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Abstract—Active contours are very widely used in computer that, we describe our solution and finally we present the results
vision problems. Their usage has a typical problem, that of and conclusions.
bunching together of curve points. This becomes apparent
especially when we use active contours for tracking leading II. NOTATION

to instability in curve evolution. In this paper, we propose a . : . . . .
tangential term to stabilise the evolution while at the same time We first describe the notation used in this paper. A curve is

ensuring that the curve shape is not changed. The proposed denote_d_ k_)yC_(p, t), wherep is the curve parameter artdis
method is simple and the computational overhead is minimal, the artificial time parameter. Thusparameterises a family of

while the results are good. curves whilep parameterises a single member of this family.
The initial curve isC(p, 0) and the family of curves is obtained
|. INTRODUCTION by evolving C(p,0) as per some curve evolution equation.

The local tangent anthward normal are denoted bty andn

Active contours are very widely used in computer visionespectively. The curvature is denoted dwand the arc length
tasks like tracking and segmentation. A flurry of research waarameter by. The quantityg = |C,|, is interpreted as the
sparked off by the original paper of Kass and Witkin [1] whiclspeed of a particle on the curve. This quantity is a measure
still continues. Active contours are simply connected closed the parameterisation of the contour.
curves which move so as to minimise some energy functionalsThe force at each point on the curve can be resolved into
The minimisation yields the curve evolution equations arttho components: along the local tangent and normal denoted
depending on the numerical implementation, contours halwg o and 3, respectively. This is written as:
been classified as parametric active contour or geometric active
contour. As their name suggests, parametric active contours
are implemented using parametric curves like splines [2]
finite element method [3] in a Lagrangian framework. On th
other hand, geometric active contours are implemented in an dg a
Eulerian framework using the level set methods [4] [5]. An T —grf + ap’ @)
interesting paper which links these two approaches is [6].

O a0+ (.0 @

iven this equationg varies as follows [16] [17]:

. . . . . . It is seen from the above equation that the curve speed
It is out of scope of this article to review the entire aCt'V?unction depends on both the components. On the other hand

conLour_II_l;c]erqtgr_e,l howeverfwe me”t:"g ?_ fev(\j/(;)fth; |mportaEthaS been shown by researchers [17] that only the normal
works. The initial energy functional defined by Kass et & mponent of the forcg influences the shape of the curve.

[1] was based on image gradients while Ronfard [7] extend e tangential component reparameterises the curve. Based

It to region based energy functionals. Mallgd? [8] introduc_egn this fact, most works have concentrated on constructing
the level set method into the computer vision Commun't}?nergy functions and paid attention to the normal term to speed

Anot_her Iandmark_ paper is [9]. WhiCh converte(_j the in?tiaup the convergence, increase the capture range etc. No specific
gradient problem into that of finding a geodesic path in &

Ri ; defined by the i Thev h é)rts were made to give some shape to the tangential term
lemannian space defined by the image. ey have Usglat pest it got constructed as a side effect. This did not

Fhe level set method for implementation. Some of the OIhﬁBSe any problems as these works used level set methods.
important works are [10], [11] [12] [13] [14]. However, there are some typical problems with the Lagrangian
The advantages and disadvantages of both these method$ae mentation which is discussed next. We also discuss a few

well documented [15]. Briefly, the level set method representa;mmon solutions as well as some works which had a different
tion allows topological change but has the disadvantage of téﬁ)'proach.

ing slow; converse is the case with parametric representation.

In applications like tracking, which is our primary interest, Ill. PROBLEMS WITH CURVE EVOLUTION

topological changes seldom occur. Therefore we concentrat®ifficulties with Discrete curves : A well known problem

on parametric active contours only in this paper. We usewith the parametric representation of curves is that during

spline based implementation similar to that of [2]. evolution the points on the curve bunch close together at
In the next section, we describe the problem and discusartain regions and they space out elsewhere. This increases

a few solutions which have been proposed in literature. Afterror in numerical approximation of curves measures like



tangent and curvature. In a spline implementation, althoughThe above methods are rather ad-hoc in the sense that
the tangents and normals are computed analytically and rtbey are methods to adjust Euclidean distance between points
uniform spacing of points is not a problem, in regions wherafter they space out and do not actually try to prevent this
the points come close together the control points also bunghenomenon from occuring. Some better methods to obtain a
together. This may lead to formation of discontinuities imore uniform point spacing have been proposed in [15] [16]
the curve. Subsequently the normal is ill-defined, leading [©8]. We however postpone the discussion of these methods to
formation of small local loops. These loops blow up in size aritie next section. This would enable us to compare immediately
ultimately the curve degenerates. In regions where the poiotsr method with these approaches.

space out, the segmentation will of course be much poorer.
This problem which is disturbing in segmentation problems,

becomes intolerable in tracking. Therefore our aim in this work We first qualitatively describe the cause for the bunch-
is to maintain a uniform spacing of points. ing of the points on the curve and the control points. As

entioned previously3 controls the shape while: controls

e parameterisation. It might be thought that if we set the
ngential component to zero; the curve would retain its
rameterisation and be well behaved. As seen from equation
), g depends on both the components. Therefore, while
&econstructing the curve with a discrete set of points the

in the next section). After four frames, as marked in figuﬂg_oacing between the points varies in an unpredictable manner.

(1(b)), the points accumulated in two regions are marked ba/In outr e:pprcl)tagh we en”sulie curv? Stta?r']“ti' E’ﬁ’ using lan ?E E
red circles. In the very next frame, in figure (1(c)), we notict t?mon (;0 g- q IS a W,? . ntgwnt a((:j a’b ?h arc leng Thi
that small loops have formed in these regions. These loggs' ¢ Cesired parameterisation to describe the curve. This
blow up and the curve becomes unstable. The occurence " intrinsic description of the curve. Also, we note that

degeneracy depends partly on the motion direction. In tiferen the curve Is par_ameterised by its arc length, the curve
example shown, as the hand moves from the right to Ieﬁpeedfftjhr?ctm_n qluar;tlt)tg tbeconlesl (tet?ual . V¥_9h marI:e
the points accumulate to the right and vice versa. Of cour%ge of this simple fact to control the curve. Though arc

IV. PROPOSEDMETHOD

As an example, we show two frames from a trackin
sequence of a hand. We use the final curve of the previo
frame as the initialisation for the current frame. Figurel(a‘
shows the curve just after initialisation. The points on the cur
are nearly equidistant. We use a minor modification of t
region competition model [11] for tracking (this is explaine

the exact number of frames between initialisation and lo hgth parameterisation is most desirable; it cannot always
formation depends on different image sequences e achieved in practice. This is because of the representation

. ) . . used. For example, when we use closed periodic B Splines
Few Solutions ._In thl_s section, we present a few_ possible, represent a curve, the parameter rangd/js the number
approaches described in the literature to tackle this problé§ppagis functions. Obviously, it cannot be guaranteed that the

and discuss their limitations. length of the curve would always be equal to this or even close
1) Reinitialisation of curve can be done either after tp this. Therefore, the next practical compromise would be to

fixed number of frames or when the distance betwedi@vey to be a constank’.
successive control points falls below a certain threshold.!t i then natural to use equation (2) to force the curve
As proposed in [2], this can be done by minimising thiowards the parameterisation which would make: K. The
least squared distance between the current curve dffi hand side of this equation predicts hgachanges given
the new curve while penalising the distance between tHe@nda. We know the normal componep this is obtained
control points. However, this is not a very good solutioffOmM minimising the energy function defined on the curve.
because the shape of the curve would change during fR@uation 2 can be rewritten as:

re-positioning of the control points. The computation is da 0Og 3

also increased in checking the distances in each frame op ot + 95, ®)
after every iteration. .
o . . . Let us set:

2) Another ad-hoc solution is inserting or deleting points dg K 4

from the curve when the distance between them exceeds ot~ 9 )

or falls belo_w a certain threshold. This again is not a veryygjitatively, at each point we try to finglby pushingg at that
good solution; the thresholds have to be set manuaiint to the constank. We can sefs by simply averaging it
and in general is a naive procedure. over the curve in the first frame. We obtainby substituting

3) In a spline based implementation; we could also cogguation (4) in equation (3) and then numerically solving the
trol the curve by deleting or inserting control pointsyegyting ODE:

Although algorithms exist for such a procedure; this
solution is not natural, is specific to splines and is aﬁ = @
computationally expensive. Also, if we were to use dp Ot
the control points to represent the shape space, thédeer solving for a(p,t), we use the values in equation(1).
operations would change the dimensions of the featuféis simple term gives very good stabilisation of the curve as
space. we shall see in the next section on results.
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(a) Frame 26 (b) Frame 30 (c) Frame 31
Fig. 1: lllustration of curve degeneration:1(a) Initial curve (in red). Convergence to target(in green). 1(b) Bunching of points(in

red) starts due to target motion leading to 1(c) loop formation.

It is interesting to compare the proposed energy term witthere M/ depends on the representation used argdpropor-
that proposed in [15], [16] and [18]. In [15] the tangentiational to the length of the curve. However, the above term will
energy term (for maintaining uniform parameterisation) ialso cause a shrinkage of the curve. This term also does take
shown to bex = g—z. into account the different components affectipgs outlined

When the normal force componegthas a smaller mag- earlier. Therefore, although there may be a stabilisation of the
nitude compared to the tangential part; the above force darve, there is also a change in the shape of the curve because
equivalent to the diffusion ofy along the curve as time of the normal component. This is not at all a desirable side
progresses. The above assumption may not be strictly vadiffect. In our method, there is no feedback term like this and
in regions of high curvature. The term proposed in this papkhence we expect better results. Both the non local terms of
is better because it directly addresses the issue at hand. [N and [18] require calculation of length of the curve or
do not make any assumptions in our work. In fact, we gsepractically speaking, its numerical approximation. This can
while computinga at each point. only be done by using a large number of points to approximate

In [16], the authors have proposed two terms for calculatinpge curve. Therefore, the dimensions of various matrices will
a. In the first term, which is a non local term, is obtained increase resulting in higher computation time. Our proposed
by solving the following ODE: method is free of such constraints.

foJe L As mentioned in the beginning of this paper, we have used
s Kf— < KB > H; — Do the proposed term to stabilise the curve applied to tracking

where < . > denotes averaging over the curve and= using the Region Competition model. We describe the tracking
ki + ks < kB >, k1 and ko are constants. The authorsalgorithm next. We have also shown the effectiveness of our
have shown that this term leads asymptotically to a uniforaigorithm on segmentation examples.

parameterisation. Note that there are two parameters to be
fixed here. V. TRACKING ALGORITHM

In the second methody is obtained by lettingy = 9,0,  we have used the region competition model [11] for track-
wheref = in(#). The rationale behind this term is that it iSng. This model was proposed for segmentation of an object
obtained as the tangential component of the solution of ti¢an imagel using the statistical properties of the object. The
intrinsic heat equation. The normal component of the solutigiea is to move a point on the cuné@ in either inward or
is the mean curvature motion. However, it is well known thadutward normal direction depending on the image properties
mean curvature motion is too slow in practice for convergengg the point on the curvd (C'). We build histograms of the
[19]. Therefore researchers speed up convergence by addingrget and the background. These are denoteg;band ps
normal term. Hence, we feel that the term might not perforgaspectively. An image point lying on the curve is denoted by
so well in practice. One drawback of both these methods stat]k@)_ Therefore, the probability of this pixel belonging to the
numerical implemention requires updationgofcurvature and target and the background jg (1(C)) andps(I1(C)).
tangent angle aften is calculated; only then are the curve The curve evolution equation then is as follows [11]:
points updated. In our method we can directly apply the
calculatedy in equation(1). Finally, in [18], the authors obtain oc — ukn + log {PB(I(C)} n
the internal energy term by minimising the following: ot pr(1(C)

)

B Mo 2 6 The interpretation of the above equation is as follows; if the
L (9" —c)°dp ©®) probability that the curve point belongs to the background is



(a) Frame 31 (b) Frame 40
Fig. 2: Curve stabilisation using the proposed method.Even for rapid motions the curve remains stable.

higher than the probability that it is a part of the target, then tled shape change and motion. Figures 3(a) and 3(b) show one
point moves in the inward direction and vice versa. This meagssch sequence. We again note that the curve remains stable
that the initialisation is such that the curve should at leadéespite this both motion and shape change. Figures 4(a,c) and
partially cover the target. This is a very common assumption 4gb,d) show the final contours without and with the stabilising
tracking. In [11] the authors have used parametric distributioterm, respectively. In both cases, the number of B-Spline
to model regions; we use histograms because they are simgatrol point is increased to obtain a better segmentation.
and fast. The proposed term is extremely effective. Note that the curve
We extend the same model for tracking. We use the cois- able to trace out sharp corners. In figures 4(a) and (b),
verged contour in the previous frame as the initialisation tiie region competition algorithm is used for segmentation.
the contour in the next image. We use histograms to model time figures 4(d)(c) and (d), the stabilising term is applied
target and background feature distributions in the RGB colotor the GVF [10] segmentation. This is a boundary based
space. We generate the target histogram offline manually sseymentation algorithm. The proposed term can therefore be
generate the background dynamically in the following mannersed with any curve evolution equation.
The B Spline curve lies entirely within the convex hull of its
control points and we assume that the target lies mostly within VIlI. CONCLUSIONS ANDFUTURE WORK
the region enclosed by the spline curve. however computing
the convex hull is computationally expensive. We therefore i . S
find the biggest rectangular bounding box enclosing the cur ch faster than Ievgl set methods; however thglr stability is
and sample the image randomly outside this box. We can buft ays_suspect. In th's paper, we present_ed a simple method
a histogram of the whole image excluding the region insi&g stabilise parametric active contours. This can be used with

the curve but in our work we found that about 3500 poinﬁ]nyt;]epresigntfmon fOf fc?hntours.t V\Ille argélérrently working on
from the image suffice for most purposes. € theoretical proot of the controfing '

Parametric active contours are simpler to implement and
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