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Abstract: Ambulatory ElectroCardioGram (ECG) analysis is adversely affected by motion artifacts 

induced

due to body movements. Knowledge of the extent of motion artifacts could facilitate better ECG 

analysis.

In this paper, our purpose is to determine the impact of body movement kinematics on the extent of

ECG motion artifact by defining a notion called impact signal. Two approaches have been adopted 

in



this paper to validate our experiments. One of them involves measuring local acceleration using 

motion

sensors at appropriate body positions, in conjunction with the ECG, while performing routine 

activities

at different intensity levels. The other method consists of ECG acquisition during Treadmill testing 

at

controlled speeds and fixed duration. Data has been acquired from both healthy subjects as well as

patients with suspected cardio-vascular disorders. In case of patients, the treadmill tests were 

carried

out under the supervision of a cardiologist. We demonstrate that the impact signal shows a 

proportional

increase with the increasing activity levels. The measured accelerations obtained are also found to 

be

well correlated with the impact signal. The impact analysis thus indicates the suitability of the 

proposed

method for quantification of body movement kinematics from the ECG signal itself, even in the 

absence

of any accelerometer sensors. Such quantification would also help in automatic documentation of 

patient

activity levels, which could aid in better interpretation of ambulatory ECG.
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Abstract

Ambulatory ElectroCardioGram (ECG) analysis is adverselyaffected by motion artifacts induced

due to body movements. Knowledge of the extent of motion artifacts could facilitate better ECG analysis.

In this paper, our purpose is to determine the impact of body movement kinematics on the extent of

ECG motion artifact by defining a notion called impact signal. Two approaches have been adopted in

this paper to validate our experiments. One of them involvesmeasuring local acceleration using motion

sensors at appropriate body positions, in conjunction withthe ECG, while performing routine activities

at different intensity levels. The other method consists ofECG acquisition during Treadmill testing at

controlled speeds and fixed duration. Data has been acquiredfrom both healthy subjects as well as

patients with suspected cardio-vascular disorders. In case of patients, the treadmill tests were carried

out under the supervision of a cardiologist. We demonstratethat the impact signal shows a proportional

increase with the increasing activity levels. The measuredaccelerations obtained are also found to be

well correlated with the impact signal. The impact analysisthus indicates the suitability of the proposed

method for quantification of body movement kinematics from the ECG signal itself, even in the absence

of any accelerometer sensors. Such quantification would also help in automatic documentation of patient

activity levels, which could aid in better interpretation of ambulatory ECG.

Index Terms

Ambulatory ECG, activity levels, body movement, impact signal, motion artifacts, principal com-

ponent analysis, acceleration, treadmill test.
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Impact of Ambulation in Wearable-ECG∗

I. I NTRODUCTION

Recently, significant interest has been generated in Holter or wearable ElectroCardioGram (W-

ECG) studies, driven by today’s active lifestyle and the increase in cardiovascular disorders. There

are two major problems associated with Holter ECG recording.One of them is the contamination

of the ECG signal due to motion artifacts induced by the body movements of the subject during

ambulation. Owing to spectral overlap between the artifacts and the ECG signal, linear filters

cannot be used to effectively minimize motion artifacts. Toensure that the Holter ECG recorder

does not impede the subject’s daily activities, a recent focus in ambulatory cardiac monitoring

is on highly miniaturized, wearable ECG data acquisition systems. TheSilicon Locket, which

weighs just under 100 grams is one such available system [1].Although this makes patient

ambulation quite unencumbered, the problem of motion artifacts in the ECG data remains as

this is generated due to variable contact resistance between the stretching or contracting skin

and the electrode. Motion artifact reduction in W-ECG has been a topic of active research, and

several methods have been used, with limited success.

The other common shortcoming in W-ECG monitoring is the documentation of daily patient

activities; an accurate diary is desired to facilitate better analysis of the ECG ‘in context’ [2].

Conventional Holter monitoring systems rely on manual time stamping of activities, which is

unreliable. W-ECG systems with patient-activity monitoring attempt to address this problem, by

incorporating accelerometers with ECG recording apparatus, in order to provide evidence based

information about patient activity levels [2], [3], [4], [5]. Techniques exploring the recognition

of specific activities and postural changes of the subject from the ECG itself have been discussed

in [6], [7], [8], [9], [10], [11], [12], but these methods do not aim at detecting intensity levels of

the activity. In this paper, we quantitatively investigatethe precise impact of different levels of

body movement activity on the generation of ECG motion artifacts, with a view to overcoming

both these problems mentioned earlier.

It has been shown in [13], that it is possible to detect the onsets of body movements, or

transitions from one movement to another, from the ECG signalitself using a recursive principal

component analysis (RPCA) based method [14]. This is based on the fact that different types

April 15, 2008 DRAFT
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of body movements affect the skin-electrode interface differently. In this paper, we first define

a notion called impact signal which is derived from the RPCA method. We then demonstrate

through a number of experiments that the proposed impact signal can be applied for impact

analysis of body movement activity, and consequently, for determining different levels of body

movements from the ECG signal itself. We show that it is a measure of induced motion artifact

on the ECG signal.

For quantifying subject activity, we have performed two different sets of experiments; one

using the treadmill test, and the other using commercially available accelerometers. The tread-

mill test, a benchmark in exercise-stress testing for cardiac patients, is calibrated in terms of

energy expenditure for standard test protocols, like the Bruce Protocol. The output from triaxial

accelerometers on the human body have been quantified as a function of energy expenditure

in [15], and hence the activity level of a subject. Accelerometer activity and treadmill speeds

have been shown in [16] to be well correlated. Accelerometryhas been used for studies of body

movements in [17], [18], [19]. We report our observations onthe magnitude of the impact signal

in relation to the walking speed of the subject in the treadmill test, as well as the recorded

accelerations while performing several types of body movements at three different intensity

levels: slow, normal and fast. We thus show that body movement activity (BMA) levels can be

quantified from the ECG signal itself using the impact signal,without using any sophisticated

motion sensors. In other words, we demonstrate that it is, indeed, possible to have a truly

unencumbered ambulatory cardiac monitoring system without the use of multiple inputs from

accelerometers tethered to the body, with activity detected from just a single lead of the ECG.

This is useful for the development of a simple, low cost, ECG monitoring system which can

automatically provide information about BMA from the ECG signal.

The paper is organized as follows: Section II provides details of the apparatus and the protocols

used for data acquisition. The method used to obtain the impact signal from the ECG and

processing of the accelerometer data is described in Section III. The results and discussion are

presented in Section IV. The paper concludes in Section V.

II. DATA ACQUISITION

The specifications of the ambulatory ECG recorder used in thisstudy are as follows: single-

lead, bandwidth- 0.05 to 106 Hz, sampling frequency- 242 Hz,A/D conversion- 12 bits/sample [1].

April 15, 2008 DRAFT
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The Lead-II ECG configuration was chosen to maintain consistency, and also to capture motion

artifacts from the lower body. Disposable foam-pad electrodes are used for the same purpose. We

have followed two different procedures for motion quantification, one measuring accelerations

using motion sensors, the other using a treadmill.

Accelerations were measured usingMTx R© motion trackers fromXsens Motion Technologies R©

placed at appropriate positions on the body. TheMTx R© motion tracker senses linear acceleration

along 3 axes along with the 3-D rotations of the sensor co-ordinate system in a fixed local co-

ordinate system (LCS). The fixed LCS has its positive (+ve) X pointing toward the local magnetic

North, +ve Y toward the West and +ve Z pointing upwards. All accelerations and rotations were

measured at 32-bit resolution and sampled at 25Hz. A blue tooth wireless interface was used

to transmit data. Very recently, a similar data acquisitionsystem has been used for ambulation

analysis and assessment of human ankle and foot [20].

Motion sensors were placed on the upper arm(s), right thigh and the waist (below the navel).

The waist sensor measured the local acceleration at the waist while twisting, and the general

acceleration of the subject’s body during other activities. The accelerometers at the arm(s) and

on the thigh measured local accelerations in these parts. Motion trackers were tightly strapped

at their respective positions on the subject’s body to prevent slippage or any relative motion

between the sensor and the body. However, it was also ensuredthat the subject faced minimal

discomfiture after wearing the ECG electrodes and the motion sensors, such that the usual body

movement of the subject remains unaffected. For better understanding of events recorded by

motion sensors as well as forpost facto verification, all activities of the subjects were time-

stamped and recorded using a video camera. The starting and ending times for ECG and motion

recording were noted down for data analysis. The experimental setup is illustrated in Fig. 1, with

the motion sensor apparatus and electrodes of the W-ECG recorder firmly secured at appropriate

locations on the body of a subject.

In the first set of experiments involving motion sensors, each of the following BMAs were

performed at three different levels of pace: slow, normal and fast.

1) change in posture from sitting on a chair to standing up, and vice versa,

2) up-down movement of one of the two arms, left or right, parallel to the sagittal plane,

with the other hand at rest

3) walking on a level floor,

April 15, 2008 DRAFT
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6

4) twisting the torso at the waist while standing, as a commonbody stretching activity,

5) climbing up and down the stairs,

A total of 5 healthy male subjects in the age group of 22 to 27 years and 2 cardiac patients

of ages 31 and 62 years participated in this experiment. The subjects were requested to avoid

undue tightening of muscles of freely movable limbs, to avoid extra EMG noise due to muscle

stiffness. It should be noted that though the activities in the list above are apparently similar

to those which have been done in [12], [13], here both the experiments and the purpose are

different. Here we vary the pace of performing the BMAs to analyze the corresponding impact

on generation of motion artifacts in ECG whereas the previousworks are intended for recognition

of commonplace BMAs in routine life and hence the exact impactof the variations in the pace

levels has not been studied.

In our second set of experiments, the ECG of a subject was monitored while walking at

controlled speeds for fixed durations on a Treadmill (Quinton R©). Data was acquired from 5

healthy volunteers in the age group from 22-26 and 9 cardiac patients in the age group of 39-63.

In the case of patients, treadmill testing was done using theBruce protocol in the clinical setup

with prior permission from the ethics committee of the hospital under strict medical supervision,

with simultaneous monitoring of vital parameters such as heart rate and blood pressure, and

other stipulations in accordance with the AHA guidelines [21]. The procedure and purpose in

this experiment were explained to the patients and their consents for the same were obtained by

the hospital. The Bruce protocol subjects the patients to increasing levels of stress by increasing

the speed and the gradient (treadmill inclination), as given in Table I. For the cardiac patients,

the test was terminated as soon as the target heart rate was reached, or when signs of instability

were observed in the ECG or in the other parameters for example, significant ST level and slope

changes, substantial increase in blood pressures as decided by the trained physician, patient

complaining about breathlessness, angina, pain in legs or chest. The target heart-rate is restricted

to 0.85 × (220 − age of patient in years) for each patient. Stress-ECG data from the healthy

volunteers was obtained using a treadmill exercise protocol that was physically less taxing than

the conventional Bruce protocol used in the clinical setup. The protocol was devised considering

the lack of medical supervision and online parameter monitoring facilities in the laboratory setup.

The gradient was set to zero throughout the test, and each stage was limited to two minutes

compared to three minutes in the Bruce protocol. There were 5 stages in all for a total duration

April 15, 2008 DRAFT
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of 10 minutes, starting from 3 km/hr to 7 km/hr in increments of 1 km/hr at every stage. The

heart rate of the subjects was monitored every minute, usinga pressure sensor attached to the

chest, communicating via infrared to a display device that could be worn on the wrist for easy

viewing of the heart rate in beats per minute. Accelerometers were not connected during the

treadmill exercise since the motion is directly measurablefrom the treadmill, and to ensure that

movement on the treadmill was not cumbersome.

III. E XPERIMENTAL METHOD

We note that slow body movements may induce motion artifactsof smaller magnitude whereas

quick body movements are likely to induce larger motion artifacts. At rest, there are usually no

motion artifacts at all. Thus different levels of body movements may have different impact on

the motion artifacts and hence on the ambulatory ECG signal. The ambulatory ECG signal can

be modeled as an additive mix of the cardiac signal and the motion artifacts induced by body

movements [11], [12]. It has also been demonstrated in [11],[12] that motion artifact subspaces

for different body movements are separable, and can be effectively represented by a set of the

top few (6-8) eigenvectors, which can be learned through principal component analysis (PCA).

We have used the impact signal obtained through recursive PCAto gauge these different levels

of the motion artifact.

A. Derivation of Impact Signal

Since we are using PCA based method which is sensitive to feature alignment, it is required that

the input data vectors have the same dimension. The ECG beats are therefore time synchronized

with respect to R-peak in each beat, and resampled to a fixed length ofM0 samples, to account for

possible Heart Rate Variability (HRV). The value ofM0 is chosen based on the normal heart-beat

duration and the given sampling rate of the ECG recorder. In our experiments presented here,

we encountered the heart-rate variations from 64 to 160 (under the stress test) beats per minute.

The R-peaks in the ECG signals are detected using a modified Pan-Tompkins algorithm [22].

The current ECG beat length is estimated as the duration between the current R-peak and the

previous one.

April 15, 2008 DRAFT
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8

In order to estimate the principal components, the covariance matrixCi is recursively computed

from the ith length normalized and mean-subtracted ECG beatr(i) as

Ci =
i∑

k=1

α(i−k)r(k)rT (k) = αCi−1 + r(i)rT (i), (1)

whereα, 0 < α < 1 is the forgetting factor. Past data is forgotten faster for smallerα. A set

of top L eigenvectors of the covariance matrixCi at ith ECG beat is derived using (1). Let

Ei = [ei1 ei2 . . . eiL]M0×L be the set of topL eigenvectors arranged in a non-ascending order of

magnitudes of the corresponding eigenvalues. To quantify the variation in the ECG signal due

to motion artifacts, we obtain from the next ECG beatr(i + 1) the component that lies in the

span{ei1, ei2, . . . , eiL}. The error in approximation

ǫ(i) = |r(i) − (Ei−1E
T
i−1)r(i)| (2)

provides a measure of the motion artifact level in the ECG i.e.the impact of body movement

in ambulatory ECG signal. The errorǫ(i) defined in (2) is called the impact signal for theith

beat in this paper. The impact signal could be non-uniform onthe time-scale as the heart rate

may change with time for a particular subject, with time instants calculated from the R-peak

locations of the corresponding beat indicesi in the analyzed ECG signal.

B. Processing Accelerometer Data

This subsection focuses on procedures involved in computing local acceleration signals at a

position with reference to the body. The motion sensor system described in Section II records

accelerations in sensor axes and rotations of the sensor axes in the fixed local co-ordinate system

(LCS). Since the sensor axes are rotating with the body duringmovements, all accelerations are

converted to the fixed LCS using the rotation matrix of direction cosines for each individual sen-

sor. LetRk(n) be the3×3 rotation matrix in the fixed LCS andak(n) = [akx(n) aky(n) akz(n)]T

be the 3-axes acceleration vector recorded atnth sample for thekth accelerometer (at a suitable

body position) respectively. It may be noted that the time index ‘n’ is different from the heart

beat index ‘i’ discussed in the previous subsection. The corresponding accelerationsa′

k(n) =

[akX(n) akY (n) akZ(n)]T in the LCS can be computed as

a′

k(n) = Rk(n)ak(n). (3)
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9

Measured accelerationsa′

k have static components corresponding to gravity and general trans-

lation of the body, as well as dynamic components associatedwith local limb motion. To

account for only the local limb movements, the static components are suppressed by local

mean subtraction, calculated over a moving time-window of 8seconds, from each element of

the accelerationa′

k(n). We have observed that the maximum time required to completeone

cycle of any body movement activity is≈5 seconds, considering that each of the activities is

periodic in nature. Therefore, we expect that the useful information in the acceleration signal

lies in the spectrum band≥ 0.2Hz. Since we are interested in capturing accelerations due to

movements of body only, we suppress the undesirable lower frequency components (< 0.2Hz)

of the acceleration using the time-window of 8 seconds. The local mean subtracted acceleration

due to the motion of thekth limb is given bya′′

k(n) = a′

k(n) − ak(n), where the local mean

signalak(n) is given by

ak(n) =
1

8fs + 1

n+4fs∑

j=n−4fs

a′

k(j), (4)

wherefs=25Hz is the sampling frequency for the motion sensor and hence [−4fs, 4fs] is the

8 seconds time window over which the signal is to be averaged out. The movement of thekth

limb (sensor) is quantified in terms of the norm of the acceleration vectorβk(n) = |a′′

k(n)|.

In this paper,k=1 refers to the sensor at the right arm,k=2 to the right leg sensor,k=3 is the

sensor at the waist andk=4 refers to the sensor at the upper left arm. Hence, we would like to

relate the impact signalǫ(i) in the recorded ECG, as discussed in the previous subsection,to

the limb motionβ(n) and show that they are highly correlated.

To study the behavior of motion artifacts with respect to extent of movement, displacements

of individual sensors need to be obtained. The extent is defined as the distance between two

extreme positions during limb movement. The relative position of the kth sensor at thenth

sample,p′′
k
(n) is computed by simple discrete integration of the corresponding accelerations

a′′

k twice in time using the trapezoidal rule.

The extent of a body movement from the initial position is computed as the norm of vector

p′′
k
(n), asγk(n) = ‖p′′

k
(n)‖. The envelope ofγk(n) gives the extent of the body movement.

While β(n) is a measure of the instantaneous motion of a limb,γ(n) could be viewed as

a measure of the combined effect of physical stretching of the surrounding skin along with

contraction of the associated limb muscles.
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C. Synchronization of Impact Signal and Motion Measures

We again reiterate the fact that for the impact signal, we usethe index ‘i’ to denote time axis,

while we use the index ‘n’ to denote time while measuring acceleration. This is due tothe fact

that

(a) the impact is measured at every heart beat and

(b) the sampling frequencies for the ECG and the motion sensors are different.

The two indices are related in time asn = κ(i), whereκ is a function of the time instances

of occurrence of each QRS complex in the input ECG. In order to synchronize the acceleration

and impact signals, we need to calculate the cross-correlation ρ between them.

To compensate for sampling differences between the ECG and accelerometer data while

computingρ, the impact signal is upsampled to 242 Hz (sampling frequency of the ECG recorder)

using cubic spline interpolation, and then downsampled to 25 Hz (sampling frequency of the

motion sensor). This two stage process is required because the impact signal is non-uniformly

sampled on the time-scale as the R-R interval may vary with time for an individual. As the

motion sensor and ECG acquisition start times could be slightly different, it is also essential to

have an automatic means to calculate the time delay between the two start times. The location

of the peak of the cross-correlation between the motion sensor dataβk(n) and the time warped

impact signalǫ(i) was used as a measure of this time delay to synchronize the ECG and motion

sensors. Having synchronized the two sensors, the index function κ(i) can be easily computed

from the warped impact signal. The usefulness of the function κ(i) will be clear in the next

section when the data from two different sensors are compared at a given instant of time.

IV. RESULTS

Continuous Lead II ECG signals are recorded as described in Section II for the Treadmill

and the BMA Tests. The results for these two experiments are reported separately. Data are

collected both from healthy subjects as well as patients with cardiac disorders. In case of patients,

ectopicity in QRS complexes are manifested as major spikes inthe impact signal, as mentioned

in [13]. To obtain a correct estimate of the impact in these cases, ectopics have to be separated

from the input data stream by standard preprocessing techniques discussed in the literature [23],

[24], [25]. In [23], an adaptive, model based technique is proposed for estimation of width and

shape parameters of the QRS complex. Autoregressive modeling of envelops of discrete cosine
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transform coefficients of the QRS complex is proposed in [24].Application of a neural network

for classification of normal and abnormal ECG beats is proposed in [25]. Having detected the

ectopic beat, one may simply discard the abnormal spikes in the impact signal. However, owing

to the inability in handling frequent ectopics, the method is not found to work well in subjects

where ventricular bigeminy is observed, i.e. one normal QRS complex followed by one ectopic,

alternately.

A. Experiments on the Treadmill

In the experiment involving the treadmill, our endeavour was to find a relation between the

impact signal and the treadmill speed for quantification of the impact signal. Most subjects took

some time to adjust to the movement on the treadmill during the first stage of the exercise due to

the sudden and jerky start, which consequently affected their gait for reactive stabilization, and

resulted in increased motion artifacts. We report our findings for healthy subjects and cardiac

patients separately as below:

1) Case I (Healthy Subjects): Data from healthy volunteers are acquired with different tread-

mill speeds at zero inclination. Once the subject was settled on the treadmill, the impact signal (ǫ)

showed an increase in amplitude with increasing treadmill speed. This is illustrated in Fig. 2,

in which are plotted the mean impact signal estimates (m), along with the standard deviation

(σ), for a given treadmill speed. This clearly demonstrates that as the human motion activity

increases, it can be easily captured from the impact signal derived from the ECG signal itself.

The discrepancy in the plot at the beginning is due to jerky start of the treadmill as explained

earlier. The variance of the impact signal strength at a given treadmill speed, shown in this plot,

makes a very interesting observation. We observe that, for the jth speed

mj + σj < mj+1 − σj+1.

If for a given speed of the treadmill, the impact signal is assumed to be Gaussian distributed,

this would mean that, given the measure of the impact signalǫ, one can correctly identify the

treadmill speed in more than 68% cases as the area of a Gaussian probability density function

within the range[m − σ, m + σ] is about 0.68. Given that we are working with a single lead

ECG recorder, this can be considered quite an accurate measurement technique. Computing the

cross-correlation between the impact signal and the treadmill speeds yields a typical correlation

coefficient ofρ = 0.95, which also indicates a strong collinearity among them.
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2) Case II (Cardiac Patients): Patients who undertook the stress test could barely complete 3

stages of the Bruce Protocol. The impact signal for one such subject is shown in Fig. 3(a-b). As

in case of normal subjects,ǫ increases with increasing treadmill speed. From the plot ofmean

impact signal estimates (m) in Fig. 3(b), we find that

mj + σj < mj+1 − σj+1

described in Case I, again holds true. The discrepancy in the value of ǫ in the first stage as

explained earlier is also observed here. This suggests thatthe impact signal provides a good

estimate of treadmill speeds irrespective of whether the QRScomplexes of the subject are normal

or abnormal.

There is a small treadmill inclination associated with the Bruce protocol, which increases

gradually with every stage. We have ignored this inclination, as magnitude of this slope is very

small at the first few levels of the protocol.

The treadmill exercise involves putting the heart through acertain amount of stress, with peak

heart rates touching 150 beats per minute. Such stress may result in temporary morphological

changes in the ECG, more so in case of patients with ischemic heart disease [21]. The nearly

linear trend of the impact signal with respect to the treadmill speed despite these morphological

variations can be explained by the fact that these changes are gradual compared to motion

artifacts, and the RPCA method adapts itself to gradual variations. From this we conclude that

the impact signal provides a good estimate of activity levels even when the heart is subjected to

high levels of stress.

B. Experiments with Motion Sensors

In our experiment with motion sensors, since our objective was to evaluate the applicability

in ambulatory ECG monitoring, some typical BMAs were chosen asexplained in section II. The

impact signal is derived from the ECG signal described in Section III-A, while the motion data

was analyzed according to the procedure given in Section III-B. The goal here is to determine a

relationship between the impact signalǫ(i) with the kinematic measures like accelerationβk(n)

and displacementγk(n).

Before we quantify the effect of ambulation on the acquired ECG, we illustrate the effect by

plotting the ECG traces for a normal subject with and without the body movement in Fig. 4. The

April 15, 2008 DRAFT



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13

sample ECG under a sedentary condition without any body movement is shown in Fig. 4(a). The

corresponding ECG trace for the same subject while moving hisleft arm is shown in Fig. 4(b).

Fig. 4(c) shows the effect of walking for the same subject. Itis quite clear from the plots that

the corresponding ECG traces are very different in terms of ambulation artifacts.

First, we look at the impact of posture changes, requiring subjects to sit down and stand up

alternately at three different intensity levels: slow, medium and fast, with a motion pause of

nearly 20 seconds in between. The impact signal for a subjectdue to these posture changes is

shown in Fig. 5(a), while the corresponding accelerationsβk(n) are shown in Fig. 5(b-c). We

observe that the magnitude of the impact signal follows the pattern of the accelerationβk(n), i.e.

low, medium and high, indicating that the impact signal is a quantitative measure of the levels

of the body movement similar to acceleration. From the plot of the impact signal, the exact

instants when the posture changes were effected can be identified by successive peaks. This can

be verified from the accelerometer data.

Next, we analyze the act of climbing up and down on a staircaseof 36 steps, again at three

different intensity levels. A rest period of 30 seconds was allowed after finishing each level. The

impact signal for this activity for a subject and the corresponding acceleration signalsβk(n) are

shown in Fig. 6. From the amplitudes of signals in the figure and their time spans it is apparent

that the impact signal quantifies the different levels of body movement while climbing stairs.

For slow motion, both the impact signal and the accelerationmeasures are less in magnitude.

They both increase proportionately as the pace increases.

Next, we look at the results of impact analysis of extent of body movement on the ECG

signal. Arm movements have a larger extent as compared to usual leg and waist movements,

as the shoulder joint is one of the most freely movable jointsin the human body with a large

range of motion (ROM). Hence we considered arm movement withflexion at the shoulder joint

parallel to the sagittal plane of the body. For this purpose,the subject was asked to swing one

of the arms to different angular extents: very small (±10o from rest), small (±30o), moderate

(+60o to −45o) and wide (+90o to maximum ROM angle backward). Approximately the same

pace was maintained throughout the different extents of armmovement, with the other arm

static, at rest by the side of the body. An instance of the impact signal for this activity involving

the right arm, with corresponding acceleration and displacement signals of the sensor placed on

the right arm are shown in Fig. 7. Except in case of the very small extent of movement, the
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acceleration magnitudes for the other extents are more or less at the same level. However, there

is a discernible variation in the amplitudes of the corresponding impact signal, associated with

the increasing displacement levels. That shows the impact of extents, e.g. very small, small,

moderate and wide movements of right arm on the ECG signal. A similar exercise was also

performed with the left arm. However, for the lead-II configuration, the impact signal is not as

sensitive to left arm movements as compared to right arm movements, as reported in [13]. It

may be useful to adopt a different lead configuration for thiscase.

Analysis of the impact for different strides (extents) and speeds of walking also indicates an

increase in impact signal amplitude with increase in acceleration. In addition, one also observes

that for the same pace of the stride, a longer stride results in increased motion artifacts. A shorter

but quicker stride may result in the same walking speed as a longer but slower stride. Looking at

this from the perspective of the treadmill experiment, and considering thatǫ was almost linearly

related to treadmill speed (see Fig. 2), this is an expected result. An illustration of the impact

of walking is given in Fig. 8.

The motion sensor experiment also involved patients with cardiac disorders and anomalous

QRS complexes. Since there is no existing protocol as yet and this experiment was not conducted

under medical supervision, it was ensured that the overall intensity levels of the activity were

lower for the selected patients, to avoid undue physical stress. Fig. 9(a-c) shows the results for

the right hand movement activity as in II.(2) at three speeds, from a patient with a prosthetic

aortic valve and a left-bundle branch block (LBBB). From the ECG,we can observe that the

QRS duration is more than twice that of a normal subject, the R-wave amplitude is smaller than

normal, and the S-wave is predominant. However, the resulting trends are similar to that from

healthy volunteers. The Recursive PCA method was largely unaffected by the vastly different

QRS morphology in case of cardiac patient data. Motion artifacts being an external influence

at the superficial level of the skin, it must have similar effects on the ECG for both healthy

subjects as well as those with cardiac abnormalities.

In our next attempt to analyze the acquired data, we remove the time dependence and plot

the impact signal as a function of the instantaneous acceleration. This should ideally remove

the human bias as we no longer know when a particular acceleration took place and what the

subject was actually trying to do at that instant. The scatter plot of the impact signal for the

experiment on climbing stairs vs. norm of acceleration in Fig. 10 shows the presence of well-
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defined clusters corresponding to different magnitudes of acceleration, underlining the fact that

ǫ is a proper representative of activity levels. It is also clear that mean values ofǫ provide

better estimates of activity levels than instantaneous values, although instantaneous values of the

impact signal provide a fairly accurate indication of initiation or cessation of activity periods.

An alternative representation of the impact signal and the corresponding norm of instantaneous

acceleration after temporal smoothening is illustrated inFig. 11 and Fig. 12, associated with

the activities of walking and torso twisting, respectively. The linear relationship shows that the

impact signal can be used for quantification of motion. Comparing Fig. 11 and Fig. 12, we note

from the impact signal range that a smaller acceleration at the waist due to stretching of the body

while twisting, causes a similar impact on the skin-electrode interface, as a larger acceleration at

the leg while walking. At zero acceleration, a finite value oferror (≈ 0.1) is observed, analogous

to background noise, which can be attributed to the beat-to-beat variability in the human ECG

even at rest.

Plotting the cross-correlation between the acceleration signal and the impact signal indicates a

strong linear correlation between the two quantities in time, with a typical correlation coefficient

of 0.80. The location of the peak on the correlation plot alsoproved to be a good estimate of the

time delay between the starting of motion and ECG data, as verified from the video recording

of the experiment. As mentioned in III-C, this has been used inall plots to time synchronize

the acceleration and impact signals.

Presented in Table II, is a summary of the global mean (µ) and standard deviation (σ) of

the coefficients of cross-correlation (ρ) and linear regression (ω) for the motion signals from

representative sensors for climbing stairs and walking. The cross-correlation values are high,

while the low values of the standard deviation ofρ indicate less person to person variation. In

other words, the impact signal is well correlated for most ofthe subjects. Standard deviation

values forω are higher, indicating higher interpersonal variability in this regard. This implies

that the method requires individual specific calibration for more accurate quantification of patient

activity levels.

V. CONCLUSIONS

We have studied the extent of impact of body movements on generation of motion artifacts

in ambulatory ECG recordings, and reported our observationson the quantification of body
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movements using the impact signal. The amplitude of the impact signal is shown to be very

well correlated with the acceleration magnitudes at the limb locations, a fact that is verified by

analyzing the signal amplitudes in time synchronization. The impact signal also shows a linear

trend with the treadmill speed in case of the stress test, further validating the idea of motion

quantification from the ECG data itself.

We have restricted ourselves to subjects with normal posture and gait, and results may be

different in case of individuals with defects in gait. An indication of this fact is the discrepancy

observed in the first stage of the treadmill test, where abnormal gait results due to difficulty in

adjusting to the jerky start of the treadmill. Also for the chosen lead configuration, it is found

that movements of right-arm have a greater impact as compared to similar movements of the left

arm due to proximity of the sensor. Finally, we have limited our studies to single lead (lead-II)

observations, and now plan to develop an equally miniature multi-lead ECG system. Additional

activities could be analyzed if more than one ECG lead were available.
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4 Illustration of ECG signal for a normal subject while different ambulation activities.
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5 Illustration of impact signal (ǫ) for change in posture alternating between sitting

down and standing up three times each with three different levels: slow (0-120s),

medium (120-240s) and fast (240-360s). (a) impact signal derived from the ambu-

latory ECG signal, norm of acceleration (m/s2) for sensor attached at (b) right leg,

(c) waist. The horizontal axes are time in seconds in all plots shown. . . . . . . . . 27
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right leg, (c) waist. The horizontal axes are time in secondsin all plots shown. . . 28
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with similar pace (very small:8-48s, small:78-120s, moderate:156-200s, wide:340-
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acceleration (m/s2) for sensor attached at right arm, (c) norm of displacement (m)

for the sensor attached at right arm. The horizontal axes represent time in seconds
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8 Illustration of impact signal (ǫ) for walking with three different stride-lengths: 1,

2 and 3 ft. and at three different speeds: slow (1 ft: 25-207s,2 ft: 265-358s and 3

ft: 405-470s), medium (1 ft: 515-621s, 2 ft: 675-747s and 3 ft: 795-843s) and fast

(1 ft: 915-987s, 2 ft: 1035-1078s and 3 ft: 1145-1180s). (a) impact signal derived

from the ambulatory ECG signal, norms of acceleration (m/s2 for sensor attached

at (b) right arm, (c) waist. The horizontal axes indicate time in seconds. . . . . . . 30

9 Illustration of the impact signal (ǫ) of a cardiac patient for right arm movements

at three different speeds : slow (0-50s), medium (75-120s) and fast (144-190s). (a)

impact signal derived from the ambulatory ECG signal, (b) norm of acceleration

(m/s2) for sensor attached at right arm, (c) a snapshot of the ECG signal recorded

during this activity. Note the abnormal QRS morphology, and the increase in motion

artifacts after 144s due to initiation of activity. The horizontal axes indicate time

in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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10 Scatter plot of the magnitude of the impact signal (ǫ) as a function of norm

of instantaneous acceleration while climbing stairs at three paces, for the sensor

attached at the right leg. Note the well-defined clustering around the large dot,

which represents the mean value ofǫ over 15 beats. The trend appears to be more

or less linear, and the vertical bars representative of the standard deviation ofǫ

indicate separability of acceleration levels at a resolution of nearly0.2g. . . . . . . 32

11 Plot of the magnitude of the impact signal (ǫ) as a function of norm of instantaneous

acceleration while walking, for the sensor attached at the right leg. This indicates

that as the activity level goes up so does the motion artifact. The trend appears to

be a linear one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12 Plot of the magnitude of the impact signal (ǫ) as a function of norm of instantaneous

acceleration for the twisting at waist movement, for the sensor attached frontally

at the waist. Note that the acceleration values are much smaller (about 0.1-0.2g)

compared to the previous plot as the movement at the waist is much slower than

at the leg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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Fig. 1. Illustration of the experimental setup. Motion trackers (small orange objects) are strapped on the upper arms and the

waist. The bigger object hanging at the waist where the left hand touchesis the bluetooth interface for motion sensors. The

single lead ECG recorder is attached to the front right side of the waist. Theentire experiment is recorded on video to capture

stray events not recorded by the motion sensor.
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TABLE I

THE BRUCE PROTOCOL

Level Time(mins) Speed(kmph) Gradient(%)

1 0-3 2.74 10

2 3-6 4.02 12

3 6-9 5.47 14

4 9-12 6.76 16

5 12-15 8.05 18

6 15-18 8.85 20

7 18-21 9.65 22
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Fig. 2. Illustration of the relation between the impact signal and treadmill speeds for a subject walking at different speeds on

a treadmill. The large dot represents the mean value of the impact signal (ǫ), with the vertical bars representing the standard

deviations around the mean. The horizontal axis is the treadmill speed in km/hr. The first stage on the treadmill shows a larger

value ofǫ, due to the initial discomfort of the subject on the treadmill.
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(a)

(b)

Fig. 3. Plots of the impact signal (ǫ) for a cardiac patient whose treadmill test was terminated after 30 seconds into the fourth

stage of the Bruce Protocol. The first stage in both plots shows a comparatively large value ofǫ, due to the initial adjustment

issues of the subject on the treadmill. (a) Plot ofǫ vs. time in seconds on the treadmill. The corresponding stages are indicated

by numbers at the top, with ‘0’ indicating resting conditions. (b) Plot illustrating the relation betweenǫ and treadmill speeds.

The large dot represents the mean value of theǫ, with the vertical bars representing the standard deviations.
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Fig. 4. Illustration of ECG signal for a normal subject while different ambulation activities. (a) sedentary ECG signal without

any body movement, (b) ambulatory ECG signal of the same subject whilemoving his left arm, (c) ambulatory ECG signal of

the same subject while walking. The horizontal axes are time in seconds in all plots shown.
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Fig. 5. Illustration of impact signal (ǫ) for change in posture alternating between sitting down and standing up three times each

with three different levels: slow (0-120s), medium (120-240s) and fast (240-360s). (a) impact signal derived from the ambulatory

ECG signal, norm of acceleration (m/s
2) for sensor attached at (b) right leg, (c) waist. The horizontal axes are time in seconds

in all plots shown.
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Fig. 6. Illustration of impact signal (ǫ) for climbing stairs with three different paces: slow (18-206s), medium(244-352s) and

fast (395-470s). (a) impact signal derived from the ambulatory ECG signal, norms of acceleration (m/s
2) for sensor attached at

(b) right leg, (c) waist. The horizontal axes are time in seconds in all plotsshown.
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Fig. 7. Illustration of impact signal (ǫ) for right arm movement with four different extents with similar pace (very small:8-48s,

small:78-120s, moderate:156-200s, wide:340-388s). (a) Impact signal derived from the ambulatory ECG signal, (b) norm of

acceleration (m/s2) for sensor attached at right arm, (c) norm of displacement (m) forthe sensor attached at right arm. The

horizontal axes represent time in seconds in all plots shown.
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Fig. 8. Illustration of impact signal (ǫ) for walking with three different stride-lengths: 1, 2 and 3 ft. and at three different

speeds: slow (1 ft: 25-207s, 2 ft: 265-358s and 3 ft: 405-470s), medium (1 ft: 515-621s, 2 ft: 675-747s and 3 ft: 795-843s) and

fast (1 ft: 915-987s, 2 ft: 1035-1078s and 3 ft: 1145-1180s). (a)impact signal derived from the ambulatory ECG signal, norms

of acceleration (m/s2 for sensor attached at (b) right arm, (c) waist. The horizontal axes indicate time in seconds.
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Fig. 9. Illustration of the impact signal (ǫ) of a cardiac patient for right arm movements at three different speeds : slow (0-50s),

medium (75-120s) and fast (144-190s). (a) impact signal derived from the ambulatory ECG signal, (b) norm of acceleration

(m/s2) for sensor attached at right arm, (c) a snapshot of the ECG signal recorded during this activity. Note the abnormal QRS

morphology, and the increase in motion artifacts after 144s due to initiation ofactivity. The horizontal axes indicate time in

seconds.
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Fig. 10. Scatter plot of the magnitude of the impact signal (ǫ) as a function of norm of instantaneous acceleration while

climbing stairs at three paces, for the sensor attached at the right leg. Note the well-defined clustering around the large dot,

which represents the mean value ofǫ over 15 beats. The trend appears to be more or less linear, and the vertical bars representative

of the standard deviation ofǫ indicate separability of acceleration levels at a resolution of nearly0.2g.
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Fig. 11. Plot of the magnitude of the impact signal (ǫ) as a function of norm of instantaneous acceleration while walking,

for the sensor attached at the right leg. This indicates that as the activity level goes up so does the motion artifact. The trend

appears to be a linear one.
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Fig. 12. Plot of the magnitude of the impact signal (ǫ) as a function of norm of instantaneous acceleration for the twisting

at waist movement, for the sensor attached frontally at the waist. Note thatthe acceleration values are much smaller (about

0.1-0.2g) compared to the previous plot as the movement at the waist ismuch slower than at the leg.
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TABLE II

MEANS (µ) AND STANDARD DEVIATIONS (σ) OF THE COEFFICIENTS, ρ AND ω FOR CLIMBING UP STAIRS AND WALKING

ACROSS DIFFERENT SUBJECTS

Coefficients Correlation (ρ) Regression (ω)

Activity Hand Thigh Waist Hand Thigh Waist

Climb µ 0.8226 0.8090 0.8150 0.1337 0.0655 0.1297

σ 0.0195 0.0161 0.0176 0.0368 0.0222 0.0408

Walk µ 0.8517 0.8027 0.7985 0.1989 0.1548 0.1779

σ 0.0278 0.0628 0.0512 0.0599 0.0675 0.0471
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