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Abstract

In this paper we study the exact super-resolvability of a
scene from a single observation by designing a partial
alias-free interpolation scheme. We generate the unknown
high frequency components of the given partially aliased,
low resolution image by minimizing the total variation of
the interpolant subject to the constraint that the unaliased
spectral components in the low resolution observation are
known precisely. This provides a mathematical basis for ex-
act reproduction of high frequency components with prob-
ability approaching one, from their aliased observation. A
numerical scheme is suggested to solve the reconstruction
problem.

1. Introduction
Images with high spatial resolution are always a necessity
in computer vision applications. Resolution enhancement
using interpolation techniques is of limited application be-
cause of the aliasing present in the low resolution (LR) im-
age. Hence researchers have been working in the field of
Super-resolution (SR) where a high-resolution (HR) image
is reconstructed using one or more LR observations. In
general, super-resolution involves deblurring, denoising and
alias-removal. There are, in general, two classes of super-
resolution techniques: reconstruction-based and learning-
based [11]. In reconstruction-based SR techniques several
LR images are used to reconstruct the super-resolved im-
age. In learning-based methods proposed in the literature,
one or more LR observations are used, but they make use of
a database of several HR images to estimate the HR image
corresponding to the given LR image.

All existing papers claim that they have been able to gen-
erate additional high frequency components through the use
of multiple exposures or learning from the database. But
there has been no mathematical proof or studies to show
that the generated high frequency components are, indeed,
the correct ones! For example, even a bilinear interpola-
tion will generate (spurious) high frequency components.
The authors measure the visual quality or peak signal to
noise ratio (PSNR) to quantify the goodness of the tech-

nique. Unlike all previous work, we provide a mathematical
basis based on which the correctness of the generated high
frequency components can be established. In this paper we
study only one specific aspect of SR, the alias removal part,
at an exact theoretical level. We deal with a very specific
case- only a single LR observation, no multiple view col-
lation and no learning from a database. In effect, we show
how much additional information can be extracted from a
single observation through alias removal alone.

Image super-resolution is an under constrained prob-
lem since many HR images can produce the same LR im-
age. We now review some of the previous work in SR.
The super-resolution idea was first proposed by Tsai and
Huang[15]. Their frequency domain approach reconstructs
an HR image from a sequence of several LR undersampled
images by exploiting the relationship between the contin-
uous and the discrete Fourier transforms of the undersam-
pled frames. A different approach to the super-resolution
restoration problem was suggested by Irani et al. [6, 7]
based on the iterative back projection method. A maxi-
mum aposteriori (MAP) estimator with Huber-Markov ran-
dom field prior is described by Schultz and Stevenson in
[14]. Elad and Feuer [4] proposed a unified methodol-
ogy for super-resolution restoration from several geomet-
rically warped, blurred, noisy and down-sampled images
by combining maximum likelihood, MAP and projection
onto convex sets approaches. Nguyen et al. proposed circu-
lant block preconditioners to accelerate the conjugate gradi-
ent descent method while solving the Tikhonov-regularized
super-resolution problem [10].

Now we review some of the recent works under the
learning-based super-resolution category. In [1] Baker and
Kanade investigate how much extra information is actually
added by having more than one image for super-resolution
and show that reconstruction constraints provide less use-
ful information as the decimation ratio increases. In [5]
Freeman et al. proposed a parametric Markov network to
learn the statistics between the “scene” and the “image” as
a framework for handling low level vision tasks, one ap-
plication of which is super-resolution. Pickup et al. [12]
present a domain-specific image prior in the form of a distri-
bution function based upon sampled images, and show that
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for certain types of super-resolution problems, this sample-
based prior gives a significant improvement over other com-
mon multiple-image super-resolution techniques. In [8], Jiji
et al. have proposed a single frame super-resolution algo-
rithm using a wavelet-based learning technique where the
HR edge primitives are learned from the HR data set lo-
cally. In [3] Chang et al. proposed a single frame image
super-resolution method where the generation of the high
resolution image patch depends simultaneously on multiple
nearest neighbors in the training set in a way similar to the
concept of locally linear embedding for manifold learning.
This method requires fewer training examples than other
learning-based super-resolution methods.

In all the above methods, the quality of the super-
resolved image is measured either by means of visual in-
spection or using a PSNR check. It can be easily shown
that the PSNR measure is heavily biased towards the lower
part of the spectrum due to the fact that most of the en-
ergy is contained in this region. Hence the PSNR may not
be a good measure to evaluate the performance of an SR
scheme. The issue that the reconstructed components are
really the high frequency components has not really been
investigated so far. Our work in this paper is a study in
this direction. In [9], Lin and Shum determine the quanti-
tative limits of reconstruction-based super-resolution algo-
rithms and obtain the up-sampling limits from the condi-
tioning analysis of the coefficient matrix. They also deter-
mine the number of LR images that are sufficient to achieve
the limit. But it is restricted to a perturbation analysis and
not on spectral resolvability.

Rajan et al. have analyzed the possibility of alias-free
upsampling of images in [13] through the use of a gener-
alized interpolation. They have shown the conditions un-
der which such an interpolation is possible. However, it re-
quires several observations. We study the issue of alias-free
interpolation at a more fundamental level and restrict our-
selves to using a single observation. Our work is motivated
by the work of Candes et al. [2] where the authors address
the problem of exact signal reconstruction from incomplete
frequency information. We use the theorem developed by
them to derive a method for exact removal of aliasing while
interpolating an image. We also discuss the amount of alias-
ing that can be removed reliably. Further, we also provide a
numerical method to obtain the solution.

The reminder of the paper is organized as follows. We
discuss the LR image formation process in section 2. We
also define the problem here. A relevant theorem which we
make use of in solving the problem is stated in 3. Some
useful corollaries are also given. Section 4 explains our
alias-free interpolation technique. In section 5 we discuss
the computational scheme to solve the problem. We present
experimental results on different types of images in section
6, and the paper concludes in section 7.

2. Aliasing during LR Image Forma-
tion

It is assumed that the observed low resolution image is pro-
duced from a single high resolution image under the follow-
ing generative model. Let �� represent the lexicographically
ordered high resolution image of �����
	 pixels. If �� is the� ���	 lexicographically ordered vector containing pixels
from the low resolution observation, then it can be modeled
as �������� �� (1)

where � is the decimation matrix, size of which depends
on the decimation factor and � is the blur matrix assumed
to be an identity matrix in this paper for the specific task of
studying the alias-removal property. For a decimation factor
of � , � � � � and the decimation matrix � consists of ���
non-zero elements of value ���� along each row at appropriate
locations and has the form [14] (using a proper re-ordering
of � )

��� 	� �
����� 	�	 �!�!�!	 "	#	$�!�%�&	

. . ." 	#	$�!�%�'	
(*)))+ � (2)

The LR image formed through the above process will, in
general, be aliased. The aliasing mechanism is illustrated
in Figure 1. The spectrum of a a continuous-time 	-, �
signal .0/214365 band limited to 7 radians/sec is shown in
Figure 1(a). The spectrum of the sampled signal .81:9;5
sampled at a rate <>=@?A7 is shown in Figure 1(b). Of
course the spectrum will be aliased since the signal is
sampled at a rate less than the Nyquist rate. The resultant
aliased spectrum of the sampled signal is shown in Figure
1(c). As can be noted from Figure 1(c) the portion of the
spectrum <B,
7�CEDFCF7 will be aliased and the rest will
be alias-free. A similar form of aliasing takes place in low
resolution images unless the blur matrix � in equation (1)
is quite severe. The knowledge about the unaliased portion
of the spectrum GHC�DICI<
,J7 will be used as a constraint
in the proposed method to recover the super-resolved image.

Having explained the aliasing process, we now define
our problem in terms of alias-free interpolation: Given an
LR image � 1:.;KMLN5 of size

� � � whose spectrum is partially
aliased, generate an interpolated image � 14.8K6LO5 of size ? � �? � which is completely alias-free under the assumption that
the image consists of piece-wise constant intensity regions.

3. A Relevant Theorem [2]
Theorem 1: Consider a discrete-time 	P, � signal QSRST$U
and a randomly chosen set of frequencies V of mean size
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Figure 1: Illustration of the aliasing process: (a) Spectrum
of a continuous-time signal . / 1:365 , (b) components of the
spectrum of the sampled signal .P149;5 , and (c) resultant spec-
trum of .8149;5 .W � KMGH= W =X	 . Then for each Y�ZIG , suppose that Q obeys[J\ 9]K^Q_1:9;5a`� GOb-Cdce1fY�5'�g1:hji#k � 5ml � � [ VnK (3)

then with probability at least 	,poH1 � l0q 5 , Q can be re-
constructed exactly as the solution to the r � minimization
problemsHtguv U l �wxAy{za| } 149;5 |p~ � 3&�-��1�D�5 � <�1�D�5S��DERSV (4)

where ��1�D�5 and <�1�D�5 are the discrete Fourier transforms
of } 149;5 and Q_149;5 respectively and

[
refers to the count.

Here Y is an accuracy parameter in the term oH1 � l0q 5 andc�1�Y�5 has been shown to be equal to 16	����N1�	2565^�N1f?��O� ��1�Y���	�5M5
under certain conditions in [2]. In a simple language it
means that as one selects more spectral components com-
pared to the number of non-zero elements in Q_149;5 , one is
likely to recover the true function Q_149;5 with a higher accu-
racy. Proof of the theorem can be found in [2].

According to the theorem the discrete-time signal Q can
be reconstructed from its partial frequency samples as the
solution to the constrained r � optimization problem as stated
above. It may be noted that the reconstruction is possible if
the signal consists of a limited number of spikes (Kronecker
delta) only. However, most of the input signals or images do

not satisfy the above condition. If we consider this function
to be a derivative (forward difference in the discrete case) of
the function Q_149;5 , then the corresponding r � minimization
should be performed on the derivative of } 149;5 , or in other
words, one has to minimize the total variation (TV). This
leads to the following corollary.
Corollary 1: A piecewise constant object can be recon-
structed from incomplete frequency samples provided the
number of discontinuities satisfy the above condition 3, as
the solution to the minimization problemsHtjuv U l �wx�y{za| } 1:9;5_, } 149�,E	�5 |p~ � 3&�-��1�D�5 � <�1�D�5S��DER�V

(5)
Corollary 2: If Q_14.8K6LO5 is a two-dimensional object, it can
be reconstructed from its incomplete frequency samples as
the solution to the minimization problemsHtguv w w 1 | }���| � | }��O| 5 ~ � 3&�-��14D�5 � <�14D�5���DdR�V

(6)
where } � 14.8K6LO5 � } 14.;KMLO5�, } 14.�,p	#K6LO5 and } � 1:.;KMLN5 �} 1:.;KMLN5�, } 14.8K6LS,�	�5 . This is similar to minimizing the
total variation norm of } 14.8K6LO5 .
4. Alias-free Interpolation
The problem addressed in [2] is a restoration problem where
the discrete-time signal is reconstructed from its incomplete
Fourier samples such as in computed tomography. But our
problem is a signal interpolation one, where only one LR
observation � is available, which is the decimated version
of the unknown HR image � as explained in section 2. Of
course, � will be aliased. We wish to remove this alias-
ing completely while interpolating the image assuming the
aliasing to be only partial. To apply the above theorem
to our problem, a partial knowledge about ��1�D�5 should be
available. We now explain how a partial knowledge of �-14D�5
can obtained from the given observation ��1�D�5 .

Our alias-free interpolation procedure is illustrated in
Figure 2 with respect to a given 	�, � LR sequence � 149;5
of length

�
. Note that unlike in theorem 1, we are dealing

with real valued function � 1:9;5 and hence the spectrum is al-
ways conjugate symmetric and one has to consider only one
half of the spectral components. Figure 2(a) shows the par-
tially aliased spectrum of the LR sequence � 1:9;5 of length�

. We assume that ��14D�5 in GpC�D�C � is free from
aliasing and the remaining portion is aliased. This corre-
sponds to the assumption that the continuous signal � /%14365
is band limited to the normalized frequency 1�	�,¡��� � 5 ,
where GpC � C � �A? . Smaller the value of � , larger
is the amount of aliasing. Figure 2(b) shows the spectrum
of the HR sequence � 149;5 of length ? � to be estimated.
The alias-free interpolation method should recover the fre-
quency components in the region � C¢D£C � ,¡� in
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Figure 2: Illustration of (a) partially aliased spectrum of the
LR sequence � 1:9;5 , and (b) spectrum of the HR sequence� 1:9;5 to be estimated. Note that only half of the spectrum is
shown due to conjugate symmetry.

�-14D�5 as shown in Figure 2 (b). From the figure, note that
we have �-1:¤¥5 � �¦��14¤�5�§4i�¨©G�Cd¤�=E� (7)��14¤�5 � G¡§4i�¨ � ,©�ª=E¤ C � (8)

and using the property of sampling��14¤�5«�E�-1 � ,¬¤�5 � �¦��14¤�5�§4i�¨©�CE¤$C � ��? (9)

Hence the alias-free reconstruction of the high resolution
signal involves recovering the spectrum ��1�D�5 given equa-
tions (7-9). Clearly, this cannot be done without additional
constraints. Note that one needs the scale factor � (equal to? in this study) to satisfy the energy relationship (Parseval’s
theorem). In order to recover � 1:9;5 , we need to first derive
the following theorem.

Theorem 2: Given a discrete-time partially aliased 	N, �
signal � R¯®_U , and two distinct spectral intervals V�° �\ GBC�D�=±�²b and V�³ � \ � C´D´C � �A?�b and an-
other discrete-time signal � R�®]�^U satisfying Nyquist crite-
rion with three distinct spectral intervals V�°�µ � V�° , V�³2µ �\ � C¶D·C � ,I�²b and V z µ � \ � ,I� =¶D·C � b ,
under conditions very similar to those defined theorem 	 ,� can be recovered exactly from � as a solution to the r �

minimization problemsHtju¸ �^U l �wxAy{z©| � 149;5 | (10)

subject to the constraints��1�D�5 � ?A��14D�5���DdRSV °�µ (11)�-14D�5;�E�-1 � ,¬D�5 � ?���1�D�5���DdRSV�³ (12)��1�D�5 � GF��DdRSV z µ (13)

Proof: One can follow arguments similar to those in [2]
except that the partitions are deterministic and hence it will
lead to different values of the parameters c and Y .

It may be noted that the partitions V ° and V ³ correspond
to the alias-free and the aliased components of the low reso-
lution signal � , respectively. Since the partition is known, it
implicitly means that we know the extent of aliasing in the
observation. Furthermore, the above theorem assumes that
the signal consists of a limited number of Kronecker deltas.
Extending the theorem to deal with piece-wise constant sig-
nal, and also on the ?¹, � lattice, we realize that we should
minimize the expressionsHtgu¸ w w 1 | � ��| � | � �N| 5 (14)

instead of equation (10) to recover the high resolution image� . (The multiplication factor � in equations (11) and (12)
should be replaced by �A� �Fº due to the extension to ?«, � .)
It may be noted that if � is, indeed, piecewise constant then
it cannot ideally be band limited, and hence the partition Va°
will not be completely free from aliasing.

Now we look at the issue of the choice of the value of� for alias removal. It is assumed in theorem 2, that �
is known. This is tantamount to assuming the highest fre-
quency component present in � is known apriori. However,
one would not know � in practical super-resolution appli-
cations. We suggest that one solves the problem for differ-
ent values of � and then compare the results. However, as
the value of � is lowered from

� �A? toward G , the cardinal-
ity of the set V ° reduces and the reconstruction would be
progressively more unreliable. It also leads to the follow-
ing observation that one cannot use an interpolation factor �
greater than ? as this would mean � � G , implying a sev-
eral fold aliasing when V»° � \¦¼ b and hence reconstruction
would be very unreliable.

5. Computational Method
Theorem ? provides a theoretical basis for obtaining the
alias-free interpolated image � . We now provide the com-
putational tool to solve this. We obtain the solution to
the above optimization problem using linear programming
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(LP). The objective function for the LP problem is the to-
tal variation cost as given in equation (14). The equality
constraints are obtained using equations (11), (12) and (13).
The equality constraints corresponding to equation (11) can
be written in the form ½ ° ���� �� ° (15)

where

½
is the ? � �²? � DFT matrix with elements

½ 14¾�K69;5 �À¿ Á l�ÂMÃ�Ä U»Å�Æ x and

½ ° represents the top � rows
of

½
. Thus

½ ° is an �±��? � matrix. Similarly �� is the DFT
of the observation � � 149;5 and ��-° corresponds to the top �
elements of �� . The equality constraints corresponding to
equation (12) can be written as½ ³ ���� �� ³ (16)

where

½ ³ is an 1 � �A?�,E�>�X	25»�¬? � matrix whose each
row is obtained by summing the corresponding two rows
of the DFT matrix

½ ° as per the indices shown in equation
(9). ��-³ corresponds to the spectral components 1�� �d	�5 to1 � �A?¹,���5 in �� . Similarly equation (13) can be written as
a linear equality

½ z ���� �G (17)

where

½ z consists of the 1 � ,����S	�5 to
�

rows of the DFT
matrix

½
and �G is a null vector. All the above three linear

equations can now be compactly written as��
½ °½ ³½ z (+ ���� Ç �� �G È (18)

which is of the form É���
� �Ê � We also know that � 149;5�ËG¢��9 as � 149;5 corresponds to an image. Also note that the
above equation is meant for the first half of the spectrum.
One would get an equivalent constraint for the other half
based on the conjugate symmetry. Hence equations (10) and
(18) constitute a standard LP problem. We have explained
the problem with respect a 	-, � signal and it should be
suitably changed to handle ?n, � images.

To solve the r � minimization using LP equation (14)
should be written assHtju¸ w w 161 �#Ì� � � l� 58��1 �#Ì� � � l� 565 (19)

where � Ì� �ªs�Í¦Î 1 � � KMG#5 and � l� � , sHtgu 1 � � K^G#5 , etc.
Unfortunately, this increases the dimensionality of the un-
known variables by five fold, increasing the computation
significantly. Further the constraint equations involve com-
plex numbers when the relationships have to be split into
real and imaginary parts separately, increasing the compu-
tation further. We generate the appropriate constraint matrix
and solve using the linprog routine in Matlab. But, even for
a 	�?�Ï��E	2?AÏ image, the computational resources required

are very large. Unfortunately, Matlab fails to allocate the
necessary memory even for a small sized image. A typical
option in LP is to utilize the possible sparseness properties
of É matrix in equation (18). Unfortunately again, É does
not have any sparseness as the DFT matrix

½
is not a sparse

one. So we solve it as a sequential 	�, � problem taking first
the rows and then the columns. Hence the results obtained
by this method in this paper are all sub-optimal.

6. Experimental Results
In this section we present the results of alias-free interpo-
lation obtained using the proposed approach. All the LR
images are of size � º �
� º . All the results shown in this
section are for interpolation factor of ? for the reason de-
scribed in section 4. Since the amount of aliasing � is not
known, we show results for various choices of � .

First we show the applicability of the proposed method
on a simulated 	], � data. Figure 3 (a) shows a low resolu-
tion rectangular pulse train and the corresponding spectrum
is shown in Figure 3 (b). The signal shown in Figure 3 (a) is
superimposed with three high frequency components corre-
sponding to the normalized frequencies ÐÒÑ#�A� º K^Ð����¦� º andÐÒÓ#�¦� º to obtain the signal shown in Figure 3 (c). Clearly,
these three spectral components are aliased ones. Figure
3 (d) shows the spectrum of the aliased signal. One can-
not find that the signal is aliased either from Figures 3 (c)
or 3 (d). Figure 3 (e) shows the interpolated signal using
the proposed method and its spectrum is shown in Figure 3
(f). One can see that there are spectral components at lo-
cations beyond the normalized frequency Ð#?Ò��	2?AÏ . These
components match quite well with the introduced high fre-
quency components. We have used � � ?A� in this ex-
ample. To further see the gain arising out of the proposed
method, one can note that the spectrum of the rectangular
pulse train (without the additional high frequency compo-
nents) shown in Figure 3 (b) compares very favorably with
the spectrum of the interpolated signal till the normalized
frequency of Ð#?Ò��	2?AÏ . On comparing the interpolated signal
in Figure 3 (e) with the low resolution signal in Figure 3 (c),
one can clearly see that Figure 3 (e) cannot be obtained by
the bilinear or bicubic interpolation of the original signal.
This confirms the utility of the proposed method.

Figure 4 (a) shows a partially aliased low resolution Lena
image of size � º ��� º . Figure 4 (b) shows the bicubic in-
terpolated image for comparison to the proposed method.
Figures 4 (c-e) show the alias-free interpolation results ob-
tained using the sub-optimal linear programming method.
Figure 4 (c) corresponds to the result where 	�GÒÔ ( � �?A� ), additional high frequency components are generated.
Here we assume that the aliasing in the LR image is small,
only 	�GÒÔ of the entire spectrum. If we assume that the alias-
ing in the LR observation is about ?�GÒÔ , the corresponding
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alias-free interpolated image is shown in Figure 4 (d). This
corresponds to the choice of � � ?A� . Figure 4 (e) shows
the alias-free interpolated image where we attempt to gen-
erate Ð�G�Ô additional high frequency components assuming
that Ð�G�Ô of the spectrum of the LR image is aliased. As
can be observed from Figures 4 (c-e), there is a gradual
reduction in the quality of the reconstructed image as the
aliasing in the LR image is assumed to have increased from	%GÒÔ to Ð�G�Ô . This is due to the fact that only a smaller
subset of spectral components are known exactly. In com-
parison to the bicubic interpolated image, the result using
the proposed approach is much sharper. Observe the eyes,
hair strands, etc. in Figure 4 (d). Some of the regions are
highlighted in the figure. We have observed that the recon-
struction becomes poor when the aliasing present in the LR
image is assumed to be more than ?�G to Ð�G�Ô .

Figure 5 (a) shows the expected spectrum of the alias-
free interpolated image. The spectrum of the reconstructed
image, computed as explained in section 5, is shown in Fig-
ure 5 (b). This corresponds to the spectrum of the recon-
structed image shown in Figure 4 (d). The difference is be-
cause of the sub-optimal nature of our computational proce-
dure where equation 14 is solved as a 	P, � problem where
the rows are interpolated first and then the columns. This
plot demonstrates the sub optimality of the computational
procedure. Thus one should solve it in the ?�, � domain
itself.

Next we show the results of the experiments performed
on an LR building image shown in Figure 6 (a). Figure 6 (b)
shows the bicubic interpolated image. Our results are shown
in Figures 6 (c-e) where 	%G�Ô , ?�GÒÔ and Ð#GÒÔ additional high
frequency components are generated, respectively. Here
the LR image is much more sparse than the Lena image,
hence it satisfies the condition of piece-wise constant re-
gions for perfect reconstruction discussed in equation 3 in
a better way. As a result, the alias-free interpolated images
are sharper as can be observed from Figures 6 (c-e). The
corresponding bicubic interpolated image is more blurred,
especially at the edges.

The proposed alias-free interpolation scheme works very
well for text images also. This image satisfies the as-
sumption of piece-wise constant intensity regions reason-
ably well. Figure 7 (a) shows a LR text image and the
corresponding alias-free interpolated images obtained us-
ing the proposed approach for different amounts of aliasing
in the LR observation are shown in Figures 7 (c-e). Figure
7 (b) is the corresponding bicubic interpolated image. The
alias-free interpolated images are sharper compared to the
bicubic one. The boundary of each character is quite crisp
compared to the bicubic interpolation.

Now we perform the experiments on a severely aliased
randomly textured image. The purpose of this experiment
is to demonstrate that one does not get any improvement
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Figure 3: Demonstration of the proposed approach for a	�, � signal: (a) alias-free LR signal, (b) spectrum of (a),
(c) aliased LR signal, (d) spectrum of (c), (e) interpolated
signal using the proposed approach and (f) spectrum of (e).

during interpolation if the signal is highly aliased. The LR
observation is shown Figure 8 (a). The interpolated images
using the proposed approach are shown in Figures 8 (c-e)
assuming 	%G�Ô , ?�GÒÔ and Ð�GÒÔ aliasing, respectively, in the
given LR image. As the aliasing present in the LR image
is very high, the proposed method does not give a signif-
icant edge over bicubic interpolation as can be observed
from Figures 8 (c-e). Now we assume that the entire spec-
trum is aliased, ie, V ° � \2¼ b in theorem 2 (M=1). Figure 8
(f) shows the corresponding interpolated result. We observe
that the reconstruction is quite inferior as we do not have
any of the spectral components known exactly.

7. Conclusion
In this paper we have presented a method for alias-free in-
terpolation from a partially aliased low resolution image.
We have provided a theoretical basis on how an alias-free
upsampling can be achieved. In order to interpolate the
given LR image we generate the exact additional high fre-
quency components assuming a knowledge of the nature of
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Figure 4: (a) A low resolution Lena image, (b) bicubic in-
terpolated image. Interpolated images using the proposed
approach generating additional (d) 	%G�Ô , (e) ?AG�Ô and (e)Ð�GÒÔ high frequency components.

(a) (b)

Figure 5: (a) Expected spectrum of the reconstructed image
and (b) the obtained spectrum.

(a) (b)

(c) (d) (e)

Figure 6: (a) A low resolution observation, (b) bicubic in-
terpolated image. Interpolated images using the proposed
approach generating (d) 	�GÒÔ , (e) ?�GÒÔ and (e) Ð#GÒÔ high
frequency components.

(a) (b)

(c) (d) (e)

Figure 7: (a) A low resolution text image, (b) bicubic in-
terpolated image. Interpolated images using the proposed
approach generating (d) 	%GÒÔ , (e) ?AG�Ô and (e) Ð#GÒÔ high
frequency components.

(a) (b) (c)

(d) (e) (f)

Figure 8: (a) A severely aliased low resolution texture im-
age, (b) bicubic interpolated image. Interpolated images us-
ing the proposed approach generating (c) 	%GÒÔ , (d) ?AG�Ô and
(e) Ð�G�Ô high frequency components, (f) Interpolated image
when the LR image is fully aliased.
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aliasing in the spectrum of the LR observation. The alias-
free interpolation is achieved by solving the r � optimiza-
tion. A sub-optimal computational procedure using linear
programming is presented. Since some of the standard LP
problem solver packages fail to solve the problem exactly,
we are investigating the possibility of solving it as a random
optimization technique.
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