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Abstract

In this work, we propose a simple yet highly effective al-
gorithm for tracking a target through significant scale and
orientation change. We divide the target into a number of
fragments and tracking of the whole target is achieved by
coordinated tracking of the individual fragments. We use
the mean shift algorithm to move the individual fragments
to the nearest minima, though any other method like inte-
gral histograms could also be used. In contrast to the other
fragment based approaches, which fix the relative positions
of fragments within the target, we permit the fragments to
move freely within certain bounds. Furthermore, we use a
constant velocity Kalman filter for two purposes. Firstly,
Kalman filter achieves robust tracking because of usage of
a motion model. Secondly, to maintain coherence amongst
the fragments, we use a coupled state transition model for
the Kalman filter. Using the proposed tracking algorithm,
we have experimented on several videos consisting of sev-
eral hundred frames length each and obtained excellent re-
sults.

1 Introduction

Visual tracking remains as one of the most challeng-
ing research areas in computer vision. Fast object motion,
changing appearance, clutter and occlusion makes tracking
an object in a video a very difficult task. However, consid-
erable progress has been made in this area. An exhaustive
survey and taxonomy of tracking methods can be found in
[19]. Tracking approaches can be roughly categorised into
blob, feature and contour based methods. Contour based
methods[11] are useful for getting the complete boundary of
the object but are much slower than blob based approaches.
For many applications, complete shape information is not
required and hence a simple geometric shape like a rectan-
gle or an ellipse enclosing the object is sufficient. Our work
is based on the blob tracking approach.

Initially, blob tracking methods used variants of a simple
sum of square differences(SSD) measure to minimise the
difference of pixel values between the initialised object and
some patches, which was usually a small window centred on
the previous location of the target[15]. To make the tracker
robust to clutter and improve tracking speed, motion models
and probabilistic appearance models were introduced[12].
Using simple histograms and the Parzen window method
to model the target appearance, Meer et al. proposed the
mean shift based tracker[8]. This tracker, popularly called
the mean shift tracker, is very simple to implement and can
handle relatively fast motion. Moreover, the tracker is very
fast and realtime tracking of several targets is possible. Inte-
gral histograms[16] have also been used for tracking. Some
recent works in tracking have explored the possiblity of us-
ing detection and trajectory estimation methods to perform
tracking[14]. Tracking by detection approaches suffer from
the limitation that they are too specific for the target and a
good amount of offline training is needed for generating a
good set of features. Moreover, online updation of the fea-
tures is also a problem.

There are two main problems associated with the blob
based approach for tracking. First, there is the problem of
defining a simple yet discriminative appearance model. The
histogram based appearance models are simple, but they
suffer from the problem of lack of spatial description of
the target appearance. This makes them quite susceptible
to clutter. Some recent works which tackle this problem
are [3][5]. Another major problem with the blob based ap-
proaches is to adapt scale and orientation of the bounding
box or ellipse to the constantly changing size of the target
in real life videos. In this work, we address this particular
problem of scale and orientation change. Specifically, the
key contribution of this work is the use of a fragment based
tracking approach within a Kalman filtering framework to
handle scale and orientation changes.

The outline of the rest of the paper is as follows. In sec-
tion 2, we discuss the different methods proposed by re-
searchers to solve this problem. The proposed method is de-



scribed in section 3. Results and discussions are presented
in section 4. Conclusion and scope for future work is pre-
sented in section 5.

2 Related work

As we have mentioned earlier, work on tracking can be
classified into contour, blob and feature tracking. It is out of
scope of this work to review the entire literature. As excel-
lent and recent review of the different tracking algorithms
is given in [19]. For the blob tracking technique, the mean
shift based tracker[8] proposed by Meer et al. has become
extremely popular among the researchers. The reason for
its popularity is its ease of implementation and speed. Real
time tracking of objects is possible. Also, researchers have
used the mean shift tracking algorithm within the particle
filtering framework to achieve robustness, for example[9].
However, the original mean shift formulation had no way
of handling orientation. To adapt to scale, at each frame
the tracking algorithm was run multiple times at 10% scale
change. As has been reported in [7], such a procedure led
to rapid shrinking of the tracker. Therefore, using the mean
shift framework and making it adaptive to scale and orien-
tation without sacrificing its speed has been the major thrust
area of researchers. In [20], the authors have used a mod-
ified version of colour correlograms to model the appear-
ance of the target. By this, they are able to track object
rotations and small changes in scale. This however is not
very useful in handling the kind of scale changes which oc-
cur in practical situations as exemplified in figure 5. In [7],
the idea is to perform a search within a range of the ellipse
scale using scale space. Orientation handling is not defined
which restricts the application of the work. Zivkovic and
Krose[21] present an extension of the original mean shift
algorithm which computes the local mode as well as the co-
variance matrix around it. They have used this to define a 5
degrees of freedom tracker for scale and orientation change.
In [19], the author has proposed a tracking algorithm based
on asymmetric mean shift procedure. Though both of these
works track scale and orientation changes succesfully, there
is another problem associated with blob tracking. Both
methods use the histogram of the target as initialised in the
first frame. Such an appearance model is extremely suscep-
tible to clutter and not robust against occlusion. Moreover,
the usage of a histogram to model the target loses all infor-
mation regarding the spatial distribution of colours.

Adam et al.[3] have proposed an interesting approach us-
ing fragments to track people in presence of partial occlu-
sions. The algorithm is quite simple and is as follows. The
target is divided into a number of overlapping fragments.
The position of each fragment with respect to the centre
of the target is fixed and known. Tracking is carried out
by finding for each fragment, the best match within a local

neighbourhood. The similarity measure of each fragment is
ranked and converted into a voting scheme to find the target
centre. Therefore, even if some of the fragments are lost due
to occlusion, the target is located by using the unoccluded
fragments. One limitation of this approach is scale change
is handled in the same heuristic manner as in [8]. Moreover,
orientation change cannot be handled in this framework.
Another interesting parts based approach toward tracking
is [17]. In this work, the authors propose a framework for
tracking human by decomposing the human body into three
sections and fitting an ellipse for each part. They then use
the particle filtering framework to ensure robust tracking in
presence of occlusion and clutter. Scale change is not han-
dled however. In a related work, the authors in [13] have
used a mean shift fragment based approach. Similar to [3],
they are able to handle partial occlusion. There is no provi-
sion for scale or orientation change within this framework.

As mentioned earlier, we use a fragment based approach
in this work. The reason for using fragments is that they
capture the spatial distribution of the object’s appearance.
Though in the use of fragments, our work is similar to [3],
we have a crucial difference with their approach. In con-
strast to their work where the fragment positions are fixed,
we permit relatively free movement of fragments. This en-
ables us to capture scale and orientation change much more
effectively.

3 Proposed Method

We use a fragment based approach to describe the ap-
pearance of the target. The key idea in this work is to use
the positional information of the constituent fragments to
infer the scale and orientation of the target. The outline of
the algorithm is given in algorithm 1. The basic idea is to
divide the target into a number of fragments, track the in-
dividual fragments and finally combine back the fragments
to get the target localisation. We now describe the different
steps of the proposed algorithm in detail.

3.1 Initialisation and Appearance Mod-
elling

We assume that the initialisation of the target is done in
the first frame, either manually or by some detection tech-
nique. The target is then subdivided into a number of over-
lapping fragments. The number and size of the fragments
play an important part in the performance of the tracker. In
our work, we set the width and height of each fragment to
be approximate 35% of the target’s width and height respec-
tively. Each fragment centre is shifted from its neightbour
centre by half the fragment width in horizontal direction and
half the fragment height in vertical direction, respectively.
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Algorithm 1 Algorithm for tracking scale and orientation
change
Require: X0, WT and HT

1: Set WF = 0.35 ∗ WT , HF = 0.35 ∗ HT . Set M =
2∗WT /WF−1, N = 2∗HT /HF−1, Frags = M∗N .
Initialise 2 constant velocity Kalman filters.

2: Calculate xi, i = 1 . . . F rags
3: while frames ≤ END do
4: yi = MeanShift( xi), i = 1 . . . F rags
5: Use yi as measurement for Kalman filter
6: Predict and update xi using Kalman filter.
7: for each centre do
8: if centre lies within 10% times previous localisa-

tion then
9: add to list L of centres for calculating moments

10: end if
11: end for
12: find image moments using centres in L
13: find major axis, minor axis and angle using first and

second central image moments
14: if if magnitude of scale change exceeds 25% of cur-

rent scale then
15: reinitialise all fragments
16: end if
17: align all fragments along the estimated angle
18: end while

(a) Frame 1 (b) Frame 25

Figure 1. (a)Figure showing target and mul-
tiple fragments initialisation as the first step
of the algorithm. (b) A single fragment to the
extreme left has drifted off. This fragment is
an outlier and should not be considered for
target localisation.

The justification of these choices is given in the next sec-
tion. An example of target and fragment initialisation is
shown in figure 1(a). In this figure, which is illustrative of
the initialisation scheme, the fragment size is half the target
dimensions, and with the shifts as described earlier we have
a total of 9 fragments.

The appearance of each fragment is modelled by a
weighted histogram as in [8]. The weights are obtained by
using a kernel which gives more importance to the pixels
located at the centre of the fragment as compared to the pix-
els at the boundary. Following [3], we could also use sim-
ple unweighted histograms for target representation. The
choice of representation governs the tracking algorithm for
the individual fragments. It is to be noted that the proposed
approach does not depend on the representation of the in-
dividual fragments. Therefore, either of these two methods
can be used for representation. For our choice of appear-
ance model, the tracking algorithm used is the well known
mean shift algorithm[8]. The centre of the i-th fragment is
denoted by xi = (xi, yi). The target centre is denoted by X.
Target and fragment dimensions are denoted by (WT ,HT )
and (WF ,HF ), respectively.

3.2 Fragment Tracking

The tracking algorithm consists of two modules. The
first module consists of a number of mean shift based track-
ers for moving the individual fragments. The second mod-
ule consisting of the Kalman filter is responsible for pre-
venting fragments from drifting off.

Mean Shift Tracking

We use the mean shift based tracking algorithm[8] for track-
ing the individual fragments of the target. For the sake of
completion, we briefly describe the model. For the com-
plete details, the reader is referred to [8]. Let the photomet-
ric feature of interest be u. For our case, we use the RGB
colour space. Assuming that the initialisation is placed at
the origin, the model histogram consisting of M bins in
constructed as

pM (u) = C
∑

k

(
||xi

h
||2

)
δ[I(xi)−u], u = 1 . . .M (1)

where I is the image, C is some normalising constant and
the function k(.) is the kernel function with certain prop-
erties. We have used the Epanechnikov kernel. The model
histogram pM is defined in a similar fashion. Tracking is
done by using the convergence in the previous frame as the
initialisation in the current frame and minimising the Bhat-
tacharya distance between the two histograms.

The mean shift tracker is widely used by vision re-
searchers for its speed. Speed is an important criterion for
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tracking as there are multiple fragments within the target.
One disadvantage of the mean shift tracker in its original
form is its vulnerability to clutter. As has been discussed
earlier, histograms are unable to capture the spatial infor-
mation within the target. Therefore, the mean shift tracker,
which uses weighted histograms, is easily distracted by
clutter. For our case. this problem is especially serious for
the fragments lying on the object boundary. During initial-
isation, such boundary fragments learn a part of the back-
ground as well as the actual target. During tracking in sub-
sequent frames, these boundary fragments sometimes drift
off the target completely. This is shown in figure 1(b). The
fragment to the extreme left has drifted off the target com-
pletely. This is potentially disastrous for target localisation.
Though we perform outlier detection of the different frag-
ments before estimating the position and orientation of the
target, it is desirable to prevent such a problem from occur-
ing. This provides the motivation for the use of a Kalman
filter[4].

Kalman Filter Dynamics

Specifically, we use Kalman filter for two purposes. Firstly,
the Kalman framework uses a motion model which adds
robustness to the tracker. Kalman filter was also used within
the mean shift framework in the original work[8]. Secondly
and more importantly for our purpose, the Kalman filter can
also be used to maintain a degree of coherence among the
different fragments.

We use a constant velocity Kalman filter model. We as-
sume that the motion in each of the x and y directions is
independent. Therefore, we have two Kalman filters which
have the same structure. Therefore, without loss of gener-
ality, for the constant velocity model, the state vector X is
defined as

X = {x1, x2, . . . , xN , ẋ2, ẋ2, . . . , ẋN} (2)

Here we have assumed that there are N fragments consti-
tuting the target. The state transition model is

Xt+1 = FXt + wt (3)

where F is the state transition matrix and wt is the random-
ness in the motion. The random vector wt is assumed to
follow a Gaussian distribution with zero mean and covari-
ance matrix Qt. The state transition matrix F and the noise
covariance matrix Q play an important part in maintaining
fragment coherence. By fragment coherence, we mean that
the fragment locations and their motions are not completely
independent of each other. This assumption is quite intu-
itive because we expect the fragments to have some spa-
tial proximity to each other, even though their motions are
otherwise completely unconstrained. We impose this con-
straint by making F and Q to be non diagonal, where we

Figure 2. Figure showing outlier elimination.
The fragments in red are the outliers. The
fragments in green are used for localising the
target. The box in blue decides the outliers.

have dropped the subscript for the noise matrix Qt. The di-
agonal elements of F are given a weight 0 < w ≤ 1 and the
non diagonal elements are given a weight (1−w)/(N −1).
Generally the weight w is kept close to 1, we have used a
value of 0.95. The reason for this is that for smaller values
of w, the fragments would perform a kind of cyclic pursuit
motion[18] which is not desirable. Therefore, the current
state of a particular element depends not only its state at the
previous time, but the neighbours also have a small but def-
inite influence. Similarly, the covariance matrix Q is also
non-diagonal. For Q however, the non diagonal elements
are made slightly larger in value compared to the diagonal
elements. The reason for making non-diagonal elements
larger than diagonal elements is that we are less sure about
the position of a given element of the state vector given its
neighbours, but more certain given the previous position.
We have used the concept of coherence for the first N el-
ements of the state vector, that is for the positional infor-
mation only. This could be extended to include the speed
too.

Following the standard practice in Kalman filtering, we
use only the positional information as the measurement.
The locations of the fragments after the mean shift iterations
constitute the measurements. The measurement model is

Yt = Xt + vt (4)

where the true state vector is corrupted by additive white
Gaussian noise vt with zero mean and covariance R. In the
next subsection, we discuss the process of obtaining scale
and orientation from a given set of fragments.

3.3 Outlier Elimination and Target Local-
isation

Despite the use of the Kalman filter to maintain the spa-
tial proximity of the fragments as discussed in the previous
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section, it is not possible to prevent drift of some of the frag-
ments. Therefore, the first step in localisation would be the
removal of the outlying fragments.

We use a simple method for detecting and removing the
outlier fragments. This is demonstrated in figure 2. This
is a frame extracted from the sequence shown in figure 6.
The fragments marked red are the outliers and are neglected.
Given the centre and orientation of the target in the previous
frame, we discard those fragments which lie outside 10%
of the previous localisation. Furthermore, we also discard
those fragments whose similarity measure with the corre-
sponding model histogram is below a certain threshold T .
The similarity measure used is the Bhattacharya distance.
Keeping in mind that Bhattacharya distance has a maximum
and minimum value of 1 and −1 respectively, we have set
T = 0.5. After the removal of outliers, we use a blobs-
based approach to find the best ellipse fit to the target. For
in-lying fragments, we find the elliptical blob and coalesce
all such blobs to get a target blob. For this combined blob,
we find the centralised image moments. Using these mo-
ments, we find the centroid, which gives the centre of grav-
ity and the covariance matrix, which is interpreted as the
spread of the blob. The centroid is taken to be the centre
of the target and the scale and orientation are obtained us-
ing the moments and the covariance matrix. The fragments
shown in green are considered for taking image moments.
The search space is shown in blue.

As an alternative approach, once can use an ellipse fitting
approach[10]. First, we find four points P i

1 = (xi+hx, xi+
hy), P i

2 = (xi −hx, xi + hy), P i
3 = (xi + hx, xi −hy) and

P i
4 = (xi − hx, xi − hy), where the superscript denotes

the fragment index. We then fit an ellipse to all such points
P i

j . This gives the scale and orientation of the target for the
current frame. However, we found that the image based ap-
proach gives the better fit to the target. However, we found
the moments based approach to be more effective in fitting
the target dimensions.

4 Results and Discussions

We now present the implementation details and show the
results on a number of challenging sequences. The fragment
dimension is chosen to be approximately 30-35% of the di-
mension of the target. The target is manually initialised in
the first frame of each sequence. Each fragment is shifted by
half its width from the fragments to its side and by half the
height to the fragments above or below it. For the Kalman
filter, we used a weight value of w = 0.95. In our imple-
mentation, we had a provision for re-initialising fragments
if the number of fragments classified as outliers exceeded a
half of the total number of fragments. However, this reini-
tialisation was never needed to be done in any of the ex-
periments. Reinitialisation of fragments is carried out if the

Figure 3. Failure of the tracking method of [3]
without scale handling.

scale either increases or decreases by 25% of the current
scale.

In figure 4(a-d), we show the failure of the original mean
shift based tracker[8]. The sequence has been extracted
from the PETS 2006 database[1] from frame number 1470
to 1610. The sequence consists of a person walking rapidly
away from the camera. For adapting the tracker to scale, we
used the same strategy as in [3][8]. For each frame, we ran
three mean shift trackers, one at the same scale as the pre-
vious frame and one each at 20% increase and decrease in
scale. We see that the tracker shrinks rapidly to a very small
box and track is completely lost. The same problem has
been reported in [7]. Figure 3 shows the result of fragment
based approach with fixed position of fragments within the
target.

In figure 5, we show the results obtained using the pro-
posed tracker. We see that the tracker is completely able to
track the target through the drastic scale change.

Figure 6 shows the results of tracking using the proposed
algorithm on another sequence taken from the PETS 2006
database. For comparison purposes, in figure 4(e-f) we
show the results of camshift algorithm[6] on the same se-
quence . We have used the implementation provided in the
OpenCV[2] library. This sequence clearly shows the fail-
ure of the camshift algorithm. We tried different settings of
the parameters but could not get acceptable tracking of the
shown target.

In the previous sequences, the target to be tracked was
undergoing scale changes only. In figure 8, we present
the results on a tracking sequence where the target under-
goes orientation change. This sequence is of 150 frames
in length. Note that the object is tilted by 90 degrees and
then comes back to its original orientation. We are succes-
fully able to track the orientation change. Another sequence
showing tracking through orientation change is shown in
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(a) Frame 1 (b) Frame 3 (c) Frame 7 (d) Frame 9

(e) Frame 1 (f) Frame 2 (g) Frame 3 (h) Frame 4

Figure 4. Failure of mean shift and camshift[6] trackers. (a-d)Mean shift tracker fails with 10% scale
adaptation at each frame. (e-f) Camshift also fails to maintain scale of the target. Note that both the
algorithms fail very rapidly.

figure 7.

5 Conclusion and Future Work

In this work, we have proposed a simple yet effec-
tive fragment based approach for tracking objects in video
through rapid scale and orientation change. One limitation
of the proposed algorithm is the inability to handle partial
occlusion. In [3], the authors have proposed a fragment
based method for tracking object through partial occlusion.
However, as mentioned earlier, it should be noted that the
authors assume fixed locations of the fragments with respect
to the centre of the target. This immediately precludes the
possibility of tracking the target’s orientation change. We
plan to address the issue of handling partial occlusion within
the current framework in a future work.
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(a) Frame 1 (b) Frame 16 (c) Frame 37 (d) Frame 55

(e) Frame 73 (f) Frame 82 (g) Frame 112 (h) Frame 138

Figure 5. Result of tracking using the proposed algorithm on a sequence extracted from the PETS
2006 sequence. Note that despite the drastic change in scale, target localisation is maintained. The
first frame is offset from the PETS sequence by 1469 frames.

(a) Frame 1 (b) Frame 25 (c) Frame 50 (d) Frame 75

(e) Frame 95 (f) Frame 120 (g) Frame 150 (h) Frame 174

Figure 6. Result of tracking using the proposed algorithm on a second sequence extracted from the
PETS 2006. Here the target size undergoes a rapid decrease.
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(a) Frame 1 (b) Frame 20 (c) Frame 40 (d) Frame 60

(e) Frame 80 (f) Frame 100 (g) Frame 120 (h) Frame 140

Figure 7. Tracking results for the book sequence. There is a significant orientation change of the
book, as also can be seen from the orientation of the ellipse.

(a) Frame 1 (b) Frame 5 (c) Frame 8 (d) Frame 15

(e) Frame 21 (f) Frame 30 (g) Frame 37 (h) Frame 42

Figure 8. Tracking results for the person sequence. The full sequence is of 400 frames length. The
bending action is repeated throughout. We show one complete cycle only.
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