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Abstract

Super-resolution refers to the task of estimating a high resolution image from one
or more low resolution observations. Super-resolution techniques handle the issues
of alias removal, de-blurring and de-noising while interpolating the low resolution
inputs. Most of the research on super-resolution is for multi-frame super-resolution
where the nonredundant information among multiple sub-pixel shifted low resolution
observations are used to produce a high resolution image. Recently, there have been
some works on single frame image super-resolution where only one low resolution
observation is used to construct the super-resolved image. These techniques are based
on statistical and machine learning approaches where the missing high frequency
details in the low resolution image is learned from an appropriate image database. In
this thesis we propose some new approaches for recovering a high resolution image
from a single low resolution observation making use of a training set containing several
high resolution images.

First we propose a single frame image super resolution method using a learned
wavelet prior on the high resolution image. We learn the wavelet coefficients at finer
scales of the unknown high resolution image locally from a set of high resolution
training images and the learned image in the wavelet domain is used for further reg-
ularization while super-resolving the picture. We use an appropriate discontinuity
preserving smoothness prior in addition to the wavelet based constraint to estimate
the super-resolved image. Thus, we minimize a cost function containing the data
consistency term, the smoothness constraint and the learned prior in the wavelet do-
main. The smoothness term ensures the spatial correlation among the pixels whereas

the learning term chooses the best edges from the training set while super-resolving



the input low resolution image.

Using wavelets, though we expect to catch the horizontal and vertical edges, edges
oriented along arbitrary directions are not handled properly. To overcome this diffi-
culty we propose a learning technique using the contourlet transform which is capable
of catching the smoothness along contour naturally. The contourlet coefficients at
finer scales of the unknown high resolution image are learned locally from a set of
high resolution training images, the inverse contourlet transform of which recovers
the super-resolved image. This method is very fast as it is not required to solve the
super-resolution problem under a regularizations framework unlike the wavelet-based
approach.

We further modify the contourlet-based learning algorithm under a supervised
learning approach and making use of the concept of locally linear embedding (LLE),
a dimensionality reduction technique. Here the generation of a high resolution patch
does not depend on only one of the nearest neighbors in the training set. Instead,
it depends simultaneously on multiple nearest neighbors in a way similar to LLE for
manifold learning. Here we make use of the low resolution and the corresponding
high resolution training image pairs to learn the oriented edges for high resolution
embedding.

As the above methods cannot handle the blur and noise present in the observa-
tion, we describe a principal component analysis (PCA) based global method which
faithfully reproduces a super-resolved image from a blurred and noisy low resolution
input. Here we propose two approaches to enhance the low resolution input. In the
first method, a few significant eigenimages of a database of several similar low res-
olution images are computed and the given low resolution image is projected onto
the eigenimages to compute the projection coefficients. The high resolution image is
reconstructed using these coefficients and the high resolution eigenimages obtained by
performing generalized interpolation on the low resolution eigenimages. In the second
approach, we use a high resolution database and compute the principal eigenimages.
The only difference here is that the upsampling process is shifted to the input side

rather than performing generalized interpolation of the eigenimages.



To extract the advantages of both the local and global methods, we also propose a
hybrid approach for super-resolution by integrating the global learning using PCA and
the local learning approach using wavelets or contourlets. The former extracts the best
statistical features from a database of similar class if images while the latter ensures
the best edges from the database. We solve the problem under a Bayesian framework
incorporating the global and local priors, in addition to the data consistency term. We
apply the method particularly for face hallucination where we synthesize the missing
high frequency details of the input low resolution face image.

As all the above methods are unable to handle the aliasing effects in the low res-
olution input, finally we propose an alias-free upsampling scheme. We generate the
unknown high frequency components of the given partially aliased low resolution im-
age by minimizing the total variation of the interpolant subject to the constraint that
part of unaliased spectral components in the low resolution observation are known
precisely and under the assumption of sparsity in the data. This provides a mathe-
matical basis for exact reproduction of high frequency components with probability
approaching one, from their aliased observation. Unlike the other methods, here we

do not use a training set to produce the interpolated image.
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Chapter 1

Introduction

Today, one deals with digital images on a daily basis. Digital image processing enables
one to extract the pictorial details and useful information from a given low quality
image. Image processing ideas were used way back in 1920 for the transmission of
pictures through cables. Many of the techniques of digital image processing, were
developed in the 1960s at the Jet Propulsion Laboratory, MIT, Bell Labs, etc. with
application to satellite imagery, wire photo standards conversion and medical imaging.
The field if image processing has grown considerably during the last few decades,
with the developments in digital computer technology in terms of improvement in
size, speed and cost effectiveness. Today, the technology has reached such a level that
one can purchase a compact image processing system off the shelf to capture and
manipulate an image the way one wants.

The basic functional elements of an image processing system are (i) image ac-
quisition module such as a video camera, a scanner, a frame grabber (ii) processing
and storage module such as a general purpose computer and its memory and (iii)
a display module e.g., monitor, printer, etc. The digital image processing field has
several applications in microscopy, medical imaging, astronomy, remote sensing, and
law enforcement. For all these applications it is always desirable to have an image
providing more detailed information. In other words, we always prefer an image with
high resolution (HR). For example, with high resolution imaging one can obtain a

better classification of regions in a multi spectral image, a more pleasing view in



a high definition television (HDTV), an accurate recognition in a face recognition
scheme and a precise localization of a tumor in a medical image, etc. The resolution
of an image is dependent on the resolution of the image acquisition device. Thus,
to acquire a high resolution image one will need complex sensors which may be very

costly and may not be an affordable solution for all situations.

1.1 Definition of Image Resolution

One of the most important technical terms to understand in image manipulation is the
word resolution which judges the quality of various image acquisition and processing
devices. In its simplest form, image resolution is defined as the smallest measurable
detail in a visual presentation. In optics the resolution of a device is determined by
measuring the modulation transfer function (MTF) or the optical transfer function
(OTF) which measures the response of the system to different spatial frequencies. In

digital image processing, the term resolution is classified into three different types.

e Spatial or Pizel Resolution: An image is composed of several picture elements
called pixels. Spatial resolution or pixel resolution refers to the spacing of pixels
in an image and is measured with the set of two positive integer numbers,
where the first number is the number of pixel columns (width) and the second
is the number of pixel rows (height), for example as 640 by 480. Higher spatial
resolution allows a clear perception of sharp details and subtle color transitions
in an image. If an image having high levels of details is not represented by a
spatially dense set of pixels, the image is said to suffer from aliasing artifacts
giving rise to a blocky effect. For an output device such as a printer the spatial

resolution is expressed in dots per inch (dpi) or meter per pixel in absolute term.

e DBrightness Resolution: The brightness resolution is also referred to as the gray
scale or color range of an individual pixel. The brightness or color value of each
pixel is defined by one bit or a group of bits. The more the number of bits

used per pixel in an image, the higher the brightness resolution and the larger



the image file. The brightness resolution of monochrome images is usually 256
levels implying that a pixel value is represented by 8 bits. For color images,
at least 24 bits are used to represent one brightness level, i.e., 8 bits per color
plane(red, green, and blue). This is more commonly referred to as dynamic

range or amplitude quantization.

e Temporal Resolution: This refers to the frame rate or the number of frames cap-
tured per second. Higher frame rates result in less smearing due to movements
in the scene. The lower limit on the temporal resolution is directly proportional
to the expected motion during two subsequent frames. The typical frame rate

for a pleasing view is about 25 frames per second or above.

e Spectral Resolution: This refers to the frequency or spectral resolving power of
a sensor and is defined as the smallest resolvable wavelength difference by the

Sensor.

In this report, the term resolution always refers to spatial or pixel resolution.

1.2 Why Resolution Enhancement?

Since the 1970s, charge-coupled device(CCD) and CMOS image sensors have been
widely used to capture digital images. The number of sensor elements decide the
spatial resolution of the camera. Higher the number, more is the resolution. A camera
with less number of sensor elements produces a low resolution (LR) image, giving a
blocky effect. Although these sensors are suitable for most imaging applications, the
current resolution level and consumer price will not satisfy the future demand. For
example, people want an inexpensive HR digital camera/camcorder and scientists
often need a very HR level close to that of an analog 35 mm film that has very little
visible artifacts when an image is magnified. Thus, finding a way to enhance the
current resolution level is essential.

The most direct solution to increase spatial resolution is to reduce the pixel size

(i.e., increase the number of pixels per unit area) by sensor manufacturing techniques.



As the pixel size decreases, however, the amount of light available also decreases. It
generates shot noise [1] that degrades the quality of the image captured. To reduce
the pixel size without suffering the effects of shot noise, therefore, there exists the
limitation of the pixel size reduction, and the optimally limited pixel size is estimated
at about 40um? for a 0.35um CMOS process. The current image sensor technology
has almost reached this level. Another approach for enhancing the spatial resolution
is to increase the chip size,which leads to an increase in capacitance [2]. Since large
capacitance makes it difficult to speed up a charge transfer rate, this approach is not
considered effective. The high cost for high precision optics and image sensors is also
an important concern in many commercial applications regarding HR imaging. There-
fore, a new cost effective approach toward increasing spatial resolution is required to
overcome these limitations of the sensors and lens manufacturing technology.

A promising approach is to use post acquisition signal processing techniques to
enhance the resolution. These techniques being post processing methods applied
on the already acquired low resolution images, they offer flexibility as well as cost
benefit since theres is no additional hardware cost involved. However, the increased

computational cost may be the burden that the user has to bear.

1.3 What is Super-Resolution?

The image captured using a low resolution camera suffers from three main drawbacks
namely aliasing, blurring and the presence of noise. Aliasing occurs due to the loss of
high frequency details because of lower spatial sampling. This causes loss of important
informations such as edges and textures in the image. Also degradation occurs due to
the sensor point spread function (PSF), and optical blurring due to camera motion or
out of focus. Super-resolution (SR) refers to the process of producing a high spatial
resolution image from one or more low resolution images, thereby recovering the
missing high frequency details and removing the degradations that arise during the
image capturing process. In effect, the super-resolution process extrapolates the high

frequency components and minimizes aliasing and blurring.



As explained in the previous section, one way to obtain high resolution images is
by reducing the pixel size and thereby increasing the pixel density. But an increase
in pixel density causes shot noise and also the sensor cost increases with increase in
pixel density. So we have to resort to some signal processing approaches to construct
the high resolution image making use of the available low resolution images. A simple
approach is to use interpolation techniques to increase the size of the given image.
But conventional interpolation methods such as nearest neighbor, bilinear and bicu-
bic interpolation generate images which are severely blurred. This blurring effect is
related to the loss of details, which are directly related to the high frequencies in the
image. As these methods do not solve any of the three issues in super-resolution they
are not considered as SR techniques.

A natural solution to SR reconstruction is to make use of multiple sub-pixel shifted
low resolution observations of the same scene and extract the non redundant infor-
mation among them. This is termed as multi-frame super-resolution in the literature.
This technique involves exact registration among the different frames followed by in-
terpolation and finally restoration to remove blur and noise. Most of the literature
available on SR is based on multi-frame super-resolution. Recently, there have been
some works on single frame image super-resolution where only one low resolution ob-
servation is used to construct the super-resolved image. These techniques are based
on statistical and machine learning approaches where the missing high frequency de-
tails in the low resolution image are learned from an appropriate image database.
SR methods under this category are also known as learning based super-resolution
techniques which is the subject matter of this thesis.

It may also be noted that there are other forms of super-resolution techniques like
optical super-resolution [3] where the high frequency contents beyond the diffraction
limit are extracted, and subwavelength imaging which achieve a resolution beyond the
diffraction limit (spurred by recent developments in superlens made from a material
having a negative index of diffraction) [4]. Such issues are not dealt with in this
thesis. The focus of this thesis is in the use if digital post processing techniques to

address issues such as alias removal, de-blurring and de-noising.
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Figure 1.1: Observation model relating LR images to HR image.

1.4 Observation Model for Super-Resolution Re-
construction

The first step to analyze the SR image reconstruction problem is to formulate an
observation model that relates the original HR image to the observed LR images.
The success of any SR reconstruction method is closely dependent on the correctness
of the LR image formation model. The most common model is based on observations
which are shifted, blurred and aliased versions of the high resolution image. A general
observation model for low resolution observations relating to the high resolution image
is shown in 1.1. The desired high resolution image is obtained by sampling at or above
the Nyquist rate from a continuous scene which is assumed to be band limited. It is
assumed that the HR image remains constant during the acquisition of the multiple
LR images, except for any motion and degradation allowed by the model. The relative
motion between the camera and the scene may cause blurring and low resolution
scanning is equivalent to subsampling or decimation. Therefore, the observed LR
images result from warping, blurring, and sub-sampling operations performed on the
HR image followed by noise addition.

A simplified low resolution image formation model is illustrated in Figure 1.2. The
LR image formed using this model will be aliased as well as blurred and noisy. It is to

be noted that without the blur, the LR observation will suffer from aliasing severely.
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Figure 1.2: Simplified low resolution image formation model.

However, the HR restoration of the original image becomes increasingly difficult with
the increase in amount of blurring [5].

Thus the problem we investigate in this thesis is as follows. Given a single instance
of the low resolution observation, obtain an estimate of the high resolution image.
Ideally the super-resolution process should reduce the effects of noise and blur while
recovering an alias-free upsampled version of the given LR image. As it is difficult
to deal with all these three issues simultaneously, different forms will be assumed for
the blurring kernel and noise in subsequent chapters. Since the decimation process is
not invertible, an arbitrary set of high resolution images is used as training data to

help recover the unknown high resolution image.

1.5 Contributions of the Thesis

Super-Resolution is the problem of generating a high resolution image from one or
more low resolution images. While most of the methods proposed for SR is based
on multiple low resolution images of the same scene, the focus of this thesis is in
generating a high resolution image from a single low resolution image. We call this
problem as single-frame image super-resolution. For this we make use of a set of good
quality training images and learn the best features from them. Such single image
super-resolution problem arises in a number of real world applications. A common
application occurs in digital photography when one wants to increase the resolution of
an image while resizing it using image processing software like Adobe Photoshop ®.
Another application can be found in web pages with images. To save storage space
and communication bandwidth, it would be desirable if the low resolution image is

downloaded and enlarged on the user’s machine with an appropriate super-resolution



algorithm. To take care of several such applications we are proposing some novel
single frame image super-resolution methods in this thesis. For this purpose we make
use of a database of several good quality training images. It may be noted that, by
the term training we really mean exemplar images from where we try to learn the
best features while super-resolving the given low resolution input. In super-resolution
one always aims at generating the missing high frequency components. To this end,
we also propose a method to quantify that the generated details are really the high
frequency details missing in the given low resolution observation. The contributions

of the thesis, in summary, are:

e First we propose a single frame, learning based image super resolution method
using a learned wavelet prior on the high resolution image. We learn the wavelet
coefficients at finer scales of the unknown high resolution image locally from a
set of high resolution training images and the learned image in the wavelet do-
main is used for further regularization while super-resolving the picture. We
use an appropriate smoothness prior with discontinuity preservation in addition
to the wavelet based constraint to estimate the super-resolved image. Thus we
minimize a cost function containing the data consistency term, the smooth-
ness constraint and the learned prior in the wavelet domain. The smoothness
term ensures the spatial correlation among the pixels whereas the learning term
chooses the best HR edges from the training set. Because this amounts to
extrapolating the high frequency components, the proposed method does not

suffer from over smoothing effects.

e One of the major difficulties with wavelet-based learning lies in the fact that
the wavelet decomposition kernel is separable. Although this provides compu-
tational advantages, we expect to catch only the horizontal and vertical edges
properly. Hence we do not have difficulties in learning horizontal and vertical
edges, but we do have some problem in learning edges oriented along arbitrary
directions. This gives rise to certain artifacts in the reconstructed image and in

order to get a good quality super-resolved image we were forced to use an ap-



propriate discontinuity preserving smoothness constraint under a regularization
framework. Thus we ensure spatial correlation among pixels using the smooth-
ness constraint, as well as obtain the best matching edges from the training set
using wavelet learning. This required a stochastic optimization technique to

obtain the solution which made the reconstruction process very slow.

A better way to handle the above situation is to use directionally selec-
tive wavelet decomposition to learn the oriented edges where the reconstruction
problem need not be solved under a regularization framework, resulting in a
much faster solution. This motivated us to use the contourlet transform [6]
which is capable of catching the smoothness along contour naturally. They
offer a much richer set of directions and shapes, and thus, they are more ef-
fective in capturing smooth contours and geometric structure in the image.
The contourlet coefficients at finer scales of the unknown high resolution image
are learned locally from a set of high resolution training images, the inverse
contourlet transform of which recovers the super-resolved image. In effect, we
learn the high resolution representation of an oriented edge primitive from the
training data. Our experiments show that the proposed approach outperforms
standard interpolation techniques as well as a standard wavelet-based learning
both visually and in terms of the peak signal to noise ratio (PSNR) values,

especially for images with arbitrarily oriented edges.

We further modify the contourlet-based learning algorithm under a supervised
learning approach and making use of the concept of locally linear embedding
(LLE), a dimensionality reduction technique. Here the generation of a high
resolution patch does not depend only on one of the nearest neighbors in the
training set. Instead, it depends simultaneously on multiple nearest neighbors
in a way similar to LLE for manifold learning. Here we make use of the low
resolution and the corresponding high resolution training image pairs to learn
the oriented edges to estimate the high resolution embedding. The advantage

of this lies in capturing the effect of the decimation process explicitly by the



contourlet transform through the matched pair of LR and HR training data. In
the previous methods it has been implicitly assumed that the multiresolution
decomposition using either wavelet or contourlet has the same effect as that
of the decimation process, which is often not true. For a given LR test image
patch (in contourlet domain) we find k& nearest neighbors from the LR training
set by performing an extensive search. Now the test patch is reconstructed from
a linear combination of the k£ neighbors where the reconstruction weights are
computed so as to minimize the reconstruction error. The linear combination of
the corresponding k£ HR patches and the same reconstruction weights generate
the required super-resolved patch in the contourlet domain. This is repeated

for all the patches in the test image.

All the above methods are based on learning the features locally and are good
at enhancing the edges during super-resolution, but are poor in handling noisy
data. Further, they are unable to undo the effect of aliasing. But in certain
applications one need to super-resolve an image which is severely blurred and
noisy. For example, in investigative criminology one has available face and
fingerprint databases which are often taken at controlled environment. The
question we ask is that if one encounters a poor quality input image, can it
be enhanced using the knowledge of the properties of the database images?
To solve this problem we propose a global learning approach using principal
component analysis (PCA), unlike the above methods where the learning was
local. In this global approach, we learn the statistics of a good quality image
database and use them to enhance the given LR input. As the learning is global
it imposes the constraint that all the training images should be globally similar,

i.e. they should represent a similar class of objects.

Here we propose two approaches to enhance the low resolution input. In
the first method we use the idea of generalized interpolation. A few significant
eigenimages of a database of several similar low resolution images are computed

and the given low resolution image is projected onto the eigenimages to compute
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the projection coefficients. The high resolution image is reconstructed using
these coefficients and the HR eigenimages obtained by performing generalized
interpolation on the LR eigenimages. In the second approach, we use a high
resolution database and compute the principal eigenimages. The only difference
here is that the upsampling process is shifted to the input side rather than
performing generalized interpolation of the eigenimages. These methods are
applicable to images of a particular class, for example, face and fingerprint
images. The algorithm offers a significant advantage when the input image is
blurred and noisy. Direct interpolation of the input image does not solve any of
the above two problems of blurring and noise perturbation, justifying the claim
that the PCA-based restoration does help. However, this global upsampling
method does not provide an alias-free reconstruction. Further, the method has

limited applicability, mostly in enhancing face or fingerprint images.

e We realize that the global high resolution reconstruction using generalized in-
terpolation fails to do exact super-resolution, though it removes the blur and
noise present in the input low resolution image. But it very well learns the
global characteristics from the image database. On the other hand, the local
learning methods using wavelets or contourlets obtain the missing high fre-
quency details by locally learning the best edges from the image database. To
extract the advantages of both these methods, we now propose a hybrid ap-
proach for super-resolution by integrating the global learning using PCA and
the local learning approach using wavelets or contourlets. The former extracts
the best statistical features from a database of similar class of images while the
latter ensures the best edges from the database. We solve the problem under
a Bayesian framework incorporating the global and local priors, in addition to
the data consistency term. We apply the method particularly for face halluci-
nation where we synthesize the missing high frequency details of the input low

resolution face image.

e The final contribution of the thesis is in developing an alias-free interpolation
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scheme. All the local and global methods discussed so far are able to provide a
super-resolved image, but they are unable to handle the aliasing effects. Even in
the local approaches, though the edges are handled properly, the aliasing present
in the LR image is not reduced much during the upsampling process. Here
we study the possibility of removing aliasing in a scene by designing an alias-
free upsampling scheme. Quite naturally this is impossible unless additional
information about the HR data is available. Hence we assume that the HR data
is piece-wise constant. We generate the unknown high frequency components
of the given partially aliased (low resolution) image by minimizing the total
variation of the interpolant subject to the constraint that part of unaliased
spectral components in the low resolution observation are known precisely and
under the assumption of sparsity in the data. This provides a mathematical
basis for exact reproduction of high frequency components with probability

approaching one, from their aliased observation.

In all the SR methods proposed in literature, the quality of the super-
resolved image is measured either by means of visual inspection or using a
PSNR check. It can be easily shown that the PSNR measure is heavily biased
towards the lower part of the spectrum due to the fact that most of the en-
ergy is contained in this region. Hence the PSNR may not be a good measure
to evaluate the performance of an SR scheme. Even though, several different
measures to evaluate the quality of visually pleasing images are proposed in the
literature, the issue that the reconstructed components are really the missing
high frequency components has not really been investigated so far. Our focus
in this work is a study in this direction. We study the issue of alias-free interpo-
lation at a more fundamental level and restrict ourselves again to using a single

observation without using any training database unlike the other methods.

We have carried out extensive experiments to validate the usefulness of the differ-

ent methods. Comparison between the different methods are also provided.
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1.6 Organization of the Thesis

We address the problem of single-frame image super-resolution in this thesis. We
develop several methods of single-frame image super-resolution by learning the best
features from an appropriate image database. We also develop a method which math-
ematically establishes the correctness of the generated additional high frequency com-
ponents in super-resolution by restricting ourselves into certain specific assumptions.
The thesis is organized as follows.

In chapter 2, we review the current literature on super-resolution for both multi-
frame and single-frame methods.

Single image super-resolution using learned wavelet coefficients is discussed in
chapter 3. We show that the wavelet coefficients learned at finer scales can be used as
an appropriate prior while solving the super-resolution problem under a regularization
frame work.

In order to avoid solving the above problem under a regularization scheme to
speed up the super-resolution process, we propose a contourlet transform-based learn-
ing method for super-resolution in chapter 4. Here we exploit the capability of the
contourlet transform to capture the smoothness along contours while learning the
oriented edges.

As taking the best match for a test patch from a database does not always provide
a better solution, and since the process of decimation may not be captured well by
the wavelet or contourlet coefficients implicitly we further consider a locally linear
embedding method making use of several neighbors under a supervised learning frame
work. This is the subject matter of chapter 5.

In chapter 6 we describe a PCA based global learning approach for super-resolving
images of a particular class like face and fingerprint images. This method specifically
solves the de-blurring and de-noising issues in super-resolution but is incapable of
handling aliasing present in the data. In chapter 7 we propose a hybrid approach
integrating the local and global approaches and apply the method for face hallucina-

tion.
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In chapter 8 we study the exact super-resolvability of a scene from a single obser-
vation by designing a partial alias-free interpolation scheme. This provides a mathe-
matical basis for exact reproduction of high frequency components with probability
approaching one, from their aliased observation.

The thesis concludes in chapter 9 where we summarize our work and also discuss

some issues for further research in the area of super-resolution.
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Chapter 2

Literature Review

Most of the literature available on super-resolution is for multi-frame super-resolution
where several low resolution observations of the same scene are used to super-resolve
a picture. A majority of them are based on the motion cue where the non redun-
dant information among sub-pixel shifted low resolution observations are extracted
to produce a single high resolution image. But the goodness of these methods depend
directly on how accurately one can register the low resolution observations. In order
to tackle this problem, recently there have been some work in the field of motion-free
super-resolution where cues other than motion like blur, defocus, zoom, photome-
try, etc., are used in super-resolving the given low resolution input. These methods
do not require observations with relative motion among them. Another category of
super-resolution is called single image (frame) super-resolution where only one low
resolution input is used to produce the high resolution image. Most of the papers
available in this field are based on learning the appropriate features from an image
database to recover the missing high frequency details for super-resolution. These
techniques are also called learning-based super-resolution techniques. In this sec-
tion we review the literature on super-resolution reconstruction techniques for both

multi-frame and single-frame cases.
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2.1 Multi-frame Super-Resolution

The idea of image super-resolution was first introduced by Tsai and Huang [7] in 1984,
motivated by the need for improved resolution images from Landsat data. Landsat
acquires images of the same areas of the earth in the course of its orbits, thus produc-
ing a sequence of similar, but not identical images. Observed images are modeled as
under-sampled versions of an unchanging scene undergoing global translational mo-
tion. Here the authors propose a frequency domain formulation based on the shift and
aliasing properties of the continuous and discrete Fourier transforms for the recon-
struction of a band-limited image from a set of under-sampled, and therefore aliased,
observation images. The shift and aliasing properties are used to formulate a system
of equations which relate the aliased discrete Fourier transform (DFT) coeflicients of
the observed images to samples of the continuous Fourier transform of the unknown
original scene. The system of equations are then solved to recover the image in the
Fourier domain and the original image is recovered using inverse DFT. Solution of
the equations requires that each observation contribute independent equations, which
places restrictions on the inter-frame motion that contributes useful data. Here the
observations were assumed to be noise free. An extension of this algorithm for noisy
data was provided by Kim et al.[8], resulting in a weighted least squares algorithm for
computing the high resolution estimate. They consider the same blur and noise char-
acteristics for all the low resolution observations. Kim and Su in [9] consider different
amount of blur for each low resolution image and used the Tikhonov regularization
to obtain the solution of an inconsistent set of linear equations.

Theoretical simplicity is a major advantage of the frequency domain approaches
discussed above. That is, the relationship between LR images and the HR image
is clearly demonstrated in the frequency domain. The frequency domain method is
also convenient for parallel implementation capable of reducing hardware complexity.
However, the observation model is restricted to only global translational motion and
linear space invariant (LSI) blur. Also, since the data is uncorrelated in the frequency

domain, it is also difficult to apply any spatial domain a priori knowledge for regu-
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larization. Researchers have also explored the use of other transforms like discrete
cosine transform (DCT) to achieve super-resolution [10].

The most intuitive method for SR reconstruction is based on a nonuniform in-
terpolation approach. This is a three stage process starting with the estimation of
relative motion among successive frames followed by nonuniform interpolation to pro-
duce a high resolution image. The final step is a restoration process to remove blur
and noise. Ur and Gross [11] performed a nonuniform interpolation of an ensemble of
spatially shifted LR images by utilizing the generalized multichannel sampling the-
orem of Papoulis [12] and Brown[13] to obtain an improved resolution picture. The
relative shifts are assumed to be known precisely. A recursive total least squares
method for SR reconstruction to reduce the effects of registration error is discussed
in [14]. In [15] the authors developed a technique for real-time infrared image reg-
istration and SR reconstruction utilizing a gradient-based registration algorithm for
estimating the shifts between the acquired frames and presented a weighted nearest
neighbor interpolation approach. In [16] Nguyen and Milanfar proposed an efficient
wavelet-based SR reconstruction algorithm. They exploit the interlacing structure of
the sampling grid in SR and derive a computationally efficient wavelet-based inter-
polation for interlaced two-dimensional (2-D) data. All these methods are restricted
either to a global translational displacement between the measured images or an LSI
blur, and a homogeneous additive noise.

Irani and Peleg [17, 18] formulated the iterative back-projection (IBP) SR recon-
struction approach that is similar to the back projection method used in tomography.
In this approach, the HR image is estimated by back projecting the error between
simulated LR images via imaging blur and the observed LR images. This process is
repeated iteratively to minimize the energy of the error. A set theoretic approach
to the super-resolution restoration problem was suggested in [19]. The main result
in this method is to define convex sets which represent tight constraints on solu-
tion as well as use the amplitude constraint to improve the results. A projection on
to convex sets (POCS) formulation of the SR reconstruction was first suggested by

Stark and Oskoui [1]. They use arbitrary smooth motion, linear space variant blur,
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and a non-homogeneous additive noise. Ng et al. develop a regularized, constrained
total least squares solution to obtain a high-resolution image in [20]. They consider
the presence of perturbation errors of displacements around the ideal sub-pixel loca-
tions in addition to noisy observations. The effect of the displacement errors on the
convergence rate of an iterative approach for solving the transform domain based pre-
conditioned system of equations is discussed by Ng and Bose [21]. They also develop
a fast restoration algorithm for color images in [22]. Nguyen et al. have proposed
circulant block preconditioners to accelerate the conjugate gradient descent method
while solving the Tikhonov-regularized super-resolution problem [23].

Generally, the SR image reconstruction approach is an ill-posed problem because
of an insufficient number of LR images and ill-conditioned inverse of blur operators.
Procedures adopted to stabilize the ill-posed problem are called regularization. Kat-
saggelos et al. [24] proposed a multichannel regularized SR approach in which a
regularization functional is used. They also calculate the regularization parameter
without any prior knowledge at each iteration step. Later, Kang [25] formulated the
generalized multichannel deconvolution method including the multichannel regular-
ized SR approach. Bose et al. [26] pointed out the important role of the regulariza-
tion parameter and proposed a constrained least square SR reconstruction method
which generates the optimum value of the regularization parameter using the L-curve
method [27].

The SR reconstruction problem has also been approached from a statistical esti-
mation framework. Tom and Katsaggelos [28] proposed a maximum likelihood (ML)
SR image estimation problem to estimate the subpixel shifts, the noise variances
of each image, and the HR image simultaneously. The proposed ML estimation
problem is solved by the expectation-maximization (EM) algorithm. Specifically, a
maximum aposteriori (MAP) framework is developed in [29] which is an extension
of the single-frame image expansion algorithm proposed in [30]. The MAP estimator
in [29] uses an edge preserving Huber-Markov random field for the image prior. In
[31] the authors use a MAP framework for jointly estimating the registration param-

eters and the high-resolution image for severely aliased observations. They use an
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iterative, cyclic coordinate-descent optimization technique to update the registration
parameters. Cheeseman et al. [32] applied the Bayesian estimation with a Gaussian
prior model to the problem of integrating multiple satellite images observed by the
Viking orbiter. Robustness and flexibility in modeling noise characteristics and a
priori knowledge about the solution are the major advantage of the stochastic SR
approach. Assuming that the noise process is white Gaussian, a MAP estimation
with convex energy functions in the priors ensures the uniqueness of the solution and
hence efficient gradient descent methods can be used to estimate the super-resolved
image.

An adaptive filtering approach to super-resolution restoration is described by Elad
and Feuer in [33]. The adaptation enables them to incorporate linear space and time-
varying blurring and arbitrary motion among the low resolution observations. They
have also developed a fast super-resolution algorithm in [34] for pure translational
motion and space invariant blur.

In most SR reconstruction algorithms, the blurring process is assumed to be
known. In many practical situations, the blurring process of the imaging system
is not known. Nguyen et al. [35] proposed a technique for parametric blur identifica-
tion and regularization based on the generalized cross-validation (GCV) and Gauss
quadrature theory. They propose approximation techniques based on the Lanczos
algorithm and Gauss quadrature theory for reducing the computational complexities
of GCV. They solve a multivariate nonlinear minimization problem for the unknown
parameters.

Since edges in the image are places where one requires a better clarity, there have
also been some efforts in the literature on preserving the edges while interpolating
an image. Chiang and Boult [36] use edge models and a local blur estimate to de-
velop an edge-based super-resolution algorithm. In [37] authors propose an image
interpolation technique using a wavelet domain approach. They assume that the
wavelet coefficients scale up proportionately across the resolution pyramid and use
this property to go down the pyramid. Thurnhofer and Mitra [38] have proposed a

non-linear interpolation scheme based on a polynomial operator wherein perceptually
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relevant features (say, edges) are extracted and zoomed separately. The reconstruc-
tion/restoration methods to improve the resolution of digital images while zooming
have been discussed in [39]. The authors here focus on both the linear and the
non-linear methods based on total variation to study the ability of these methods
to preserve 1-D structures. A robust median-based estimator is used in an iterative
process to achieve super-resolution in [40]. This method discards the measurements
which are inconsistent with the imaging model, thereby increasing the resolution even
in regions having the outliers. Super-resolution using an edge-model based represen-
tation of Laplacian subbands is reported in [41]. In this approach, since the chosen
edge primitive set is not a basis, the representation is formulated by matching the
given primitives to various image regions as opposed to decomposing given regions in
terms of a basis set.

The application of the SR algorithm to the compression system is also needed,
since images are routinely compressed prior to transmission and storage. Reconstruc-
tion techniques for SR images from compressed video are discussed in [42, 43, 44].

There have been some learning based approaches also for multi-frame super-
resolution. Authors in [45] have proposed a super-resolution technique from mul-
tiple views using learned image models . Their method uses learned image models
either to directly constrain the ML estimate or as a prior for a MAP estimate. To
learn the model, they use PCA applied to the image database. In [46] Baker and
Kanade develop a super-resolution algorithm by modifying the prior term in the cost
to include the results of a set of recognition decisions, and call it recognition based
super-resolution or hallucination. Their prior enforces the condition that the gradient
at a point in the super-resolved image should be equal to the gradient in the best
matching training image. Pickup et al. [47] combine the motion information due to
sub-pixel displacements as well as motion-free information in the form of priors to
propose a domain specific super-resolution using the sampled textured prior. Here
they use training images to estimate a distribution rather than to learn a discrete
set, of low resolution to high resolution matches. A learning based method for super-

resolution enhancement of a video has been proposed by Bishop et al. [48]. Their
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approach builds on the principle of example based super-resolution for still images
proposed by Freeman et al. [49]. This is based on a learned data set of image patches
capturing the relationship between the middle and high spatial frequency bands of
natural images.

The accuracy of all the methods discussed above is dependent on how precisely
one can perform the registration among the sub-pixel shifted observations. In order
to circumvent this difficulty there have been some efforts in the field of motion-free
super-resolution where sub-pixel shifted LR observations are not required for super-
resolution. In these methods the researchers use cues other than motion cue like blur,
defocus, zoom, etc., thus avoiding the correspondence problem. Several new tech-
niques for motion-free super-resolution are discussed in [50]. A MAP-MRF based SR
reconstruction method has been proposed by Rajan et al. in [51] where the authors
make use of several blurred and noisy low resolution observations. Here a known
blur acts as a cue in generating the high resolution image. In [52] the authors re-
cover both the high resolution scene intensity and the depth fields simultaneously
using the defocus cue. Rajagopalan and Kiran [53] proposed a frequency domain
approach for estimating the high resolution image also using the defocus cue. They
derive the Cramer-Rao lower bound for the covariance of the error in the estimated
super-resolved image and show that the estimate becomes better as the relative blur
increases. Elad and Feuer [54] proposed a unified methodology for super-resolution
restoration from several geometrically warped, blurred, noisy and down-sampled mea-
sured images by combining ML, MAP and POCS approaches. Super-resolution using
zoom as a cue has been proposed by Joshi and Chaudhuri in [55]. They have also pro-
posed a learning-based method for image super-resolution from zoomed observations
[56]. They model the high resolution image as an MRF, the parameters of which are
learned from the most zoomed observation. The learned parameters are then used to
obtain a MAP estimate of the high resolution image.

In this section we have described some of the important SR reconstruction meth-
ods falling under the category of multi-frame super-resolution. Several other super-

resolution methods can be found in the literature especially for video. For a good
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review of those techniques readers are referred to [57] and [58].

2.2 Single Image Super-Resolution

In this section we review some of the works specifically on single-frame image super-
resolution which is the topic of this thesis. Simple resolution enhancement methods on
smoothing and interpolation techniques for noise reduction have been commonly used
in image processing. Smoothing is usually achieved by applying various spatial filters
such as Gaussian, Wiener and median filters. Commonly used interpolation methods
such as linear and cubic spline interpolation [59], [60] smooth the image data in
discontinuous regions, producing a larger image which appears rather blurred. Cubic
spline interpolants also tend to overshoot sharp discontinuities, producing a ringing
effect at edges. To overcome these difficulties an edge preserving nonlinear image
expansion technique is proposed in [30] using Bayesian estimation technique.

There are some very early efforts on super-resolution which deal with the property
of analytic continuation of a signal. These techniques infer the missing high frequency
components which is actually a process of spectral extension, given a portion of the
whole spectrum. The initial work in this regard is due to Harris [61] who establishes
that, given a finite extent of an object and a continuous but finite portion of the spec-
trum of the object, the entire spectrum can be generated uniquely using the principle
of analytic continuation. This leads to an exact and complete reconstruction of the
object spectrum if the measurements are noise free. However, this global method
becomes highly unreliable even if a small amount of noise is present in the given
portion of the spectrum. A new view of the problem of continuing a given segment
of the spectrum of a finite object is presented in [62]. Here the signal extrapolation is
carried out by the method of alternate projections [63], iterating alternately between
time and frequency domains. This method relies on the notion of reducing the ‘error
energy’. A dual of the same problem is solved by Papoulis [64] where the spectrum of
the bandlimited object is recovered from a finite segment of the object using an iter-

ative procedure. Here the effect of noise and the error due to aliasing are determined
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and it is shown that they can be controlled by early termination of the iteration.

Recently, some learning-based methods have been proposed for single image super-
resolution reconstruction. Most of these techniques make use of a set of training
images to learn the best features for the given low resolution image in order to produce
a high resolution image. As our work in this thesis is motivated by this new approach
for image super-resolution, we now review some of the papers under this category.
Freeman et al. have developed a single-frame image super-resolution method using a
set, of training images where they propose a learning framework called VISTA- Vision
by Image/Scene TrAining. By blurring and down-sampling sharply defined images
they construct a training set of sharp and corresponding blurred images. These
are then incorporated into a Markov network to learn their relationship. Bayesian
belief propagation allows them to efficiently find a local maximum of the posterior
probability for the high resolution patch given the low resolution one [65, 66]. But
the method is somewhat dependent on the training set and hence the result is not
stable and sometimes produces artifacts in real applications. Their later work [49]
simplifies and and improves on this approach.

An image analogy method applied to super-resolution is is discussed in [67]. They
use the low resolution and the high resolution versions of a portion of an image as the
training pairs which are used to specify a “super-resolution” filter that is applied to
a blurred version of the entire image to obtain an approximation to the original high
resolution image. Here the emphasis is on learning the local statistics at finer details.
This method is less effective than other super-resolution methods as no interaction
between adjacent elements in the high resolution image is explicitly enforced to ensure
compatibility. Candocia and Principe [68] address the ill-posedness of the super-
resolution problem by assuming that the correlated neighbors remain similar across
scales, and this a priori information is learned locally from the available image samples
across scales. When a new image is presented, a kernel that best reconstructs each
local region is selected automatically and the super-resolved image is reconstructed
by a simple convolution operation.

For face identification, especially by human, it is desirable to render a high res-
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olution face image from a low resolution one which is called face hallucination, a
term coined by Baker and Kanade, which implies that high frequency part of face
image must be purely fabricated. There have been quite a few new approaches to-
ward face hallucination. A learning based method for face hallucination is proposed
in [69]. Here the algorithm learns a prior on the spatial distribution of the image
gradient for frontal images of faces and the hallucinated image is recovered under a
MAP framework. They also extend the method for the case when there are multiple
low resolution images. Another technique for hallucinating faces using a two step
approach is discussed in [70]. Here, first the authors derive a global linear model to
learn the relationship between the high resolution face images and their smoothed and
down-sampled low resolution ones. To capture the high frequency contents of faces,
the residual between an original high resolution image and the reconstructed high
resolution image by learned linear model is modeled by a patch-based nonparametric
Markov network. By integrating both global and local models they generate photo-
realistic face images. In [71] Wang and Tang develop an efficient face hallucination
method using an eigen transformation algorithm. However, the method only utilizes
global information without paying any attention to local details. In another approach
for face hallucination presented in [72] the authors have shown that their framework
integrating TensorPatch model and coupled residue compensation is capable of pro-
ducing high quality super-resolution images. Compared to other approaches, this
method has the advantage of preserving global structure and local features.
Recently, Wang et al. [73] have proposed a learning based super-resolution method
in a probabilistic framework integrating the SR reconstruction constraint and the
patch based co-occurrence prior. This framework is also in fact a combination of the
global parametric model and the learned nonparametric model as in [70]. Here the
authors perform experiments for both single image and multiple image cases. A multi-
modal (such as variations in viewpoint and illumination) face image super-resolution
and recognition system in tensor space is presented in [74]. Given a single modal
low resolution image, they super-resolve its high resolution reconstructions across

different modalities for face recognition. An image hallucination approach based on

24



the primal sketch priors for generic images is presented in [75]. Here primal sketch
priors (edges, ridges and corners) are constructed and used to enhance the quality
of the hallucinated high resolution image. A contour smoothness constraint enforces
consistency of primitives in the hallucinated image by a Markov-chain based inference
algorithm.

There are some other learning-based techniques which do not require a training
set but require strong image priors that are hypothesized as in [30] or learned from
data [76]. In [76] a generic unsupervised method for single image super-resolution is
proposed. Here a dynamic tree-like architecture is used to model the high resolution
data and approximate conditioning in the low resolution image is achieved through a
mean field approach.

A method for single-frame image super-resolution using an unsupervised learning
technique is proposed in [77]. In this approach the required prior knowledge about
the high resolution images is obtained using kernel principal component analysis. The
single image super-resolution method proposed in [78] is the extension of a Markov-
based learning algorithm described in [66], capable of processing an LR image with
unknown degradation parameters. A different method for enhancing the resolution of
LR facial images using an error back projection method based on a top-down learning
is proposed in [79]. Here a face is represented by a linear combination of prototypes
of shape and texture. Recently, Chang et al. [80] have proposed a single image
super-resolution method by exploring the manifold properties. Assuming LR and
HR patches reside on two non-linear manifolds having similar locally linear structure,
the manifold correlation is realized by a three layer Markov network and performing
super-resolution with energy minimization. This method has the advantages of both
recognition based and reconstruction based approaches.

It may be noted that the super-resolution problem is now getting quite matured
and several journals have devoted special issues on this topic. The special issues [81]
-[88] discuss some of the recent developments in the field of multi-frame as well as

single-frame image super-resolution.
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Chapter 3

Use of Learned Wavelet Prior

Super-resolution is the process of estimating a high resolution image from one or more
low resolution observations. This process includes upsampling the image, thereby in-
creasing the maximum spatial frequency, and removing degradations that arise during
the image capture, viz., aliasing and blurring. A suitable way of recovering the missing
high frequency details is to learn them from an appropriate high resolution training
data and use a suitable regularization to obtain an accurate solution. We show in this
chapter that by using a wavelet based learning prior along with a suitable disconti-
nuity preserving smoothness prior, an effective super-resolution can be achieved. The
advantage of this method is that there is no correspondence problem. Also in many
of the applications more than one low resolution observations may not be available,
but may have a database of a number of similar images at a higher spatial resolution.
Hence one needs to minimize the aliasing by making use of a single low resolution
observation.

Here we consider having access to a set of high resolution training images to learn
the prior. The basic problem we solve in this chapter is as follows. One captures
an image using a low resolution camera. We are interested in generating the super-
resolved image for the same using a set of available high resolution images of different
objects. It is assumed that the high frequency contents to be extrapolated are locally
present in the training set. We use a wavelet based multi-resolution analysis to learn

the wavelet coefficients at a given location at the finer scales for the generation of

26



the super-resolved image. The learned coefficients are then used in a prior term that
enforces the condition that the wavelet coefficients at the finer scales of the super-
resolved image should be locally close to the best matching coefficients learned from
the training set. In order to preserve the spatial continuity of the restored image,
we use a smoothness constraint in conjunction with the learned prior to obtain the
super-resolved image.

The reminder of the chapter is organized as follows. In section 3.1 we briefly
review some of the recent works in super-resolution reconstruction using only wavelet
based methods. We discuss the model for the formation of a low resolution image
in section 3.2. Some brief background on discrete wavelet transform and the multi-
resolution analysis for estimating the wavelet coefficients at the finer scales using high
resolution training images are the subject matters of section 3.3. Section 3.4 discusses
the regularization based approach to derive a cost function for the super-resolution
estimation. We present experimental results on different types of images in section

3.5, and the chapter concludes in section 3.6.

3.1 Related Work

We have already provided a detailed literature survey on SR in the previous chapter.
We now briefly review the related work on SR that uses wavelet decomposition of an
image. Wavelet theory has previously been used extensively for image de-noising and
de-blurring from static images, for example see [89, 90]. But there have been only a
very few studies for the use of wavelets for image super-resolution. In [91], Nguyen
et al. proposes a wavelet based method for super-resolution. But here the authors
use wavelets just for the purpose of speeding up the computation. In a recent work
by Bose et al.[92], the use of second-generation wavelets to attain mult-frame super-
resolution with noise filtering is discussed. The procedure allows them to incorporate
a more general projective camera motion model into the framework, instead of only
displacement and rotational models. Some novel wavelet domain algorithms for high

resolution image reconstruction are discussed in [93]. In this iterative approach,
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the authors apply wavelet (packet) thresholding methods to de-noise the function
obtained in the previous step before adding it into the new iteration resulting in better
reconstructed images. But, we use wavelets in a different framework- for learning the
best edges from a high resolution training data using the low resolution edge primitives
and use it as a prior in the final solution. Thus the proposed method can be classified

under deterministic learning based super-resolution schemes.

3.2 Low Resolution Image Formation Model

The super-resolution problem can be cast in a restoration frame-work. We use the
simplified decimation model for low resolution image formation as discussed in chapter
1, assuming no blurring in the observation. For a decimation factor of ¢ the low

resolution image f(i, j) can be obtained from its high resolution version z(k,![) as

| di+)-1aG+1)-1

f(i,j)=q—2 > > kD (3.1)

k=qi  l=qj

i.e., the low resolution intensity is the average of the high resolution intensities over
a neighborhood of ¢? pixels. This decimation model simulates the integration of
light intensity that falls on the high resolution detector and the decimation process is
represented by the matrix D which has a structure as given in equation (3.3). Quite
naturally, it is assumed that the fill factor for the CCD array is unity.

Let z represent the lexicographically ordered high resolution image of N? x 1
pixels. If f is the M? x 1 lexicographically ordered vector containing pixels from the

low resolution observation, then it can be modeled as
f=Dz+n (3.2)

where D is the decimation matrix, size of which depends on the decimation factor.
For a decimation factor of ¢, the decimation matrix D consists of ¢? non-zero elements

of value q% along each row at appropriate locations and has the form [30] (using a
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proper reordering of z)

11...1 0
1 11...1
- (3.3)

0 11...1

As an example, for a decimation factor of ¢ = 2 and with lexicographically ordered z

of size, say 16 x 1, the D matrix is of size 4 X 16 and can be written as

1100110000000000
0011001100000000
0000000011001100
0000000000110011

A~ =

In equation (3.2) n is the M? x 1 noise vector. We assume the noise to be zero mean
i.i.d process. Our problem now reduces to estimating z given f, which is an ill-posed,

inverse problem.

3.3 Wavelet based Learning

3.3.1 Background

Wavelets are mathematical functions that split up data into different frequency com-
ponents locally, and then study each component with a resolution matched to its scale.
They have advantages over traditional Fourier domain methods in analyzing physical
situations where the signal contains discontinuities or a local analysis is required.
The discrete wavelet transform (DWT), provides us with a sufficient information for
analysis and synthesis of a sequence and is easier to implement. The idea here is
similar to the continuous wavelet transform (CWT), which is computed by changing
the scale of the analysis, shifting the window in time, multiplying by the sequence,
and integrating over all times. In the case of DWT, filters of different cutoff frequen-

cies are employed to analyze the sequence at different scales. The input sequence is
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Figure 3.1: Illustration of subband wavelet decomposition. Here u[n] is the origi-
nal sequence to be decomposed and h[n| and g[n] are lowpass and highpass filters,

respectively. The bandwidth of the signal is marked as “BW”.

passed through a series of highpass and lowpass filters to analyze the high and low
frequency components, respectively. The procedure starts with passing the sequence
through a half band (0 — 7/2 radians) digital lowpass filter with impulse response
hln], thus removing all the frequencies that are above half of the highest frequency
in the sequence. The filtered output is then subsampled by a factor of 2, simply by
discarding every other sample since the sequence now has a highest frequency of /2
radians instead of w. The lowpass filter thus halves the resolution, but leaves the
scale unchanged. The subsequent subsampling by a factor of 2, however, changes the
scale. This is illustrated in Figure 3.1.

The wavelet transform for a 2-D sequence is similar to that of 1-D decomposition.
A 2-D wavelet decomposition is first performed (horizontally) on the rows by applying
lowpass and highpass filters. Then we perform the same operations vertically (on
the columns) resulting in four subbands LL, LH, HL, HH. We repeat the operation
with ‘LL’ as the input image for further decomposition. The readers are referred to

[94, 95, 96] for further discussion on wavelet decomposition.
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3.3.2 Learning the Wavelet Coefficients

As discussed in the previous section the wavelet decomposition splits the data into
high and low frequency components. As seen from Figure 3.1, given a high resolution
sequence u[n] having a bandwidth support of [0 — 7], it can be decomposed into uy,
and ug sequences constituting the low frequency and the high frequency components
in the sequence, respectively. Let us consider that uy, (the low resolution sequence) is
given and we need to generate the high resolution sequence u[n]. In order to do that
we need to know the ug so that when we take the IDWT (inverse discrete wavelet
transform) we get back the original sequence u[n|. However, for the current problem
on super-resolution, we do not have the high frequency components uy to obtain the
high resolution sequence u[n|. In the absence of any information on ug, we plan to
estimate the coefficients ugy by learning them from a set of high resolution sequences.
Similarly, when a low resolution image or a 2-D signal is considered we need to learn
the corresponding unknown high frequency components urg, ugr and ugg. Since
the problem of super-resolution involves handling data at multiple resolution, and
since the wavelets are best suited for a multiresolution analysis, it motivates us to use
a wavelet based approach for learning the wavelet coefficients at the finer resolution.

These wavelet, coefficients at finer scales indicate the high frequency details in an
image. The learning is done from a set of high resolution training images. If the
high resolution data in a region does not have much high frequency components, the
region can easily be obtained from its low resolution observation through a suitable
interpolation. However, if a region has edges, the corresponding wavelet coefficients
(ug in Figure 3.1) are quite significant and they cannot be neglected while obtaining
the high resolution image. These coefficients must be learned from a database of
training images. We assume that a primitive edge element in the high resolution
image is localized to an 8 x 8 pixel area, and we observe the corresponding edge
elements over a 4 x 4 pixel area in the low resolution image. From the high resolution
database, can we obtain the best 8 x 8 region by matching it in the wavelet domain

with the given 4 x4 pixel observation? Note that such a matching should be brightness
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Figure 3.2: Illustration of learning of wavelet coefficients at a finer scale. (a) Low
resolution image with two level wavelet decomposition. Wavelet coefficients (marked
as x) in subbands shown with the dotted lines are to be estimated for bands VII —IX. (b)

High resolution training set in wavelet domain with three level decomposition.

(dc-shift) independent.

We make use of a two level wavelet decomposition of the given low resolution
observation while learning the wavelet coefficients at the finer scale. Figure 3.2 illus-
trates the block schematic of how the wavelet coefficients at finer scales are learned
from a set of K training images using a two level wavelet decomposition of the low
resolution test image. The high resolution training images are decomposed into three
levels and the test image is compared to the training images in the wavelet domain at
the coarser two scales. This decomposition is used to extrapolate the missing wavelet

coefficients in subbands VII — I X (shown as dotted in Figure 3.2(a)) for the test
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image. They correspond to the estimated high pass wavelet coefficients at the first
level decomposition of the unknown high resolution image. Here the low resolution
image is of size M x M pixels. Considering an upsampling factor of 2, the high reso-
lution image, now has a size of 2M x 2M pixels. For each coefficient in the subbands
I —I1I and the corresponding 2 x 2 blocks in the subbands IV — VI, we extrapolate
a block of 4 x 4 wavelet coefficients in each of the subbands VII, VIII and IX. In
order to do this we exploit the idea from zero tree concept, i.e., in a multiresolution
system, every coefficient at a given scale can be related to a set of coefficients at the
next coarser scale of similar orientation [97]. Using this idea we follow the minimum
absolute difference (MAD) criterion to estimate the wavelet coefficients. We take the
absolute difference locally between the wavelet coefficients in the low resolution image
and the corresponding coefficients in each of the high resolution training images.
The learning process is as follows. Consider the subbands 0 — VI of the low
resolution image. Denote the wavelet coefficient at a location (i, 7) as d(i,j). Con-
sider the range 0 < 4,5 < M/4. The wavelet coefficients d;(i,7 + M/4), di(i +
M/4,7), dirr(i+M/4, j+ M/4) corresponding to subbands I — I'1] and a 2 x 2 block
consisting of dyy (k, 1+ M/2), dy(k+M/2,1), dy(k+M/2,l+M/2), for k = 2i : 2i+1
and [ = 25 : 25 + 1 in each of the subbands IV — VI are then considered to learn
a 4 x 4 wavelet block in each of the subbands VII — I X consisting of unknown co-
efficients dyrr(k,l + M), dyr(k + M,1), and drx(k + M,l + M) for k = 4i : 40+ 3
and | = 45 : 45 + 3. In order to illustrate which set of wavelet coefficients we select
for learning purposes, we denote them with ‘x’ marks in Figure 3.2(a). To obtain the
wavelet coefficients for the test image at a finer resolution, we consider the wavelet
coefficients in subbands I — VI in each of the high resolution training images (see
Figure 3.2(b)). We search for the best matching training image at a given location
(1, 7) that matches to the wavelet coefficients for the test image in the bands I — VI in
MAD sense and copy the corresponding high resolution wavelet coefficients, in bands

VII — I X to those bands for the test image. In effect, we use the following equation
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to find the minimum.

plirg) = axgminlldr(i,j + M/4) ~ dyo (i, + M/4)|

+ |drr(i + M/4,5) — dyo (i + M /4, 5)]

+ \drr(i + M/4,j + M/4) — dpppe (i + M/4,5 + M/4)|
2i+1 2j+1

+ > > |div(k L+ M/2) — dyyo (k, L+ M/2)]
k=2i 1=2;
2i+1 2j+1

+ 3 Y ldv(k 4+ M/2,1) — dye (k+ M/2,1)]
k=2i 1=2;
2i+1 2j+1

+ Z Z |dVI(k +M/27Z+M/2) - dVI(P)(k+M/2al+M/2)H:
k=2i 1=2;

(3.5)

where p=1,2,---, K. Here d;(p) denotes the wavelet coefficients for the p'* training
image at the J band. For each (7,75) in I — I'TI of low resolution observation, a 4 x 4
block of wavelet coefficients in subbands VII —IX from that training image given by
p(7, j) which gives the minimum are then copied into subbands VII, VIII, I1X of the
observed image. In effect, equation (3.5) helps in matching edge primitives at low res-
olutions. Thus we have, dy (i, 5) = d\®),(i, ), dviri(i, 5) == d®),, (i, 5), dix (i, §) =
d¥®) (i, ), for(i,5) € (VII — IX) where p is the index for the training image which
gives the minimum at location (4, j). This is repeated for each coefficient in subbands
I, 11, III of the low resolution image. Thus for each coefficient in I — I11, we learn
16 coefficients each, for subbands VII — I X from the training set.

It may be mentioned here that each 4 x 4 region in the low resolution image could
be learned from different training images. In case the error (MAD) term in equation
(3.5) is quite large, it signifies that the 4 x 4 block does not find a good match in the
training data, i.e., an edge primitive does not have its corresponding high resolution
representation in the database. In order to avoid such spurious learning, we accept
the wavelet coefficients only when the MAD is less than a chosen threshold. Now the
issue of threshold selection poses a problem. If the threshold is chosen very small we
may not be able to find a correct match from the database unless it consists of images

very much similar to the LR input. If we do not find a match, the coresponding HR
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region should be filled by zeros which indicate a loss of information. On the other
hand, if the threshold is chosen very high, lot of unwanted coefficients will be learned
which will give rise to spurious frequencies in the super-resolved image. Hence the
selection of threshold is a tradeoff between spurious learning and information loss. In
a practical senario, one can try with different thresholds and accept the one which
gives the best result. We have used the same approach in selcting the threshold for
different LR inputs.

The goodness of the learning depends on how extensive and useful is the training
data set. In our experiments we use Daub4 wavelet for computing the discrete wavelet
transform. The subband 0 corresponds to the low resolution portion ‘LL’ (see Figure
3.2(a)) in the wavelet decomposition and since the corresponding ‘LL’ portions in the
training set may have different brightness averages, including the pixels from ‘LL’
portion of the low resolution image does not yield a good match of an edge primitive
as we want the edges to be brightness independent. Hence, we refrain from using
the ‘LL’ portion of the low resolution image for learning. The complete learning

procedure is summarized below in terms of the steps involved.

STEP 1 : Perform two level wavelet decomposition on the low resolution test image

of size M X M and three level decomposition on all training images each of size

2M x 2M.

STEP 2 : Consider the wavelet coefficients at locations (i,j + M/4), (i + M/4, )
and (i+ M/4, j+ M/4) in subbands I, II and II1, and the corresponding 2 x 2
blocks in IV — VI of the low resolution image as well as the high resolution

training set.

STEP 3 : Obtain the absolute difference between the wavelet coefficients in the low
resolution image and the corresponding coefficients for each of the training im-

ages.

STEP 4 : If MAD < threshold, obtain the unknown high resolution wavelet coeffi-
cients (4 x 4 block) from a training image in subbands VII — I X, else set them

all zeros.
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STEP 5 : Repeat steps (2 - 4) for every wavelet coefficient in bands I — VI of the

low resolution image.

A few comments about the learning of the wavelet coefficients are in order now.
The high frequency coefficients are estimated using nearest neighbor criterion from
the training images. The process is not adaptive in the sense that no adaptive up-
dating of these coefficients is performed based on previously learned values at a given
location or from its neighborhood. Furthermore, there is no reinforcement of the
learned coefficients through posterior analysis. This may yield inferior values of the
coefficients, but the advantage is that one does not have to worry about the con-
vergence issues. A similar learning procedure is typically adopted in other learning
based super-resolution techniques.

In this study we select a 4 x4 edge primitive in the low resolution image for learning
the coefficients. A smaller primitive could provide a better localized result, but more
spurious matches negate the advantage. A larger primitive yields better matches
in the coefficient, but the localization is poor and suffers from severe blockiness.

Furthermore, the requirement for the training data size goes up drastically.

3.4 Regularization And Super-Resolution Estima-
tion

With the wavelet coefficients learned from the high resolution training set as discussed
in the previous section, we would like to obtain the super-resolution image for the
given low resolution observation. Since we pick up the high frequency components
of each 8 x 8 region as per the best fit edge element from different training data
independently, there is no guarantee that the corresponding high resolution image
would be a good one as it lacks any spatial context dependency. One may occasionally
find an unwanted abrupt variation across the 8 x 8 blocks. In order to bring in a
spatial coherence during the high resolution reconstruction, we must use a smoothness

constraint. Thus the constraints are chosen based on enhancing the edges as well as
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ensuring the smoothness of the high resolution image. Near the edges in the low
resolution image, we learn the wavelet coefficients from the high resolution database
to have edge preserving upsampling. Also a smoothness constraint is enforced while
upsampling at relatively smooth regions. We use the wavelet coefficients learned
from the training set to enforce the constraint that the wavelet coefficients of the
super-resolved image should be close to the best matching wavelets learned from the
training images in a least squares sense.

LetZ,; be the learned wavelet prior as discussed in the previous section. Then

the learning prior term can be expressed as

C(2) = BlIx(2) — Zui[* (3.6)

where x(z) is the wavelet decomposition of the unknown high resolution image and
[ is a weight factor for the learning term. Now, in order to enforce the smoothness
constraint we make use of the fact that the image pixel intensities have a spatial
correlation. This prior knowledge serves as a contextual constraint and has to be
used to regularize the solution. But this constraint pushes the reconstruction towards
a smooth entity. Hence in order to enforce a smoothness in the smooth regions
alone while upsampling, we use a discontinuity preserving smoothness prior. Since
the high frequency details learned by using the wavelet based prior constitute the
discontinuities it would ensure undistorted edges in the super-resolved image while
smoothing the regions with spatial continuity. In order to incorporate provisions for
detecting such discontinuities, so that they can be preserved in the reconstructed
image, the binary variables /; ; and v; ; which detect the horizontal and vertical edges,
respectively, are used. The binary variable /; ; connecting sites (pixel locations) (4, j)
to (i —1,7) aids in detecting a horizontal edge while the variable v; ; connecting sites
(¢,7) to (i,j — 1) helps in detecting a vertical edge. The variables /; ; and v; ; are set
to 1if |z(i,5) — 2(i — 1,7)| > Thresholdl and |z(i,j) — z(i,7 — 1)| > Threshold2,
respectively. Else they are set to 0. We use the following prior for the smoothness

constraint in this study.

U(z) = Z{u[(zz-,j — zij—1)’ (1 = vig) + (2ij41 — 2i,5)° (1 — vijis1)
2y
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+ (2ij — 2i—1,5)°(1 = lig) + (241 — 2i5)° (1 = liz1)]

+ v+ lig1; +vij+vij1)}- (3.7)

Here p is the penalty term for departure from the smoothness. The second term in the
above equation enforces a penalty for over-punctuation in the smoothness constraint.
In effect we are considering only a first order spatial relationship along with the scope
for handling the discontinuities. Thus by making use of the data fitting term, the
learning term and the smoothness constraint the final cost function to be minimized

for the high resolution image z can be expressed as
e =||f — Dz||* + C(z) + U(z). (3.8)

The above cost function is nonconvex and also consists of terms in both spatial domain
(the first and the third term) and in frequency domain (the second term). Hence
it cannot be minimized by using a simple optimization technique such as gradient
descent since it involves a differentiation of the cost function. We minimize the cost
by using the simulated annealing technique which leads to a global minima. However,
in order to provide a good initial guess and to speed up the computation, the result
obtained by using the inverse transform of the learned wavelet coefficients is used as
the initial estimate for z.

We now explain the various terms in equation (3.8) with respect to the wavelet
based learning method. The first term relates to the consistency in data fitting. If z
is the actual HR image, we observe that ||f — Dz||? need not be zero as the chosen
decimation operator D as defined in equation (3.3) need not be close to the wavelet
decomposition ( LL image in Figure 3.2) of the high resolution image, in general.
The above is true only for Haar basis. However, the use of Haar basis introduces
a lot more blockiness in the reconstructed image when the third (smoothness) term
becomes very large. Alternately one may set all the wavelet coefficients in the finer
subbands to be zero prior to taking the inverse wavelet transform. Although this may
be similar in idea to the sinc interpolation, the corresponding interpolation results are
quite inferior. The choice of Daub4 as the basis function in the study was more on

an ad-hoc basis, and a proper selection of the basis function would be an interesting
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topic of research. The selection of various weighting parameters in equation (3.8) was
based on the idea that each term in the equation should have comparable magnitudes

when the algorithm converges to the high resolution image.

3.5 Experimental Results

In this section, we demonstrate the efficacy of the proposed technique to super-resolve
a low resolution observation using the wavelet coefficients learned from a high reso-
lution training data set. We first present the results on gray scale images and then
show that it works well for color images also.

First we consider experiments with face images. A number of high resolution
images of different objects were downloaded from the Internet arbitrarily to use them
as a training set. We considered a high resolution training set of K = 200. Some
representative training images are shown in Figure 3.3. The same training data set

has been used in all experiments. In order to obtain a low resolution test image,

Figure 3.3: Some representative training images.

we consider a high resolution image which does not belong to the training set and

downsample it by a factor of 2. Figure 3.4(a) shows one such low resolution face image
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(c) (e)

Figure 3.4: (a) A low resolution observation (facel), (b) bicubic interpolated image,
(c) interpolation using Lanczos method, (d) super-resolved image using wavelet-based
learning without regularization and (e) and the super-resolved image using the pro-

posed approach.

of size 64 x 64. Figure 3.4(b) shows the same image upsampled by a factor of 2 using
the bicubic interpolation technique and Figure 3.4(c) shows the interpolated image
using the Lanczos method. The super-resolved image using wavelet-based learning
without regularization is shown in Figure 3.4(d). Here, even though the output is
slightly sharper, one can observe certain artifacts which is due to spurious learning.
To get rid of such artifacts we solve the problem under a regularization framework
as explained in section 3.4 and the corresponding result is shown in Figure 3.4(e). A
comparison of the Figures 3.4(b),(c) and (e) shows more clear details in the super-
resolved image. The features such as eyes, nose and the mouth appear blurred in the

interpolated images shown in Figure 3.4(b) and (c), while they are restored well in
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Figure 3.4(e). Also the eye balls are sharper in the displayed super-resolved image. It
has been experimentally found that the best results are obtained with the parameters
i = 0.01, v = 25, the weight for the learning term 5 = 0.08 and Thresholdl =
Threshold2 = 30. These parameters were selected so that all the components in the
cost function (refer to equation (3.8))have comparable contributions. We retain the
same values for the parameters in all subsequent experiments.

Next we consider another experiment on face image. The low resolution observa-
tion obtained by down sampling the high resolution Lena image is shown in Figure
3.5(a). The super-resolution result obtained using the proposed approach is displayed
in Figure 3.5(d), and Figure 3.5(b) shows the bicubic interpolated image and inter-
polation using the Lanczos method is shown in Figure 3.5(c). Once again we see that
the high frequency details are better preserved in the super-resolved image. Various
surface boundaries are much sharper. The hair strand and the lace on the hat ap-
pear more clearly. The eyes and the nose are also clear. However, we observe some
blockiness on the boundary curves of the hat and the slanted structure on the upper
right corner of the picture. Furthermore, the edge primitives are chosen over a 8 x 8
block in the wavelet domain. Hence the learned edges may suffer from blockiness.
The smoothness constraint is supposed to take care of such jaggedness. However,
the T'hreshold value being chosen on an ad hoc basis it fails to undo the jaggedness.
But this blockiness is nothing compared to the blockiness one obtains when a simple
pixel replication is used. Comparing with the simple zero order hold expanded image
shown in Figure 3.5(e) (in which every feature in the image appears blocky), we see
that the blockiness is negligible in the proposed approach. We could have played
with the parameter set in equations (3.7) and (3.8), but the various parameters for
recovering the super-resolved image for this experiment were kept the same as used
in the previous experiment.

In order to test our algorithm for an image which has prominent edges, we con-
sidered a portion of a building image. The results for the same are shown in Figures
3.6(b-d) with the low resolution observation depicted in Figure 3.6(a). We can clearly

see that the discontinuities are better estimated in the super-resolved image shown in
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Figure 3.5: (a) Another low resolution observation (Lena), (b) bicubic interpolated
image, (c) interpolated image using Lanczos method, (d) the super-resolved image,

and (e) result of simple pixel replication.
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Figure 3.6(d), but they appear blurred in the bicubic interpolated image (see Figure
3.6(b)). The interpolation using the Lanczos method shown Figure 3.6(c) also appears
to be blurred. This substantiates our claim that the learning of wavelet coefficients

does help in improving the resolutions.

(a) (b) () (d)

Figure 3.6: (a) Low resolution observation of a building, (b) upsampled by bicubic in-
terpolation, (c) interpolated image using Lanczos method, (d) and the super-resolved

image.

We now consider a few experiments on the color image super-resolution. For these
experiments we first convert the low resolution color image into Y — C, — C,. format.
The learning of the wavelet coefficients is then done using the Y (luminance) plane
only. The recovered high resolution image in the luminance plane after optimization
is then combined with the bicubic interpolated version of the data in low resolution
Cp, — C, planes in order to obtain the super-resolved color image. The idea is quite
similar to the way a macroblock is represented by 4 : 1 : 1 DCT blocks in the
Y — Cy — C, domain while using an MPEG coder. The training images used were
kept the same as in the previous experiments on gray scale images. One may note
here that learning of the wavelet coefficients for the Y, C}, and C, planes can also be
done separately in order to obtain the super-resolution on each of the low resolution
images. However, we refrain from doing it as any possible error in learning in any of
the color planes may introduce chromatic distortions and the human vision appears
to be sensitive to that.

We now show results of two experiments conducted on the color face images. Fig-
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ure 3.7(c) shows the result of the proposed approach on a low resolution observation
shown in Figure 3.7(a). Compare this with the bicubic interpolated image shown in
Figure 3.7(b). We observe that the super-resolved image appears sharper. Few areas
of interest where such an enhancement can be observed are the mark on the left chin,
eye balls and the hair. The results for another low resolution face image are displayed
in Figures 3.8(a-c). Similar conclusions can again be drawn from this experiment.
Observe the eye balls, eye brows, frontal hair, and the nose shown in Figure 3.8(c)
which appear sharper when compared to the bicubic interpolated image given in Fig-
ure 3.8(b). Thus we conclude that our approach works well for color images as well.
As the bicubic interpolation method produces a fairly pleasing output in comparison

with other interpolation methods, now onwards we restrict the comparison of our

-
-
(c)

methods only with bicubic interpolation.

-
b
-
(b

)

lﬂ.

Figure 3.7: (a) A low resolution observation, (b) upsampling using the bicubic inter-

(a)

polation, and (c) the super-resolved image.

In order to convey the comparative edge over the conventional interpolation tech-
niques, we show the PSNR during interpolation for the gray scale images. Table 3.1
shows the comparison of the proposed method with the standard bilinear interpola-
tion, bicubic interpolation and the Lanczos method. In order to be able to compute
the PSNR, we started with a high resolution image and the decimated version of that
was used as the low resolution observation. We can observe that in addition to the

perceptual betterment in all observed images there is also an increase in PSNR for
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(a) (b) (c)

Figure 3.8: (a) Another low resolution face image, (b) upsampling using the bicubic

interpolation, (c) the super-resolved image.

the proposed approach. This illustrates the usefulness of the wavelet based learning

scheme in super-resolving the images.

Method | facel | Lena | building

Bilinear | 30.87 | 26.84 | 25.23
Bicubic | 31.54 | 27.57 | 26.27
Lanczos | 31.70 | 27.72 | 26.75
Proposed | 32.74 | 28.05 | 26.97

Table 3.1: Comparison of PSNR for different schemes.

3.6 Conclusions

We have described a method for super-resolution restoration of images using a wavelet
based learning technique. The wavelet coefficients at finer scales, learned from a set
of several high resolution training images, are used as a constraint along with an ap-
propriate smoothness prior to estimate the super-resolved image. The learning term
selects the best high resolution edges from the training set given a low resolution ob-

servation, while the discontinuity preserving smoothness term ensures a proper spatial
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correlation among pixel intensities. The results obtained for both gray scale and color
images show perceptual as well as quantifiable improvements over conventional inter-
polation techniques. The proposed method is useful when multiple observations of
a scene are not available and one must make the best use of a single observation to
enhance its resolution.

An inherent drawback of the proposed learning method is that the learning process
is very much resolution dependent. If we want to super-resolve a 2m/pixel satellite
image by a factor of ¢ = 2 the training data must be of 1m/pixel resolution. If one
wants to perform super-resolution on a 2.5m image, none of the images in existing
database could be used for training. For a commercial camera, if we change the zoom
factor, it requires that a completely different set of training images be provided.

Another major difficulty with wavelet based learning lies in the fact that the
wavelet decomposition kernel is separable. Although this provides computational ad-
vantages, we expect to catch horizontal and vertical edges properly. Hence we do not
have difficulty in learning vertical and horizontal edges, but we do have some prob-
lems in learning edges oriented along arbitrary directions. This leads to blockiness in
the learned edges. A better way to handle this is to use directionally selective wavelet

decomposition to learn the oriented edges. We explore this issue in the next chapter.
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Chapter 4

Use of Contourlets

The motivation for using wavelets for super-resolution learning as proposed in the
previous chapter was its ability to capture edges across scales and the computational
efficiency due to the wavelet kernels being separable. Even though wavelets are ca-
pable of capturing the vertical and horizontal edges properly, they are inferior in
acquiring the geometry of edges. As a result we were forced to solve the problem
under a regularization framework using the learned wavelet coefficients as a prior.
This gave rise to a computationally expensive optimization procedure which made
SR reconstruction problem very slow. In addition to this, the super-resolved output
was slightly blocky as the learning procedure failed to acquire the directional edges as
can be observed in Fig.8.5(c). In order to overcome these difficulties, in this chapter
we propose a learning based super-resolution based on the contourlet transform, re-
cently developed by Do et al. [6]. Here, we make use of the property of the contourlet
transform to capture the geometric smoothness along contours of any two dimensional
objects using directional decompositions.

The contourlet coefficients at finer scales of the unknown high resolution image are
learned locally from a set of high resolution training images, the inverse contourlet
transform of which recovers the super-resolved image. In effect, we learn the high
resolution representation of an oriented edge primitive from the training data. Here

we use the same low resolution model as in chapter 3.
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4.1 Contourlet Transform

For one-dimensional piecewise smooth signals, like scan-lines of an image, wavelets
have been established as the right tool, because they provide an optimal representa-
tion for these signals in a certain sense [98, 99]. In addition, the wavelet representation
is amenable to efficient algorithms; in particular it leads to fast transforms and con-
venient tree structures. These are the key reasons for the success of wavelets in many
signal processing and communication applications; for example, the wavelet transform
was adopted as the transform for the new image compression standard JPEG-2000
[100]. However, natural images are not simply stacks of 1-D piece-wise smooth scan-
lines; discontinuity points (i.e., edges) are typically located along smooth curves (i.e.,
contours) owing to smooth boundaries of physical objects. Thus, natural images con-
tain intrinsic geometrical structures that are key features in visual information. As a
result of a separable extension from 1-D bases, wavelets in 2-D are good at isolating
the discontinuities at edge points, but will not see the smoothness along the contours.
In addition, separable wavelets can capture only limited directional information, an
important and unique feature of multidimensional signals.

In order to overcome these difficulties Do et al. developed a true 2-D transform
called the contourlet transform [6], [101] which is an extension of the Cartesian wavelet
transform in two dimensions using multi-scale and directional filter banks. The con-
tourlet expansion of images consists of basis images oriented at various directions
in multiple scales, with flexible aspect ratios. Thus the contourlet transform retains
the multi-scale and time-frequency localization properties of wavelets. In addition,
it also offers a high degree of directionality. Thus they are capable of capturing the
geometrical smoothness of the contour along any possible direction. The contourlet
transform does not use separable basis functions. The idea here is not to decompose
an image into horizontal and vertical edges, but to capture the edges normal to the
contour present in the image.

The contourlet transform is implemented in two stages: the subband (spectral)

decomposition stage and the directional decomposition stages. For the subband de-
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Figure 4.1: The Laplacian pyramid decomposition. The outputs are a coarse approx-

imation ¢ and a difference d between the original and the prediction.

C

oo o

Figure 4.2: The reconstruction scheme for the Laplacian pyramid.

composition stage we use the Laplacian pyramid introduced by Burt and Adelson
[102] where the decomposition at each step generates a sampled lowpass version of
the original and the difference between the original image and the prediction as shown
in Fig. 4.1. The input image z is first lowpass filtered using the analysis filter H
and then decimated to get a coarse approximation c. This is then interpolated and
passed through the synthesis filter G. The resulting image is then subtracted from
the original image x to obtain the bandpass image d. The process is then iterated on
the coarser version of the image c. An optimal linear reconstruction for the Laplacian
pyramid is shown in Fig. 4.2. This reconstruction method differs from the usual
method, where the signal is obtained by simply adding back the difference to the
prediction from the coarse signal, and has significant improvement over the usual
reconstruction in the presence of noise as shown in [103].

The directional filter bank (DFB) is efficiently implemented by using an t¢-level
binary tree decomposition that leads to 2! subbands with wedge-shaped frequency
partitioning as shown in Fig. 4.3(a). The original construction of the DFB proposed
in [104] involves modulating the input image and uses quincunx filter banks with
diamond-shaped filters [105]. The desired frequency partitioning is obtained by fol-

lowing a tree expanding rule for finer directional subbands as described in [106]. In
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[101], a new construction for the DFB is proposed that avoids modulating the input
image and has a simpler rule for expanding the decomposition tree. A t-level tree
structured DFB is equivalent to a 2¢ parallel channel filter bank with equivalent filters
and overall sampling matrices as shown in Fig. 4.3(b). The equivalent analysis and
synthesis filters are denoted by Hy and G, 0 < k < 2! respectively corresponding to
the subbands indexed as in Fig. 4.3(a). The corresponding overall sampling matrices

will have the following diagonal form [101].

diag(2t71,2), for 0 <k < 2t1
diag(2,2t71), for 2071 < k < 2%,

Sk =

The two sets correspond to the mostly horizontal and vertical set of directions, respec-
tively. Thus the family {gx[n — Sill}ocj<ot ez Obtained by translating the impulse
responses of the equivalent synthesis filters GG over the sampling lattices Sy, provide
a basis for discrete signals in [?(Z?). This basis exhibits both directional and localiza-
tion properties. For a detailed description of contourlet decomposition, readers are

referred to [101],[104] and[106].
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Figure 4.3: (a) An example of the directional filter bank frequency partitioning with
t = 3. The subbands 0 — 3 correspond to the mostly horizontal directions, while
subbands 4 — 7 correspond to the mostly vertical directions. (b) Multichannel view

of an t-level tree-structured directional filter bank.

Combining the Laplacian pyramid and the directional filter bank yields the dis-
crete contourlet transform. The multi-scale and directional decomposition stages in

the contourlet transform are independent of each other and hence each scale can be
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decomposed into any arbitrary power of two number of directions and different scales
into different number of directions. Fig. 4.4 shows the pyramidal directional filter
bank structure that implements the contourlet transform. Fig. 4.5 shows the three-
scale contourlet decomposition of the “Lena” image for the purpose of illustration.
It may be noted that the coefficients at the finer scale are no longer horizontally or

vertically oriented as is the case in Cartesian wavelet decomposition.

( M ( M

T e

O =

(S / (S /

input image

Laplacian pyramid directional decomposition
(scale) at each scale
Figure 4.4: Pyramidal directional filter bank structure that implements the contourlet

transform.

4.2 Learning the Contourlet Coefficients

Given a low resolution input image f, we perform a contourlet decomposition con-
sisting of two pyramidal levels and each pyramidal level is then decomposed into four
directional subbands which yield the decomposition as shown in Fig. 4.6(a). A three
level decomposition is performed on all the high resolution database images and each
pyramidal level is decomposed into four directional subbands resulting in the decom-
position as shown in Fig. 4.6(b). Our idea is to learn the contourlet coefficients
in the four directional subbands corresponding to the finest level for the given low
resolution image (shown with dotted lines in Fig. 4.6(a)). After learning, effectively
we have a three level decomposition for the input image, i.e, the original low level

decomposition coefficients plus the learned coefficients at the finer scale. The inverse
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Figure 4.5: Contourlet transform of the “Lena” image using three Laplacian pyra-
midal levels and eight directions at the finest level and four directions at the coarser

levels.

transform of this will yield the high resolution equivalent of the low resolution input.

Fig. 4.6 illustrates the block schematic of how the contourlet coefficients at finer
scales are learned from a set of K training images using a two level contourlet de-
composition of the low resolution test image. This is quite similar to the learning
process explained in previous chapter in Fig.3.2. As explained earlier, the high reso-
lution training images are decomposed into three pyramidal levels and the test image
at each location is compared to the training images in the contourlet domain at two
coarser scales to search for presence of a nearly identical edge at all possible locations.
This is required for extrapolating the missing contourlet coefficients in the directional
subbands IX — X II for the test image.

Here the low resolution image is of size M x M pixels. Considering an upsampling
factor of 2, the high resolution image, now has a size of 2M x 2M pixels. For
each coefficient in the subbands I — I'V and the corresponding 2 x 2 blocks in the
subbands V —V 111 we extrapolate a block of 4 x4 contourlet coefficients in each of the
subbands 1X, X, XI,and XII. We follow the minimum absolute difference (MAD)

criterion to estimate the contourlet coefficients. We take the absolute difference locally
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Figure 4.6: Illustration of learning the contourlet coefficients at a finer scale. (a) A low
resolution image with two level decomposition. Coefficients in the dotted subbands
are to be learned. (b) A representative high resolution training set in contourlet

domain with three level decomposition.

between the contourlet coefficients in the low resolution image and the corresponding
coefficients in each of the high resolution training images.

The learning process is as follows. Consider the subbands I — VIII of the low
resolution image. Denote the contourlet coefficient at a location (7,7) as d(i,7)-
Consider the range 0 < 4,7 < M/4. The contourlet coefficients d;(3, ), drr (7,7 +
M/4), dr(i+M/4,5), dry(i+M/4, j+ M/4) corresponding to subbands I — IV and
2 x 2 blocks consisting of dy (k, ), dyy(k,l+M/2),dyi(k+M/2,1),dyir(k+M/2,1+
M/2) for k=2i:2i+1 & [ =2j:2j+1 corresponding to subbands V — VIII in
the low resolution test image and all the high resolution training images are considered
to learn a 4 X 4 contourlet block in each of the subbands /X — XII consisting of
unknown coefficients d;x (k,1), dx (k, |+ M), dx(k+M,1), dx(k+M, 1+ M) for k =
4i : 41+ 3 & | =45 : 45 + 3. Thus, for a given set of a total of twenty contourlet
coefficients in subbands I — VIII in the low resolution image, we perform a search
in the two coarser pyramidal levels of all the training images at all pixel locations for

the best match in the MAD sense and copy the corresponding 4 x 4 contourlet block
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in bands I X — X 11 to those bands for the test image. In effect, we use the following

equation to find the minimum.

5(7,5) = argminlld; (i, ) — dyo (1, )
+|drr(i,5 + My) — dypo (1, s + M)
+|drrr(i + My, §) — dypro (r + My, s)|
+|drv (i + My, j + M) — dyye (r + My, s + My))|

+Sy + Svr + Svir + Sviri] (4.1)
where M; = M /4 and

Sy = |dy(2i,27) — dyw (2r, 25)|
+|dy (26,25 + 1) — dye (2r, 25 + 1)
+dy (21 + 1,2§) = dye (2r + 1, 25)]
(

+|dv 21+1,25 + 1) - dV(p)(QT +1,2s+ 1)|

and Sy, Sy and Sy are the corresponding sums for subbands VI, VII and VIII
respectively and p = 1,2,---, K and 0 < r,;s < M/4. Here d;(p) denotes the con-
tourlet coefficients for the p'* training image at the J™ subband. Here p(#, 3) denotes
the (7,5)"" location for the p™ training image that best matches the test image at
(4, 7)™ location in terms of contourlet coefficients.

Thus we have,

drx(i,7) = dix(p)(7, 3),
dx (i, ) = dx (p)(7, 3),
dxr(i, ) := dx1(P)(7, 3),

dxr1(t, ) :== dx1r(P)(7, 8),

for (i,7),(7,8) € (IX — XII). This is repeated for each coefficient in subbands
I, II, I1I and IV of the low resolution image. In effect, we find the best matching
8 x 8 edge primitive from the training data for a given 4 x 4 representation in the low

resolution image through contourlet expansion.

o4



It may be mentioned here that each 4 x 4 region in the low resolution image is
being learned from different training images independently. In case the MAD error is
quite large, it signifies that the 4 x 4 block does not find a good match in the training
data, i.e., an edge primitive does not have its corresponding high resolution represen-
tation in the database. Such spurious learning will introduce unwanted artifacts in
the reconstructed image. In order to avoid such artifacts, we accept the contourlet
coefficients only when the MAD is less than a chosen threshold. The threshold se-
lection is based on the same criteria as discussed in section 3.3.2 in chapter 3. The
goodness of the learning depends on how extensive and useful is the training data
set. The subband 0 corresponds to the coarsest resolution (see Fig. 4.6(a)) in the
contourlet decomposition and since the corresponding training set may have different
average brightness, including the pixels from the 0-band does not yield a good match
of an edge primitive as we want the edges to be brightness independent. Hence, we
refrain from using the 0" band while learning.

In our experiments we used “9 — 7”7 biorthogonal filters [107] for the Laplacian
pyramid because they are close to being orthogonal and also because of their linear
phase characteristics. For the directional filter banks we used the “23 —45” biorthog-
onal quincunx filters designed by Phoong et al.[108] and modulate them to obtain
the biorthogonal fan filters. These filters are also nearly orthogonal and have linear
phase response.

The complete learning-based resolution enhancement procedure is summarized

below in terms of the steps involved.

STEP 1 : Perform two level contourlet decomposition with four directional subbands
on the low resolution test image of size M x M and three level decomposition

on all training images each of size 2M x 2M.

STEP 2 : Consider the contourlet coefficients at locations (i,7), (1,5 + M/4), (i +
M/4,5)and (i + M/4,j + M/4) in subbands I,11,1II and IV and the corre-
sponding 2 x 2 blocks in V — VIII of the low resolution image as well as the

high resolution training set.
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STEP 3 : Obtain the sum of absolute difference between the contourlet coefficients in
the low resolution image and all the coefficients for each of the training images.

Obtain the best match.

STEP 4 : If MAD < threshold, obtain the unknown high resolution contourlet coef-
ficients (4 x 4 block) from the training image offering the best match locally in
subbands IX — X111, else set them all zeros.

STEP 5 : Repeat steps (2 - 4) for every contourlet coefficient in bands I — IV of

the low resolution image.

STEP 6 : Perform inverse contourlet transform to obtain the high resolution

image of the given test image.

It may be noted that we have explained the super-resolving procedure for the
special case when the image is decomposed into 4 directional components at each
resolution. The same procedure remains valid if we prefer to have decomposition into
8 or 16 directional components. However, some of the notations and equations used

in this section need to be properly adjusted.

4.3 Experimental Results

In this section we demonstrate the usefulness of the proposed approach to super-
resolve a low resolution observation using contourlet learning. Experiments were
performed for various types of face, fingerprint, natural and texture images. The
training set consists of about 100 good quality images of all possible class of objects
and is not specific to the class of objects to be super-resolved. Further,the training
data is the same for all results displayed in this section.

First we consider experiments with a natural image. To obtain a low resolution test
image and in order to be able to quantify the improvement during super-resolution,
we consider a high resolution image which does not belong to the training set and

downsample it by a factor 2 using the decimation matrix D in equation (3.2). Fig.
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Figure 4.7: (a) A low resolution tiger image, (b) original high resolution image,
(c) bicubic interpolated image, (d) super-resolution using wavelet learning without
smoothing, (e) super-resolution using wavelet learning with smoothing, (f) the super-
resolved image using the proposed approach, (g) zoomed up portion of the marked

region from (c) and (h) zoomed up portion of the marked region from (f).
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4.7(a) shows one such low resolution image of size 64 x 64. Fig. 4.7(b) is the original
HR image. Fig. 4.7(c) shows the LR test image upsampled by a factor of 2 using the
bicubic interpolation technique. The super-resolved image obtained using a wavelet-
based learning described in chapter 3 is shown in Fig. 4.7(d) where we can observe
lots of artifacts. If this result is further regularized using an appropriate edge pre-
serving smoothness constraint as we did in 3, the artifacts can be minimized and the
corresponding result is shown in Fig. 4.7(e). Even though, this result seems sharper
than what is shown in Fig. 4.7(d), it is still slightly blocky (observe the eyes). The
super-resolved image using contourlet-based learning is shown in Fig. 4.7(f). Here we
can note that the artifacts as seen in Fig. 4.7(d) are almost absent. This is because
of the capability of the contourlet transform to capture smoothness along contours.
Note that all these results are quite sharp compared to the result of bicubic interpola-
tion shown in Fig. 4.7(c). A comparison of the Figs. 4.7(c) and (f) shows more clear
details in the super-resolved image. Figs. 4.7(g) and (h) are the zoomed up versions
corresponding to the marked regions in Fig.s 4.7(c) and (f), respectively. Here one
can clearly observe that the super-resolved image using contourlet learning is quite
sharper than the bicubic interpolated one. The super-resolved image is quite close to
the original HR image shown in Fig. 4.7(b).

Next we show the results of the experiment performed on a low resolution finger-
print image. Fig. 4.8(a) shows the LR observation of size 128 x 128 and Fig. 4.8(b)
is the original HR image of size 256 x 256. The bicubic interpolated image is shown
in Fig. 4.8(c). Fig 4.8(d) shows the results of wavelet-based learning with smoothing.
The super-resolved image using the proposed approach is shown in Fig. 4.8(e). Figs.
4.8(f) and (g) are the zoomed up versions corresponding to the highlighted regions
in Fig.s 4.8(c) and (e), respectively. It can be observed that the contours in the
super-resolved image are less blurred than the bicubic interpolated image.

Fig.s 4.9(c - e) show the results of the corresponding experiments conducted on
an LR textured image shown in Fig. 4.9(a). The super-resolved image using the pro-
posed approach seems to be much sharper compared to the results of bicubic inter-

polation and of wavelet-based learning. In particular, the edges are better preserved
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Figure 4.8: (a) A low resolution fingerprint observation, (b) original high resolution
image, (c) bicubic interpolated image, (d) super-resolution using wavelet learning with
smoothing, (e) the super-resolved image using the proposed approach, (f) zoomed up
portion of the marked region from (c¢) and (g) zoomed up portion of the marked region

from (f).
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Figure 4.9: (a) A low resolution textured image, (b) original high resolution image, (c)
bicubic interpolated image, (d) super-resolution using wavelet learning with smooth-
ing, (e) the super-resolved image using the proposed approach, (f) zoomed up portion

of the marked region from (c) and (g) zoomed up portion of the marked region from

(F)-
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in the super-resolved image using contourlet learning than the bicubic interpolated
image where it appears to be more blurred. The super-resolved image compared very
favorably to the original high resolution image shown in Fig. 4.9(b).

Now we show the results of the experiments performed on a LR image where
the aliasing is very high. The purpose of this experiment is to demonstrate the
behavior of the proposed method when severe aliasing is present in the LR data.
Such a low resolution image is shown in Fig. 4.10(a) and the corresponding bicubic
interpolated image is shown in Fig. 4.10(c). Note that the stripes on the scarf is
aliased. Fig. 4.10(d) shows the result of wavelet-based learning with smoothing. The
super-resolved image using the proposed approach is shown in Fig. 4.10(e). The
super-resolved image appears to be much sharper than the bicubic interpolated one.
However, the proposed method was unable to remove the aliasing effect.

Finally, we obtain the PSNR of the reconstructed images in table 4.1. For the
fingerprint image, we observe that it offers upto a 4dB gain in PSNR over the bicubic
interpolation technique and over 3dB gain over the wavelet-based learning technique
that incorporates the highly time consuming smoothness constraint. This is quite
expected as the fingerprint has many curved edges which cannot be handled well
with separable basis functions. The contourlet expansion provides a much better
solution. The PSNR improvement is about 2dB when the input is quite a smooth
one such as the face image, and it improves to over 3dB when the input image has
noticeably strong edges such as in the brick texture or in the tiger image.

We end this section with a comment on how the high resolution contourlet co-
efficients were learned from the HR database images. For the experiment with the
face image, about 24% of all the contourlet coefficients were learned from the HR
database and the rest were set to zero as no matching coefficients could be found
from the database for a given choice of threshold. Further, all these were picked up
from various different images in the database (such as faces, textures, building images,

natural textures, etc) suggesting that the learning process is not class specific.
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Figure 4.10: (a) A severely aliased low resolution observation, (b) original high resolu-
tion image, (c¢) bicubic interpolated image, (d) super-resolution using wavelet learning

with smoothing and (e) the super-resolved image using the proposed approach.

Image Bicubic Wavelet Learning Contourlet

inter- without with learning

polation | smoothing | smoothing

Tiger 20.88 15.41 20.18 24.18
Fingerprint | 30.81 14.46 30.25 34.30
Texture 22.69 17.53 23.29 26.05
Face 19.95 17.67 19.12 21.81

Table 4.1: Comparison of PSNRs for the zoom factor ¢ = 2 expressed in dB .

62



4.4 Conclusions

We have described a single-frame image super-resolution technique using a contourlet
transform-based learning. The contourlet coefficients at finer scales, learned from a set
of several high resolution training images, after proper thresholding to avoid spurious
learning, are used to estimate the super-resolved image. The learning process ensures
capturing the best high resolution edges from the training set given a low resolution
observation, as well as captures the smoothness along contours. The results obtained
for different class of images show perceptual as well as quantifiable improvements over
conventional interpolation techniques. It also shows a better edge over the regularized

standard wavelet-based learning described in chapter 3.
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Chapter 5

Linear Combination of Edge

Primitives

In this chapter we further extend the contourlet-based learning method discussed in
the previous chapter, using a linear combination of edge primitives inspired by the
concept of locally linear embedding (LLE) [109], a recent manifold learning method,
under a supervised learning framework. The methods proposed by Freeman et al.
[49] and Hertzmann et al. [67] are based on supervised learning, i.e., the training
data are given as input-output pairs of low and high resolution images. In machine
learning, it is generally believed that when feasible, a supervised learning approach
often leads to the best results. Our work discussed in this chapter is motivated
by the work of Chang et al. [110] where the authors propose a patch-based local
learning method for super-resolution through neighborhood embedding. Here, the
generation of a high resolution patch does not depend on only one of the nearest
neighbors in the training set. Instead, it depends simultaneously on multiple nearest
neighbors in a way similar to LLE for manifold learning. Here low resolution and
the corresponding high resolution training image pairs are used to estimate the high
resolution embedding.

Our method is similar to the work of Chang et al., but we perform the patch-based
local learning in the contourlet transform domain, having identified the capability of

contourlets to capture the geometric smoothness along contours. For this supervised
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learning scheme we make use of a training set consisting of pairs of LR and the
corresponding HR images. The advantage of this lies in capturing the effect of the
decimation process (matrix D in Eq. (3.2)) explicitly by the contourlet transform
through the matched pair of LR and HR training data. In previous two chapters it has
been implicitly assumed that the multiresolution decomposition using either wavelet
or contourlet has the same effect as that of the decimation matrix D, which is often
not true. For a given low resolution test image patch (in contourlet domain) we find k&
nearest neighbors from the LR training set by performing an extensive search using the
Euclidean distance to define the neighborhood. Now the test patch is reconstructed
from a linear combination of the k£ neighbors where the reconstruction weights are
computed so as to minimize the reconstruction error. The linear combination of
the corresponding £ HR patches using the same reconstruction weights generate the

required super-resolved patch in the contourlet domain.

5.1 Problem Formulation

The single image super-resolution problem that we solve in this chapter can be formu-
lated as follows. Given a low resolution image f as input, we estimate the unknown
target high resolution image z with the help of a training set consisting of low resolu-
tion images and the corresponding high resolution images. It may be noted that this
method is different from the SR techniques described in the last two chapters where
the training set was consisting only of high resolution images. Here also, we use the
same low resolution image formation model described in chapter 3.

We assume that, among our training data, the set of HR patches and the set of
corresponding LR patches respectively reside on two different nonlinear manifolds,
but with similar locally linear structure. The same assumption has been made in
Chang et al. and shown to produce stable super-resolution performance. In our
case, we represent each low or high resolution image as a set of non-overlapping
patches in the contourlet domain. Recently, some new manifold learning or nonlinear

dimensionality reduction techniques have been proposed to automatically discover
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low-dimensional nonlinear manifolds in high-dimensional data spaces and embed them
onto low-dimensional embedding space, using tractable linear algebraic approaches
that are not prone to local minima. These include isometric feature mapping (Isomap)
[111], LLE [109, 112] and Laplacian eigenmap [113]. In our method we use an LLE

based approach because of its simplicity.

5.2 LLE Method

LLE is a promising manifold learning method that has aroused a great deal of interest
in machine learning. It is a way to map high dimensional data into a low dimensional
space with the useful property of maintaining the neighborhood relationship. LLE
assumes that each data point and it neighbors lie on a locally linear patch of the
manifold. The local geometry of each patch can be characterized by the reconstruction
weights with which the data point is reconstructed from its neighbors. The LLE

algorithm can be summarized as follows. See [112] for details.
1. For each data point in the WU-dimensional data space:

(a) Find & nearest neighbors in the same space.

(b) Obtain the reconstruction weights of the k£ neighbors so as to minimize the

reconstruction error.

2. Compute the low-dimensional embedding in the 1-dimensional space (usually
1 < U ) such that the local geometry represented by the reconstruction weights

is preserved.

5.3 Combination of Contourlet Primitives

We use LLE to construct the HR contourlet coefficients of the given LR edge primitive
as opposed to the low dimensional embedding in standard LLE. First we perform the
contourlet decomposition of the LR and HR training images and also for the given

test image. For simplicity we have performed a single pyramidal level decomposition
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and with four directional subbands. For a given test image patch in the contourlet
domain in a specific subband, we perform an extensive search in the LR database to
find £ nearest neighbors. Now we express the given test patch as a linear combination
of these neighbors. The reconstruction weights are computed so as to minimize the

reconstruction error
k
e= ||f—szifi||2. (5.1)
i=1

where f is the vector containing the contourlet coefficients of the test patch and
f; represents the corresponding vector for the " nearest neighbor and w;’s are the
reconstruction weights subject to the constraint that Zle w; = 1. To solve for w; we

form the local Gram matrix G given by [110]
G=>F1"—-FT(f1T - F). (5.2)

where 1 is a column vector of ones and F is a ¥ x k£ matrix with its columns being
the neighbors of f. For a decimation factor of ¢, ¥ = ¢21). Now w can be obtained
by solving the linear system of equations Gw = 1 and finally normalizing the weights
such that Y% , w; = 1. The linear combination of the corresponding k¥ HR patches of
the LR neighbors with the same reconstruction weights computed as above give the
super-resolved patch for the given test patch in the contourlet domain. The procedure
is repeated for all the patches and the inverse contourlet transform reconstructs the
SR image. We learn the contourlet coefficients in all subbands except at the lowpass
subband where we obtain the contourlet coefficients from a suitably interpolated
version of the LR image. This is because the coefficients in the lowpass subband do
not really contribute towards the missing high frequency details which we try to infer.

The LLE-based resolution enhancement procedure is summarized below in terms

of the steps involved.

STEP 1 : Perform contourlet decomposition on the low resolution test image, and

also on the LR and HR training images.
STEP 2 : For each 2 x 2 patch in a particular subband

1. Find £ nearest neighboring patches by searching the LR database.
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LR test image

LR training images

Figure 5.1: Illustration of contourlet decompositions of test, LR and HR training
images for HR reconstruction. The box shows a patch in the test image, neighbors

in the LR training images and the corresponding patches in the HR training images.

2. Compute the reconstruction weights of the neighbors that minimize the

error of reconstructing the test patch under consideration.

3. Compute the high resolution coefficients using the linear combination HR
patches corresponding to the above £ LR patches with the same recon-

struction weights obtained from step 2.2.
STEP 3 : Repeat the above for all the patches in all subbands.

STEP 4 : Perform inverse contourlet transform to obtain the super-resolved image.

The procedure is illustrated in Fig.5.1.

5.4 Experimental Results

In this section we present our experimental results conducted on various images. Here

we use the same high resolution database as used in the previous chapter. The low

68



Figure 5.2: (a) A low resolution texture image, (b) bicubic interpolated image, (c)
super-resolution using linear combination of edge primitives and (d) super-resolution

using the best matching edge primitive (i.e. k£ = 1).

resolution database is constructed by downsampling the HR database. In our experi-
ments we made use of five nearest patches (k = 5) corresponding to every test image
patch to construct their high resolution contourlet coefficients. Figs. 5.2(a) and (b)
show a low resolution texture image and its bicubic interpolated versions respectively.
The super-resolved image using contourlet learning using linear combination of edge
primitives is shown in Fig.5.2(c). This output looks slightly sharper compared to the
bicubic interpolated one, but a little noisy at certain locations. This could be due
to spurious learning at those locations and since we use multiple neighbors the effect
of spurious learning can get added up making the output noisy. The super-resolved
image obtained using the best matching patch (k = 1) for every test patch is shown
in Fig.5.2(d). This output looks much blocky and noisy in comparison to that shown
in Fig.5.2(c).

Next we perform the experiment on a low resolution Barbara image where the
aliasing is slightly high, shown in Fig.5.4(a). The bicubic interpolated and the super-
resolved image using the proposed approach are shown in Figs.5.4(b) and (c) respec-
tively. The super-resolved image is sharper than the bicubic interpolated one. Observe
the scarf. But it looks slightly noisy which is due to spurious learning. Observe the

palm.
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Figure 5.3: (a) A severely aliased low resolution observation, (b) bicubic interpolated
image, (c) super-resolution using linear combination of edge primitives and (d) super-

resolution using the best matching edge primitive (i.e. k =1).
5.5 Conclusions

In this chapter we have proposed a local learning method for super-resolution under
a supervised framework. To obtain the contourlet coefficients of the unknown high
resolution image at the finer subbands, we make use of several nearest neighbors of
the low resolution test patch as in locally linear embedding. In effect, we make use
of a linear combination of several best matching edge primitives to obtain the edge
elements of the unknown high resolution image under a given down sampling process.
The resulting high resolution image is sharper than the conventional bicubic interpo-
lated image. But the disadvantage of the method is that, if there is some spurious
learning at certain locations, the resulting high resolution image at the corresponding
location will be much noisy as it is contributed by several spuriously learned neigh-
bors. To overcome this difficulty one has to carefully set the threshold in order to

avoid any spurious learning.
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Chapter 6

PCA-based Global Approach

In the previous three chapters we presented methods where a single observation was
super-resolved by learning the high resolution wavelet or contourlet coefficients rep-
resenting the edges in the image from a given set of arbitrary training images. In all
these approaches we were learning the coefficients locally from the image database.
However, the method could not handle an input image with arbitrary blurring as
the method was unable to decide the scale at which the edge primitives should be
searched from the training data. In this chapter, we relax this constraint, i.e., the low
resolution input image may have an arbitrary amount of blurring. Further, we do not
impose any restriction on the form of blur point spread function (PSF). Thus, we look
at the general case of having an arbitrary blurred and noisy input image. However,
we do put a constraint on the available training image database. We require that all
training images must conform to the same class of objects, like a face or a fingerprint.

i In many biometric databases, a large number of images of similar contents, shape
and size are available. For example, in investigative criminology one has available
face and fingerprint databases. These are often taken at controlled environment and
can be registered easily. The question we ask is that if one encounters a poor quality
input image, can it be enhanced using the knowledge of the properties of the database
images? Thus, the basic problem that we solve in this chapter is as follows. Given a
low resolution input image belonging to a particular class (face, fingerprint, etc.) and

a database of several good quality images of the same class, obtain a high resolution
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output. We perform a principal component analysis on the image database and an
appropriate interpolation is carried out on the eigen-images, using which the high
resolution image is reconstructed. We show that this method is particularly useful
when the input image is noisy and partly blurred so that the other existing learning-
based methods do not provide a good solution.

In the previous chapters we learned the high resolution edge primitives from the
training data set for the low resolution edges in the observation. Thus, the learning
was local and hence, we opted for the wavelet or contourlet based representation
of the image due to their excellent localization property. However, the PCA-based
method to be discussed in this chapter utilizes a global learning. Imagine what would
happen if the wavelet bases are replaced by the Fourier bases. The edges can no
longer be learned locally. Certain aspects of the input image now has to be learned
globally. This imposes the constraint that all the training images should be globally
similar, i.e., they should represent a similar class of objects or signals. This calls
for the use of eigenvectors in discrete space domain for an efficient utilization of the
signal statistics.

Similar PCA-based super-resolution reconstruction technique for face hallucina-
tion is proposed in [71, 114]. Here the authors make use of both low and high resolu-
tion image databases to recover the high resolution image. They also add constraints
to the principal components to reduce the nonface-like distortion. The method that
we propose in this chapter makes use of either a low resolution or high resolution
image database to obtain the super-resolved image. An eigenface-domain super-
resolution reconstruction algorithm for face recognition is proposed in [115]. This is
a multi-frame super-resolution method where the authors apply super-resolution to
a low-dimensional face sub-space rather than to the pixel domain as in conventional
SR methods, resulting in a significant decrease in the computational complexity of
SR reconstruction.

The chapter is organized as follows. We discuss the concept of generalized inter-
polation and its application to our problem using a low resolution image database in

section 6.1.The usefulness of PCA for super-resolution is discussed in section 6.2 and
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the complete algorithm is presented in 6.3. In section 6.4 we discuss the interpolation
using a high resolution database. We present the experimental results in section 6.5

followed by discussions in 6.6.

6.1 Generalized Interpolation

The idea of generalized interpolation was proposed by Rajan et al.[116] for image
expansion and generation of super-resolution images. This is achieved by decompos-
ing the image into appropriate subspaces, carrying out interpolation in individual
subspaces and subsequently transforming the interpolated values back to the image

domain. Consider a function f(z,y) decomposed as

f(z,y) = glai(z,y), az(z,y), - - -, am(,y)) (6.1)

where a;(z,y), i = 1,2,...,m are different functions of the interpolating variables
x and y and when they are combined by an appropriate m-variate function g, one
recovers the original function f. Now the individual functions a;(x, y) are interpolated
and combined using equation(6.1) to obtain the rescaled function f(z 1 ¢,y 1 ¢). In
[116] photometric cues were used to decompose the image assuming a Lambertian
reflectance model, and the interpolants were ai(z,y) = p(x,y), az(z,y) = ¢(x,y) and
asz(z,y) = p(z,y) where p and g are the surface normals and p is the albedo. It
was claimed that various optical and structural properties of the image, such as 3-D
shape of an object, regional homogeneity, local variations in scene reflectivity, etc.,
can be better preserved during the interpolation process. It was also shown that
an alias free reconstruction of f(x 1 ¢,y 1 ¢) is possible if the sub functions are all
bandlimited. In this chapter we use the same parametric decomposition given by

Eq. (6.1), however, we decompose the given function into an eigen-space containing

the principal components a;, 7= 1,---,m and use a linear function ¢, i.e.,
m
¢(a1(x7y)7a2(xay)77am($ay)) :zwz&z (62)
i=1

Note that here a;’s are orthogonal to each other and they are derived from the

database of training images. Similarly, w; represents the projection of the given image
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Figure 6.1: Illustration of PCA-based Generalized Interpolation.

on the i basis vector (eigen-image). We may now apply a suitable interpolation in
the eigen-space and then combine them to get the super-resolved image. Thus the
method is a special case of generalized interpolation. Since the eigen-images are not
dependent on the input image f(z,y), and they are computed from the database of
training images, all these interpolated basis vectors can be pre-computed and stored.
Hence the method, if it does at all provide a good image reconstruction, will be a

very fast one. The procedure is illustrated in Figure 6.1.

6.1.1 Eigen-Image Decomposition

Eigen-image decomposition for a class of similar objects is currently the most popular
and actively pursued area of research in pattern recognition. An image can be re-
constructed from eigen-images in the PCA representation as described in [117]. The
basic procedure for computing the eigen-space is as follows: We have a dataset of K
similar training images, represented by the matrix A = [F1, F, ..., Fk|, where F;

is the 5** training image. Note that the training image of size M x M is converted to
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a vector F of size M? through a raster scan conversion. Thus the matrix A has the
dimension M? x m. In PCA, a set of top m eigenvectors £ = [e},es, ..., €,], also
called eigen-images, of dimension M? x m are computed from the covariance matrix,
K
Y= Z("]:Z - m;)(f, - m;:)T. (63)
i=1

where my is the average image intensity defined by

1 K

Note that the size of the training database is much smaller than the dimension of
the image, 1.e., K << M?. Hence ¥ in Eq. (6.3) is rank deficient. Further, one does
not store all eigen-images for the non-zero eigenvalues. We retain only top m (where
m < K) eigen-images based on the magnitude of the eigenvalues. Since m << M?,
given the eigen-images one cannot reconstruct an image exactly. However, since all
images are similar in nature (like face or ear images), only a small value of m suffices
to reconstruct an image at good enough details.

For a given low resolution image f, a weight vector can be computed by projecting
it onto eigen-images using

w = ET(f — my). (6.5)
An approximate reconstruction of f can be obtained from the top m eigen-images,
f = Ew +my. (6.6)

Since m is typically much smaller than the size of the image vector, the image rep-
resentation [116] through the eigen-image expansion is not complete. Hence f is an
approximation of f and the quality of approximation depends on its nearness to the

class of images in the database.

6.1.2 Eigen-Image Interpolation

Now we wish to form a set of high resolution eigen-images using which we can con-
struct the high resolution output corresponding to the given low resolution input im-

age. In order to do this all the m low resolution eigenvectors E and the mean vector
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my are upsampled using the bicubic interpolation. Any other suitable interpolation
scheme can also be used. But we restrict to bicubic interpolation in this study. The
interpolated mean vector is given by m, and the upsampled set of eigenvectors are

given by Ej, = [e1p,€2n, -+, €mp], i-€.,

and
Ey = [ei(T q),e2(T q), -, en(T q)],

where the symbol 1 ¢ represents upsampling by a factor of ¢. One may use an ap-
propriate upsampling factor such as ¢ = 2,3,4, etc. The new set of interpolated
eigenvectors need not be orthonormal. They are then transformed into the near-
est set of orthonormal vectors using the Gram-Schmidt orthogonalization procedure.
Since all these vectors are of unit norm, the weights (eigenvalues associated with
the corresponding eigen-images) must be multiplied by the upsampling factor ¢ (i.e.,
W, = qw) to preserve the average brightness of the interpolated pictures. The high

resolution image is now reconstructed using

z = Ehwh +m,

= 0> wieitq) +m,, (6.7)

i=1
where w; is the projection of the input image on the i** eigen-image. Compare this
to Eq. (6.2) and observe that Eq. (6.7) is nothing but the generalized interpolation.
There are two primary differences with the way the generalized interpolation is carried

out compared to the one presented in [116].

1. One does not require several observations to decompose the original image into
constituent eigen-images unlike in the previous case. The decomposition is

based on the statistics learned from the training images.
2. The decomposition of the original image f into eigen-images e; is linear.

The motivation for using the generalized interpolation lies in the fact that the original

function f may not be band limited but the constituent function a;’s may very well
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be. However, the above argument is no longer valid for PCA-based decomposition.
If all e;’s in Eq. (6.7) are bandlimited, so is f due to linearity. Hence the PCA-
based upsampling cannot eliminate aliasing from the given image f. Then what is
the motivation for PCA-based upsampling? Does it provide any benefit in terms of
having a lower interpolation error while upsampling? Let us look at this issue in more
details.

According to Lagrange’s theorem, if a function f(z) possesses the (n+1)" deriva-
tive f("*1(z) at all points in an interval containing the point z, the remainder R, ()
is representable in the form

T — .’130)(”+1)
Rn ) = (n+1) (
(@) = F () T
for every point z in this interval where £ is a number lying between x; and z. Using
this, it can be easily shown that for a n** order polynomial approximation of the

original (unknown) function f at a point 6z away from the nearest grid point, the

approximation error is bounded by [118]

|6| v+ o 9

max |(o— + )" f(z)]. (6.8)

|f_f‘<(n+1)! z 0r Oy

For a thin plate fitting spline over a square grid of size h, the maximum error is

bounded by [119]
|f = fI < ehy/|1ogh| IL]l, (6.9)

where ¢ is a positive number given by [(327) 1(3log2)]z and £ stands for the corre-
sponding regularization term.

Let us now consider the following abstract parametric decomposition of the func-

tion f(z).

f(z) = d(ar(x), aa(z), ..., am(x)), (6.10)

where a;(z), i = 1,2,...,m are different functions of the interpolating variable z and
when they are combined by an appropriate m-variate function ¢, one recovers the
original function. We can now interpolate the individual functions @;(z) and combine

them using Eq. (6.10) to obtain a rescaled f(z).
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The interpolation error at a point x can be written as

\fo—fl = |o(ai(z) +e€1,. .. am(z) + €m)
—¢(ar(x),az(x), ..., an(z))| (6.11)

R Jege et emgen

where f,; represents the result of generalized interpolation. Here ¢;, ¢+ = 1,2,...,m
are the interpolation error at the same point x for the associated interpolant a;(z). In
order to get a feel for the behavior of the error function for the PCA-based upsampling

method, we consider ¢ to be a linear function, i.e.,
P(ar(z),a2(2), ..., am(x)) =D ai(z), o > 0 Vi. (6.12)

From Eq. (6.12), the interpolation error using a n'* order polynomial at a point &

away from a grid point z is given by

| fo(2) z)| <ZO‘Z‘€1|

i.e.,
B 5(n+1) m 0 0
£(2) = fa) < P s, max (5 + 5 )" ()] (6.13)

(n+1) o
On the other hand, if one performs an n** order polynomial interpolation at the same
location on the scattered data f(x;) itself, the corresponding error bound is

A max (2 + 2y @) (6.14)

[fo(2) = f(2)] <

We need to determine whether we gain anything by individually interpolating the
constituent functions of ¢ instead of interpolating the function f(z) directly? In
order to prove that there is, indeed, some gain, one should compare Eq. (6.13) and

(6.14) and must prove that
o f(x)

8xn+1 |

) _

ZO‘% max| P (6.15)

ax\

Similarly, for a thin plate spline interpolation, it can be shown that if one were to
achieve a lower approximation error using the parametrically decomposed generalized

method, we must have

Zazllﬁaz M <L @) (6.16)
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Unfortunately, all the above relationships are not valid when ¢ is a linear function of
polynomials. Thus, a direct interpolation of the function f(x) seems to be an equally

good option instead of the indirect one.

6.2 Usefulness of PCA

In the last section we noticed that the PCA-based upsampling method neither pro-
vides an alias-free reconstruction nor achieves a lower interpolation error. In a typical
image super-resolution problem, one is required to restore the input image from its
noisy, blurred and aliased observations. Quite naturally, the PCA-based method can-
not handle aliasing in the observation. We refrain from discussing this issue further
in this chapter. But does it help in removing sensor noise and the image blur?

Let us first assume that the observation f is free from blur, but is quite noisy.
Since the eigen-image representation (see Eq. (6.6)) is an incomplete representation
and since the noise present in the input image is expected to be totally uncorrelated to
all the available basis vectors, the reconstruction process reduces the noise drastically.
Due to the incompleteness of the basis vectors, the reconstructed image may be partly
distorted. But it is the incompleteness of the eigen decomposition that removes the
noise from the data. Since the input image conforms to the given class of objects,
only a few eigen-images are required to reconstruct the image without much error. It
is this property of the PCA that allows us to filter out the noise.

Let us now consider the case when the input image is blurred, i.e.,
fb =hxf

where f is the true image and h is the blur PSF. For simplicity, let us assume that

the blur kernel is of finite impulse response (FIR) in nature, when

with 3 ; = 1 (mean preserving blurring) and «; > 0 V i. Without loss of generality,

we may assume the true image f to be zero mean. Using Eq. (6.5) we can compute
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the projections on the eigen-images

=E'f, = Z a; ETf) = aew + Y a;wy, (6.18)

=1
where w is, as before, the projection coefficient vector for the true (non-blurred)
image, and w; corresponds to the projection coefficients for the shifted image f;. Since
the eigen-images represented by E correspond to the principal components, and since
an image is typically correlated over its neighbors, it is expected that w; >~ w Vi. The
reconstructed image f, is given by
f, = Ew, = apEw + > aEw;. (6.19)
i=1
The error in reconstruction due to the blurred observation with respect to the previ-
ously obtained (see Eq. (6.6)) image f is given by
f— 1 = (1 —ap)Ew — Zazsz
Using the fact that Y o; = 1, we get
f—1f, = Y wEw =) oEwy| = Zaz w— w;)|. (6.20)
i=1 i—
Since E form an orthonormal basis set,
-5 <> ail(w—wy)l. (6.21)
i=1
As mentioned earlier |w — w;| is very small and similarly o; < 1. Hence |f — f,| is
quite negligible, i.e., the reconstructed image is quite good even if the observation
was blurred. Or in other words, if the input image is blurred, it will still have
significant correlation with the corresponding eigen-images of the ideal image. Since
the eigen-images have been computed using the good quality training images, the
reconstruction process is expected to remove the blur present in the data. Needless
to say, if the input image is badly blurred, the associated eigen expansion may be
very different from that of the ideal image, when the reconstruction will be quite
poor. Direct interpolation of the input image does not solve any of the above two
problems of blurring and noise perturbation, justifying the claim that the PCA-based

restoration does help.
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6.3 Description of Algorithm

The PCA-based restoration algorithm is summarized below in terms of the steps

involved.

STEP 1: Perform the PCA decomposition on the low resolution image database to
get top m eigen-images represented by the matrix £ and also obtain the mean

image mg.

STEP 2: Project the given low resolution image f onto the eigen- images to get the

eigen-image coefficients w.

STEP 3: Interpolate the eigen-images F and the mean image myx to get the corre-
sponding high resolution eigen-image matrix £} and the high resolution mean

image m,.

STEP 4: Approximate the high resolution eigen-images to the nearest orthonormal
bases. These are precomputed and stored while obtaining the principal compo-

nents.

STEP 5: Obtain the super-resolved image using Eq. (6.7).

It may be noted that only steps 2 and 5 need to be computed for a given input image
for restoration. Hence the method is very fast. Since no high pass filter is used for
de-blurring, it does not boost the noise. However, the method may fail if the blurring
is very severe or if the input images are not properly registered with those of the

database images.

6.4 Use of High Resolution Database

We have assumed thus far that the training image database is at the same spatial
resolution as the input image. The use of upsampling of the eigen-images does not

recover the high frequency details. However, we observed that the PCA-based method
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is able to undo the image blurring and to remove noise. Blurring in a signal is closely
related to its scale at which the signal is viewed. We expect a good correlation
between the eigen-images at different scale. If the correlation structure remains quite
unchanged over the scale, we may be able to move the upsampling process at the
output end in step-3 in section 6.3 to the input side before step-1 itself. The procedure
is illustrated in Figure6.2.
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W

Figure 6.2: SR using high resolution database.

—
e
L ]

b
R

L L J
<

Let us see what this achieves for us. We do now have a number of high resolu-
tion training images of a particular object class. The principal components of these
training data are obtained. A low resolution (say, a decimation factor of ¢), blurred
and noisy image is first upsampled by a factor of ¢ using any interpolation technique.
The upsampled input image is now projected onto the eigen-images, and the high
resolution restored image is obtained using equation Eq. (6.6). Since the training
images are all of high resolution, the input image is, indeed, super-resolved in the
sense that it is now able to recover the high frequency details.

The performance of this super-resolution scheme depends on how good (or corre-
lated) the training images are with respect to the input image. Hence the method is

applicable to an image of a specific class of object such as fingerprint or face images.
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6.5 Experimental Results

We now demonstrate the performance of the PCA-based upsampling method. We
show results for both the cases, i.e., the training images are at the same resolution
as the test image, and when the test image is at a lower resolution. Experiments
were conducted on both face and fingerprint images. For face images the database
consisted of 105 good quality images (in the sense that there is no blur in the training
data) of size 82 x 96 pixels. All the images were of frontal face and no pre-processing
was done on them. A high resolution image is blurred using a 3 x 3 Gaussian kernel
with standard deviation 0.5, and added with zero mean Gaussian noise of different
standard deviations (o) to form the input image. For the second case, the input
image is decimated by a factor of ¢ to serve as the input image to be super-resolved.
The same database is used to serve as the high resolution training data.

Figure 6.3 shows the first 10 eigen-images computed from the database of 105 face
images. The eigen-images were then upsampled by a factor of r (say ¢ = 2, 3,4, etc.)

and stored for subsequent usage.

Figure 6.3: First ten eigen-images obtained from the training data set.

In Figure 6.4 the noisy input image with ¢ = 0.1 (the gray values for the images
considered in this chapter have been normalized in the range [0, 1]) and the corre-
sponding bicubic interpolated image and the super-resolved images for zoom factors
of 2 and 4 are shown. It can be observed that the super-resolved image is almost noise
free and more clear than the bicubic interpolated image which is highly noisy. This
is quite expected as the bicubic interpolated image takes the given noisy image itself

as the input and hence it can remove neither blur nor the noise. For the PCA-based
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approach, the lips, the eye-brows and the hairlines appear quite clearly.
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Figure 6.4: (a) A low resolution noisy observation (o = 0.1), (b) bicubic interpolated

image with ¢ = 2, PCA-based restoration with (c) ¢ =2 and (d) ¢ = 4.

We now experiment on what happens if the noise level is increased. In Figure 6.5,
even though the given observation is much more noisy (¢ = 0.5), the super-resolved
image is of far better quality compared to the bicubic interpolated image which is
very noisy for obvious reasons. The quality of reconstruction is now inferior to what
we obtained in Figure 6.4(c). Some artifacts are now visible on the left cheek. The
performance is quantified in terms of the PSNR tabulated in table 6.1 where the
PSNR for the bicubic interpolated image and super-resolved image for a zoom factor
q = 4 and for different values of noise level are shown. As mentioned in section 6.2 it

is observed that when the noise level o is very large, the reconstructed image deviates
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from the original face image.

Figure 6.5: (a) A very noisy observation (o = 0.5). (b) Result of bicubic interpolation
with ¢ = 2. PCA-based reconstruction for (c) ¢ =2, and (d) ¢ = 4.

We now investigate the performance of the PCA-based method when the input
image is severely blurred. In Figure 6.6(a) an input image which is blurred with a
7 x 7 Gaussian mask with a standard deviation of 2 is shown. The details on the face
is almost lost in the input. As expected, the output due to bicubic interpolation is
heavily blurred, but the super-resolved image is almost free from blur. The details
on the face are now quite restored in Figure 6.6(c). However, we observe a bit of
artifacts on the face. This demonstrates that as long as there is a good correlation
of the input image with the eigen-images, a good reconstruction is, indeed, possible.

Thus the key aspect about the PCA-based method is its capability to recover a good
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quality image when the input image is blurred and noisy.

—
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Figure 6.6: (a) A highly blurred low resolution observation, (b) bicubic interpolated

image, with ¢ = 2, and (c) the reconstructed image with ¢ = 2.

Now we experiment on how many eigen-images are required for a good reconstruc-
tion. Figure 6.7 shows the reconstructed image obtained using 10,20 and 50 eigen-
images. Here the figure given in 6.4(a) served as the input image. It is observed that
using the top 50 eigen-images a good quality output can be reconstructed. Compare
this to the result given in Figure 6.4(c) which was obtained using 100 eigen-images.

They are nearly indistinguishable in quality.

I
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Figure 6.7: PCA-based reconstructions using different numbers of eigen-images. (a)

K =10, (b)K = 20, and (c)K = 50.

In all the above experiments the low resolution input image was a part of the
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database which consisted of 75 male faces and 35 female faces. The database had
the picture of the same person but at a different orientation. Figure 6.8 shows the
bicubic interpolated image and the super-resolved image corresponding to a blurred
and noisy input face image which is not at all present in the database. In this case

also we are able to obtain a better restoration.

Figure 6.8: Restoration of an input image not present in the database. (a) Noisy
observation, (b) bicubic interpolated image, and (c) result of PCA-based restoration

for ¢ = 2.

Figure 6.9: Illustration of PCA-based restoration for an arbitrary input image very
different from the given class of face images. (a) The input image, and (b) restored

image!

In the next experiment we demonstrate that if the input image does not belong
to the class of objects in the database, one cannot do any meaningful reconstruction.
Figure 6.9 shows the reconstructed image for some arbitrary input image using the

face image database and 100 eigen-images. Here the output is not at all related to
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the input, which indicates clearly that the PCA-based method is applicable only for
a specific class of images.

In the next experiment we show that one can obtain a faithful reconstruction even
if a portion of the LR image is missing. In Figure 6.10(a) we have a low resolution
image with a portion of the face missing. The missing region is filled with the average
image intensity of the LR image and the PCA-based interpolation is used to obtain the
super-resolved image shown in Figure 6.10(b). As can be observed, the PCA-based
algorithm almost recovers the missing region while super-resolving the LR face image.
No bilateral symmetry property of the face has been used in this experiment. The

recovery is possible due to the available information in the constituent eigenimages.

Figure 6.10: Super-resolution reconstruction for an input face image with a portion

of the image missing: (a) low resolution input and (b) super-resolved image using

PCA.

We now show results of experiments on a different database. Figure 6.11 shows
the poor quality input, bicubic interpolated result and the super-resolved images for
zoom factors of ¢ = 2 and 4 for a fingerprint image. The results are shown for
a noise level of ¢ = 0.1. In this experiment the low resolution database consisted
of 150 fingerprint images of size 32 x 32 pixels, and the top 100 eigen-images were
used for reconstruction. It can be observed that the super-resolved image is more
clear and noise free compared to the bicubic interpolated image. We also compare
the performance in terms of the PSNR measure and the corresponding values are
given in Table 6.1 for different values of noise variance. We observe a substantial

improvement in PSNR for the PCA-based approach.
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(c) (d)

Figure 6.11: Illustration of results for a different object class. (a) A poor quality
fingerprint image. Results of (b) bicubic interpolation, and PCA-based interpolation
for (¢) ¢ =2, and (d) ¢ = 4.

Image Method | 0 =0.1]0=0.2|0=0.
Face Bicubic 22.93 20.27 16.78
Proposed | 24.23 22.88 19.79

Fingerprint | Bicubic 20.88 17.76 13.72

Proposed | 21.36 20.01 16.50

Table 6.1: Comparison of PSNRs for a zoom factor of ¢ = 4 for different levels of

noise.
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We now investigate the performance of the method when the upsampler at the
output end is replaced by an upsampler at the input end (section 6.4). Thus the input
image is at a lower resolution, but the training database is at a higher resolution. For
convenience, we use the same training database, but the input image is decimated by
a suitable factor ¢ to serve as the low resolution observation. This observed image is
then appropriately interpolated before applying the PCA-based restoration.

In Figure 6.12(a), we show a low resolution observation. We add a white Gaussian
noise with ¢ = 0.1 to simulate the presence of noise in the data. Figure 6.12(b) shows
the result of bicubic interpolation. Quite naturally it is poor due to the presence of
noise. In Figure 6.12(c) we show the result of PCA-based high resolution restoration
for the upsampling factor of ¢ = 2. The effect of noise is almost removed and the
quality of reconstruction is very good.

In Figure 6.13(a), the same input as shown in Figure 6.12(a) is further corrupted
with additive noise. We use ¢ = 0.5 and the corresponding input image is of very poor
quality. Hence we do not expect to view the image content in Figure 6.13(b) when the
image is bicubic interpolated. The result of high resolution PCA-based restoration
for ¢ = 2 is shown in Figure 6.13(c). Although the corresponding reconstruction
is inferior compared to what is given in Figure 6.12(c), the face is still identifiable.
There appears to be significant distortion near the lips.

Now we show some results of experimentation for an upsampling factor of ¢ = 4.
The input image having a good amount of noise corruption (0 = 0.1) is shown in
Figure 6.14(a). The corresponding bicubic interpolated image with ¢ = 4 is shown in
Figure 6.14(b). The result of PCA-based reconstruction is shown in Figure 6.14(c).
Compare this with the corresponding result for ¢ = 2 given in Figure 6.12(c). We
notice that reconstruction is still very good even for an upsampling factor of ¢ = 4.
The face is clearly recognizable and the effects of noise are no longer visible. Likewise
in the case of upsampling by a factor of ¢ = 2, we now experiment with the case
when the input is very noisy. The noise level is increased to ¢ = 0.5. There is
hardly anything visible either in the input image or in the bicubic interpolated image

shown in Figures 6.15(a, b). The result of PCA-based reconstruction is shown in
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Figure 6.12: (a) A low resolution noisy observation (o = 0.1), (b) bicubic interpolated
image, and (c) PCA-based restoration with ¢ = 2 using a high resolution training data

set.

Figure 6.13: (a) A low resolution, extremely noisy observation (o = 0.5), (b) bicubic

interpolated image, and (c) the high resolution PCA-based restoration with ¢ = 2.

(a) (b) (©)

Figure 6.14: (a) A low resolution noisy observation (¢ = 0.1), (b) bicubic interpolated
image, and (c) high resolution PCA-based restoration with ¢ = 4.
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Figure 6.15(c). We now notice a considerable distortion in the reconstructed image
compared to what we obtained for ¢ = 2 in Figure 6.13(c). The nose and the lips are
poorly distorted. The strands of hair over the right eye is now missing! Although the
reconstructed image does look like a face image, it is hardly of any consolation as the
training data consists of face images only. Probably a face recognition engine would
fail to recognize the reconstructed image. Hence we may conclude that if the noise
level in the input image is very high and the magnification factor ¢ is also large, the

PCA-based reconstruction method will fail.

Figure 6.15: (a) A low resolution very noisy observation (o = 0.5), (b) bicubic inter-

polated image, and (c) high resolution PCA-based restoration with ¢ = 4.

In the next experiment, we do not corrupt the image with random noise. But the
low resolution image was convolved with a 7 x 7 pixels Gaussian mask with 0 =1 to
simulate a blurred observation (see 6.16(a)). The image, when upsampled by a factor
of ¢ = 4 using bicubic interpolation, shows a large amount of blur in Figure 6.16(b). In
Figure 6.16(c) we show the result of corresponding PCA-based reconstruction. There
is definitely some distortion in the reconstructed image near the lips and near the left
eye. However, the face is still quite recognizable. All these experiments substantiate
the claim that a high resolution database can, indeed, be used for super-resolving a
low resolution blurred and noisy observation.

In the previous set of experiments shown in Figures 6.12-6.15, a variant of the
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(c)

Figure 6.16: (a) A low resolution image blurred with a Gaussian mask with a standard
deviation of 1.0 serves as an observation. (b) Bicubic interpolated image, and (c)

result of a high resolution PCA-based restoration with ¢ = 4.

input image was a part of the training database. We now show the results when the
input image was not a part of the high resolution training database. Figures 6.17(a,
b) show the noise corrupted low resolution observation and its bicubic interpolation,
respectively. Figure 6.17(c) shows the results of high resolution PCA-based recon-
struction for the upsampling factor of ¢ = 4. The quality of reconstruction does
appear to be quite good.

In the last experiment on face images we combine the use of a high resolution
database for PCA with the generalized interpolation through the eigen-images. Here
the input image is at a lower resolution than the training images. The output image
is also at a higher resolution than the training images. This is obtained by using the
generalized interpolation of the corresponding high resolution eigen-faces. In effect,
we have upsamplers ¢ = ¢; and ¢ = ¢» at both the input and the output ends,
respectively.

In Figure 6.18(a) a low resolution observation of size 41 x 48 pixels is shown. The
database training images were of dimension 82 x 96 pixels. Figure 6.18(b) shows the
bicubic interpolated output for a zoom factor of ¢;¢o = 8. The low resolution input is
first bicubic interpolated by a factor of r; = 2 and then super-resolved by a factor of

ro = 4 using the proposed approach and the corresponding result is shown in 6.18(c).
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(c)

Figure 6.17: (a) A low resolution image, without any corresponding high resolution
image in the database is corrupted by noise with o = 0.1. (b) Bicubic interpolated

image, and (c) high resolution PCA-based restoration with ¢ = 4.

As expected, the super-resolved image is less blurred than the bicubic result.

(a)

Figure 6.18: (a) A low resolution observation of different image size 41 x 48 pixels,

(b) bicubic interpolated image with ¢ = 8 and, (c) PCA-based reconstruction.

Before we end this section on experimental results, we show some more results on
the usage of a high resolution training data for fingerprint images. The input images
Figures 6.19(a) and 6.20(a) show two low resolution observations at two different
levels in the resolution pyramid. The images have been corrupted with additive white
Gaussian noise with o = 0.1. In Figures 6.19(b and c¢), we compare the performance
of the bicubic interpolation with that of the PCA-based method for an upsampling
factor of ¢ = 2. Figures 6.20(b and c¢) show the same results for ¢ = 4. We can clearly
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Figure 6.19: (a) A low resolution noisy fingerprint observation (o = 0.1), (b) bicubic
interpolated image, and (c) high resolution PCA-based restoration with ¢ = 2.

(a) (b) ()

Figure 6.20: (a) A low resolution very noisy fingerprint observation (o = 0.1), (b)
bicubic interpolated image, and (c) high resolution PCA-based restoration with ¢ = 4.
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observe an improvement in the picture quality when the PCA-based reconstruction

is used.

6.6 Discussions

We have proposed a method for super-resolution restoration of images of a partic-
ular class of object using a PCA-based generalized interpolation technique. The
low resolution eigen-images obtained from PCA decomposition are interpolated and
transformed into an orthonormal basis to reconstruct the super-resolved image. The
results obtained for both face and fingerprint images show far better perceptual as
well as quantifiable improvements over conventional interpolation techniques. The
proposed method is useful when multiple observations of the input are not available
and one must make the best use of a poor quality single observation to enhance its
resolution.

We have also shown the usefulness of having a high resolution training dataset
instead of a low resolution dataset, when there is no need to perform a generalized
interpolation of the eigen-images. However, the reconstruction process breaks down if
the low resolution observations are quite noisy and one requires an upsampling factor
of 2 or 3. The use of the observation at the same resolution as the training data and
then the use of a subsequent generalized interpolation appears to be a more robust
technique.

The proposed method cannot be classified under a general purpose super-resolution
technique as the scope of applicability is very much restricted to images of a specific
class of objects. For example, we cannot use it for an outdoor scene. However, we
envisage that the method may be found quite suitable for biometric authentication

or recognition purposes.
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Chapter 7

A Hybrid Approach

The global high resolution reconstruction using a PCA based approach discussed in
the previous chapter fails to do super-resolution at edges, though it removes the blur
and noise present in the input low resolution image. But it very well learns the
global characteristics from the image database. On the other hand, the methods
discussed in chapters 3, 4 and 5 obtain the missing high frequency details by locally
learning the best edges from the training images. To extract the advantages of both
these methods, in this chapter we propose a hybrid approach for super-resolution
by integrating the global learning using PCA and the local learning approach using
wavelets or contourlets. The PCA-based global learning obtains the best statistical
features from a database of similar class if images while the latter ensures the best
edges from the same database. We solve the problem under a Bayesian framework
incorporating the the global and local priors obtained as above, in addition to the data
consistency term. We apply the method particularly for face hallucination where we
synthesize the missing high frequency details of the input low resolution face image.

A similar approach for face hallucination is proposed in [70]. But here the authors
separately obtain the global and local faces and add them to obtain the hallucinated
face. The global high resolution image is obtained using PCA by computing the op-
timum eigen image coefficients which minimize the error in reconstructing the input
low resolution image. The residual local portion of the super-resolved image is ob-

tained using a patch-based learning similar to the discussions in [66, 67]. But our
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method is based on the optimization of a single cost function containing separately
learned global and local priors. We make use of only a high resolution database for

this purpose.

7.1 Bayesian MAP Formulation

We use the same low resolution image formation model discussed in chapter 3. i.e.

the low resolution image f is obtained by downsampling the high resolution image z.
f=Dz+n (7.1)

Based on the MAP criterion, we find the optimal solution Z by maximizing the pos-

terior probability p(z|f), i.e.
z = argmax p(z|f) = argmax p(f(z)p(z). (7.2)
Taking the logarithm of the posterior probability,
2z = arg max|log p(f|z) + log p(z)]. (7.3)

Assuming the noise n to be i.i.d. and Gaussian, maximizing the log likelihood
term logp(f|z), will be equivalent to minimizing ||f — Dz|[>. For the prior term
U(z) = logp(z), we use two different priors obtained from global and local learning

as explained in the following section. Thus the final solution becomes,

z = argmin(||f — Dz|)* + U(z)). (7.4)

7.1.1 Global prior

Here we obtain an appropriate global prior on the desired high resolution image
using the PCA-based method as discussed in section 6.4. The given low resolution
face image is interpolated and projected on to the eigenimages computed from a
high resolution database to obtain the eigenimage coefficients. The reconstruction is
obtained using Eq. 6.6. i.e.

Zg = Ew + my. (7.5)
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Here F is the matrix containing the eigenimages, w is the vector of eigenimage coef-
ficients and mg is the average image. The prior term due to global learning can be
expressed as

G(z) = ||(BE"(z - my) + my) - 2" (7.6)

Using this prior we enforce the constraint that the PCA reconstruction of the super-
resolved image should be close to the PCA reconstruction, Zg obtained as in section
6.4. This is quite reasonable as the image Z, has better learned the global char-
acteristics from the high resolution database. Though the global features are better
preserved in this learned image, this may not represent the exact face image we intend
to recover as the database is exclusive of the original high resolution image. Hence
the prior as shown in Eq.7.6 is not sufficient to recover the super-resolve image. So
we introduce a second prior in the form of locally learned wavelet coefficients and call

it a local prior.

7.1.2 Locally Learned prior

The introduction of this prior ensures the best matching edges for the given low
resolution image by learning the contourlet coefficients at finer scales from a high
resolution database. The learning procedure is similar to the one discussed in 4.2 in
chapter 4. Let Z. be the contourlet transform of the learned image as discussed in

4.2. Now, the learning prior term can be expressed as
L(z) = |[T(2) — Zut|[*. (7.7)

where I'(z) is the contourlet transform of the unknown high resolution image. For
learning this local prior one can use wavelets or contourlets or any other representation
which gives a better localization of edges. A patch-based learning as discussed in [66]
will also serve as an appropriate local prior. But in this study we use a contourlet-
based learning because of the advantages of the contourlet transform as discussed in

section 4.1.
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7.2 Super-Resolution Estimation

Incorporating the above two priors, i.e., substituting U(z) = $1G(z) + S2L(z) in Eq.

(7.4), the final solution becomes,
2z = argmin(||f — Dz||* + 51G(z) + B.L(z)]. (7.8)

The above cost function is nonconvex and also consists of terms in both spatial domain
and also in the wavelet domain. Hence it cannot be minimized by using a simple
optimization technique such as gradient descent since it involves a differentiation of
the cost function. We minimize the cost by using the simulated annealing technique
which is assumed to lead into a global minimum. We choose appropriate values for
the parameters (; and S, so that all the components in the cost function in Eq. (7.8)

have comparable contributions.

7.3 Experimental Results

We performed experiments on various face images using a database consisting of 150
high resolution face images of 15 people captured with different poses and different
lighting conditions. An image which does not belong to the database was used as
input. Figure 7.1(a) shows a low resolution face image of size 64 x64. The original high
resolution image from which the low resolution input was formed is shown in Figure
7.1(b). The bicubic interpolated version of Figure 7.1(a) is shown in Figure 7.1(c).
Figure 7.1(d) shows the super-resolved image obtained using contourlet transform
based learning as discussed in chapter 4. The best high resolution reconstruction
obtained using the PCA-based global approach is shown in Figure 7.1(e). Here,
though the eyes seem to be closed (as the original image does not belong to the
database), all the other global features of the face are synthesized well. The image
obtained using the proposed hybrid approach is shown in Figure 7.1(f). One can
clearly see improvements near the eyes and lips. But, in comparison with the super-
resolved image obtained using contourlet learning shown in Figure 7.1(d), we are

unable to prove that the hybrid methods achieve a better edge over the local methods.
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This could be due to the fact that as edges are more important in a super-resolved
image, local methods always play a good role in restoring them in a better way. A
proper study is required in terms of whether the global prior or the local prior is
more important in a particular application, for the development of an efficient hybrid
approach for super-resolution. Also, the selection of appropriate priors is equally

important to reconstruct a good quality super-resolved image.

Figure 7.1: (a) A low resolution face image, (b) original high resolution image, (c)
bicubic interpolated image, (d) super-resolution using contourlet learning, (e) interpo-

lation using PCA-based learning, and (f) super-resolution using the hybrid approach.

Next we show the results of experiments performed on a female face image. The
low resolution input, original high resolution image and the bicubic interpolated im-
age are shown in Figures 7.2(a), (b) and (c) respectively. The super-resolved image
obtained using contourlet learning, PCA-reconstructed output and the super-resolved
image using the hybrid approach are shown Figures 7.2(d), (e) and (f) respectively.
The super-resolved image looks sharper compared to the bicubic one but at the same

time it is a little blocky.
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Figure 7.2: (a) A low resolution face image, (b) original high resolution image, (c)

bicubic interpolated image, (d) super-resolution using contourlet learning, (e) inter-

polation using PCA-based learning, (f) super-resolution using the hybrid approach.
7.4 Conclusions

In order to integrate the advantages of both the local and global approaches proposed
in the previous chapters, in this chapter we presented a hybrid approach for image
super-resolution, particularly for face hallucination. Ideally, such a hybrid method
should handle the blur and noise present in the input while performing interpolation.
But our method could not properly handle blurred and noisy observations. The
improvement achieved over bicubic interpolation was very substantive either. In
addition, we were unable to prove that the hybrid methods achieve a better edge over
the local methods. The issues of selection of appropriate global and local learning
methods and whether the global prior or the local prior is more important in a
particular application is crucial in developing an efficient hybrid approach for super-

resolution. This requires further investigation.
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Chapter 8

Alias-Free Interpolation

All the SR reconstruction methods discussed in the previous chapters are able to pro-
vide a super-resolved image, but they are unable to handle the aliasing effects. Even
in the local approaches using wavelets or contourlets, though the edges are handled
properly, the aliasing present in the LR image is not reduced much during the upsam-
pling process. In this chapter we study the possibility of removing aliasing in a scene
using a single observation by designing an alias-free upsampling scheme. Quite natu-
rally this is impossible unless additional information about the HR data is available.
Hence we assume that the HR data is piece-wise constant. We generate the unknown
high frequency components of the given partially aliased (low resolution) image by
minimizing the total variation of the interpolant subject to the constraint that part of
unaliased spectral components in the low resolution observation are known precisely
and under the assumption of sparsity in the data. This provides a mathematical basis
for exact reproduction of high frequency components with probability approaching
one, from their aliased observation.

In all the SR methods proposed in literature, the quality of the super-resolved
image is measured either by means of visual inspection or using a PSNR check. It
can be easily shown that the PSNR measure is heavily biased towards the lower part
of the spectrum due to the fact that most of the energy is contained in this region.
Hence the PSNR may not be a good measure to evaluate the performance of an SR

scheme. Hence we refrain from using the PSNR measure for analysis of the quality of
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results in this chapter. A different measure to evaluate the quality of visually pleasing
images using singular values of the image matrix is proposed in [120]. But the issue
that the reconstructed components are really the high frequency components has not
really been investigated so far. Our focus in this chapter is a study in this direction.
In [121], Lin and Shum determine the quantitative limits of reconstruction-based
super-resolution algorithms and obtain the upsampling limits from the conditioning
analysis of the coefficient matrix. But it is restricted to a perturbation analysis and
not on spectral resolvability. Shahram and Milanfar in [122] study how far beyond
the classical Rayleigh limit of resolution one can reach at a given signal to noise ratio
using statistical analysis. Here the authors do not study the system performance in
the presence of aliasing. Reconstruction of 2-D bandlimited signals from irregular
samples is discussed in [123] and [124].

Rajan et al. have analyzed the possibility of alias-free upsampling of images in
[116] through the use of a generalized interpolation. They have shown the conditions
under which such an interpolation is possible. However, it requires several observa-
tions and the knowledge of a non-linear transform to achieve this. We study the issue
of alias-free interpolation at a more fundamental level and restrict ourselves again to
using a single observation. Our work is motivated by the work of Candes et al. [125]
where the authors address the problem of exact signal reconstruction from incom-
plete frequency information. We build on the theorem developed by them to derive
a method for exact removal of aliasing while interpolating an image.

The reminder of the chapter is organized as follows. We discuss in detail about
the aliasing mechanism in section 8.1. A relevant theorem which we make use of in
solving the problem is stated in 8.2. Some useful corollaries are also given. Section
8.2.1 explains our alias-free interpolation technique. In section 8.2.2 we discuss the
computational scheme to solve the problem. We present experimental results for 1-D

and 2-D cases in section 8.3, and the chapter concludes in section 8.4.
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8.1 Aliasing in LR Image

It is assumed that the observed low resolution image is produced from a single high
resolution image under the generative model discussed in chapter 1. Let z represent
the lexicographically ordered high resolution image of N2 x 1 pixels. If f is the M? x 1
lexicographically ordered vector containing pixels from the low resolution observation,

then it can be modeled as

f=DAz (8.1)

where D is the decimation matrix, size of which depends on the decimation factor
and A is the blur matrix, assumed to be an identity matrix in this chapter for the
specific task of studying the alias-removal property. It may be noted that unlike the
methods proposed in previous chapters, here we do not make use of a training set to

recover the upsampled image.
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Figure 8.1: Illustration of the aliasing process: (a) Spectrum of a continuous-time
signal z.(t), (b) components of the spectrum of the sampled signal z(n), and (c)

resultant spectrum of z(n).

The LR image formed through the above process will, in general, be aliased. The
aliasing mechanism is illustrated in Figure 8.1. The spectrum of a continuous-time
1-D signal z.(¢) band limited to B is shown in Figure 8.1(a). The spectrum of the
sampled signal z(n) sampled at a rate F' < 2B is shown in Figure 8.1(b). Of course
the spectrum will be aliased since the signal is sampled at a rate less than the Nyquist
rate. The resultant aliased spectrum of the sampled signal is shown in Figure 8.1(c).
As can be noted from Figure 8.1(c) the portion of the spectrum F — B < w < B
will be aliased and the rest will be alias-free. A similar form of aliasing takes place

in low resolution images unless the blur matrix A in equation (8.1) is quite severe.

105



The knowledge about the portion of the spectrum 0 < w < F — B will be used as
a constraint, as these components are free from aliasing, in the proposed method to
recover the high frequency components.

Having explained the aliasing process, we now define our problem in terms of
alias-free interpolation: Given an LR image f(x,y) of size M x M whose spectrum
is partially aliased, generate an interpolated image z(x,y) of size 2M x 2M which
is completely alias-free under the assumption that the image consists of piece-wise
constant intensity regions. The significance of the assumption will be explained in

the next section.

8.2 A Relevant Theorem by Candes et al.

Theorem 1: Consider a discrete-time 1-D signal f € C™ and a randomly chosen set
of frequencies €2 of mean size TM,0 < 7 < 1. Then for each ( > 0, suppose that f
obeys

#{n, f(n) # 0} < a(() - (log M)~ .#Q, (8.2)

then with probability at least 1 — O(M ¢), f can be reconstructed exactly as the

solution to the /1y minimization problem
M-1
mhin > |h(n)| s.t. Hw) = F(w) Yw € Q (8.3)
n=0

where H(w) and F(w) are the discrete Fourier transforms of h(n) and f(n) respec-
tively and # refers to the count.

Here ( is an accuracy parameter in the term O(M~¢) and «(¢) has been shown to
be equal to (1+0(1))/(29.6(C+ 1)) under certain conditions in [125]. In a simple lan-
guage it means that as one selects more spectral components compared to the number
of non-zero elements in f(n), one is likely to recover the true function f(n) with a
higher accuracy. Proof of the theorem can be found in [125]. This is typically known
as a data sparsity problem [126], one such common example of which is inpainting
[127] where one is required to reconstruct the missing data. An interesting reference

to this work is by Chan et al. [128] where the authors investigate the reverse problem,
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i.e., how much loss in data can be tolerated for a faithful reconstruction of a signal
as opposed to what Candes et al. [125] have studied.

According to the theorem the discrete-time signal f can be reconstructed from its
partial frequency samples as the solution to the constrained /; optimization problem
as stated above. It may be noted that the reconstruction is possible if the signal
consists of a limited number of spikes (Kronecker delta) only. However, most of the
input signals or images do not satisfy the above condition. If we consider this function
to be a derivative (forward difference in the discrete case) of the function f(n), then
the corresponding [; minimization should be performed on the derivative of h(n),
or in other words, one has to minimize the total variation (TV). This leads to the
following corollary.

Corollary 1: A piecewise constant object can be reconstructed from incomplete
frequency samples provided the number of discontinuities satisfy the above condition

given in Eq. (8.2), as the solution to the minimization problem
M-1
min > |h(n) — h(n—1)| st. Hw)=F(w) Yw e Q (8.4)
n=0

Corollary 2: If f(z,y) is a two-dimensional object, it can be reconstructed from its

incomplete frequency samples as the solution to the minimization problem
mhanZ(\hﬂ + |hy|) st Hw) = F(w) Yw € Q (8.5)

where h;(z,y) = h(z,y) — h(z — 1,y) and hy(z,y) = h(z,y) — h(z,y — 1). This is
similar to minimizing the total variation norm of h(z,y). But this is not rotationally
symmetric.

It may be noted that the same solution was proposed in 1981 by Levy and Fullagar
[129] in connection with the reconstruction of geophysical data. Also see the reference
[130] for a similar work. Candes et al. have provided a theoretical footing of the
existing solution. It may be noted that total variation-based image interpolation
methods are also proposed in [131] and [132]. But the authors do not specifically

address the issue of alias removal. For a detailed review of TV, readers are referred

to [133].
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8.2.1 Alias-free Interpolation

The problem addressed in [125] is a restoration problem where the discrete-time signal
is reconstructed from its incomplete Fourier samples such as in computed tomography.
However, the above problem does not consider the effect of aliasing on the sampled
data. But our problem is a signal interpolation one, where only one LR observation f
is available, which is the decimated version of the unknown HR image z as explained in
section 8.1. Of course, f will be aliased. We wish to remove this aliasing completely
while interpolating the image assuming the aliasing to be only partial. It may be
noted that without the interpolation (use of a denser grid to represent the data), one
cannot recover the aliased components. To apply the above theorem to our problem,
a partial knowledge about Z(w) should be available. We now explain how a partial
knowledge of Z(w) can be obtained from the given observation F'(w).

Our alias-free interpolation procedure is illustrated in Figure 8.2 with respect to
a given 1-D LR sequence f(n) of length M. Note that unlike in theorem 1, we are
dealing with real valued function f(n) and hence the spectrum is always conjugate
symmetric and one has to consider only one half of the spectral components. Figure
8.2(a) shows the partially aliased spectrum of the LR sequence f(n) of length M. We
assume that F'(w) in 0 < w < L is free from aliasing and the remaining portion is
aliased. This corresponds to the assumption that the continuous signal f.(¢) is band
limited to the normalized frequency (1 — L/M), where 0 < L < M/2. Smaller the
value of L, larger is the amount of aliasing. Figure 8.2(b) shows the spectrum of the
HR sequence z(n) of length 2M to be estimated. The alias-free interpolation method
should recover the frequency components in the region L < w < M — L in Z(w) as

shown in Figure 8.2(b). From the figure, note that we have
Z(i) = 2F () for 0<i< L (8.6)
Z(i)=0 for M—L<i<M (8.7)
and using the property of aliasing (wrapping around of frequencies)
Z(i)+ Z(M — i) = 2F(i) for L <i< M/2 (8.8)
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Figure 8.2: Illustration of (a) partially aliased spectrum of the LR sequence f(n),
and (b) spectrum of the HR sequence z(n) to be estimated. Note that only half of

the spectrum is shown due to conjugate symmetry.
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Hence the alias-free reconstruction of the high resolution signal involves recovering the
spectrum Z(w) given Egs. (8.6-8.8). Clearly, this cannot be done without additional
constraints. Note that one needs the scale factor 2 to satisfy the energy relationship
(Parseval’s theorem). In order to recover z(n), we need to first state the following
theorem.

Theorem 2: Given a discrete-time partially aliased 1-D signal f € RM, and two
distinct spectral intervals 2, = {0 <w < L} and Q, = {L < w < M/2} and another
discrete-time signal z € R?*M satisfying Nyquist criterion with three distinct spectral
intervals Q,' = Q,, O/ ={L<w<M-L}and Q' ={M - L <w < M}, under
conditions very similar to those defined in theorem 1, z can be recovered exactly from

f as a solution to the /; minimization problem

2M—1
min > |z(n)] (8.9)
n=0
subject to the constraints
Zw) = 2F(w) Ywe Q,’ (8.10)
Z(w)+ Z(N —w) = 2F(w) Ywe Y, (8.11)
Zw) = 0 VweQ, (8.12)

One can follow arguments similar to those in [125] to prove the above theorem
except that the partitions are deterministic and hence it will lead to different values
of the parameters o and (.

It may be noted that the partitions {2, and €2, correspond to the alias-free and the
aliased components of the low resolution signal f, respectively. Since the partition
is known, it implicitly means that we know the extent of aliasing in the observation.
Furthermore, the above theorem assumes that the signal consists of a limited number
of Kronecker deltas. Extending the theorem to deal with piece-wise constant signal,

and also on the 2-D lattice, we realize that we should minimize the expression

min 32 32(Jz] + ) (8.13)

instead of equation (8.9) to recover the high resolution image z. It may be noted that
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if z is, indeed, piecewise constant then it cannot ideally be band limited, and hence
the partition €y will not be completely free from aliasing.

Now we look at the issue of the choice of the value of L for alias removal. It
is assumed in theorem 2 that L is known. This is tantamount to assuming that
the highest frequency component present in z is known apriori. However, one would
not know L in practical super-resolution applications. We suggest that one solves
the problem for different values of L and then compares the results. However, as
the value of L is lowered from M /2 towards 0, the cardinality of the set €2, reduces
and the reconstruction would be progressively more unreliable. It also leads to the
following observation that one cannot use an interpolation factor greater than 2 as
this would mean L = 0, implying a several fold aliasing when €, = {(} and hence

reconstruction would be very unreliable.

8.2.2 Computational Method

Theorem 2 provides a theoretical basis for obtaining the alias-free interpolated signal
z. We now provide the computational tool to solve this. We obtain the solution to the
above optimization problem using linear programming (LP). The objective function
for the LP problem is the total variation cost as given in Eq. (8.13). The equality
constraints are obtained using Eqgs. (8.10), (8.11) and (8.12). The equality constraints

corresponding to Eq. (8.10) can be written in the form
T,z =F, (8.14)

where T is the 2M x 2M DFT matrix with elements T'(m,n) = [e9™/M]™ and T,
represents the top L rows of 7. Thus Ty is an L x 2M matrix. Similarly F' is the
DFT of the observation 2f(n) and F, corresponds to the top L elements of F'. The

equality constraints corresponding to Eq. (8.11) can be written as

where T} is an (M/2— L+1) x 2M matrix whose each row is obtained by summing the

corresponding two rows of the DFT matrix 7, as per the indices shown in Eq. (8.8).
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F, corresponds to the spectral components (L + 1) to (M/2 — L) in F. Similarly

Eq. (8.12) can be written as a linear equality
T,z =0 (8.16)

where T consists of the (M — L+ 1) to M rows of the DFT matrix 7 and 0 is a null

vector. All the above three linear equations can now be compactly written as

T, _
F

T, |z=1] (8.17)
0

T,

which is of the form Cz = d. We also know that z(n) > 0 Vn as z(n) corresponds
to an image. Also note that the above equation is meant for the first half of the
spectrum. One would get an equivalent constraint for the other half based on the
conjugate symmetry. Hence Eqs. (8.9) and (8.17) constitute a standard LP problem.
We have explained the problem with respect a 1-D signal and it should be suitably
changed to handle 2-D images.

To solve the [; minimization using LP equation (8.13) should be written as

mZmZZ((zj +2,)+ (5 +2,)) (8.18)

where 2z} = max(z;,0) and z; = —min(z,,0), etc. Unfortunately, this increases the
dimensionality of the unknown variables by five folds, increasing the computation
significantly. Further the constraint equations involve complex numbers when the
relationships have to be split into real and imaginary parts separately, increasing the
computation further. We generate the appropriate constraint matrix and solve using
the linprog routine in Matlab. But, even for a 128 x 128 image, the computational
resources required are very large. Unfortunately, Matlab fails to allocate the necessary
memory even for a small sized image. A typical option in LP is to utilize the possible
sparseness properties of C' matrix in Eq. (8.17). Unfortunately again, C' does not
have any sparseness as the DF'T matrix 7" is not a sparse one. So we solve it as a
sequential 1-D problem taking first the rows and then the columns. Hence the results

obtained by this method for images in this chapter are all sub-optimal.

112



8.3 Experimental Results

In this section we present the results of alias-free interpolation obtained using the
proposed approach. All the LR images are of size 64 x 64. All the results shown in
this section are for interpolation factor of 2 for the reason described in section 8.2.1.
Since the amount of aliasing L is not known, we show results for various choices of L.

First we show the applicability of the proposed method on a simulated 1-D data.
Figure 8.3(a) shows a low resolution rectangular pulse train and the corresponding
spectrum is shown in Figure 8.3(b). The signal shown in Figure 8.3(a) is superimposed
with three high frequency components corresponding to the normalized frequencies
35/64,36/64 and 37/64 to obtain the signal shown in Figure 8.3(c). Clearly, these
three spectral components are aliased ones. Figure 8.3(d) shows the spectrum of the
aliased signal. One cannot find that the signal is aliased either from Figures 8.3(c) or
8.3(d). Figure 8.3(e) shows the interpolated signal using the proposed method and its
spectrum is shown in Figure 8.3(f). One can see that there are spectral components
at locations beyond the normalized frequency 32/128. These components match quite
well with the introduced high frequency components. We have used L = 26 in this
example. To further see the gain arising out of the proposed method, one can note that
the spectrum of the rectangular pulse train (without the additional high frequency
components) shown in Figure 8.3(b) compares very favorably with the spectrum of
the interpolated signal till the normalized frequency of 32/128. On comparing the
interpolated signal in Figure 8.3(e) with the low resolution signal in Figure 8.3(c),
one can clearly see that Figure 8.3(e) cannot be obtained by the linear or cubic
interpolation of the original signal. (see the highlighted spectral components in Figure
8.3(f)). This confirms the utility of the proposed method. Further, to illustrate the
capability of our method we compare the results of our alias free interpolation with
spline interpolation in Figure 8.4. Figure 8.4(a) shows a low resolution rectangular
pulse train and the corresponding spectrum is shown in Figure 8.4(b). The spline
interpolated result and the corresponding spectrum are shown in Figures 8.4(c) and

(d) respectively. The alias free interpolated signal and its spectrum are shown in
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(e) (f)

Figure 8.3: Demonstration of the proposed approach for a 1 — D signal: (a) alias-
free LR signal, (b) spectrum of (a), (c) aliased LR signal, (d) spectrum of (c), (e)
interpolated signal using the proposed approach and (f) spectrum of (e).
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Figures 8.4(e) and (f), respectively. As can be observed, the alias free interpolated

signal is almost free from overshoot and ripples as compared to the spline interpolated

one.

i
20

(e)

(f)

Figure 8.4: Demonstration of the proposed approach for another 1 — D signal: (a)

LR signal, (b) spectrum of (a), (c¢) spline interpolated signal, (d) spectrum of (c), (e)

interpolated signal using the proposed approach and (f) spectrum of (e).

Figure 8.5(a) shows a partially aliased low resolution Lena image of size 64 x 64.

Figure 8.5(b) shows the bicubic interpolated image for comparison to the proposed

method. Figures 8.5(c-e) show the alias-free interpolation results obtained using the

sub-optimal linear programming method. Figure 8.5(c) corresponds to the result
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Figure 8.5: (a) A low resolution Lena image, (b) bicubic interpolated image. Inter-
polated images using the proposed approach generating additional (c¢) 10%, (d) 20%
and (e) 30% high frequency components.

where 10% ( L = 29), additional high frequency components are generated. Here we
assume that the aliasing in the LR image is small, only 10% of the entire spectrum.
If we assume that the aliasing in the LR observation is about 20%, the corresponding
alias-free interpolated image is shown in Figure 8.5(d). This corresponds to the choice
of L = 26. Figure 8.5(e) shows the alias-free interpolated image where we attempt
to generate 30% additional high frequency components assuming that 30% of the
spectrum of the LR image is aliased. As can be observed from Figures 8.5(c-e), there
is a gradual reduction in the quality of the reconstructed image as the aliasing in the
LR image is assumed to have increased from 10% to 30%. This is due to the fact
that only a smaller subset of spectral components are known exactly. In comparison

to the bicubic interpolated image, the result using the proposed approach is much
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sharper. Observe the eyes, hair strands, etc. in Figure 8.5(d). Some of the regions

are highlighted in the figure. We have observed that the reconstruction becomes poor

when the aliasing present in the LR image is assumed to be more than 20 to 30%.
Now we perform the experiments on a severely aliased randomly textured image.

The purpose of this experiment is to demonstrate that one does not get any improve-

Figure 8.6: (a) A severely aliased low resolution texture image, (b) bicubic interpo-
lated image. Interpolated images using the proposed approach generating (c) 10%,
(d) 20% and (e) 30% high frequency components, (f) Interpolated image when the
LR image is fully aliased.

ment during interpolation if the signal is highly aliased. The LR observation is shown
Figure 8.6(a). The interpolated images using the proposed approach are shown in
Figures 8.6(c-e) assuming 10%, 20% and 30% aliasing, respectively, in the given LR
image. As the aliasing present in the LR image is very high, the proposed method

does not give a significant edge over bicubic interpolation as can be observed from
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Figures 8.6(c-e). Now we assume that the entire spectrum is aliased, ie,Q2; = {0} in
theorem 2(L = 1). Figure 8.6(f) shows the corresponding interpolated result. We
observe that the reconstruction is quite inferior as we do not have any of the spectral

components known exactly.

8.4 Conclusion

In this chapter we have presented a method for alias-free interpolation from a partially
aliased low resolution image. We have provided a theoretical basis on how an alias-free
upsampling can be achieved. In order to interpolate the given LR image we generate
the exact additional high frequency components assuming a knowledge of the nature
of aliasing in the spectrum of the LR observation and assuming a piecewise constant
intensity image. The alias-free interpolation is achieved by solving the [, optimization.
A sub-optimal computational procedure using linear programming is also presented.
Experiments performed on 1-D and 2-D signals confirm the utility of the proposed
method. But a disadvantage of our method is that we put a strong restriction on
the type of signals which can be faithfully interpolated using our approach. Also we
specifically need the alias-free region in the low resolution signal spectrum which is

practically impossible.
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Chapter 9

Conclusions and Future Research

Issues

9.1 Conclusions

We have addressed the problem of single image super-resolution in this thesis. Here
we try to obtain a super-resolved image offering better details from a single low res-
olution observation. Our method is different from the conventional super-resolution
techniques where one tries to recover the super-resolved image from several low reso-
lution observations of the same scene. Most of these techniques use several sub-pixel
shifted observations and extract the non redundant information among them to re-
construct the high resolution image. Also, our methods are different from standard
interpolation techniques where the interpolated images usually appear blurred be-
cause of smoothing of edges.

The novelty of most of the single image super-resolution techniques compared to
the conventional SR techniques as well as ordinary interpolation methods is in the
usage of training images to learn the missing high frequency contents while super-
resolving the low resolution input. The SR reconstruction methods proposed in this
thesis also make use of training images to extract the finer details during super-
resolution. The novelty of our methods lies in the way we pick up the best features

from the training set compared to other learning-based methods for single image
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super-resolution. In this section first we summarize the different methods proposed
in this thesis.

First we proposed an SR reconstruction technique using learned wavelet coeffi-
cients using a high resolution training set. Wavelet coefficients at finer scales for
the high resolution image are locally learned from the data set making use of edge
primitives in the low resolution representation. The learned wavelet coefficients are
used as a prior under a Bayesian formulation to solve for the unknown high resolution
image. In addition to this learned prior, we also use a smoothness prior to ensure
local correlation among neighboring pixels. Experiments were performed on both
gray scale and color images. The reconstructed images showed improvements over
conventional interpolation methods. The disadvantage of the method was that the
reconstruction process was very slow as we had to use a slow stochastic optimization
technique to obtain the solution, since the cost function was containing terms both
in spatial domain and in the transform domain. Another disadvantage of the method
is that the super-resolved image is still blocky especially when the edges lie along an
arbitrary contour.

As wavelets are not capable of learning the directional edges, in the next chapter
we proposed a contourlet transform-based resolution enhancement method. As con-
tourlets by itself are capable of capturing the geometric smoothness along contours by
performing directional decomposition at various scales, the direct inverse contourlet
transform could give the enhanced image. Thus the problem need not be solved un-
der a regularization frame work and as a consequence the reconstruction process is
very fast. Experiments performed on various class of images showed improvements
over different interpolation schemes as well as over a standard wavelet-based learning.
The effectiveness of this method depends on how good is the training set and how
effectively one sets the threshold in order to avoid spurious learning.

As taking the best match for a test patch from a database does not always provide
a better solution, and since the process of decimation may not be captured well
by the wavelet or contourlet decomposition, we further considered a locally linear

embedding method under a supervised learning frame work in the contourlet domain.
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Here we make use of a training set containing both low resolution images and their
corresponding high resolution versions. To extrapolate the contourlet coefficients at
the finer subbands, we make use of several nearest neighbors of the test patch as in
locally linear embedding. The resulting high resolution image is sharper than the
conventional bicubic interpolated image. But the disadvantage of the method is that,
if there is some spurious learning at certain locations, the resulting high resolution
image at the corresponding location will be much noisy as it is contributed by several
spuriously learned neighbors. To overcome this difficulty one has to carefully set the
threshold in order to avoid any spurious learning.

All the above discussed methods were based on learning the high frequency details
locally from the training set. As all these methods failed to handle the de-blurring and
de-noising issues in super-resolution, we proposed a global learning approach based
on PCA to enhance the low resolution observation. Here we described two different
methods, one based on generalized interpolation using a low resolution database and
the other using a high resolution database. Both the methods could very well handle
the blur and noise present in the data. An inherent disadvantage of this approach is
that the method is applicable only for a specific class of images like face and fingerprint
images as we learn the global features from the database. Hence method cannot be
classified under a general purpose super-resolution technique.

Having identified the advantages and disadvantages of both global and local learn-
ing approaches for super-resolution, we tried to combine them into a single hybrid
approach. We obtain the global prior from a PCA-based learning and the local prior is
derived from a contourlet based learning. Using these two priors we solved the prob-
lem under a Bayesian framework. As we use PCA for global learning, the method
again is applicable only for a specific class of images, and we apply it particularly for
face hallucination. Though the hallucinated image showed better improvement over
bicubic interpolation and the global learning using PCA, we couldn’t establish that
the hybrid approach achieves a better edge over the local approaches. This could
be due to the fact that as edges are more important in a super-resolved image, local

methods always play a good role in restoring them in a better way. A proper study
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is required in terms of whether the global prior or the local prior is more important
in a particular application, for the development of an efficient hybrid approach for
super-resolution. Also, the selection of appropriate priors is equally important to
reconstruct a good quality super-resolved image.

As the various local and global methods fail to handle the aliasing present in
the low resolution image, in the last chapter we presented a method for alias-free
interpolation from a partially aliased low resolution image. We have provided a theo-
retical basis to check whether the generated components are the exact high frequency
components required. In order to interpolate the given LR image we generate the
exact additional high frequency components assuming a knowledge of the nature of
aliasing in the spectrum of the LR observation and assuming a piecewise constant in-
tensity image. The alias-free interpolation is achieved by solving the [; optimization.
A sub-optimal computational procedure using linear programming is also presented.
Experiments performed on 1-D and 2-D signals confirm the utility of the proposed
method. But a disadvantage of this method is the restriction on the type of sig-
nals which can be faithfully interpolated applying the proposed approach. Also we
specifically need the alias-free region in the low resolution signal spectrum which is
practically impossible. Further more, this method cannot handle a blurred or noisy
observation. In spite of these disadvantages, the novelty of the method lies in provid-

ing an exact theoretical basis on how an alias-free upsampling can be achieved.

9.2 Future Research Issues

Even though, the multi-frame super-resolution problem is very well addressed in the
literature, it is to be mentioned that the single image super-resolution idea is still in
its infancy. The initial work on this field using training images is due to Freeman et
al. [66] in 2000. Recently, quite a few new papers have been published in this field,
particularly for face hallucination. Most of these techniques suffer from one or more
disadvantages in terms of visual quality, computational complexity, need for a huge

training database, etc., to name a few. Therefore, several of these issues are to be
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properly tackled in the near future. In this section, we discuss the future directions

in which the research could progress so as to produce good practical super-resolution.

e One of the major disadvantages with most of the currently available super-
resolution algorithms is the huge computational requirements. Super-resolution
in real time is, thus, the need of the hour. Even though, some efforts have
been made by researchers to develop computationally efficient SR algorithms
for the multi-frame case, there are several assumptions being made for the
image formation process and the structure of the scene in order to reduce the
computations, which actually limit the practical applications. The methods
proposed in this thesis using wavelet learning and the hybrid approach are
computationally too expensive for real time applications. One could think of
ways to speed up these algorithms. One possibility could be by converting the
cost function in to a single domain, i.e. either to the wavelet domain or to the
spatial domain, and also by replacing the discontinuity preserving smoothness

term by an appropriate differentiable term.

e For the wavelet and contourlet based methods, it is assumed that the low reso-
lution image is free from blurring. This enables us to restrict the search for the
best match of the edge element from the training images at the same scale. If
the input image blurred, then one may have to go down the resolution pyramid
of the training image to locate the best match. This appears to be a difficult
problem as the scale is unknown and it may not exactly match the given levels
of scales of the training image after the wavelet or contourlet decomposition. As
a result, our experiments to super-resolve blurred satellite images was a failure.
It will be interesting to extend the technique to deal with scale changes so as

to take care of blurred observations.

e Though the hybrid method discussed in chapter 7 appears to be a more gen-
eral approach, the use of PCA for global learning restricts the applicability
of the method only for a particular class of images. The modification of this

method using appropriate global and local learning approaches seem to be a
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promising area of research. This, in effect, should take care of all the issues of
super-resolution namely alias removal, de-blurring and de-noising, simultane-

ously giving rise to a better quality super-resolved image.

Although the alias-free interpolation method discussed in the last chapter does
address the issue of alias removal while upsampling the data, there are quite
a few issues that require a thorough investigation. The appropriate choice of
the extent of aliasing is one such issue. Similarly, the assumption of a piece-
wise constant image may not be suitable for practical applications. A more
appropriate model such as a locally quadratic intensity variation would be more
appropriate. This requires further investigations. Further more, this method
cannot handle a blurred or noisy observation. It will be interesting to design
an alias-free interpolation scheme with sufficient mathematical footing with a

more general observation model.

In all the SR methods proposed in literature, the quality of the super-resolved
image is measured either by means of visual inspection or using a PSNR check.
It can be easily shown that the PSNR measure is heavily biased towards the
lower part of the spectrum due to the fact that most of the energy is contained
in this region. Hence the PSNR may not be a good measure to evaluate the
performance of an SR scheme. Also, in practical super-resolution the original
high resolution image is unknown. So, it will be an interesting idea to develop

an appropriate measure to check the quality of super-resolved images.

Recently, there have been some papers where the authors mathematically de-
termine the limits on super-resolution, i.e. by what factor one can achieve
reliable super-resolution. These works are basically for reconstruction-based
super-resolution particularly for the multi-frame case. It will be interesting to
extend this work for learning-based super-resolution where one has to quantify
how much additional information is learned from the training images and also

the maximum amount of information one can learn.
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Summary

There is always a high demand for digital images with higher spatial resolution be-
cause they not only give the viewer a pleasing picture but also offer additional details
that are important for further processing in many applications like medical imaging,
remote sensing, robot vision, etc. The most direct solution to increase spatial reso-
lution is to reduce the pixel size (i.e., increase the number of pixels per unit area) by
sensor manufacturing techniques. As the pixel size decreases, however, the amount of
light available also decreases. It generates shot noise that degrades the quality of the
image captured. To reduce the pixel size without suffering the effects of shot noise,
therefore, there exists the limitation of the pixel size reduction, and the optimally
limited pixel size is estimated at about 40um? for a 0.35um CMOS process. The
current image sensor technology has almost reached this level. The high cost for high
precision optics and image sensors is also an important concern in many commercial
applications regarding high resolution (HR) imaging. Therefore, a new cost effective
approach toward increasing spatial resolution is required to overcome these limita-
tions of the sensors and optics manufacturing technology. A promising approach is
to use post acquisition signal processing techniques to enhance the resolution. These
techniques using one or more low resolution (LR) images to construct a high resolu-
tion image are called super-resolution (SR) techniques. Super-resolution techniques
handle the issues of alias removal, de-blurring and de-noising while interpolating the
low resolution inputs.

Simple resolution enhancement methods on smoothing and interpolation tech-
niques for noise reduction have been commonly used in image processing. Smoothing

is usually achieved by applying various spatial filters such as Gaussian, Wiener, and
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median filters. Commonly used interpolation methods such as linear and cubic spline
interpolation smooth the image data in discontinuous regions, producing a larger im-
age which appears rather blurred. Cubic spline interpolants also tend to overshoot
sharp discontinuities, producing a ringing effect at edges. These techniques are not
considered as super-resolution techniques as they do not generate the exact high
frequencies missing in the low resolution input.

A natural solution to super-resolution reconstruction is to make use of multiple
sub-pixel shifted low resolution observations of the same scene and extract the non
redundant information among them. This is termed as multi-frame super-resolution
in the literature. This technique involves exact registration between the different
frames followed by interpolation and finally restoration to remove blur and noise.
Most of the literature available on SR is based on multi-frame super-resolution using
the motion cue. There have also been some work on motion free super-resolution
where the authors use cues other than motion - like blur, defocus, zoom, etc. for
super-resolution reconstruction. These techniques also use several low resolution ob-
servations to produce the super-resolved image.

Recently, there have been some works on single frame image super-resolution
where only one low resolution observation is used to construct the super-resolved
image. These techniques are based on statistical and machine learning approaches
where the missing high frequency details in the low resolution image is learned from an
appropriate image database. Super-resolution methods under this category are also
known as learning based super-resolution techniques. In this thesis we propose some
new approaches for recovering a high resolution image from a single low resolution
observation making use of a training set containing several high resolution images.
In super-resolution one always aims at generating the missing high frequency compo-
nents. To this end, we also propose a method to quantify that the generated details
are really the high frequency details missing in the given low resolution observation.

As the effectiveness of the use of wavelets for image super-resolution has already
been established in the literature, first we propose a single frame image super reso-

lution method using a learned wavelet prior on the high resolution image. Wavelet
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coefficients at locations having edges in an image have significant value at finer res-
olutions. On the other hand, at homogeneous regions they are negligible at finer
resolutions. Hence we learn the wavelet coefficients at finer scales of the unknown
high resolution image locally from a set of high resolution training images using the
low resolution edge primitives in the input image. As the direct inverse wavelet
transform of the learned coefficients cannot produce a good quality super-resolved
image, the learned image in the wavelet domain is used a prior and we solve the
super-resolution problem under a regularization framework. We use an appropriate
smoothness prior with discontinuity preservation in addition to the wavelet based
constraint to estimate the super-resolved image. Thus we minimize a cost function
containing the data consistency term, the smoothness constraint and the learned prior
in the wavelet domain. The smoothness term ensures the spatial correlation among
the pixels whereas the learning term chooses the best edges from the training set.
Because this amounts to extrapolating the high frequency components, the proposed
method does not suffer from over smoothing effects. Experiments performed on both
gray scale and color images showed perceptual as well as quantifiable improvements
over conventional interpolation techniques even though the method is computation-
ally expensive.

One of the major difficulties with wavelet-based learning lies in the fact that the
wavelet decomposition kernel is separable. Although this provides computational ad-
vantages, we expect to catch only the horizontal and vertical edges properly. Hence
we do not have difficulties in learning horizontal and vertical edges, but we do have
some problem in learning edges oriented along arbitrary directions. This gave rise
to certain artifacts in the reconstructed image and in order to get a good quality
super-resolved image we were forced to solve the problem under a Bayesian frame-
work using an appropriate discontinuity preserving smoothness constraint in addition
to the learned wavelet prior. Thus we ensure spatial correlation among pixels us-
ing the smoothness constraint, as well as obtain the best matching edges from the
training set using wavelet learning. As the two priors are in two different domains, it

required a stochastic optimization technique to obtain the solution, which made the
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reconstruction process very slow.

A better way to handle the above situation is to use directionally selective wavelet
decomposition to learn the oriented edges where the reconstruction problem need
not be solved under a regularization framework, resulting in a much faster solution.
This motivated us to use the contourlet transform which is capable of catching the
smoothness along contour naturally. The contourlet transform is an extension of the
Cartesian wavelet transform in two dimensions using multi-scale and directional filter
banks. They offer a much richer set of directions and shapes, and thus, they are
more effective in capturing smooth contours and geometric structure in the image.
The contourlet coefficients at finer scales of the unknown high resolution image are
learned locally from a set of high resolution training images, the inverse contourlet
transform of which recovers the super-resolved image. In effect, we learn the high
resolution representation of an oriented edge primitive from the training data. Our
experiments show that the proposed approach outperforms standard interpolation
techniques as well as a standard wavelet-based learning both visually and in terms
of the PSNR values, especially for images with arbitrarily oriented edges. Also the
method is very fast compared to the wavelet based regularized approach.

We further extend the contourlet-based learning method using a linear combina-
tion of edge primitives inspired by the concept of locally linear embedding (LLE), a
recent manifold learning method, under a supervised learning framework. Here the
generation of a high resolution patch does not depend on only one of the nearest
neighbors in the training set. Instead, it depends simultaneously on multiple nearest
neighbors in a way similar to LLE for manifold learning. Here we make use of the
low resolution and the corresponding high resolution training image pairs to learn the
oriented edges to estimate the high resolution embedding. The advantage of this lies
in capturing the effect of the decimation process explicitly by the contourlet trans-
form through the matched pair of LR and HR training data. In the previous methods
it has been implicitly assumed that the multiresolution decomposition using either
wavelet or contourlet has the same effect as that of the decimation process, which is

often not true. For a given LR test image patch (in contourlet domain) we find k
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nearest neighbors from the LR training set by performing an extensive search. Now
the test patch is reconstructed from a linear combination of the k£ neighbors where the
reconstruction weights are computed so as to minimize the reconstruction error. The
linear combination of the corresponding £ HR patches using the same reconstruction
weights generate the required super-resolved patch in the contourlet domain. The
process is repeated for all patches in the test image. A major disadvantage of the
method is that, if there is some spurious learning at certain locations, the resulting
high resolution image at the corresponding location will be much noisy as it is con-
tributed by several spuriously learned neighbors. To overcome this difficulty one has
to carefully set the threshold thereby avoiding any spurious learning.

All the above methods are based on learning the features locally and are good
at enhancing the edges during super-resolution, but are poor in handling noisy data.
Further, they are unable to undo the effect of aliasing. But in certain applications one
need to super-resolve an image which is severely blurred and noisy. For example, in
investigative criminology one has available face and fingerprint databases which are
often taken at controlled environment. The question we ask is that if one encounters
a poor quality input image, can it be enhanced using the knowledge of the properties
of the database images 7 To solve this problem we propose a global learning approach
using principal component analysis (PCA) unlike the above methods where the learn-
ing was local. In this global approach, we learn the statistics of a good quality image
database and use them to enhance the given LR input. As the learning is global it
imposes the constraint that all the training images should be globally similar, i.e.
they should represent a similar class of objects.

Here we propose two approaches to enhance the low resolution input. In the first
method we use the idea of generalized interpolation. A few significant eigenimages of
a database of several similar low resolution images are computed and the given low
resolution image is projected onto the eigenimages to compute the projection coefhi-
cients. The high resolution image is reconstructed using these coefficients and the HR
eigenimages obtained by performing generalized interpolation on the LR eigenimages.

In the second approach, we use a high resolution database and compute the principal
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eigenimages. The only difference here is that the upsampling process is shifted to
the input side rather than performing generalized interpolation of the eigenimages.
These methods are applicable to images of a particular class, for example, face and
fingerprint images. The algorithm offers a significant advantage when the input image
is blurred and noisy. Needless to say, if the input image is badly blurred, the asso-
ciated eigen expansion may be very different from that of the ideal image, when the
reconstruction will be quite poor. Direct interpolation of the input image does not
solve any of the above two problems of blurring and noise perturbation, justifying
the claim that the PCA-based restoration does help. However, this global upsam-
pling method does not provide an alias-free reconstruction. Further, the method has
limited applicability-mostly in enhancing face or fingerprint images.

We realize that the global high resolution reconstruction using generalized in-
terpolation fails to do exact super-resolution, though it removes the blur and noise
present in the input low resolution image. But it very well learns the global char-
acteristics from the image database. On the other hand, the local learning methods
using wavelets or contourlets obtain the missing high frequency details by locally
learning the best edges from the image database. To extract the advantages of both
these methods, we now propose a hybrid approach for super-resolution by integrat-
ing the global learning using PCA and the local learning approach using wavelets
or contourlets. The former extracts the best statistical features from a database of
similar class of images while the latter ensures the best edges from the database. We
solve the problem under a Bayesian framework incorporating the global and local
priors, in addition to the data consistency term. We apply the method particularly
for face hallucination where we synthesize the missing high frequency details of the
input low resolution face image. Ideally, a good hybrid approach should handle the
blur and noise present in the input while performing interpolation. But our method
could not properly handle blurred and noisy observations. The improvement achieved
over bicubic interpolation was very substantive either. In addition, we were unable
to prove that the hybrid methods achieve a better edge over the local methods. This

could be due to the fact that as edges are more important in a super-resolved image,
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local methods always play a good role in restoring them in a better way. A proper
study is required in terms of whether the global prior or the local prior is more impor-
tant in a particular application, for the development of an efficient hybrid approach
for super-resolution. Also, the selection of appropriate priors is equally important to
reconstruct a good quality super-resolved image.

The final contribution of the thesis is in developing an alias-free interpolation
scheme. All the local and global methods discussed so far are able to provide a
super-resolved image, but they are unable to handle the aliasing effects. Even in
the local approaches, though the edges are handled properly, the aliasing present in
the LR image is not reduced much during the upsampling process. Here we study
the possibility of removing aliasing in a scene by designing an alias-free upsampling
scheme. Our work is motivated by the work of Candes et al. where the authors address
the problem of exact signal reconstruction from incomplete frequency information.
We build on the theorem developed by them to derive a method for exact removal
of aliasing while interpolating an image. Quite naturally this is impossible unless
additional information about the HR data is available. Hence we assume that the
HR data is piece-wise constant. We generate the unknown high frequency components
of the given partially aliased (low resolution) image by minimizing the total variation
of the interpolant subject to the constraint that part of unaliased spectral components
in the low resolution observation are known precisely and under the assumption of
sparsity in the data. This provides a mathematical basis for exact reproduction
of high frequency components with probability approaching one, from their aliased
observation.

In all the SR methods proposed in literature, the quality of the super-resolved
image is measured either by means of visual inspection or using a PSNR check. It
can be easily shown that the PSNR measure is heavily biased towards the lower part of
the spectrum due to the fact that most of the energy is contained in this region. Hence
the PSNR may not be a good measure to evaluate the performance of an SR scheme.
Even though, several different measures to evaluate the quality of visually pleasing

images are proposed in the literature, the issue that the reconstructed components
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are really the missing high frequency components has not really been investigated so
far. Our focus in this work is a study in this direction. We study the issue of alias-
free interpolation at a more fundamental level and restrict ourselves again to using
a single observation without using any training database unlike the other methods.
A sub-optimal computational procedure using linear programming is also presented.
Experiments performed on 1-D and 2-D signals confirm the utility of the proposed
method. But a disadvantage of our method is that it is best suited only for piecewise
constant objects. Also we specifically need the alias-free region in the low resolution
signal spectrum which is impossible in practice.

We provide a detailed description of all proposed techniques in the dissertation.
We have also experimented on a number of images and shown the effectiveness of the

proposed techniques.
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