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Abstract

An intrinsic property of real aperture imaging has been that the observations tend
to be defocused. This artifact has been used in an innovative manner by researchers
for depth estimation, since the amount of defocus varies with varying depth in the
scene. There have been various methods to model the defocus blur. We model the
defocus process using the model of diffusion of heat. The diffusion process has been
traditionally used in low level vision problems like smoothing, segmentation and
edge detection. In this paper a novel application of the diffusion principle is made
for generating the defocus space of the scene. The defocus space is the set of all
possible observations for a given scene that can be captured using a physical lens
system. Using the notion of defocus space we estimate the depth in the scene and also
generate the corresponding fully focused equivalent pin-hole image. The algorithm
described here also brings out the equivalence of the two modalities, viz. depth from
focus and depth from defocus for structure recovery.

1 Introduction

Structure recovery from images has been one of the important goals in com-
puter vision. Many techniques have evolved to that effect which make use of
cues like stereo, shading and defocus. Here we are concerned with the use of
the defocus cue. When an image is in focus, knowledge of the camera param-
eters can be used to estimate the depth of the object point. When the image
is defocused, the structure can be recovered through an estimation of the de-
focus blur. There have been various ways in which the problem of structure
recovery have been solved using the defocus cue. Here we consider using the
process of diffusion for modeling the blurring process.
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The idea of diffusion has been one of the important methodologies in the
field of computer vision. It stems largely from the idea of modeling the im-
age (observation) generation process using the heat equation. The pioneering
work was done by Witkin in [1] where he proposed a scale space for images
based on smoothing of images using a Gaussian kernel. Koenderink in [2]
proved that this was equivalent to solving the heat equation. This approach
has subsequently been widely used in low level vision tasks like smoothing,
segmentation and edge detection.

In this paper we discuss how the linear diffusion principle can be used for depth
estimation based on defocus as the cue. In depth estimation using defocus as
the cue, the basic principle is to use the characteristics of the imaging system.
There have been two methodologies in the literature, one is to obtain depth
from focus [3] and the other to obtain depth from defocus [4].

In the procedure for obtaining depth information from focus, a sequence of
images of a scene is obtained by continuously varying the distance between the
lens and the image detector [5]. The corresponding fully focused observation is
locally estimated from the sequence of images. A measure of image sharpness
is used to decide whether the point is in focus or not. From the fully focused
image point the distance of the corresponding object point is calculated using
the standard lens equation 1/f = 1/u + 1/v where f is the focal length, u is
the distance of the object from the principal plane and v is the distance of
the focused image from the lens plane. For a good ranging accuracy, one is
required to sample the observation space densely by changing v slowly.

When a point light source is in focus, all light rays that are radiated by the
object point and intercepted by the lens converge at a point on the image
plane. When the point light source is not in focus, its image on the image
plane is not a point, but a circular patch resulting in a blur as can be seen
from fig (1). In depth from defocus, given two images of a scene recorded with
different camera settings, one obtains an estimate of the blur at each point
[4]. Subsequently, by using the estimate of the blur, one can recover the depth
information in the scene with the knowledge of the lens parameters.

In this paper we show that, given two observations obtained by two sets of
lens parameters as is commonly employed in depth from defocus technique; we
can generate the entire set of images in the defocus space of the input images
using the diffusion equation. The defocus space of a particular scene refers
to the continuous space of all possible observations obtainable by varying the
lens parameters in between those two lens settings. This concept is further
elucidated in section 3.3. In this method, the defocus blur is never explicitly
calculated as it is done in depth from defocus techniques. Instead, by using
diffusion, for each pixel we can obtain the corresponding fully focused observa-
tion in the defocus space. Then using that observation and the corresponding
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Fig. 1. Illustration of image formation in a convex lens.

virtual lens parameters we can recover the depth information from the lens
equation. As a by-product, we also obtain the fully focused pin-hole image
from these two defocused observations. The diffusion process simulates the
depth from focus technique by generating images in the defocus space of the
observation. Many separate observations as required for the depth from focus
technique are no longer required. In fact, using the diffusion technique, the
two modalities of estimation of depth can be considered to be equivalent. This
is discussed further in section 3.4.

In the next section we give a brief overview of the related work done. In section
3 we outline the theoretical basis for the formation of the defocus image space
of an observation based on the diffusion process. In section 4 we present the
basic algorithm for depth estimation using diffusion. In section 5 we analyze
the procedure and consider the practical issues involved in the implementation
of this method. In section 6 we present the experimental results obtained. We
conclude the paper in section 7.

2 Related Work

2.1 Depth From Focus (DFF)

There are a number of papers in the literature which address the problem of
obtaining depth information from focus. This includes work by Nayar and Nak-
agawa [6], and work by Subbarao and Choi [5]. The basic method followed has
been to obtain different focus levels by adjusting the camera parameters, i.e.
either the lens to image plane distance v, the focal length f or the aperture
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radius r. The methods involve obtaining many observations for the various
camera parameters and estimating the focus measure using various criterion
functions. Krotkov [3] has experimentally evaluated several such criteria in-
cluding the Laplacian and Teningrad operators. In [7] the authors discuss a
method in which the blur is evaluated from the intensity change along corre-
sponding pixels in the multi-focus images instead of using window-based blur
estimation operators. The fundamental weakness of the DFF method is, how-
ever, the time required for image acquisition. In practice about ten or even
more images are required to estimate the depth of a scene for a reasonable
level of accuracy.

2.2 Depth From Defocus (DFD)

The basic problem addressed in the depth from defocus methodology is the
measurement of the relative defocus between observations. Broadly speaking,
the approaches have been based on active and passive techniques. The active
techniques ([8], [9], [10], [11]) use structured lighting as a cue in obtaining the
depth estimate. They do give good results, but they can be used in controlled
environments only and are not generally applicable. We are concerned here
mainly with the passive techniques. The research in depth from defocus was
initially done in the passive domain itself and was introduced by Pentland [12].
He identified the problem of DFD as an estimation of linear space variant blur.
The defocus parameter was recovered using the deconvolution in the frequency
domain. However, the method depended on the availability of a perfectly fo-
cused image of the scene as one of the observations. Subbarao [13] proposed a
more general method in which he removed the constraint of one image being
formed with the pinhole aperture. There have been other approaches as well
in the frequency domain ([14], [15], [16], [17]). The main issue in frequency
domain based methods have been the trade off involved in frequency and spa-
tial resolution. In [17], for instance a large number of narrow band filters are
used and the depth is estimated in a least square sense. In [18], the authors
suggest the use of broadband rational filters. There has also been a substantial
amount of work done to estimate depth from defocus where the image analysis
is done in the spatial domain itself ([19], [20], [21], [22], [23], [24], [25]). In [19],
the authors propose a S-Transform which does deconvolution in the spatial
domain itself. In [20], the authors propose a technique based on image decom-
position using the Hermite polynomial basis. The difference in blur is then
computed by resolving a system of equations. In [21], the authors propose a
matrix-based method using regularization. Along similar lines the authors in
[23] propose the use of functional singular value decomposition to compute the
point spread function. In [22], the authors pose the problem as one of recon-
structing the shape and the radiance that minimizes a measure of information
divergence between blurred images. Recently, in [25] Favaro et al., have used
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the idea of diffusion for estimating depth from defocus which is very similar
to our work. However they approach the problem in the traditional manner
of casting it into a variational framework. We have introduced a more general
idea of generating the entire defocus space of a scene. All these approaches
have been deterministic. There has been extensive work done in the statisti-
cal framework as well ([4], [26], [27], [28]). There the authors provide various
methods for solving this problem by modeling the depth and the image as
separate Markov random fields (MRF). Most of the methods in depth from
defocus literature assumed that the observations do not suffer from occlusion.
However it was brought out in [29] that occlusion can occur in depth from
defocus techniques as well. Occlusion effects have also been studied in [30].
The handling of occlusion effects in depth computation was addressed in [28]
and [31].

2.3 Heat Equation and Diffusion

In this paper we use the technique of diffusion for synthesizing new virtual
observations in the defocus space. The idea of diffusion can be traced to that
of scale space filtering by Witkin [1]. Koenderink [2] showed that this is equiv-
alent to solving the heat equation. This scale space approach was extended
by Perona and Malik in their landmark paper [32] where they proposed a
nonlinear scale space model, aimed at preserving important features such as
edges. The model changes its behavior based on the conduction coefficient as-
sociated in a region of an image and achieves forward diffusion in the interior
region and at the boundaries it acts in the opposite direction. In general the
inverse diffusion approach can be thought of as reversing the heat equation in
time. This reverse heat equation is however ill-posed and there has been a sub-
stantial amount of work done for stabilizing the reverse heat equation. Rudin,
Osher and Fatemi in [33] introduced the “shock filter” where they proposed
a pseudo-inverse, where the inverse diffusion propagation term is tuned by
the sign of the Laplacian. There has been a lot of research done along similar
lines where various nonlinear inverse diffusion models have been proposed. In
linear scale space theory, recently an interesting work has been done by Lin-
deberg [34], where he provides a theoretical analysis of the linear scale space
theory and also observes that Gaussian and higher orders of the Gaussian
kernel are the only admissible kernels based on the admissibility conditions
for linear scale space.
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3 Defocus as a Diffusion Process

3.1 Diffusion Process

Consider the classical equation for the isotropic diffusion of heat given by the
following partial differential equation:

∂I(x, y; t)

∂t
= a

(

∂2I(x, y; t)

∂x2
+
∂2I(x, y; t)

∂y2

)

(1)

Here the constant a is the thermometric conductivity or diffusivity [35]. The
equation above describes how heat diffuses over a surface, given an initial
temperature distribution with time. It is assumed here that the diffusion of
heat is uniform in all directions. Consider that I(x, t = 0) is an image. The
solution of the heat equation can be obtained in terms of convolution of the
image with a temporally evolving Gaussian kernel [36]. This is known as the
source solution for the heat equation [35] and is given by σ2 = 2at where σ
denotes the spread of the Gaussian kernel and is used through out in this
paper. As the image is progressively convolved with a Gaussian kernel, it
gets increasingly more blurred thereby representing the image information at
a different scale. Note that as t → ∞ this corresponds to a fully diffused
image. This is the basic idea underlying scale space analysis. Also note that
the process is not defined for t < 0, a fact that will be utilized later to define
the extended defocus space.

3.2 Basic Model of Defocus

Consider the image formation process in a real aperture camera employing a
thin lens [4]. When a point light source is in focus, all light rays that are
radiated from the object point and intercepted by the lens converge at a point
on the image plane. When the point is not in focus, its image on the image
plane is no longer a point but a circular patch of radius that defines the amount
of defocus associated with the depth of the point in the scene. It can be shown
that [4]

σ = κrs
(

1

F
−
1

s
−
1

u

)

(2)

where r is the radius of the aperture, s is the lens-to-image plane distance,
F is the focal length of the lens, u is the depth at that point and κ is a
camera constant that depends on the sampling resolution on the image plane.
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Let I(x, y) be the pin-hole image of the scene. From the eqn.(2) we note that
C = (r, F, s) defines the camera parameters each of which may be changed to
effect a different amount of defocus blur for a fixed depth.

The depth related defocus process is linear but not space invariant. Assum-
ing a diffraction-limited lens system and a constant depth in the scene (this
assumption will be relaxed at a later stage), the point spread function of the
camera system at a point (x, y) may be approximately modeled as a circularly
symmetric 2-D Gaussian function [4]:

h(x, y) =
1

2πσ2
exp

(

−
x2 + y2

2σ2

)

(3)

where the blur parameter σ is obtained from eqn.(2). Assuming the depth to
be constant everywhere, the observed defocused image E(x, y) is given by

E(x, y) = I(x, y) ∗ h(x, y). (4)

This equation can be directly related to the solution of the diffusion equation
in terms of the Gaussian kernel as discussed in section 3.1. The real aperture
imaging can thus be thought of as providing a real world example of scale
space theory. The eqn(4) can be represented by taking its Fourier transform.
Denoting the Fourier transform of a function f(x, y) by f̂(ωx, ωy) we obtain

Ê(ωx, ωy) = Î(ωx, ωy)ĥ(ωx, ωy) = Î(ωx, ωy)exp(−
σ2(ω2

x + ω2
y)

2
)

3.3 Defocus Space

For a given scene, one can have two defocused observations E1 and E2 cor-
responding to two different camera parameter settings C1 and C2, such that
the resulting blur parameters are σ1 and σ2, assuming σ1 > σ2 without loss of
generality. For the two observations E1 and E2, a defocus space can be defined.
Definition 1: Defocus space

The defocus space is defined to be the set of all possible observations E
for a given scene generated by varying the blur σ as a combination of the
associated blur parameter σ1 and σ2 in the two observations E1 and E2

respectively, by the following relation

σ2 = ασ2
1 + (1− α)σ2

2 (5)

for all values of 0 ≤ α ≤ 1.
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This is equivalent to generating I(x, y, t) for t1 ≤ t ≤ t2 given the states
I(x, y, t1) and I(x, y, t2) at two specified time instants t1 and t2 in the heat
diffusion eqn(1). Substituting eqn(5) in eqn(5) we obtain:

Ê(ωx, ωy)= Î(ωx, ωy)exp
[

−
1

2
(ασ2

1 + (1− α)σ2
2)(ω

2
x + ω2

y)
]

=

{

Î(ωx, ωy)exp

[

−
σ2

1(ω
2
x + ω2

y)

2

]}α {

Î(ωx, ωy)exp

[

−
σ2

2(ω
2
x + ω2

y)

2

]}1−α

or

Ê(ωx, ωy) = Êα
1 (ωx, ωy)Ê

(1−α)
2 (ωx, ωy). (6)

The relation given in eqn(6) is equivalent to the notion of scale space as formed
by the diffusion equation. This can be noticed as eqn(6) can be thought of as
convolving the image I(x, y) with a time varying Gaussian kernel. This is be-
cause convolving a Gaussian function with another Gaussian function always
results in a Gaussian function. The eqn(6) effectively reduces to convolving
the original image I(x, y) with a Gaussian kernel which varies with time (in
this case α) according to the relation given in eqn(5).

The defocus blur σ could be present physically due to any of the following cam-
era parameters : aperture, the lens to image plane distance, the focal length
or even a combination of these, as shown in eqn(2). A monotonic variation
in any of the lens parameters can generally result in a non-monotonic varia-
tion in the blur (for instance as v is changed from an initial value, σ reduces,
becomes zero and then subsequently increases), signifying both sides of the
defocus cone (see Fig.2 for illustration). The diffusion based defocus space
generation process however generates the blur in a monotonic manner, i.e we
are restricted to one side of the defocus cone. By continuously varying the
parameter α, we can generate any virtual observation for defocus setting lying
between the lines AB and CD in Fig.2 using the eqn(6). The defocus space
thus consists of all possible observations of the defocus blur σ2

1 ≤ σ2 ≤ σ2
2.

Corresponding to the notion of continuous defocus space as introduced in
the previous section, a practical counterpart of this defocus space would be
a sampled defocus space. This corresponds to generating the defocus space
for discrete values of α between 0 and 1. In Fig.2, the lines corresponding to
A1B1,A2B2, ...AnBn may represent one such possible set of sampled defocus
space. The sampled defocus space generated for an image is similar to the
physically obtained focused image space described in [5].
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3.4 Equivalence of DFF and DFD

So far we have considered a restricted range of α between [0, 1]. Now we relax
this condition and something interesting happens. If the values of α beyond
the range [0, 1] are considered then the defocus space generated is the extended
defocus space.
Definition 2: Extended defocus space

The extended defocus space is defined to be the set of all possible observations
E for a given scene generated by varying the blur σ as a combination of the
associated blur parameter σ1 and σ2 in the two observations E1 and E2

respectively, by the following relation

σ2 = ασ2
1 + (1− α)σ2

2 (7)

for all values of β ≤ α ≤ ∞.

Here the value of β is the value of α such that σ2 = 0 in eqn(7), resulting in
a fully focused observation. This can be obtained from the diffusion equation
since corresponding to the image I(x, y, t) with t → ∞ we can obtain an
observation E(x, y) with α → ∞. This represents the fully diffused image.
Similarly for each point there exists a value α = β < 0 corresponding to t = 0.
This corresponds to a fully focused observation, i.e. σ2 = 0. Thus the extended
defocus space is defined for the range α ∈ [β,∞). In the range α = [β, 0] the
process, instead of being a diffusion becomes an inverse diffusion. Beyond this
range, the defocus space is undefined since one cannot have the blur σ2 < 0.
This is illustrated in Fig.2.

Depth from defocus(DFD) methodology estimates the space variant blur whereas
depth from focus (DFF) methodology estimates the focused image point. It
is possible to use the techniques in DFD methodology to estimate the space
variant blur using just two observations, whereas DFF requires many samples
to estimate the fully focused point. Here as we have shown, it is possible to
generate the extended defocus space for the image using just two observa-
tions. Thus both the techniques can be considered fundamentally equivalent,
rendering the need for multiple samples to be redundant. The diffusion based
process thus provides an equivalent means for estimating the depth from the
known lens parameters using either depth from defocus or depth from focus.

4 Algorithm for Depth Estimation

The derivation of eqn(6) is based on the assumption of constant depth. When
there is depth variation in the scene, eqn(6) is no longer valid as the blurring
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Fig. 2. Illustration of the concept of defocus space for a particular scene

process becomes shift variant, implying a non-homogeneous diffusion process.
This corresponds to the following diffusion equation

∂I(x, y; t)

∂t
= a(x, y)(

∂2I(x, y; t)

∂x2
+
∂2I(x, y; t)

∂y2
) (8)

Here a is no longer a constant but is now a function a(x, y) and this is handled
by forming a small MxM window about a point over which the depth can
be assumed to be constant as is done commonly in all literature. Using this
modification the defocus space for a scene can be created locally even in the
depth varying case. The depth estimation is done by obtaining the fully focused
point for each image. The process of creating the defocus space is a monotonic
process. As α varies, the characteristics of the process changes from diffusion
to inverse diffusion and the deblurring of the defocused observations takes
place. In obtaining the fully focused image the value of α is not restricted to
lie between 0 and 1, rather we go for values of α < 0. The characteristic of the
convolution changes from a low pass filter to a high pass filter for α < β. The
defocus process has to be stopped when the fully focused point is reached.
This stopping point is estimated empirically from the virtually synthesized
observations using a band pass filter, similar to the way it is done in DFF
methods [3]

The various steps of the algorithm for depth estimation are as follows:

STEP 1: Divide the observed images E1 and E2 into overlapping MxM win-
dowed representations.
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STEP 2: Obtain the FFT of the corresponding windows in E1 and E2.
STEP 3: Synthesize a sample of the defocus space corresponding to a particu-
lar value of α ∈ [β, 0) for each window using eqn(6). Note that β is unknown
as the value of β would give us the depth.

STEP 4: Estimate the amount of focus using a sharpness criterion function
which is essentially a band pass filter and decide whether a fully focused
point is reached. Else change the value of α and go to STEP 3.

STEP 5: Using the corresponding values of the virtual lens parameters, cal-
culate the value of depth at the point. Save the pixel value as the restored
one.

This algorithm is sequentially executed for all pixels in the image till the
corresponding pin-hole observation of the scene is obtained and a dense depth
map is generated.

5 Computational Difficulties

The algorithm uses the windowed Fourier transform. In some cases, especially,
where the gray level variance in the window is very low, signifying a texture-
less scene, there might be a problem as the spectral components are nearly
zero. When the value of α goes beyond the 0 to 1 range, potentially a division
by zero can occur in eqn(6). This can be avoided by marking such windows out
of computation. Mathematically it signifies that the depth cannot be estimated
for homogeneous regions.

Another factor which adversely affects the accuracy is its sensitivity to quan-
tization error. Generally, an 8 bit quantization of the scene results in a very
noisy virtual observations. This is because the defocus space generating pro-
cess acts as a high pass filter when we take α < β, which greatly enhances the
quantization error. Further the inverse diffusion process is inherently unstable
and the quantization error aggravates the instability. Practical implementation
suggests the use of a 16-bit representation of the intensity function.

Generation of virtual observations using eqn(6) locally may demand quite a
bit of computation. This is more so due to the fact that a finer sampling of the
extended defocus space would lead to a better accuracy in the depth estimate.
To obtain better estimates of the fully focused points efficiently, a hierarchical
virtual sampling technique is used wherein, using the algorithm defined earlier
a value of α is quickly estimated using coarser discrete steps in the range [β, 0].
Then a further dense sampling is performed in a small neighborhood ε around
the best current estimate of α, i.e. α ∈ [α̂− ε, α̂ + ε] and the estimate of α is
refined in a hierarchical manner.
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6 Results

The algorithm has been tested with real as well as simulated data. In the case
of real data, there is a substantial amount of noise in the recovered structure.
This is mainly because the real world data is in eight bit form and the re-
sultant quantization error is quite significant. However, the overall structure
recovered still resembles the true structure in the scene. In a similar way, the
corresponding deblurred observation, in general, does not resemble the actual
pin-hole image, but the result is definitely better focused and less blurred than
the observations given as input to the algorithm. The results obtained with
synthetic data can be observed to be of better quality due to the use of 16 bit
representation.

In Fig.3, two images of a ball are taken with varying lens-to-image plane
distances. In the experimental setup the base was at a distance of 117 cm.
from the camera. The point on the ball nearest to the camera was at 121.8
cm. while the points lying on the occluding boundary of the ball were at a
distance of 132.3 cm. from the camera. The change in the lens-to-image plane
distance introduces a small amount of change in magnification. This was taken
into account and corrected. Fig.3.c shows the recovered dense depth map with
the darker shading corresponding to a nearer distance. The darkest points
(gray level 0) refer to the homogeneous regions for which the depth cannot be
estimated as explained in section 5. Fig.3.d shows the corresponding deblurred
image obtained.

The second experimental setup was the “blocks world” where three blocks
were arranged at different depths (see Fig. 4(a,b)), the nearest one at a dis-
tance of 73 cm., another at 82.7 cm. and the farthest block at 96.6 cm. Again
images were taken with varying lens-to-image plane distances to obtain differ-
ent amount of defocus in different observations. Fig.4.c shows the dense depth
map estimated in this case and Fig.4.d shows the deblurred image obtained.

The Fig.5 shows a test data where a textured image is synthetically blurred
with a continuously varying Gaussian kernel. The variance of the Gaussian
kernel was increased in a ramp like manner from left to right. The second ob-
servation was simulated using different values of the blur kernel. Fig.5.c shows
the corresponding dense depth map and Fig.5.d shows the deblurred image.
The left to right variation in depth is clearly visible. Similarly the restored
image is much sharper, although it contains dark spots where depth could
not be estimated due to reasons mentioned in section 5. Although we could
have copied the intensities at these pixels from one of the observations as they
correspond to fairly homogeneous regions, we refrain from doing it so that
the effect can be highlighted. Fig.6 shows another synthetically generated test
data where a textured image is blurred with a continuously varying Gaussian
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(a) (b) (c) (d)

Fig. 3. Ball Image: (a,b) Two observations with the right one being less blurred,
(c,d) recovered structure and the deblurred image, respectively.

(a) (b) (c) (d)

Fig. 4. Two observations of the Block World. (a) The furthest block is in focus,
(b) the nearest block is in focus, (c,d) recovered structure and the deblurred image,
respectively.

kernel. However, here the variance of the blur was increased in a radially out-
ward manner. Fig.6.c shows the corresponding dense depth map and Fig.6.d
shows the corresponding deblurred image. Once again the depth variation is
quite clear from the plot.

The results appear to be noisy as the linear diffusion process suffers from
instability in the extended defocus space as the process corresponds to in-
verse diffusion. One does require a suitable regularizing functional to make
the problem better posed. This method, however, presents a theoretical ba-
sis for understanding depth from focus/defocus in the light of the diffusion
equation and is thus important in its own merit.

7 Conclusion

For a given scene in the real world, we have defined a defocus space which is
a virtual space of all observations based on the properties of a real aperture
imaging system. A method for generating the defocus space based on the
diffusion equation has been presented. We have also presented an algorithm
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(a) (b) (c) (d)

Fig. 5. (a,b) Two synthetically generated blurred observations. Here the blur in-
creases progressively from left to right. (c) Recovered structure, and (d) the de-
blurred image.

(a) (b) (c) (d)

Fig. 6. (a,b) Two simulated observations. Here the blur increases radially outward.
(c,d) Recovered structure and the deblurred image, respectively.

for recovering the scene structure based on the defocus space. An interesting
outcome of this work is that it brings out the equivalence of the depth from
focus and depth from defocus modalities for depth estimation. This algorithm
has been tested with real as well as synthetic images. A possible extension of
the current algorithm is to incorporate a facet based modeling of the depth
of the scene while calculating the diffusion coefficient for improved accuracy.
It is also possible to consider multiple exposures of the scene as is commonly
done in the DFF process and this is expected to improve the results. We are
also exploring the suitability of regularizing the diffusion process in order to
obtain a smooth depth map.
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