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Abstract

An intrinsic property of real aperture based imaging is the blurring of an observation due to

defocus. There are two major aspects related to the defocus blur present in the image. The first

aspect is based on use of the defocus blur for estimating the depth in the scene. The other aspect

relates to restoration of the image. This problem manifestsitself as a challenging blind, space

varying deconvolution problem. In this thesis we explore diffusion based methods for depth

estimation and image restoration from defocused observations.

We are given two observations of a scene that are taken with different camera parameters

and are defocused to different extents. We use the idea of defocus morphing in the spectral

domain to define a defocus space of observations from the two observations given. The de-

focus morphing technique is obtained from the use of linear diffusion equation. Based on the

defocus space we estimate depth in the scene and the pin-holeobservation. The framework pro-

posed demonstrates the equivalence between depth from defocus and depth from focus based

techniques. Since the depth in the scene is varying, one has to use a local spectral morphing

procedure using a windowed (short-term) Fourier transform. The windowing procedure intro-

duces artifacts in the defocus morphing procedure. We therefore consider the defocus blur by

evolving the heat equation in the spatial domain.

The defocus blur can be estimated by evolving the diffusion equation in the spatial domain.

This implies that the defocus blur kernel is Gaussian. However, on account of self occlusion

and aperture artifacts there are deformations of the Gaussian point spread function. We there-

fore propose a stochastically perturbed diffusion model that implicitly handles the departure

from the Gaussian assumption. We use stochastic level sets for propagating the stochastically

perturbed diffusion and thereby estimating depth in the scene. An additional advantage of using

this technique is that a global minimization procedure is adopted instead of a convex gradient

descent technique. Thus problems of local minima are avoided in this technique.

The models of linear diffusion and stochastically perturbed diffusion, however, do not
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incorporate spatial regularization effectively. We address this issue and use a pairwise Markov

random field (MRF) representation for estimating the diffusion coefficient in the scene. We

use a graph-cuts based method for obtaining the maximum a posteriori (MAP) solution of the

MRF. By using the neighborhood information we obtain a regularized solution which is more

accurate.

We then consider the problem of restoration of blurred images. Towards this end we

propose the use of a non-parametric method based on reverse mean shift. The reverse mean

shift procedure is divergent. We therefore use a stopping criterion based on cluster separation.

Due to the non-parametric nature of the formulation the reverse mean shift procedure can be

used for blind, space-varying deblurring. However, this cannot be used to handle deblurring in

the presence of noise. We therefore propose a generalized mean shift method which combines

the forward and reverse mean shift procedure. The switchingbetween the forward and the

reverse mean shift procedures is done based on correlation criterion defined on the residual and

original observation. As a result, where there exist strongedges that are blurred, reverse mean

shift procedure operates and in areas that are textureless the forward mean shift is active and so

we are able to achieve both denoising and deblurring. However due to the opposite nature of

deblurring and denoising procedures, the result obtained is somewhat constrained.

Consider an image which is blurred using a Gaussian kernel. In this case, the non-

parametric method due to its non-linear nature would not obtain the exact deblurred image.

It would obtain only an approximate solution for the deblurring. The formation of defocused

image can be better modeled using the heat equation. Therefore a better solution for deblur-

ring an image is obtained by using the reverse heat equation.Since the reverse heat equation

is an unstable procedure we propose a technique for geometrically stabilizing the reverse heat

equation. Though the non-parametric technique for deblurring performs better restoration, the

stabilized reverse heat equation demonstrates how even in the linear case one can obtain accept-

able deblurring performance.

We then consider the problem of depth estimation from a single defocused image. While,

it is possible to estimate depth using two defocused images,the estimation of depth from a

single defocused image is considered to be impossible. We show that it is still possible to

perceive the depth in the image using only a single defocusedobservation. Since defocus can

be modeled using the heat equation we use the reverse heat equation to formulate a technique for

depth estimation from a single defocused image. The data constraint is derived by considering
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the reverse heat diffusion coefficient along the edges and the problem is solved in the MAP-

MRF framework using graph cuts. The results obtained demonstrate that it is indeed possible

to obtain depth from a single defocused observation. This isan important contribution since it

underlines the fact that defocus as a cue is indeed a strong cue.
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Chapter 1

Introduction

The use of computer vision is increasingly pervading everyday life with applications in enter-

tainment, security systems, industrial automation, medical imaging, biometrics and information

extraction. The increasing use of digital cameras in everyday life poses fresh challenges and

interesting aspects that need to be addressed. There are a few fundamental problems that are

always relevant in the field and form the basis for the development of various applications.

They are problems like structure recovery from images, image enhancement, object recogni-

tion, classification and tracking, rendering of novel images. In this thesis we address the first

two problems, that of structure recovery from images and image enhancement.

1.1 Depth Estimation

Given a scene, humans have a tremendous ability for discerning the geometric relationship

among objects in the scene. While exact distance maps may be difficult to perceive, it is defi-

nitely possible for a person to be able to estimate the relative nature of geometry of objects in

the scene in terms of ordering of the objects. In doing so humans make use of various cues, both

geometric and photometric. Based on these cues there has been a substantial amount of work

done on building systems for estimating depth. The geometric cues used are based on princi-

ples of stereo vision and motion. The photometric cues are those based on shading, texture and

focus/defocus. The basic principle underlying the use of cues for shape estimation from images

is that the depth in the scene is encoded implicitly based on those cues and by using these cues

it is possible to analyze the images and obtain the depth.

In depth estimation by geometric cues it is the geometric relationship among various ob-
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jects in the scene that encode the depth. In stereo based vision two images of a scene are taken

from two different viewpoints (i.e. cameras placed at two separate locations). There is a relative

disparity between the locations of the objects in the images. This disparity is related to the depth

in the scene. Hence, there is larger disparity for objects closer to the camera and less disparity

in the locations of the objects in the images that are far awayfrom the camera. Based on this

principle it is possible to obtain the depth in the scene. It is based on this two-view principle that

humans predominantly perceive depth. Structure from motion follows a similar principle where

a moving object is captured and the relative movement offersan estimate of depth in the scene.

While geometry offers a strong cue, it is possible to obtain depth by considering photometric

cues as well.

In depth estimation by photometric cues one uses the depth based variations in shading,

texture and focus. In shape from shading, given an image of a scene with a known light source

and given a reflectance model one uses the variation of shading to estimate the shape in the

scene. In shape from texture, instead of assuming that the reflectance of the scene is known or

constant, one assumes that the deformation of individual texture elements in the scene is due to

projective deformation caused by the variation in orientation and shape in the scene and this is

used to recover the depth in the scene. These photometric cues due to the assumptions are fairly

limiting in nature. An additional cue that is available is interms of the defocus generated by the

lens. This photometric cue is more widely usable as it is affected by the camera parameters and

does not impose limiting assumptions on the scene. Hence, inthis thesis we explore the use of

this cue in depth estimation.

The fundamental principles of optics affect much of what we see or capture using a cam-

era. The human or physical lens deflects the light rays and theobservation is captured on the

imaging plane or retina. The observation captured is determined by the geometric properties of

the lens. The objects that are around the focal plane are captured sharply and those not in focus

are defocused in the observation. Hence by estimating the amount of defocus blur it is possible

to estimate the depth in the scene. This is an innovative use of the limited depth of field of the

camera. While, conventional depth estimation methods require multiple cameras or necessitate

human motion, depth from focus/defocus methods require only a single camera but with multi-

ple camera parameter settings. This is particularly applicable in scenarios like occular medical

imaging and industrial automation in constrained environments. An interesting application is

for depth estimation of intensely textured objects like hair and artifacts where stereo matching
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would lead to multiple spurious matches. There are also scenarios where the baseline available

for stereo is very narrow and in such scenarios changing the lens parameters are more feasible.

In the area of depth from focus/defocus there have been two main approaches. The first

approach is depth from focus where many images are obtained by changing the lens parameters

and in which each part of the scene imaged is in focus in at least one of the observations. Then

based on the lens to image plane distance and the thin lens equation the depth in the scene

is estimated. Another approach is depth from defocus where the defocus blur in the scene is

estimated between two (or more) observations and the relative change in defocus blur is used to

estimate the depth in the scene.

1.2 Image Enhancement

While we have seen that the presence of blur can be used as an advantage in terms of obtaining

the depth map, it is often an unwanted artifact in usual imaging scenarios. Due to real apertures

present in physical imaging systems, if an object is not in the focal plane then the resultant

observation is blurred. This blur would be space invariant if the objects are at the same depth

and space variant (which is the more usual case) if the objects are at different depths. The

deblurring of images is an ill-posed problem. This is because the process of blurring is filtering

an image by low-pass filtering. Hence in order to undo the effects of the filtering one has to

use inverse filtering which is an unstable process resultingin noise boosting and high frequency

distortions. In the general case there would also be noise present in a blurred image. Hence

the general problem of image restoration would be to deblur and denoise a given image. The

problem is formulated as

Y (x, y) =

∫ ∫

U(t, τ)h(x, y; t, τ)dtdτ +N(x, y). (1.1)

HereY (x, y) is the observation,U(x, y) is the original undegraded image,h(x, y; t, τ) is the

space varying blurring kernel andN(x, y) is the noise. The noiseN(x, y) is often assumed to

be additive white Gaussian noise.

While eqn.(1.1) is the general formulation of the restoration problem there are several

specific cases that are explored in the literature. The first case is the case where the point

spread functionh(x, y) is known. In this case the problem is one of deconvolution. A more

challenging case is where the point spread function is not known. This problem is termed as
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blind deconvolution. In most cases the kernel is assumed to be shift invariant. The problem

of blind space varying deconvolution is a very difficult problem where one has to restore the

image without knowing the kernel. The problem of deblurringis usually solved in the absence

of noise. The presence of noise makes the deblurring processharder because the process of de-

blurring increases the high frequency information and the process of denoising reduces the high

frequency information. Hence the joint deblurring and denoising problem is a very challenging

problem. We discuss further in chapter 2 the approaches usedin the literature for addressing the

problem and we propose new techniques in the thesis for solving the general problem of image

restoration. We now discuss the actual model of image formation and defocus generation.

1.3 A Real Aperture Imaging Model

Consider the image formation process in a real aperture camera employing a thin lens [19].

When a point light source is in focus, all light rays that are radiated from the object point and

intercepted by the lens converge at a point on the image plane. This is illustrated in Fig. 1.1.

When the point is not in focus, its image on the image plane is no longer a point but a circular

patch of radiusσ that defines the amount of defocus associated with the depth of the point in

the scene. It can be shown that [19]

σ = ρrv(
1

F
− 1

v
− 1

Z
) (1.2)

wherer is the radius of the aperture,v is the lens-to-image plane distance,F is the focal

length of the lens,Z is the depth at that point andρ is a camera constant that depends on the

sampling resolution on the image plane. From the eqn.(1.2) we note thatC = (r, F, v) defines

the camera parameters each of which may be changed to effect adifferent amount of defocus

blur for a fixed depth.

1.4 Diffusion based modeling of defocus blur

The process of blurring an image can be obtained as a convolution with a point spread function.

The point spread function used to model defocus blur is the Gaussian kernel. This model of

defocus blur enables us to model the defocus blurring process in terms of the heat equation.

Koenderink [62] had shown that the Gaussian convolution model that is used in the context of
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Figure 1.1: Illustration of image formation in a convex lens.

scale space is equivalent to diffusing an image using the heat equation given by

∂u(x, y, t)

∂t
= c△u(x, y, t) (1.3)

whereu(x, y, t) represents the intensity of an imageI(x, y) and△u is the Laplacian op-

erator. This procedure can be modeled by the heat equation. Here, the amount of blurring of an

image is given by the coefficient of diffusionc. Since, in general the depth in the scene varies,

the diffusion would also correspond to diffusion in an inhomogeneous medium with the differ-

ing diffusion coefficient corresponding to the various depths in the scene, i.e. instead of a space

invariant diffusion coefficientc we have a space varying diffusion coefficientc(x, y). In this

thesis, we propose various methods for estimating the diffusion coefficient in order to estimate

the depth in the scene. Given two images of a scene, there are two approaches for estimating

the depth in the scene. In the first approach we diffuse an image from the more focused image

to the defocused image (it is possible to distinguish these using simple techniques). In doing

so, the diffusion coefficient can be estimated. The second approach uses reverse diffusion to go

from a focused image to its pin-hole equivalent observation. This is a difficult technique due

to the unstable nature of the reverse diffusion procedure. In our thesis we pursue both these

techniques for estimating the inhomogeneous diffusion coefficient by successfully solving the

various challenges posed in using both these techniques. The details pertaining to each of these

are discussed in later chapters.

The problem of space varying blurring of an image is also considered from the restoration

perspective. The space varying nature of blur is quite challenging especially when the model

of the blurring procedure is not known. Using the diffusion formulation we propose inverse
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diffusion procedures which reverse the blurring procedures and use specific stopping criterion

in order to obtain the appropriate deblurred observations.While this procedure suffices for de-

blurring an image in the absence of noise, it fails when the blurred observation is also corrupted

with noise. We consider these cases by using mixed diffusion. In textureless regions which

contain mainly noise, we use forward diffusion and in regions which have strong edges which

are blurred we use reverse diffusion. This approach enablesus to solve the challenging problem

of blind space varying deconvolution, including the case ofdeconvolution in the presence of

noise.

1.5 Contributions of the thesis

In this thesis we address two related but specific and challenging problems, the first being depth

estimation from defocused images and the second being blindspace varying deconvolution. We

formulate a principled approach towards addressing both these problems using an underlying

framework based on the heat equation, i.e. diffusion formulation. While, there have been spe-

cific instances of works which have used a similar formulation, there has been no sustained

effort at addressing the problems in their entirety as has been done here. In this thesis, we

have explored spectral as well as spatial formulations of defocus modeled using the diffusion

equation. The deterministic and stochastic approaches have both been used for evolution of the

heat equation. We have studied both forward and reverse diffusion procedures and have also

considered the issue of stopping criterion which is important in the reverse diffusion procedure.

Since, in real images there are several regions that are textureless, we require effective regu-

larization to solve the problem. This has been considered byusing a MAP-MRF framework.

While there have been several methods which use multiple images for depth estimation from

defocused image, there has been no method for depth estimation from a single defocused image.

Here we show that depth can be perceived even from a single defocused image. Summarizing,

the various contributions of the thesis are as follows:

• We have used the linear diffusion principle for depth estimation from two (or more) de-

focused images. The use of linear diffusion was done by generating a defocus space of

images using the defocus morphing principle. The process ofmorphing is done locally

using the windowed Fourier transform. In the spectral domain the defocus morphing

technique explains how an in between observation can be synthesized from two other ob-

6



servations using interpolation in the frequency domain of the signals where the spectral

coefficients are raised to the interpolating factor (in a manner similar to root filtering). We

also show that an extended defocus space can be generated where one can extrapolate the

defocus blur beyond the range of defocus blur in the two observations. The extrapolation

is bounded on one end by the pin-hole observation. The other end eventually converges to

the average signal value. We use a band-pass filter to detect the occurrence of the pin-hole

observation. We use the detection of the synthesized pin-hole observation as a means for

estimating the depth in the image. As a by-product we also obtain the pin-hole equiv-

alent observation. The method illustrates the equivalenceof the depth from focus and

depth from defocus methodologies. The drawback of this approach is windowing effect,

ill-posed nature of extrapolation especially in textureless regions and limited accuracy.

• The drawbacks of the spectral approach can be addressed by considering the diffusion

equation in the spatial domain itself. This was shown by Favaro et al. [32] in their

work on depth estimation using diffusion. There were however two drawbacks that were

not addressed. The first was that there are specific cases of self occlusion and aperture

aberrations which result in departure from the Gaussian assumption of the point spread

function. The second point is that in their method Favaroet al. have used gradient de-

scent scheme which allows only convex minimization of the function. However, since in

general the structure of the scene is not convex, it is possible that the local minimization

approach provides convex approximate results. These points are addressed by formulat-

ing a stochastically perturbed diffusion scheme. The stochastic perturbation implicitly

handles the departure from the Gaussian assumption. The stochastically perturbed diffu-

sion is evolved using a stochastic level set technique whichensures that the non-convex

nature is handled appropriately. This method is shown to be quite useful especially in

handling depth estimation of complex objects like hair and fur. However, this method

estimates the depth at each pixel independently without incorporating the neighborhood

information. As a result, in textureless areas the depth estimated is ambiguous.

• In order to solve the problem of non-unique depth estimates in textureless scenes, it is

required to incorporate spatial regularization. Towards this end, we use a Markov ran-

dom field (MRF) framework for representing the diffusion coefficient. Here, the Markov

random field network is connected pairwise to form a grid thattakes into account the spa-
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tial neighborhood relationship. The solution of pairwise MRF is done using graph cuts

framework. Theα expansion algorithm is used for estimating the variance of the point

spread function which corresponds to estimating the diffusion coefficient and thereby the

depth in the scene. This representation also allows a symmetric procedure for estimating

the diffusion coefficient, i.e. it is not required to preprocess images to classify the focused

and defocused regions in an image. In this framework it is possible to use robust regu-

larization functions, including truncated functions of the Huber kind and total variation

regularization. The resulting depth estimates are more accurate.

• The methods considered so far used the diffusion equation inthe forward direction. An

interesting aspect is to consider the reverse diffusion equation. While, the forward diffu-

sion blurs an image the reverse diffusion would ideally deblur an image. However, due to

the ill posed nature of the diffusion equation it is not possible to directly use the reverse

diffusion. We therefore consider an approximation using the gradient based cluster sepa-

ration. The forward counterpart is commonly known as the mean shift technique and has

been demonstrated for denoising an image. We propose the reverse mean shift technique

for deblurring an image. Since reverse mean shift is divergent we suggest an appropriate

stopping criterion based on cluster separation factor to terminate the divergent procedure

in order to provide the deblurred solution. While this technique can be used to achieve

blind space varying deconvolution in the absence of noise, it cannot be used in the pres-

ence of noise. This is because due to the opposing nature of deblurring and denoising, the

deblurring procedure accentuates the noise in the observation. To address this we sug-

gest the use of mixed diffusion. The switching between forward and reverse mean shift

techniques is done locally using an optimal criterion. The criterion correlates the residual

with the image to decide whether forward or reverse mean shift technique is to be used

and it achieves the desired result of denoising and deblurring of the image.

• While the generalized mean shift technique approximates the deblurring of an image, it

is not exactly equivalent to the reverse heat equation. We next consider the problem of

stabilizing the reverse heat equation itself. Instead of using non-linear schemes to approx-

imate the linear reverse heat equation, we show here that it is possible to geometrically

stabilize the reverse heat equation, thereby solving the problem in the linear case itself.

The heat equation comprises of a tangential term and a normalterm. The normal term of

8



the heat equation contributes more to the blur in an image than the tangential term. This

factor suggests that the differential evolution of the normal and tangential term might

be beneficial. We therefore damp the evolution of the normal term. As a result at the

pin-hole equivalent observation point the tangential termdegenerates whereas the normal

term would not have degenerated. We therefore use the degeneration of the tangential

term as a stopping criterion for halting the reverse heat equation and obtain the deblurred

result.

• The success in the use of reverse heat equation for deblurring of an image allows us to

consider the extremely challenging problem of depth estimation from a single defocused

observation. There have been other techniques that have considered the depth estimation

from defocus for multiple images, but depth estimation froma single defocused image

was so far not thought to be possible. Indeed, depth estimation from a single image itself

has mostly eluded vision researchers except for a very few efforts which either use learn-

ing or specific information like epipolar points (which require some human intervention).

We show that using the diffusion coefficient obtained using the reverse heat equation as

a data likelihood it is possible to perceive the relative depth in the scene. The diffusion

coefficient is valid mostly near the edges and it is not valid in textureless regions. Hence

we frame the problem in an MRF framework with the data likelihood weighed with the

edge information. This framework is solved efficiently using graph cuts and as a result

the relative depth in the scene is obtained. This clearly establishes that defocus is a strong

cue.

1.6 Organization of the thesis

In the next chapter we consider the related work done till date in detail. We especially review

the literature related to depth estimation from defocus/focus and image deblurring problems.

The challenges that these problems present are evident fromthe various techniques that have

been proposed towards solving these problems. In chapter 3 we describe the use of linear dif-

fusion principle for simultaneously estimating the depth and obtaining the pin-hole equivalent

image using the defocus morphing principle. In chapter 4 we present the use of stochastically

perturbed diffusion for depth estimation from two (or more)defocused images. In chapter 5

we discuss the recovery of regularized depth from multiple defocused images using graph cuts.
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While in chapter 3 we used a reverse diffusion technique to estimate the depth, in chapters 4

and 5 we use only the forward diffusion technique. We again consider the reverse diffusion

principle, but now consider its application for deblurringan image in chapter 6. This chapter

also discusses solution of the general problem of deblurring and denoising of an image. The

technique used in this chapter is a non-parametric one basedon the mean shift procedure. In

chapter 7 we propose a geometrically stabilized reverse heat equation for image restoration. In

chapter 8 we culminate with the significant result of the thesis where we present a technique for

depth estimation from a single defocused image using the reverse heat equation in a MAP-MRF

framework. We finally conclude in chapter 9 where we also consider the possibilities for future

work.
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Chapter 2

Literature Review

In this chapter the literature related to depth estimation is first reviewed and then the related

work done in image enhancement is considered. The literature reviewed here gives an overview

of the various methods used towards solving these problems.We discuss specific methods very

closely related to the contributions of the thesis in the corresponding chapters.

2.1 Depth estimation

The primary consideration in depth estimation from images has been mostly on the stereo cue

and the related cue of structure from motion. These cues are geometric in nature and there has

been substantial work done as evident from the works by Maet al.[74], Hartley and Zisserman

[49], Faugeras [29] and Pollefeyset al. [92, 93, 73]. While geometric cues have been exten-

sively researched by the vision community, there are photometric cues that are also relevant for

depth estimation. These cues include shading and defocus. While stereoscopic cues rely on

two (or more) cameras, the photometric cues can be used to infer depth using a single camera

but with different parameter settings. These cues explain the basis on which people who have

defect in a single eye are still able to perceive depth. Hencethey are relevant biologically and

also practically as there are cases where only a single camera can be used or where the baseline

distances are large that makes the stereoscopic depth perception erroneous. In this thesis we

consider the cue of defocus blur for estimating shape in the scene. The methods for shape from

texture are discussed by Forsyth and Ponce [38] and recent work has been done by Forsyth [37].

Shape from shading techniques are discussed by Horn [55] andby Forsyth and Ponce [38]. Re-

cent work in shape from shading has been done by Prados and Faugeras [94]. We now consider
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the defocus blur based literature in detail.

2.1.1 Depth From Defocus (DFD)

The basic problem addressed in the depth from defocus methodology is the measurement of the

relative defocus between observations. Broadly speaking,the approaches have been based on

active and passive techniques.

Active Techniques

The active method for depth from defocus was suggested by Girod and Scherock [43]. This

was further refined by Pentlandet al. [89]. In active depth from defocus, a known pattern

of light is projected onto the scene. The optical path of the projected pattern is maintained

same as that of the observing camera using an optical beam splitter. The structured light source

projects a pattern on the scene while the camera records it. Since the original projected light

source is known, the defocus blur introduced by the depth in the scene can be measured against

the original pattern and the blur introduced due to defocus and thereby depth in the scene is

measured. This basic technique for active depth from defocus was refined by Noguchi and

Nayar [85] for microscopic shape from defocus and Nayaret al. [83] and they proposed a real-

time focus range sensor. In these works the illumination pattern to be used for depth estimation

is analyzed in detail. They performed careful Fourier analysis of the various aspects of the

defocus, illumination pattern and the focus operator used for measuring the focus, and thereby

optimized the illumination pattern. Further, based on the illumination optimization and the need

for dense depth estimation, the focus operator is tuned to enhance the depth estimation. These

refinements were used to develop a robust real time focus range sensor [83]. In [1] the authors

consider the integration of stereo disparity, focus and vergence cue to build an active vision

system for surface reconstruction. The performance analysis of such a system was carried

out in [25] by the authors. There has been very recent work done by Moreno-Nogueret al.

[76] where the earlier work done on active depth from defocusis revisited. Here they use

this method to demonstrate active refocusing of images and videos. In this work a dot-pattern

is used instead of a stripe pattern so that the dot-pattern projected can be easily removed while

refocusing the image. The authors also use segmentation techniques for obtaining a dense depth

map. A similar work has been done by Zhang and Nayar [132]. Here they use the projector for
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projecting a shifting light pattern and a set of images of thescene is taken. The depth of a pixel

is computed by analyzing the temporal variation of the brightness of the pixel due to defocus.

While these works demonstrate the efficacy of active depth from defocus, the main drawback

with the methodology of active illumination based methods is that they require elaborate set-

ups and can be done only in carefully controlled environments with calibrated illumination

conditions. These requirements preclude the use of these techniques in outdoor environments

and natural conditions.

Passive Techniques

There has been considerable research done on the passive method of depth from defocus. In the

passive method, two or more observations of a scene are takenwith different camera parameters.

Based on the difference in defocus blur between the two observations, the depth in the scene is

estimated. This method for estimating depth from defocus was introduced by Pentland [88]. He

suggested the use of a half mirror for splitting the observation and then passing the observation

through two lenses with varying apertures. Then for each image one could use a patch based

Fourier transform and based on the ratio of the windowed Fourier transforms one could obtain

the relative defocus. If one of the images is focused then onecould obtain the depth estimate

from the relative blur. An additional insight that was presented in this work is that one could

use step edges and obtain a crude estimate of the blur function at certain sharp edges. He further

explored the use of defocus cue by humans for estimating depth in terms of human perception

related experiments justifying the use of defocus cue as a depth cue similar to motion or stere-

opsis. Around the same time Grossman [46] presented a methodfor depth estimation based on

defocus along similar lines. The edge detection was done using Marr-Hildreth edge operator

and the blur was measured using a simple metric based on the width of the edge. The method

was tested using simple structured objects with well-defined edges. These methods were sub-

sequently extended by Subbarao. In [120] Subbarao and Gurumoorthy considered the method

of blur estimation from blurred edges in a manner similar to that done earlier by Pentland [88]

and Grossman [46]. They proposed a closed form solution for estimating the blur parameters

and extended the earlier assumption of the point spread function (PSF) from being Gaussian to

the more general case of being rotationally symmetric. In [118], Subbarao considered the usual

case of depth estimation from defocus by changing the cameraparameters. The contributions

were in making the earlier method by Pentland [88] more robust and in allowing changing of
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more than one camera parameters simultaneously. The methods based on estimation of blur

from step edges were too restrictive and could not be widely used. The approach for depth from

defocus based on using two or more images from different camera parameters was further ex-

plored. In the earlier cases, ratio of windowed Fourier transforms were taken for estimating the

depth in the scene. This approach was refined by Gokstorp [44]. In the work a local frequency

representation was adopted wherein local estimates of instantaneous frequency, amplitude and

phase were computed. For obtaining the representation a setof complex-valued Gabor filters

are used where a large set of such filters are used each tuned toa different frequency. The final

estimate of blur is computed by averaging the result from thevarious filters. A similar method

was also proposed by Xiong and Shafer [130]. They proposed moment filters to address the

problem of tuning the individual frequency components. Theproperty of moment filters in that

it is a polynomial approximation with the order of the polynomial being tuned for obtaining a

large number of narrow band filters. Due to the recursivenessin frequency and spatial domain

moment filters can be implemented efficiently. While the methods based on narrow band filters

are attractive, typically it is computationally intensiveand to a large extent the accuracy is a

function of averaging over a large number of such filters. A different approach was adopted by

Watanabe and Nayar [124]. Here the authors suggest the use ofbroadband rational filters. The

technique uses a normalized ratio of near and far images, that are then convolved with a small

number of broadband rational filters that are invariant to the texture. The method provided im-

pressive results. However, a shortcoming of the method is its dependence on the assumption,

that, the normalized ratio of the near and far focused imagesis linear in nature. This assumption

is valid only when the amount of defocus between the near and far images is very small and

will not work for a general class of defocused images.

We now consider methods based on the spatial domain. In [27],the authors suggest a

method for estimating depth from defocus using a matrix based approach. They propose the

estimation of the transfer function from the near image to the far image using a regulariza-

tion based approach which is regularized by a circulant matrix that detects the smoothness of

a function and a diagonal matrix that penalizes the transferfunction for having nonzero tails.

This equation is solved iteratively. They show that their method performs better than previously

proposed inverse filtering solutions. An approach for depthfrom defocus using spatial decon-

volution was proposed by Subbarao and Surya [121]. This is achieved by using an operation

termed S-Transform. The method assumes a cubic polynomial form of an image and based on
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this model derive a formula wherein convolution and deconvolution can be expressed in terms

of a simple Laplacian operator modulated by the second moment of the PSF. The resultant depth

maps obtained were however not very accurate. A related workby Zious and Deschenes [133]

proposes a technique based on image decomposition using theHermite polynomial basis. The

resultant computation suggests the explicit use of higher-order polynomial fitting. The blur is

computed from from image derivatives with the base case being similar to the S-Transform

proposed by Subbarao and Surya [121].

There has been substantial work done by Rajagopalan and Chaudhuri towards solving the

problem of depth from defocus [19]. They first explored a block shift variant circulant blur

model for estimating the relative blur between two defocused images in the Fourier domain

[98],[99]. The contribution here explicitly considered the contribution from neighboring blocks.

The authors then considered a space-frequency representation using complex spectrogram and

Wigner-Ville distribution [99]. They used these representations to estimate the relative blur. The

authors then incorporated a smoothness constraint that incorporates the blur information in the

neighborhood and solves the problem using calculus of variation [100]. The authors then used

a maximum likelihood (ML) estimator for recovering the depth from two defocused images of

a scene [95]. They also analyzed the effect of the degree of relative blurring on the accuracy

of the estimate of depth and they calculated the optimal camera setting for recovering depth

using the Cramer-Rao bound. They then improved their ML estimator by proposing a method

for recursive computation of the likelihood function [96].They then modeled the relative blur

parameter as a Markov random field (MRF) to represent the local dependencies of the depth

[97]. Further on they showed how one could recover the depth as well as estimate the restored

image by modeling both as separate Markov random fields and estimating the parameters using

simulated annealing [102].

Lately the problem of depth from defocus has been actively explored by Favaro and Soatto

[35]. We now consider the specific approaches used by Favaro and Soatto in solving the prob-

lem of depth from defocus. In [34] the authors consider two specific cases, one where the form

of the PSF is known and the other when the form of the PSF is unknown. When the form of

the PSF is known the authors use a least squares solution in solving the projection between

finite and infinite dimensional Hilbert spaces and is achieved by estimating a set of orthogonal

operators. They use functional singular value decomposition for estimating the operators. The

values are truncated beyond a certain singular value and this results in regularization being in-
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corporated into the solution. If the form of the PSF is not known then they first learn the set of

projection operators from blurred images. They then use thelearnt set of projection operators

to estimate the shape in the least square sense as done previously. In [31], the authors analyze

the role of radiance, defocus and observability in a rigorous manner. In the previous approach

[34], the least squares solution does not enforce the condition that the image is positive. In [31]

the authors ensure that all the quantities are non-negative. They pose the problem of estimat-

ing depth from defocus as one of reconstructing the shape andthe radiance that minimizes a

measure of information divergence between blurred images instead of least squares. For solv-

ing this they use an iterative scheme that reduces the cost function with convergence to local

minimum based on Euler-Lagrange equation. Recently, in [32] Favaroet al., have used the idea

of diffusion for estimating depth from defocus which is verysimilar to our work. However,

there are a few shortcomings in the basic approach describedby them as it does not address the

problem of self occlusion appropriately. Further they adopt a convex gradient descent approach

and the resultant depth estimate obtained is only a local minima approximation of the true scene

depth. Very recently in [72], the authors consider the issueof calibration for estimation of depth

from defocus and in [30], they explore the problem by taking into account issues related to

convexity and using Bregman distances the authors provide means for estimating depth from

defocus. Lately there has been a work by Hasinoff and Kutulakos [51] where they use a layer

based restoration framework and are able to incorporate high dynamic range (HDR), focus and

noise in a single framework and use alternating minimization to estimate each of these while

holding the rest constant. These are addressed by us in the thesis. Besides this we are able to

greatly extend the work by achieving depth estimation from asingle defocused image. These

points are expounded further in the thesis.

Most of the methods in depth from defocus literature assumedthat the observations do not

suffer from occlusion. However it was brought out in [112] that occlusion can occur in depth

from defocus techniques as well. Occlusion effects have also been studied in [81]. The handling

of occlusion effects in depth computation was addressed in [8] and [33].

2.1.2 Depth From Focus (DFF)

There are a number of papers in the literature which address the problem of obtaining depth in-

formation from focus. This includes work by Nayar and Nakagawa [82], and work by Subbarao

and Choi [119]. The basic method followed has been to obtain different focus levels by adjust-
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ing the camera parameters, i.e. either the lens to image plane distancev, the focal lengthf or

the aperture radiusr (cf. 1.1). The methods involve obtaining many observationsfor the various

camera parameters and estimating the focus measure using various criterion functions. Krotkov

[66] has experimentally evaluated several such criteria including the Laplacian and Teningrad

operators. In [80] the authors discuss a method in which the blur is evaluated from the intensity

change along corresponding pixels in the multi-focus images instead of using window-based

blur estimation operators. Recently Hasinoff and Kutulakos [50] have shown that for very high

resolution images the depth from focus can be seen to be reduced to color comparison with

regions of an aperture-focus image representation for eachpixel. The fundamental weakness

of the DFF method is, however, the time required for image acquisition. In practice about ten

or even more images are required to estimate the depth of a scene for a reasonable level of

accuracy.

2.2 Image Restoration

The problems central to the task of image restoration are image denoising and image deblurring.

In the thesis we address the problem of image deblurring bothwith and without noise. In the

general sense, where the blur function is not known, the problem of image deblurring is one of

blind deconvolution. The methods adopted towards solving these problem include regularized

inverse filtering techniques, Bayesian methods, partial differential equations based techniques,

frequency and wavelet based techniques and restoration using edge preserving regularization

techniques. Extensive review of these techniques are presented in [9], [5], [67], [122], [4]. We

now discuss only some of the related representative works. We review the PDE based literature

in more detail as they are closely related to the work researched in the thesis. There exists a

substantial number of works based on other methodologies like frequency based and learning

based techniques, however, we do not undertake a comprehensive review of all these methods.

One of the commonly used techniques has been inverse filtering based on Wiener filter-

ing. An approach that suggests an iterative Wiener filter specifically updating the covariance

estimates is communicated by Hillery and Chin [52]. Due to the ill-posed nature of the problem

there have been several approaches that adopt iterative regularized techniques. In [60] the au-

thors propose an iterative constrained least squares formulation that converges using the method

of successive approximations. The regularization methodsproposed usually assume smooth
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properties and do not preserve edges. An approach was proposed by Chan and Wong [17]

which used total variation regularization for estimating the point spread function and also de-

blurring the image. The use of total variation allowed preservation of edges. Other approaches

have proposed use of wavelets for regularizing image deconvolution [78], [84]. In [36] an EM

algorithm is proposed for wavelet based image deconvolution. In [117], the authors propose a

technique for combining curvelets and wavelets for image deconvolution.

The methods described so far solve the problem of blind deconvolution when the point

spread function (PSF) is assumed to be the same throughout the image. The literature is rela-

tively sparse when one considers the problem of spatially varying PSF. Rajagopalan and Chaud-

huri [101] have solved the corresponding restoration problem using a Markov random field

(MRF) prior. However, their method is strictly speaking, non-blind as they assume availability

of multiple observations. The other methods that can be usedfor space varying deconvolution

are those based on use of partial differential equations. A classical approach for this problem is

that of using hyperbolic partial differential equations termed as shock filters. The shock filter

was first proposed by Kramer and Bruckner [65]. It is based on the idea of using a dilation

process near a maximum and an erosion process around a minimum. The decision whether a

pixel belongs to the influence zone of a maximum or a minimum ismade on the basis of its

Laplacian. The termshock filterwas first introduced by Rudin [108]. The experimental shock

filter by Rudin was based on a modification of the nonlinear Burgers’ equation. This model

was further improved by Osher and Rudin in [87], where the total variation preserving compu-

tational approach and the theoretical basis for the same wasdeveloped. Further, a modification

was suggested by Alvarez and Mazorra [2] where they incorporated a smoothing kernel in the

model. The relationship of these methods to the Kramer-Bruckner filter became evident later

([47], [111])

The recent work in this field includes work by Kimmelet al. [61], Weickert [126], Gilboa

et al. ([40], [42], [41]) and Remaki and Cheriet [104]. In [61], Kimmel et al. have developed

a shock filter based on a geometric framework and the inverse diffusion is carried out along the

edge. In [126], Weickert describes a coherence enhancing shock filter where the shock filter is

steered with the orientation information. In [40] by Gilboaet al., the authors have modified the

diffusion coefficient in the Perona-Malik formulation [90]and they use a diffusion coefficient

which switches adaptively between forward and backward diffusion process. In [42], Gilboaet

al. extend the work done in [40] and define a triple-well potential based diffusion process which
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is an energy minimizer flow aimed at reducing oscillations among three low energy states. In

[41], Gilboaet al. suggest complex shock filters based on the complex diffusionprocess where

the diffusion coefficient lies in the complex domain. In [104], the authors consider the problem

of shock filters in the framework of generalized functions and propose shock filters where the

speed of shock propagation is also controlled. In the thesiswe propose two new techniques for

image restoration. They are compared with these techniquesand have shown comparable or

better performance compared to these techniques.

In this chapter we have considered the literature related todepth estimation and image

restoration in considerable detail. We now consider these problems in detail and propose diffu-

sion based techniques that solve these problems specifically for defocused images.
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Chapter 3

Linear Diffusion

In this chapter we establish the use of the diffusion processfor modeling the blurring process.

The idea of diffusion has been one of the important methodologies in the field of computer

vision. It stems largely from the idea of modeling the image (observation) generation process

using the heat equation. The pioneering work was done by Witkin in [129] where he proposed

a scale space for images based on smoothing of images using a Gaussian kernel. Koenderink

in [62] proved that this was equivalent to solving the heat equation. This approach has sub-

sequently been widely used in low level vision tasks like smoothing, segmentation and edge

detection.

Here we discuss how the linear diffusion principle can be used for depth estimation based

on defocus as the cue. This was first explored by us in [79]. In depth estimation using defocus

as the cue, the basic principle is to use the characteristicsof the imaging system. There have

been two methodologies in the literature, one is to obtain depth from focus [66] and the other

to obtain depth from defocus [19].

In the procedure for obtaining depth information from focus, a sequence of images of a

scene is obtained by continuously varying the distance between the lens and the image detector

[119]. The corresponding fully focused observation is locally estimated from the sequence of

images. A measure of image sharpness is used to decide whether the point is in focus or not.

From the fully focused image point the distance of the corresponding object point is calculated

using the standard thin lens equation

1

F
=

1

Z
+

1

v
(3.1)

whereF is the focal length,Z is the distance of the object from the principal plane andv is the
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distance of the focused image from the lens plane. For a good ranging accuracy, one is required

to sample the observation space densely by changingv slowly.

Consider a planar scene with the plane perpendicular to the optical axis. When the image

plane is kept at the focal point then all the points from the planar scene are captured exactly in

focus. However, when the image plane is not in focus, the observation is blurred by a circular

patch as can be seen from fig. (1.1). This is called the equifocal observation. In general there

is variation in depth in the scene. Hence the resultant observation is not equifocal. The blur

in the observation thus varies spatially. In depth from defocus, given two images of a scene

recorded with different camera settings, one obtains an estimate of the blur at each point [19].

Subsequently, by using the estimate of the blur, one can recover the depth information in the

scene with the knowledge of the lens parameters.

In this chapter we show that, given two observations obtained by two sets of lens parame-

ters as is commonly employed in depth from defocus, we can generate the entire set of images

in thedefocus spaceof the input images using the diffusion equation. The defocus space of a

particular scene refers to the continuous space of all possible observations obtainable by vary-

ing the lens parameters in between those two lens settings. This concept is further elucidated

in section 3.2.3. In this method, the defocus blur is never explicitly calculated as it is done

in depth from defocus techniques. Instead, by using diffusion, for each pixel we can obtain

the corresponding fully focused observation in the defocusspace. using that observation and

the corresponding virtual lens parameters we can recover the depth information from the lens

equation. As a by-product, we also obtain the fully focused pin-hole image from these two

defocused observations. The diffusion process simulates the depth from focus technique by

generating images in the defocus space of the observation. Many separate observations as re-

quired for the depth from focus technique are no longer required. In fact, using the diffusion

technique, the two modalities of estimation of depth can be considered to be equivalent. This is

discussed further in section 3.2.4.

An extensive review of the literature for estimating the depth from focus and the depth

from defocus was done in chapter 2. In the next section we givea brief overview of the related

work done. In section 3.2 we outline the theoretical basis for the formation of the defocus

image space of an observation based on the diffusion process. In section 3.3 we present the

basic algorithm for depth estimation using diffusion. In section 3.4 we analyze the procedure

and consider the practical issues involved in the implementation of this method. In section 3.5
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we present the experimental results obtained. We conclude the chapter in section 3.6.

3.1 Related Work

In this chapter we use the technique of diffusion for synthesizing new and virtual observa-

tions in the defocus space. The idea of diffusion can be traced to that of scale space filtering

by Witkin [129]. Koenderink [62] showed that this is equivalent to solving the heat equation.

Since the solution of the heat equation is a temporally evolving Gaussian function, filtering a

signal with which defines the scale space. This scale space approach was extended by Perona

and Malik in their landmark paper [90] where they proposed a nonlinear scale space model,

aimed at preserving important features such as edges. The model changes its behavior based on

the conduction coefficient associated in a region of an imageand achieves forward diffusion in

the interior region and at the boundaries it acts in the opposite direction. In general the inverse

diffusion approach can be thought of as reversing the heat equation in time. This reverse heat

equation is however ill-posed and there has been a substantial amount of work done for stabi-

lizing the reverse heat equation. Rudin, Osher and Fatemi in[109] introduced the “shock filter”

where they proposed a pseudo-inverse, where the inverse diffusion propagation term is tuned

by the sign of the Laplacian. There has been a lot of research done along similar lines where

various nonlinear inverse diffusion models have been proposed. In linear scale space theory,

recently an interesting work has been done by Lindeberg [69], where he provides a theoretical

analysis of the linear scale space theory and also observes that Gaussian and higher orders of

the Gaussian kernel are the only admissible kernels based onthe admissibility conditions for

linear scale space.

Recently, in [32] Favaroet al., have used the idea of diffusion for estimating depth from

defocus which is very similar to our work. However they approach the problem in the traditional

manner of casting it into a variational framework. We have introduced a more general idea of

generating the entire defocus space of a scene.
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3.2 Defocus as a Diffusion Process

3.2.1 Diffusion Process

The diffusion equation is given by

∂u(x, y, t)

∂t
= ∇ · (c(x, y)∇u(x, y, t)) (3.2)

where∇u(x, y, t) is the gradient and∇· is the divergence operator, andc(x, y) is a vector dif-

fusion coefficient. This gives the general case for the anisotropic diffusion equation as given by

Fick’s law that is derived from the equilibrium property that restores concentration differences

[127]. For the specific case where the diffusion coefficient is a scalar and homogeneous then it

is given by
∂u(x, y, t)

∂t
= c△u(x, y, t)), (3.3)

where△u(x, y, t) is the Laplacian ofu(x, y, t). The equation above is the classical equation

for the isotropic diffusion of heat and can be given in extended form by the following partial

differential equation:

∂u(x, y, t)

∂t
= c

(

∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2

)

(3.4)

Here the constantc is the thermometric conductivity or diffusivity [128]. Theequation above

describes how heat diffuses over a surface, given an initialtemperature distribution with time. It

is assumed here that the diffusion of heat is uniform in all directions. Consider thatu(x, y, t =

0) is an imageI1(x, y). The solution of the heat equation can be obtained in terms ofconvolution

of the image with a temporally evolving Gaussian kernel [114]. This is known as the source

solution for the heat equation [128] and is given byσ2 = 2ct whereσ denotes the spread of the

Gaussian kernel and is used through out in this thesis. The observations in our case corresponds

to u(x, y, t) at two distinct time instantst1 and t2 where0 ≤ t1 < t2 < ∞. As the image

is progressively convolved with a Gaussian kernel, it gets increasingly more blurred thereby

representing the image information at a different scale. Note that ast→ ∞ this corresponds to

a fully diffused image. This is the basic idea underlying scale space analysis. Also note that the

process is not defined fort < 0, a fact that will be utilized later to define theextended defocus

space. Also note that we use an infinitely extended image domain while solving eqn.(3.4) and

hence this would correspond to the Neumann boundary condition.
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3.2.2 Basic Model of Defocus

Consider the image formation process in a real aperture camera employing a thin lens [19].

When a point light source is in focus, all light rays that are radiated from the object point and

intercepted by the lens converge at a point on the image plane. Following geometric optics

when the point is not in focus, its image on the image plane is no longer a point but a circular

patch of radiusσ that defines the amount of defocus associated with the depth of the point in

the scene. It can be shown that [19]

σ = ρrv

(

1

F
− 1

v
− 1

Z

)

(3.5)

wherer is the radius of the aperture,v is the lens-to-image plane distance,F is the focal

length of the lens,Z is the depth at that point andρ is a camera constant that depends on the

sampling resolution on the image plane. LetI0(x, y) be the pin-hole image of the scene. From

the eqn.(3.5) we note thatC = (r, F, v) defines the camera parameters each of which may be

changed to effect a different amount of defocus blur for a fixed depth.

The depth related defocus process is linear but not space invariant. Assuming a diffraction-

limited lens system (i.e. using wave optics) and a constant depth in the scene (this assumption

will be relaxed at a later stage), the point spread function (PSF) of the camera system at a point

(x, y) may be approximately modeled as a circularly symmetric 2-D Gaussian function [19]:

h(x, y) =
1

2πσ2
exp

(

−x
2 + y2

2σ2

)

(3.6)

where the blur parameterσ is obtained from eqn.(3.5).

Note that some researchers have also used circular pillbox blur and each model of blur

function has its own advantages and disadvantages. However, both models assume a perfectly

circular aperture and no self-occlusion in the scene [8]. For a Gaussian model of blurσ is

related to the spread of the PSF rather than the radius as defined in eqn.(3.5).

Assuming the depth to be constant everywhere, the observed defocused imageI(x, y) is

given by

I(x, y) = I0(x, y) ∗ h(x, y). (3.7)

This equation can be directly related to the solution of the diffusion equation in terms of

the Gaussian kernel as discussed in section 3.2.1. The real aperture imaging can thus be thought

of as providing a real world example of scale space theory. The eqn(3.7) can be represented by
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taking its Fourier transform. Denoting the Fourier transform of a functionf(x, y) by f̂(ωx, ωy)

we obtain

Î(ωx, ωy) = Î0(ωx, ωy)ĥ(ωx, ωy) = Î0(ωx, ωy) exp(−σ
2(ω2

x + ω2
y)

2
) (3.8)

3.2.3 Defocus Space

For a given scene, one can have two defocused observationsE1 andE2 corresponding to two

different camera parameter settingsC1 andC2, such that the resulting blur parameters areσ1

andσ2, assumingσ1 > σ2 without loss of generality. For the two observationsE1 andE2, a

defocus space can be defined.

Definition 1 (Defocus space) :

The defocus space is defined to be the set of all possible observationsE for a given scene

generated by varying the blurσ as a combination of the associated blur parameterσ1 andσ2

in the two observationsE1 andE2 respectively, by the following relation

σ2 = ασ2
1 + (1 − α)σ2

2 (3.9)

for all values of0 ≤ α ≤ 1.

This is equivalent to generatingI(x, y, t) for t1 ≤ t ≤ t2 given the statesI(x, y, t1) and

I(x, y, t2) at two specified time instantst1 andt2 in the heat diffusion eqn(3.4). Substituting

eqn(3.9) in eqn(3.8) we obtain:

Î(ωx, ωy) = Î0(ωx, ωy)exp

[

−1

2
(ασ2

1 + (1 − α)σ2
2)(ω

2
x + ω2

y)

]

=

{

Î0(ωx, ωy)exp

[

−σ
2
1(ω

2
x + ω2

y)

2

]}α{

Î0(ωx, ωy)exp

[

−σ
2
2(ω

2
x + ω2

y)

2

]}1−α

or

Î(ωx, ωy) = Îα
1 (ωx, ωy)Î

1−α
2 (ωx, ωy). (3.10)

The relation given in eqn(3.10) is equivalent to the notion of scale space as formed by the

diffusion equation. This can be noticed as eqn(3.10) can be thought of as convolving the image

I(x, y) with a time varying Gaussian kernel. This is because convolving a Gaussian function

with another Gaussian function always results in a Gaussianfunction. The eqn(3.10) effectively

reduces to convolving the original imageI0(x, y) with a Gaussian kernel which varies with time

(in this caseα) according to the relation given in eqn(3.9) and eqn.(3.10).
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The defocus blurσ could be present physically due to any of the following camera pa-

rameters : aperture, the lens to image plane distance, the focal length or even a combination of

these, as shown in eqn(3.5). A monotonic variation in any of the lens parameters can generally

result in a non-monotonic variation in the blur (for instance asv is changed from an initial value,

σ reduces, becomes zero and then subsequently increases), signifying both sides of the defocus

cone (see Fig.3.1 for illustration). The diffusion based defocus space generation process how-

ever generates the blur in a monotonic manner, i.e we are restricted to one side of the defocus

cone. By continuously varying the parameterα, we can generate any virtual observation for

defocus setting lying between the lines AB and CD in Fig.3.1 using the eqn(3.10). The utility

of such a variation of blur in defocus morphing has been demonstrated in [18]. The defocus

space thus consists of all possible observations of the defocus blurσ2
1 ≤ σ2 ≤ σ2

2 .

Corresponding to the notion of continuous defocus space as introduced in the previous

section, a practical counterpart of this defocus space would be a sampled defocus space. This

corresponds to generating the defocus space for discrete values ofα between0 and1. In Fig.3.1,

the lines corresponding toA1B1,A2B2, ...AnBn may represent one such possible set of sampled

defocus space. The sampled defocus space generated for an image is similar to the physically

obtained focused image space described in [119].

3.2.4 Equivalence of DFF and DFD

So far we have considered a restricted range ofα between[0, 1]. Now we relax this condition

and something interesting happens. If the values ofα beyond the range[0, 1] are considered

then the defocus space generated is the extended defocus space.

Definition 2 (Extended defocus space):

The extended defocus space is defined to be the set of all possible observationsI for a given

scene generated by varying the blurσ as a combination of the associated blur parameterσ1 and

σ2 (assumedσ1 > σ2 in the two observationsI1 andI2 respectively, by the following relation

σ2 = ασ2
1 + (1 − α)σ2

2 (3.11)

for all values ofβ ≤ α ≤ ∞.

whereβ is

β =
σ2

2

σ2
2 − σ2

1

(3.12)
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Here the value ofβ is the value ofα such thatσ2 = 0 in eqn(3.11), resulting in a fully

focused observation. The observations in the extended defocus space can be obtained from the

diffusion equation since corresponding to the imageI0(x, y, t) with t → ∞ we can obtain an

observationI(x, y) with α → ∞. This represents the fully diffused image. Similarly for each

point there exists a valueα = β < 0 corresponding tot = 0. This corresponds to a fully focused

observation, i.e.σ2 = 0. Thus the extended defocus space is defined for the rangeα ∈ [β,∞).

In the rangeα = [β, 0] the process, instead of being a diffusion becomes an inversediffusion.

Beyond this range, the defocus space is undefined since one cannot have the blurσ2 < 0. Thus

σ2 = 0 corresponds to the convergence of all rays at the imaging plane. This is illustrated in

Fig.3.1.

Depth from defocus(DFD) methodology estimates the space variant blur whereas depth

from focus (DFF) methodology estimates the focused image point. It is possible to use the

techniques in DFD methodology to estimate the space variantblur using just two observations,

whereas DFF requires many samples to estimate the fully focused point. Here as we have

shown, it is possible to generate the extended defocus spacefor the image using just two ob-

servations. Thus both the techniques can be considered fundamentally equivalent, rendering

the need for multiple samples to be redundant. The diffusionbased process thus provides an

equivalent means for estimating the depth from the known lens parameters using either depth

from defocus or depth from focus.

3.3 Algorithm for Depth Estimation

The derivation of eqn(3.10) is based on the assumption of constant depth. When there is depth

variation in the scene, eqn(3.10) is no longer valid as the blurring process becomes shift variant,

implying an inhomogeneous diffusion process. This corresponds to the following diffusion

equation
∂u(x, y)

∂t
= c(x, y)

(

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2

)

(3.13)

Herec is no longer a constant but is now a functionc(x, y). We assume that the directional

change inc i.e. ∇c(x, y) is assumed to be negligible. Herec(x, y) is still a scalar quantity and

the diffusion is isotropic but inhomogeneous and this equation varies spatially from eqn.(3.2).

The inhomogeneity is handled by forming a smallMxM window about a point over which

the depth can be assumed to be constant as is done commonly in all literature. M is related
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Figure 3.1: Illustration of the concept of defocus space fora particular scene

to the amount of blur in the observation and we select a value such thatM > 6σ. Using this

modification the defocus space for a scene can be created locally even in the depth varying

case. The depth estimation is done by obtaining the fully focused point for each image. The

process of creating the defocus space is a monotonic process. Asα reduces, the characteristics

of the process changes from diffusion to inverse diffusion and the deblurring of the defocused

observations takes place. In obtaining the fully focused image the value ofα is not restricted

to lie between 0 and 1, rather we go for values ofα < 0. The characteristic of the convolution

changes from a low pass filter to a high pass filter for0 ≤ β. The defocus process has to be

stopped when the fully focused point is reached. This stopping point is estimated empirically

from the virtually synthesized observations using a band pass filter, similar to the way it is done

in DFF methods [66]

The various steps of the algorithm for depth estimation are as follows:

Step 1: Divide the observed imagesE1 andE2 into overlappingMxM windowed representa-

tions.

Step 2: Obtain the FFT of the corresponding windows inE1 andE2.

Step 3: Synthesize a sample of the defocus space corresponding to a particular value ofα ∈
[β, 0) for each window using eqn(3.10). Note thatβ is unknown as the value ofβ would
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give us the depth. Henceα should be changed incrementally.

Step 4: Estimate the amount of focus using a sharpness criterion function [66] which is essen-

tially a band pass filter and decide whether a fully focused point is reached. Else reduce

the value ofα and go to Step 3.

Step 5: Using the corresponding values of the virtual lens parameters, calculate the value of

depth at the point. Save the pixel value as the restored one.

This algorithm is sequentially executed for all pixels in the image till the corresponding

pin-hole observation of the scene is obtained and a dense depth map is generated.

3.4 Computational Difficulties

The algorithm uses the windowed Fourier transform. In some cases, especially, where the

gray level variance in the window is very low, signifying a texture-less scene, there might be

a problem as the spectral components are nearly zero. When the value ofα goes beyond the

0 to 1 range, potentially a division by zero can occur in eqn(3.10). This can be avoided by

marking such windows out of computation. Mathematically itsignifies that the depth cannot be

estimated for homogeneous regions.

Another factor which adversely affects the accuracy is its sensitivity to quantization error.

Generally, an 8 bit quantization of the scene results in a very noisy virtual observations. This

is because the defocus space generating process acts as a high pass filter when we take0 ≤ β,

which greatly enhances the quantization error. Further theinverse diffusion process is inherently

unstable and the quantization error aggravates the instability. Practical implementation suggests

the use of a 16-bit representation of the intensity function.

Generation of virtual observations using eqn(3.10) locally may demand quite a bit of com-

putation. This is more so due to the fact that a finer sampling of the extended defocus space

would lead to a better accuracy in the depth estimate. To obtain better estimates of the fully fo-

cused points efficiently, a hierarchical virtual sampling technique over nested intervals is used

wherein, using the algorithm defined earlier a value ofα is quickly estimated using coarser

discrete steps in the range[β, 0]. Then a further dense sampling is performed in a small neigh-

borhoodǫ around the best current estimate ofα, i.e.α ∈ [α̂− ǫ, α̂+ ǫ] and the estimate ofα is

refined in a hierarchical manner.
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3.5 Experimental Results

The algorithm has been tested with real as well as simulated data. In the case of real data, there

is a substantial amount of noise in the recovered structure.This is mainly because the real world

data is in eight bit form and the resultant quantization error is quite significant. However, the

overall structure recovered still resembles the true structure in the scene. In a similar way, the

corresponding deblurred observation, in general, does notresemble the actual pin-hole image,

but the result is definitely better focused and less blurred than the observations given as input to

the algorithm. The results obtained with synthetic data canbe observed to be of better quality

due to the use of 16 bit representation.

In Fig.3.2, two images of a ball are taken with varying lens-to-image plane distances. In

the experimental setup the base was at a distance of 117 cm. from the camera. The point on the

ball nearest to the camera was at 121.8 cm. while the points lying on the occluding boundary of

the ball were at a distance of 132.3 cm. from the camera. The change in the lens-to-image plane

distance introduces a small amount of change in magnification. This was taken into account

and corrected using a simple resizing operation. Fig.3.2.(c) shows the recovered dense depth

map with the darker shading corresponding to a nearer distance. The darkest points (gray level

0) refer to the homogeneous regions for which the depth cannot be estimated as explained in

section 3.4. Fig.3.2.(d) shows the corresponding deblurred image obtained.

The second experimental setup was the “blocks world” where three blocks were arranged

at different depths (see Fig. 3.3(a,b)), the nearest one at adistance of 73 cm., another at 82.7 cm.

and the farthest block at 96.6 cm. Again images were taken with varying lens-to-image plane

distances to obtain different amount of defocus in different observations. Fig.3.3.(c) shows the

dense depth map estimated in this case and Fig.3.3.(d) showsthe deblurred image obtained.

The Fig.3.4 shows a test data where a textured image is synthetically blurred with a con-

tinuously varying Gaussian kernel. The variance of the Gaussian kernel was increased in a ramp

like manner from left to right. The second observation was simulated using different values of

the blur kernel. Fig.3.4.(c) shows the corresponding densedepth map and Fig.3.4.(d) shows the

deblurred image. The left to right variation in depth is clearly visible. Similarly the restored im-

age is much sharper, although it contains dark spots where depth could not be estimated due to

reasons mentioned in section 3.4. Although we could have copied the intensities at these pixels

from one of the observations as they correspond to fairly homogeneous regions, we refrain from

30



(a) (b) (c) (d)

Figure 3.2: Ball Image: (a,b) Two observations with the right one being less blurred, (c,d)
recovered structure and the deblurred image, respectively.

(a) (b) (c) (d)

Figure 3.3: Two observations of the Block World. (a) The furthest block is in focus, (b) the
nearest block is in focus, (c,d) recovered structure and thedeblurred image, respectively.

doing it so that the effect can be highlighted. Fig.3.5 showsanother synthetically generated test

data where a textured image is blurred with a continuously varying Gaussian kernel. However,

here the variance of the blur was increased in a radially outward manner. Fig.3.5.(c) shows

the corresponding dense depth map and Fig.3.5.(d) shows thecorresponding deblurred image.

Once again the depth variation is quite clear from the plot.

The results appear to be noisy as the linear diffusion process suffers from instability in

the extended defocus space as the process corresponds to inverse diffusion. One does require

a suitable regularizing functional to make the problem better posed. This method, however,

presents a theoretical basis for understanding depth from focus/defocus in the light of the diffu-

sion equation and is thus important in its own merit.

3.6 Conclusion

For a given scene in the real world, we have defined a defocus space which is a virtual space

of all observations based on the properties of a real aperture imaging system. A method for
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(a) (b) (c) (d)

Figure 3.4: (a,b) Two synthetically generated blurred observations. Here the blur increases
progressively from left to right. (c) Recovered structure,and (d) the deblurred image.

(a) (b) (c) (d)

Figure 3.5: (a,b) Two simulated observations. Here the blurincreases radially outward. (c,d)
Recovered structure and the deblurred image, respectively.

generating the defocus space based on the diffusion equation has been presented. We have

also presented an algorithm for recovering the scene structure based on the defocus space. An

interesting outcome of this work is that it brings out the equivalence of the depth from focus

and depth from defocus modalities for depth estimation. This algorithm has been tested with

real as well as synthetic images.

A problem that is faced in the method described in this chapter is the drawback faced while

using windowed Fourier transform. This problem is not facedwhen one does a spatial diffusion

based approach for depth estimation from defocus as done by Favaroet al. [32]. However there

are problems associated with this approach where occlusioneffects are not handled appropri-

ately. We therefore consider a stochastically perturbed diffusion model which is considered in

the following chapter.
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Chapter 4

Stochastically Perturbed Diffusion

In the previous chapter the linear diffusion process was used to model the defocus blur. The

defocus morphing relationship presented there allowed us to generate the defocus space, with

a frequency domain based morphing relation. Similarly the linear diffusion process has been

used by Favaroet al. [32] to also estimate depth from defocus. There they use linear diffu-

sion to estimate the relative blur between two defocused images. They have also provided the

analysis required for estimating depth from defocus using linear diffusion. However there are

several shortcomings to their approach which are addressedin this chapter. A particular obser-

vation made by Hasinoff and Kutulakos [50] is that this method of shape recovery is particularly

relevant for complex scenes which have a large amount of geometric detail and complex self

occlusion relationships which make it difficult to estimatethe shape using stereo based meth-

ods. However, the method proposed by Favaroet al. could not handle depth estimation in such

complex scenes. This was because, their method could not handle departure from Gaussian

assumption in case of self-occlusions. Second, the method proposed obtains a local minima for

the depth in the scene as it is based on a conjugate gradient based method and may not result in

the true depth for complex scenes. In this chapter we addressboth these shortcomings. Here,

we propose a model wherein the heat equation is perturbed stochastically. In this approach the

departure from the Gaussian blur model is implicitly accounted for in the stochastic perturbation

of diffusion. The mathematical existence for the stochastically perturbed heat equation, which

is used here, has been analyzed by Yip[131] and he has used it to model the dendritic growth

of crystal structures. Here we adapt the model for solving the depth from defocus problem by

correlating the stochastic heat equation to the defocus blurring process.

We have considered various methods for estimating depth from defocus in chapter 2. How-
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ever, most of the works done assume that the observations do not suffer from self-occlusion. The

handling of occlusion effects in depth computation has beenaddressed in [3],[8],[33]. The ex-

tent of departure from the Gaussian shape depends on the nature of depth discontinuity in the

scene, which is unknown. Any imperfection in the lens aperture would also change the shape of

the blur kernel. Unlike earlier methods, the proposed method can handle such an effect under a

unified framework without having to estimate the departure from the assumed model. An inter-

esting recent work has been by Hasinoff and Kutulakos [50], where the authors consider depth

from focus as a pixel matching operation. However, this method requires many high resolution

observations.

4.1 Defocus as a Stochastically Perturbed Diffusion

In this section we discuss the mathematical basis of stochastic perturbation of the heat equation

as a tool to analyze defocused images.

4.1.1 Stochastic Perturbation

The stochastic perturbation of the heat equation is achieved by perturbing the deterministic heat

equation with a stochastic process. An archetype stochastic process that concerns us is the

Brownian Motion W(t). A Brownian motion has independent normal increments. The interest-

ing aspect of the Brownian motion is that the transition probability for a Brownian motion is the

conditional Gaussian probability density function and over time it results in the heat equation.

A general diffusion of the stochastic process can be given by[86]

dX = b(t)dt+ a(t)dW (t) (4.1)

whereW (t) is the standard Brownian motion,b(t) is the drift anda(t) is the diffusion

coefficient. HeredW (t) is the Ito derivative of the Brownian motion. The heat equation is

essentially an Ito-diffusion with only a diffusion coefficient and no drift coefficient associated

to the diffusion process, i.e.,b(t) = 0.

The addition of stochastic perturbation to the deterministic diffusion equation can be phys-

ically thought of as adding thermal fluctuations to the heat diffusion equation. The issues like

existence and regularity of the evolution arise by such an addition. These were rigorously stud-

ied and proved by Yip[131]. They were studied in the context of crystal growth. However, the
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same formulation is valid for the defocus problem. The form of the stochastically perturbed

diffusion or the stochastic heat equation is given by

du = (c△u)dt+ a(t)dW (t) (4.2)

whereW (t) is a spatially correlated infinite dimensional Brownian motion, dW (t) is the

Ito’s differential and△u corresponds to the Laplacian ofu in space. The spatial correlation of

W is essential for proving the Gibbs-Thomson condition [131]. This implies that the movement

of each particle is not stochastic in space but in time. The Gibbs-Thomson condition is related

to the regularity and existence of the solution of eqn(4.2).Gibbs-Thomson relation is a function

which relates the temperature and curvature values in equilibrium for the interface of evolution.

Loosely speaking the Gibbs-Thomson condition essentiallyprescribes an equality between the

variation of the energy of the interface and the total divergence of the Gibbs-Thomson relation.

These are discussed in detail by Yip in his work[131] where hegives a proof of the Gibbs-

Thomson condition for eqn(4.2).

4.1.2 Defocusing as a Stochastically Perturbed Diffusion

The defocusing phenomenon has a specific space varying characteristic at surface edges and

occluding edges. Consider the particular case as shown in fig. 4.1. Here we consider the

specific case of a surface edge discontinuity which results in self-occlusion. In depth from

defocus, self occlusion results when a continuum of rays is partially occluded and results in

the blur kernel being modified [112]. This is illustrated in fig.4.1. Here, the rays emanating

from the point P are partially blocked due to the surface discontinuity. The image plane is at a

distance from the focus point and so the observation of pointP results in a blur with radiusRb.

However, due to the partial occlusion due to the near edge, the resultant blur instead of being

circular is deformed (beingReff ). This artifact is present for all points in the observationfrom

the surface edge to the point A. From point A onwards, the blurkernel is unaffected. A similar

effect can be observed in the case of an occluding edge as well[3].

There have been a few approaches [3], [8], [33] where the authors have tried to address

this problem by explicit modeling of this phenomenon or by adding a post-processing step.

However, in our model, due to the stochastically perturbed curvature driven motion along the

level sets, it is possible to incorporate this variation implicitly. This is particularly important

in correctly estimating the blur kernels along discontinuities like surface edges and occluding
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Figure 4.1: Illustration of the self-occlusion on account of surface discontinuity. For the point
P, the point spread function (PSF) is the circular region devoid of the darkened region. For the
point A in the scene, the PSF is circular as there is no self-occlusion.

edges. This is depicted in fig.4.1. As shown in the figure, along the surface edge, the contribu-

tions from the near and far surface are inhomogeneously mixed and this results in an anisotropic

nature to the resultant blur kernel. So, when one does a stochastic curvature driven motion along

the level sets, the blur contribution along the surface edgecan be appropriately estimated. The

non-uniformity of the kernel is implicitly handled in this model. There exists a similar effect

when one has an occluding edge as well[3] .

4.1.3 Evolution Equation

We now proceed to obtain an explicit evolution equation. In order to do this we first obtain

an expression for the stochastic perturbation part of eqn(4.2). Here we consider the recent

work done in stochastic level sets [56] and stochastic curvature driven motion [71]. In [56],

the authors discuss the evolution for the stochastic perturbation wherea(t) in the stochastic

heat equation is the normal at the surfacen, where we consider the surface as being the image

u(x, y, t), i.e. the image being evolved at timet. The stochastic perturbation of the eqn(4.2) can

be therefore given by

du = n dW (t). (4.3)

This equation can be given in the differential form as

∂u(x, y, t)

∂t
= n(x, y, t)dW (t), (4.4)

wheren(x, y, t) is the normal to the interfaceu(t) (i.e. the interfaceu(x, y, t)∀x, y). The

equivalent deterministic evolution using the level set framework for the geometric heat equation
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is given by the following equation

∂u(x, y, t)

∂t
= κ(x, y, t)n(x, y, t) (4.5)

whereκ(x, y, t) is the mean curvature of the level set andn(x, y, t) is the normal to the level

set. Hereκ is given by

κ =
u2

xuyy − 2uxuyuxy + uxxu
2
y

(u2
x + u2

y)
3/2

, (4.6)

whereux refers to∂u
∂x

. The normaln is given by

n =
∇u

‖∇u‖ ,

where∇u = [uxuy]. The geometric heat equation is similar to the linear heat equation except

that it diffuses orthogonal to its gradient and does not diffuse along the direction of the gradient.

As a result the stochastic perturbation mainly affects the level set curves and does not affect the

homogeneous regions. This is appropriate since any kernel variation for instance due to self

occlusion would mainly occur along edges and would be reflected in the stochastic perturba-

tion. The effect of the perturbation is further spread on thehomogeneous regions through the

deterministic diffusion component.

Now, the stochastic formulation of the above deterministicformulation according to eqn(4.4)

could be written as

du(x, y, t) = n (x, y, t)dW (t), (4.7)

The differential in eqn(4.7) is theIto differential. This suffers from problems like it is not invari-

ant to the parametrization of the curve, i.e., the evolutiondepends on the implicit representation

of the initial curve and ill pastiness, i.e., under certain conditions it approaches the inverse

heat equation which is unstable[56],[71]. These difficulties are overcome by introducing the

Stratonovich differential[86] given by

du(x, y, t) = n ◦ dW (t). (4.8)

The Stratonovich form is in an implicit form and converting it to the explicit Ito form re-

sults in an added second order term. This is because of the difference in estimating Ito and

Stratonovich differentials. In Ito diffusion the integration happens at the left end point whereas

in the Stratonovich case the integration happens at the mid-point while evaluating the integra-

tion of the differential[86]. With a single Gaussian perturbation in space, the eqn(4.8) is written

37



as

du(x, y, t) = ndW (t) +
1

2
△u(x, y, t)

[ ∇u(x, y, t)
|∇u(x, y, t)|

]

. (4.9)

The numerical implementation of the scheme for evolution isdone by considering a step△t in

time and△x in space and is given by[56]

u(x, y, t+ △t) = u(x, y, t) + n
√

△tN(0,1)(t) +
1

2
△u(x, y, t)

[ ∇u(x, y, t)
|∇u(x, y, t)|

]

. (4.10)

whereN is the noise term and it denotes a standard Gaussian random variable, and the second

order term is introduced because of the Stratonovich differential component. This term is a

kind of smoothing term and is nothing but the degenerate diffusion component along the edges

with the stochastic term corresponding to the diffusion component across the edges. Hence the

complete stochastic heat equation would then be

u(x, y, t+△t) = u(x, y, t)+n
√

△tN(0,1)(t)+
1

2
△u(x, y, t)

[ ∇u(x, y, t)
|∇u(x, y, t)|

]

+c(x)△u(x, y, t).

Since the stochastic perturbation appropriately handles the deformation of the kernel, the dif-

fusion coefficientc is taken to be only a single inhomogeneous coefficient value and not a

diffusion tensor.

4.2 Depth Estimation

We consider the case when we are given two imagesI1(x, y), I2(x, y) with different defocus

blurs. Then the resultant formulation is

u(x, y, t) = I1(x, y)

u(x, y, t+mδt) = I2(x, y), (4.11)

and where the termu(x, y, t + m△t) is obtained fromu(x, y, t) by the evolution in eqn(4.11)

andm is the number of iterations in going from imageI1 to I2. The evolution equation in

eqn(4.11) blurs the imageI1 with a space-variant blur till it approximates the imageI2 closely

enough which is tracked by a discrepancy measureφ. The blur parameterσ is related to the

diffusion coefficient by the eqn(4.12)

σ2 =
tc

γ
(4.12)

wheret is the time variable in the diffusion equation,c is the diffusion coefficient, andγ is a

proportionality constant relating the blur radius to the spread (σ) of the blur kernel that can be
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determined. The blur parameterσ is directly proportional to the depth in the scene[19] . In

order to estimate the depth in the scene one therefore has to estimate the diffusion coefficient

for the evolution equation. In a deterministic case one would obtain the following minimization

problem:

ĉ(x, y) = arg minc(x,y)≥0

∫ ∫ ∫

φ(u(x, y, t+ dt), I2(x, y))dxdydt. (4.13)

whereφ(.) is a discrepancy measure andĉ(x, y) is the diffusion coefficient for the deterministic

diffusion equation. However in the stochastically perturbed case, the resultant diffusion coef-

ficient is a combination of deterministic and stochastic diffusion. The deterministic diffusion

coefficient is obtained from the contribution from the following part of the evolution equation:

dudet = (cdet(x, y)△u)dt (4.14)

which is the deterministic part of eqn(4.2). The stochasticdiffusion coefficient contribu-

tion is obtained by normalizing the stochastic perturbation component in the evolution equation.

We recall that the stochastic perturbation component is given by

dust = n
√

△tN(0,1)(t) +
1

2
△u(x, y, t)

[ ∇u(x, y, t)
|∇u(x, y, t)|

]

= n ◦ dW (t) (4.15)

The stochastic diffusion coefficient is then given by normalizing the stochastic contribu-

tion by the corresponding deterministic evolution:

cst(x, y) =
n ◦ dW (t)

κn
(4.16)

whereκ is the curvature andn is the normal.

Thus the combined diffusion coefficient is given by

d(x, y) = cdet(x, y) + ηcst(x, y) (4.17)

whereη is the weight factor which determines the relative weight ofthe stochastic perturbation.

The depth in the scene is obtained by solving ford(x, y) in a minimization problem of the form

d̂(x, y) = arg mind(x,y)≥0

∫ ∫ ∫

φ(u(x, y, t+ dt), I2(x, y))dxdydt. (4.18)

We adopt a Euclidean distance measure forφ. Here the imageI2(x, y) is assumed to be the

more defocused image. However, that may not always be the case, and one can have sections
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in an image which are more in focus and other sections which are more defocused compared

to the corresponding sections in the second image. In that case as an initial step the images are

preprocessed and the regions which are more in focus are identified. The diffusion always hap-

pens in a forward direction to avoid instabilities that may arise due to backward diffusion. The

method used to ensure this is similar the one suggested in [32]. The minimization in eqn.(4.18)

cannot be done using conjugate gradient descent algorithm due to the stochastic perturbation.

We adopt a simple simulated annealing scheme to perform the stochastic optimization. The

various steps for the algorithm for depth estimation are as follows:

STEP 1: Given the initial imagesI1(x, y), andI2(x, y) divide them into sections such that the

diffusion is always in the forward direction using the preprocessing step discussed earlier.

STEP 2: Computeun+1 from un using the formula fordu given in eqn(4.11).

STEP 3: Compute the discrepancy measureφn

STEP 4: Acceptun+1

• if φn+1 < φn

• otherwise, acceptun+1 with probability exp
(

−(φn+1−φn)
T (n)

)

.

STEP 5: Loop back to STEP 2 till the stopping criterion is satisfied.

HereT (n) is a time-dependent function that plays the same role as a decreasing temper-

ature. Its choice is crucial. If the temperature decreases too fast the process may get stuck

in a local minimum, else if it decreases slowly the convergence is delayed. Here we adopt

T (n) = T0/
√
n as suggested by Juanet al.[56]. The stopping criterion is based on the Eu-

clidean distance measure approaching zero.

The depth estimate is then obtained by considering the deterministic and the stochastic

parts separately. For the deterministic part, we assume a constant diffusion coefficient and relate

the blur to the time of evolution. The blur cannot be related directly in the stochastic part due

to the non-uniform nature of evolution. Hence, in each iteration we normalize the stochastic

perturbation with the corresponding orthogonal diffusioncomponent. We then integrate the

corresponding contributions over time to obtain the contribution of the stochastic perturbation

to the blurring process. The final depth estimate is obtainedas the joint contribution of the

deterministic and stochastic components.
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(a) (b) (c) (d)

Figure 4.2: Here (a,b) show a standard texture with high spectral details, synthetically blurred
assuming three different layers of depth. (c) shows the resulting recovered structure from the
method of Favaroet al.[32]. (d) shows the corresponding result obtained by the proposed
method.

The depth obtained in this method has a space-varying characteristic, i.e., the problem

solved is equivalent to space varying point spread function(PSF) estimation. Further due to the

stochastic nature, the self occlusion effects and other imperfections are implicitly handled by

the method when it does a stochastic perturbation of the blurmodel.

4.3 Experiments

The algorithm has been tested with real and simulated observations. The method works quite

well on all these test data sets.

4.3.1 Simulated Data

Fig.4.2 shows a test data where a standard texture map from the Brodatz texture database has

been blurred to create blocks of varying depths using Gaussian blur with variances 0.8, 1.6

and 3.8 respectively. Figures 4.2(a,b) show that there are three distinct layers of depth in the

simulated observations. There exists a gap of 3 pixels between the blurred regions. However,

due to the convex assumption, the depth map obtained by the method proposed in [32] results in

the regions being connected as can be seen in Fig. 4.2(c). Fig. 4.2(d) shows the corresponding

estimated depth map obtained from the proposed technique where the depth in the different

regions is seen separately. The brighter areas correspond to regions that are more defocused.

The accuracy is confirmed against the expected depth map.
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(a) (b) (c) (d)

Figure 4.3: Here (a,b) are two different blurred observations generated using Povray toolkit.
The defocus blur is proportional to actual depth in the scenedemonstrated. (c) shows the result-
ing structure recovered from the deterministic method[32]. (d) shows the corresponding depth
map from the proposed method.

The fig.4.3 shows a test data generated using the Povray toolkit. This is a standard ray

tracing toolkit. It allows one to generate data sets which are blurred using physically correct

depth blur model (pill box blur) based on geometric optics. The proposed method is still able

to obtain a reliable estimate for the depth which is shown in fig. 4.3(d). Fig. 4.3(c) shows

the depth map obtained by the deterministic method [32] and the proposed technique compares

very favorably. This is especially indicative of the adaptability of the method for blur models

different from the assumed Gaussian blur model.

4.3.2 Real Data

The experimental setup shown in fig.4.4 is the “dolls” data set[32]. The images were taken

with varying lens to image plane distances to obtain different amount of defocus in different

observations. The Fig.4.4(c) shows the depth map estimatedby the deterministic method[32]

and Fig.4.4(d) shows the depth map obtained by the proposed method. Once again we can

clearly identify the depth boundaries from the recovered depth map, justifying the usefulness of

the proposed algorithm. The different dolls are clearly visible to be at different depths.

A challenging data set is the “hair” data set used in [50]. Thedata set is of a wig with a

messy hairstyle surrounded by several artificial plants. This data poses challenging self occlu-

sion and complex structure issues. Fig. 4.5(a,b) shows the 2input images used. Fig. 4.5(c)

shows the depth map obtained for the deterministic method [32]. As can be seen, the method

does not handle the self occlusion and non-convex diffusioncoefficient issues efficiently. Fig.

4.5(d) shows the depth map obtained from the confocal stereomethod [50]. However, they have

images from 13 aperture settings each with 61 focal settings. Fig. 4.5(e) shows the depth map
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(a) (b) (c) (d)

Figure 4.4: Here (a,b) are two real data sets showing the dolls placed at different depths (Images
courtesy Favaro [32]). (c) shows the resultant depth map forthe deterministic method[32]. (d)
shows the corresponding result from the proposed method.

obtained from the proposed method using just two input images which is comparable to the

depth map in [50] obtained from many images.

4.4 Conclusion

In this chapter we have proposed a method based on stochasticperturbation of diffusion for

solving the depth from defocus problem. The main contribution here has been in incorporating

a stochastic formulation of the blur model which can effectively handle variations in the blur

from the standard Gaussian blur model. The variations arisein the real world due to aberrations

in the lenses and aperture and are experimentally too elaborate to measure. Further the problem

of deformation of the Gaussian kernel due to self occlusion is also implicitly handled. We

demonstrate that improved results can be obtained using theproposed technique. The proposed

method also takes into account the non-convex nature of depth in the scene and the depth map

is obtained reliably for complex scenes.

It may be noted that most researchers in the area of structurerecovery have pointed out

the need for regularization of the recovered surface. The proposed method does not impose

any such constraint while recovering the depth. In the next chapter we use a Markov random

field representation for regularizing the estimated diffusion coefficient and obtain a regularized

estimate of depth from defocus using deterministic diffusion. This representation improves the

accuracy of the depth estimated.
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(a) (b) (c)

(d) (e)

Figure 4.5: Here (a,b) are two real data sets showing a wig andflowers (Images courtesy [50]).
(c) shows the resultant depth map for the deterministic method[32]. (d) shows the corresponding
result from [50] (which uses images from 13 aperture, each with 61 focus settings) and (e)
depicts the result from the proposed method (using only 2 images).
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Chapter 5

Regularized Depth from Defocus

The problem of depth from defocus is an ill-posed problem because, in the absence of tex-

ture the depth in the scene cannot be estimated. Thus it becomes an ill-posed problem in the

Hadamard sense, because in these areas the depth estimate cannot be obtained uniquely. A

common approach adopted is to therefore regularize the solution by considering the solution in

the neighborhood or by adopting some assumption of smoothness of the solution. The earlier

approaches were based on usage of Tikhonov regularization by adding a regularization term

to the minimization term, the regularization term would specify the form of the solution based

on L2 smoothness of the result which could then be solved by the calculus of variation ap-

proach using Euler-Lagrange equations [55]. However this approach results in overly smooth

solutions. An approach made towards solving this problem isby using total variation based

regularization [122]. A more principled approach is by using energy minimization using the

discrete optimization framework of graph-cuts as proposedby Boykov et al. [12]. This ap-

proach can be mathematically formulated as an approach towards exact maximum a posteriori

(MAP) estimation of a Markov random field (MRF) [45].

In the subsequent section we discuss the related work. In section 5.2 we consider the

MAP-MRF representation for representing the diffusion coefficient which is correlated to the

defocus cue. In section 5.3 the solution of the resulting problem is discussed. In section 5.4 we

present the experimental results which demonstrate the efficacy of the method.

45



5.1 Related Work

The earliest works towards the use of graph-cuts in image processing has been towards denois-

ing of images where Greiget al. [45] used the Ford-Fulkerson idea of Graph-Cuts towards solv-

ing the problem of denoising of images by solving in a MAP-MRFframework proposed earlier

by Besag [7]. The use of MAP-MRF towards solving the problem of stereo was proposed by

Roy and Cox [107]. An important contribution was by Boykovet al. [12] who demonstrated a

fast approximate energy minimization technique for solving computer vision problems by using

the idea of alpha expansion and alpha swap. A theoretical understanding of the energy functions

that can be minimized using graph cuts was done by Kolmogorovand Zabih [64]. Further work

done by Kolmogorov and Zabih showed effective use of graph cuts for computation of depth

from stereo in the presence of occlusion [63]. While subsequently, graph-cuts has been used in

many computer vision problems, the usual application has been based on the disparity in inten-

sity values. In our problem we use graph cuts in order to compute the amount of defocus blur

at each location in the image and this cannot be directly computed from the pixel intensities.

The MAP-MRF framework has been used in depth from defocus quite successfully by

Chaudhuri and Rajagopalan [19]. They have used the Wigner-ville distribution based represen-

tation for computing the relative blur which is then estimated using the MAP-MRF framework.

They have also shown that it is possible to simultaneously compute depth and restore the im-

age. The main drawback in their method was the use of simulated annealing for solving the

MAP-MRF framework which is computationally prohibitivelyexpensive. In [32], Favaroet al.

consider the estimation of diffusion coefficient using gradient descent withL2 regularization.

However, as mentioned earlierL2 regularization results in overly smooth results. The graph-cut

allows use of robust regularization like the Huber functionand total variation seamlessly.

5.2 MAP-MRF representation of defocus cue

We now consider the representation of the diffusion coefficient to be estimated.

We recollect that, the defocusing of a scene can be formulated in terms of the isotropic

heat equation [62] given by

∂u(x, y, t)

∂t
= c

(

∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2

)

u(x, y, 0) = I0(x, y) (5.1)
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Here the solutionu(x, y, t) taken at a specific timet = τ plays the role of an image

I(x, y) = u(x, y, τ) andI0(x, y) corresponds to the initial condition, i.e. the pin-hole equiv-

alent observation of the scene. Note that we have usedu(x, y, t) to represent the evolution of

heat everywhere in the thesis. The Gaussian PSF evidently can be formulated in terms of the

heat equation, since the Gaussian function is a fundamentalsolution of the heat equation. The

equivalent Gaussian point spread function is given by

h(x, y) =
1

2πσ2
exp

(

−x
2 + y2

2σ2

)

, (5.2)

whereσ is a blurring parameter that is a function of depth at a given point andσ is related to

the diffusion coefficient

σ2 =
tc

γ
(5.3)

wheret is the time variable in the diffusion equation,c is the diffusion coefficient.

Here we directly estimate theσ. Letwi denote the label orσ value of pixeli in an image

w = (w1, . . . , wn), then a Bayesian formulation specifies ana priori distributionp(w) over all

allowable images. Herep(w) is assumed to be a Markov random field (MRF). Letw∗ denote

the unknown trueσ labels corresponding to the scene. Here we havez = (z1, . . . , zn) denotes

the observed values ofw∗. The observed values are obtained by convolving a particular location

with a label. The likelihoodl(z|w) of any imagew is combined withp(w) in accordance with

Bayes’ theorem to form ana posterioridistributionp(w|z) ∝ l(z|w)p(w). The maximum a

posteriori (MAP) estimate ofw∗ is that imageŵ that maximizesp(w|z)
The valuesz1, . . . , zn are assumed to be conditionally independent givenw. Maximizing

p(w|z) is equivalent to minimizing the following the following energy functionE(w).

E(w) =
∑

i

(

φ(z|wi) +
∑

j∈N

ψ(wi, wj)

)

(5.4)

Here the first term is the data likelihood and the second term is the interaction potential

determined by the prior. The data likelihood is estimated using a Euclidean distance measure

between the destination image and the source image blurred by a labelwi.

φ(z|wi) = ||z − I0 ∗ wi||2 (5.5)

The interaction potential is given by

ψ(wi, wj) = M(i, j)|wi−, wj|. (5.6)
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Figure 5.1: Illustration of graph-cut in a 3×3 Markov random field, courtesy [11].

whereM(i, j) is a truncation factor used to obtain a robust error term between the two labels

wi, wj. In the experiments the truncated linear term was used afterexperimental comparison.

This energy function can be minimized using graph cuts as discussed in the next section.

An advantage of this formulation is the symmetric nature in which the value ofσ can be es-

timated. In the previous chapter and in the approach by Favaro et al. [32], preprocessing of

images had to be done to ensure that the diffusion was always carried out in the forward direc-

tion only. Here, since the label forσ is being estimated we can equally assume positive and

negative labels, wherein positive labels imply blurring ofI1 to obtainI2 and negative labels

imply vice-versa. This method thus simplifies the problem ofrequiring pre-processing since

the labels are estimated with regularization.

5.3 Graph-Cuts for solving MAP-MRF framework

We minimize eqn.(5.4), thereby maximizing the posterior probability using graph cuts ([11],[12]).

The graph cut finds the cut with the minimum cost separating terminal vertices, called the source

and sink. Here, the terminal vertices are assigned the presence and absence of a discrete label

from wi. The graph cut is solved using alpha expansion [12] which allows us to consider this

method of using binary labels to minimize the cost over the entire setw. The graph cut proce-

dure is depicted in the following figure from [11].

The resulting energy function is a energy function of binaryvariables of the form

E(w1, · · · , wn) =
∑

i<j

Ei,j(wi, wj). (5.7)
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Herew1, w2, ·, wn, correspond to vertices in the graph and each represents a binary variable

where they are either connected to the sink or to the source. For an energy function of this form

it has been proved by Kolmogorov and Zabih [64], that the function can be minimized provided

that it is regular, i.e. minimization is possible if and onlyif each term of the energy function

satisfies the following condition:

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0) (5.8)

which implies that the energy for two labels taking similar values should be less than the energy

for the two labels taking different values. In this case the labels denote theσ values and we can

have a metric defined overσ. Hence, it would satisfy the above condition and we can therefore

minimize the resultant energy functionE(w). In the next section we present the results using

the method defined.

5.4 Experimental Results

Since the usefulness of this method was for regularizing thedepth from defocus estimate ob-

tained by linear diffusion, we have directly evaluated thismethod with real image data sets and

have tried it on some of the challenging image data sets.

The first data set used for evaluation is the “dolls” data set [32]. The scene depicts a few

dolls situated at various depths. The dolls are focused at different depths in the scene with

the focal plane shifting from foreground to the background.The result obtained by the linear

diffusion method explained in [32] can be seen in 5.2(c). Here the authors have usedL2 regu-

larization. The result obtained by stochastically perturbed depth from defocus method is shown

in 5.2(d). Here no regularization has been used. The result obtained by using regularized depth

from defocus using graph-cuts is shown in 5.2(e). Here, the regularization used is truncated

L2. It can be seen that the result obtained by the technique proposed in this chapter is definitely

much more improved as compared to the other techniques. The regularization used definitely

improves the depth-map obtained.

We now test our method on a more challenging real image data set which has a few vegeta-

bles. Fig. 5.3(a) shows the image where the near vegetables are in focus and fig. 5.3(b) shows

the scene where the far vegetables are in focus while the nearvegetables are defocused. The

result obtained by using the proposed method is shown in fig. 5.3(c). The resultant depth map
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(a) (b) (c)

(d) (e)

Figure 5.2: Here (a,b) are two real data sets showing a few dolls at different depths(Images
courtesy [32]). (c) shows the resultant depth map for the method by Favaroet al [32]. (d) shows
the resultant depth map obtained by the stochastic depth from defocus method explained in the
previous chapter and (e) shows the resultant obtained by theregularized depth from defocus
method explained in this chapter.
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(a) (b) (c)

Figure 5.3: Here (a,b) are two real data sets showing a few vegetables at different depths [pic-
ture: Courtesy Dr. Sunil Hadap]. (c) shows the resultant obtained by the regularized depth from
defocus method explained in this chapter.

in this challenging data set clearly shows the different vegetables and we are able to correctly

estimate the depth.

5.5 Conclusion

We have seen the need for regularization and have provided a principled method for regular-

izing the deterministic diffusion coefficient estimated using a Markov random field framework

which is solved by an efficient graph-cut based method. The results demonstrate that use of

regularization indeed helps in obtaining a more reliable estimate of the depth in the scene.

While the method described in this chapter enables accuratedepth estimation from two

defocused images, a more challenging problem is estimationof depth from a single defocused

image. Towards solving this problem we consider an approachbased on restoring a defocused

image and thereby obtaining the multiple observations required for estimating depth in the

scene. We therefore now consider the problem of deblurring ablurred observation in the next

chapter.
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Chapter 6

Non-Parametric Image Restoration

Image restoration has been one of the classical problems in image processing. The degradation

of an image is due to noise and blur and the problem is formulated as

Y (x, y) =

∫ ∫

U(t, τ)h(x, y; t, τ)dtdτ +N(x, y). (6.1)

HereY (x, y) is the observation,U(x, y) is the original undegraded image,h(x, y; t, τ) is

the space varying blurring kernel andN(x, y) is the noise. The noiseN(x, y) is often assumed

to be additive white Gaussian noise. No prior knowledge of the point spread function (PSF) of

the blurring kernel is assumed in this study and hence the problem of recovering the original

imageU(x, y) given an observationY (x, y) is known as space varying blind image restoration.

The specific case of eqn(6.1) where no blurring is assumed is given by

Y (x, y) = U(x, y) +N(x, y). (6.2)

This has been addressed using the mean shift filter by Comaniciu and Meer [23].

A detailed review of the traditional methods for approaching the problem of image restora-

tion has been done in chapter 2. We recall that these methods are based on regularized least

squares technique [5], harmonic analysis based techniques([16], [116], [6]), statistical meth-

ods [68] and partial differential equation (PDE) based methods ([4], [87], [90], [15]). These

approaches have had considerable success in dealing with the problem of image restoration,

more so when the blur kernel is known. However, here we approach the problem of blind image

restoration using the framework of cluster analysis. Some of the very recent work on restoration

include the work by Foiet al. [59], Figueiredo and Nowak [36]. Foiet al. solve the denoising

problem, but they do not address the deblurring problem. Thework by Figueiredo and Nowak
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[36] addresses the problem of image deconvolution. However, they do not consider a spatially

varying point spread function. Our interest in this chapterlies in solving the blind restoration

problem when the PSF is spatially varying. The literature isvery sparse when one consid-

ers the problem of spatially varying PSF. Rajagopalan and Chaudhuri [101] have solved the

corresponding restoration problem using a Markov random field (MRF) prior. However, their

method is strictly speaking, non-blind as they assume availability of multiple observations. In

this chapter we use a single observation and make no assumption about the image intensity

function such as being an MRF. Our approach yields a simple mean shift based technique for

solving the problem of blind image restoration which performs very well as compared with the

above mentioned methods. We now discuss and motivate the non-parametric mean shift based

method.

A basic methodology in solving problems in image processinghas been that based on

analysis of the feature space of an image where the features are either intensity based or other

specific features (for e.g. texture). This approach is centered around a mapping of the image(s)

to a multi-dimensional feature space. Lately this particular methodology has become popular

for solving interesting problems in low-level vision. A central task for feature space analysis is

that of cluster analysis. There have been various parametric and non-parametric approaches in

literature for cluster analysis [105]. These methods usually assume knowledge of the number of

clusters or that the clusters have same shape. There have also been methods based on Gaussian

mixture models, however, the mixture models also require the number of clusters as a param-

eter and, in general, the unstructured feature space cannotalways be characterized in terms

of a mixture model. In the analysis of arbitrarily structured feature space the non-parametric

approaches have been more suitable. The non-parametric approaches have been either hier-

archical or based on density estimation. In this chapter we use a method introduced in 1975

by Fukunaga and Hostetler [39] where the clustering is done by recursively shifting each data

point to the average of data points in its neighborhood. Cheng in [20] developed a more gen-

eral formulation and pointed out applications for the same in clustering and Hough transform,

as well as its role in global optimization. Recently Fashingand Tomasi [28] have improved

the understanding of mean shift as an optimization procedure by considering its equivalence to

Newton’s method and they have also proved that for all kernels the mean shift procedure is a

quadratic bound maximization. There has lately been considerable interest in applying mean

shift to problems in computer vision, based mainly on the work of Comaniciu and Meer in areas
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like discontinuity-preserving smoothing and segmentation [23] and tracking [23]. The idea of

mean shift based tracking has also been extended by accounting for a variable-bandwidth mean

shift by Comaniciu [22]. Related to this, Collins [21] has looked into the problem of tracking

blobs across scale space which accounts for variation in thescale of the kernel. The idea of

mean shift has also become popular for problems like appearance based clustering [103].

In low-level vision, non-parametric clustering has been used mainly in the areas of denois-

ing and segmentation [23]. The non-parametric clustering technique has been particularly apt

as the problems of low-level vision cannot be parametrized explicitly. Recently there has been

work done by Wanget al. in extending this approach for image and video segmentationusing

anisotropic kernel mean shift [58] and in interesting applications like video tooning [57].

In the next section we discuss the method of gradient based cluster separation. In section

6.2 we consider the mixed diffusion process which involves mean shift in both forward and

reverse directions. We then use these techniques to solve the problem of image restoration

in section 6.3. The experimental results for these methods are presented in section 6.4. We

conclude in section 6.5.

6.1 Gradient Based Cluster Separation

A technique for clustering a set of points is to explicitly move the points in the direction of the

gradient of the kernel density estimates [23], [39]. Since the true probability density function

or even its form is not known, non-parametric techniques areused to obtain estimates of the

density gradient [26]. The approach is to obtain a differentiable, nonparametric estimate of the

probability density function and then its gradient is computed.

Let e1, e2, ...en be a set ofn independent and identically distributed random vectors in

thed-dimensional feature spaceRd andG be a symmetric positive definited × d bandwidth

matrix [23], [26]. Here, in the case of image restoration,e represents the gray/color intensity.

However,e in general could denote other vectors like texture. A fully parametrizedG increases

the complexity of the estimation and, in practice, the bandwidth matrixG is chosen to be the

identity matrixG = g2I. The bandwidth matrix determines the window width at each data

point. Therefore taking the bandwidth matrix as identity implies that the window width is

constant at each data point and is determined by the scalar value g. Then the kernel density
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estimator takes the form

f̂(e) =
1

ngd

n
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)

. (6.3)

wherek(e) is a bounded kernel function with compact support satisfying

lim
‖e‖→∞

‖e‖dk(e) = 0 and
∫

R⌈

k(e)dx = 1.

A differentiable kernel function is used and then the density gradient is estimated as gradient of

eqn.(6.3). This gives the estimate of density gradient as

∇f̂(e) =
1

ngd

n
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(6.4)

(6.5)

Eqn.(6.4) is the general form of the estimate of the density gradient. If one uses the

Gaussian kernel the resulting estimate of the density gradient is

∇f̂(e) =
1

n(2π)n/2g(n+2)

n
∑

j=1

(e − ej). exp

[

−(e − ej)
T

(

e − ej

2g2

)]

. (6.6)

In [39], the authors point out how eqn.(6.6) is essentially aweighted measure of the mean

shift of the observations about the pointe. In order to move the values, the estimate of mean

shift of the normalized gradient is used. The mean shift of the normalized gradient is

∇f̂(e)

f̂(e)
= ∇ ln f̂(e). (6.7)

This method is termed the mean shift algorithm by Comaniciu and Meer in [23]. In this

chapter we refer to this method as the forward mean shift algorithm, the reason for which will be

clear in a short while. When we relate to the diffusion process, it is termed as forward diffusion.

The method for gradient based clustering is a recursive algorithm to transform each observation

according to the clustering algorithm

ei+1
j = ei

j + a∇ ln f̂(ei
j). (6.8)

Herea is a constant which determines the rate of convergence of theclusters.

Figure 6.1 illustrates the process of clustering that occurs as a result of eqn.(6.8). The top

part of the figure shows the way the function∇ ln f̂ helps to move the features to cluster centers.

As can be seen, the features are moved along the gradient, bringing them gradually closer and

finally they all move towards the mean of all clusters.
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Figure 6.1: Illustration of the forward diffusion process in terms of image features. (a) At
t = t0, (when there is no blurring), the feature clusters are well separated. (b) Att = t1 > t0,
due to forward diffusion which introduces blurring, the features move closer to each other and
(c) at sufficient blurring, the feature clusters merge when they are indistinguishable. In the top
row we show∇ ln f̂(e) representing the gradient flow and below we show the time evolution in
feature space.
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This process of clustering is valid when one has a cluster containing erroneous measure-

ments and it is required to remove them, thus effecting denoising of the signal. An interesting

alternate case could be when the clusters are somehow mixed along the cluster boundaries and

it is required to separate the clusters, effecting oppositeof what was achieved in the previous

case. In other words, the signal would then get sharpened. This can be done by moving the

points away along the direction of the gradient estimate. Fig. 6.2 illustrates the resultant differ-

ence in the movement of the points. As previously, the upper half indicates the motion of the

estimate of the gradient of kernel and the lower half the actual evolution of feature values. This

is a type of inverse diffusion as the cluster separation process when done for an image results in

sharpening of the line fields. We term this as the reverse meanshift in line with the terminology

used in [23] and [20]. As can be seen from the gradient based part of the image, when the clus-

ters are mixed, the points along the cluster boundary are influenced by the neighboring mode

instead of their own cluster mode. Hence, when we move the points away (as can be seen in

the shaded region in Fig. 6.2), the values are moved away fromthe incorrect mode towards the

actual cluster center and then they get associated with the correct mode. Quite naturally, when

the mixing in the feature space is nearly complete, i.e., theresulting image is nearly homoge-

neous after having lost most of the spectral information, the reverse mean shift process would

fail to move the feature points, offering no deblurring. Butthis is quite expected as the gradient

would then be nearly zero. It has already been proved in the restoration literature [95] that the

quality of restoration goes down with increase in the blurring which implies that the feature

space becomes more and more inseparable and the reverse meanshift process would not be of

much help either. The equation for the gradient based cluster separation algorithm now takes

the form

ei+1
j = ei

j − a∇ ln f̂(ei
j). (6.9)

This is however, a divergent process. Hence, it is required to have a proper stopping

criterion for terminating this.

6.2 Mixed Diffusion

The generalized mean shift filter is defined to be a process of incorporating both forward and

reverse mean shift procedures in a unified manner. This is because the process of denoising is
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Figure 6.2: Illustration of inverse diffusion in the feature space (which has some blurring). As
we do the inverse diffusion, the feature space (bottom row) separate out by moving farther away
from each other. The gradient flow is shown in the evolution oftop row that explains why the
feature space gradually separate out. This is a divergent process.
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achieved through forward mean shift and the process of deblurring is achieved using reverse

mean shift. Both these operations being of contrasting nature, they should be combined very

judiciously.

The forward and reverse mean shift procedures are applied inthis chapter in an iterative

though inhomogeneous manner. The basic idea behind such a mixed diffusion is to cluster the

points around the “true” modes. This is due to the fact that the clusters with closely spaced

modes may be mixed together and they would have to be separated and the noisy data present

in a cluster may have to be removed. The method then is to first perform cluster separation so

as to separate the modes that are mixed. Being an inverse diffusion, it results in deblurring, but

this accentuates the noise as the intra-cluster distance isalso increased. The forward diffusion

is subsequently carried out to reduce the intra-cluster distance and remove the noisy data. The

process is repeated with either forward or backward mean shift being done till a stopping cri-

terion is satisfied. This is illustrated in Fig. 6.3. As can beseen from the gradient flow field,

initially the mixing of clusters along boundaries get resolved as was described in the reverse

mean shift procedure earlier. The points in the cluster are then moved along the gradient to the

cluster modes by the forward mean shift. This results in the individual clusters moving to their

correct or properly accentuated modes.

A pertinent point in forward diffusion for denoising has been a proper stopping criterion.

This is necessitated in order to control the diffusion when the noise is removed. This has

been addressed by Sporring and Weickert [115], Weickert [125] and Mrazek and Navara [77].

Sporring and Weickert [115] suggest the use of generalized entropies with intervals of minimal

entropy change indicating stable scales with respect to evolution time. However the entropy may

be stable over the entire interval and hence may not be a good criterion for stopping. Weickert

in [125] suggests that since the relative variance decreases monotonically from 1 to 0, it can

be used to measure the distance ofU(t) from the initial stateU(0) and therefore prescribing

a certain value for the variance may serve as a criterion for stopping. A better criterion has

been proposed by Mrazek and Navara [77] based on signal-noise decorrelation. They propose

a stopping timet = T such that the correlation given by

corr(U(0) − U(t), U(t)) =
cov(U(0) − U(t), U(t))

√

var(U(0) − U(t)).var(U(t))
(6.10)

is minimum. HereU(t) is the diffused imageU(x, y) at timet andU(0) is the initial image,

cov is the covariance andvar the variance. The idea here is that the noiseN and the signalU(t)
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Figure 6.3: Illustration of mixed diffusion in the feature space (which has both blurring and
noise). The inverse diffusion till timet1 results in the the mixed clusters being pulled apart and
the individual elements of clusters coming closer togetherat timet2 due to forward diffusion.
The top row shows the negative of the gradient flow till timet < t1 effecting reverse mean shift,
and subsequently the positive gradient field to effect a forward mean shift.
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are de-correlated and the residualU(0) − U(t) would initially be dominated by the noiseN ,

and hence as the image is denoised, the correlation criterion, which is basically the normalized

covariance between the residual and the image would be minimized. We use the same criterion

for obtaining a stopping criterion for the forward diffusion. Here we must mention that in the

initial formulation Comaniciu and Meer [23] had argued thatthere is no need for proposing a

stopping criterion during forward diffusion as the kernel bandwidth decides the convergence to

the mode and due to its convergent nature an explicit stopping criteria is not required. How-

ever, the use of the above criterion helps to achieve a tighter bound on the stopping criterion

irrespective of the kernel bandwidth.

For the reverse mean shift filter, the stopping criterion is even more important as this

being an inverse diffusion process, the procedure could very soon diverge unless it is stopped

properly. We formulate a stopping criterion similar to the one for forward mean shift, but instead

of minimization, one now has to maximize the expression. We consider the noiseN and signal

U(t) to be decorrelated. The residualU(0)− U(t) during the reverse mean shift process would

contain elements of both the noise and the signal. In the reverse mean shift process, the residual

would initially be very much correlated to the signalU(t). Beyond a certain point the residual

would mostly be dominated by noiseN . Hence, the stopping criterion used for the reverse mean

shift procedure is to do reverse mean shift till the decorrelation criterion achieves a maximum,

indicating that the residual at this point is maximally correlated to the signalU(t).

The actual procedure that we follow is to first start with the reverse mean shift procedure

(see illustration in Fig. 6.3. If the covariance of the residual with the signalU(t) increases,

this indicates that the residual is dominated more by the actual signal than the noise, signifying

sharpness of the signal and the reverse mean shift procedureis continued. Else, if the covariance

actually reduces, this indicates that the noise dominates the residual and no further sharpening of

the signal is possible and hence the direction is switched and the forward mean shift procedure

is carried out until the stopping criterion is met.

6.3 Image Restoration

In this section we first consider the case of deblurring in theabsence of noise using reverse mean

shift and then use the mixed diffusion procedure to perform image deblurring in the presence of

noise. The noiseless case is initially used to bring out the usefulness of the reverse mean shift
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(a) (b) (c)

(d) (e) (f) (g)

Figure 6.4: Result of inverse diffusion of the original testimage (a) which has been blurred (b)
using the gradient based cluster separation process is shown in (c). (d) depicts a zoomed portion
of the blurred input and (e) depicts the mesh plot for the same, (f) depicts a the corresponding
deblurred image and (g) shows a mesh plot for the same.

procedure.

6.3.1 Deblurring using Reverse Mean Shift

Consider a cluster in the case of image deblurring based on the intensity feature. The neigh-

boring pixels having the same intensity belong to the same cluster. The blurring process results

in bringing the clusters closer. Therefore, one can use the reverse mean shift procedure to per-

form deblurring or cluster separation. Since, the point spread function (PSF) is not known, the

kernel density functionk(x) in eqn(6.3) is not known. Hence, the non-parametric approach of

modeling the kernel density estimate is apt for this problem. The process of deblurring using

the reverse mean shift procedure is illustrated in the Fig. 6.4.

Fig. 6.4 illustrates how the process of gradient based cluster separation effectively deblurs

a blurred test image. Here Fig. 6.4(a) is the original image,and Fig. 6.4(b) is the blurred

observation. The process of blurring converts the step edgeinto a ramp edge. Fig. 6.4(c) shows
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the deblurred image which has been restored using the reverse mean shift method. This is

further illustrated in Fig. 6.4(d) by considering a zoomed-in portion of the blurred image. Fig.

6.4(e) displays the corresponding region as a mesh plot showing the step edge being replaced

by a ramp edge. Fig. 6.4(f,g) shows the corresponding restored image and the mesh plot.

The process of restoration does not make any assumption on the form and variance of the blur

kernel. This substantiates our claim that the process of gradient based cluster separation is able

to reverse the blurring process without any apriori knowledge of the PSF.

Mathematically, a Gaussian kernel used for kernel density estimation is able to exactly

restore the blur caused by any Gaussian PSF. Since any Gaussian kernel can be generated from

another Gaussian kernel by appropriately evolving it through a linear diffusion process either

in forward or backward direction. However, the kernel density estimation using the Gaussian

function can approximate other types of PSF quite well also.Strictly speaking, a Gaussian

kernel cannot be used to deblur an averaging kernel. Yet, as we have found empirically and

is shown using experimental results, the deblurred approximation is quite close to the original

image. Another alternate function which can be used for kernel density estimation is one based

on polynomial functions [113]. However, the Gaussian kernel being a very well behaved one, it

is used for the kernel density estimation in this chapter.

6.3.2 Restoration using Generalized Mean Shift

We now consider solving the complete problem as specified in eqn(6.1). The proposed solution

involves an iterative inhomogeneous application of the reverse and forward mean shift filter with

an appropriate switching criterion as described in the previous section. The cluster, as before,

is based on intensity of pixels. The resultant procedure when observed from the view-point

of cluster analysis works by first separating the mixed clusters by increasing the inter-cluster

separation. This however increases the intra-cluster distance as well. This is reduced by the

forward mean-shift which smoothens the noise present in thedata. An iterative application of

forward mean shift along the cluster interiors and reverse mean shift filter along the cluster

boundaries result in isolation of the relevant clusters andthereby one achieves deblurring as

well as denoising. However, a key factor which needs to be noted that in the region where the

reverse mean shift filter is applied (mainly along the edges in the image), the denoising is de

emphasized. During the process of reverse mean shift, the intensities are moved opposite to

the gradient of kernel density estimate, and hence the noisevalues are also enhanced. This is

63



(a) (b) (c) (d)

(e) (f)

Figure 6.5: Result of generalized mean shift of (a) the original test image which has been de-
generated with noise and blur as shown in (b) is obtained in (c) with (d) depicting the switching
criterion showing where the reverse and where forward mean shift happens. (e) depicts a mesh
plot of a cross-section of the noisy blurred input and (f) shows a mesh plot of the corresponding
restored result.

illustrated in Fig. 6.5.

Fig. 6.5(a) shows the initial test image. This image is degenerated by blurring it and

adding noise to it and this is shown in Fig. 6.5(b). The blur kernel used is Gaussian shaped

and Gaussian noise has a standard deviation of 20. The degenerated image is restored using the

generalized mean shift filter and the resultant image is shown in Fig. 6.5(c). The Fig. 6.5(d)

shows how the reverse mean shift occurs along the edges(shown in dark) and forward mean shift

occurs along the interior regions. This shows how the switching criterion is able to correctly

identify the cluster boundaries and the cluster interiors and deblur and denoise appropriately.

Fig. 6.5(e) shows an enlarged portion of the input image, showing its noisy and ramp nature

as a mesh plot. Fig. 6.5(f) shows the corresponding result ofrestoration as a mesh plot. It can

be clearly seen that the result is deblurred and denoised. However, due to the difficult nature of

the problem, one cannot do as much deblurring and denoising as was possible in the previous
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case. Hence it is possible to deblur the edges only to a limited extent since the noise gets

boosted. Thus, using the generalized mean shift procedure,it is possible to do both denoising

and deblurring.

6.3.3 Implementation Issues

The formulation presented in the eqn.(6.9) is quite generalenough as various forms of kernel

density functions can be incorporated. One of the common reasons for the blurring in an ob-

servation is the capturing of real images using a finite aperture lens where the object is not in

focus. In such a case the point spread blur function can be approximately modeled as Gaus-

sian [19]. Even if the original estimate of the kernel density function is not explicitly known,

the non-parametric kernel function generally provides a good enough approximation to the un-

known underlying model. Another criterion to be consideredis the bandwidth parameterg in

eqn.(6.4). Here the bandwidth parameter is assumed to be small and practically we have used

the bandwidth parameter to be 0.8 in this study. Moreover, the problem of deblurring also makes

an implicit assumption of being spatially correlated. Hence, the eqn(6.4) is modified as

∇f̂(e) =
1
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(6.12)

whereNe is a small neighborhood over which the computation is restricted to. In our study

we chooseNe to be a 7x7 window making the iterative updates very quick. The diffusion

coefficient used in the reverse mean shift procedure is set asa small value of 0.1 for stable

reverse mean shift. This is necessary to prevent any fast inverse diffusion due to spurious noise

that may be present in the data.

A factor which has to be taken into account during the implementation is the threshold

value to be used for saturating the inverse diffusion. The saturation threshold is a function of

the amount of blur in an image. If the saturation threshold islow, then the reverse mean shift is

stopped before the deblurring is complete. If the saturation threshold is high, then the reverse

mean shift process starts degenerating. This is because, though the clusters have been separated,

further reverse mean shift diverges the values within the cluster as well. This is illustrated in the

fig. 6.6, which is a plot of saturation threshold versus PSNR achieved for a constant Gaussian

blur kernel with variances 2.3 and 4.6 respectively appliedon the Lena image. As can be seen,

for a Gaussian blur with PSF 2.3, the optimal cluster separation threshold is 0.4 and for a PSF
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Figure 6.6: Plot of the cluster separation threshold (X Axis) versus the PSNR achieved for
Gaussian PSF with variances 2.3 and 4.6 applied on the Lena image.

of 4.6, the optimal saturation threshold is 0.8. Since, the amount of blur is not known apriori,

we set the threshold to be 0.5 times the current gradient value, i.e. we seta = 0 in eqn(6.9)

whenever

|ei+1
j − ei

j | ≥ 0.5|ei
j| ∀j. (6.13)

Another aspect that is of concern in the implementation of the generalized mean shift

filter is the kernels that have to be used for doing forward andreverse mean shift. For the

forward mean shift, we use the Epanechnikov kernel [20] and for reverse mean shift we use the

Gaussian kernel. The forward mean shift procedure being stable, for faster implementation the

accelerated convergence provided by the Epanechnikov kernel can be used. The reverse mean

shift, being a divergent process, it is required to use a morewell behaved kernel like a Gaussian

one.

6.4 Experimental Results

We now present the experimental results for both cases of deblurring alone and the simulta-

neous deblurring and denoising problems using the proposedmethod. Since there are a large
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number of image restoration techniques, we compare the performance of the proposed method

with only those handling a similar problem, i.e. blind and space varying deconvolution. Initially

we demonstrate the performance of the proposed reverse meanshift alone. This is tantamount

to deblurring an observation in absence of any noise. First,Lena image has been blurred with

a spatially invariant Gaussian blur with variance 3.0. Thisis shown in fig.6.7(a). The fig.6.7(b)

shows the result of the Osher-Rudin filter. The result appears to be an “impressionistic” out-

put of the original. This has been pointed out by the authors themselves in their paper [87].

Figures 6.7(c) and 6.7(d) show the results obtained from theAlvarez-Mazorra method [2] and

the Gilboaet al. complex diffusion shock filter [41], respectively. The results obtained using

these shock filters are not impressive. This is particularlybecause they are primarily designed

to handle both noisy and blurred images. In case there is no noise and only de-blurring needs

to be done, then they do not perform well. Fig.6.7(e) shows the result of using a blind decon-

volution algorithm ([10]). One can clearly observe certainringing effects in the result which is

very disturbing. Fig.6.7(f) shows the result of the proposed method. Our method is able to suc-

cessfully restore most of the blurred edges to their original form. This is primarily because the

density gradient determines a better estimate of the gradient direction in which the image has

to be restored compared to the original gradient being computed. The quantitative evaluation of

the various methods based on the peak signal to noise ratio (PSNR) metric is given in table 6.1.

The quantitative metric evidently proves that the proposedmethod performs significantly better

than the other methods. There is approximately a 6.5dB improvement over the classical shock

filter. It can also be observed that the method performs around 3.5 dB better than existing blind

deconvolution algorithm [10].

Next we consider the case where a space varying Gaussian bluris applied to the Lena

image. We have applied a radially varying Gaussian blur withthe variance ranging from 1.0

in the center to 2.0 at the boundaries in a radially symmetricmanner. The results are shown in

fig. 6.8. Fig. 6.8(a) shows the input image that has been blurred with a space varying blur. Fig.

6.8(b) shows the result of deblurring using Osher-Rudin shock filter, fig. 6.8(c) shows the result

of applying Alvarez-Mazorra shock filter, fig. 6.8(d) shows the result as obtained by applying

the complex shock filter proposed by Gilboaet al.. Fig 6.8(e) shows the result obtained by

applying the blind deconvolution algorithm and fig. 6.8(f) shows the result obtained by the

proposed method. As can be seen from the results, the proposed method performs well as
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Result of inverse diffusion of the Lena image which has been blurred as shown in (a)
using (b) Osher-Rudin shock filter, (c) Alvarez-Mazorra shock filter, (d) Gilboaet al. complex
shock filter, (e) blind deconvolution, and (f) the proposed method.

Table 6.1: Quantitative Evaluation of deblurring results based on the PSNR metric. The values
are in decibels.

Image Input Osher Alvarez Gilboa Blind Reverse

Data Set Rudin Mazorra et al. Deconvolution Mean Shift

Lena 28.09 21.51 20.95 21.50 28.96 32.22

(Constant Blur)

Lena 30.03 21.65 20.89 21.73 26.98 33.31

(Space Varying Blur)

Satellite 29.64 22.18 22.38 22.29 28.99 32.62

(Averaging Blur)
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Result of space varying blind deconvolution with (a) input image using (b) Osher-
Rudin shock filter, (c) Alvarez-Mazorra shock filter (d) Gilboaet. al complex shock filter, (e)
blind deconvolution and (f) using the proposed method.

compared to all other existing methods. This shows that the method can also handle spatially

inhomogeneous blur very well. The quantitative comparisonbased on PSNR as illustrated in

table 6.1 establishes that the proposed method successfully achieves much higher performance

compared to the shock filter or the blind deconvolution technique. It may be noted that the PSF

being spatially varying, the blind deconvolution results in a poorer restoration compared to what

was achieved in fig. 6.7(f).

The next experiment was done using real data set where a defocused image of a ball was

captured. The result of de-blurring is shown in fig.6.9(b). In this case a few disturbances can

be noticed. This is primarily a result of the quantization inherent when the data set is stored

using 8 bits/pixel. As a result the de-blurring process generates a few anomalies due to spurious

shocks being generated. We suggest the use of a higher accuracy of 16 bits while storing the

real data set to avoid the anomalies. Notwithstanding the above, it can still be observed that the
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(a) (b)

Figure 6.9: Performance of space varying blind deconvolution for a real aperture image where
(a) is the input image and (b) the result using the proposed method.

deblurring by the proposed method does successfully resultin a better and sharper image with

the letters on the ball being more clearly visible and the maton which the ball rests also being

more sharpened.

Now we consider a case where the PSF is not Gaussian. A spatialaveraging blur model

(rectangular function) is considered for a satellite image. This is a practical aspect particular to

a kind of satellite imagery. Since a finite duration rectangular function can never be obtained

by time evolving a Gaussian kernel either in the forward or inthe reverse direction, one can

never undo the effect of blurring completely in this case. Notwithstanding above, we would

like to show that the proposed method yields a very good approximation. We can observe in the

fig.6.10 that the method is able to successfully resolve the underlying details in the picture. Fig.

6.10(a) shows the original satellite image and fig. 6.10(b) shows the input observation which

is blurred with a rectangular PSF of width 8 in horizontal direction. Fig. 6.10(c) shows the

result of applying Osher-Rudin shock filter, fig. 6.10(d) shows the result of applying Alvarez-

Mazorra shock filter. The results demonstrate that the existing shock filters do not have much

success when the actual PSF is very different from a Gaussianone. Fig. 6.10(e) shows result of

deblurring using the blind deconvolution algorithm. Fig. 6.10(f) shows the result of deblurring

using the proposed method which is able to resolve the fine details very well. The PSNR metric

in table 6.1 clearly shows that the performance of the proposed method for this case is indeed

significantly much better (around 10 dB improvement over classical shock filter and 7dB over

blind deconvolution).

After having demonstrated the usefulness of the reverse mean shift procedure, we now

present the results for simultaneous deblurring and denoising using the proposed generalized

mean shift filter. We first test our method on the Peppers image. This image is blurred with a
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: Illustration with a 1-D blur kernel where (a) isthe original image which has been
blurred as shown in (b) in the horizontal direction, and the image is de-blurred using (c) Osher-
Rudin shock filter, (d) Alvarez-Mazorra shock filter, (e) blind deconvolution, and (f) using the
proposed method.

71



Gaussian PSF with a variance of 2.0 and corrupted with Gaussian noise with a standard devia-

tion of 20. The results are shown in Fig. 6.11. Fig. 6.11(a) isthus, a very noisy input image.

Figs. 6.11(b), (c) and (d) are the results of image restoration using Osher-Rudin, Alvarez Ma-

zorra and Gilboaet al. complex shock filters respectively. Of the three methods, the result from

the complex shock filter appears to be better although the texture is mostly gone. The Osher-

Rudin method just does deblurring but no denoising; hence the noise gets boosted. Fig. 6.11(e)

shows the result of restoration using the blind deconvolution method [10] which is sharp but

very noisy. The result of restoration by the proposed methodis given in fig. 6.11(f). As can be

seen the result by the proposed method is better than the results of other methods. The noise

has been smoothened, the texture has been mostly retained and yet the edges are quite sharp.

This is also verified by a quantitative comparison based on PSNR values which is given in table

6.2. We obtain an improvement of about 3.5 dB PSNR over its nearest competitor.

We now consider the case where the standard Mandrill image isblurred with an averaging

(rectangular) blur kernel of width 8 pixels and height 4 pixels and is perturbed with an additive

Gaussian noise having a standard deviation of 10. Purpose ofthe experiment, as previously

explained in fig.6.10, is to study the performance when the PSF is very different from being a

Gaussian one. The noisy input image is shown in Fig. 6.12(a).The result using Osher-Rudin’s

shock filter is shown in Fig. 6.12(b). The edges are considerably sharpened in this result,

however, the noise is not removed as expected (see the nose region). Fig. 6.12(c) shows the

result of Alvarez-Mazorra method. The noise is removed, however the resultant image mostly

has a piecewise constant appearance. Some of the whiskers are lost here and the facial hairs

pick up a different texture. Fig. 6.12(d) shows the result ofGilboa’s complex shock filter which

does a good job of deblurring and denoising, but the facial texture is lost. Fig. 6.12(e) shows

the result of deblurring using the blind deconvolution method. Here, the noise gets boosted

very significantly during the deconvolution process. Fig. 6.12(f) shows the result using the

proposed method which shows a denoising performance equivalent to that of Gilboa’s method.

But the edges are much better preserved in this method compared to Gilboa’s method as can be

seen from the eyes and the whiskers. The PSNR based comparison in table 6.2 shows that the

proposed method indeed does a much better restoration as compared to the other methods with

a significant 4dB improvement over the next best method. Hence we infer that the proposed

method can also efficiently handle PSF that is not specific to the chosen kernel.
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Table 6.2: Quantitative Evaluation of simultaneous deblurring and denoising results based on
the PSNR metric. The values are in decibels.

Image Input Osher Alvarez Gilboa Blind Generalized

Data Set Rudin Mazorra Deconvolution Mean Shift

Peppers 21.19 17.75 19.66 20.42 16.10 22.98

Constant blur

Mandrill 19.02 16.65 17.95 18.54 15.77 20.19

Averaging blur

Barbara 21.69 18.48 19.42 19.86 18.61 22.76

Space varying blur

The algorithm is then tested on the Barbara test image which is blurred with a space

varying Gaussian blur kernel where the variance is varied from 1.0 in the center to 3.5 at the

boundaries. The image is also perturbed by an additive Gaussian noise with a standard deviation

of 15. Fig. 6.13(a) shows the noisy input image. Fig. 6.13(b)shows the result of restoration

using Osher-Rudin shock filter, fig. 6.13(c) shows the resultof applying Alvarez-Mazorra shock

filter, fig. 6.13(d) shows the result of applying the complex shock filter by Gilboaet al. Of

the three methods the result from the complex shock filter is better in terms of denoising and

deblurring, although the scene texture is badly affected. Fig 6.13(e) shows the result of blind

deconvolution. The noise gets badly boosted in this method,though the image is much sharper.

Fig. 6.13(f) shows the result of deblurring and denoising using the proposed method and the

result is much better as compared to the result obtained by the complex shock filter as the noise

is substantially eliminated and the strong edges are betterdeblurred. However, we do seem to

have lost some texture in the scene in this case. A quantitative comparison in terms of PSNR

improvement given in table 6.2. The efficacy of our method is evident from the PSNR measures

given in table 6.2. The proposed method clearly performs much better (at least 3dB) than the

other methods. All these results substantiate our claim that the forward and reverse mean shift

algorithm can be effectively combined to simultaneously deblur and denoise images.
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(a) (b) (c)

(d) (e) (f)

Figure 6.11: Denoising and deblurring results of the Pepperimage shown in (a) using Osher-
Rudin shock filter in (b), using the Alvarez-Mazorra filter in(c), using Gilboa’s complex shock
filter in (d), using blind deconvolution method in (e) and theproposed method in (f).

6.5 Conclusion

In this chapter, we have addressed the problem of blind restoration of images and have shown

that it can be convincingly solved using the proposed idea ofgeneralized mean shift filter which

combines both forward and reverse mean shift filters using a switching criterion. The results

presented justify the suitability of the non-parametric approach towards addressing the blind

and space varying image restoration problem. The proposed technique does not require the

PSF to be of any specific form. It can also handle a PSF that is spatially varying. Since the

PSF is never estimated explicitly, no modeling of the PSF or the image field is required. It is

a very simple yet powerful technique for image restoration,which is also computationally very

efficient. We rarely required more than 10 iterations of eqn.to converge to the quality solution

as per the suggested stopping criterion.
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(a) (b) (c)

(d) (e) (f)

Figure 6.12: Blind restoration of the Mandrill image shown in (a) using Osher-Rudin shock
filter in (b), using the Alvarez-Mazorra filter in (c), using Gilboa’s complex shock filter in (d),
using blind deconvolution method in (e) and the proposed method in (f).

While the current method handles the problem of deblurring quite well, and also handles

deblurring in the presence of noise, the results obtained bydeblurring do not preserve the cor-

relation of the restored image with depth in the scene. This is because, the depth in the scene

is correlated by the diffusion equation. Hence, in the next chapter we explore a technique for

restoring blurred images by using the reverse heat equationso as to also preserve the correlation

of the restored result with depth in the scene.
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(a) (b) (c)

(d) (e) (f)

Figure 6.13: Space varying restoration results of the Barbara image shown in (a) using Osher-
Rudin shock filter in (b), using the Alvarez-Mazorra filter in(c), using Gilboa’s complex shock
filter in (d), using blind deconvolution method in (e) and theproposed method in (f).
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Chapter 7

Restoration using Stabilized Reverse Heat

Equation

The problem that is addressed in this chapter is one of de-blurring an imageY (x, y) that has

been blurred by a blurring kernelh(x, y) representing some physical process. We recollect that

as seen in eqn.(6.1)this problem is modeled by the followingconvolution relation:

Y (x, y) =

∫ ∫

U(t, τ)h(x, y; t, τ)dtdτ (7.1)

As is normally assumed the functionh(x, y) has the properties that it is non-negative, and

the integral of the functionh(x, y) is unity.

As shown by Guichard and Morel [48], the convolution of an image with a kernel is

proportional to its Laplacian and can be modeled by the heat equation as follows:

∂u(x, y, t)

∂t
= c△u(x, y, t), u(x, y, 0) = I0(x, y) (7.2)

Hereu represents the image being diffused using the heat equation, c is the diffusion coefficient,

△u is the Laplacian ofu andI0(x, y) is the initial deblurred image. The use of the heat equation

has also been used by Witkin [129] and Koenderink [62] in the formation of the notion of scale

space. An important work along these lines has been use of anisotropic diffusion for edge

preserving denoising by Perona and Malik [90]. While there has been much work done on the

forward aspect of heat diffusion [106], relatively less work has been done on the reverse aspect

of the heat equation. The reverse heat equation is ill-posedand so its use has been limited.

Osher and Rudin [109] in their work proposed the use of “shock” filters which are hyperbolic

partial differential equations. These are stable and have good convergent properties. However,
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they provide piecewise constant results and do not achieve true deblurring. Another work has

been the use of stabilized inverse diffusion equations [91]by Pollaket al.. They also use an

approximation to the inverse diffusion which has a physicalmotivation. However, they also

do not approach the true reverse heat equation. A very recentwork [14], has explored the

use of reverse heat equation with a non-local means based additional criterion. They perform

alternating steps of reverse heat and non-local regularization. The alternate formulation that

we provide is simpler. Here, we solve the problem of deblurring by using the reverse heat

equation. Since the reverse heat equation is ill-posed we stabilize it by controlling the disruption

of edges. This is achieved by adding a normal component of theheat equation in the forward

direction. We also formulate a stopping criterion for terminating the reverse heat equation

process when the deblurring of the image is completed. In thenext section we discuss the

reverse heat equation and its stabilization.

7.1 Stabilized Backward Heat Equation

The reverse heat equation is given as

∂u

∂t
= c△u

u(x, y, τ) = I(x, y) (7.3)

where△u denotes the Laplacian ofu, I(x, y) is the blurred observation andc is the diffusion

coefficient. We have to find the solution

u(x, y, 0) = I0(x, y). (7.4)

This is achieved by reversing time in the heat equation

∂u

∂t
= −c△u, u(x, y, 0) = I(x, y). (7.5)

However implementing eqn(8.3) can be done only for a few timesteps and then the resulting

image blows up due to the high pass nature of the resulting operation. It boosts the noise,

especially along the edges where the Laplacian has high values. Explicit edge information can

be considered in the heat equation by considering the geometric form of the heat equation

∂u

∂t
=
∂2u

∂η2
+
∂2u

∂ζ2
= uηη + uζζ. (7.6)
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Hereη refers to the normal andζ to the tangential direction. The diffusion along the normalis

given by

uηη =
uxxu

2
x + 2 ∗ uxyuxuy + uyyu

2
y

u2
x + u2

y

(7.7)

and the diffusion along the tangent is given by

uζζ =
uxxp

2
x − 2 ∗ uxyuxuy + uyyu

2
y

u2
x + u2

y

(7.8)

Since the diffusion along the normal diffuses across the edges and diffusion along the tangent

continues along the edges, the blurring in an image is causedmore due to diffusion along the

normal. Therefore in order to stabilize the reverse diffusion, the reverse diffusion across the

edges has to be done at a slower rate as compared to reverse diffusion along the tangent. The

diffusion along the normal is a more divergent process and has to be done at a slower rate. Thus

in order to stabilize the reverse diffusion we add a forward component of diffusion along the

normal. The resultant stabilized form of the heat equation is given by

∂u

∂t
= −c△u+ βuηη (7.9)

Here we usec > β in order to ensure the overall reverse nature of the diffusion. The diffusion is

carried out until a stopping criterion is reached which corresponds to the initial required solution

I(x, y, 0).

7.2 Relation to Other Techniques

We now consider the analysis of shock filters and Kramer’s algorithm as explored by Guichard

and Morel [48]. Osher and Rudin in their “shock filter” formulation, proposed the following

equation
∂u

∂t
= −sign(△u)|∇u| (7.10)

where∇u is the gradient ofu. This equation enhances the Marr-Hildreth edges. Kramer defined

a filter that sharpens blurred images by replacing the gray level value at a pointx by either the

minimum or the maximum of the gray level values in a circular neighborhood. Guichard and

Morel [48] proved that the PDE underlying the Kramer filter is

∂u

∂t
= −sign

(

∇2u(∇u,∇.u
)

(7.11)

where∇u is the gradient ofu and instead of the Laplacian, the directional second derivative is

used. This filter enhances the Canny edges. While, both thesefilters perform edge enhancement,
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they are not equivalent to the actual reverse heat equation,as compared to the proposed approach

which is based on the reverse heat equation itself.

The non-local reverse heat equation proposed recently [14]is closely comparable to the

proposed technique. The non-local reverse heat equation isgiven as

∂u

∂t
= −△u+ λNL0u (7.12)

where

NL0u(x) =
1

C(x)

∫

exp
Gσ ∗ |u(x) − u(y)|2(0)

h2
u(y)dy, (7.13)

whereC(x) is the normalizing factor,h acts as a filtering parameter andGσ is the Gaussian

kernel with standard deviationσ. HereNL0 is the non-local means filter [13] and it means that

u(x) is replaced by a weighted average ofu(y). The weights are significant only if a Gaussian

window aroundy looks like the corresponding Gaussian window aroundx. This approach is

certainly interesting. The main difference, as is evident by comparing eqns(7.9) and (7.12),

is that in our approach we rely more on the local normal component of the heat equation to

stabilize the equation as compared to the non-local component used by Buadeset al.. Since the

objective has been to closely approximate the reverse heat equation, the damping by using a

normal component of the heat equation itself satisfies this criterion in a better way.

7.3 Stopping Criterion

Consider the eqn(7.3) using which we have to estimate the initial condition given in eqn(7.4),

i.e. we have to estimate the value ofu(x, y, 0) = I0(x, y). The eqn(7.5) has to be stopped when

u(x, y, t) = u(x, y, 0). However, here we do not know the value ofu(x, y, 0). An observation

that can be used is that the eqn(7.3) is valid only till timet = 0 and it breaks down if we go

beyond this time. The modified reverse heat equation given ineqn(7.9) will not be valid for

the value of timet < 0. Hence, beyond this point the solution will degenerate rapidly. This

observation can be used for stopping the reverse heat equation. If we consider the image as a

manifold with at leastC2 continuity, the degeneration of the solution can be detected by the

divergence of the curvature. In eqn (7.9), since the normal component is added, the tangential

term is diffused in reverse direction more rapidly. The tangential term corresponds to curvature

driven motion. Since, the curvature driven term is reversedat a faster rate, the degeneration

in this term happens before degeneration in the normal component. Hence, the divergence of
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curvature can be used as an indicator that the image approximates the desired initial image. Fur-

ther, when the divergence of the curvature happens, the degeneration in the normal component

would happen in a few more time steps, based on the differenceof the weightage given to them.

And hence, the degeneration of the curvature is a good indicator for stopping. The curvature is

given by

κ =
uxxu

2
x − 2uxyuxuy + uyyu

2
y

(u2
x + u2

y)
3/2

(7.14)

The eqn(7.9) is stopped when the change in curvature exceedsa threshold, i.e.κt > θ. Com-

paratively, the shock filter formulation [87] is a convergent procedure and does not require a

stopping criterion. In the non-local means based reverse heat equation [14], the authors suggest

stopping the reverse heat equation when the value of the Laplacian exceeds twice the value of

the initial Laplacian. But using this criterion results in certain artifacts being generated due to

the degeneration of the solution.

7.4 Implementation Details

In the implementation of the reverse heat equation, the boundary conditions were assumed to be

Neumann boundary conditions, i.e. the gradient is zero along the boundary. We now consider

the values of the various constants. In eqn(7.9) the values of c andβ are chosen to be small and

c > β. Additionally, they must be small enough to maintain Courant-Friedrichs-Lewy (CFL)

conditions. Here we have chosen values ofc as 0.2 andβ as 0.02. These values have been

empirically chosen. The value ofθ used for setting the threshold for change in curvature was

0.3

7.5 Results

We first justify the use of the proposed technique by considering the performance of the reverse

heat equation when used for deblurring without any modification. The results using the reverse

heat equation are shown in fig. 7.1(c)&(d). Fig. 7.1(a) showsthe original Lena image that is

blurred with a constant Gaussian blur with standard deviation 3.0. Fig. 7.1(b) shows the blurred

input image. Fig. 7.1(c) shows the result of using the reverse heat equation for 2 iterations.

As seen in the figure use of reverse heat effectively starts deblurring the input. But as can be

seen in fig. 7.1(d), which shows the resultant image after applying the reverse heat equation
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for 10 iterations, this equation is unstable and the values blow up quickly. We next evaluate the

proposed technique by experimentally comparing the methodwith the shock filter method [87].

Note that the proposed technique as well as the shock filter method do not use any information

about the nature of the blurring function and both perform blind deconvolution. Fig. 7.1(e)

shows the result of applying the shock filter. As can be seen while the shock filter preserves the

strong edges, the weak texture edges are strongly affected in this method. This is because the

shock filter does not approximate the reverse heat equation appropriately. Fig. 7.1(f) shows the

result using the proposed technique. As can be seen, the result achieves true deblurring as can

be seen from the texture on the hat and hair. Here the method took 19 iterations (as compared

to original reverse heat blowing up in 10 iterations) beforethe stopping criterion was satisfied

over the entire image. The result is closely comparable to the original image. Quantitative

comparison in terms of PSNR values establish around 1.5 db improvement over the input image

and around 10db improvement over the shock filter method.

We next consider an experiment of performing blindspace varyingdeblurring. We blur

a sand texture image obtained from the Brodatz texture database with a Gaussian blur function

with the standard deviation being increased from 1.0 to 1.5 from left to right. Fig. 7.2(a) shows

the input image and Fig. 7.2(b) shows the blurred input image. The input image is restored

using the shock filter and this result is shown in fig. 7.2(c). As can be seen, the shock filter

method results in a piecewise constant resultant image where much of the texture information

is lost. This particularly emphasizes the need for the proposed technique. Fig. 7.2(d) shows the

result of the proposed technique. As can be seen, using the proposed technique one can obtain

deblurring of the input image with very little artifacts being present. The results quantitatively

show around 3db improvement over the input image and around 3.7db improvement over the

shock filter method.

7.6 Conclusion

Here we present a technique which addresses the challengingproblem of blind space varying

deblurring. The problem is modeled using the heat equation and deblurring is framed as a

problem of solving the reverse heat equation. The unstable nature of the reverse heat equa-

tion is addressed by adding the normal component of the reverse heat equation in the forward

direction. A curvature based stopping criterion appropriately stops the reverse heat equation
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(a) (b: PSNR=29.1db) (c: PSNR = 29.82db)

(d: PSNR=9.33db) (e: PSNR=21.56db) (f: PSNR=30.48db)

Figure 7.1: Deblurring results for a constant Gaussian blurred Lena image (a) is the original
Lena image which is blurred as seen in (b) using constant Gaussian Blur. (c) shows the result
of using the original reverse heat equation for 2 iterationsand (d) shows the result on using 10
iterations of the reverse heat equation. This shows the instability of the reverse heat equation. (e)
shows the result of applying the shock filter [87] and (f) shows the result by using the modified
reverse heat equation.
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(a) (b: PSNR=16.46db)

(c: PSNR=15.94db) (d: PSNR=19.64db)

Figure 7.2: Deblurring of a space varying blurred input image where (a) is the input sand texture
image that is blurred with a space varying (ramp) Gaussian blur. (c) is the result of applying the
shock filter [87] and (d) is the result by using the proposed method.

without artifacts being introduced in the solution. The results obtained justify the feasibility of

the proposed theory.

We next consider the use of the reverse heat equation to obtain depth from a single defo-

cused image in the next chapter.
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Chapter 8

Depth from a Single Defocused Image

Shape from a single image1 is a task which has predominantly continued to elude computer vi-

sion researchers. While the community has gained considerable expertise to attack this problem

when provided with multiple images, the same cannot be said when just a single image from an

uncalibrated camera is provided. The task is quite dauntingcomputationally, inspite of the ease

with which the human system is able to achieve the same.

(a) (b)

Figure 8.1: A sample image of a scene captured with a low depthof field and the rendering of
the same scene in 3D based on the depth estimated using the proposed method.

In this paper we present a method to perceive the depth layersfrom a single defocused im-

age. The limited depth of field introduces a defocus blur in images captured with conventional

1Shape from shading problem [55] which recovers depth from a single observation is not considered here as it

is a model based approach, the model being a known reflectancemap.
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lenses based on the range of depth variation in a scene. This artifact has been used in computer

vision for estimating depth in the scene when multiple defocused images are provided. Here

we show that using this low-level cue it is still possible to perceive the scene structure using a

single image to a fairly good extent of accuracy.

The method proposed in this paper uses a single defocused image of a scene taken with

an uncalibrated real aperture camera having a low depth of field. We show that a surprisingly

large amount of information of the 3D scene can be inferred based on just the defocus cue in a

single image. In order to extract this information we face several challenges. The conventional

methods for estimating depth from defocus ([19],[35]) haverelied on multiple observations.

The differences in blur among various observations are usedas a cue for estimating the depth.

However, it is more natural for a photographer to take a single image. There are in general a

lot of beautiful images taken of natural scenes with a shallow depth of field, such as the image

shown in fig.8.1(a). In this paper we explore for the first timeas to what extent the blur can

be estimated even with a single image. From fig.8.1(a), any human observer can infer that the

flowering plant and the adjoining grass is closer to the camera than the waterfall. Can we teach

a computer to infer the same? The rendering of the 3D scene shown in fig.8.1(b) demonstrates

that it is indeed now possible to a certain extent using the method proposed in this paper.

The idea of using low-level cues for extracting a21
2
D sketch was proposed by Marr [75].

This forms a philosophical basis for our work. A successful approach for single image based

structure recovery has been that by Criminisiet al. [24]. Here the authors have used projec-

tive geometry based techniques for computing the scene structure based on the prior knowl-

edge of the vanishing line of a reference plane and a vanishing point. An interesting work has

been that of obtaining 3D pop-up kind of structure from a single image based on learning ap-

pearance based models of geometric classes and using this information for obtaining cutouts

([53],[54]). Another approach [110] based on similar linesuses images of scenes and their

associated ground-truth depth maps. It discriminatively trains an MRF using multi-scale local

and global image features and uses it to predict the depth mapas a function of the image. In

our method we do not need such explicit prior knowledge or learning. There is a related work

[123], where the authors do segmentation of images based on defocus cue by using the statistics

of the wavelet coefficients, but it is highly feature dependent.

86



8.1 Is depth from a single defocused image possible?

In shape from a single image using geometry, as done by Criminisi et al., one can use the

vanishing points and obtain distances from the vanishing point. This would establish a relative

scaling. Hence, it is feasible to obtain shape from a single image using geometric techniques.

One could also learn the geometric classes using data sets and classify the various geometric

classes as done by Hoiemet al.. The methods mentioned would not work if one is provided

with a single defocused image. This is because there would beambiguity in the precise location

of the vanishing point. Moreover, the blur would also affectthe classification of the geometric

classes. In such a case depth from a single defocused image would seem impossible.

However, here one could make use of the depth from defocus techniques which we have

considered so far. The techniques for depth from defocus arebased on estimating the blur.

All the methods proposed so far (as reviewed in chapter 2) usethe relative blurring between

two differently defocused images. Given two differently defocused images one could use the

techniques discussed in chapters 3, 4 and 5 to estimate the depth accurately. However, given

a single defocused image one cannot use the relative blurring between the two images. Here,

the challenge is to estimate the blur from a single defocusedimage. One approach would be to

restore the image and estimate the relative blur differencebetween the restored and the original

defocused image. This can however not be used generally as the process of deblurring or blind

deconvolution destroys the depth relationship between objects. The resultant depth estimate

would not be coherent. One can estimate the depth from a restored image only if the process of

deblurring carefully preserves the depth relationship.

In order to understand the depth preserving deblurring process we must take into account

the characteristics of the defocus blur. We have seen in chapter 3 that the defocus blur can

be modeled using the linear diffusion process. Hence, the depth based blur characteristic can

be preserved if we use the linear diffusion process in the reverse direction. The reverse heat

equation however is unstable. We have seen in the previous chapter how we could stabilize the

reverse heat equation for deblurring. We build up on the ideas of the previous chapter to obtain

a method for estimating the relative depth.
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8.2 Reverse Heat Equation

Given a defocused observation of a scene we would like to restore it using the reverse heat

equation. We recall that the reverse heat equation is given as

∂u

∂t
= c

(

∂2u(x, t)

∂x2

)

u(x, τ) = I(x), (8.1)

whereI(x) is the blurred observation andc is the diffusion coefficient. Here we are given the

blurred observation and we have to find the pin-hole equivalent image. That is we have to find

the solution such that it satisfies the original image

u(x, 0) = f(x). (8.2)

This is achieved by reversing time in the heat equation and the resultant is

∂u

∂t
= −c

(

∂2u(x, t)

∂x2

)

, u(x, 0) = I(x). (8.3)

As discussed in the previous chapter, the above equation degenerates rapidly. However, this

equation has been used for restoring images. The idea of using the reverse heat equation for

restoring images was first proposed by Gabor in 1965 [70]. Recently the use of the reverse

heat equation has been advocated by Buadeset al. [14]. They propose the use of the reverse

heat equation regularized by using the “non-local means” constraint. In this chapter we use

the reverse heat equation as given in eqn.(8.3). The reason for not modifying the reverse heat

equation as done by Buadeset al. is that the relation between depth and diffusion coefficientand

time is valid only for the heat equation. Hence, for an accurate depth estimation, the reverse

heat equation should be used directly. The main problem faced while using the reverse heat

equation is its divergent nature. Due to this the reverse heat equation remains stable for a short

while and then degenerates very rapidly. The key to using thereverse heat equation is to have

an effective stopping criterion that stops the reverse heatequation in its stable region. Note that

here we do not use the geometrically stabilized form of the reverse heat equation as proposed

in the previous chapter so as to preserve the depth based correlation of the deblurring as closely

as possible. Based on the experience of deblurring in the previous chapter we propose a way of

using the reverse heat equation to get an estimate of depth.

Koenderink [62] had referred to the use of heat equation in the reverse direction indirectly

in his work. He had observed that the notion of scale space in the reverse direction would be
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stable up to the initial condition and beyond that it would result in impulses being generated.

Taking this into account we have devised a stopping criterion that would effectively stop the

reverse heat equation at an appropriate time.

Consider the eqn.(8.1) where we are given a blurred observation I(x) and we have to

estimate the observation without blur i.e.f(x) that was the initial condition. However, we do

not know the value of the time either, i.e. we do not know how far in time should the reverse

heat equation be carried out. An observation that can be usedis that the eqn.(8.1) is valid only

till time t = 0 and it breaks down if we go beyond this time. The breakdown of the heat equation

is indicated by the degeneration of the gradient. Hence, theresultant formulation for reverse

heat equation is
∂u

∂t
= −β(x)c

(

∂2u(x, t)

∂x2

)

, (8.4)

whereβ(x) is given by

β(x) =











1 if |∇u−∇u| < θ

0 else
(8.5)

Here∇u is the gradient ofu and∇u is the average gradient in the neighborhood. The function

β(x) detects the degeneration of the gradient since the divergence of the gradient from the

average gradient is an indicator of the degeneration of the gradient. The stopping timet of

the reverse diffusion is then determined by the value of the constantθ. In our experiments

we have used a small value ofθ ranging from0.2 to 0.4. The use of eqn.(8.4) results in an

inhomogeneous stopping of the reverse heat equation based on the amount of defocus at a

location. The relative depth in the scened is then given by

d̂(x) =

∫ t(x)

0

c(x, t′)dt′. (8.6)

Here,d̂(x) is the approximate estimate of the depth at the locationx. An estimate ofd̂(x) for

the scene in fig. 1 is shown in fig. 3. Using the stopping condition proposed in the previous

chapter results in better deblurring performance, but the depth estimate obtained is quite weak

since the stopping condition proposed in the previous chapter stops the reverse heat equation

relatively early so as to prevent any degeneration in the restored image. Here, we need a better

depth estimate and so we use the stopping criterion as given in eqn.8.5.

It was demonstrated in [19] that the DFD method does not perform well in the absence of

any regularization of the estimate. Hence, the depth estimate is further refined by modeling the

depth as a Markov random field.
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Figure 8.2: The integrated diffusion coefficient of the reverse heat equation for the scene shown
in fig.8.1. The convention darker is the focused region (closer) is used throughout this paper.

8.3 DFD Using Graph Cuts

Using the reverse heat equation coefficient we can obtain an approximate estimate of the depth

in the scene using eqn.(8.6). However, in the regions which do not have texture, this depth esti-

mate is not valid. Hence, we define a Markov random field (MRF) modeled on the relative depth

(or blur) in the scene and solve it using the MAP-MRF framework [45]. We have discussed the

use of this MAP-MRF framework for estimating the depth usingtwo images in chapter 5. Here,

however, since we are using only a single image, the current usage of the MAP-MRF framework

is different, since here the likelihood used is different.

The depth estimate obtained using the reverse heat equationis a measure of the disparity

between the observed image and the restored image. Hence thedepth estimatêd(x) obtained

in eqn.(8.6) is taken as an estimate of the observed blurD, corresponding to the depth in the

scene, i.e.D is now the data term defined for a locationx. We define a set ofn discrete labels

corresponding to different depths in the scene.L = {l1, · · · , ln}. These labels are assigned

over the image for the relative depth in the scene given byw, one labelwx at each pixelx, that

maximizes the posterior probability given by the Gibbs distribution

p(w|D) =
p(D|w)p(w)

p(D)
=

1

Zw

exp(−E(w)), (8.7)

whereZw is the normalizing constant (or partition function). The energy corresponding to a

configurationw consists of a likelihood and a smoothness term as

E(w) =
∑

x

(

φ(D|wx) +
∑

y∈N

ψ(wx ,wy).

)

(8.8)
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Figure 8.3: The binary valued edge map obtained using Canny edge detector that is included in
the data likelihood for the scene shown in fig.8.1(a).

The likelihood termφ(D|wx) is derived from the initial depth estimatêd and the smoothness

termψ(wx, wy) is based on the prior on the depth in the scene. The neighborhoodN§ aroundx

considered is the eight neighborhood around a pixel.

The prior in the sceneψ(wx, wy) chosen to have the form

ψ(wx, wy) = ||(wx − wy)||2 (8.9)

We do not explore the choice of the optimal energy function that can yield the best results in

this paper.

An important issue here has been modeling the data likelihood term. Here we consider the

depth term from the reverse heat equation around the edges and consider an equal likelihood for

the data term where the edge is absent. Accordingly the data likelihood is given by

φ(D|wx) =











(

(wx − d̂(x)
)2

if M(x) = 1

η if M(x) = 0

(8.10)

Hereη is the default data value which is uniform for all labels and is used in case the edge

indicator functionM(x) indicates the absence of an edge. We use a binary valued Cannyedge

detector for the indicator functionM(x) and fig.8.3 shows a scene with its edge mapM . Since

the nearly homogeneous regions do not offer any informationabout the depth or the associate

diffusion, we give more weight to the edge pixels. Accordingly the value ofη is appropriately

chosen.

We minimize eqn.(8.8), thereby maximizing the posterior probability using graph cuts

([11],[12]). The graph cut finds the cut with the minimum costseparating terminal vertices,
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called the source and sink. Here, the terminal vertices are assigned the presence and absence

of a discrete label fromL. The graph cut is solved using alpha expansion [12] which allows us

to consider this method of using binary labels to minimize the cost over the entire setL. The

resulting energy function is

E(w1, · · · , wn) =
∑

i<j

Ei,j(wi, wj). (8.11)

Herew1, w2, ·, wn, correspond to vertices in the graph and each represents a binary variable

where they are either connected to the sink or to the source. These labels provide a discrete

approximation ofw and the corresponding minimization is same as minimizationof E(w) in

eqn. 8.8. For an energy function of this form it has been proved by Kolmogorov and Zabih [64]

that the function can be minimized provided that it is regular, i.e. minimization is possible if

and only if each term of the energy function satisfies the following condition:

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0) (8.12)

which implies that the energy for two labels taking similar values should be less than the energy

for the two labels taking different values. Since this is thecase for the energies defined by us,

we can find the desired configuration̂w by minimizing eqn.(8.8).

8.4 Results

We now describe the experiments that we have performed usinga variety of images. The first

experiment was performed on a synthetic texture data set. Here we provide a defocused input

image fig. 8.4(a). This shows a texture image from the Brodatztexture database which is blurred

with 3 different blur regions. The corresponding depth map estimated is shown in fig. 8.4(b)

and the ground truth for the data is shown in fig. 8.4(c). The quantitative comparison of the

estimated depth map with the ground truth showed that 95% of the pixels are labeled accurately.

We then tested our method on a general outdoor image of a beautiful spring scene fig.8.5(a).

This image is captured with a moderated low depth of field withthe focus on the flowers in the

foreground. The grass near the flowers is also in the foreground, whereas the waterfall is further

back and the sloping hills towards the left are furthest awayfrom the camera. All these details

are captured appropriately in the depth map shown in fig.8.5(b). The result is obtained using 16
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(a) (b) (c)

Figure 8.4: A texture map is modified with three blurred regions as shown in (a) and the resultant
depth map estimated using the proposed method is shown in (b). The ground truth for this
synthetic data set is shown in (c). Here we obtain accurate labels for 94% of the pixels.

labels of depth with a gradient degeneration thresholdθ in eqn.(8.5) of 0.2. The corresponding

data likelihood term from the reverse heat equation is shownin fig.8.2 and the edge map for the

scene is shown in fig.8.3. As can be seen from the recovered depth map, we are able to obtain a

very good estimate of the relative structure in the scene just from the single image in fig.8.5(a).

Fig.8.1(b) shows a rendering of the 3D scene.

We next consider an image taken from a sports scene shown in fig.8.6(a). As can be seen,

here the player2 is in focus and the spectators are out of focus. This image is interesting due to

the very low amount of texture present in the scene. The scenestructure is estimated using the

proposed technique and the result is shown in fig.8.6(d). Theplayer is clearly seen in front and

the spectators are seen in the background. Further details like the right arm of the player being

in front, the face being a bit behind the body can also be perceived.

We next consider a data set with complex lighting conditions. The input image fig.8.7(a)

shows a room with various artifacts. The figurines of puma areshows specular effects and there

are also other diffuse reflectors in the scene. The relative depth map obtained using the proposed

technique is shown in fig.8.7(b). This shows that the algorithm is able to estimate the relative

layers of depth even in such challenging situations.

2Darren Gough of England
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(a) (b)

Figure 8.5: An outdoor scene shown in (a) and the resultant depth map estimated using the
proposed method. Note that darker regions correspond to focused regions and lighter regions
correspond to defocused regions.

(a) (b)

Figure 8.6: A sports scene shown in (a) with low texture is considered. Even in this challenging
data set an appropriate depth map is obtained using the proposed method as seen in (b).
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(a) (b)

Figure 8.7: A scene with complex lighting conditions is shown in (a) and the resultant depth
map is shown in (b).

8.4.1 Ambiguity in Depth Estimation Using Defocus

When we try to perceive the depth in the scene based on the defocus cue, there is an underlying

assumption that all the objects are to one side of the defocuscone shown in fig. 8.8. A similar

amount of defocus blur is generated on both sides of the defocus cone as is illustrated in fig.8.8.

The same amount of blur is generated at the planes which are equidistant from the focus point

F. Hence, it cannot be discerned whether the objects that aredefocused are towards the front or

back. This ambiguity is evident from our next experiment.

We consider two images of dolls (courtesy [32]) where the focus is interchanged between

background and foreground objects. In the first case as seen in fig.8.9(a), the foreground is out

of focus and the background is in focus. The corresponding recovered depth map obtained using

the image is shown in fig.8.9(b). Note, that the depth map shown also captures the details like

the rightmost doll has its front portion more in focus than the back part and the depth variation

around the hands is also reflected properly.

When we consider the other image of the dolls where the foreground is in focus and

the background is out of focus as seen in fig.8.10(a), then theresulting depth map shown in

fig.8.10(b) will also be in the opposite direction. Here, thedepth map shows the foreground

portion in darker shade indicating that this region is in focus. Notwithstanding the above differ-

ence, a comparison of figs.8.9(b) and 8.10(b) shows that the recovered depth maps are mutually

very consistent.

Favaroet al. [32] have used the two images given in figures 8.9(a) and 8.10(a) to compute
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Figure 8.8: Illustration of image formation in a real aperture lens.

(a) (b)

Figure 8.9: The dolls scene (courtesy [32]) with the foreground defocused as shown in (a). The
depth map from the proposed method is shown in (b).
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(a) (b)

Figure 8.10: The dolls scene (courtesy [32]) with the background defocused as shown in (a).The
depth map from the proposed method is shown in (b).

the depth. In fig.8.11, we compare their results, with the results obtained from the proposed

method. The methods cannot ideally be compared since the authors in their method [32] have

used two images while we have used a single image. The result obtained by the method pro-

posed by Favaroet al. is shown in fig.8.11(a) and those obtained by the proposed method (for

the foreground defocused case for uniformity in comparison) is shown in fig.8.11(b). As can

be seen in fig.8.11, the results obtained by the proposed method are definitely comparable and

in some cases, as in around the rightmost doll, the depth map from the proposed method shows

more detail.

In a recent work, Hasinoff and Kutulakos [50] have proposed amethod based on confocal

constancy property in which the method of depth from focus can be seen to be a pixel matching

operation. However, as is common in depth from focus techniques, their technique requires a

large number of observations (hundreds of images, 13 aperture and 61 focal settings) of high

resolution. We have used just one of their images as shown in fig.8.12(a). Using the proposed

technique we obtain the depth map as seen in fig.8.12(b). As can be seen, we are able to obtain

consistent results with the most focused region being away from the center towards the left side

of the box. However, the left most end of the box is also slightly defocused. This is clearly seen

in our result. The right most end of the box is most defocused.Even this fact is seen in the result.

An important point here is the background which is defocusedis correctly identified as being

at the same level. Fig.8.12(c) shows the result obtained by using their confocal stereo method
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(a) (b)

Figure 8.11: Depth map obtained from the dolls scene for the method proposed by Favaroet al.
[32] using two images is shown in (a) and the result obtained by the proposed method is shown
in (b).

which uses hundreds of images. As can be seen, the results obtained are very comparable. In

certain regions like towards the center (near the edge), thedepth map shown in the confocal

stereo method appear to be at variance from the adjoining areas, whereas, the depth map from

the proposed technique is consistent. A very important factis that the proposed method clearly

identifies the background as being at a same depth which is definitely not the case in the result

using confocal stereo.

(a) (b) (c)

Figure 8.12: A box image (courtesy [50]) with a slope is shownin (a). The depth map obtained
using the proposed method with a single image is shown in (b).The result obtained from the
method in [50] using around 100 images
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8.5 Conclusion

In this chapter we demonstrate that it is indeed possible to recover the relative depth layers from

a single image using the defocus cue. The reverse heat equation can be used for restoring the

image in an inhomogeneous way based on the amount of defocus blur. The amount of reverse

heat diffusion serves as a data likelihood and using this likelihood around the edges, a graph cuts

based method is proposed to estimate the depth in the scene thereby enforcing regularization.

We have demonstrated by experimentation on a variety of testcases of real data that the method

consistently provides a correct perception of the scene structure.
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Chapter 9

Conclusion

In this thesis we consider in a unified manner the problem of depth estimation and image restora-

tion based on the defocus cue. The heat equation effectivelymodels the defocus cue. In this

thesis we consider various ways in which this model can be used for depth estimation and im-

age restoration. The use of a common underlying diffusion model helps us in solving both these

problems by considering various aspects of the diffusion process.

The first basic approach adopted by us was using linear diffusion. The linear diffusion

was done using defocus morphing of two defocused observations to generate the entire defocus

space of the observations. This method also demonstrated the equivalence between depth from

focus and depth from defocus methods as this method solved the problem of depth from defo-

cus using two observations in a manner similar to the depth from focus technique where many

observations are used to estimate the depth in the scene. This method used the spectral interpo-

lation property of defocus morphing to generate the defocusspace. Hence, the characteristics of

local spectral operations of windowing and inverse filtering in textureless regions characterized

this method. However, this first effort provided the base forexploring the use of diffusion for

both depth estimation and image restoration.

The limitations of the spectral method provided the necessary impetus for exploring the

problem in the spatial domain. In the spatial domain the problem of depth from defocus was

considered lately by Favaroet al.. However, unfortunately their method had a few shortcom-

ings. One of the important facts was that the linear diffusion based method suggested did not

adequately handle departures from the Gaussian assumptionof the point spread function. These

departures occur specifically around self-occlusion edgesand aperture imperfections. We there-

fore considered the use of stochastically perturbed diffusion (SPD). We have shown that use of
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SPD implicitly handles departure from the Gaussian assumptions. Moreover the stochastic level

sets based evolution also handles the non-convex nature of the diffusion.

We then used an MRF framework for representing the diffusioncoefficient. This frame-

work was necessary in order to incorporate the neighborhoodinformation in the estimation of

diffusion coefficient. The MAP estimate of the MRF frameworkwas done using the graph cuts

formulation, i.e using the alpha expansion algorithm. Thismethod has advantages like sym-

metric handling of diffusion coefficient and generalized framework for incorporating robust

regularization functions. These advantages helped in providing accurate results.

While the forward diffusion methods are quite stable, the reverse diffusion method is un-

stable due to the ill-posed nature of the reverse heat equation. We therefore proposed an al-

ternative non-parametric reverse mean shift technique which improved deblurring results as

compared to other partial differential equations based techniques like the provably convergent

“shock filters” of Osher and Rudin. We have used a stopping criterion based on cluster separa-

tion in order to terminate the reverse mean shift procedure.The reverse mean shift was further

extended in terms of a generalized mean shift technique thatcould be used for deblurring in the

presence of noise. An optimal switching criterion was used to determine the switching between

forward and reverse mean shift.

The non-parametric technique is a non-linear method for deblurring that approximates

the reverse heat equation. A better approximation is obtained by stabilizing the linear reverse

heat equation itself. The reverse heat equation is stabilized using geometric form of the heat

equation. Since the blur is predominant in the normal form rather than the tangential form,

the reverse heat equation is stabilized by damping the reverse heat using the normal form of

the heat equation. The stopping criterion is selected basedon the degeneration of the tangential

component as compared to the normal component. Using this technique appropriate blind space

varying deconvolution is achieved.

The use of reverse heat equation enables us to consider the challenging problem of depth

estimation from a single defocused image. While, depth estimation from multiple defocused

images has been explored, depth estimation from a single defocused image was considered

to be impossible. However, using the reverse heat equation we are able to estimate an initial

likelihood estimate of depth in the scene. The likelihood coupled with the edge information

is used in an MRF framework to estimate the dense depth in the scene. Thus we are able to

demonstrate depth estimation using a single defocused image.
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We have presented all the methods developed in the thesis with extensive experimentation.

The results are also compared in each case with state of the art related techniques. The ideas thus

proposed in the thesis provide an extensive exploration of the defocus cue in depth estimation

and image restoration based on the common underlying idea ofthe use of the diffusion equation.

9.1 Future Work

The focus of the thesis has been on analysis of defocused images for depth estimation and

defocused images. While we have built a coherent body of workin the thesis, there are several

interesting aspects which can be considered for future work.

• The defocus space concept allows one to generate a continuumof defocused images and

one can synthesize defocused observations. However, the windowed Fourier transform

used for generating the defocus space resulted in windowingartifacts being generated.

One would like to explore a corresponding spatial or spatio-temporal representation of

the defocus space which would result in accurate defocus space being generated. This

would have important applications in refocusing of images.

• The methods proposed for depth estimation from two defocused images did not assume

an explicit parametric form on the scene. There have been methods for structure recovery

that have leveraged the parametric form of structure in the scene. Hence, we would like

to explore in the future whether a corresponding parametricstructure technique can be

used for depth estimation.

• We would also like to further explore the possibility for joint depth estimation and image

restoration in a discrete optimization framework. Currentwork in discrete optimization

using graph cuts suggests that it should be possible to solvethe problem in such a frame-

work.

• There has been interesting work done where use of depth from defocus has been used as

a cue for super-resolution and inpainting. We would like to explore in the future whether

it is possible to use the diffusion framework to simultaneously perform depth estimation

and solve problems like super-resolution and inpainting.
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• While exploring the problems of image restoration we have seen that the problem of joint

deblurring and denoising of images is especially hard. We would like to consider reaction-

diffusion schemes or stochastic diffusion schemes which could adapt better locally to the

image information and appropriately carry out deblurring and denoising.

• We would like to further explore the use of priors in diffusion frameworks so as to be able

to perform better depth estimation and image restoration. There has been recent work that

have used prior information effectively for object segmentation and structure recovery.

• There has been considerable interest in machine learning techniques for depth estimation

from a single image using geometric class information [54],[110]. We would like to

consider using similar techniques for identifying the blurin images. This would help us

in devising better stopping criterion.

• We would lastly like to explore use of the techniques proposed for depth estimation from

a single defocused image, image restoration to improve the performance of other com-

puter vision tasks like content based retrieval, object segmentation and computational

photography.
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