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Abstract

In this paper we propose a single frame, learning based super-resolution restoration technique by
using the wavelet domain to define a constraint on the solution. Wavelet coefficients at finer scales of the
unknown high resolution image are learnt from a set of high resolution training images and the learnt
image in the wavelet domain is used for further regularization while super-resolving the picture. We use an
appropriate smoothness prior with discontinuity preservation in addition to the wavelet based constraint
to estimate the super-resolved image. The smoothness term ensures the spatial correlation among the
pixels whereas the learning term chooses the best edges from the training set. Since this amounts to
extrapolating the high frequency components, the proposed method does not suffer from oversmoothing
effects. The results demonstrate the effectiveness of the proposed approach.
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I. INTRODUCTION

In most imaging applications, images with high spatial resolution are desired and often
required. Resolution enhancement from a single observation using image interpolation
techniques is of limited application because of the aliasing present in the low-resolution
image. Super-resolution refers to the process of producing a high spatial resolution image
than what is afforded by the physical sensor through post processing means. It includes
upsampling the image, thereby increasing the maximum spatial frequency, and removing
degradations that arise during the image capture, viz., aliasing and blurring. Researchers
traditionally use the motion cue to super-resolve an image. However this method being
a 2D dense feature matching technique, it requires registration at a sub-pixel accuracy.
Since the registration is obtained by using the low resolution observations, the estimated
motion parameters are not accurate. Errors in registration are reflected on the quality of
the super-resolved image. An alternate way of extrapolating the nonredundant information
is to learn it from the high resolution training data and use a suitable regularization to
obtain an accurate solution. We show in this paper that by using a wavelet based learning
prior along with a suitable discontinuity preserving smoothness prior, an effective super-
resolution can be achieved. The advantage of our method is that there is no correspondence
problem. Also in many of the applications more than one low resolution observations may

not be available, but we may have a database of a number of similar images at a higher
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spatial resolution. Hence one needs to minimize the aliasing by using the given single low
resolution image.

In this paper we consider having access to a set of high resolution training images to
learn the prior. The basic problem we solve in this paper is as follows. One captures an
image using a low resolution camera. We are interested in generating the super-resolved
image for the same using a set of available high resolution images of different objects.
It is assumed that the high frequency contents to be extrapolated are locally present in
the training set. We use a wavelet based multi-resolution analysis to learn the wavelet
coefficients at a given location at the finer scales for the super-resolved image. The learnt
coefficients are then used in a prior term that enforces the condition that the wavelet
coefficients at the finer scales of the super-resolved image should be locally close to the
best matching coefficients learnt from the training set. In order to preserve the spatial
continuity of the restored image, we use a smoothness constraint in conjunction with the
learnt prior to obtain the super-resolved image.

The reminder of the paper is organized as follows. In section II we review some of the
prior work in super-resolution imaging including those dealing with the learning-based
methods. We discuss the model for the formation of a low resolution image in section III.
Some background on discrete wavelet transform and the multi resolution analysis for esti-
mating the wavelet coefficients at the finer scales using high resolution training images are
the subject matters of section IV. Section V discusses the regularization based approach
to derive a cost function for the super-resolution estimation. We present experimental

results on different types of images in section VI, and the paper concludes with section

VIL.

II. RELATED WORK

The super-resolution idea was first proposed by Tsai and Huang that used the frequency
domain approach [1]. Kim et al. discuss a recursive algorithm, also in the frequency
domain, for the restoration of super-resolution images from noisy and blurred observa-
tions [2]. Ur and Gross use the Papoulis and Brown generalized sampling theorem to
obtain an improved resolution picture from an ensemble of spatially shifted observations

[3]. These shifts are assumed to be known by the authors. A different approach to the
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super-resolution restoration problem was suggested by Irani et al. [4], [5], based on the
iterative back projection method. A set theoretic approach to the super-resolution restora-
tion problem was suggested in [6]. The main result there is to define convex sets which
represent tight constraints on solution as well as use the amplitude constraint to improve
the results. Ng et al. develop a regularized, constrained total least squares solution to
obtain a high-resolution image in [7]. They consider the presence of perturbation errors of
displacements around the ideal sub-pixel locations in addition to noisy observations. The
effect of the displacement errors on the convergence rate of an iterative approach for solv-
ing the transform based preconditioned system of equations is discussed by Ng and Bose
[8]. They also develop a fast restoration algorithm for color images in [9]. Nguyen et al.
have proposed circulant block preconditioners to accelerate the conjugate gradient descent
method while solving the Tikhonov-regularized super-resolution problem [10]. Recently,
Lin and Shum determine the fundamental limits of reconstruction-based super-resolution
algorithms and obtain the super-resolution limits from the conditioning analysis of the
coefficient matrix [11].

In [12] the authors use a maximum aposteriori (MAP) framework for jointly estimating
the registration parameters and the high-resolution image for severely aliased observations.
They use an iterative, cyclic coordinate-descent optimization technique to update the reg-
istration parameters. A MAP estimator with Huber-MRF prior is described by Schultz
and Stevenson in [13]. Other approaches include a MAP-MRF based super-resolution
technique using the blur as a cue [14]. In [15] the authors recover both the high resolu-
tion scene intensity and the depth fields simultaneously using the defocus cue. Recently,
Rajagopalan and Kiran [16] proposed a frequency domain approach for estimating the
high resolution image also using the defocus cue. Elad and Feuer [17] proposed a unified
methodology for super-resolution restoration from several geometrically warped, blurred,
noisy and down-sampled measured images by combining maximum likelihood (ML), MAP
and POCS approaches. An adaptive filtering approach to super-resolution restoration is
described by the same authors in [18]. They have also developed a fast super-resolution
algorithm in [19] for pure translational motion and space invariant blur.

Since edges in the image are places where one requires a better clarity, there have
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also been some efforts in the literature on preserving the edges while interpolating an
image. Chiang and Boult [20] use edge models and a local blur estimate to develop an
edge-based super-resolution algorithm. In [21] authors propose an image interpolation
technique using a wavelet domain approach. They assume that the wavelet coefficients
scale up proportionately across the resolution pyramid and use this property to go down
the pyramid. Thurnhofer and Mitra [22] have proposed a non-linear interpolation scheme
based on a polynomial operator wherein perceptually relevant features (say, edges) are
extracted and zoomed separately. The reconstruction/restoration methods to improve the
resolution of digital images while zooming have been discussed in [23]. The authors here
focus on both the linear and the non-linear methods based on total variation to study the
ability of these methods to preserve 1D structures.

Researchers have also attempted to solve the super-resolution problem by using learning
based techniques. These methods are classified under the motion-free super-resolution
scheme as the new information required for predicting the high resolution image is obtained
from a set of training images rather than from the subpixel shifts among low resolution
observations. Authors in [24] have proposed a super-resolution technique from multiple
views using learnt image models . Their method uses learnt image models either to directly
constrain the ML estimate or as a prior for a MAP estimate. To learn the model, they
use principle component analysis (PCA) applied to a face image data base. In [25] Baker
and Kanade develop a super-resolution algorithm by modifying the prior term in the cost
to include the results of a set of recognition decisions, and call it recognition based super-
resolution or hallucination. Their prior enforces the condition that the gradient in the
super-resolved image should be equal to the gradient in the best matching training image.
An image analogy method applied to super-resolution is discussed in [26]. They use the
low resolution and the high resolution portions of an image as the training pairs which
are used to specify a “super-resolution” filter that is applied to a blurred version of the
entire image to obtain an approximation to the high resolution original image. Candocia
and Principe [27] address the ill-posedness of the super-resolution problem by assuming
that the correlated neighbors remain similar across scales, and this apriori information

is learned locally from the available image samples across scales. When a new image is
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presented, a kernel that best reconstructs each local region is selected automatically and
the super-resolved image is reconstructed by a simple convolution operation. A learning
based super-resolution enhancement of video is proposed by Bishop et al. [28]. Their
approach builds on the principle of example based super-resolution for still images proposed
by Freeman et al.[29]. Joshi and Chaudhuri [30] have proposed a learning-based method
for image super-resolution from zoomed observations. They model the high resolution
image as a Markov random field (MRF), the parameters of which are learnt from the
most zoomed observation. The learnt parameters are then used to obtain a maximum
aposteriori (MAP) estimate of the high resolution image.

The method proposed in this paper can also be classified under learning based super-
resolution schemes. However, here we use a different type of learning where we use a prior
term that enforces the condition that the wavelet coefficients of the super-resolved image
at the finest scale should be locally close to the best matching wavelets learnt from the
high resolution training set. A smoothness constraint is imposed on the restored image to

obtain a regularized solution.

III. Low RESOLUTION IMAGE FORMATION MODEL

The super-resolution problem can be cast in a restoration frame-work. We use a simple
decimation model for low resolution image formation. For a decimation factor of ¢ the low

resolution image y(i, j) can be obtained from its high resolution version z(k,[) as

| ) -1aG+)-1

D DD DI () (1)

y(i,j) = EED DY)
i.e., the low resolution intensity is the average of the high resolution intensities over a
neighborhood of ¢? pixels. This decimation model simulates the integration of light inten-
sity that falls on the high resolution detector and the decimation process is represented
by the matrix D which has a structure as given in equation (3). Let z represent the
lexicographically ordered high resolution image of N? x 1 pixels. If y is the M? x 1 lex-
icographically ordered vector containing pixels from the low resolution observation, then

it can be modeled as

y=Dz+n (2)
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where D is the decimation matrix, size of which depends on the decimation factor. For a
decimation factor of ¢, the decimation matrix D consists of ¢ non-zero elements of value
q% along each row at appropriate locations and has the form [13] (using a proper reordering

of z)

11...1 0
1 11...1

(3)

0 11...1

As an example, for a decimation factor of ¢ = 2 and with lexicographically ordered z of

size, say 16 x 1, the D matrix is of size 4 x 16 and can be written as

1100110000000000
0011001100000000
0000000011001100
0000000000110011

>
I
NG
——
N
N—

In equation (2) n is the M? x 1 noise vector. We assume the noise to be zero mean i.i.d
process. Our problem now reduces to estimating z given y, which is an ill-posed, inverse

problem.

IV. WAVELET BASED LEARNING
A. Background

Wavelets are mathematical functions that split up data into different frequency compo-
nents locally, and then study each component with a resolution matched to its scale. They
have advantages over traditional Fourier methods in analyzing physical situations where
the signal contains discontinuities or a local analysis is required. The discrete wavelet
transform (DWT), provides us with a sufficient information for analysis and synthesis of
a sequence and is easier to implement. The idea here is similar to the continuous wavelet
transform (CWT), which is computed by changing the scale of the analysis, shifting the
window in time, multiplying by the sequence, and integrating over all times. In the case
of DWT, filters of different cutoff frequencies are employed to analyze the sequence at dif-

ferent scales. The input sequence is passed through a series of highpass and lowpass filters
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Fig. 1. Illustration of subband wavelet decomposition. Here u[n] is the original sequence to be decomposed
and h[n] and g[n] are lowpass and highpass filters, respectively. The bandwidth of the signal is marked
as “BW”.

to analyze the high and low frequency components, respectively. The procedure starts
with passing the sequence through a half band (0 — 7 /2 radians) digital lowpass filter with
impulse response h[n], thus removing all the frequencies that are above half of the highest
frequency in the sequence. The filtered output is then subsampled by a factor of 2, simply
by discarding every other sample since the sequence now has a highest frequency of /2
radians instead of w. The lowpass filter thus halves the resolution, but leaves the scale
unchanged. The subsequent subsampling by a factor of 2, however, changes the scale.
This is illustrated in Figure 1.

The wavelet transform for a 2D sequence is similar to that of 1D decomposition. A 2D
wavelet decomposition is first performed (horizontally) on the rows by applying lowpass
and highpass filters. Then we perform the same operations vertically (on the columns)
resulting in four subbands LL, LH, HL, HH. We repeat the operation with ‘LL’ as the
input image for further decomposition. The readers are referred to [31], [32], [33] for

further discussion on wavelet decomposition.
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B. Learning the Wavelet Coefficients

As discussed in the previous section the wavelet decomposition splits the data into high
and low frequency components. As seen from Figure 1, given a high resolution sequence
u[n] having a bandwidth support of [0—], it can be decomposed into uy, and uy sequences
constituting the low frequency and the high frequency components in the sequence, re-
spectively. Let us consider that uy (the low resolution sequence) is given and we need
to generate the high resolution sequence u[n]. In order to do that we need to know the
ug so that when we take the IDWT (inverse discrete wavelet transform) we get back the
original sequence u[n]. However, for the current problem on super-resolution, we do not
have the high frequency components uy to obtain the high resolution sequence u[n]. In
the absence of any information on ug, we plan to estimate the coefficients ugy by learning
them from a set of high resolution sequences. Similarly, when a low resolution image or a
2D signal is considered we need to learn the corresponding unknown high frequency com-
ponents ury, ugyr and ugg. Since the problem of super-resolution involves handling data
at multiple resolution, and since the wavelets are best suited for a multiresolution analysis,
it motivates us to use a wavelet based approach for learning the wavelet coefficients at the
finer resolution. These wavelet coefficients indicate the high frequency details in an image.
The learning is done from a set of high resolution training images. If the high resolution
data in a region does not have much high frequency components, the region can easily be
obtained from its low resolution observation through a suitable interpolation. However,
if a region has edges, the corresponding wavelet coefficients (ug in Figure 1) are quite
significant and they cannot be neglected while obtaining the high resolution image. These
coefficients must be learnt from a database of training images. We assume that a primitive
edge element in the high resolution image is localized to an 8 x 8 pixel area, and we observe
the corresponding edge elements over a 4 x 4 pixel area in the low resolution image. From
the high resolution data base, can we obtain the best 8 x 8 region by matching it in the
wavelet domain with the given 4 X 4 pixel observation? Note that such a matching should
be brightness (dc-shift) independent.

We make use of a two level wavelet decomposition of the given low resolution observation

while learning the wavelet coefficients at the finer scale. Figure 2 illustrates the block
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Fig. 2. Illustration of learning of wavelet coefficients at a finer scale. (a) Low resolution image with two
level wavelet decomposition. Wavelet coefficients (marked as x) in subbands shown with the dotted
lines are to be estimated for bandsVII —IX. (b) High resolution training set in wavelet domain with

three level decomposition.

schematic of how the wavelet coefficients at finer scales are learnt from a set of N training
images using a two level wavelet decomposition of the low resolution test image. The
high resolution training images are decomposed into three levels and the test image is
compared to the training images in the wavelet domain at the coarser two scales. This
decomposition is used to extrapolate the missing wavelet coefficients in subbands VII—I1X
(shown as dotted in Figure 2(a)) for the test image. They correspond to the estimated high
pass wavelet coefficients at the first level decomposition of the unknown high resolution
image. Here the low resolution image is of size M x M pixels. Considering an upsampling

factor of 2, the high resolution image, now has a size of 2M x 2M pixels. For each
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coefficient in the subbands I — II] and the corresponding 2 X 2 blocks in the subbands
1V — VI, we extrapolate a block of 4 x 4 wavelet coefficients in each of the subbands
VII, VIII and IX. In order to do this we exploit the idea from zero tree concept, i.e.,
in a multiresolution system, every coefficient at a given scale can be related to a set of
coefficients at the next coarser scale of similar orientation [34]. Using this idea we follow
the minimum absolute difference (MAD) criterion to estimate the wavelet coefficients. We
take the absolute difference locally between the wavelet coefficients in the low resolution
image and the corresponding coefficients in each of the high resolution training images.
The learning process is as follows. Consider the subbands 0 — VI of the low resolution
image. Denote the wavelet coefficient at a location (4, j) as d(i, 7). Consider the range 0 <
i,j < M/4. The wavelet coefficients d; (i, j+M/4), di(i+M/4,7), drr(i+M/4, 5+ M/4)
corresponding to subbands I — I'1] and a 2 x 2 block consisting of Zk i1 Zl J+1 drv(k,l+
M/2), = ST  dy (k4 MJ2,0), S ST dyr (k4 M2, + M/2), in each of
the subbands IV — VI are then considered to learn a 4 x 4 wavelet block in each of
the subbands VII — I X consisting of unknown coefficients Y 5=¢*3 Eé I dy (k1 + M),

SEEES ST dy g (k+ M, 1), and 203 2= dyx (k+ M, 1+ M). In order to illustrate
which set of wavelet coefficients we select for learning purposes, we denote them with
‘x” marks in Figure 2(a). To obtain the wavelet coefficients for the test image at a finer
resolution, we consider the wavelet coefficients in subbands I — VI in each of the high
resolution training images (see Figure 2(b)). We search for the best matching training
image at a given location (7, j) that matches to the wavelet coefficients for the test image
in the bands I — VI in MAD sense and copy the corresponding high resolution wavelet
coefficients, in bands VII — I X to those bands for the test image. In effect, we use the

following equation to find the minimum.

m(l,]) = a’rgmwilnndl(iaj +M/4) - dl(m)(i:j + M/4)| + |dII(Z+ M/47.7) - dll(m)(i + M/4a.7)|

+ |dir (i 4+ M/4,5 4+ M/4) — drprony (i + M /4, j + M/4)|
k=it1l=j+1

+ 3N (dwv(k, L+ M/2) — dpyem (k, L+ M/2)|
k=i I=j
k=i+11=j+1

+ > > ldv(k+ M/2,1) — dyon (K + M/2,1)]
k=i I=j
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k=i+11=j+1
+ > > ldvi(k+ M/2,14+ M/2) — dyron (k + M/2,1+ M/2)[],

k=i I=j

where m = 1,2,---, N. Here dj(m) denotes the wavelet coefficients for the m™ training
image at the J band. For each (7,7) in I —III of low resolution observation, a 4 x 4 block
of wavelet coefficients in subbands VII — I'X from that training image given by m(s, 5)
which gives the minimum are then copied into subbands VII, VIII, IX of the observed
image. In effect, equation (5) helps in matching edge primitives at low resolutions. Thus
we have, dy(i, 5) == di7,(i, ), dvrir (i, §) = A1y, (i, 5), dix (i, 5) = d§ (i, 5),

for(i, j) € (VII—IX) where m is the index for the training image which gives the minimum
at location (i,7). This is repeated for each coefficient in subbands I, I1, III of the low
resolution image. Thus for each coefficient in I — I11, we learn 16 coefficients each, for
subbands VII —1X from the training set. It may be mentioned here that each 4 x 4 region
in the low resolution image could be learnt from different training images. In case the error
(MAD) term in equation (5) is quite large, it signifies that the 4 x 4 block does not find
a good match in the training data, i.e., an edge primitive does not have its corresponding
high resolution representation in the database. In order to avoid such spurious learning,
we accept the wavelet coefficients only when the MAD is less than a chosen threshold.
The goodness of the learning depends on how extensive and useful is the training data set.
In our experiments we use Daub4 wavelet for computing the discrete wavelet transform.
The issue of which particular wavelet basis best fit the learning scheme, has not been
investigated in this paper. The subband 0 corresponds to the low resolution portion ‘LL’
(see Figure 2(a)) in the wavelet decomposition and since the corresponding ‘LL’ portions
in the training set may have different brightness averages, including the pixels from ‘LL’
portion of the low resolution image does not yield a good match of an edge primitive
as we want the edges to be brightness independent. Hence, we refrain from using the
‘LI’ portion of the low resolution image for learning. The complete learning procedure is
summarized below in terms of the steps involved.

STEP 1:

Perform two level wavelet decomposition on the low resolution test image of size M x M
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and three level decomposition on all training images each of size 2M x 2M.

STEP 2:

Consider the wavelet coefficients at locations (i,5+M/4), (i+M/4,7) and (i+M/4,j+

M/4) in subbands I, II and 111, and the corresponding 2 x 2 blocks in IV — VI of the

low resolution image as well as the high resolution training set.

STEP 3:

Obtain the absolute difference between the wavelet coefficients in the low resolution

image and the corresponding coefficients for each of the training images.

STEP J:

If MAD < threshold, obtain the unknown high resolution wavelet coefficients (4 x 4

block) from a training image in subbands VII — IX, else set them all zeros.

STEP 5:

Repeat steps (2 - 4) for every wavelet coefficient in bands I — VI of the low resolution

1mage.

A few comments about the learning of the wavelet coefficients are in order now. The
high frequency coefficients are estimated using nearest neighbor criterion from the training
images. The process is not adaptive in the sense that no adaptive updating of these
coefficients is performed based on previously learned values at a given location or from its
neighborhood. Furthermore, there is no reinforcement of the learned coefficients through
posterior analysis. This may yield inferior values of the coefficients, but the advantage is
that one does not have to worry about the convergence issues. A similar learning procedure
is typically adopted in other learning based techniques in Super-resolution.

In this study we select a 4 x 4 edge primitive in the low resolution image for learning
the coefficients. A smaller primitive could provide a better localized result, but more
spurious matches negate the advantage. A larger primitive yields better matches in the
coefficient, but the localization is poor and suffers from severe blockiness. Furthermore,
the requirement for the training data size goes up drastically.

An inherent drawback of the proposed learning method is that the learning process is
very much resolution dependent. If we want to super-resolve a 2m/pixel satellite image

by a factor of ¢ = 2 the training data must be of 1m/pixel resolution. If one wants to
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perform super-resolution on a 2.5m image, none of the images in existing database could
be used for training. For a commercial camera, if we change the zoom factor, it requires

that a completely different set of training images be provided.

V. REGULARIZATION AND SUPER-RESOLUTION ESTIMATION

With the wavelet coefficients learnt from the high resolution training set as discussed
in the previous section, we would like to obtain the super-resolution image for the given
low resolution observation. Since we pick up the high frequency components of each 8 x 8
region as per the best fit edge element from different training data independently, there
is no guarantee that the corresponding high resolution image would be a good one as it
lacks any spatial context dependency. One may occasionally find an unwanted abrupt
variation across the 8 x 8 blocks. In order to bring in a spatial coherence during the high
resolution reconstruction, we must use a smoothness constraint. Thus the constraints are
chosen based on enhancing the edges as well as ensuring the smoothness of the high reso-
lution image. Near the edges in the low resolution image, we learn the wavelet coefficients
from the high resolution database to have edge preserving upsampling. Also a smoothness
constraint is enforced while upsampling at relatively smooth regions. We use the wavelet
coefficients learnt from the training set to enforce the constraint that the wavelet coeffi-
cients of the super-resolved image should be close to the best matching wavelets learnt
from the training images in a least squares sense. Let Z,; be wavelet transform of the high
resolution image to be estimated and Z..: be the wavelet transform of the learnt image as

discussed in the previous section. Then the learning prior term can be expressed as
C(2) = [|Zut — Zun|*. (6)

Now in order to enforce the smoothness constraint we make use of the fact that the image
pixel intensities have a spatial correlation. This prior knowledge serves as a contextual
constraint and has to be used to regularize the solution. But this constraint pushes the
reconstruction towards a smooth entity. Hence in order to enforce a smoothness in the
smooth regions alone while upsampling, we use a discontinuity preserving smoothness
prior. Since the high frequency details learnt by using the wavelet based prior consti-

tute the discontinuities it would ensure undistorted edges in the super-resolved image
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while smoothing the regions with spatial continuity. In order to incorporate provisions
for detecting such discontinuities, so that they can be preserved in the reconstructed
image, the binary variables /; ; and v;; which detect the horizontal and vertical edges,
respectively, are used. The binary variable /; ; connecting sites (pixel locations) (7, ) to
(¢ —1,7) aids in detecting a horizontal edge while the variable v; ; connecting sites (i, j)
to (4,7 — 1) helps in detecting a vertical edge. The variables /;; and v, ; are set to 1 if
|2(i,7) — 2(i — 1,4)| > Thresholdl and |z(i,j) — z(i,7 — 1)| > Threshold2, respectively.
Else they are set to 0. We use the following prior for the smoothness constraint in this

study.

Uz) = Y {ul(zij— zij-1)*(1 — vig) + (21 — 2i5)* (1 — vijg)
i

+ (2ig — 2ie15)°(1 = lig) + (2ig1,j — 2i5)° (1 — ligaj)]

+ Y(lig+ liyry +vij + i)} (7)

Here p is the penalty term for departure from the smoothness. The second term in the
above equation enforces a penalty for over-punctuation in the smoothness constraint. In
effect we are considering only a first order spatial relationship along with the scope for
handling the discontinuities. Thus by making use of the data fitting term, the learning
term and the smoothness constraint the final cost function to be minimized for the high

resolution image z can be expressed as
e =|ly — Dz’ + BC(2) + U(=). (8)

The above cost function is nonconvex and also consists of terms in both spatial domain
(the first and the third term) and in frequency domain (the second term). Hence it cannot
be minimized by using a simple optimization technique such as gradient descent since it
involves a differentiation of the cost function. We minimize the cost by using the simulated
annealing technique which leads to a global minima. However, in order to provide a good
initial guess and to speed up the computation, the result obtained by using the inverse
transform of the learnt wavelet coefficients is used as the initial estimate for z.

We now explain the various terms in equation (8) with respect to the wavelet based

learning method. The first term relates to the consistency in data fitting. If z is the
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actual HR image, we observe that ||y — Dz||? need not be zero as the chosen decimation
operator D as defined in equation (3) need not be close to the wavelet decomposition (
LL image in Figure 2) of the high resolution image, in general. The above is true only
for Haar basis. However, the use of Haar basis introduces a lot more blockiness in the
reconstructed image when the third (smoothness) term becomes very large. Alternately
one may set all the wavelet coefficients in the finer subbands to be zero prior to taking the
inverse wavelet transform. Although this may be similar in idea to the sinc interpolation,
the corresponding interpolation results are quite inferior. The choice of Daub4 as the
basis function in the study was more on an ad hoc basis, and a proper selection of the
basis function would be an interesting topic of research. The selection of various weighting
parameters in equation (8) was based on the idea that each term in the equation should

have comparable magnitudes when the algorithm converges to the high resolution image.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficacy of the proposed technique to super-resolve
a low resolution observation using the wavelet coefficients learnt from a high resolution
training data set. We first present the results on gray scale images and then show that it
works well for color images also.

First we consider experiments with face images. A number of high resolution images of
different objects were downloaded from the Internet arbitrarily to use them as a training
set. We considered a high resolution training set of N = 200. The same training data
set has been used in all experiments. In order to obtain a low resolution test image, we
consider a high resolution image from the training set and downsample it by a factor of 2.
Figure 3(a) shows one such low resolution face image of size 64 x 64. Figure 3(b) shows
the same image upsampled by a factor of 2 using the bicubic interpolation technique. The
super-resolved image is shown in Figure 3(c). A Comparison of the Figures 3(b) and (c)
shows more clear details in the super-resolved image. The features such as eyes, nose and
the mouth appear blurred in the interpolated image shown in Figure 3(b), while they are
restored well in Figure 3(c). Also the eye balls are sharper in the displayed super-resolved
image. It has been experimentally found that the best results are obtained with the

parameters p = 0.01, v = 25, the weight for the learning term § = 0.08 and T'hresholdl =
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Threshold2 = 30. These parameters were selected so that all the components in the cost
function (refer to equation (8)) have comparable contributions. We retain the same values
for the parameters in all subsequent experiments.

Next we consider another experiment on face image. The low resolution observation
obtained by down sampling the high resolution Lena image is shown in Figure 4(a). The
super-resolution result obtained using the proposed approach is displayed in Figure 4(c),
and Figure 4(b) shows the bicubic interpolated image. Once again we see that the high
frequency details are better preserved in the super-resolved image. Various surface bound-
aries are much sharper. The hair strand and the lace on the hat appears more clearly.
The eyes and the nose are also clear. However, we observe little blockiness on the bound-
ary curves of the hat and the slanted structure on the upper right corner of the picture.
Furthermore, the edge primitives are chosen over a 8 x 8 block in the wavelet domain.
Hence the learned edges may suffer from blockiness. The smoothness constraint is sup-
posed to take care of such jaggedness. However, the Threshold value being chosen on an
ad hoc basis it fails to undo the jaggedness. But this blockiness is nothing compared to
the blockiness one obtains when a simple pixel replication is used. Comparing this with
the simple zero order hold expanded image shown in Figure 4(d) (in which every feature
in the image appears blocky), we see that the blockiness is negligible in the proposed
approach. We could have played with the parameter set in equations (7) and (8), but the
various parameters for recovering the super-resolved image for this experiment were kept
the same as used in the previous experiment.

In order to test our algorithm for an image which has prominent edges, we considered
a portion of a building image. The results for the same are shown in Figures 5(b-c)
with the low resolution observation depicted in Figure 5(a). We can clearly see that the
discontinuities are better estimated in the super-resolved image shown in Figure 5(c), but
they appear blurred in the bicubic interpolated image (see Figure 5(b)). This substantiates
our claim that the learning of wavelet coefficients does help in improving the resolutions.

We now consider a few experiments on the color image super-resolution. For these
experiments we first convert the low resolution color image into Y — Cj, — C,. format. The

learning of the wavelet coefficients is then done using the Y (luminance) plane only. The
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(a) (b) (c)

Fig. 3. (a) A low resolution observation (facel), (b) bicubic interpolated image, (c) and the super-resolved

image using the proposed approach.

Fig. 4. (a) Another low resolution observation (Lena), (b) bicubic interpolated image, (c) and the

super-resolved image, and (d) result of simple pixel replication.

Fig. 5. (a) Low resolution observation of a building, (b) upsampled by bicubic interpolation, (¢) and the

super-resolved image.
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recovered high resolution image in the luminance plane after optimization is then combined
with the bicubic interpolated version of the data in low resolution C, — C, planes in order
to obtain the super-resolved color image. The idea is quite similar to the way a macroblock
is represented by 4 : 1 : 1 DCT blocks in the Y — C, — C, domain while using an MPEG
coder. The training images used were kept the same as in the previous experiments on
gray scale images. One may note here that learning of the wavelet coefficients for the
Y, C,, and C, planes can also be done separately in order to obtain the super-resolution
on each of the low resolution images. However, we refrain from doing it in this paper as any
possible error in learning in any of the color planes may introduce chromatic distortions
and the human vision appears to be sensitive to that.

We now show results of two experiments conducted on the color face images. Due to
printing restrictions, the results are shown here in gray tone. But the color images can be
seen at this website [35]. Figure 6(c) shows the result of the proposed approach on a low
resolution observation shown in Figure 6(a). Compare this with the bicubic interpolated
image shown in Figure 6(b). We observe that the super-resolved image appears sharper.
Few areas of interest where such an enhancement can be observed are the mark on the
left chin, eye balls and the hair. The results for another low resolution face image are
displayed in Figures 7(a-c). Similar conclusions can again be drawn from this experiment.
Observe the eye balls, eye brows, frontal hair, and the nose shown in Figure 7(c) which
appear sharper when compared to the bicubic interpolated image given in Figure 7(b).
Thus we conclude that our approach works well for color images as well.

Finally, in order to convey the comparative edge over the conventional interpolation
techniques, we show the mean squared error (MSE) during interpolation for the gray
scale images. Table I shows the comparison of the proposed method with the standard
bilinear interpolation, bicubic interpolation and the Lanczos method. In order to be able
to compute the MSE, we started with a high resolution image and the decimated version
of that was used as the low resolution observation. The mean squared error between the
original image and generated super-resolved image is defined as
_ Suyelind) — 3(6,5))?

Yig(2(6,5)7

We can observe that in addition to the perceptual betterment in all observed images there

MSE
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(a) (b) (©)

Fig. 6. (a) A low resolution observation, (b) upsampling using the bicubic interpolation, and (c¢) the

super-resolved image.

--ﬂlﬁ ﬂe aﬂ’,
(a) (b) ()

Fig. 7. (a) Another low resolution face image, (b) upsampling using the bicubic interpolation, (c) the

super-resolved image.

is also a drop in MSE for the proposed approach. This illustrates the usefulness of the

wavelet based learning scheme in super-resolving the images.

VII. CONCLUSIONS

We have described a method for super-resolution restoration of images using a wavelet
based learning technique. The wavelet coefficients at finer scales, learnt from a set of
several high resolution training images, are used as a constraint along with an appropriate
smoothness prior to estimate the super-resolved image. The learning term selects the best
high resolution edges from the training set given a low resolution observation, while the

discontinuity preserving smoothness term ensures a proper spatial correlation among pixel
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Method | facel | Lena | building
Bilinear | 0.0049 | 0.0075 | 0.0092
Bicubic | 0.0043 | 0.0063 | 0.0073
Lanczos | 0.0041 | 0.0061 | 0.0065
Proposed | 0.0032 | 0.0056 | 0.0061

TABLE 1

COMPARISON OF MSES OF DIFFERENT SCHEMES.

intensities. The results obtained for both gray scale and color images show perceptual
as well as quantifiable improvements over conventional interpolation techniques. The
proposed method is useful when multiple observations of a scene are not available and one

must make the best use of a single observation to enhance its resolution.
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