 286.29 13.88 20.63 95.15%
b 5 5
ml 542 532
fe 9589 9589

17
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Table 2.1 (Contd.)

S.No | Problem Soln | Model Proposed | Speed-up | Percentage
Algorithm | Algorithm | factor reduction in time
6 Redcyc4 ge 3458 3458
flops | 5,724,494 | 5,466,165
7 Lorentz4 t 15.65 3.76 4.16 75.97%
b 2 2
ml 21 18
fe 723 723
ge 262 262
flops | 370,842 354,689
8 quad4 t 12.41 1.44 8.61 88.4%
b 1 1
ml 67 62
fe 502 502
ge 183 183
flops | 287,586 260,733
9 Lotka5 t 677.83 34.5 19.65 94.91%
b 3 3
ml 1072 1008
fe 14404 14404
ge 6239 6239
flops | 17,955,022 | 16,451,452
10 Ecob t 19.34 2.2 8.79 88.62%
b 2 2
ml 61 58
fe 634 634
ge 239 239
flops | 568,753 568,753
11 Wright5 t 17.71 1.99 8.89 88.76%
b 6 6
ml 58 58
fe 628 628
ge 231 231
flops | 527,881 507,976
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2.5 Conclusions

S.No | Problem Soln | Model Proposed | Speed-up | Percentage
Algorithm | Algorithm | factor reduction in time
12 Redecob 149.48 9.91 15.1 94%
b 4 4
ml 128 116
fe 5744 5744
ge 2131 2131
flops | 4,838,140 | 4,628,246
13 Neuro6 t 325.21 14.33 22.71 95.6%
b 1 1
ml 859 806
fe 7862 7862
ge 2899 2899
flops | 11,645,809 | 10,930,525
14 Trink t 858.72 46.16 18.6 94.62%
b 2 2
ml 1906 1816
fe 23782 23782
ge 7513 7513
flops | 27,423,261 | 26,393,938
15 Redecob t 91.32 5.57 16.39 93.9%
b 4 4
ml 324 318
fe 2824 2824
ge 1109 1109
flops | 3,685,274 | 3,568,688
16 Hansens t 14.08 3.33 4.22 76.38%
b 1 1
ml 32 32
fe 225 225
ge 98 98
flops | 404,998 394,139

19
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Table 2.1 (Contd.)

S.No | Problems | [ Soln | Model Proposed Speed-up | Percentage
Algorithm | Algorithm | factor reduction in time
17 Systems8 | 8 1277.4 84.49 15.11 93.4%
b 4 4
ml 1151 1080
fe 30,743 30,743
ge 11,058 11,058
flops | 72,860,411 | 71,374,087
18 Robot 8 20.78 2.06 7.99 87.49%
b 16 16
ml 56 56
fe 438 438
ge 155 155
flops | 1,063,466 1,041,461
19 Kinema 9 |t 903.15 62.93 14.35 93.03%
b 2 2
ml 964 932
fe 16434 16434
ge 6595 6595
flops | 58,381,105 | 57,491,849
20 Kul0 10 2615.7 332.27 7.87 87.3%
b 2 2
ml 3295 3112
fe 44937 44937
ge 16678 16678
flops | 179,009,004 | 176,506,127
21 Sparsedl | 12 305.71 16.21 18.86 94.7%
b 1 1
ml 310 294
fe 4927 4927
ge 1838 1838
flops | 32,894,146 | 32,526,802
Average 11.2 84.8%




2.5 Conclusions

TABLE 2.2. Performance comparison of algorithms for ¢ = 1076.

S.No | Problems Soln | Model Proposed | Speed-up | Percentage
Algorithm | Algorithm | factor reduction in time
1 Toolbox1 t 1.79 0.39 4.59 78.21%
b 2 2
ml 13 12
fe 47 47
ge 47 47
flops | 21,580 18,760
2 Toolbox2 0.22 0.15 1.5 31.82%
b 1 1
ml 3 2
fe 14 14
ge 7 7
flops | 2886 2805
3 Hansen1 2.27 0.69 3.28 69.6%
b 2 2
ml 19 16
fe 165 165
ge 56 56
flops | 25,146 23,213
4 Lotka3 t 16.36 1.53 10.69 90.65%
b 7 7
ml 88 84
fe 792 792
ge 299 299
flops | 267,422 250,754
5 Rediff3 1.36 0.47 2.89 65.4%
b 2 2
ml 13 12
fe 76 76
ge 31 31
flops | 25,007 23,867
6 Redcycd 300.11 15.29 19.63 94.91%
b 5 5
ml 542 532
fe 9941 9941

21



22 2. On speeding up the interval Newton algorithm

Table 2.2 (Contd.)

S.No | Problems Soln | Model Proposed | Speed-up | Percentage
Algorithm | Algorithm | factor reduction in time
6 Redcyc4 ge 3584 3584
flops | 5,934,954 | 5,668,344
7 Lorentz4 20.98 5.31 3.95 74.69%
b 2 2
ml 21 18
fe 976 976
ge 355 355
flops | 502,500 480,889
8 quad4 12.91 1.5 8.61 88.4%
b 1 1
ml 67 62
fe 976 976
ge 191 191
flops | 299,306 271,526
9 Lotkab 687.62 37.16 18.5 94.6%
b 3 3
ml 1072 1008
fe 14902 14902
ge 6413 6413
flops | 18,490,098 | 16,935,369
10 Ecob t 21.07 2.2 9.49 89.46%
b 2 2
ml 61 58
fe 637 637
ge 240 240
flops | 571,223 551,505
11 Wright5 18.08 2.01 8.99 88.88%
b 6 6
ml 38 58
fe 643 643
ge 238 238
flops | 542,936 522,576
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2.5 Conclusions

S.No | Problems Soln | Model Proposed | Speed-up | Percentage
Algorithm | Algorithm | factor reduction in time
12 Redecob t 209.97 13.37 15.7 93.63%
b 4 4
ml 128 116
fe 7921 7921
ge 2938 2938
flops | 6,673,526 | 6,383,285
13 Neuro6 t 326.35 14.29 22.84 95.62%
b 1 1
ml 859 806
fe 7866 7866
ge 2901 2901
flops | 11,653,133 | 10,937,716
14 Trink t 865.38 47.03 18.4 94.57%
b 2 2
ml 1906 1816
fe 23786 23786
ge 7515 7515
flops | 27,430,080 | 26,400,529
15 Redecob t 92.65 5.45 17 94.12%
b 4 4
ml 324 318
fe 2832 2832
ge 1113 1113
flops | 3,698,053 | 3,581,087
16 Hansens t 14.51 3.43 4.23 76.36%
b 1 1
ml 32 32
fe 229 229
ge 100 100
flops | 412,906 401,970

23
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Table 2.2 (Contd.)

S.No | Problems | [ Soln | Model Proposed Speed-up | Percentage
Algorithm | Algorithm | factor reduction in time
17 Systems8 | 8 1283.5 85.65 14.98 93.33%
b 4 4
ml 1151 1080
fe 30754 30754
ge 11063 11063
flops | 72,892,274 | 72,892,274
18 Robot 8 22.03 2.08 10.59 90.56%
b 16 16
ml 56 56
fe 462 462
ge 163 163
flops | 1,118,856 1,095,571
19 Kinema 9 |t 912.4 63.59 14.35 93.03%
b 2 2
ml 964 932
fe 16434 16434
ge 6595 6595
flops | 58,381,105 | 57,491,849
20 Kul0 10 2603.1 331.33 7.87 87.3%
b 2 2
ml 3295 3112
fe 44941 44941
ge 16680 16680
flops | 179,029,894 | 176,526,728
21 Sparsedl | 12 307.3 15.98 19.23 94.8%
b 1 1
ml 310 296
fe 4935 4935
ge 1842 1842
flops | 32,961,183 [ 32,593,431
Average 11.3 84.73%
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On speeding up the covering algorithm

3.1 Introduction

This chapter addresses the problem of finding in a given box all solutions of a nonlinear
system with more variables than equations. This problem is clearly of a broad scope and has
numerous applications in engineering and sciences.

The problem can sometimes be solved by one of the following methods [32] : (i) random
search, (ii) an exhaustive grid search on the given box, (iii) more specialized or ad hoc
methods, such as the Jenkins-Traub method for finding all roots of a single polynomial, and
(iv) homotopy continuation methods [54]. The reader is referred to [32], [33] for a discussion
and comparison of these methods.

In the frame work of interval analysis , Neumaier proposed the so-called covering algorithm
[61] to solve the problem. Consider a finite-dimensional system of nonlinear equations of the

form
fx)=0 (3.1)

where f is a function defined on a subset D C R! with values in ®™, m < [. If f is continuously

differentiable in D and f’ (z) has rank m for all  in a neighborhood of the solution set
M={weD|f()=0}

then the solution set M of (3.1) is a p-dimensional manifold in !, p = I — m. The vector
of variables often contains p distinguished variables, called as parameters.
We are interested in that part of M for which all variables (and parameters) lie within

certain bounds
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so that only the solutions of (3.1) contained in a box X% € I (R)" are sought.
For any X € I (D), define

d (F,X):={xeX|f(x)=0}. (3.2)
The covering algorithm of Neumaier [61] consists of covering the set > (F , XO) by a collection
of smaller and smaller boxes which give increasingly accurate information about the location
of the solution set. The algorithm uses the zero exclusion test and the generalized Gauss-
Seidel method to discard irrelevant parts of XY. However, in each iteration of the covering
algorithm, only one box is processed.
The aim of this chapter is to show that the covering algorithm can be speeded up by several
orders of magnitude, if in each iteration of the algorithm, we simultaneously process all boxes

that are present.

3.2 Neumaier’s covering algorithm

We first outline Neumaier’s covering algorithm to solve (3.1).

Algorithm: Neumaier’s covering algorithm [61]

Inputs: the initial box X°, a continuous inclusion function (denoted as F) of the given
function f, and a parameter ¢ to check if the width of a box is small.

Begin Algorithm
1. Enter the initial box into the stack.
2. If the stack is empty, go to step 9.
3. Choose the first box from the stack.
4

. Discard irrelevant parts of the box using the zero exclusion test and the GGS
method (see Remarks 3.1 and 3.2 below).

i

If the box is empty, go to step 2.
6. If the width of the box is less than or equal to €, print the box and go to step 2.

7. Bisect the box along the maximum width coordinate direction and enter the halved

boxes into the stack at the end.
8. Go to step 2.
9. Stop.

End Algorithm.

Remark 3.1 If 0 ¢ F(X) then X contains no solution point and is discarded (the zero
exclusion test). Note that since F(X) generally overestimates the range, there may or may
not be a solution point in X if 0 € F(X). In this case a more refined test is used as in the

following remark.
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Remark 3.2 The algorithm is speeded up by finding a smaller box containing all solutions
in X, using the generalized Gauss-Seidel method (GGS) [61]. The GGS method is applied to

the homogeneous linear interval equation
AD=0,Ac A, DeD (3.3)
where

ﬁeD::(Xl_g>,EeA::(F’(X),F(E)); (3.4)

and z € X. If this linear interval system is found incompatible then X can be discarded. FElse,
the algorithm proceeds by replacing X with X' = Z 4+ D', where D' is the solution constructed
using the GGS method. To further speed up the algorithm, preconditioning of the linear system

can be done, and interval slopes [/1] instead of gradients used.

3.3 Proposed algorithm

Note that in each iteration of Neumaier’s covering algorithm, only one box is processed. Such
processing is inherently slow, due to its sequential nature. On the other hand, in each iteration
of the covering algorithm, it is clearly possible to simultaneously process all boxes that are
present (this can be done without altering in any way the essence of the algorithm). As will
be seen below, the strategy results in greatly speeding up the algorithm, because all boxes
present in every iteration are processed concurrently , i.e., in a parallel manner. We call this
version of the covering algorithm as the vectorized covering algorithm.
Algorithm: vectorized covering algorithm

arises from Neumaier’s covering algorithm by making the following changes.

e Step-3: Choose all the boxes present in the stack.
e Step-4: Discard irrelevant parts of all boxes:

— (vectorized zero-exclusion test): using vectorized interval arithmetic opera-
tions, evaluate the interval extension F' over all the boxes. Discard all those

boxes for which 0 ¢ F(X). If there are no more boxes remaining, go to step 9.

— (vectorized GGS method) using vectorized gradient or slope evaluations, set
up the A, D matrices in (3.3, 3.4) for all boxes. Using vectorized interval arith-
metic operations, apply the GGS method simultaneously to all the resulting
homogeneous linear interval equations, and obtain smaller boxes containing

the solution points in the respective boxes.

e Step-5: Find and discard all empty boxes. If there are no more boxes remaining,

go to step 9.
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e Step-6: Using vectorized interval arithmetic operations, find the widths of all boxes.
Then, find and print all those boxes satisfying the box-width condition (i.e., width
of box < ¢). Discard the just printed boxes.

e Step-7: If there are no boxes remaining, go to step 9. Else, using vectorized interval
arithmetic operations, find the maximum width coordinate directions for all boxes,
and bisect simultaneously all the boxes along these (respective) directions. Enter

all the resulting halved boxes into the stack.

Remark 3.3 It is emphasized that the formulation of the algorithm is independent of MAT-
LAB / INTLAB, and it can be run on any computer that has an interval arithmetic compiler

supporting vectorized interval arithmetic operations, such as Forte FORTRAN 95 [73].

Remark 3.4 The vectorized covering algorithm does not require a parallel computer. That
18, the vectorization is efficient even on serial architectures where vectorization brings advan-

tages.

Remark 3.5 [t follows from a result in [57] that for e > 0, the above algorithm terminates
after at most X" — 1 iterations, where x = w (XO) /€.

3.4 Numerical results

We consider some examples for comparing the performance of the proposed vectorized cov-
ering algorithm with that of the covering algorithm. The examples are listed in Appendix.

All computations are carried out on a PC/Pentium-III 550 MHz machine with 384 MB
RAM using INTLAB [68]. Tables 3.1 and 3.2 give the computational results for the various
examples. The Tables list the number of boxes in the covering of the solution set, the execution
time (seconds), and the number of floating operations (flops) taken. We used two values of
€, that is, € = 0.01 and 0.001.

The following observations are made regarding the results given in the Tables :

1. The same number of covering boxes are obtained using either algorithm.

2. The proposed algorithm is faster than the covering algorithm in all examples. In all
examples except example 3, the reduction in computational time is around 96 — 99%.

In example 3, the same is around 30 — 40%.

3. The speed up is particularly attractive in those examples demanding large computa-
tional times using the covering algorithm. In such examples, the proposed algorithm is

faster than the original one by up to 2 orders of magnitude.

4. The speed up factor gets better with accuracy.
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5. The number of flops is less with the proposed algorithm in every example.

We conclude the chapter with some remarks:

Remark 3.6 The observed reduction in computational overhead (in terms of flops) can be
attributed to the fact that in INTLAB, interval arithmetic and slopes are done by operator
overloading, which incurs substantial overhead. This overhead is needed once for each box
in the (sequential) covering algorithm, but only once per major iteration in the vectorized

version [60)].

Remark 3.7 The actual speed up factor perhaps varies considerably with the computing envi-
ronment used, and may be less conspicuous in programming languages where control structures

are more efficiently implemented than in MATLAB.

3.5 Conclusions

A vectorized version of Neumaier’s covering algorithm was proposed for solving finite-dimensional
systems of parameter - dependent nonlinear equations. It was demonstrated through several
test examples that the vectorized algorithm is significantly faster (by up to 2 orders of mag-
nitude in demanding problems) than the original algorithm. Moreover, it is noteworthy that
the vectorized algorithm does not require a parallel computer or vector processors but can
be run on any computer (such as a PC) that has an interval arithmetic compiler supporting

vectorized interval arithmetic operations.



30 3. On speeding up the covering algorithm

TABLE 3.1. Comparisons of algorithms for e =0.01.

S.No Examples Solutions Covering | Proposed | Speed up
algorithm | algorithm factor
1 One dimensional covering boxes 2406 2406
manifold time(s) 180.55 1.6 100.3
[61] flops 1354502 1060178
2 Tunneling diode covering boxes 1473 1473
[76] time(s) 122.13 1.25 97.7
flops 1051102 783391
3 Combustion covering boxes 2 2
chemistry time(s) 1.81 1.09 1.79
[53] flops 13865 12947
4 Hippopede covering boxes 896 896
[44] time(s) 84.05 1.22 68.89
flops 795304 558268
5 PUMA covering boxes 28 28
robot time(s) 105.39 4.08 25.83
[53] flops 1351569 1193709
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TABLE 3.2. Comparisons of algorithms for e =0.001.

S.No Examples m | { Solutions Covering | Proposed | Speed up
algorithm | algorithm factor
1 One dimensional | 1 | 2 | covering boxes 26955 26955
manifold time(s) 3274.1 10.46 313.01
[61] flops 14218727 | 11142507
2 Tunneling diode | 1 | 2 | covering boxes 17060 17060
[76] time(s) 1693.8 6.21 272.75
flops 10011584 | 7503713
3 Combustion 2 | 2 | covering boxes 2 2
chemistry time(s) 2.15 1.46 1.47
[53] flops 17575 16567
4 Hippopede 2 | 3 | covering boxes 6884 6884
[44] time(s) 635.07 3.35 189.57
flops 5231611 3685222
5 PUMA 8 | 8 | covering boxes 40 40
robot time(s) 125.3 4.63 27.06
[53] flops 1635829 1444654

31
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4
On speeding up the global optimization algorithm

4.1 Introduction

Let f: X CR! — R be a differentiable function. Let f (X) denote the set of all values of f on
X. We seek global optimization algorithms that are able to efficiently determine arbitrarily
good lower bounds for the minimum of f (X).

Many algorithms based on interval analysis (IA) are available to solve this unconstrained
global optimization problem, see for instance, [26], [34], [65]. A model or basic! branch and
bound algorithm of TA consists of the Moore-Skelboe algorithm [51] augmented with the mid-
point test of Ichida and Fuiji [30] and the monotonicity test detailed in [65]. Although this
basic algorithm is reliable, it is sometimes found to be slow for ‘difficult’ problems. There-
fore, several researchers recently proposed parallel processing techniques on multi-processor
machines in order to speed up interval global optimization methods, especially for large-scale
problems [7], [16], [50], [81]. However, as single processor machines such as desktop comput-
ers are more widely used, it would be advantageous to have techniques that speed up the
algorithm on single processor machines.

In this chapter, we propose some modifications of the basic interval global optimization
algorithm to speed up the algorithm for single processor machines. The proposed algorithmic

changes are as follows.

e As is well known to interval analysts, in the basic algorithm we choose for processing
only the first box from the list at each iteration. In the proposed modification, we choose

and process all boxes from the list at each iteration.

1 The basic or model version does not include local search procedures, concavity tests, and Newton-like steps, see

[15], [65], [66].
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e Using the fact that we are processing all the boxes simultaneously, we propose to use
a new cut-off test (also called as the midpoint test) in the algorithm. In the basic
algorithm, the cut-off value is the function value at the midpoint of the leading box
at each iteration. In the proposed algorithm, the cut-off value is the minimum of the
function values at the midpoints of all boxes in the list at each iteration. Hence, the

new cut-off test is expected to discard more irrelevant boxes at each iteration.

e In the basic algorithm, the monotonicity test is applied to the subboxes obtained by
bisection of the leading box at each iteration. In the proposed algorithm, the monotonic-
ity test is applied to the subboxes obtained by bisection of all boxes in the list at each

iteration.

Finally, we evaluate the performances of the proposed and basic algorithms on fifty standard

optimization test functions given in [52] and [66].

4.2 Basic algorithm

A Basic Algorithm of IA for Unconstrained Global Optimization [65], [66]
Inputs: The box X, an inclusion function F' (usually the natural interval extension, see

[49]) for f: X — R, and accuracy parameter 5 .
BEGIN Algorithm

1. Set Z; = X, calculate F'(Z;), and set z; = min F'(Z;). Next, initialize list L =
((Z1,21)) and the cut-off value ¢ = f (m(Zy)).

2. Choose a coordinate direction k parallel to which Z; has an edge of maximum length.
3. Bisect Z; in direction k getting boxes V! and V2 such that Z; = V! J V2.

4. Calculate F (Vl) and F (Vz) , and set v! = min F’ (Vl) ,v2 =min F (VQ).

5. Remove (Z1, z1) from the list L.

6. Discard the pair (V¢ v?) if v* > ¢, where i € {1,2}.

7. (Monotonicity test, see Remark 4.2) discard the remaining pair (V*,v") if 0 ¢ F i (V)
for any j € {1,2,...,l}, and i = 1,2.

8. Add the remaining pair(s) to L. If L is empty, then EXIT. Otherwise, arrange L such
that the second members of all pairs of L do not decrease, and denote the pairs as in
Remark 4.1. Choose the first item (Z1, z1) .

9. Update the cut-off value as ¢ = min{c, f (m (Z1))}.
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10. (Cut-off test) discard from L all pairs whose second members are greater than the

cut-off value c.
11. If the termination criterion holds (see Remarks 4.3 and 4.4) then EXIT algorithm.
12. Go to Step 2.

END Algorithm

Remark 4.1 Let I, denote the current list length. Then, the items in list L at iteration r

consists of pairs denoted as (Z1,z1),...,(Zy,,z,), where, z, =min F (Z,),n=1,..., .

Remark 4.2 In the monotonicity test, if 0 ¢ F J' (Vz) then the interior of V¢ cannot contain
a global minimizer. The edge of V* still can contain global minimizer if that part of the edge
which has the smallest function values is also part of the edge of X. Otherwise, no global

minimizer lies in V' . For details, see [65].

Remark 4.3 We use two different termination criteria for evaluating the performances of

the algorithms:

o Termination criterion A: If w (F(Z1)) < ep. This termination criterion gives the global

minimum and a minimizer in the given domain.
e Termination criterion B: If

max {w (F(Z1)),...,w(F(Z,))} < ep, and

max {w (Z1),...,w(Z,)} < ex.

This termination criterion gives the global minimum and all the minimizers in the given

domain.

Remark 4.4 In case of termination criterion A, we print ’computed global minimum is
=’ z1,before exiting. In case of termination criterion B, we print the items in list L before

exiting.

4.3 Proposed algorithm

In the basic algorithm described above, in each iteration we choose only the leading box
from the list L for processing. On the other hand, in the proposed algorithm given below we
choose all boxes from the list for processing. To perform function and gradient evaluations,
monotonicity test, midpoint test, width checks, and bisections on all boxes in an iteration,
we use vectorized interval arithmetic operations. We next present the proposed algorithm.
Proposed Algorithm for Global Optimization
BEGIN Algorithm
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1. Set Z; = X, calculate F'(Z;1), and set z; = min F'(Z;). Next, initialize list L =
((Z1,21)) and the cut-off value c = f (m (Zy)).

2. Set [, as the length of L. Then, choose a coordinate direction k, parallel to which

Z, has an edge of maximum length, n =1,...,1,..

3. Bisect Z,, in direction k,, getting boxes V% and V2 such that Z, = V%1|JVZ n =
yeeeylpe

4. Calculate F' (V}Z) and F' (V%) , and set v}, = min F’ (Vﬁl), fori=1,2,andn=1,... 1.

5. Discard the pair (V?,,v},) if v}, > ¢, where i € {1,2},n € {1,...,l,} .

n

6. (Monotonicity test) Discard the remaining pairs (V5,v}) if 0 ¢ F i (V},) for any j €
{1,2,...,l},and i =1,2,n=1,... 1.

7. Delete all items from L, and enter the remaining pair(s) of above step in L. Set [+ as
the (temporary) length of L. If I, is zero, then EXIT. Otherwise, arrange L such that
the second members of all pairs of L do not decrease, and denote the pairs as in Remark

4.1.
8. Update the cut-off value as ¢ = min {c, fm(Zy)),....f (m (er,)) }

9. (Cut-off test) Discard from L all pairs whose second members are greater than the

cut-off value c.
10. If the termination criterion holds (c.f Remark 4.3 and 4.4) then EXIT algorithm.

11. Go to Step 2.

END Algorithm

4.4 Test results

For evaluating the effectiveness of the proposed algorithm, we consider the full benchmark
suite of 35 optimization test functions given in [52]. We also select additional 15 test functions

from the collection of 39 test functions in [66]. The criteria we use for this selection are:

1. Avoid test functions that have already been considered in the suite in [52].

2. Choose one problem from each group of ‘similar’ test functions. For example, 12 func-
tions called Levy have been put into 4 groups of ‘similar’ functions by Ratz and Csendes
in [66]. By ‘similar’, we mean that the functions are identical except for dimensionality.

Hence, we randomly choose one function from each of these groups. We similarly choose
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among the test functions called as Griewank, Ratz, Schwefel, etc., to arrive at a total

of fifteen test functions from this collection.

In test functions 1-35 from [52], given f; : R — R for i = 1,...,m, with m > [, our aim is

to find .
min {fo(ac) tx € X}
i=1

In the test functions 36-50 from [66], our aim is to find

min f(z)

where the objective function f: R — R is continuously differentiable and X C R'.

For most test functions from [52], we select the initial domain X as per Hansen [26, pp.135-
136]. For the rest, with this initial domain selection both the algorithms fail, due to excessive
time (greater than 10 hours) and / or memory requirements. In such test functions, we choose
smaller initial domains, such that they include all the starting points given in [52]. For the test
functions from [66], the domain is kept the same as given in [66]. We choose the accuracies
as ep = 1072 or 1074

We carry out all computations on a single processor PC/Pentium IIT 800 MHz machine
with 512 MB RAM using version 3 of INTLAB [68]. Table 4 gives the domain used, the global
minimum in the given domain and the minimizer for each test function.

To compare the performances of the algorithms, we use the following performance metrics
e Number of functional evaluations
e Number of floating operations (flops)
e Computational time, seconds

e Maximum list length

Tables 4.7 to 4.10 give the obtained results in terms of these performance metrics for the
various test functions®. For each metric, in the last two columns of Tables 4.7-4.10 we give

the values of ratio and the percent reduction computed as

. Perf. metric with basic algorithm
Ratio =

Perf. metric with proposed algorithm

) Perf. metric with basic algorithm - Perf. metric with proposed algorithm
Percent reduction = — - - X100
Perf. metric with basic algorithm

Based on the data in the Tables, we compare the performance of the two algorithms using

different evaluation methods: ranking, statistical measures, average and other measures, and

2A 9 entry in the last two columns of Tables 4.7 — 4.14 indicates that a solution could not be obtained by the basic

algorithm for the prescribed accuracy, due to excessive time requirements (greater than 10 hours).
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performance profiles. These various methods are incorporated in the analysis to avoid domi-
nance of any one test function on the final conclusions about the relative performance of the

algorithms.

4.4.1 Termination criterion A

Ranking

Ranking of the algorithms has been used for performance comparison, see for instance, [11],
[55], [77]. For a given performance metric, ranking is based on the number of times a rule
comes in the r* place, here r = 1,...,ns. A higher rank is assigned to the rule with lesser
performance value, while we assign the same rank to more than one rule if they achieve the
same performance value. Further, we assign the last rank to a rule if it is found unable to
solve the problem due to excessive memory requirements. Table 4.1 gives the ranking of the
algorithms in our studies.

At the outset, note that for the considered domains and accuracy, the proposed algorithm is
able to solve all the test functions, whereas the basic algorithm is able to solve only 92% of the
test functions. Table 4.1 shows that in a majority of the solved test functions, the proposed
algorithm is better in terms of computational time and maximum list length metrics (six test
functions require same number of function calls, four test functions require same flops and
maximum list length with both the algorithms, and so both the algorithms obtain the first
rank in these functions). Especially, the proposed algorithm is able to achieve the 1% rank in

94% of the test functions for the computational time metric.

Statistical measures

Next, we compare the performance of the algorithms based on the distribution of the difference
between the performance metrics. Such a comparison has been done, for instance, in [11]. The
minimum, first quartile, median, third quartile and maximum of this distribution are reported
in Table 4.2. A positive value of the median for computational time and maximum list length
indicates that proposed algorithm requires less computational time and maximum list length
for more than half of the solved test functions. A negative value of median for the function
evaluation and flops show that proposed algorithm requires more function evaluations for
more than half of the test functions. The inter-quartile distance clearly shows the advantage

of the proposed algorithm in terms of computational time and maximum list length metrics.

Minimum, mean, and maximum measures

In Table 4.3, we give the average (over all test functions) of the ratio and percent reduction
defined earlier. Table 4.3 shows that with the proposed algorithm, on the average we obtain an

increase in the number of function evaluations flops and maximum list lengths. Moreover, we
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obtain a good reduction in the computational time with the proposed algorithm in majority

of the test functions.

Performance profiles

The following observations are made from the performance profile plots computed for various

performance metrics.

Number of function evaluations

Performance profile plots for the number of function evaluations (see Figure 4.1 ) show that
the proposed algorithm solves only 20% of the (number of) test functions for 7 = 1 and
remaining 80% for 7 < 90. The basic algorithm is able to solve 92% of the test functions for
7 = 1. This shows the proposed algorithm is able to solve all the test functions for 7 < 90,

and that it requires more number of function evaluations for 80% of the test functions.

Computational effort (flops)

Performance profile plots for computational effort in terms of flops are shown in Figure 4.2.
The proposed algorithm solves 32% of the test functions for 7 = 1, and the remaining 78%
for 7 < 80. The basic algorithm could solve 76% of the test functions for 7 = 1, and 16% of
the test functions for 7 < 2. This shows the proposed algorithm is able to solve all the test
functions for 7 < 80, and that 78% of the test functions require more computational effort
with it.

Computational time. Performance profile plots for computational time (see Figure 4.3 ) show
that the proposed algorithm is able to solve 94% of the test functions for 7 = 1. The basic
algorithm is able to solve 6% of the test functions for 7 = 1 and the remaining 86% for 7

< 500. In a majority of the test functions, the proposed algorithm is considerably faster.

Mazimum list length

Performance profile plots for maximum list length (see Figure 4.4) show that the proposed
algorithm solves 62% of test functions for 7 = 1, and remaining 38% for 7 < 65. The basic
algorithm solves 46% for 7 = 1, and remaining 46% of test functions for 7 < 5. This shows
that the proposed algorithm is able to solve all the test function for 7 < 65, and that it

requires less memory for 62% of the test functions.

4.4.2  Termination criterion B

Tables 4.11 - 4.14 give the obtained results in terms of the performance metrics for the various
test functions when the algorithm is tested with termination B. At the outset, note that for
the considered domains and accuracy, the proposed algorithm is able to solve all the test

functions whereas the basic algorithm is able to solve only 80% of the test functions.
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Ranking

Table 4.4 gives the ranking of the algorithms in our studies (A higher rank is assigned to the
algorithm with lesser performance metric value). Table 4.4 shows that in a majority of the
solved test functions, the proposed algorithm is better in terms flops, computational time
and maximum list length (two of the test function require same number of function calls and
five of the test function require same maximum list length with either algorithm, and they
get both ranks). Especially, the proposed algorithm is able to achieve the 1%¢ rank in 94% of

the test functions for the computational time metric.

Statistical measures

Next, we compare the performance of the algorithms based on the distribution of the difference
between the performance metrics. The minimum, first quartile, median, third quartile and
maximum of this distribution are reported in Table 4.5.

A positive value of the median for flops, computational time and maximum list length
indicates that proposed algorithm requires less flops, computational time and maximum list
length for more than half of the solved test functions. A negative value of median for the
function evaluation shows that proposed algorithm requires more function evaluations for
more than half of the test functions. The inter-quartile distance clearly shows the advantage

of the proposed algorithm in terms of flops, computational time and maximum list length.

Minimum, mean, and maximum measures

In Table 4.6, we give the average (over all test functions) of the ratio and percent reduc-
tion defined earlier. Table 4.6 shows that with the proposed algorithm, on the average ratio
we obtain decrease in the number of function evaluations , flops, computational time and
maximum list length but average percent reduction shows only decrease in computational

time.

Performance profiles

The following observations are made from the performance profile plots computed for various

performance metrics.

Number of function evaluations

Performance profile plots for the number of function evaluations (cf. Figure 4.5) show a better
performance with the proposed algorithm. The proposed algorithm solves 52% of the (number
of) test functions for 7 = 1 and remaining 48% for 7 < 4.7. The basic algorithm is able to
solve 52% of the test functions for 7 = 1 and 38% of the test functions for 7 < 10. This shows
that the proposed algorithm is able to solve all the test functions for 7 < 4.7, and that it

requires less number of function evaluations for 52% of the test functions.
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Computational effort (flops). Performance profile plots for computational effort in terms of flops
are shown in Figure 4.6. The proposed algorithm solves 30% of the test functions for 7 =1,
and the remaining 70% for 7 < 4.75. The basic algorithm could solve 20% of the test functions
for 7 = 1, and 60% of the test functions for 7 < 1250. This shows the proposed algorithm is
able to solve all the test functions for 7 < 4.75, and that 30% of the test functions require

less computational effort with it.
Computational time

Performance profile plots for computational time (cf. Figure 4.7) show the proposed algorithm
is able to solve 94% of the test functions for 7 = 1 and the remaining 6% for 7 < 1.23. The
basic algorithm is able to solve only 80% of the test functions. The basic algorithm solves 6%
of the test function for 7 = 1 and the remaining 74% for 7 < 8729. In 94% test functions,

the proposed algorithm is considerably faster.
Mazimum list length

Performance profile plots for maximum list length (cf. Figure 4.8) show that the proposed
algorithm solves 72% of test functions for 7 = 1, and remaining 28% for 7 < 4.7. The basic
algorithm solves just 19% for 7 = 1, 6 and the remaining 61% for 7 < 8.1%. This shows that
the proposed algorithm is able to solve all the test function for 7 < 4.7, and that it requires

less memory for 72% of the test functions.

4.5 Conclusions

Termination criterion A

At the outset, we note that for the considered domains and accuracy, the proposed algorithm
is able to solve all the test functions, whereas the basic algorithm is able to solve only about
92% of the test functions.

On an average, the proposed algorithm requires 489% more function evaluations, 538%

more computational effort, 241% more list length. The reasons for this increase are as follows.

e The number of function evaluations and flops is more with the proposed algorithm
because the function is evaluated on all boxes present in the list. Whereas in the basic

algorithm, the function is evaluated only on the leading box of the list.

e The maximum list length is more with the proposed algorithm because if [, boxes are
present in the list at some iteration, then the number of boxes after bisection in the

proposed algorithm is 2l whereas it is only [, + 1 in the basic algorithm.

However, despite the increase in number of function evaluations, computational effort, and

maximum list length, the proposed algorithm gives an average speed improvement of 68%.
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Further, while improvements in speed are obtained in 94% test functions, improvements
(i.e., reductions) in number of function evaluations, flops, and maximum list length are ob-
tained in 20%, 32%, and 62% of test functions, respectively. The performance profile plots
show a clear superiority of the proposed algorithm over the basic algorithm for the compu-
tational time.

In short, the proposed algorithm uses the extra function evaluations, computational effort,

and maximum list length effectively, yielding considerable savings in computational time

Termination criterion B

For the considered domains and accuracy, the proposed algorithm is able to solve all the test
functions whereas the basic algorithm is able to solve only about 80% of the test functions.
On the average the proposed algorithm requires 66.37% more function evaluations, 49%
more computational effort, 18% more memory but gives a speed improvement of 74.2%.
While the improvements in speed are obtained in 94% of test functions, improvements (i.e.,
reductions) in number of function evaluations, flops, and maximum list length are obtained
in 52%, 60%, and 72% of test functions respectively.
The performance profile plots show a clear superiority of the proposed algorithm over the

basic algorithm w.r.t. all the performance metrics considered for this termination criterion.
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TABLE 4.1. Rankings with termination criterion A. Note that six test functions require same number
of function calls, while four test functions require same flops and maximum list length with both the

algorithms. Hence, both algorithms obtain the first rank in these functions.

Number of first ranks Number of first ranks

Performance metric | with basic algorithm with proposed algorithm

Function evaluations | 46 10
Flops 38 16
Computational time | 3 47
Maximum list length | 23 31

TABLE 4.2. Statistical measures with termination criterion A.

Performance metric | Minimum | First Quartile | Median Second Quartile | Maximum
Function -4.04x10% | -3.74x10? -439 -42 6.88x10%
evaluations

Flops -1.16x10° | -2.59%10° -1.14x10° | 1.24x10% 2.94x10°
Computational -29.7 0.87 8.95 3.07x10? 2.1x10%
time

Maximum -2.74x10% | -23.75 0 13 2678

list length

TABLE 4.3. Minimum, Mean, and Maximum of Ratios and Percent Reductions with termination

criterion A.

Performance Ratio Percent Reduction

metric Min. | Mean | Max. | Min. Mean Max.
Function 0.01 | 0.61 2.29 -8748% -487.54% 56.38%
Evaluations

Flops 0.01 | 0.72 | 2.8 -7585.39% | -537.16% 64.3%
Computational | 0.71 | 26.08 | 481.71 | -40% 68.44% 99.79%
time

Max. list length | 0.02 | 0.98 | 4.31 -6163.16% | -240.99% 76.78%
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TABLE 4.4. Rankings with termination criterion B.

Number of first ranks Number of first ranks
Performance metric | with basic algorithm with proposed algorithm
Function evaluations | 26 26
Flops 20 30
Computational time | 3 47
Maximum list length | 19 36

TABLE 4.5. Statistical measures with termination criterion B.

Performance metric | Minimum | First Quartile | Median | Second Quartile | Maximum

Function -2432 -393 -44 1071 534138

evaluations

Flops -2.74x107 | -1.7x10° 3326 1.5968 %107 1.118 %100
Computational -0.8 2.45 15.07 1133.2 3.59%10%
time

Maximum -10923 -4.75 1.5 44 38125

list length

TABLE 4.6. Minimum, Mean, and Maximum of Ratios and Percent Reductions with termination

criterion B.

Performance Metric Ratio Percent Reduction

Min. | Mean | Max. Min. Mean Max.
Function 0.2 1.46 9.34 -397% -52.38% 89.29%
Evaluations
Flops 0.19 | 41.35 | 1235.32 | -429% -49% 99.92%
Computational 0.81 | 400.85 | 8744 -23.15% | 74.17% 99.99%
time
Max. list length 0.21 | 1.32 8.08 -369.44% | -18.23% 87.63%
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TABLE 4.7. Function evaluations for basic and proposed algorithms with termination criterion A.

S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm | algorithm reduction

1 Rosenbrock =2 m=2 1074 | 116 590 0.2 -408.62%

2 Freudenstein 1 =2, m =2 1074 1,376 2,244 0.61 -61.63%
and Roth

3 Powell badly l1=2,m=2 1074 | > 267,062 | 7,704,142 | * *
scaled

4 Brown badly l1=2,m=3 1074 | 377 33,357 0.01 | -8748%
scaled

5 Beale =2, m=3 1074 | 440 600 0.73 | -36.36%

6 Jenrich and 1=2,m=10 |107* | 3,340 3,344 0.99 | -0.12%
Sampson

7 Helical valley =3, m=3 1074 | 340 366 0.93 -7.65%

8 Bard 1=3,m=15 |107* | 54,326 70,068 0.78 | -28.98%

9 Gaussian 1=3,m=16 |107% | 256 1,556 0.16 | -507.81%

10 Meyer 1=3,m=15 | 1072 | 68,380 73,495 0.93 | -7.48%

11 | Gulf research 1=3,m=3 |107* | >444,022 | 5,686,389 | * *

12 Box three =3, m=3 1074 | 72,508 131,311 0.55 | -81.10%
dimensional

13 Powell l=4,m=4 1074 | 5,228 5,222 1.00 11.48%
singular

14 Wood l=4,m=6 1074 | 320 1,900 0.17 | -493.75%

15 Kowalik and l=4,m=11 |107* | 160,352 333,996 0.48 | -108.29%
Osborne

16 Brown and 1=4,m=20 |107* | 36,386 36,750 0.99 | -1.00%
Dennis

17 | Osborne 1 1=5m=33 |107* | 39,362 47,090 0.84 | -19.63%

18 Biggs EXP 6 1=6,m=13 | 1072 | 163,036 566,910 0.29 | -247.72%

19 Osborne 2 1=11, m =65 | 1072 | 122,041 53,232 2.29 56.38%

20 Watson 1=6,m=231 |[1072 | 37,024 61,915 0.59 | -67.23%

21 Extended l=4,m=4 1074 | 194 1,308 0.15 | -574.23%
Rosenbrock

22 Extended Powell | | =4, m =4 1074 | 2,610 2,610 1.00 | 0.00%
singular
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Table 4.7 (Contd.)

S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm | algorithm reduction
23 Penalty I l=4,m=5]10"% | 28996 142,210 0.20 | -390.45%
24 Penalty II l=4,m=8]10"* | 3,406 269,458 0.01 | -7811.30%
25 Variably dim. 1=2,m=4 | 107% | 38 70 0.54 | -84.21%
26 Trigonometric =4, m=4 | 107 | 882 882 1.00 0.00%
27 Brown almost l=4, m=4 1074 87,348 115,586 0.76 -32.33%
linear
28 Discrete boundary 1=2,m=2 | 1074 | 80 116 0.69 -45%
value
29 Discrete integral eq. =4, m=4 | 107% | 80 228 0.35 -185%
30 Broyden tridiagonal =4, m=4 | 107% | 594 2,492 0.24 -319.53%
31 Broyden branded 1=4,m=4 | 107* | 396 814 0.49 -105.56%
32 Linear full rank l=4,m=4 | 107* | 1,070 3,430 0.31 -220.56%
33 Linear rank-1 1=3,m=4 | 1072 | >189,548 | 1,062,802 | * *
34 Linear rank-1 with =2, m=4 | 1074 | >249,718 | 1,572,820 | * *
zero column and rows
35 Chebyquad 1=2,m=2 | 107% | 198 242 0.82 | -22.22%
36 SHCB: Six 1=2 m=1 | 107* | 1,446 1,450 0.99 | -0.28%
hump camel
37 THCB: Three 1=2m=1 | 1074|774 810 0.96 | -4.65%
hump camel
38 BR: Branin 1=2,m=1 |107% | 110 184 0.59 | -67.27%
39 L3: Levy 1=2m=1 |107% | 1,754 3,020 0.58 | -72.17%
40 L5: Levy =2 m= 1074 | 394 1546 0.26 | -292.39%
41 L8: Levy 1=3m=1 | 1074 |62 240 0.26 | -287.09%
42 L18: Levy 1=7,m=1 | 107% | 184 644 0.29 | -250%
43 Schw2.5: Booth 1=2,m=1 |107* | 146 200 0.73 | -36.99%
44 Schw2.18: Matyas 1=2m=1 |[107% | 1,138 1,326 0.86 | -16.52%
45 Schw3.1: Schwefel 1=3m=1 |107* |78 296 0.26 | -279.49%
46 Schw3.1p: Schwefel 1=3m=1 |107* | 230 804 0.29 | -249.57%
47 Schw3.2: Schwefel 1=3m=1 |107* | 186 402 0.46 | -116.13%
48 Griewd: Griewank 1=5m=1 | 107* | 1904 5182 0.37 | -172.16%
49 GP: Goldstein and 1=2,m=1 | 107% | 88,372 88,388 0.99 | -0.02%
price
50 R4: Ratz 1=2,m=1 |107%| 1,294 1,574 0.82 | -21.64%
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S.No | Test function Dimension ER Basic Proposed Ratio | Percent
algorithm algorithm reduction

1 Rosenbrock l=2m=2 1074 | 11,916 52,717 0.23 -342.4%

2 Freudenstein 1 =2, m =2 1074 233,610 346,128 0.67 -48.16%
and Roth

3 Powell badly 1=2,m=2 1074 | > 88,575,148 | 2.41x10? * *
scaled

4 Brown badly l1=2,m=3 1074 | 20,136 1,481,708 0.01 -7258.5%
scaled

5 Beale =2, m=3 1074 | 97,975 120,000 0.82 | -22.48%

6 Jenrich and 1=2,m=10 | 107* | 9,168,633 9,141,258 1.00 | 0.3%
Sampson

7 Helical valley =3, m=3 1074 | 107,243 108,134 0.99 | -83.08%

8 Bard 1=3,m=15 | 107 | 77,256,257 97,838,159 | 0.79 | -26.64%

9 Gaussian 1=3,m=15 |107% | 1,488,304 8,961,152 0.16 | -502.1%

10 Meyer 1=3,m=16 | 1072 | 156,851,462 155,613,851 | 1.00 1.48%

11 | Gulf research 1=3,m=3 |107*| >518,626,071 | 5.55x10% | * *

12 Box three =3 m= 1074 | 27,016,779 42,425,722 | 0.64 | -57.03%
dimensional

13 Powell l=4, m=4 1074 | 1,614,009 1,474,760 1.09 | 8.625%
singular

14 Wood l=4m= 1074 | 124,126 690,722 0.18 | -456.47%

15 Kowalik and 1=4,m=11 | 107* | 364,840,577 759,876,285 | 0.48 [ -108.28%
Osborne

16 Brown and 1=6,m=20 |107* | 103,925,442 104,551,931 | 0.99 | -60.28%
Dennis

17 Osborne 1 1=5m=233 |107% | 265,719,213 294,136,090 | 0.90 | -10.69%

18 Biggs EXP 6 1=6,m=13 | 1072 | 570,154,433 1.73x10° 0.33 | -203.53%

19 Osborne 2 =11, m =65 | 1072 | 4.94x10° 2x10? 247 | 59.46%

20 Watson 1=6,m=31 | 1072 | 214,144,957 310,062,391 | 0.69 | -44.79%

21 Extended l=4, m=4 1074 | 50,120 319,404 0.16 | -537.28%
Rosenbrock

22 Extended Powell | | =4, m =4 1074 | 793,703 738,140 1.08 7%

singular
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Table 4.8 (Contd.)
S.No | Test function Dimension ER Basic Proposed Ratio | Percent
algorithm algorithm reduction
23 Penalty I 1=4,m=8|107* | 10,281,240 48,177,871 | 0.21 | -368.59%
24 Penalty II 1=4,m=8]|10"% | 5,595,454 430,032,828 | 0.01 | -7585.4%
25 Variably dim. 1=2,m=4 | 107% | 7,804 13,863 0.56 | -77.64%
26 Trigonometric =4 m=4 10~4 3,432,098 3,380,207 1.01 1.51%
27 Brown almost 1=4,m=4 | 107* | 32,234,685 42,286,626 | 0.76 | -31.18%
linear
28 Discrete boundary 1=2,m=2 | 1074 | 17,142 21,782 0.79 -27.07%
value
29 Discrete integral eq. =4, m=4 | 107 | 85,535 212,077 0.4 -147.94%
30 Broyden tridiagonal 1=4,m=4 | 107* | 209,003 847,888 0.25 | -305.68%
31 Broyden branded l=4,m=4 1074 211,585 431,411 0.49 -103.89%
32 Linear full rank 1=4,m=4 | 107* | 337,027 1,027,903 0.33 | -204.99%
33 Linear rank-1 1=3m=4 | 1072 | >40,411,869 | 211,236,148 | * *
34 Linear rank-1 with 1=2,m=4 | 107% | >46,899,186 | 271,139,362 | * *
zero column and rows
35 Chebyquad 1=2 m=2 | 107% | 24,001 25,524 094 [ -6.35%
36 SHCB: Six 1=2m=1 | 107% | 313,131 239,814 0.77 | -30.57%
hump camel
37 THCB: Three 1=2,m=1 | 107% | 133,535 104,910 1.27 | 21.44%
hump camel
38 BR: Branin 1=2 m=1 | 1074 | 41,013 63,648 0.64 | -55.19%
39 L3: Levy 1=2,m=1 | 107* | 3,888,033 6,648,010 0.58 | -70.99%
40 L5: Levy =2 m= 1074 | 829,501 3,361,593 0.25 | -305.25%
41 L8: Levy 1=3m=1 | 107% | 20,358 1,077,697 0.02 | -5193.7%
42 L18: Levy 1=7,m=1 | 107% | 424,939 1,493,004 0.28 | -251.34%
43 Schw2.5: Booth 1=2m=1 | 107% | 14,892 17,780 0.84 | -19.39%
44 Schw2.18: Matyas 1=2,m=1 | 107% | 85,962 78,546 1.09 8.63%
45 Schw3.1: Schwefel 1=3m=1 | 107* | 15,298 52,498 0.29 | -243.17%
46 Schw3.1p: Schwefel 1=3,m=1 | 107% | 108,450 387,136 0.28 | -256.97%
47 Schw3.2: Schwefel 1=3m=1 | 107* | 26,866 49,604 0.54 | -84.63%
48 Griewd: Griewank 1=5m=1 | 107* | 4,713,853 16,471,942 | 0.29 | -249.44%
49 GP: Goldstein and 1=2 m=1 | 107% | 82,163,581 74,830,648 | 1.09 8.92%
price
50 R4: Ratz 1=2,m=1 | 107% | 681,806 797,686 0.85 | -16.99%
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TABLE 4.9. Computational time for basic and proposed algorithms with termination criterion A.

S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm | algorithm reduction

1 Rosenbrock =2, m=2 1074 | 0.98 0.45 2.18 54.08%

2 Freudenstein 1 =2, m =2 1074 | 13.88 0.8 17.35 | 94.24%
and Roth

3 Powell badly 1=2,m=2 |[107%| >36,000 | 1.18x10* | * *
scaled

4 Brown badly scaled | 1 =2, m =3 1074 | 1.25 1.75 0.71 -40%

5 Beale 1=2m=3 |[107% |48 0.59 8.14 | 87.711%

6 Jenrich and =2, m=10 1074 | 37.47 2.61 14.36 | 93.03%
Sampson

7 Helical valley 1=3,m=3 |[107% ] 4.88 1.1 4.44 | 77.46%

8 Bard 1=3,m=15 | 10°% | 1.3x10® | 30.1 43.19 | 97.68%

9 Gaussian 1=3,m=15 |107% | 4.28 2.5 171 | 41.59%

10 | Meyer 1=3,m=16 | 1072 | 768.32 47.14 16.29 | 93.86%

11 Gulf research 1=3, m=3 1074 | >36,000 | 1.93x10* | * *

12 | Box three dim. 1=3,m=3 |[107% | 731.57 11.04 66.27 | 98.49%

13 Powell singular l=4m=4 1074 | 74.7 1.86 40.16 | 97.51%

14 | Wood l=4m=6 |[107* | 5.07 1.92 2.64 | 62.13%

15 Kowalik and =4, m=11 |[107% | 2.13x10* | 229.64 92.75 | 98.92%
Osborne

16 | Brown and 1=6,m=20 |107% | 438.38 24.29 18.05 | 94.46%
Dennis

17 | Osborne 1 1=5m=33 |107% | 349.17 77.37 4.51 | 77.84%

18 | Biggs EXP 6 1=6,m=13 | 1072 | 7.42x10% | 508.38 14.59 | 93.15%

19 Osborne 2 1=11, m =65 | 1072 | 5.96x10® | 601.35 9.91 | 89.91%

20 | Watson 1=6,m=231 |[1072 | 6.37x10% | 106.84 5.96 | 98.93%

21 Extended l=4,m=4 1074 | 2.19 1.3 1.68 | 40.64%
Rosenbrock

22 | Extended Powell l=4m=4 |[107%] 3485 1.56 22.34 | 95.52%
singular




54 4. On speeding up the global optimization algorithm
Table 4.9 (Contd.)
S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm | algorithm reduction
23 Penalty I l=4,m=5]|10"%]9.22x10% | 24.78 37.21 | 97.31%
24 Penalty II l=4,m=8]|10"%| 1.1x10®> | 139.7 0.79 | -27%
25 Variably dim. 1=2,m=4 | 107* | 0.43 0.39 1.1 9.3%
26 Trigonometric =4, m=4 | 107* | 54.66 5.47 9.99 89.99%
27 | Brown almost l=4,m=4 |107* | 2,59x10° | 15.93 162.59 | 99.38%
linear
28 Discrete boundary 1=2,m=2 | 1074 | 1.02 0.4 2.55 60.78%
value
29 Discrete integral eq. l=4,m=4 1074 | 3.16 2.6 1.21 17.72%
30 Broyden tridiagonal l=4,m=4 | 107* ] 8.92 1.66 5.37 81.39%
31 Broyden branded =4, m=4 | 107% | 7.98 1.91 4.18 76.07%
32 Linear full rank l=4m=4 1074 | 15.09 1.33 11.19 | 91.19%
33 Linear rank-1 1=3,m=4 | 1072 | >36000 104.03 * *
34 Linear rank-1 with 1=2,m=4 | 107* | >36000 153.83 * *
zero column and rows
35 Chebyquad 1=2,m=2 [ 107 | 1.73 0.35 4.94 | 79.77%
36 SHCB: Six hump camel 1=2,m=1 | 107 | 16.45 1.05 15.67 | 93.62%
37 THCB: Three hump camel | 1 =2, m =1 1074 | 8.01 0.6 13.35 | 92.51%
38 BR: Branin 1=2,m=1 |107% | 1.35 0.59 2.29 56.29%
39 L3: Levy 1=2,m=1 | 107% | 72.59 7.43 9.77 89.76%
40 L5: Levy 1=2,m=1 |[107* | 16.32 6.04 2.7 62.99%
41 L8: Levy 1=3m=1 |107* | 2.62 2.62 1 0.00%
42 L18: Levy 1=7,m=1 | 107% ]| 858 9.59 0.89 -11.77%
43 Schw2.5: Booth 1=2,m=1 | 1074 ] 1.22 0.42 2.9 65.57%
44 Schw2.18: Matyas 1=2,m=1 | 107% | 8.14 0.52 15.65 | 93.61%
45 Schw3.1: Schwefel 1=3,m=1 | 107% | 097 0.95 1.02 2.06%
46 Schw3.1p: Schwefel 1=3, m=1 | 107 | 4.59 2 2.29 56.43%
47 | Schw3.2: Schwefel =3, m=1 | 107" | 1.82 0.66 2.76 | 63.74%
48 Griew5: Griewank 1=5m=1 | 107* | 98.24 18.21 5.39 81.46%
49 | GP: Goldstein and 1=2,m=1 | 107 | 1.08x10* | 22.42 481.71 | 99.79%
price
50 R4: Ratz 1=2,m=1 | 107* | 17.78 1.3 13.68 | 92.69%
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TABLE 4.10. Maximum list length for basic and proposed algorithms with termination criterion A.

S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm | algorithm reduction

1 Rosenbrock l=2m=2 [107%]|11 16 0.69 | -45.45%

2 Freudenstein 1 =2, m =2 107475 66 1.14 12%
and Roth

3 Powell badly l1=2,m=2 1074 | > 45,018 | 618,568 * *
scaled

4 Brown badly l1=2,m=3 1074 | 19 1190 0.02 | -6163.2%
scaled

5 Beale 1=2,m=3 1074 | 27 23 1.17 | 14.81%

6 Jenrich and l=2,m=10 |107* |70 46 152 | 34.29%
Sampson

7 Helical valley =3, m=3 1074 | 12 10 1.2 20%

8 Bard 1=3,m=15 |107* | 5552 4805 116 | 13.45%

9 Gaussian 1=3,m=15 | 10°%| 50 72 0.69 | -44%

10 Meyer 1=3,m=16 |1072 | 5115 5114 1.00 | 0.02%

11 Gulf research 1=3,m=3 1074 | >56,867 | 933,342 * *

12 Box three =3, m=3 1074 | 2843 2881 0.99 | -1.34%
dimensional

13 Powell l=4,m=4 1074 | 72 72 1.00 | 0.00%
singular

14 Wood =4, m= 1074 | 22 51 0.43 | -131.82%

15 Kowalik and l=4,m=11 |107* ] 30,593 57,060 0.54 | -86.51%
Osborne

16 Brown and =4, m=20 1074 | 322 207 1.56 | 35.71%
Dennis

17 | Osborne 1 l=5m=33 |[107*| 1,082 936 117 | 13.49%

18 Biggs EXP 6 1=6,m=13 | 1072 | 20,126 47,482 0.42 | -135.92%

19 Osborne 2 1=11, m =65 | 1072 | 2,343 544 4.31 76.78%

20 Watson 1=6,m=31 |1072 | 1,432 1,099 1.3 23.25%

21 Extended l=4,m=4 1074 | 11 22 0.5 -100%
Rosenbrock

22 Extended Powell | | =4, m =4 1074 | 33 32 1.03 | 3.03%
singular
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Table 4.10 (Contd.)
S.No | Test function Dimension ER Basic Proposed | Ratio | Percent
algorithm | algorithm reduction
23 Penalty I l=4,m=5]|10"* | 6,876 21,333 0.32 | -210.25%
24 Penalty II l=4,m=8|107* ] 812 26,919 0.03 | -3.22x10%%
25 Variably dim. 1=2,m=4 | 107% |2 2 0.00 [ 0.00%
26 Trigonometric =4, m=4 | 107% | 31 27 1.15 12.9%
27 Brown almost 1=4,m=4 | 107* | 5,779 3,121 1.85 | 45.99%
linear
28 Discrete boundary 1=2,m=2 | 1074 |8 6 1.33 25%
value
29 Discrete integral eq. l=4,m=4 | 1074 |7 11 0.64 -57.14%
30 Broyden tridiagonal l=4,m=4 | 107% ]85 107 0.79 -25.88%
31 Broyden branded =4, m=4 | 107 | 56 35 1.6 37.5%
32 Linear full rank l=4,m=4 | 107* | 105 59 1.78 43.81%
33 Linear rank-1 1=3, m=4 | 1072 | >56,360 290,704 * *
34 Linear rank-1 with 1=2,m=4 | 107* | >48,419 349,525 * *
zero column and rows
35 Chebyquad 1=2,m=2 | 10|16 12 1.33 | 25%
36 SHCB: Six hump camel =2 m=1 | 1074|132 88 1.5 33.33%
37 THCB: Three hump camel | 1 =2, m =1 1074 | 54 42 1.29 22.22%
38 BR: Branin 1=2,m=1 | 1074 |7 7 1.00 | 0.00%
39 L3: Levy =2 m=1 | 1074 | 158 259 0.61 | -63.92%
40 L5: Levy 1=2 m=1 | 1074 | 36 169 0.21 | -369.44%
41 L8: Levy 1=3,m=1 | 1048 26 0.31 | -225%
42 L18: Levy =7, m=1 | 1074 |7 18 0.39 | -157.14%
43 Schw2.5: Booth 1=2,m=1 [107% |6 7 0.86 | -16.67%
44 Schw2.18: Matyas 1=2 m=1 | 107% | 24 28 0.86 | -16.67%
45 | Schw3.1: Schwefel =3 m=1 [107* |3 7 0.43 | -133.33%
46 Schw3.1p: Schwefel 1=3,m=1 |[107% |31 139 0.22 | -348.39%
47 Schw3.2: Schwefel 1=3m=1 | 107% |12 12 1.00 | 0.00%
48 Griew): Griewank 1=5m=1 | 107* | 32 32 1.00 0.00%
49 GP: Goldstein and 1=2,m=1 | 107% | 5,580 8,101 0.69 | -45.18%
price
50 R4: Ratz 1=2,m=1 | 107% | 92 76 1.21 17.39%
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TABLE 4.11. Function evaluations for basic and proposed algorithms with termination criterion B.

S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm algorithm reduction

1 Rosenbrock =2, m=2 1074 | 150 592 0.25 | -294.67%

2 Freudenstein 1=2, m=2 1074 1,926 2,244 0.86 -16.51%
and Roth

3 Powell badly =2, m=2 1074 | > 244,440 | 1,122,986 | * *
scaled

4 Brown badly =2, m=3 1074 | >2,918,744 | 104,366 * *
scaled

5 Beale =2, m=3 1074 | 756 648 1.17 14.29%

6 Jenrich and 1=2,m=10 |107%] 1,338 1,342 0.99 [ -0.29%
Sampson

7 Helical valley =3, m=3 1074 | 356 386 0.92 | -8.43%

8 Bard 1=3,m=15 | 107 | 613,786 79,648 7.71 87.02%

9 Gaussian =3, m=16 1074 | 504 1,556 0.32 -208.73%

10 Meyer 1=3,m=15 | 1072 | >534,367 48,290 * *

11 | Gulf research 1=3,m=3 |107*| >416,557 | 327,062 |* *

12 Box three =3, m=3 1074 | 290,421 83,179 3.49 71.36%
dimensional

13 Powell l=4,m=4 1074 | 5,462 5,462 1.00 | 0.00%
singular

14 Wood l=4m= 10~4 | 400 1,988 0.2 -397.00%

15 | Kowalik and l=4,m=11 |107%| >193814 | 333,996 | * *
Osborne

16 Brown and =4 m=20 1074 | 173,221 18,550 9.34 89.29%
Dennis

17 Osborne 1 1=5m=33 |107% | 39,542 27,359 1.45 | 30.82%

18 Biggs EXP 6 1=6,m=13 | 1072 | 79,295 37,993 2.09 52.08%

19 Osborne 2 1=11, m =65 | 1072 | 102,810 17,661 5.82 82.82%

20 Watson 1=6,m=31 [1072 | 37,731 38,459 0.98 [ -1.93%

21 Extended l=4,m=4 1074 | 292 1,372 0.19 | -423.66%
Rosenbrock

22 Extended Powell | | =4, m =4 1074 | 2672 2674 0.99 | -0.08%
singular
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Table 4.11 (Contd.)
S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm | algorithm reduction
23 Penalty I l=4,m=>5]|10"% | >187,224 | 184,876 * *
24 Penalty II l=4,m=8]107% | >192,884 | 282,360 * *
25 Variably dim. 1=2m=4 | 107% | 42 74 0.57 | -76.19%
26 Trigonometric 1=4,m=4 | 107* | 882 882 1.00 0.00%
27 Brown almost l=4,m=4 | 107 266,612 125,362 2.13 52.98%
linear
28 Discrete boundary 1=2,m=2 | 107% | 146 126 1.16 13.69%
value
29 Discrete integral eq. l=4m=4 1074 | 132 234 0.56 -77.30%
30 Broyden tridiagonal =4, m=4 [ 107 | 794 2,536 0.31 -219.39%
31 Broyden branded =4, m=4 | 107* | 396 814 0.49 -105.56%
32 Linear full rank l1=4,m=4 104 1,280 3,712 0.34 -190.00%
33 Linear rank-1 1=3,m=4 | 1072 134,888 34,030 3.96 74.77%
34 Linear rank-1 with 1=2m=4 | 107% | 196,570 125,362 1.56 | 36.23%
zero column and rows
35 Chebyquad 1=2,m=2 | 107* | >253,870 | 62,988 * *
36 SHCB: Six hump camel 1=2m=1 | 107% | 1,446 1,378 1.05 | 4.711%
37 THCB: Three hump camel | 1 =2 m =1 | 107* | 886 810 1.09 8.58%
38 BR: Branin 1=2,m=1 | 107% | 122 184 0.66 | -50.82%
39 L3: Levy 1=2 m=1 | 107% | 1,430 2,696 0.53 | -88.53%
40 L5: Levy 1=2,m=1 | 107* | 358 1,510 0.24 | -321.79%
41 L8: Levy 1=3m=1 | 107* | 62 240 0.26 | -287.01%
42 L18: Levy 1=7,m=1 | 1074 | 184 644 0.29 | -250%
43 | Schw2.5: Booth l=2,m=1 [107* | 150 206 0.73 | -37.33%
44 Schw2.18: Matyas 1=2,m=1 | 107% | >36000 1,326 * *
45 Schw3.1: Schwefel 1=3,m=1 | 107% | 78 296 0.26 | -279.49%
46 Schw3.1p: Schwefel 1=3,m=1 | 107 | 89,106 89,310 0.99 -231%
47 Schw3.2: Schwefel 1=3,m=1 | 1074|224 444 0.5 -98.21%
48 Griew5: Griewank =5 m=1 | 1074 | >116400 | 5,182 * *
49 GP: Goldstein and 1=2m=1 | 107* | 88,020 86,628 1.02 1.58%
price
30 R4: Ratz 1=2,m=1 | 107% | 1,294 1,574 0.82 | -21.64%
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TABLE 4.12. Flops for basic and proposed algorithms with termination criterion B.
S.No | Test function Dimension EF Basic Proposed Ratio | Percent
algorithm algorithm reduction
1 Rosenbrock =2, m=2 1074 | 16,027 53,367 0.3 -232.98%
2 Freudenstein 1 =2, m =2 10~% | 450,068 348,920 1.28 -22.47%
and Roth
3 Powell badly 1=2, m=2 1074 | > 8.53x10° 353,189,839 | * *
scaled
4 Brown badly =2, m=23 1074 | >437,810,978 | 11,725,776 * *
scaled
5 Beale =2, m=23 1074 | 181,496 130,095 1.39 28.32%
6 Jenrich and 1=2,m=10 | 107* | 3,754,786 3,675,485 1.02 2.1%
Sampson
7 Helical valley =3, m=3 10~% | 113,250 114,002 0.99 -0.66%
8 Bard 1=3,m=15 | 107*| 1.13 x 100 111,450,644 | 101.27 | 99.01%
9 Gaussian =3, m=15 1074 | 2,956,930 8,963,792 0.33 -203.15%
10 Meyer 1=3,m=16 | 1072 | >1.11 x 10%° | 145,900,198 | * *
11 | Gulf research 1=3,m=3 |107%| >9.87x10 | 523,567,828 | * *
12 Box three =3 m= 1074 | 67,365,662 42,526,087 1.58 36.87%
dimensional
13 Powell l=4, m=4 1074 | 2,470,078 1,556,090 1.58 37.00%
singular
14 Wood l=4, m=26 1074 | 169,457 726,677 0.23 -328.83%
15 | Kowalik and l=4,m=11 |107%| >1.01x10° 760,996,038 | * *
Osborne
16 Brown and 1=6,m=20 | 10~% | 58,184,027 52,903,173 1.09 9.07%
Dennis
17 Osborne 1 1=5m=33 | 107% | 299,422,685 279,891,059 1.07 6.81%
18 Biggs EXP 6 1=6,m=13 | 1072 | 485,637,919 228,041,529 | 2.13 53.04%
19 Osborne 2 1=11, m=65| 102 | 4.58x10? 1.09x10° 4.17 76.02%
20 Watson =6, m=31 1072 | 271,541,024 298,918,263 0.91 -10.08%
21 Extended l=4, m=4 1074 | 71,022 337,294 0.21 -374.91%
Rosenbrock
22 Extended Powell | 1 =4, m =4 1074 | 976,677 761,642 1.28 22.02%

singular

3
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Table 4.12 (Contd.)

S.No | Test function Dimension EF Basic Proposed Ratio Percent
algorithm algorithm reduction

23 | Penalty I l=4,m=28|107% | >1.02x10% | 632,126,399 | * *

24 Penalty II 1=4,m=28]|10"% | >9.62x107 | 451,369,117 | * *

25 Variably dim. 1=2 m=4 | 107* | 8,273 14,370 0.58 -73.69%

26 Trigonometric 1=4,m=4 | 107* | 3,462,401 3,381,955 1.02 2.32%

27 Brown almost =4, m=4 | 104 | 245x10° | 46,190,896 | 53.04 | 98.11%
linear

28 Discrete boundary =2, m=2 | 107 30,818 23,414 1.32 24.02%
value

29 Discrete integral eq. =4, m=4 | 107 | 141,014 217,454 0.65 -54.21%

30 Broyden tridiagonal 1=4,m=4 | 107% | 348,179 868,626 0.40 -149.47%

31 Broyden branded l1=4,m=4 104 231,244 432,606 0.53 -87.07%

32 Linear full rank 1=4,m=4 | 107* | 639,859 1,120,696 0.57 -75.15%

33 Linear rank-1 1=3,m=4 | 1072 | 7.96x10° | 6,444,498 1235.32 | 99.92%

34 Linear rank-1 with 1=2,m=4 | 1074 | 6.2x10° 49,201,583 | 126.08 | 99.21%
zero column and rows

35 Chebyquad 1=2,m=2 | 1074 | >7.66x10° | 2.31x10° | * *

36 SHCB: Six hump camel 1=2,m=1 | 107* | 460,278 229,692 2 50.1%

37 THCB: Three hump camel | 1 =2, m =1 | 10~* | 187,441 106,110 1.77 43.39%

38 BR: Branin 1=2 m=1 | 1074 | 46,223 63,920 0.72 -38.29%

39 L3: Levy 1=2,m=1 | 107* | 3,258,434 5,897,860 0.55 -81.00%

40 L5: Levy 1=2,m=1 | 107* | 751,583 3,275,496 0.23 -335.81%

41 L8: Levy 1=3m=1 | 107* | 203,805 1,078,146 0.19 -429.01%

42 L18: Levy 1=7,m=1 | 107* | 426,743 1,495,488 0.29 -250.04%

43 Schw2.5: Booth 1=2,m=1 | 107* | 16,259 18,627 0.87 -14.56%

44 Schw?2.18: Matyas 1=2,m=1 | 10°%|> 80,586 * *

45 Schw3.1: Schwefel 1=3m=1 |107* | 15,607 53,051 0.29 -239.92%

46 Schw3.1p: Schwefel 1=3, m=1 | 1074 | 3.63x10° | 4.38x107 | 82.75 98.79%

47 Schw3.2: Schwefel 1=3m=1 | 107* | 35433 55,477 0.64 -56.57%

48 Griew5: Griewank 1=5m=1 | 107* | >8.54x10° | 16,485,718 | * *

49 GP: Goldstein and =2, m=1 | 104 |592x10%® | 7.35x107 | 8.07 87.61%
price

50 R4: Ratz 1=2,m=1 | 107* | 770,310 800,060 0.96 -3.86%
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TABLE 4.13. Computational time for basic and proposed algorithms with termination criterion B.

S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm algorithm reduction

1 Rosenbrock 1=2,m=2 1074 | 1.15 0.45 2.55 60.87%

2 Freudenstein 1 =2, m =2 1074 | 18.90 0.8 23.63 | 95.24%
and Roth

3 Powell badly =2, m=2 1074 | > 36,000 147.04 * *
scaled

4 Brown badly =2, m=3 1074 | >4.38x108 | 11,725,776 | * *
scaled

5 Beale =2, m=3 1074 | 7.5 0.57 13.16 | 92.40%

6 Jenrich and 1=2,m=10 | 107 | 13.90 1.2 11.58 | 91.37%
Sampson

7 Helical valley =3, m= 1074 | 4.9 1.1 4.45 77.55%

8 Bard 1=3,m=15 | 107% ] 35983 37.58 957.50 | 99.89%

9 Gaussian 1=3,m=15 | 1074|822 2.5 3.28 69.59%

10 Meyer 1=3,m=16 | 1072 | >360000 48.22 * *

11 Gulf research 1=3,m= 1074 | >36,000 170.6 * *

12 Box three =3, m=3 1074 | 3600.81 11.36 316.97 | 99.68%
dimensional

13 Powell l=4,m=4 1074 | 75.2 1.90 39.58 | 97.47%
singular

14 Wood l=4,m=6 1074 | 6.10 2.00 3.05 67.21%

15 Kowalik and =4, m=11 | 10~* | >360000 307.33 * *
Osborne

16 Brown and 1=6,m=20 |10~ | 231.91 13.20 17.57 | 94.31%
Dennis

17 Osborne 1 1=5m=233 [107* | 386.50 77.19 5.00 80.03%

18 Biggs EXP 6 1=6,m=13 | 1072 | 1197.90 64.74 18.50 | 94.60%

19 Osborne 2 1=11, m =65 | 1072 | 3490 322.60 10.82 | 90.76%

20 Watson 1=6,m=31 |1072 | 6485 106.82 6.07 83.53%

21 Extended l=4,m=4 1074 2.9 1.3 2.23 55.17%
Rosenbrock

22 Extended Powell | | =4, m =4 107* | 33.60 1.50 22.40 | 95.54%
singular
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Table 4.13 (Contd.)
S.No | Test function Dimension ER Basic Proposed | Ratio Percent
algorithm | algorithm reduction
23 Penalty I l=4,m=5]|10"% | >360000 | 35.53 * *
24 Penalty II 1=4,m=8]|10"% | >360000 | 156.76 * *
25 Variably dim. 1=2,m=4 | 1074|043 0.41 1.08 4.65%
26 Trigonometric =4, m=4 | 107 | 52.10 5.10 10.22 90.21%
27 Brown almost l=4m=4 1074 10,104 18.50 546.16 | 99.82%
linear
28 Discrete boundary =2, m=2 | 1074 | 1.58 0.41 3.85 74.05%
value
29 Discrete integral eq. =4, m=4 | 107 | 4.6 2.6 177 43.48%
30 Broyden tridiagonal l=4,m=4 [ 107* | 10.7 1.60 6.69 85.05%
31 Broyden branded l=4,m=4 | 1074|730 1.80 4.05 75.34%
32 Linear full rank l1=4,m=4 | 107* | 16.10 1.40 11.50 91.30%
33 Linear rank-1 1=3, m=4 | 1072 | 2.61x10% | 2.99 8729.10 | 99.99%
34 Linear rank-1 with =2, m=4 1074 | 2.59%10% | 28.58 909.38 | 99.89
zero column and rows
35 Chebyquad 1=2,m=2 | 1074 | >360000 | 2.31x10° | * *
36 SHCB: Six hump camel =2, m=1 | 107% | 16.31 0.88 18.53 94.60%
37 THCB: Three hump camel | 1 =2, m=1 | 107 | 9.11 0.59 15.44 93.52%
38 BR: Branin 1=2,m=1 | 1074 | 1.48 0.65 2.27 56.08%
39 L3: Levy 1=2m=1 | 107* | 61.52 5.23 11.76 91.5%
40 L5: Levy 1=2,m=1 [107% | 147 4.41 3.33 70.00%
41 L8: Levy 1=3,m=1 | 1074|216 2.66 0.812 -23.15%
42 L18: Levy 1=7,m=1 | 107% | 8.6 9.41 0.91 -9.42%
43 Schw2.5: Booth 1=2,m=1 | 1074 ] 1.22 0.41 2.98 66.39%
44 | Schw2.18: Matyas 1=2m=1 | 107% | >360000 | 0.49 * *
45 Schw3.1: Schwefel 1=3,m=1 {107 ] 0.9 0.94 0.96 -4.44%
46 Schw3.1p: Schwefel 1=3, m=1 | 1074 | 1.43x10* | 18.03 794.01 | 99.87%
47 Schw3.2: Schwefel 1=3m=1 |107% ] 2.22 0.68 3.26 69.37%
48 Griew5: Griewank 1=5m=1 | 107* | >360000 | 17.42 * *
49 GP: Goldstein and 1=2,m=1 | 10°% | 3.91x10% | 2,068 1.89 47.11%
price
50 R4: Ratz 1=2,m=1 |[107%|17.98 1.27 14.16 92.94%
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TABLE 4.14. Maxmimum list length for basic and proposed algorithms with termination criterion B.

S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm | algorithm reduction

1 Rosenbrock =2, m=2 1074 | 11 16 0.69 | -45.45%

2 Freudenstein 1 =2, m =2 107475 66 .14 | 12%
and Roth

3 Powell badly =2, m=2 1074 | > 45,018 | 618,568 * *
scaled

4 Brown badly l1=2,m=3 1074 | >16 16,385 * *
scaled

5 Beale 1=2,m=3 1074 | 27 23 1.17 | 14.81%

6 Jenrich and 1=2,m=10 |[107*| 70 46 1.52 | 34.29%
Sampson

7 Helical valley =3, m=3 1074 | 12 10 1.2 16.67%

8 Bard 1=3,m=15 [107%| 12,714 5781 2.19 | 54.53%

9 Gaussian =3, m=15 |107* | 54 72 0.75 | -33.33%

10 | Meyer 1=3,m=16 | 1072 | >4612 9745 * *

11 Gulf research =3, m=3 1074 | >59,825 44 875 * *

12 Box three =3, m=3 1074 | 4011 2881 1.39 | 28.17%
dimensional

13 Powell l=4,m=4 1074 | 72 72 1.00 | 0.00%
singular

14 Wood l=4,m==6 1074 | 22 51 0.43 | -131.82%

15 Kowalik and l=4,m=11 |[107* | >37,133 57,060 * *
Osborne

16 Brown and =4, m=20 1074 | 322 207 1.56 | 35.71%
Dennis

17 Osborne 1 1=5m=33 |10 1,082 936 1.17 | 13.49%

18 Biggs EXP 6 1=6,m=13 | 1072 | 2585 1698 1.52 | 34.31%

19 Osborne 2 1=11, m =65 | 1072 | 2,343 544 4.31 76.78%

20 Watson 1=6,m=31 |1072 | 1,405 1,099 1.28 | 21.78%

21 Extended l=4,m=4 1074 | 11 22 0.5 -100%
Rosenbrock

22 Extended Powell | | =4, m =4 1074 | 33 32 1.03 | 3.03%
singular
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Table 4.14 (Contd.)
S.No | Test function Dimension EF Basic Proposed | Ratio | Percent
algorithm | algorithm reduction
23 Penalty I l=4,m=>5| 104 | >44,742 | 27,065 * *
24 Penalty II 1=4,m=28]|10"% | >40,705 26,919 * *
25 Variably dim. 1=2,m=4 | 107% |2 2 0.00 | 0.00%
26 Trigonometric =4 m=4 [ 107* |31 27 1.15 12.9%
27 | Brown almost l=4,m=4 |107* | 5962 3,121 191 | 47.65%
linear
28 Discrete boundary 1=2,m=2 [107% |9 6 1.50 33.33%
value
29 Discrete integral eq. l=4,m=4 | 1048 11 0.73 | -37.50%
30 Broyden tridiagonal l=4,m=4 | 107% ]85 107 0.79 -25.88%
31 Broyden branded =4, m=4 | 107 | 56 35 1.6 37.5%
32 Linear full rank l=4m=4 1074 | 103 59 1.75 42.72%
33 Linear rank-1 1=3,m=4 | 1072 | 43,507 5,382 8.08 | 87.63%
34 Linear rank-1 with 1=2m=4 | 107* | 43,690 54,613 0.8 -25.00%
zero column and rows
35 Chebyquad =2, m=2 | 1074 | >37,374 | 5,283 * *
36 SHCB: Six hump camel =2 m=1 | 1074|132 88 1.5 33.33%
37 THCB: Three hump camel | 1 =2, m =1 1074 | 54 42 1.29 22.22%
38 BR: Branin 1=2m=1 [ 1074 |7 7 1.00 | 0.00%
39 L3: Levy 1=2,m=1 | 107% | 158 259 0.61 | -63.92%
40 L5: Levy 1=2 m=1 | 1074 | 36 169 0.21 | -369.44%
41 L8: Levy 1=3,m=1 | 1074 |8 26 0.31 | -225%
42 L18: Levy l=7,m=1 |107%]|7 18 0.39 | -157.14%
43 Schw2.5: Booth 1=2,m=1 [107% |6 7 0.86 | -16.67%
44 Schw?2.18: Matyas 1=2,m=1 | 107% | > 28 * *
45 Schw3.1: Schwefel 1=3,m=1 [107% |3 7 0.43 | -133.33%
46 Schw3.1p: Schwefel 1=3m=1 | 107* | 40,837 40,837 1 0.00%
47 Schw3.2: Schwefel 1=3m=1 | 107% |12 12 1.00 | 0.00%
48 Griew5: Griewank 1=5m=1 | 1074 | >51,910 | 32 * *
49 GP: Goldstein and 1=2,m=1 | 107* | 5,580 8,101 0.69 -45.18%
price
50 R4: Ratz 1=2,m=1 | 107% | 92 76 1.21 17.39%
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TABLE 4.15. Domains and computed global minimums and minimizers with termination criterion A.

S.No | Test function | Domain Global minimum | Global minimizer
1 Rosenbrock | [-1.5,1.5]? 0.0000 [0.9997, 1.0002]?
2 Freudenstein | [-7.5,7.5]2 0.0000 [4.9987, 4.9989]
and Roth [3.9999, 4.0001]
3 Powell badly | [-1,1],[0,10] 0.0000 [0.0000, 0.0001]
scaled [9.1052, 9.1053]
4 Brown badly | [1079,10°],-1,1] 0.0000 [9.9999, 10] x 10°
scaled [0.0000, 0.0001] X107
5 Beale [-4.5,4.5]2 0.0000 [3.0058, 3.0081],
[0.5009, 0.5032]
6 Jenrich and | [0.4,-0.4]2 124.3621... [0.2578, 0.2579]?
Sampson
7 Helical valley | [0.001,1.5],[-1.5,-1.5]% | 0.0000 [0.9993, 1.0001], [0.0000, 0.0004]
[0.0000, 0.0008]
8 Bard [-2.5,2.5],(0.01,2.5]> | 0.0081... [0.0820, 0.0823],
[1.1291, 1.1295]
[2.3469, 2.3472]
9 Gaussian [-1.5,1.53 0.0000 [0.3984, 0.4014], [0.9960, 1.0020]
[0.000, 0.0059]
10 | Meyer 5.6,5.62] x 1074, 87.9414... [0.0000, 0.0001] %10,
[6181.3,6181.35] [6.1813, 6.1814]x10?
[250,350] [0.3452, 0.3453]x10?
11 | Gulf research | [0.1,5],0,5]2 0.0000.... [1.9375, 2.0141], [2.5000, 2.5391],
[0.5620, 1.1954]
12 | Box three [-20,20],[1,20]? 0.0000 [0.8984, 0.9034], [10.3515, 10.3563]
dimensional [1.0371, 1.0418]
13 | Powell -3,3]4 0.0000 [0.0000, 0.0008]
singular [0.0000, 0.0015]3
14 | Wood [-3,3]* 0.0000 [0.9997, 1.0002]*
15 | Kowalik and | [-0.1,0.2]* 0.2722...x1073 [0.1921, 0.9300], [0.1867, 0.1876]
Osborne [0.1195, 0.1204], [0.1335, 0.1344]
16 | Brown and [-25,25]4 8.5822...x10% [-11.5945, -11.5944],
Dennis [13.2036, 13.2037],

[-0.4035, -0.4034], [0.2367, 0.2368]
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Table 4.15 (Contd.)
S.No | Test function Domain Global minimum | Global minimizer
17 | Osborne 1 [0.5,1.5],[1,1.5], | 0.6188... [1.0000, 1.0313], [10.000, 10.0313]
[-1,1.5], [1.0000, 1.0313], [5.0000, 5.0313]
[0.05,1.5] 0.10433, 0.1044]
18 | Biggs EXP 6 [1,1.5], 0.0000 [1.0000, 1.0313], [10.000, 10.0313]
[10,10.5], [1.0000, 1.0313], [5.0000, 5.0313]
[1,1.5][5,5.5], [4.0000, 4.0313)],
[4,4.5],[3,3.5] 3.0000, 3.0313)
19 Osborne 2 Given at the end | 1.4059... Given at the end
of the table of the table
20 | Watson 0,0.4]6 2.3864... 0.0000, 0.0000],
21 | Extended [1.2,1.2]4 0.0000 0.4000, 0.4001],
Rosenbrock (0.9999, 1.0002]*
22 | Extended Powell | [-3,3]* 0.0000 0.0000, 0.0008]?,
singular (0.0000, 0.0015)?
23 | Penalty I [-4,4)* 0.0222...x1073 | [0.2499, 0.2540]3,[0.2499, 0.2579]
24 Penalty II [-0.5,0.5] 0.0093...x1073 | [0.1992, 0.2002], [0.1953, 0.1973]
[0.4902, 0.4922], [0.4960, 0.4981]
25 | Variably dim. [-1.5,1.5]2 0.0000 (0.9990, 1.0020]?
26 | Trigonometric [-0.25,0.25]4 0.0000 0.0000, 0.0040)*
27 | Brown almost [-2.5,2.5)* 0.0000 [1.0009, 1.0022], [0.9960, 0.9974)?
linear [1.0058, 1.0071]
28 | Discrete bound. | [-0.5,0.5]2 0.0000 -0.1290, -0.1269), [-0.1602, -0.1562]
value
29 | Discrete [-1,1)4 0.0000 -0.1016, -0.0976], [-0.1485, -0.1445]
integral eq. -0.1749, -0.1679], [-0.1329, -0.1249]
30 | Broyden [-1,1)4 0.0000 -0.5547, -0.5541], [-0.6397, -0.6391]
tridiagonal -0.5918, -0.5908], [-0.4161, -0.4150]
31 | Broyden branded | [-1,1]* 0.0000 -0.4288, -0.4282], [-0.4766, -0.4755]
-0.5206, -0.5195)>
32 | Linear full rank | [-1,1)* 0.0000 -1.0000, -0.9980]*




Table 4.15 (Contd.)

4.5 Conclusions

67

33 | Linear rank-1 0.01,1]3 0.4236... 0.2497, 0.2503], [0.0187, 0.0192]
[0.0467, 0.0473)
34 | Linear rank-1 -1,1)2 2.1999... (0.0000, 0.0001],
with zero (0.1999, 0.2001]
column and rows
35 | Chebyquad -2,2]? 0.0000 -0.5782, -0.5742], [0.5781, 0.5821]
36 | SHCB: Six -2,2]% -1.0137... 0.0898, 0.0898],
hump camel [-0.7127, -0.7126]
37 | THCB: Three -3,3]% 0.1288...x10™* | [0.0000, 0.0015],
hump camel [0.0000, 0.0015]
38 | BR: Branin -5,10],[0,15] | 0.3978... -3.1421, -3.1396],
[12.2753, 12.2779]
39 | L3: Levy -10,10]2 -176.5419... [4.9764, 4.9765], [4.8580, 4.8581]
40 | L5: Levy -10,10]? -176.1377... -1.3069, -1.3068],
-1.4249,-1.4248]
41 | L8: Levy -10,103 0.0000 0.9960, 1.0059)],
0.9960, 1.0157)?
42 | L18: Levy -10,10]7 0.0000 0.9997, 1.0010],
(0.9985, 1.0010]°
43 | Schw2.5: Booth -5,5] 0.0000 2.3315, 2.3340], [0.3320, 0.3370)
44 | Schw2.18: Matyas | [-30,30)> -0.2093...x107* | 0.0219, 0.0239]2
45 | Schw3.1: Schwefel | [-10,10]3 0.0000 (0.9985, 1.0010]3
46 | Schw3.1p: Schwefel | [-10,10]3 0.0000 1.0009, 1.0016]>
47 | Schw3.2: Schwefel | [-1.89,1.89]3 | 0.0000 0.9966, 0.9986],
(0.9966, 1.0004]
48 | Griew5: Griewank | [-600,600]° | 0.0000 (0.0000, 0.0092]°
49 | GP: Coldstein and | [-2,2]? 2.9999... (0.0000, 0.0001], [-1.0001, -1.0000]
price
50 | R4: Ratz -3,3)? -0.1070... -0.0002, 0.0000], [-1.4576, -1.4574]
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Note: the initial domain for test function number 19, Osborne 2, is [1.2,1.4], [0.6,0.75],
[0.6,0.75], [0.7,0.75], [0.5,0.61], [2.9,3.1], [4.9,5.1], [6.9,7.1], [1.9,2.1], [4.4,4.6], [5.4,5.6] and the mini-
mizer is [1.1999, 1.1000], [0.5999, 0.6000], [0.7171, 0.7178], [0.7499, 0.7501], [0.5412, 0.5417], [3.1000,
3.1001], [4.9000, 4.9000], [6.9000, 6.9000], [2.1000, 2.1000], [4.5265, 4.5270], [5.5718,5.5727]
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An improved algorithm for set inversion

5.1 Introduction

Let f = (f1,..., fm) be a nonlinear function from R to R™. Let ) be a subset of R™. Then,

the problem of set inversion can be posed as the characterization of
S = {3: eR: flz) € y} =) (5.1)

In this work, we address the problem of characterizing S defined by a set of nonlinear in-
equalities
S= {a; eR: f(z) > o} = £71(10, 00[™) (5.2)
Such problems arise, for instance, in robust stability analysis of feedback control systems [1].
Jaulin et al. [31] proposed an algorithm for solving the above problem via interval analysis.
The algorithm has also been successfully tested in applications, such as characterization of
robust stability domains, parameter and state estimation, and robotics.
In this work, we propose some improvements to the algorithm of Jaulin et al. for char-
acterization of S via set inversion. We shall assume that f is continuously differentiable on
X. The proposed improvements are based on exploiting the property of monotonicity in two

ways:
e The powerful monotonicity test form is used as an inclusion function for f, and

o If f;,7=1,...,mis found to be monotonically increasing resp. decreasing in every
component direction on a given box, then the part of box where the inequality f; > 0

is certainly infeasible is found and discarded.

Further, only one box is processed in each iteration of the algorithm of Jaulin et al. Such

processing is inherently slow, due to its sequential nature. On the other hand, in the proposed
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algorithm, all boxes present in the list at each iteration are processed concurrently using
vectorization. Clearly, vectorization does not alter in any way the essence of the algorithm. It
however helps to reduce the processing overheads and leads to better memory management
in the processor.

We test then test and compare the performances of the proposed and existing algorithms

on two robust stability problems, including a case study of speed control of a jet engine.

5.2 Basic algorithm

Let X0 € I (R!) be the initial feasible box. The algorithm of Jaulin et al. [31], [79] encloses

the portion of S contained in X°, between two partitions K, and K,y in the sense that
Kin CX°()S € Kour (5.3)

where, Koyt = K. () Kin, and K. is a list of all indeterminate boxes.
The algorithm of Jaulin et al. is as follows.
Inputs: The initial box X9, natural inclusion function F, and an accuracy parameter e,.
Outputs: A list Kj;, of all boxes guaranteed to belong to S, and a list Kyt = K. U Kjy,.
BEGIN Algorithm

1. Initialize X = X% K, = {}, Kows = {},L = {X}.
2. Remove the first box X from list L and evaluate F(X).

3. If inf F(X) > 0 for all ¢ = 1,...,m then deposit X in lists K, and Ky, and go to
step 7.

4. If sup F;(X) <=0 for any ¢ = 1,...,m then go to step 7.
5. If w(X) < e, then deposit X in list K,,; and go to step 7.

6. Bisect X in maximum width coordinate direction k, getting boxes V!, V2 such that
X = V! |J V2 Deposit these subboxes in L.

7. If the list L is empty, EXIT algorithm. Else go to step 2.

END Algorithm

5.3 Proposed Algorithm

5.3.1 Throwing parts of box (TPB)

Let X € X% Let f be a single-valued function, in this subsection. Suppose that f is found

to be monotonically increasing in every component direction on X. Then, Algorithm TPB



5.3 Proposed Algorithm 71

given below locates the subbox C C X on which the inequality f > 0 is certainly infeasible,
and outputs a list Lx of boxes whose union is the complement of C in X.

Algorithm TPB (f,X, Lx)

Inputs: The function f and box X. It is assumed that f is monotonically increasing in
every component direction on X.

Outputs: A list Lx such that Jyer, W = X\C.

1. Check for the trivial cases:

(a) If f(X;,...,X;) > 0 then the inequality f > 0 is certainly feasible on entire X.
Set Lx < {X} and RETURN.

(b) If f (Xl, e ,Xl) < 0 then the inequality f > 0 is certainly infeasible on entire X.
Set Lx < {} and RETURN.

2. Parametrize the line joining points (X,...,X;) and (Xl, e ,Xl) in terms of a single

parameter A:

A+ (1 =NXp,..., 20X+ (1 =N X)), Ae[0,1]

3. Using a nonlinear solver such as Newton - Raphson, find! \* € [0,1] such that f (\*) =
0.

4. Construct a subbox C C X on which the inequality f > 0 is certainly infeasible:

C=([X, MK +(1=MX ], [X MK+ (1 -39 X))

5. Using the box complementation algorithm in [34], find the complement of box C in X
to get a list Lx such that

UWGLX W =X\C

END Algorithm.

On similar lines, the above algorithm can be given for the case where f is monotonically de-
creasing in all component directions on X. The boxes in list Lx are sent for further processing

to the main algorithm.

LSince f is monotonically increasing on X by hypothesis, and since the trivial cases have been dealt with at an

earlier step, A* necessarily exists and is unique on the line.
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5.3.2  The algorithm

The proposed algorithm uses the monotonicity test form Fyr instead of the natural inclusion
function F. Further, as explained earlier, all boxes that are present in the list are processed
concurrently at each iteration using vectorization. This can be done without altering in any
way the essence of the set inversion algorithm.

We next present the proposed algorithm.

Proposed algorithm

Inputs: The initial box X, monotonicity test form Fys, and an accuracy parameter ;.

Outputs: A list K, of all boxes guaranteed to belong to S, and a list K,y = K. U Ky,
enclosing S.

BEGIN Algorithm

1. Initialize X = X%, Kiy = {}, Kour = {},L = {X}.

2. Remove all boxes from list L and evaluate F);1 over all the boxes.

3. Deposit all boxes for which inf F(X) > 0 for all i = 1,...,m in the lists K;;, and Koy.
4. Discard all those remaining boxes for which sup F;(X) <=0 for any i = 1,...,m.

5. Deposit all those remaining boxes for which w(X) < ez in list Kyt.

6. Find all those boxes for which f; is monotonically increasing resp. decreasing in every

direction, ¢ = 1, ..., m. Apply Algorithm TPB to discard infeasible parts of these boxes.

7. Bisect all boxes in the maximum width coordinate direction k, getting subboxes V1, V?
such that X = V! J V2. Deposit all these subboxes in L.

8. If the list L is empty, EXIT algorithm. Else, go to step 2.
END Algorithm

Remark 5.1 In the above algorithm, function evaluations, zero exclusion checks, width checks,
and bisections on all boxes in an iteration are performed using vectorized interval arithmetic

operations.

5.4 Test example: Polynomial stability

Consider the polynomial [79]
p(s,z) = s3 + Sin(x1m2)32 + m%s + 1129 (5.4)

We wish to find the set of (x1,x2) values for which the polynomial in (5.4) is Hurwitz stable

[8]. Necessary and sufficient conditions for the Hurwitz stability of the polynomial can be
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obtained, for instance, by enforcing positivity in the first column of the Routh table [8]. This

give the set of inequalities

fi(x1,22) = x122 >0
fo (21, 22) = sin(z122) >0 (5.5)

f3 (z1,72) = 22 sin(x129) — 21209 > 0

We solve the inequalities using the existing and proposed set inversion algorithms of interval
analysis, with the initial box as X? = ([~10, 10],[—10, 10]). We carry out the computations
on a Sun 440 MHz Ultra Sparc 10 machine, with 1 GB RAM using Forte FORTRAN 95
[73]. To compare the performances of the proposed and existing set inversion algorithms, we

choose the accuracy e, = 1073, and use the following as performance metrics:

e Computational time taken by the algorithm.
e Number of boxes in list K. for which system stability is indeterminate.

e Maximum length of list L in the algorithm.

Table 5.1 reports the values of the various performance metrics. Although the proposed
algorithm is found to be somewhat slower than the existing algorithm, it requires less space
complexity in terms of a smaller list length and produces a lesser number of indeterminate
boxes.

Fig. 5.1 shows the zoomed plot of the domain of guaranteed stability generated with the
algorithms. From this plot, we see that the proposed algorithm gives a larger region for which
the system stability is guaranteed. Similarly, Fig. 5.2 shows the zoomed plot of the domain
of indeterminate stability generated with the algorithms. From these plots, we find that the
proposed algorithm gives a smaller region for which the system stability is indeterminate.

Thus, the proposed algorithm encloses the domain S of robust stability more accurately.

5.5 Case study: Speed control of jet engine

5.5.1 Vertex-type procedure

All real world systems are subject to various disturbances and uncertainties. These uncer-
tainties can be represented as variations in coefficients of transfer functions in the Laplace
domain, to form an interval plant family.

Consider a strictly proper interval plant family P of the form

np (s, ) _tas+ ...+ C]le.

k>l _
dp(s,r) ro+m18—+ ...+ sk’ = (5.6)

p(s,q,7) =
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where interval bounds are a priori given for each uncertain coefficient ¢; and r;. Let

ne(s,a)  ap+ais+ ...+ aps™
b) = = : .
c(s,a,b) 3e(5.0) T SpST——— in>m (5.7)

be a compensator in a feedback structure for the interval plant. If ¢(s,a,b) is such that it
stabilizes the entire P, then c(s,a,b) is said to robustly stabilize P.

For interval plants of form (5.6), Nataraj and Srivastava [59] proposed a ‘vertex - type’
approach to find the set of all parameter values of a robustly stabilizing compensator with
specified structure. By a vertex-type approach, we mean the following. From the interval
plant P, a small set of special polynomials is derived. This small set has the distinguishing
property that if a compensator ¢(s,a,b) is found such that all constituent polynomials are
stabilized, then the same c(s, a,b) would robustly stabilize the original interval plant P.

The basis of the vertex-type approach is provided by the Generalized Kharitonov theorem
of Bhattacharyya et al. [8], which states that the robust stability of the closed loop system
having an interval plant P is equivalent to that of the set of 32 associated so-called Generalized
Kharitonov Segments (GKS). However, in contrast with the approach of Bhattacharyya et al.
where the entire GKS is considered, here we adopt a vertex-type approach, which in general
is more computationally tractable. What we do is to take up each GKS in turn, and construct
virtual vertices whose stabilization by compensator c(s, a, b) is sufficient to ensure the same for
the GKS. We next set up Routh tables for all the obtained vertex polynomials, and then derive
inequality constraints in terms of the compensator parameters, so as to enforce positivity in
the first column of each Routh table. Finally, we solve the total set of inequalities using the
set inversion via interval analysis technique, to get the set of all compensator parameters that
robustly stabilize the set of GKS. By the Generalized Kharitonov theorem, the same set of

compensator parameters would also robustly stabilize the interval plant P.

5.5.2  Obtaining compensator parameters

The control logic of the modern day jet engine is comprised of many control loops, each of
which has a specific purpose. Typical control loops include compressor speed governor, an
acceleration and a de-acceleration loop, and various limiting loops for temperature, speed,
fuel flow, and rate of change of fuel flow. A block diagram of a typical compressor speed
control loop is shown in Fig. 5.3. A compressor speed demand schedule establishes the desired
compressor speed as a function of inlet temperature and throttle position. The compressor
speed error is determined from the difference in the desired and actual speeds. The desired
performance requirement is to obtain a fast response without any overshoot.

In the present work, our aim is to determine if a robustly stabilizing compensator of a
desired structure exists for an interval plant model of a jet engine. If it exists, then we wish
to characterize the set of stabilizing compensator parameters for the given plant model. Set

inversion via interval analysis is used for this purpose.
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Consider the single- input and single-output transfer function model of a jet engine un-
der development in India, with the manipulated variable as main burner fuel flow and the

controlled variable as compressor speed:

np(s) 4.3
= = ; 0.004,0.005 0.4,0.5 =1 5.8
p(s,) dp(s,a)  a3sd + aps? + as’ as €| ’ l;az €[0.4,0.5], 01 (58)

Note that the above defines an interval plant model. Now, we wish to synthesize a lead - lag

compensator of the form
ne(s)  a(l+ bs)
de(s)  1+cs

(5.9)

c(s,a,b,c) =

We seek the set of all parameter values of the above compensator that robustly stabilize the
interval plant in (5.8).
We follow the vertex-type control design procedure outlined in previous subsection. There

are four GKS in this case:

4.3a (1 +bs
4.3a (1 +bs
4.3a(
(

1+ cs) [(0.001A 4 0.004) s* + 0.55° + 5]
0.001X + 0.004) s® + (0.1X + 0.4) s* + 5]
—0.001A 4 0.005) s* + (0.1A + 0.4) s* + 5]

—0.001X + 0.005) s° + 0.45% + s]

1+4+cs

1+ bs 1+4+cs

+ + 4+ +

4.3a (1 + bs 1+4+cs

)+ (1+cs)
)+ (1+cs)
)+ (1+cs)
)+ (1+cs)

— o o
~~ o~ I~

For each of these GKS, we find the distinguishing vertex polynomials of the vertex-type

approach. For example, the 4 vertex polynomials corresponding to the first GKS are

0.004s* + (0.5¢ 4+ 0.004) s> + (0.5 + ¢) s*

( ) 1+4.3ab) s +4.3a
0.005s% + (0.5¢ + 0.005) s*

( )

( )

)
1+4.3ab) s +4.3a
1+ 4.3ab)
1+4.3ab) s +4.3a

0.004s% + (0.5¢ + 0.005) s + (0.5 + ¢) s°

0.005s* + (0.5¢ + 0.004) s3

s+ 4.3a

+ + + +

( )
(0.5 +¢) s
( )
( )

+ + + +

(
(
(
0.5+¢)s* +(

Similarly, 4 vertex polynomials for each of the other 3 GKS are also determined. This gives
a total of 16 vertex polynomials. Next, Routh tables are constructed for all these 16 vertex
polynomials. Enforcement of the positivity requirement for the first column of each Routh
table leads to a total set of 80 nonlinear inequality constraints in the compensator parameters.
An additional constraint of @ = 0.7 is enforced for the steady state performance requirement
of the control system.

We solve the inequalities for the compensator parameter values, using the proposed and
existing set inversion algorithms of interval analysis. The initial box is taken as a = 0.7,
b € [0.01,1],c € [0.01,8]. We carry out the computations on a Sun 440 MHz Ultra Sparc
10 machine with 1 GB RAM, using Forte FORTRAN 95 compiler [73]. To compare the
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performances of the existing and proposed set inversion algorithms, we choose two values for

the accuracy ¢, = 1072 and 1073, and use the following as performance metrics:

e Computational time taken by the algorithm.
e Number of boxes in list K, for which system stability is indeterminate.

e Maximum length of list L required in the algorithm.

Table 5.2 reports the values of the various performance metrics. Although the proposed
algorithm is found to be somewhat slower than the existing algorithm, it requires less space
complexity in terms of a smaller list length and produces a lesser number of indeterminate
boxes.

The last point made above is confirmed from Fig. 5.4 which shows a zoomed plot of the
domain of guaranteed stability generated with the algorithms. From this plot, we see that
the proposed algorithm gives a larger domain of compensator parameter values for which
the system stability is guaranteed. Similarly, Fig. 5.5 shows a zoomed plot of the domain
of indeterminate stability generated with the algorithms. From this plot, we find that the
proposed algorithm gives a smaller region of compensator parameter values for which the
system stability is indeterminate. Thus, the proposed algorithm encloses the domain S of
robust stability more accurately.

As an interesting further control study, we arbitrarily select one set of compensator para-
meter values from the feasible region in Fig. 5.4, as a = 0.7, b = 0.5074, ¢ = 0.1062. For these
values of the compensator parameters, all roots of the 16 vertex polynomials described earlier
are found to lie in the left half of the complex s—plane, thereby confirming stability. Fig. 5.6
shows the closed loop system responses to a unit step in the compressor speed command input
with this compensator. The responses are found for various plant models from the interval
plant family. We observe that no overshoot occurs in the compressor speed output - this is
an important performance requirement in the jet engine speed control loop. We also find the
settling time of the responses to be quite good, varying between 0.9 and 1.2 seconds over the

interval plant. Overall, the designed control system is found to perform quite satisfactorily.

5.6 Conclusions

We presented an improved interval analysis algorithm for characterizing the domain of a set
of nonlinear inequalities. The improvements were based on the powerful tool of monotonicity.
For two robust stability problems, including a case study of control of a jet engine, we found
that the proposed algorithm encloses the stability domain more accurately, requires smaller

list lengths, but takes more computational time.
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FIGURE 5.1. A zoomed plot of the domain of guaranteed robust stability for the polynomial example.

The values are obtained from the list K;,. The shaded part is the extra domain given by the proposed

set inversion algorithm.
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FIGURE 5.2. A zoomed plot of the domain of indeterminate robust stability for the polynomial

example. The values are obtained from the boxes in K.. The shaded part is the extra region given by

the existing set inversion algorithm of Jaulin et al.
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FIGURE 5.3. Block diagram of compressor speed control loop of jet engine.
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FIGURE 5.4. Zoomed plot of the domain of guaranteed robust stability for the speed control loop of
jet engine. The values are obtained from the list K;,. The shaded part is the extra region given by

the proposed set inversion algorithm. Here, ¢, = 1073 and a = 0.7.
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FIGURE 5.5. Zoomed plot of the domain of indeterminate robust stability for the speed control loop
of jet engine. The values are obtained from boxes in K. The shaded part is the extra region given by

existing set inversion algorithm of Jaulin et al. Here, e, = 1072 and a = 0.7.
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FIGURE 5.6. Responses of the compressor speed control system to a unit step in the compressor speed
command input. The compensator parameter values are chosen from the solution set obtained with
the proposed set inversion algorithm. The responses are given for various plants in the interval plant

family.
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TABLE 5.1. Performance comparison of set inversion algorithms for characterization of the domain

of robust stability for a test polynomial.

Performance Algorithm
metric Existing [31] ‘ Proposed
time (s) 80.5 99.5

K. 644, 602 426, 871
Max. list length | 1,043,560 151,590

TABLE 5.2. Performance comparison of set inversion algorithms for the jet engine control problem.

Performance Algorithm
Accuracy | metric Existing [31] | Proposed
g, =0.01 | time (s) 1.6 9.8

K. 1156 939

Max. list length | 2064 1854
gz = 0.001 | time (s) 13.1 774

K. 9279 7504

Max. list length | 16,674 14,861
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A new rule for bisection direction selection

6.1 Introduction

A fundamental problem in numerical analysis is that of computing the range f (X). Since in
general it is not possible to compute the exact range f (X), we therefore consider the problem
of finding an interval enclosure of f(X) with a desired degree of accuracy e. Interval analysis
[4], [49] provides several techniques to solve this range computation problem. A recently
proposed interval analysis based algorithm for range computations, shown to be usually more
efficient than other similar algorithms, is as follows.

A Model algorithm for computing range enclosures [58].

Inputs: An inclusion function F of f, the initial box X° € T (3‘81), and the specified accuracy

Output: An enclosure of the exact range f (XO) having the specified accuracy e.
BEGIN Algorithm

1. Set X = XU, initialize the working list L = {X} and solution list Ly, = {}.
2. Remove all boxes from list L.

3. Choose a component direction k for bisection, based on a rule for bisection direction

selection (see below).
4. Bisect all boxes in component direction k.
5. Evaluate F over all the subboxes obtained from above bisection.

6. Deposit all evaluations of F' whose widths are at most € in the solution list L, and

discard the corresponding subboxes from further processing.
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7. Deposit the remaining boxes in list L. If L is empty go to the following step, else go to
step 2.

8. Take the union of all intervals present in the solution list L, to obtain the desired

range enclosure.

END Algorithm.

The selection of the bisection direction in step 3 has a significant effect on the efficiency
of the algorithm, both in terms of the number of subboxes generated and the computational
time taken. Among the widely used rules for bisection direction selection are the ‘maximum
width’ and ‘maximum smear’ rules described below. For a more detailed exposition of the
various rules for bisection direction selection, see, for instance, Csendes and Ratz [15].

In this chapter, we propose a new rule for bisection direction selection in the model algo-
rithm for range finding. In the proposed rule, at each iteration of the above algorithm, we pick
a box X* randomly from the current list and actually find out which is the ‘best bisection
direction’ for the random box X*. That is, we bisect X* along each and every component
direction and find out in which bisection direction the maximum function width over both the
resulting subboxes is the least. We then take this ‘best bisection direction’ for X* as also the
‘best bisection direction’ for all other boxes of current list, and bisect all these boxes in the
said direction. The philosophy behind the proposed rule is that “the best bisection direction
for the random box of current list is (likely) the best bisection direction for all other boxes
of current list”.

We next briefly outline the existing bisection direction selection rules used for performance

comparison in this study.

6.2 Bisection Direction Selection Rules

A merit function for bisection direction selection is [15]

k := min {j| j€1(1)1 and d(5) :r?_laf(d(z')} (6.1)

)

where d(i) is determined by the given rule. The ‘min ’ appears in the above RHS, so that

if d(i) is achieved along several component directions, then the smallest one is taken for

bisection.

6.2.1 Rule A (Mazimum width)

This is a derivative free rule and is based on the interval width, with

d(i) == w(X;) (6.2)
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used in (6.1). With this rule, bisection is done along the component direction of maximum

interval width.

6.2.2 Rule B (Scaled maximum width)

We also have some scaled variants of above derivative free rule, with the following used for
d(i) in (6.1):

w(X;) if 0 € X;
w(X;) / (X;) otherwise

w(X;) if 0 € X;
w(X;) / m(X;) otherwise

w(X;) if 0 € X;

w(X;) / |m(X;)| otherwise
Rule B-1 is given by Csendes and Ratz [15]. With these rules, bisection is done along the

Rule B-1: d(7) :=
Rule B-2: d(7) := {

Rule B-3: d(i) := {

component direction of maximum scaled interval width.

6.2.3 Rule C (Mazimum smear)

Csendes and Ratz [15] suggest the following for d(7) in (6.1):
(i) = w (F (X)) (X; = m(Xy) (6.3

where, F'(X) is an inclusion function of the gradient V f (z). The rule corresponds to the
‘maximum smear’ rule of Kearfott in [34]. When min F(X) = 0 or max F(X) = 0, the rule

reduces to the one suggested by Walster [26].

6.3 A new rule for bisection direction selection

We propose a new derivative free rule for bisection direction selection. At each iteration
of above model algorithm, we pick a box X* randomly from among those of current list
in step 3. We then bisect X* along the first component direction, and find the maximum
width of F' over the two resulting subboxes. We next bisect X* along the second component
direction, and find the maximum width of F’ over the two resulting subboxes. We then repeat
this process for all the [ component directions. Finally, we find the component direction of
bisection corresponding to which the obtained maximum width of F' is the least, and choose
that direction as the bisection direction for all boxes of current list. We can put the above

steps in the form of a procedure.

1. Randomly select a box X* from among those of current list in step 3 of model algorithm.

2. FORi=1to! DO
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3. Bisect X* along coordinate direction i to get two subboxes V! and V? such that
X*=V!yv2

4. Evaluate F (V1) F (V?).
5. Form d(i) = —max (w (F (V) ,w (F (V?))).
6. END FOR

7. Use the above found d(7) in (6.1) to obtain the component direction & for bisection.

6.4 Application: template generation

We apply the above bisection direction selection rules in the context of robust control system
design using Horowitz’s Quantitative feedback theory (QFT) approach [27]. Consider a system
represented by the transfer function g(s, \), where A = {\1,...\;} is a real vector of the system
parameters and s is the Laplace variable. The parameters \; vary independently over given
real intervals A?, so that we have a box A? = {A?, - A?} of system parameters. Denote the

phase angle function f; and magnitude function f2 of g(s,\) by

Sr(QA) i=arg g (s = jw,A); f2(A) = lg(s = jw, M|

where j = +/—1, and w is the frequency variable. Define the angle-magnitude function f as

F) =(f1(N), fa(N)

The set G := { fN), e AO} defines a region in the angle - magnitude plane, called as the
template or value set of g(s,\) at the given frequency w. We wish to generate a collection
of angle - magnitude rectangles covering template G such that each rectangle has a width at
most equal to some prescribed accuracy e. Clearly, this problem is a more involved version
of the range computation problem, and is known as the template generation or value set
computation problem in robust control system design, see for instance, [1], [3], [27].

We test and compare the performance of the various bisection direction selection rules
in the template generation problem for ten real-world examples taken from the engineering
literature. The examples are described in Appendix C. We choose the units for the magnitude
as decibels (dB), and for phase angle as degrees. In these units, we specify the width of each
generated rectangle as ¢ = 1. That is, we wish to generate the template in each example to
an accuracy of 1deg and 1 dB.

For all our computations, we use a single processor PC Pentium IIT 550 MHz machine with
384 MB RAM, and the interval arithmetic toolbox INTLAB of Rump [68]. For convenience,
we henceforth refer to the randomly picked box X* as the random box.

To compare the performance of the bisection direction selection rules, we choose the fol-

lowing performance metrics:
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e Number of solution boxes covering the template, and
e Computational time taken (seconds) to generate the template.

Table 6.1 reports the performance values for different five runs of the algorithm with the
proposed bisection direction selection rule. We observe slight variations in the performance
values from run to run - this is due to the ‘randomness’ involved in picking the random box.
We therefore also give the average performance values over all the five runs, and use these
average performance values in the following.

We next proceed to examine how well the philosophy underlying the proposed rule holds.
Table 6.2 shows performance of the proposed bisection direction selection rule for a random
run. The fifth column of the table gives the number of iterations a where more than 90% of
the boxes of the current list have the same ‘best bisection direction’ (in the sense of section
1) as that of the random box!. The last column gives the average percentage of boxes over
all the iterations that have the same ‘best bisection direction’ as that of the random box. On
the average, more than three-fourths of the boxes in a list are found to have the same ‘best
bisection direction’ as that of the random box, a finding which, by and large, justifies the
philosophy of bisection direction selection adopted in this work.

Tables? 6.3 and 6.4 give the results obtained with different bisection direction selection
rules. As mentioned earlier, the results reported for the proposed bisection direction selection
rule are the averages over five different runs.

At the outset, we note that with the proposed bisection direction selection rule, we are able
to solve all the examples, whereas with bisection direction selection rules A, B-1, B-2, B-3
and C we are able to solve only 70%, 80%, 80%, 80%, and 70% of the examples, respectively.

Based on the data in the Tables, we further compare the performances of the rules using

different evaluation methods: ranking, averaging, and performance profiling.

6.4.1 Ranking

Tables 6.5 and 6.6 give the ranks obtained by the various rules in our tests. These tables

show that the proposed bisection direction selection rule attains
e 1% rank in 80% of the examples for the number of solution boxes metric, and
e 1% rank in 90% of the examples for computational time metric.

That is, the proposed bisection direction selection rule is the most effective for both per-

formance metrics in most examples.

IFor each example and iteration, we actually bisected every box in every component direction to arrive at these

findings.
2A ’%’ entry in the columns of Tables indicates that the solution could not be obtained by the algorithm for the

prescribed accuracy, due to excessive requirement of memory.
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6.4.2 Averaging

For a given metric, the percentage reduction obtained with the proposed rule compared to

the considered rule (such as Rule A, B, or C) is computed as

Perf. metric with considered rule — Perf. metric with proposed rule

% reduction = x 100

Perf. metric with considered rule

In Table 6.7, we give the percentage reductions obtained with the proposed rule compared

to existing rules for both metrics. We observe the following

e Number of solution boxes: With the proposed rule, the average percentage reduction
over all examples compared to Rule A is 55%, Rule B-1 is 64%, Rule B-2 is 65%, Rule
B-3 is 65%, and Rule C is 42%.

e Computational time: With the proposed rule, the average percentage reduction over all
examples compared to Rule A is 67%, Rule B-1 is 75%, Rule B-2 is 75%, Rule B-3 is
71%, and Rule C is 79%.

That is, for both performance metrics, we obtain considerable percentage reductions with

the proposed bisection direction selection rule over existing bisection direction selection rules.

6.4.3 Performance profiling

We plot the performance profiles for both performance metrics in Fig. 6.1. We make the

following observations based on these plots:

e Number of solution boxes: Performance profile plots show that the proposed bisection
direction selection rule is able to solve all the examples for 7 = 1. The existing bisection

direction selection rules are able to solve only 80% of the examples for 7 < 63.

e computational time: Performance profile plots show that the proposed bisection direc-
tion selection rule takes least time and solves all the examples for 7 = 1. The existing

bisection direction selection rules are able to solve 80% of the examples for 7 < 230.

6.5 Summary

At the outset, we note that with the proposed bisection direction selection rule we are able
to solve all the examples, whereas with none of the basic rules we are able to solve all the
examples. On the average, about 58% reduction in the number of solution boxes and 73%
reduction in computational time is obtained with the proposed bisection direction selection

rule over existing rules.
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It is a noteworthy empirical finding that more than three-fourths of the boxes present at any
given iteration of the algorithm had the same ‘best bisection direction’ as that of the random
box. This empirical finding vindicates by and large the philosophy behind the proposed rule
“the best bisection direction for a randomly picked box from a given list is likely the best
bisection direction for all other boxes of the same list”. The philosophy and said list are of
course confined to the present context of the model algorithm for range finding. It however
remains to be explored how good this philosophy holds in other kinds of algorithms, such as
interval Newton methods and interval global optimization.

In conclusion, we believe that the findings of the present work indicate that it may be fruit-

ful to bring in some amount of randomization into the body of interval analysis algorithms.
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Performance profile for number of solution boxes

FIGURE 6.1. Performance profile plots for the

metrics.

0.2

0.1

Rule A

Rule B-1

Rule B-2
Rule B-3
Rule C
Proposed rule
T T

30

40 50

Performance profile for computational time

number

0.3

0.2

0.1

Rule A

Rule B-1

Rule B-2

Rule B-3

Rule C

Proposed rule
T

n
150 200

of solution boxes and computational

time



6.5 Summary 89
TABLE 6.1. Performance of the proposed bisection rule over different runs.
Sl. No. | Appl. Example Solutions [ Run1 | Run2 | Run3d | Run4 | Run 5 | Average
1 Active Noise boxes 28,236 | 27,552 | 27,508 | 27,309 | 26,645 | 27,450
& Vibration time (s) | 2.86 2.17 2.74 2.77 2.7 2.77
2 Simple poles boxes 459 459 617 617 459 522
time (s) | 0.37 0.36 0.39 0.39 0.39 0.38
3 NMP boxes 504 512 512 512 504 509
time (s) | 0.36 0.36 0.33 0.33 0.35 0.35
4 Non-rational boxes 6759 6727 7527 6727 6759 6900
time (s) | 2.59 2.4 2.52 2.37 2.38 2.45
5} Vehicle clutch boxes 2,499 | 2,502 | 2,458 | 2,499 | 2,543 | 2,500
time (s) | 1.04 1.02 1.02 0.98 1 1
6 Electro - boxes 84,273 | 84,740 | 89,628 | 84,308 | 84,649 | 85,220
mechanical time (s) | 11.83 11.89 12.64 11.86 11.88 12.02
7 Mechanical boxes 1666 1557 1335 1309 1811 1536
time (s) | 0.95 0.84 0.79 0.79 0.76 0.83
8 Aircraft boxes 605 688 640 640 970 629
time (s) | 0.74 0.79 0.78 0.75 0.71 1.15
9 DC Motor boxes 6236 6231 6236 6231 6236 6234
time (s) | 1.19 1.15 1.14 1.14 1.13 1.15
10 Inv. Pendulum boxes 208 194 194 194 194 197
time (s) | 0.54 0.46 0.46 0.47 0.47 0.48
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TABLE 6.2. Comparison of the ’best bisection direction’ k for the random box versus the actual 'best
bisection direction’ found for all other boxes in list over various iterations. o in Column 5 denotes the
number of iterations where more than 90 percent of boxes have the same 'best bisection direction’ as

the random box.

Average % of
Application Number of boxes having same k
Sl. No. Example [ | iterations | « as random box
1 Active Noise | 2 18 4 70%
2 Simple poles | 3 11 5 80%
3 NMP 3 9 6 88%
4 Non rational | 3 14 6 75%
5 Vehicle clutch | 3 16 8 79%
6 Electro - Mech. | 5 21 7 73%
7 Mechanical 5 15 6 74%
8 Aircraft 5 13 5 74%
9 DC Motor 6 14 7 73%
10 Inv. Pendulum | 7 8 6 89%

TABLE 6.3. Number of solution boxes obtained with different bisection rules.

SL Application Rule A | Rule B-1 | Rule B-2 | Rule B-3 | Rule C | Proposed

No. Example l Rule
1 Active Noise 21 30,223 | 280,657 | 280,657 | 280,657 | 28,181 27450
2 Simple poles | 3 | 7,712 521 521 521 627 522
3 NMP 3 912 808 808 808 808 509
4 Non-rational | 3| 6,759 | 13,673 13,673 | 13,673 | 35,404 | 6,900
5 Vehicle clutch | 3 | 30,424 * * * 3865 2500
6 Electro - Mech. | 5 * 290,594 | 290,594 | 290, 594 * 85,220
7 Mechanical 5 (17,320 | 17,107 17,107 17,107 * 1,536
8 Aircraft 5| 40,002 | 2,752 4,007 4,007 966 629

9 DC Motor 6 * 145,302 | 203,663 | 203,663 | 38,480 | 6,234
10 | Inv. Pendulum | 7 * * * * * 197
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TABLE 6.4. Computational time taken with different bisection rules.
SL Application Rule A | Rule B-1 | Rule B-2 | Rule B-3 | Rule C | Proposed
No. Example l Rule
1 Active Noise | 2| 5.24 194.28 57.93 54.54 109 2.77
2 Simple poles | 3 | 3.27 1.60 2.44 0.91 1.88 0.38
3 NMP 31 1.33 1.57 0.92 0.88 1.59 0.35
4 Non rational | 3 [ 3.12 11.28 12.41 9.8 35.23 3.55
) Vehicle clutch | 3 [ 6.09 * * * 4.09 1
6 | Electro - Mech. | 5 * 125 132.14 158.75 * 12.02
7 Mechanical 5| 10.89 5.85 4.55 4.58 * 0.83
8 Aircraft 5| 10.73 1.16 1.31 1.32 1.92 1.15
9 DC Motor 6 * 282.42 258.47 231.66 18.18 1.15
10 | Inv. Pendulum | 7 * * * * * 0.48
TABLE 6.5. Ranking of rules based on the number of solution boxes.
Sl. No. | Rules Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6
1 Rule A 1 1 2 2 1 3
2 Rule B-1 |1 3 4 — — 2
3 Rule B-2 |1 3 2 2 — 2
4 RuleB-3 |1 3 2 2 — 2
) Rule C — 3 3 1 — 3
6 Proposed | 8 2 — — - —
TABLE 6.6. Ranking of rules based on the computational time taken.
Sl. No. | Rules Rank 1 | Rank 2 | Rank 3 | Rank 4 | Rank 5 | Rank 6
1 Rule A 1 1 1 1 1 5
2 Rule B-1 | — 2 1 2 2 3
3 Rule B-2 | — 1 3 2 2 2
4 Rule B-3 | — 2 4 2 — 2
) Rule C — 2 0 1 2 )
6 Proposed | 9 1 — — — —

91
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TABLE 6.7. Percentage reduction obtained with the proposed rule over existing rules.
Sl. No. | Appl. Example Solutions | Rule A | Rule B-1 | Rule B-2 [ Rule B-3 | Rule C
1 Active Noise boxes 9% 90% 90% 90% 3%
& Vibration time (s) | 47% 99% 95% 95% 97%
2 Simple poles boxes 93% 0% 0% 0% 17%
time (s) | 88% 76% 84% 58% 79%
3 NMP boxes 1% 37% 37% 37% 37%
time (s) | 74% 78% 62% 60% 78%
4 Non-rational boxes —2% 50% 50% 50% 81%
time (s) | —14% | 69% 1% 64% 89%
5 Vehicle clutch boxes 92% * * * 35%
time (s) | 84% * * * 76%
6 Electro - boxes * 1% 1% 1% *
Mechanical time (s) | * 90% 91% 92% *
7 Mechanical boxes 91% 91% 91% 91% 91%
time (s) | 92% 86% 82% 82% *
8 Aircraft boxes 98% 7% 84% 84% *
time (s) | 89% 1% 12% 13% 40%
9 DC Motor boxes * 95% 97% 97% 97%
time (s) | * 100% 100% 100 94
10 Inv. Pendulum boxes * * * * *
time (s) * * * * *
Average boxes 55% 64% 65% 65% 42%
time (s) | 67% 75% 75% 1% 79%
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7
An algorithm for robust stability analysis

7.1 Introduction

Consider a family of real nth order polynomials

{r(s,9),9€Q"} (7.1)

where, s is the complex variable, ¢ € R! is a vector of physical parameters occurring possibly

nonlinearly in the coefficients of polynomial p, and QY C R is a bounding box for ¢ given as
—0 —0
QO = <|:_(1]7Q1:| (R |:_l07Ql:|>

We wish to find if the above polynomial family is robustly stable, that is, if
p(s,q) # 0 for all s € C withRes > 0, for all g€ Q" (7.2)

Ackerman [1] and Barmish [6] proposed robust stability analysis methods for the case of
the polynomial coefficients having affine or multilinear dependencies on the parameters q.
More recently, Garloff and co-workers [19], [82] proposed Bernstein polynomial based robust
stability analysis methods for the case of polynomial parametric dependencies. However,
there seems to be a lack of robust stability analysis methods for the general case of nonlinear
parametric dependencies.

In this work, we address this gap by presenting an algorithm to analyze the robust stability
of polynomials with nonlinear parametric dependencies. We develop the proposed algorithm
using tools of interval analysis. The proposed algorithm is applicable to nonlinear parametric
dependencies of a very general class where the polynomial coefficients can be any continuous

function of the parameters q.
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7.2 Background

At the outset, we verify that at least one member of the polynomial family in (7.1) is stable.
Otherwise, the family is obviously not robustly stable, and we may therefore exit the test.
Let w € i denote the frequency variable. Expressing the polynomial p (jw,q) in terms of

its even and odd parts gives

p (jw, q) = pe (w?,q) + jwpo (w?,q)

Now, at least one polynomial has already been verified as stable. Therefore, by the continuous
dependency of the zeros of a polynomial on its coefficients, (7.2) implies that the entire

polynomial family in (7.1) is robustly stable if and only if

0¢ {(pe (w*,q),po (wv*,q)), 7€ Q°, we R} (7.3)
Define

T = (wQ,q)

@) = (pe(@),p0 (2))

and let X denote the interval vector corresponding to x, with X% = R x Q". Then, we can
write (7.3) as
0¢ {f(x),xGXO}

If F' is any inclusion function of f, such as the natural inclusion function [64], then it follows

from the inclusion property of interval analysis [49] that, for any X C X°,
0¢ F(X)=0¢{f(x),zeX}

This is the basis for the interval zero exclusion test used below.

7.3 Proposed algorithm

An initial search box XY must be input to the proposed algorithm. For constructing this
initial box, we may follow the method proposed by Garloff et al. [19] to obtain a tight initial
frequency interval. Alternatively, we may use a ‘large’ initial frequency interval, but at the
cost of increased computations. The parameter box is, of course, the given box QU.
Proposed algorithm
Inputs: An inclusion function F of f, the initial box X° € I (%IH).
Output: The message ‘the system is robustly stable’ or ‘the system is not robustly stable’.
BEGIN Algorithm

1. Set X = X, initialize list L = {X}.
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2. Remove all boxes from list L and evaluate F' over all the boxes.
3. (interval zero exclusion test) Discard all boxes for which 0 ¢ F(X).

4. For any box, if the width of F(X) is within machine precision, then print ‘the system
is not robustly stable’ and EXIT algorithm.

5. Following section 6.3, bisect all boxes in coordinate direction k, getting subboxes V1, V2
such that X = V1| J V2. Deposit all these subboxes in L.

6. If the list L is empty, then print ‘the system is robustly stable’ and EXIT algorithm.
Else, go to step 2.

END Algorithm

Remark 7.1 In the proposed algorithm, function evaluations, zero exclusion checks, width
checks, and bisections on all bozes in an iteration are performed concurrently using vectorized

interval arithmetic operations.

Remark 7.2 In the proposed algorithm, we use the new bisection rule given in chapter 6.

7.4 Application: mass-spring-damper

The example is given by Ackerman and Sienel [2]. Consider the mass-spring-damper system
(also called as ‘plant’ in the sequel) shown in Fig. 7.1
The input « is a force accelerating mass mg, whereas the measured variable is position y;.

Laplace transforming the equations of motion gives

P1 (s,ml,dl,cl,clg) il (8) — C12X2 (S) =0
p2 (s,ma,d, c2,c12) T2 (8) — c12w1 (s) = u(s)

where,

p1(s,ma,di,cr,c1) = mas®+dis+cr +cp
P2 (s,ma,dg, ca,c12) = maos® +das + ¢z + 1
The values of the parameters vary over the intervals
m1 €[1,3] d1 €[0.5,2] ¢ €]L,2]
ma € [2,5] d2 €10.5,2] ¢ €[2,4]
with fixed ¢;o = 1. The ‘nominal’ plant is the one corresponding to the midpoint of each

parameter interval. Using the pole-placement technique for the nominal plant, a minimum-

phase and stable third order compensator of the form

ne(s,b) b33 + bas® + bys + by
de(s,a) 83+ ass?+a1s+ag
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is designed. Now a neighborhood of this compensator with £10% variation in the coefficients

is assumed, giving

ag € [17100, 20900] ay € [1305,1595] as € [55.8,68.2]
by € [212062.5,259187.5] by € [805837.5,984912.5] by € [721012.5,881237.5]
bs € [424125,518375)

The feedback system has the closed-loop characteristic polynomial
{p1 (s, c1,d1,ma, c12) p2 (8, 2, da, ma, c12) — 1} dc (s,a) +ne (s,0)

having thirteen uncertain parameters, and with multilinear parametric dependencies. The
initial frequency interval is taken as [0,5000]. Note that Garloff et al. [19] give the initial
frequency interval as [0.48,4879.76].

The proposed algorithm is implemented on a Pentium IIT 800 MHz machine with 500 MB
RAM using INTLAB [68]. The algorithm reports in 0.14 seconds that the considered feedback
system is robustly stable.

It may be noted that for the same example, Garloff et al. [19] report that their Convex Hull
Bernstein algorithm took about 80 seconds on a more powerful HP 9000/755 workstation.
Moreover, the method of Garloff et al. is restricted to parametric dependencies which are
polynomial in nature, whereas the proposed algorithm is applicable to parametric dependen-

cies of a general nonlinear nature.

7.5 Conclusions

We have presented a simple and direct method for robust stability analysis of polynomials
having nonlinear parametric dependencies. We successfully demonstrated the effectiveness
of the proposed algorithm on a physical example with thirteen uncertain parameters. By
considering the difficult and general class of nonlinear parametric dependencies, we believe

that the proposed method fills in a significant gap in the robust stability analysis literature.
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FIGURE 7.1. Schematic representation of the mass-spring-damper system.
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8

Conclusions

Although interval analysis algorithms are reliable and accurate, they are often found to be
slow in execution, specially for difficult problems. The speed limitation has been overcome to
a considerable extent by using special coprocessors, functional hardware units, and parallel
processing techniques on multi-processor machines. However, as single processor machines
such as desktop computers are much more widely used, it would be advantageous to have
techniques that speed up interval analysis algorithms on single processor machines.

In this thesis, an attempt was made to speed up some of the key interval analysis algo-
rithms on single processor machines. In a typical interval analysis algorithm, only one box
is processed in each iteration. Since such processing is inherently slow due to its sequential
nature, it was therefore proposed in this work to process all boxes present in each iteration.
Further, it was also proposed to use wvectorized interval arithmetic operations for performing
the various tasks, such as function and gradient evaluations, monotonicity test, cut-off test,
width checks, and bisections, on all boxes present at a given iteration. Vectorization gives
a degree of parallelism in scalar processors, enabling faster processing of all boxes in the
list at a given iteration. This kind of vectorization or data parallelism is currently possible
with INTLAB/MATLAB, FORTRAN 95, C / C++, and PASCAL for interval arithmetic
operations.

The proposed strategy! led to the following developments and consequences:

1. A vectorized version of the interval Newton algorithm was proposed for solving finite-
dimensional systems of nonlinear equations. The proposed vectorized interval Newton
algorithm is unaltered in essence from the basic interval Newton algorithm. Yet, on a

collection of twenty-one test problems, the proposed vectorized algorithm was found to

IWith other algorithmic changes, noted wherever applicable.
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be considerably faster than the original one in all examples. On an average, the former

was found to be more than eleven times faster than the latter.

. A vectorized version of Neumaier’s covering algorithm was proposed for solving finite-

dimensional systems of parameter - dependent nonlinear equations. The proposed vec-
torized covering algorithm is unaltered in essence from the basic covering algorithm.
On a collection of five test examples, the proposed vectorized covering algorithm was
found to be significantly faster than the original one in all examples. In demanding
problems, the former was found to be faster by up to two orders of magnitude than the
latter. Moreover, the speed up with the proposed vectorized version was found to get

better with tighter prescribed accuracy.

. A vectorized version of the basic interval analysis optimization algorithm was proposed

for solving the unconstrained nonlinear global optimization problem. The basic opti-
mization algorithm referred to is the well-known Moore-Skelboe algorithm augmented
with the midpoint test and the monotonicity test. Algorithmic changes to the basic
algorithm were also proposed, based on the fact that all the boxes in a given list were
processed. In the basic algorithm, the cut-off test uses the function value at the mid-
point of the leading box at each iteration, while the monotonicity test is applied to the
subboxes obtained by bisection of the leading box at each iteration. In the proposed al-
gorithm, the cut-off test uses the minimum of the function values at the midpoints of all
boxes in the list at each iteration, while the monotonicity test is applied to the subboxes
obtained by bisection of all boxes in the list at each iteration. The new cut-off test in
the proposed algorithm is more effective than the one in the basic algorithm - as the
new cut-off value is the minimum of function values at the midpoints of all boxes in the
list. Likewise, the new monotonicity test in the proposed algorithm enables irrelevant
regions to be discarded sooner than in the basic algorithm. The proposed and existing
algorithms were evaluated using two different termination criteria. On a collection of
fifty standard optimization test functions, the proposed algorithm was able to solve
all the test functions, whereas the basic algorithm was unable to do so. Despite more
number of function evaluations, computational effort, and maximum list length, the
proposed algorithm gave an average speed improvement of 68% for termination crite-
rion A. For termination criterion B, the above performance metrics were more favorable
for the proposed algorithm with the average speed improvement being 74%. In short,
the proposed algorithm used any extra function evaluations, computational effort, and

maximum list length effectively, yielding considerable savings in computational time.

A vectorized version of the set inversion via interval analysis algorithm of Jaulin et al.
was proposed for characterizing the domain of a set of nonlinear inequalities. Algorith-

mic improvements to the algorithm of Jaulin et al. were also proposed, based on the
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property of monotonicity: (a) the powerful monotonicity test form was used as an in-
clusion function, and (b) when any of the constraint functions monotonically increased
resp. decreased in every component direction on a given box, then the part of box where
the inequality was certainly infeasible was found and discarded. On two robust stability
problems, including a case study of speed control of a jet engine, it was found that
the proposed algorithm enclosed & more accurately. The proposed algorithm was also

found to require less list lengths, but at the expense of more computational time.

. A derivative free rule for bisection direction selection was proposed for use in an existing
vectorized algorithm for range computations. The philosophy behind the proposed rule
was that “the best bisection direction for the random box of current list is (likely) the
best bisection direction for all other boxes of current list”. On a collection of ten real-
world examples concerning the template generation problem, it was found that the
proposed bisection direction selection rule was able to successfully solve all examples,
whereas none of the established rules, such as ‘maximum width’ and ‘maximum smear’
rules, were able to do so. Moreover, on the average, about 58% reduction in the number
of solution boxes and 73% reduction in computational time were obtained with the
proposed bisection direction selection rule over existing rules. A noteworthy empirical
finding was that more than three-fourths of the boxes at any given iteration of the
algorithm had the same ‘best bisection direction’ as that of the random box. This
empirical finding vindicated, by and large, the philosophy adopted for the proposed rule
“the best bisection direction for a randomly picked box from a given list is likely the
best bisection direction for all other boxes of the same list”. The findings of the present
work also suggest that it may be fruitful to bring in some amount of randomization

into the body of interval analysis algorithms.

. A vectorized interval analysis algorithm was proposed to analyze the robust stabil-
ity of polynomials with nonlinear parametric dependencies. The proposed algorithm
is applicable to nonlinear parametric dependencies of a very general class where the
polynomial coefficients can be any continuous function of the parameters. The pro-
posed algorithm was based on the interval zero exclusion test, and used the above
proposed derivative free rule for bisection of all boxes in a given list. On a mass-spring-
damper system involving thirteen uncertain physical parameters, it was found that the
algorithm successfully verified robust stability. As there is currently a lack of robust
stability analysis methods for the general case of nonlinear parametric dependencies,
it is believed that the proposed method fills in a significant gap in the robust stability

literature.
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8.1 Suggestions for future work
Some suggested directions for future research work are as follows:

e Investigation of a more comprehensive vectorized global optimization method that in-

cludes accelerating devices, such as the convexity test and the interval Newton method.
e Extension of the above to deal with constrained global optimization problems.

e Investigation of a randomized bisection direction rule in the context of global optimiza-

tion and root finding.

e Investigation of an improved set inversion algorithm using Hansen’s strategy [26] for

solving system of inequalities .

e Development of application specific hardware, such as those based on floating - point
gate arrays (FPGAs), for performing vectorized interval Newton algorithm and Moore

- Skelboe algorithm.
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Appendix A
Test problems used in chapter 2

1. Toolbox1. Zeros of this function correspond to the intersection points of the circle
with mid point (10, 1) and radius 1 and the circle with mid point (11,1) and radius 1,

The function is given as Exercise 13.1 in [24].

fi = @ — 2021 + 23 — 222+ 100
fo = x%—22m1—0—x§—2m2—0—121

The initial box is ([10,12],0,3])

2. Toolbox2. The function is given as Exercise 13.2 in [24].
A= (3)+(E)
ho= () +(E)

The initial box is ([1,2],[1,2])

3. Hansenl. A numerical example given in [26, pp. 110].
fi = ¥ +a3-1
fo = 2.7:% —xz9—1

The initial box is ([0, 2] ,[-2,2])

4. Lotka3. A neural network modeled by an adaptive Lotka-Volterra system (given as
problem noon3 in [78]) .

fi mlw% + £U1w§ — 11z +1

fo = mgw% + mgw% —11xzs +1

fs = 3:395% + 3:395% —11xzs+1
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The initial box is [~1.5, 2]
5. Rediff3. A 3—dimensional reaction-diffusion problem in [78].

fi = 2z1+x+ 0.835634534%1(1 — wl)
fo = x1—2x0+ a3+ 0.835634534.%’2(1 — wg)
f3 = xy—2x3+ 0.835634534.%’3(1 — £U3)

The initial box is [0, 1]

6. Redcyc4. A reduced cyclic 4—roots problem in [78].

i = 14+z+as+a3+as

fo = 11+ 2129 + 2223 + T3T4 + X4

f3 = X1To + X1T03 + ToX3T4 + ToX3T4 + T3T4 + TeT1
fa = 11203 + 1702374 + ToT3T4 + X3T4T] + T4X1 T2

The initial box is ([-0.4,6.9],[-2.7,1], [-2.7,—0.2] , [-2.7,1])

7. Lorentz4. The equilibrium points of a 4—dimensional Lorentz attractor in [78].

fi = xTwo—wr3—a4+1
fo = xows—wory—x1+1
f3 = —xax3+ a3y —29+1
fo = xiwy—wow4 —23+1

The initial box is ([—1,1],[=0.1,1] ,[=1,1],[~0.1,1])

8. Quad4. A Gaussian quadrature formula with 2 knots and 2 weights (given as problem
quadfor in [78]) .

fi = z+x-1
fo = wix3+ 127y
f3 = x123 +xoxs —2/3
fi = mlwg + 56'2.%'2

The initial box is ([-1,1],10,1],[0,1],[—2,0])

9. Lotkab. A neural network modeled by an adaptive Lotka-Volterra system (given as
problem noon5 in [78]).

fi = :vlac% + :vlw% + mlwi + :vwcg — 11z +1
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xgm% + xyc% + xgaci + xgxg — 11z +1
x3m% + x3x% + x3xi + x3x§ —1.1x3+1
x4m% + x4x% + x4x§ + x4x§ —11lzs+1

x5m% + x5x% + x5x§ + x5xi —11lxs+1

Initial box : ([~0.9,—0.3],[~0.8,—0.3] , [~0.8, —0.3] , [~0.8, —0.3] , [—0.8, 2])

10. Eco5. A 5—dimensional Economics problem in [78].

Wit
fo
f3
Ja

= (£E1 + X129 + Tox3 + £U3£E4) x5 — 1
= (:UQ + 113 + 562564) T5 — 2
= (£U3 +£U1£E4) T5 — 3

= x1+x2t+a3+oTa+1

The initial box is ([-0.1,1.3],[0.9,1.7],[-1.2,1.2], [-5, —1] ,[-10,—0.9])

11. Wright5. The system of A. H. Wright in [78].

h
f2
fs
Ja
fs

= x?—x1+m2+x3—|—x4+x5—10
= x§+x1—m2+x3—|—x4+x5—10
= 25+ a1 + 29— 23+ 24 + 25— 10
= xi+x1+m2+x3—x4+x5—10

= x§+x1+m2+x3—|—x4—x5—10

The initial box is ([-5,5.4],[-5,4],[-5,2],[-5,3.1],[-5,2.4])

12. Redeco5. A reduced 5—dimensional Economics problem in [78§]

fi
f2
f3
1
fs

1 + 172 + Tows + T3T4 — U
To + 2123 + X224 — 2Us5

T3 + 104 — U5

x4 — dus

x1 + xy + x3 + x4 + 1, where us = 1/x;5

The initial box is ([—0.3,1],[—1.5,1.7],[=1.2,1],[~4,0] , [~1,0]) .

13. Neuro6. A problem from Neurophysiology (given as problem boon in [78]).

fi = 22+a22-1

fo = ai+a2i-1

105
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f3 = x5m§ + acm:i —1.2

fi = x5ad +agad —1.2
_ 2 3

fs = xsz3201 + 2623792 — 0.7
_ 2 2

fo = xsT32] + Te25 — 0.7

The initial box is ([—0.5,0],[0,1],[~1,1],[-1,1],[-1,1],[-0.5,2]) .

14. Trink. A system of Trinks from the PoSSo test suite, also given in [78].

fi = 45z + 35x9 — 16523 — 36

fo = 35z1 + 2524 + 40x5 — 2729

fs = 25129 — 16525 + 1526 — 1874 + 3025
f1 = 152124 + 202509 — 926

fz = —11.3:% + zexq + 22475

fo = —llaoxs+ 31‘% + 9924

The initial box is ([—3.5,0.3],[—3.5,0.4],[~1.9,0] , [~7,0.1], [=0.1,5] , [0.1,0.8]) .

15. Redeco6. A reduced 6—dimensional Economics problem in [78].

fi = x4+ 31200 + Xox3 + X374 + T4X5 — Ug

fo = ®xo+ w3+ 22wy + X375 — 2Ug

f3 = a3+ 2174 + 2275 — U

fa = xyp+ w175 — dug

fs = x5 —>ug

fe = m1+x2+a3+ x4+ 25+ 1, where ug = 1/

The initial box is ([-1,1.3],[-1,1.4],[-1.6,1],[-1.2,1.1],[-5,0],[—2,0]) .
16. Hansens. The problem of Hansen and Sengupta, also worked out as a sample problem
in [24].

6
fi=06z; —2+0.492; Y afi=1,...,6
j=1

The initial box is [~1,1]°.

17. Systems&. A small system from constructive Galois theory (given as problem s9_1 in
[78]).

fi
fo = 9x1+4xy

—T1x7 — 27903
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fs = —dxsrs — 221706 — 3X007

fi = —Txs+9xg — 8xg

fs = —4dwzexg — dasry — 623 — 311
fe = —9xo —bxsxg — T27 4+ 924

f7 = 91‘24—61‘8—51‘4
fs = 9x5 —Txg+8

The initial box is ([-3,0.5],[—0.5,1.2] ,[-0.5,1.5] ,[-0.5,6] ,[-2, 3], [0, 3], [0,2,2],[-1.5,5]).

18. Robot. The kinematic equations for a PUMA robot in [53].

fi = 71 2123 + Y9x2x3 + Y371 + V4 T2 + V574 + Vg7 +¥7 =0
fa = s T1%3 + Y9T2x3 + Y1071 + Y1172 + Y124 + 713 =0

f3 = 714 Tews + Y1571 + Y1672 = 0

fa = Y171+ 718 T2+ 719 =0

f5 = m% —|—ac§ —-1=0

fo = a5+ai—1 =0

fr = ai+ag —1=0

fo = @F+a5—1=0

where,

v = 4.731 x 1073,y = —0.3578, 75 = —0.1238, 74 = —1.637 x 1072, v5 = —0.9338,74 = 1,
7 = —0.3571,7g = 0.2238, 79 = 0.7623, 7,9 = 0.2638,v,; = —0.07745, 7,5 = —0.6734,

Yz = —0.6022,7,4 = 1,75 = 0.3578,7,5 = 4.731 x 107°, 937 = —0.7623,

Y15 = 0.2238,7,9 = 0.3461

The initial box is [—1,1]%.

19. Kinema. A robot kinematics problem in [78].

fi = m%+x§—|—x§—12x1—68

fo = xi+m§+w%—12m5—68

fs = a%+ad+ k- 24as — 1229 + 100

f1 = xix4+ 2005 + 13706 — 627 — 65 — 52

fs = xix7+ xoxs + X309 — 627 — 1208 — 69 + 64
fo = maxr+ x508 + X679 — 625 — 12008 — 69 + 32

fr = 2x0+2x3 — x4 — 25 — 208 — 7 — X9 + 18
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fs = x4+ a9+ 2x34 224 + 206 — 227 + x5 — 9 — 38
fo = x14+x3—2x44+ 25 — 26 + 207 + 2208 + 8

The initial box is ([2,10],[—4,10],[2,10],[5,10],[0,6],[6,7],[0,10] ,[3,11],[6,11]) .

20. Kul0. A 10—dimensional system of Ku in [78].

fi = bdxiwo + 51 + 3w0 + 55
fo = Txoxs 4+ 929 + 923 + 19
f3 = 3x3x4+ 623+ 524 —4
fi = 6x4xs5+ 624 + Taxs + 118
f5 = wswe+ 35 + 926 + 27

fo = bxgxy + Txexy + 72

fr = 9wrxg + Twr + 28 + 35

fs = dwgrg + dxg + 629 + 16

fo = 8wgxig + 4x9 + 3210 — 51
fio = 3mwyg —6x1 + 210+ 5

The initial box is ([2, 8], [~5, —2], [~2,0],[1,5], [~9, —4] , [-4,—3] , [2,3], =3, -2],[2,4] ,[1,2]) .

21. Sparsedl. A sparse system known as benchmark D1 in [78].

fi = ai+a3-1

fo = a3+ai—1

fs = at+ai—1

fr = a2+ai—1

fs = xj+aly—1

fo = af +at,—1

fr = 3x3+42x5+ 27 — 3.9701

fs = 3wiwy+ 22126 + 2128 — 1.7172

fo = 3xoxy + 2x0me + x028 — 4.0616

flo = x3xg+ x509 + T7T9 — 1.9791
fii = xoxaxg + xox679 + ToT8T9 + 110 — 1.9115
fi2 = —x3m10711 — T5T10T11 — T7T10211 + TaT12 + TeT12 + vex12 — 0.4077

The initial box is [—5,—0.1],[-1.1,-0.8],[0.4,0.7] ,[-1.1,-0.699] , [0.5,1] , [-1,—0.2],
0.5,0.9],[1,-0.2],[0.5,1.1], [-0.5,0.5], [0.5, 1.1] , [~0.6, 0.2]
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Appendix B
Test problems used in chapter 3

1. The 1- dimensional manifold in [61]
x3 — wwh 4ot —xpwe — 25 =0
where, X; = [-3,3], X2 = [-5,5].
2. This is an equation of a simple tunneling diode [76]
0.4323 — 2.692% + 4.56x1 = 2.50% — 10.523 + 11.829 =i
where X;_ [0,5], X2 =[0,3], and ¢ = 5 mA.

3. This problem is an example from combustion chemistry [53]. The system consists of

two cubic equations:

2 2
Q1 T]T + QoT] + Q3T T2 + gy +asze = 0

2 2 3 2
Qg T1T9 + Q1T + QgT1T2 + Q9T + 1T + ap1xe gz = 0

where, oy = —1.697 x 107, ap = 2.177 x 107, a3 = 0.55, oy = 0.45, a5 = —1, ag =
1.585 x 10, aip = 4.126 x 107, ag = —8.285 x 10°, ag = 2.284 x 107, aryg = 1.918 x 107,
11 = 484, 19 = —27.73. The box X1 = [O, 1} ,XQ = [O, 1] .

4. The hippopede problem in [44]
z:w%+m§, az:w§+22

where X1 = [-1.5,1.5], Xo = [-1,1], Z=[0,4], and a = 1.1 .
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5. This is a set of kinematic equations for a PUMA robot in [53]

V1 T1T3 + YoT2T3 + V3T + Y4T2 + V5T4 + VeTT T Y7 =
V8 T1x3 + YgT2x3 + Y1071 + Y1122 + Y12%4 + Y13 =

V14 T6Tg + V1521 + V1622 =

Y17%1 T Y18 T2 Y19 =

:v% + w% -1 =

:U% + wi -1 =

:v%—kw% -1 =

o O O o o o o o

w%—kw%—l =

where, 7, = 4.731 x 1073, v, = —0.3578, 3 = —0.1238, v, = —1.637 x 1073, 75 =
—0.9338, 76 = 1, 77 = —0.3571, 75 = 0.2238, 79 = 0.7623, v = 0.2638, v, =
—0.07745, 15 = —0.6734, 13 = —0.6022, y14 = 1, 715 = 0.3578, v16 = 4.731 x 1073,
Y17 = —0.7623, 75 = 0.2238, ;9 = 0.3461. The box X; € [-1,1],7=1,...,8.
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Appendix C
Test problems used in chapter 6

For evaluating the performance of various bisection direction selection rules, we choose sev-
eral challenging real-world application examples taken from different engineering disciplines.

These are described below.

1. Active noise and vibration control system [67]: The phase angle and magnitude functions
for a system occurring in active noise and vibration control with highly underdamped

resonarces are

fi(z) = ——arctan
T

2

2
fo(z) = —10log ((%) + 2235 — 1) +1- (23:% - 1)2
1
x1 € [0.75,1.25], xo € [0.02,0.06]
The frequency is w = 1.

2. Simple poles system [56]: The phase angle and magnitude functions for a stable second

order system with real poles are

fi(z) = —1—i0 {arctan <xi> + arctan <mi>}
1 2

fo(x) = —10log {(w% + :U% + cuz)w2 + (.%'133'2)2} + 20 logq (x3)
xr1 € [1,5], x2 €[20,30],x3 € [1,10]

The frequency is w = 1.
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3. Non-minimum phase system [71]: The phase angle and magnitude functions for a non-

minimum phase (NMP) system with real poles and zeros are

filz) = 1—7%0 (arctan (—wzy) — arctan (wxy) — g)
1+ (zow)? T
fa(z) = 10logy, {%} + 201log;g (f)

x1 € [0.3,1], xp €[0.05,0.1], 23 € [1,3]
The frequency is w = 1.

4. Non-rational system [27, pp.129]: The phase angle and magnitude functions for a non-
rational system are

filz) = 180 <arctan{ a2 sin (11w) } + wx3>

s xg cos(rw) + 1
fo(xz) = —10logyo{l + x2 (z2 + 2cos (z1w))}

1 € [1,2], x9 €[0.4,0.6], x5 € [0.01,0.02]

The frequency is w = 2.

5. vehicle clutch system [13]: The phase angle and magnitude functions between the input

clutch position to the output transmission speed of a vehicle clutch system are

fi(z) = 180 | 24734.97w retan 3.07 o w?
T Ty 65.61 (21 — 29w?) —1157.39w | " L1
65.61 22
65.61 (21 — mow?))” + (24734.97w)?

w2

RSN
65.61  x9
3
20 logyg [ ——2——
0 logio <(65.61 + iUQ)Ld)

x1 € [5800,115000], x5 € [1400,11000] , 25 € [100,800]

(—1157.39w)* + | 3.07 | =1 —

The frequency is w = 10.

6. Electro - mechanical system [14]: The phase angle and magnitude functions of an electro
- mechanical system are

fi(z) = 180 arctan | —2% ) _ arctan (1 +0.4) 23 — 047w
1 oo r3 — 2w (—x1 4+ 0.4) xow
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r) = 10lo wow)? + (23 — 210?)?) — 1010
fa(2) gw((?) (25 =21 )) 510 (w (21 4 0.4) 23 — 0.421W)>

z1 € [5.6,8], 25 €[30,300], x5 € [5880,5900] .

((—21+0.4) m2w2)2 + )

The frequency is w = 107.

. Mechanical system [27, pp. 222]: The phase angle and magnitude functions for a me-

chanical system are

1
filx) = _180 arctan 3 +I

T T4 2
— — X1WIx9
w9

2
fo(x) = =20 log;, wQ\/wg + wxs (% — :U1> + 20 log;o(xs)
(wxg)
T € [172} y T2 € [1,\/@], r3 € [057]-]7 Ty € [273}7 Ts5 € [057 2}

The frequency is w = 8.

. Aircraft system in longitudinal motion [75]: The phase angle and magnitude functions

for the longitudinal motion of an aircraft are

180 w w ™ 2x3
fi(x) — | arctan (| — | — ¢ arctan | — | 4+ & +arctan | ———
™ 1 b 2 1 w
(&)
2
1+ (2)
w)? w2\’ w)?
e (R
9 T4 T4
\

ry € [0.5,0.75], Ty € [1,10], T3 € [08,09} , T4 € [5,6] ,T5 € [0.2,2]

fa(z) = 10 logyg + 20 logyg (75)

The frequency is w = 0.1.

. DC motor system [5]: The phase angle and magnitude functions of a DC motor system
are

file) = 20 <arctan <x1x2‘U> . arctan( 26 (23 + 24) + (25 (S + 22)) >>

Ty w2 (—Jm — x9) + x5 (23 + 24) + 27

= 2 (“ﬂx (=Jm — x2) + x5 (3 + 1) + x%)Q +
fa(x) = 10logyg <w4 + (w1w2)2> — 10log;, ( iwe ot + (;’5 (jm r 2 )

x1 € [0.2,0.6],29 € [le — 5,3e — 5], x3 = x4 € [1.95e — 5,2.05e — 5],
x5 € [0.95,1.05],2¢ € [0.95e — 2,1.05e — 2], J,,, = 2e — 3

The frequency is w = 20.
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10. Inverted pendulum system [12]: The phase angle and magnitude functions between

pendulum angle to the cart’s motor current are

w
180 w S

filx) = - arctan " + arctan . + wxy
- ol -
(962161 + w4> w2

w? x] 1

fo(x) = 20 logyg

rew? + 9.81 2 2
¢ \/w2+<w2w1+;’—j) \/<%+2w§—1> +1— (223 — 1)?
Ty
x1 € [1.5,1.7],x2 € [0.05,0.15], 23 € [0.01,0.02]
za € [15,17],25 € [50,60] , 26 € [0.3,0.45], 27 € [0.014, 0.015]

The frequency is w = 1.
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Appendix D

Interval analysis

Let R be the set of reals, z € R, X = [X,..., Xo] C R, where X; = [Xi,ii], i=1,..1.
X is an axis aligned parallelpiped also called as a box. Let I (X) be the set of all boxes
contained in X. Let the width of X be defined as w (X) = maxX —min X if X € I (R),
and as w (X) = max {w (X1),...,w (X;)}, if X € I (R'). Let the midpoint of X be defined
as m(X) = (minX +maxX) /2 if X € I(R), and as m(X) = {m(Xy),...,m(X;)}, if
X eI (R.

Let f(X) denote the range of a function f on X. A function F : I (X) — I (R) is said to
be an inclusion function [65] for f, if f(Y) C F(Y) for all Y € I (X). A natural inclusion
function form is obtained from the expression for f by replacing all occurrences of x; with
X; and all real operations with the corresponding interval operations.

Assume f to be continuously differentiable on X, and let D;F denote the natural inclusion
function for the partial derivatives 0f/0z;,i = 1(1)[. Then, the monotonicity test form Fy;p
[49] is an inclusion function form for f , and is given by

Fuyr(X) = [f(w), f(0)+ > DiF(X)(X; —my), (D.1)
€T

where, 7 is the set of integers ¢ such that D;F(X) = { D,F(X),D;F(X)| properly contains

zero, i.e., D;F(X) <0 < D,;F(X), and

(X,;,X;) if DiF(X)>0
(ui,vi) = ¢ (X4, X,) if D;F(X) <0
(m (X)), m(Xy)) if ieT

If D;F(X) <O0resp. D;F(X) >0 then f is monotonically decreasing resp. increasing in the

ith component direction on X. When 7 becomes empty, it follows that f is monotonic on X

in all component directions ¢ = 1 (1) .
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