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Abstract

An intrinsic property of real aperture based imaging is tharing of an observation due to
defocus. There are two major aspects related to the defdgupresent in the image. The first
aspect is based on use of the defocus blur for estimatingsibih éh the scene. The other aspect
relates to restoration of the image. This problem manifiésedf as a challenging blind, space
varying deconvolution problem. In this thesis we explorifudion based methods for depth
estimation and image restoration from defocused obsenati

We are given two observations of a scene that are taken viféreht camera parameters
and are defocused to different extents. We use the idea otdefmorphing in the spectral
domain to define a defocus space of observations from the bsergations given. The de-
focus morphing technique is obtained from the use of ling#usion equation. Based on the
defocus space we estimate depth in the scene and the piodssevation. The framework pro-
posed demonstrates the equivalence between depth frormudednd depth from focus based
techniques. Since the depth in the scene is varying, oneohaseta local spectral morphing
procedure using a windowed (short-term) Fourier transfofime windowing procedure intro-
duces artifacts in the defocus morphing procedure. We fiereonsider the defocus blur by
evolving the heat equation in the spatial domain.

The defocus blur can be estimated by evolving the diffusegpragion in the spatial domain.
This implies that the defocus blur kernel is Gaussian. H@mesn account of self occlusion
and aperture artifacts there are deformations of the Gaugsiint spread function. We there-
fore propose a stochastically perturbed diffusion modat timplicitly handles the departure
from the Gaussian assumption. We use stochastic level@epsdpagating the stochastically
perturbed diffusion and thereby estimating depth in thescén additional advantage of using
this technique is that a global minimization procedure igpdd instead of a convex gradient
descent technique. Thus problems of local minima are adaid#his technique.

The models of linear diffusion and stochastically pertdriogfusion, however, do not



incorporate spatial regularization effectively. We addréhis issue and use a pairwise Markov
random field (MRF) representation for estimating the diffuscoefficient in the scene. We
use a graph-cuts based method for obtaining the maximumtarpos (MAP) solution of the
MRF. By using the neighborhood information we obtain a ragaéd solution which is more
accurate.

We then consider the problem of restoration of blurred insag@wards this end we
propose the use of a non-parametric method based on revemse shift. The reverse mean
shift procedure is divergent. We therefore use a stoppiibgrion based on cluster separation.
Due to the non-parametric nature of the formulation the n&venean shift procedure can be
used for blind, space-varying deblurring. However, thisrea be used to handle deblurring in
the presence of noise. We therefore propose a generalizad shét method which combines
the forward and reverse mean shift procedure. The switchetgeen the forward and the
reverse mean shift procedures is done based on correlaiierian defined on the residual and
original observation. As a result, where there exist streages that are blurred, reverse mean
shift procedure operates and in areas that are texturélessrivard mean shift is active and so
we are able to achieve both denoising and deblurring. Homewe to the opposite nature of
deblurring and denoising procedures, the result obtamedmewhat constrained.

Consider an image which is blurred using a Gaussian kernelthis case, the non-
parametric method due to its non-linear nature would noiobthe exact deblurred image.
It would obtain only an approximate solution for the delihgr The formation of defocused
image can be better modeled using the heat equation. Therafoetter solution for deblur-
ring an image is obtained by using the reverse heat equalimte the reverse heat equation
is an unstable procedure we propose a technique for geaaitrstabilizing the reverse heat
equation. Though the non-parametric technique for deblgierforms better restoration, the
stabilized reverse heat equation demonstrates how evka Imear case one can obtain accept-
able deblurring performance.

We then consider the problem of depth estimation from a sidgfocused image. While,
it is possible to estimate depth using two defocused imatpesestimation of depth from a
single defocused image is considered to be impossible. \&e dhat it is still possible to
perceive the depth in the image using only a single defocabsdrvation. Since defocus can
be modeled using the heat equation we use the reverse hadibego formulate a technique for

depth estimation from a single defocused image. The datstreont is derived by considering



the reverse heat diffusion coefficient along the edges amgtbblem is solved in the MAP-
MRF framework using graph cuts. The results obtained detretesthat it is indeed possible
to obtain depth from a single defocused observation. Thasignportant contribution since it

underlines the fact that defocus as a cue is indeed a strang cu
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Chapter 1

Introduction

The use of computer vision is increasingly pervading evayylde with applications in enter-

tainment, security systems, industrial automation, neddsaging, biometrics and information
extraction. The increasing use of digital cameras in ewaplide poses fresh challenges and
interesting aspects that need to be addressed. There arefani@amental problems that are
always relevant in the field and form the basis for the develaqut of various applications.

They are problems like structure recovery from images, gnaghancement, object recogni-
tion, classification and tracking, rendering of novel imagm this thesis we address the first

two problems, that of structure recovery from images andygmenhancement.

1.1 Depth Estimation

Given a scene, humans have a tremendous ability for disgethie geometric relationship
among objects in the scene. While exact distance maps maifficaltito perceive, it is defi-
nitely possible for a person to be able to estimate the velatature of geometry of objects in
the scene in terms of ordering of the objects. In doing so msmaake use of various cues, both
geometric and photometric. Based on these cues there haslsdstantial amount of work
done on building systems for estimating depth. The geometres used are based on princi-
ples of stereo vision and motion. The photometric cues argetbased on shading, texture and
focus/defocus. The basic principle underlying the use esdar shape estimation from images
is that the depth in the scene is encoded implicitly basedhoset cues and by using these cues
it is possible to analyze the images and obtain the depth.

In depth estimation by geometric cues it is the geometraticaiship among various ob-



jects in the scene that encode the depth. In stereo based W& images of a scene are taken
from two different viewpoints (i.e. cameras placed at twoesate locations). There is a relative
disparity between the locations of the objects in the imagbis disparity is related to the depth
in the scene. Hence, there is larger disparity for objedseasito the camera and less disparity
in the locations of the objects in the images that are far dnay the camera. Based on this
principle it is possible to obtain the depth in the scenes based on this two-view principle that
humans predominantly perceive depth. Structure from mdathows a similar principle where

a moving object is captured and the relative movement offersstimate of depth in the scene.
While geometry offers a strong cue, it is possible to obtaptd by considering photometric
cues as well.

In depth estimation by photometric cues one uses the degtdbariations in shading,
texture and focus. In shape from shading, given an image ofm@eswith a known light source
and given a reflectance model one uses the variation of ghadiastimate the shape in the
scene. In shape from texture, instead of assuming that tleetance of the scene is known or
constant, one assumes that the deformation of individualte elements in the scene is due to
projective deformation caused by the variation in orieotaind shape in the scene and this is
used to recover the depth in the scene. These photometsaoadgo the assumptions are fairly
limiting in nature. An additional cue that is available ig&mms of the defocus generated by the
lens. This photometric cue is more widely usable as it iscédig by the camera parameters and
does not impose limiting assumptions on the scene. Hendkisithesis we explore the use of
this cue in depth estimation.

The fundamental principles of optics affect much of what @e sr capture using a cam-
era. The human or physical lens deflects the light rays andltkervation is captured on the
imaging plane or retina. The observation captured is detearby the geometric properties of
the lens. The objects that are around the focal plane arareagpsharply and those not in focus
are defocused in the observation. Hence by estimating tloeianof defocus blur it is possible
to estimate the depth in the scene. This is an innovative ugedimited depth of field of the
camera. While, conventional depth estimation methodsirequultiple cameras or necessitate
human motion, depth from focus/defocus methods requing@single camera but with multi-
ple camera parameter settings. This is particularly applecin scenarios like occular medical
imaging and industrial automation in constrained envirenta. An interesting application is

for depth estimation of intensely textured objects liker laaid artifacts where stereo matching



would lead to multiple spurious matches. There are alsossmEnwhere the baseline available
for stereo is very narrow and in such scenarios changingetieparameters are more feasible.
In the area of depth from focus/defocus there have been two approaches. The first
approach is depth from focus where many images are obtaineladnging the lens parameters
and in which each part of the scene imaged is in focus in at tessof the observations. Then
based on the lens to image plane distance and the thin lergi@yuhe depth in the scene
is estimated. Another approach is depth from defocus wheseéefocus blur in the scene is
estimated between two (or more) observations and theveleliange in defocus blur is used to

estimate the depth in the scene.

1.2 Image Enhancement

While we have seen that the presence of blur can be used asamagke in terms of obtaining
the depth map, it is often an unwanted artifact in usual imggcenarios. Due to real apertures
present in physical imaging systems, if an object is not anftital plane then the resultant
observation is blurred. This blur would be space invariattie objects are at the same depth
and space variant (which is the more usual case) if the abpaet at different depths. The
deblurring of images is an ill-posed problem. This is beeahs process of blurring is filtering
an image by low-pass filtering. Hence in order to undo thectsfef the filtering one has to
use inverse filtering which is an unstable process resuitingise boosting and high frequency
distortions. In the general case there would also be nossept in a blurred image. Hence
the general problem of image restoration would be to debidrdenoise a given image. The

problem is formulated as

Y(z,y) = //U(t,T)h(I,y;t,T)dth+ N(z,y). (1.1)

HereY (z,vy) is the observation/(z, y) is the original undegraded image(z, y;t, 7) is the
space varying blurring kernel anél(z, y) is the noise. The nois& (z, y) is often assumed to
be additive white Gaussian noise.

While eqgn.(1.1) is the general formulation of the restamragproblem there are several
specific cases that are explored in the literature. The fase ¢s the case where the point
spread functiorh(z, y) is known. In this case the problem is one of deconvolution. éren

challenging case is where the point spread function is notvkn This problem is termed as



blind deconvolution. In most cases the kernel is assumea tshift invariant. The problem
of blind space varying deconvolution is a very difficult plein where one has to restore the
image without knowing the kernel. The problem of debluriimgsually solved in the absence
of noise. The presence of noise makes the deblurring préeedsr because the process of de-
blurring increases the high frequency information and ttee@ss of denoising reduces the high
frequency information. Hence the joint deblurring and dsimg problem is a very challenging
problem. We discuss further in chapter 2 the approachesinsiee literature for addressing the
problem and we propose new techniques in the thesis formgptitie general problem of image

restoration. We now discuss the actual model of image faomand defocus generation.

1.3 A Real Aperture Imaging Model

Consider the image formation process in a real aperture reagmaploying a thin lens [19].

When a point light source is in focus, all light rays that adiated from the object point and
intercepted by the lens converge at a point on the image pl&is is illustrated in Fig. 1.1.

When the point is not in focus, its image on the image plan®@i®nger a point but a circular
patch of radiugr that defines the amount of defocus associated with the dépkie goint in

the scene. It can be shown that [19]

1 1 1
_ i 1.2
o prv(F . Z) (1.2)

wherer is the radius of the aperture,is the lens-to-image plane distandejs the focal
length of the lensZ is the depth at that point andis a camera constant that depends on the
sampling resolution on the image plane. From the egn.(1e2)ete tha = (r, F, v) defines
the camera parameters each of which may be changed to effi@ér@nt amount of defocus

blur for a fixed depth.

1.4 Diffusion based modeling of defocus blur

The process of blurring an image can be obtained as a corwoluith a point spread function.
The point spread function used to model defocus blur is thes&an kernel. This model of
defocus blur enables us to model the defocus blurring psoteterms of the heat equation.

Koenderink [62] had shown that the Gaussian convolutionehtitht is used in the context of



Figure 1.1: lllustration of image formation in a convex lens

scale space is equivalent to diffusing an image using thedugetion given by

ou(z,y,t)
ot

= cAu(z,y,t) (1.3)

whereu(x, y,t) represents the intensity of an imagie:, y) andAw is the Laplacian op-
erator. This procedure can be modeled by the heat equaterne, Hhe amount of blurring of an
image is given by the coefficient of diffusien Since, in general the depth in the scene varies,
the diffusion would also correspond to diffusion in an infeganeous medium with the differ-
ing diffusion coefficient corresponding to the various dhesgh the scene, i.e. instead of a space
invariant diffusion coefficient: we have a space varying diffusion coefficiefit, y). In this
thesis, we propose various methods for estimating thesidfucoefficient in order to estimate
the depth in the scene. Given two images of a scene, thergvarapproaches for estimating
the depth in the scene. In the first approach we diffuse anerfragn the more focused image
to the defocused image (it is possible to distinguish thesegusimple techniques). In doing
so, the diffusion coefficient can be estimated. The secoptbaph uses reverse diffusion to go
from a focused image to its pin-hole equivalent observatibms is a difficult technique due
to the unstable nature of the reverse diffusion proceduneour thesis we pursue both these
techniques for estimating the inhomogeneous diffusiorifictent by successfully solving the
various challenges posed in using both these techniquesddtails pertaining to each of these
are discussed in later chapters.

The problem of space varying blurring of an image is also ictamed from the restoration
perspective. The space varying nature of blur is quite ehglhg especially when the model

of the blurring procedure is not known. Using the diffusi@mrhulation we propose inverse
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diffusion procedures which reverse the blurring proceslamed use specific stopping criterion
in order to obtain the appropriate deblurred observativisile this procedure suffices for de-
blurring an image in the absence of noise, it fails when therbd observation is also corrupted
with noise. We consider these cases by using mixed diffusiortextureless regions which
contain mainly noise, we use forward diffusion and in regiarich have strong edges which
are blurred we use reverse diffusion. This approach enaBlessolve the challenging problem
of blind space varying deconvolution, including the casel@fonvolution in the presence of

noise.

1.5 Contributions of the thesis

In this thesis we address two related but specific and clgatigrproblems, the first being depth
estimation from defocused images and the second beingdpack varying deconvolution. We
formulate a principled approach towards addressing babetiproblems using an underlying
framework based on the heat equation, i.e. diffusion foatnoh. While, there have been spe-
cific instances of works which have used a similar formulatithere has been no sustained
effort at addressing the problems in their entirety as ha leone here. In this thesis, we
have explored spectral as well as spatial formulations tdales modeled using the diffusion
equation. The deterministic and stochastic approachesliath been used for evolution of the
heat equation. We have studied both forward and reversesdifi procedures and have also
considered the issue of stopping criterion which is impartathe reverse diffusion procedure.
Since, in real images there are several regions that arerédass, we require effective regu-
larization to solve the problem. This has been consideredsoyg a MAP-MRF framework.
While there have been several methods which use multiplgaeshéor depth estimation from
defocused image, there has been no method for depth estinfiatin a single defocused image.
Here we show that depth can be perceived even from a singbewsfd image. Summarizing,

the various contributions of the thesis are as follows:

e We have used the linear diffusion principle for depth estiomafrom two (or more) de-
focused images. The use of linear diffusion was done by géingra defocus space of
images using the defocus morphing principle. The processarphing is done locally
using the windowed Fourier transform. In the spectral dontae defocus morphing

technique explains how an in between observation can baeasized from two other ob-
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servations using interpolation in the frequency domairhefgignals where the spectral
coefficients are raised to the interpolating factor (in a neusimilar to root filtering). We
also show that an extended defocus space can be generatedonbecan extrapolate the
defocus blur beyond the range of defocus blur in the two olasiens. The extrapolation
is bounded on one end by the pin-hole observation. The ottteewentually converges to
the average signal value. We use a band-pass filter to de&eatturrence of the pin-hole
observation. We use the detection of the synthesized dmdiiservation as a means for
estimating the depth in the image. As a by-product we alsaiolihe pin-hole equiv-
alent observation. The method illustrates the equivale@idbe depth from focus and
depth from defocus methodologies. The drawback of thisagtr is windowing effect,

ill-posed nature of extrapolation especially in textussleegions and limited accuracy.

The drawbacks of the spectral approach can be addressedhbilenng the diffusion
equation in the spatial domain itself. This was shown by Faed al. [32] in their
work on depth estimation using diffusion. There were howéwe drawbacks that were
not addressed. The first was that there are specific case# oteskision and aperture
aberrations which result in departure from the Gaussiannagson of the point spread
function. The second point is that in their method Fawetral. have used gradient de-
scent scheme which allows only convex minimization of thection. However, since in
general the structure of the scene is not convex, it is plesthiat the local minimization
approach provides convex approximate results. Thesegaiataddressed by formulat-
ing a stochastically perturbed diffusion scheme. The sisiit perturbation implicitly
handles the departure from the Gaussian assumption. Ttteestiically perturbed diffu-
sion is evolved using a stochastic level set technique wlindures that the non-convex
nature is handled appropriately. This method is shown toue quseful especially in
handling depth estimation of complex objects like hair amd However, this method
estimates the depth at each pixel independently withowtrparating the neighborhood

information. As a result, in textureless areas the depimastd is ambiguous.

In order to solve the problem of non-unique depth estimatdasxtureless scenes, it is
required to incorporate spatial regularization. Towahds €nd, we use a Markov ran-
dom field (MRF) framework for representing the diffusion ffmgent. Here, the Markov

random field network is connected pairwise to form a grid thla¢s into account the spa-



tial neighborhood relationship. The solution of pairwis&Mis done using graph cuts
framework. Then expansion algorithm is used for estimating the variancéefpoint
spread function which corresponds to estimating the ddfusoefficient and thereby the
depth in the scene. This representation also allows a synupedcedure for estimating
the diffusion coefficient, i.e. itis not required to prepess images to classify the focused
and defocused regions in an image. In this framework it isibes to use robust regu-
larization functions, including truncated functions oétHuber kind and total variation

regularization. The resulting depth estimates are morerate

The methods considered so far used the diffusion equatitimeifiorward direction. An
interesting aspect is to consider the reverse diffusiomegu. While, the forward diffu-
sion blurs an image the reverse diffusion would ideally debh image. However, due to
the ill posed nature of the diffusion equation it is not pbksto directly use the reverse
diffusion. We therefore consider an approximation usirggghadient based cluster sepa-
ration. The forward counterpart is commonly known as themstuft technique and has
been demonstrated for denoising an image. We propose taeseemean shift technique
for deblurring an image. Since reverse mean shift is diverge suggest an appropriate
stopping criterion based on cluster separation factorrtoiteate the divergent procedure
in order to provide the deblurred solution. While this teciue can be used to achieve
blind space varying deconvolution in the absence of noisgrnot be used in the pres-
ence of noise. This is because due to the opposing naturéhirdag and denoising, the
deblurring procedure accentuates the noise in the obsmmvato address this we sug-
gest the use of mixed diffusion. The switching between fodaand reverse mean shift
techniques is done locally using an optimal criterion. Thiedon correlates the residual
with the image to decide whether forward or reverse mean &uhnique is to be used

and it achieves the desired result of denoising and debtyiof the image.

While the generalized mean shift technique approximatesiéblurring of an image, it
is not exactly equivalent to the reverse heat equation. \Weaansider the problem of
stabilizing the reverse heat equation itself. Instead iwfguson-linear schemes to approx-
imate the linear reverse heat equation, we show here thapiussible to geometrically
stabilize the reverse heat equation, thereby solving thblem in the linear case itself.

The heat equation comprises of a tangential term and a neenmal The normal term of



the heat equation contributes more to the blur in an image tt@tangential term. This
factor suggests that the differential evolution of the nalrend tangential term might
be beneficial. We therefore damp the evolution of the noreraht As a result at the
pin-hole equivalent observation point the tangential tdegenerates whereas the normal
term would not have degenerated. We therefore use the dedeneof the tangential
term as a stopping criterion for halting the reverse heaaggu and obtain the deblurred

result.

The success in the use of reverse heat equation for delgwfian image allows us to
consider the extremely challenging problem of depth egtondrom a single defocused
observation. There have been other techniques that hag&eoad the depth estimation
from defocus for multiple images, but depth estimation frarsingle defocused image
was so far not thought to be possible. Indeed, depth esbmabm a single image itself
has mostly eluded vision researchers except for a very flsteivhich either use learn-
ing or specific information like epipolar points (which réigusome human intervention).
We show that using the diffusion coefficient obtained usheyreverse heat equation as
a data likelihood it is possible to perceive the relativetdep the scene. The diffusion
coefficient is valid mostly near the edges and it is not valiteixtureless regions. Hence
we frame the problem in an MRF framework with the data liketid weighed with the
edge information. This framework is solved efficiently usgraph cuts and as a result
the relative depth in the scene is obtained. This clearBbdishes that defocus is a strong

cue.

1.6 Organization of the thesis

In the next chapter we consider the related work done tik dadetail. We especially review

the literature related to depth estimation from defocwus/éoand image deblurring problems.

The challenges that these problems present are evidenttfrewarious techniques that have

been proposed towards solving these problems. In chapter @gcribe the use of linear dif-

fusion principle for simultaneously estimating the deptll abtaining the pin-hole equivalent

image using the defocus morphing principle. In chapter 4 vesgnt the use of stochastically

perturbed diffusion for depth estimation from two (or modefocused images. In chapter 5

we discuss the recovery of regularized depth from multipf®dused images using graph cuts.
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While in chapter 3 we used a reverse diffusion technique timate the depth, in chapters 4
and 5 we use only the forward diffusion technique. We agamsicter the reverse diffusion

principle, but now consider its application for deblurriag image in chapter 6. This chapter
also discusses solution of the general problem of deblyiaimd denoising of an image. The
technique used in this chapter is a non-parametric one b@aséte mean shift procedure. In
chapter 7 we propose a geometrically stabilized reverseduggtion for image restoration. In
chapter 8 we culminate with the significant result of the thedere we present a technique for
depth estimation from a single defocused image using tle¥se\heat equation in a MAP-MRF
framework. We finally conclude in chapter 9 where we also warghe possibilities for future

work.
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Chapter 2

Literature Review

In this chapter the literature related to depth estimatsofirst reviewed and then the related
work done in image enhancement is considered. The literatwewed here gives an overview
of the various methods used towards solving these probMfesliscuss specific methods very

closely related to the contributions of the thesis in theegponding chapters.

2.1 Depth estimation

The primary consideration in depth estimation from images lbeen mostly on the stereo cue
and the related cue of structure from motion. These cuesemmetric in nature and there has
been substantial work done as evident from the works byeM#d[74], Hartley and Zisserman
[49], Faugeras [29] and Pollefegs al. [92, 93, 73]. While geometric cues have been exten-
sively researched by the vision community, there are phetooxues that are also relevant for
depth estimation. These cues include shading and defocimle Btereoscopic cues rely on
two (or more) cameras, the photometric cues can be usedeilodepth using a single camera
but with different parameter settings. These cues explarbasis on which people who have
defect in a single eye are still able to perceive depth. Hémeg are relevant biologically and
also practically as there are cases where only a single earaerbe used or where the baseline
distances are large that makes the stereoscopic deptlppercerroneous. In this thesis we
consider the cue of defocus blur for estimating shape indbaes The methods for shape from
texture are discussed by Forsyth and Ponce [38] and recekthas been done by Forsyth [37].
Shape from shading techniques are discussed by Horn [53)yaRdrsyth and Ponce [38]. Re-

cent work in shape from shading has been done by Prados agdrasl94]. We now consider
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the defocus blur based literature in detail.

2.1.1 Depth From Defocus (DFD)

The basic problem addressed in the depth from defocus mathgdis the measurement of the
relative defocus between observations. Broadly speakiregapproaches have been based on

active and passive techniques.

Active Techniques

The active method for depth from defocus was suggested bydGind Scherock [43]. This
was further refined by Pentlaret al. [89]. In active depth from defocus, a known pattern
of light is projected onto the scene. The optical path of trgguted pattern is maintained
same as that of the observing camera using an optical beatersflhe structured light source
projects a pattern on the scene while the camera recordsite $he original projected light
source is known, the defocus blur introduced by the deptharstene can be measured against
the original pattern and the blur introduced due to defocustaereby depth in the scene is
measured. This basic technique for active depth from defecas refined by Noguchi and
Nayar [85] for microscopic shape from defocus and Nagtaal. [83] and they proposed a real-
time focus range sensor. In these works the illuminatiotepato be used for depth estimation
is analyzed in detail. They performed careful Fourier asialyf the various aspects of the
defocus, illumination pattern and the focus operator usedieasuring the focus, and thereby
optimized the illumination pattern. Further, based on llenination optimization and the need
for dense depth estimation, the focus operator is tunedharese the depth estimation. These
refinements were used to develop a robust real time focu reegsor [83]. In [1] the authors
consider the integration of stereo disparity, focus andgjerece cue to build an active vision
system for surface reconstruction. The performance aisabfssuch a system was carried
out in [25] by the authors. There has been very recent worle dynMoreno-Nogueet al.
[76] where the earlier work done on active depth from defasuevisited. Here they use
this method to demonstrate active refocusing of images atebs. In this work a dot-pattern
is used instead of a stripe pattern so that the dot-patt@jegied can be easily removed while
refocusing the image. The authors also use segmentatiomégees for obtaining a dense depth

map. A similar work has been done by Zhang and Nayar [132]e ey use the projector for
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projecting a shifting light pattern and a set of images ofdtene is taken. The depth of a pixel
is computed by analyzing the temporal variation of the inghs of the pixel due to defocus.
While these works demonstrate the efficacy of active degtim flefocus, the main drawback
with the methodology of active illumination based methagithiat they require elaborate set-
ups and can be done only in carefully controlled environsmevith calibrated illumination

conditions. These requirements preclude the use of thebaitpies in outdoor environments

and natural conditions.

Passive Techniques

There has been considerable research done on the passhadmétepth from defocus. In the
passive method, two or more observations of a scene arewattedifferent camera parameters.
Based on the difference in defocus blur between the two vasens, the depth in the scene is
estimated. This method for estimating depth from defocusimt@oduced by Pentland [88]. He
suggested the use of a half mirror for splitting the obs@&ruednd then passing the observation
through two lenses with varying apertures. Then for eaclgemane could use a patch based
Fourier transform and based on the ratio of the windowediEptransforms one could obtain
the relative defocus. If one of the images is focused thenconé&l obtain the depth estimate
from the relative blur. An additional insight that was prasel in this work is that one could
use step edges and obtain a crude estimate of the blur faratteertain sharp edges. He further
explored the use of defocus cue by humans for estimatindhdepérms of human perception
related experiments justifying the use of defocus cue apthdrie similar to motion or stere-
opsis. Around the same time Grossman [46] presented a m&ihddpth estimation based on
defocus along similar lines. The edge detection was domgudarr-Hildreth edge operator
and the blur was measured using a simple metric based on ttike @fithe edge. The method
was tested using simple structured objects with well-ddfedges. These methods were sub-
sequently extended by Subbarao. In [120] Subbarao and Gxamtiny considered the method
of blur estimation from blurred edges in a manner similahtt done earlier by Pentland [88]
and Grossman [46]. They proposed a closed form solutiondtimating the blur parameters
and extended the earlier assumption of the point spreadidum@SF) from being Gaussian to
the more general case of being rotationally symmetric. 18]1Subbarao considered the usual
case of depth estimation from defocus by changing the capsemeters. The contributions

were in making the earlier method by Pentland [88] more rbhod in allowing changing of
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more than one camera parameters simultaneously. The nsebiasgéd on estimation of blur
from step edges were too restrictive and could not be widedyluThe approach for depth from
defocus based on using two or more images from different caperameters was further ex-
plored. In the earlier cases, ratio of windowed Fourierdfarms were taken for estimating the
depth in the scene. This approach was refined by Gokstorp [d4he work a local frequency
representation was adopted wherein local estimates @fmtesteous frequency, amplitude and
phase were computed. For obtaining the representationa setmplex-valued Gabor filters
are used where a large set of such filters are used each tuaetifterent frequency. The final
estimate of blur is computed by averaging the result fromvireus filters. A similar method
was also proposed by Xiong and Shafer [130]. They proposedenofilters to address the
problem of tuning the individual frequency components. pheperty of moment filters in that
it is a polynomial approximation with the order of the polymial being tuned for obtaining a
large number of narrow band filters. Due to the recursivemeBgsquency and spatial domain
moment filters can be implemented efficiently. While the rondthbased on narrow band filters
are attractive, typically it is computationally intensiaad to a large extent the accuracy is a
function of averaging over a large number of such filters. #fedent approach was adopted by
Watanabe and Nayar [124]. Here the authors suggest the searfband rational filters. The
technigue uses a normalized ratio of near and far imagesatbahen convolved with a small
number of broadband rational filters that are invariant etéxture. The method provided im-
pressive results. However, a shortcoming of the method idapendence on the assumption,
that, the normalized ratio of the near and far focused imeg@sear in nature. This assumption
is valid only when the amount of defocus between the near anohfages is very small and
will not work for a general class of defocused images.

We now consider methods based on the spatial domain. In {B&]authors suggest a
method for estimating depth from defocus using a matrix thaggproach. They propose the
estimation of the transfer function from the near image ® fir image using a regulariza-
tion based approach which is regularized by a circulantim#iat detects the smoothness of
a function and a diagonal matrix that penalizes the trarfsfestion for having nonzero tails.
This equation is solved iteratively. They show that theitimd performs better than previously
proposed inverse filtering solutions. An approach for démiim defocus using spatial decon-
volution was proposed by Subbarao and Surya [121]. Thishgeaed by using an operation

termed S-Transform. The method assumes a cubic polynoarnial &f an image and based on
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this model derive a formula wherein convolution and dectuv@an can be expressed in terms
of a simple Laplacian operator modulated by the second moafiéme PSF. The resultant depth
maps obtained were however not very accurate. A related tp#ious and Deschenes [133]
proposes a technique based on image decomposition usittetn@te polynomial basis. The
resultant computation suggests the explicit use of higihéer polynomial fitting. The blur is
computed from from image derivatives with the base casegbsimilar to the S-Transform
proposed by Subbarao and Surya [121].

There has been substantial work done by Rajagopalan andi@atowards solving the
problem of depth from defocus [19]. They first explored a klshift variant circulant blur
model for estimating the relative blur between two defoduseages in the Fourier domain
[98],[99]. The contribution here explicitly considerettontribution from neighboring blocks.
The authors then considered a space-frequency reprasaniaing complex spectrogram and
Wigner-Ville distribution [99]. They used these represgiains to estimate the relative blur. The
authors then incorporated a smoothness constraint thafpoates the blur information in the
neighborhood and solves the problem using calculus of tuani§l00]. The authors then used
a maximum likelihood (ML) estimator for recovering the defrom two defocused images of
a scene [95]. They also analyzed the effect of the degredatfuwe blurring on the accuracy
of the estimate of depth and they calculated the optimal carsetting for recovering depth
using the Cramer-Rao bound. They then improved their MLestor by proposing a method
for recursive computation of the likelihood function [9G]hey then modeled the relative blur
parameter as a Markov random field (MRF) to represent thd teg@endencies of the depth
[97]. Further on they showed how one could recover the depthiedl as estimate the restored
image by modeling both as separate Markov random fields dimdagsg the parameters using
simulated annealing [102].

Lately the problem of depth from defocus has been activghoerd by Favaro and Soatto
[35]. We now consider the specific approaches used by Favar&aatto in solving the prob-
lem of depth from defocus. In [34] the authors consider twecHr cases, one where the form
of the PSF is known and the other when the form of the PSF isawkn When the form of
the PSF is known the authors use a least squares solutiovingthe projection between
finite and infinite dimensional Hilbert spaces and is actddwe estimating a set of orthogonal
operators. They use functional singular value decompuwsftir estimating the operators. The

values are truncated beyond a certain singular value asddbults in regularization being in-
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corporated into the solution. If the form of the PSF is notwndhen they first learn the set of
projection operators from blurred images. They then usdetfuiat set of projection operators
to estimate the shape in the least square sense as doneughgvla [31], the authors analyze
the role of radiance, defocus and observability in a rigenmanner. In the previous approach
[34], the least squares solution does not enforce the dondhat the image is positive. In [31]
the authors ensure that all the quantities are non-negalivey pose the problem of estimat-
ing depth from defocus as one of reconstructing the shapdhenchdiance that minimizes a
measure of information divergence between blurred imags&sad of least squares. For solv-
ing this they use an iterative scheme that reduces the costidn with convergence to local
minimum based on Euler-Lagrange equation. Recently, ihFa%aroet al., have used the idea
of diffusion for estimating depth from defocus which is vesiynilar to our work. However,
there are a few shortcomings in the basic approach desdmpttem as it does not address the
problem of self occlusion appropriately. Further they d@doponvex gradient descent approach
and the resultant depth estimate obtained is only a locahmiapproximation of the true scene
depth. Very recently in [72], the authors consider the isggalibration for estimation of depth
from defocus and in [30], they explore the problem by takingp iaccount issues related to
convexity and using Bregman distances the authors provesmmfor estimating depth from
defocus. Lately there has been a work by Hasinoff and Kutddk1] where they use a layer
based restoration framework and are able to incorporatedygamic range (HDR), focus and
noise in a single framework and use alternating minimizatmestimate each of these while
holding the rest constant. These are addressed by us indbis.tiBesides this we are able to
greatly extend the work by achieving depth estimation frosingle defocused image. These
points are expounded further in the thesis.

Most of the methods in depth from defocus literature assuimidhe observations do not
suffer from occlusion. However it was brought out in [1124tlocclusion can occur in depth
from defocus techniques as well. Occlusion effects haweladen studied in [81]. The handling

of occlusion effects in depth computation was addresseg] iar{d [33].

2.1.2 Depth From Focus (DFF)

There are a number of papers in the literature which addnegsroblem of obtaining depth in-
formation from focus. This includes work by Nayar and Nakeg#?2], and work by Subbarao

and Choi [119]. The basic method followed has been to obtéferent focus levels by adjust-
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ing the camera parameters, i.e. either the lens to image plistance, the focal lengthf or
the aperture radius(cf. 1.1). The methods involve obtaining many observationghe various
camera parameters and estimating the focus measure usiogsveriterion functions. Krotkov
[66] has experimentally evaluated several such critegluting the Laplacian and Teningrad
operators. In [80] the authors discuss a method in which lifmadevaluated from the intensity
change along corresponding pixels in the multi-focus insagstead of using window-based
blur estimation operators. Recently Hasinoff and Kututalg®] have shown that for very high
resolution images the depth from focus can be seen to beeddoccolor comparison with
regions of an aperture-focus image representation for peeh. The fundamental weakness
of the DFF method is, however, the time required for imageusitipn. In practice about ten
or even more images are required to estimate the depth ofre $oe a reasonable level of

accuracy.

2.2 Image Restoration

The problems central to the task of image restoration argédanoising and image deblurring.
In the thesis we address the problem of image deblurring wathand without noise. In the
general sense, where the blur function is not known, thelpnolof image deblurring is one of
blind deconvolution. The methods adopted towards solviegé problem include regularized
inverse filtering techniques, Bayesian methods, partfédrdintial equations based techniques,
frequency and wavelet based techniques and restoratiog esige preserving regularization
techniques. Extensive review of these techniques aremessen [9], [5], [67], [122], [4]. We
now discuss only some of the related representative works.éwew the PDE based literature
in more detail as they are closely related to the work rebearin the thesis. There exists a
substantial number of works based on other methodolodiedrequency based and learning
based techniques, however, we do not undertake a comprebeagew of all these methods.
One of the commonly used techniques has been inverse fijtbesed on Wiener filter-
ing. An approach that suggests an iterative Wiener filtecifipally updating the covariance
estimates is communicated by Hillery and Chin [52]. Due witlhposed nature of the problem
there have been several approaches that adopt iterativklanegd techniques. In [60] the au-
thors propose an iterative constrained least squares fatimuthat converges using the method

of successive approximations. The regularization metlppdposed usually assume smooth
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properties and do not preserve edges. An approach was apysChan and Wong [17]
which used total variation regularization for estimatihg point spread function and also de-
blurring the image. The use of total variation allowed presgon of edges. Other approaches
have proposed use of wavelets for regularizing image dedoton [78], [84]. In [36] an EM
algorithm is proposed for wavelet based image deconvaiutio [117], the authors propose a
technique for combining curvelets and wavelets for imagmdeolution.

The methods described so far solve the problem of blind dexdotion when the point
spread function (PSF) is assumed to be the same througleuh#ge. The literature is rela-
tively sparse when one considers the problem of spatiaflying PSF. Rajagopalan and Chaud-
huri [101] have solved the corresponding restoration @wblsing a Markov random field
(MRF) prior. However, their method is strictly speakingnAalind as they assume availability
of multiple observations. The other methods that can be fespace varying deconvolution
are those based on use of partial differential equationsagsical approach for this problem is
that of using hyperbolic partial differential equationsted as shock filters. The shock filter
was first proposed by Kramer and Bruckner [65]. It is basedhenidea of using a dilation
process near a maximum and an erosion process around a mnifrhe decision whether a
pixel belongs to the influence zone of a maximum or a minimumasle on the basis of its
Laplacian. The ternshock filterwas first introduced by Rudin [108]. The experimental shock
filter by Rudin was based on a modification of the nonlineargéts’ equation. This model
was further improved by Osher and Rudin in [87], where thaltedriation preserving compu-
tational approach and the theoretical basis for the samelexadoped. Further, a modification
was suggested by Alvarez and Mazorra [2] where they incatpdra smoothing kernel in the
model. The relationship of these methods to the KrameriBrecfilter became evident later
([47], [111])

The recent work in this field includes work by Kimmelal. [61], Weickert [126], Gilboa
et al. ([40], [42], [41]) and Remaki and Cheriet [104]. In [61], Kinel et al. have developed
a shock filter based on a geometric framework and the inveifsisidn is carried out along the
edge. In [126], Weickert describes a coherence enhancigkdhter where the shock filter is
steered with the orientation information. In [40] by Gilbeiaal., the authors have modified the
diffusion coefficient in the Perona-Malik formulation [98hd they use a diffusion coefficient
which switches adaptively between forward and backwardisidn process. In [42], Gilboet

al. extend the work done in [40] and define a triple-well potdritzssed diffusion process which
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is an energy minimizer flow aimed at reducing oscillation®©amthree low energy states. In
[41], Gilboaet al. suggest complex shock filters based on the complex diffysiocess where
the diffusion coefficient lies in the complex domain. In [1,0dhe authors consider the problem
of shock filters in the framework of generalized functiond @nopose shock filters where the
speed of shock propagation is also controlled. In the thvesipropose two new techniques for
image restoration. They are compared with these technigneé$ave shown comparable or
better performance compared to these techniques.

In this chapter we have considered the literature relatedkfiih estimation and image
restoration in considerable detail. We now consider thesklpms in detail and propose diffu-

sion based techniques that solve these problems spegificatiefocused images.
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Chapter 3

Linear Diffusion

In this chapter we establish the use of the diffusion proé@ssodeling the blurring process.
The idea of diffusion has been one of the important methagetoin the field of computer
vision. It stems largely from the idea of modeling the imaglesgrvation) generation process
using the heat equation. The pioneering work was done byiiitk129] where he proposed
a scale space for images based on smoothing of images usiagssi@n kernel. Koenderink
in [62] proved that this was equivalent to solving the heatadgpn. This approach has sub-
sequently been widely used in low level vision tasks like sthing, segmentation and edge
detection.

Here we discuss how the linear diffusion principle can baldsedepth estimation based
on defocus as the cue. This was first explored by us in [79]eptldestimation using defocus
as the cue, the basic principle is to use the characterstit®ee imaging system. There have
been two methodologies in the literature, one is to obtaptidéom focus [66] and the other
to obtain depth from defocus [19].

In the procedure for obtaining depth information from focasequence of images of a
scene is obtained by continuously varying the distance &&twhe lens and the image detector
[119]. The corresponding fully focused observation is liycestimated from the sequence of
images. A measure of image sharpness is used to decide whsthgoint is in focus or not.
From the fully focused image point the distance of the cpwasing object point is calculated

using the standard thin lens equation

1 1 1
— =4 3.1
P Z + v (3.1)
whereF' is the focal lengthZ is the distance of the object from the principal plane amlthe
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distance of the focused image from the lens plane. For a gouglirg accuracy, one is required
to sample the observation space densely by changsiowly.

Consider a planar scene with the plane perpendicular togtieab axis. When the image
plane is kept at the focal point then all the points from thenpl scene are captured exactly in
focus. However, when the image plane is not in focus, therghsen is blurred by a circular
patch as can be seen from fig. (1.1). This is called the ecplifduservation. In general there
is variation in depth in the scene. Hence the resultant ehsen is not equifocal. The blur
in the observation thus varies spatially. In depth from defp given two images of a scene
recorded with different camera settings, one obtains amat# of the blur at each point [19].
Subsequently, by using the estimate of the blur, one carveedcbe depth information in the
scene with the knowledge of the lens parameters.

In this chapter we show that, given two observations obthinyetwo sets of lens parame-
ters as is commonly employed in depth from defocus, we casrgénthe entire set of images
in the defocus spacef the input images using the diffusion equation. The dedcspace of a
particular scene refers to the continuous space of all plessbservations obtainable by vary-
ing the lens parameters in between those two lens settirgs.cdncept is further elucidated
in section 3.2.3. In this method, the defocus blur is nev@lieily calculated as it is done
in depth from defocus techniques. Instead, by using diffusfor each pixel we can obtain
the corresponding fully focused observation in the defapece. using that observation and
the corresponding virtual lens parameters we can recoeetiépth information from the lens
equation. As a by-product, we also obtain the fully focusedhwmle image from these two
defocused observations. The diffusion process simulatesi¢pth from focus technique by
generating images in the defocus space of the observatiamy [eparate observations as re-
quired for the depth from focus technique are no longer requiln fact, using the diffusion
technique, the two modalities of estimation of depth candresiclered to be equivalent. This is
discussed further in section 3.2.4.

An extensive review of the literature for estimating the ttiefpom focus and the depth
from defocus was done in chapter 2. In the next section weaytwaéef overview of the related
work done. In section 3.2 we outline the theoretical basisttie formation of the defocus
image space of an observation based on the diffusion pro¢essection 3.3 we present the
basic algorithm for depth estimation using diffusion. lctgen 3.4 we analyze the procedure

and consider the practical issues involved in the impleatent of this method. In section 3.5
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we present the experimental results obtained. We conchelehtapter in section 3.6.

3.1 Related Work

In this chapter we use the technique of diffusion for synitieg new and virtual observa-
tions in the defocus space. The idea of diffusion can be dré@éehat of scale space filtering
by Witkin [129]. Koenderink [62] showed that this is equigat to solving the heat equation.
Since the solution of the heat equation is a temporally englGaussian function, filtering a
signal with which defines the scale space. This scale spauweagh was extended by Perona
and Malik in their landmark paper [90] where they proposedalinear scale space model,
aimed at preserving important features such as edges. Ttlel citanges its behavior based on
the conduction coefficient associated in a region of an ingageachieves forward diffusion in
the interior region and at the boundaries it acts in the opgpdgection. In general the inverse
diffusion approach can be thought of as reversing the headtenp in time. This reverse heat
equation is however ill-posed and there has been a sulatantount of work done for stabi-
lizing the reverse heat equation. Rudin, Osher and Fatefh0®] introduced the “shock filter”
where they proposed a pseudo-inverse, where the invefsisidif propagation term is tuned
by the sign of the Laplacian. There has been a lot of researoh dlong similar lines where
various nonlinear inverse diffusion models have been mego In linear scale space theory,
recently an interesting work has been done by Lindeberg [@88¢re he provides a theoretical
analysis of the linear scale space theory and also obsdraeS&taussian and higher orders of
the Gaussian kernel are the only admissible kernels bas#decadmissibility conditions for
linear scale space.

Recently, in [32] Favaret al., have used the idea of diffusion for estimating depth from
defocus which is very similar to our work. However they agmtothe problem in the traditional
manner of casting it into a variational framework. We haweoduced a more general idea of

generating the entire defocus space of a scene.
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3.2 Defocus as a Diffusion Process

3.2.1 Diffusion Process

The diffusion equation is given by

ou(x,y,t)

o =V - (c(z,y)Vu(z,y,t)) (3.2)

whereVu(z,y, t) is the gradient an¥ - is the divergence operator, anflr, y) is a vector dif-
fusion coefficient. This gives the general case for the aropa diffusion equation as given by
Fick’s law that is derived from the equilibrium property thiastores concentration differences
[127]. For the specific case where the diffusion coefficierg scalar and homogeneous then it

is given by o )
u\zr, y, t
ot

where Au(z, y,t) is the Laplacian ofi(x, y,t). The equation above is the classical equation

= cAu(z,y,t)), (3.3)

for the isotropic diffusion of heat and can be given in exeshébrm by the following partial

differential equation:

ou(z,y,t)  (Pulz,y,t)  ulz,y,t)
ot — ¢ ( oz T 0y? (34)

Here the constantis the thermometric conductivity or diffusivity [128]. Thegjuation above
describes how heat diffuses over a surface, given an itetiaperature distribution with time. It
is assumed here that the diffusion of heat is uniform in a#ctions. Consider that(z, y,t =

0) isanimagd,(z,y). The solution of the heat equation can be obtained in terrosmfolution

of the image with a temporally evolving Gaussian kernel [1I¢his is known as the source
solution for the heat equation [128] and is givend¥y= 2ct wheres denotes the spread of the
Gaussian kernel and is used through out in this thesis. Téeradtions in our case corresponds
to u(z,y,t) at two distinct time instants; andt, where0 < t; < ¢, < oco. As the image
is progressively convolved with a Gaussian kernel, it getsgasingly more blurred thereby
representing the image information at a different scaldeNwat ag — oo this corresponds to
a fully diffused image. This is the basic idea underlyingsspace analysis. Also note that the
process is not defined fer< 0, a fact that will be utilized later to define tlextended defocus
space Also note that we use an infinitely extended image domainendalving eqn.(3.4) and

hence this would correspond to the Neumann boundary conditi
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3.2.2 Basic Model of Defocus

Consider the image formation process in a real aperture reagmaploying a thin lens [19].
When a point light source is in focus, all light rays that aadiated from the object point and
intercepted by the lens converge at a point on the image pl&o#owing geometric optics
when the point is not in focus, its image on the image plan@i®nger a point but a circular
patch of radiugr that defines the amount of defocus associated with the dépkie oint in

the scene. It can be shown that [19]

1 1 1
— — - _ 3.5
o prv(F » Z) (3.5)

wherer is the radius of the aperture,is the lens-to-image plane distandejs the focal
length of the lensZ is the depth at that point angdis a camera constant that depends on the
sampling resolution on the image plane. Lgtr, y) be the pin-hole image of the scene. From
the eqn.(3.5) we note that = (r, F, v) defines the camera parameters each of which may be
changed to effect a different amount of defocus blur for adfiepth.

The depth related defocus process is linear but not spagagamt. Assuming a diffraction-
limited lens system (i.e. using wave optics) and a constaptidin the scene (this assumption
will be relaxed at a later stage), the point spread functi®RiBH) of the camera system at a point

(z,y) may be approximately modeled as a circularly symmetric 2ed$3ian function [19]:

h(z,y) = L exp (—xQ + y2) (3.6)

2mo? 202

where the blur parameteris obtained from eqn.(3.5).

Note that some researchers have also used circular pillhwxabd each model of blur
function has its own advantages and disadvantages. Howetérmodels assume a perfectly
circular aperture and no self-occlusion in the scene [8]r &&aussian model of blur is
related to the spread of the PSF rather than the radius agdafieqn.(3.5).

Assuming the depth to be constant everywhere, the obserfedutsed imagé(z, y) is
given by

I(z,y) = Io(x,y) * h(z,y). (3.7)

This equation can be directly related to the solution of tifiesion equation in terms of
the Gaussian kernel as discussed in section 3.2.1. Thepediiee imaging can thus be thought

of as providing a real world example of scale space theorg.&dn(3.7) can be represented by
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taking its Fourier transform. Denoting the Fourier tramsf@f a functionf (z, y) by f(w,, wy)
we obtain
o (Wl +w))

H(way wy) = To(Wey wy ) 1(wWa, wy) = To(wa, wy) exp(— 5 )

(3.8)

3.2.3 Defocus Space

For a given scene, one can have two defocused observdiioasd E; corresponding to two
different camera parameter settings and C,, such that the resulting blur parameters are
ando,, assumingr; > o, without loss of generality. For the two observatidisand F,, a
defocus space can be defined.

Definition 1 (Defocus space) :
The defocus space is defined to be the set of all possiblewatgars £ for a given scene
generated by varying the blur as a combination of the associated blur parameteand o,

in the two observationg; and F, respectively, by the following relation

o’ =ao; + (1 —a)os (3.9)

for all values of0 < o < 1.

This is equivalent to generatingz, y, t) for t; < t < ¢, given the state$(z, y,¢;) and
I(x,y,1s) at two specified time instants and¢, in the heat diffusion eqn(3.4). Substituting
egn(3.9) in eqn(3.8) we obtain:

. . 1
Hwy,wy) = Ip(ws,w,)eXp {—é(aaf + (1 — a)od) (w2 + wz)]

or

A

f(“%‘”y) = ?(wmwy)j%ia(wxawy)' (3.10)

The relation given in eqn(3.10) is equivalent to the notibaaale space as formed by the
diffusion equation. This can be noticed as eqn(3.10) cahdeght of as convolving the image
I(z,y) with a time varying Gaussian kernel. This is because comgla Gaussian function
with another Gaussian function always results in a Gaugsiastion. The eqn(3.10) effectively
reduces to convolving the original imaggz, y) with a Gaussian kernel which varies with time

(in this casex) according to the relation given in egn(3.9) and eqn.(3.10)
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The defocus blur could be present physically due to any of the following caamga-
rameters : aperture, the lens to image plane distance, taéléngth or even a combination of
these, as shown in eqn(3.5). A monotonic variation in anyefiéns parameters can generally
result in a non-monotonic variation in the blur (for instarsv is changed from an initial value,

o reduces, becomes zero and then subsequently increagesisg both sides of the defocus
cone (see Fig.3.1 for illustration). The diffusion basetbdes space generation process how-
ever generates the blur in a monotonic manner, i.e we anectestto one side of the defocus
cone. By continuously varying the parameterwe can generate any virtual observation for
defocus setting lying between the lines AB and CD in Fig.&ihg the eqn(3.10). The utility
of such a variation of blur in defocus morphing has been destnated in [18]. The defocus
space thus consists of all possible observations of theedsfolurs? < 0% < o3.

Corresponding to the notion of continuous defocus spaceatesduced in the previous
section, a practical counterpart of this defocus spacedvbela sampled defocus space. This
corresponds to generating the defocus space for discrietesvafo: betweer) and1. In Fig.3.1,
the lines corresponding té, B,,A, B, ...A,, B,, may represent one such possible set of sampled
defocus space. The sampled defocus space generated foage isnsimilar to the physically

obtained focused image space described in [119].

3.2.4 Equivalence of DFF and DFD

So far we have considered a restricted range between0, 1]. Now we relax this condition
and something interesting happens. If the values beyond the rang@), 1] are considered
then the defocus space generated is the extended defo@es spa

Definition 2 (Extended defocus space):
The extended defocus space is defined to be the set of alblgosbservationd for a given
scene generated by varying the biuas a combination of the associated blur parameteand

oy (assumedr; > o, in the two observationg, and I, respectively, by the following relation

o’ =ao; + (1 —a)os (3.11)
for all values of < a < .
whereg is
o3
03 — 01



Here the value of} is the value ofx such thato? = 0 in eqn(3.11), resulting in a fully
focused observation. The observations in the extendeddefpace can be obtained from the
diffusion equation since corresponding to the imdge:, y,¢) with ¢ — oo we can obtain an
observation/ (z, y) with « — oo. This represents the fully diffused image. Similarly focka
point there exists a value= 3 < 0 corresponding to = 0. This corresponds to a fully focused
observation, i.ec? = 0. Thus the extended defocus space is defined for the rarge3, o).

In the rangex = [3, 0] the process, instead of being a diffusion becomes an indéfssion.

Beyond this range, the defocus space is undefined since anetdzave the blus? < 0. Thus

0% = 0 corresponds to the convergence of all rays at the imagineplahis is illustrated in
Fig.3.1.

Depth from defocus(DFD) methodology estimates the spadanteblur whereas depth
from focus (DFF) methodology estimates the focused imaget.pdt is possible to use the
techniques in DFD methodology to estimate the space varlanusing just two observations,
whereas DFF requires many samples to estimate the fullysémtpoint. Here as we have
shown, it is possible to generate the extended defocus $patee image using just two ob-
servations. Thus both the techniques can be consideredramtally equivalent, rendering
the need for multiple samples to be redundant. The diffubssed process thus provides an
equivalent means for estimating the depth from the knowa Earameters using either depth

from defocus or depth from focus.

3.3 Algorithm for Depth Estimation

The derivation of egn(3.10) is based on the assumption asteohdepth. When there is depth
variation in the scene, eqn(3.10) is no longer valid as theiblg process becomes shift variant,
implying an inhomogeneous diffusion process. This cowadp to the following diffusion

equation

aug;, D _ ey (a zg(; y) 9 Ié(; y>) (3.13)

Herec is no longer a constant but is now a functign, y). We assume that the directional
change irci.e. Ve(z,y) is assumed to be negligible. Herer, y) is still a scalar quantity and
the diffusion is isotropic but inhomogeneous and this equataries spatially from eqn.(3.2).
The inhomogeneity is handled by forming a smalk) window about a point over which

the depth can be assumed to be constant as is done commotllyiterature. M is related
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Figure 3.1: lllustration of the concept of defocus spacefparticular scene

to the amount of blur in the observation and we select a valagh that)M/ > 60. Using this
modification the defocus space for a scene can be createltiylegan in the depth varying
case. The depth estimation is done by obtaining the fullyd$ed point for each image. The
process of creating the defocus space is a monotonic pro&sssreduces, the characteristics
of the process changes from diffusion to inverse diffusiod #ne deblurring of the defocused
observations takes place. In obtaining the fully focusedgenthe value ofv is not restricted
to lie between 0 and 1, rather we go for valueswof. 0. The characteristic of the convolution
changes from a low pass filter to a high pass filter(fo£ 3. The defocus process has to be
stopped when the fully focused point is reached. This stappoint is estimated empirically
from the virtually synthesized observations using a barss fitier, similar to the way it is done
in DFF methods [66]

The various steps of the algorithm for depth estimation are@kows:

Step 1: Divide the observed imagds, and E; into overlappingV/xM windowed representa-

tions.
Step 2: Obtain the FFT of the corresponding windowsHhnand Es.

Step 3: Synthesize a sample of the defocus space correspondingadieufar value ofx €

[3,0) for each window using eqn(3.10). Note thats unknown as the value ¢f would
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give us the depth. Heneeshould be changed incrementally.

Step 4. Estimate the amount of focus using a sharpness criteriartibm[66] which is essen-
tially a band pass filter and decide whether a fully focuseadtps reached. Else reduce

the value olv and go to Step 3.

Step 5: Using the corresponding values of the virtual lens pararegtalculate the value of

depth at the point. Save the pixel value as the restored one.

This algorithm is sequentially executed for all pixels ie fimage till the corresponding

pin-hole observation of the scene is obtained and a dengbk dgp is generated.

3.4 Computational Difficulties

The algorithm uses the windowed Fourier transform. In soases, especially, where the
gray level variance in the window is very low, signifying xtigre-less scene, there might be
a problem as the spectral components are nearly zero. Wkerathe ofa goes beyond the
0 to 1 range, potentially a division by zero can occur in eqn(3.1Dhis can be avoided by
marking such windows out of computation. Mathematicalkigmnifies that the depth cannot be
estimated for homogeneous regions.

Another factor which adversely affects the accuracy isetssgivity to quantization error.
Generally, an 8 bit quantization of the scene results in g mersy virtual observations. This
is because the defocus space generating process acts &spassfilter when we take < 3,
which greatly enhances the quantization error. Furtheintrerse diffusion process is inherently
unstable and the quantization error aggravates the ihisfaBractical implementation suggests
the use of a 16-bit representation of the intensity function

Generation of virtual observations using eqn(3.10) lgoaldy demand quite a bit of com-
putation. This is more so due to the fact that a finer samplinge extended defocus space
would lead to a better accuracy in the depth estimate. Tarob#dter estimates of the fully fo-
cused points efficiently, a hierarchical virtual samplieghnique over nested intervals is used
wherein, using the algorithm defined earlier a valuexak quickly estimated using coarser
discrete steps in the rane 0]. Then a further dense sampling is performed in a small neigh-
borhoode around the best current estimatenofi.e. o € [@ — €, & + €] and the estimate af is

refined in a hierarchical manner.
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3.5 Experimental Results

The algorithm has been tested with real as well as simulattad th the case of real data, there
Is a substantial amount of noise in the recovered struclums.is mainly because the real world
data is in eight bit form and the resultant quantizationreis@uite significant. However, the
overall structure recovered still resembles the true siredn the scene. In a similar way, the
corresponding deblurred observation, in general, doesaseimble the actual pin-hole image,
but the result is definitely better focused and less blutnad the observations given as input to
the algorithm. The results obtained with synthetic datalmaobserved to be of better quality
due to the use of 16 bit representation.

In Fig.3.2, two images of a ball are taken with varying leasrage plane distances. In
the experimental setup the base was at a distance of 117@milie camera. The point on the
ball nearest to the camera was at 121.8 cm. while the poimg bn the occluding boundary of
the ball were at a distance of 132.3 cm. from the camera. Taegshin the lens-to-image plane
distance introduces a small amount of change in magnificafithis was taken into account
and corrected using a simple resizing operation. Fig@.8l{ows the recovered dense depth
map with the darker shading corresponding to a nearer distarhe darkest points (gray level
0) refer to the homogeneous regions for which the depth ddmmestimated as explained in
section 3.4. Fig.3.2.(d) shows the corresponding deldumage obtained.

The second experimental setup was the “blocks world” whaneetblocks were arranged
at different depths (see Fig. 3.3(a,b)), the nearest ondiatance of 73 cm., another at 82.7 cm.
and the farthest block at 96.6 cm. Again images were takem waitying lens-to-image plane
distances to obtain different amount of defocus in diffe@servations. Fig.3.3.(c) shows the
dense depth map estimated in this case and Fig.3.3.(d) shewieblurred image obtained.

The Fig.3.4 shows a test data where a textured image is sigaieblurred with a con-
tinuously varying Gaussian kernel. The variance of the Ganskernel was increased in a ramp
like manner from left to right. The second observation wasusated using different values of
the blur kernel. Fig.3.4.(c) shows the corresponding ddep¢gh map and Fig.3.4.(d) shows the
deblurred image. The left to right variation in depth is digaisible. Similarly the restored im-
age is much sharper, although it contains dark spots wheté deuld not be estimated due to
reasons mentioned in section 3.4. Although we could haveeddpe intensities at these pixels

from one of the observations as they correspond to fairlydgeneous regions, we refrain from
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(@) (b) (©) (d)

Figure 3.2: Ball Image: (a,b) Two observations with the tighe being less blurred, (c,d)
recovered structure and the deblurred image, respectively

(@) (b) (©) (d)

Figure 3.3: Two observations of the Block World. (a) The Hest block is in focus, (b) the
nearest block is in focus, (c,d) recovered structure andééurred image, respectively.

doing it so that the effect can be highlighted. Fig.3.5 shamather synthetically generated test
data where a textured image is blurred with a continuouslying Gaussian kernel. However,

here the variance of the blur was increased in a radially axdvwnanner. Fig.3.5.(c) shows

the corresponding dense depth map and Fig.3.5.(d) showsthesponding deblurred image.

Once again the depth variation is quite clear from the plot.

The results appear to be noisy as the linear diffusion psosaffers from instability in
the extended defocus space as the process correspondsrgeinhffusion. One does require
a suitable regularizing functional to make the problemdygtiosed. This method, however,
presents a theoretical basis for understanding depth fooosfdefocus in the light of the diffu-

sion equation and is thus important in its own merit.

3.6 Conclusion

For a given scene in the real world, we have defined a defoacesphich is a virtual space

of all observations based on the properties of a real agemuaging system. A method for
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Figure 3.4: (a,b) Two synthetically generated blurred oleens. Here the blur increases
progressively from left to right. (c) Recovered structed (d) the deblurred image.

(@) (b) (©) (d)

Figure 3.5: (a,b) Two simulated observations. Here the ibicreases radially outward. (c,d)
Recovered structure and the deblurred image, respectively

generating the defocus space based on the diffusion equadi® been presented. We have
also presented an algorithm for recovering the scene ateibased on the defocus space. An
interesting outcome of this work is that it brings out the igglence of the depth from focus
and depth from defocus modalities for depth estimation.s Bhgorithm has been tested with
real as well as synthetic images.

A problem that is faced in the method described in this chraptee drawback faced while
using windowed Fourier transform. This problem is not fasden one does a spatial diffusion
based approach for depth estimation from defocus as donavaydet al. [32]. However there
are problems associated with this approach where occleffeats are not handled appropri-
ately. We therefore consider a stochastically perturb&dsion model which is considered in

the following chapter.
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Chapter 4

Stochastically Perturbed Diffusion

In the previous chapter the linear diffusion process was uisenodel the defocus blur. The
defocus morphing relationship presented there allowed gemnerate the defocus space, with
a frequency domain based morphing relation. Similarly thedr diffusion process has been
used by Favaret al. [32] to also estimate depth from defocus. There they uselidéfu-
sion to estimate the relative blur between two defocusedi@paThey have also provided the
analysis required for estimating depth from defocus udimgalr diffusion. However there are
several shortcomings to their approach which are addresshis chapter. A particular obser-
vation made by Hasinoff and Kutulakos [50] is that this metbbshape recovery is particularly
relevant for complex scenes which have a large amount of geandetail and complex self
occlusion relationships which make it difficult to estim#te shape using stereo based meth-
ods. However, the method proposed by Fawdral. could not handle depth estimation in such
complex scenes. This was because, their method could ndtendaeparture from Gaussian
assumption in case of self-occlusions. Second, the mettogmbped obtains a local minima for
the depth in the scene as it is based on a conjugate gradsed baethod and may not result in
the true depth for complex scenes. In this chapter we adti@bsthese shortcomings. Here,
we propose a model wherein the heat equation is perturbetdastcally. In this approach the
departure from the Gaussian blur model is implicitly acdedrior in the stochastic perturbation
of diffusion. The mathematical existence for the stocleali perturbed heat equation, which
is used here, has been analyzed by Yip[131] and he has usethiidel the dendritic growth
of crystal structures. Here we adapt the model for solvirgdépth from defocus problem by
correlating the stochastic heat equation to the defocusiduprocess.

We have considered various methods for estimating deptidiefocus in chapter 2. How-
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ever, most of the works done assume that the observatiorst daffier from self-occlusion. The
handling of occlusion effects in depth computation has lkiressed in [3],[8],[33]. The ex-
tent of departure from the Gaussian shape depends on the étdepth discontinuity in the
scene, which is unknown. Any imperfection in the lens apentwuld also change the shape of
the blur kernel. Unlike earlier methods, the proposed netam handle such an effect under a
unified framework without having to estimate the departuwenfthe assumed model. An inter-
esting recent work has been by Hasinoff and Kutulakos [S0km the authors consider depth
from focus as a pixel matching operation. However, this meéttequires many high resolution

observations.

4.1 Defocus as a Stochastically Perturbed Diffusion

In this section we discuss the mathematical basis of sttich@sturbation of the heat equation

as a tool to analyze defocused images.

4.1.1 Stochastic Perturbation

The stochastic perturbation of the heat equation is actlieygerturbing the deterministic heat
equation with a stochastic process. An archetype stochpsicess that concerns us is the
Brownian Motion W(t). A Brownian motion has independentmai increments. The interest-
ing aspect of the Brownian motion is that the transition pimlity for a Brownian motion is the
conditional Gaussian probability density function andrdvme it results in the heat equation.

A general diffusion of the stochastic process can be givei86ly
dX = b(t)dt + a(t)dW (t) (4.1)

whereW (¢) is the standard Brownian motioh(t) is the drift anda(t) is the diffusion
coefficient. HeredW () is the Ito derivative of the Brownian motion. The heat ecumiis
essentially an Ito-diffusion with only a diffusion coeffiit and no drift coefficient associated
to the diffusion process, i.ei(t) = 0.

The addition of stochastic perturbation to the determimdiffusion equation can be phys-
ically thought of as adding thermal fluctuations to the hefitision equation. The issues like
existence and regularity of the evolution arise by such a@itiath. These were rigorously stud-

ied and proved by Yip[131]. They were studied in the contéxrgstal growth. However, the
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same formulation is valid for the defocus problem. The forimthe stochastically perturbed

diffusion or the stochastic heat equation is given by
du = (cAu)dt + a(t)dW (t) (4.2)

wherelV () is a spatially correlated infinite dimensional Brownian ot dIV (t) is the

Ito’s differential andAw corresponds to the Laplacian @fin space. The spatial correlation of
W is essential for proving the Gibbs-Thomson condition [131]is implies that the movement
of each particle is not stochastic in space but in time. TH#&iThomson condition is related
to the regularity and existence of the solution of eqn(4&pbs-Thomson relation is a function
which relates the temperature and curvature values inibguih for the interface of evolution.
Loosely speaking the Gibbs-Thomson condition essentodgcribes an equality between the
variation of the energy of the interface and the total dieege of the Gibbs-Thomson relation.
These are discussed in detail by Yip in his work[131] wherggives a proof of the Gibbs-

Thomson condition for eqn(4.2).

4.1.2 Defocusing as a Stochastically Perturbed Diffusion

The defocusing phenomenon has a specific space varyingctbidstic at surface edges and
occluding edges. Consider the particular case as shown.indfi. Here we consider the
specific case of a surface edge discontinuity which resaltseif-occlusion. In depth from
defocus, self occlusion results when a continuum of raysaréigdly occluded and results in
the blur kernel being modified [112]. This is illustrated ig.fi.1. Here, the rays emanating
from the point P are partially blocked due to the surfaceahfiauity. The image plane is at a
distance from the focus point and so the observation of gonasults in a blur with radiugy.
However, due to the partial occlusion due to the near edgeretbultant blur instead of being
circular is deformed (being. ;). This artifact is present for all points in the observatimm
the surface edge to the point A. From point A onwards, the kdunel is unaffected. A similar
effect can be observed in the case of an occluding edge ag3jell

There have been a few approaches [3], [8], [33] where theoasitiave tried to address
this problem by explicit modeling of this phenomenon or byliad a post-processing step.
However, in our model, due to the stochastically perturbgdature driven motion along the
level sets, it is possible to incorporate this variation isifly. This is particularly important

in correctly estimating the blur kernels along discontiiasi like surface edges and occluding
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Figure 4.1: lllustration of the self-occlusion on accouhsworface discontinuity. For the point
P, the point spread function (PSF) is the circular regiorodteuf the darkened region. For the
point A in the scene, the PSF is circular as there is no seliusmn.

edges. This is depicted in fig.4.1. As shown in the figure, @albie surface edge, the contribu-
tions from the near and far surface are inhomogeneouslydaird this results in an anisotropic
nature to the resultant blur kernel. So, when one does aatticlturvature driven motion along
the level sets, the blur contribution along the surface edgebe appropriately estimated. The
non-uniformity of the kernel is implicitly handled in thisodel. There exists a similar effect

when one has an occluding edge as well[3] .

4.1.3 Evolution Equation

We now proceed to obtain an explicit evolution equation. ddeo to do this we first obtain
an expression for the stochastic perturbation part of eQnh(4Here we consider the recent
work done in stochastic level sets [56] and stochastic ¢urgadriven motion [71]. In [56],
the authors discuss the evolution for the stochastic geation whereu(t) in the stochastic
heat equation is the normal at the surfacevhere we consider the surface as being the image
u(z,y,t),1.e. theimage being evolved at timeThe stochastic perturbation of the eqn(4.2) can
be therefore given by

du =ndW (t). (4.3)

This equation can be given in the differential form as

ou(x,y,t)
ot

wheren(z,y,t) is the normal to the interface(t) (i.e. the interfaceu(x,y,t)Vz,y). The

= n(z,y, t)dW (t), (4.4)

equivalent deterministic evolution using the level setrfeavork for the geometric heat equation
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is given by the following equation

ou(x,y,t)
ot

whererx(z,y,t) is the mean curvature of the level set and, y, ¢) is the normal to the level

set. Heres is given by
Uy — 2y Uy + U

e (u2 4 u2)3/? ’

whereu, refers to%. The normah is given by

(4.6)

no YU
IVl
whereVu = [u,u,]. The geometric heat equation is similar to the linear heation except
that it diffuses orthogonal to its gradient and does notid#falong the direction of the gradient.
As a result the stochastic perturbation mainly affects ¢hrellset curves and does not affect the
homogeneous regions. This is appropriate since any keamgtion for instance due to self
occlusion would mainly occur along edges and would be refteat the stochastic perturba-
tion. The effect of the perturbation is further spread onitbemogeneous regions through the
deterministic diffusion component.
Now, the stochastic formulation of the above deterministimulation according to eqn(4.4)
could be written as

du(z,y,t) =n (z,y,t)dW(t), 4.7)

The differential in eqn(4.7) is thigo differential This suffers from problems like it is not invari-

ant to the parametrization of the curve, i.e., the evolutiepends on the implicit representation
of the initial curve and ill pastiness, i.e., under certaomditions it approaches the inverse
heat equation which is unstable[56],[71]. These diffi@dtare overcome by introducing the

Stratonovich differentig86] given by
du(z,y,t) =nodW(t). (4.8)

The Stratonovich form is in an implicit form and convertirigto the explicit Ito form re-
sults in an added second order term. This is because of tfezatfite in estimating Ito and
Stratonovich differentials. In Ito diffusion the integ@at happens at the left end point whereas
in the Stratonovich case the integration happens at thepmiig-while evaluating the integra-

tion of the differential[86]. With a single Gaussian peltation in space, the eqn(4.8) is written
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as

(4.9)

du(z,y,t) =ndW(t) + %Au(:ﬂ,y,t) [ Vu(@,y,1) } :

[Vu(z,y,1)]
The numerical implementation of the scheme for evolutiathoise by considering a stept in

time andAx in space and is given by[56]

(4.10)

N, 1 \% t
u(x,y,t + At) = u(z,y,t) + ny/ At ./\/’(0,1)(15) + iAu($7 y, 1) {M}

[Vu(z,y,1)]
where\ is the noise term and it denotes a standard Gaussian rand@hleaand the second
order term is introduced because of the Stratonovich @ifféal component. This term is a
kind of smoothing term and is nothing but the degeneratesliih component along the edges
with the stochastic term corresponding to the diffusion ponent across the edges. Hence the
complete stochastic heat equation would then be

Vu(z,y,t)

1
u(x,y, t+At) = u(x,y, t)+ny/At Af(o,l)(t)+§Au(:r, Yy, t) {m

] Fe(z)Au(z, y, ).

Since the stochastic perturbation appropriately hantleslieformation of the kernel, the dif-
fusion coefficientc is taken to be only a single inhomogeneous coefficient vahee reot a

diffusion tensor.

4.2 Depth Estimation

We consider the case when we are given two imageés, y), I>(x,y) with different defocus

blurs. Then the resultant formulation is

U(.Z',y,t) = Il(x>y)
u(z,y,t +mdt) = Ir(z,y), (4.11)

and where the term(z, y,t + mAt) is obtained fromu(z, y, t) by the evolution in eqn(4.11)
andm is the number of iterations in going from imadeto /;. The evolution equation in
eqn(4.11) blurs the imagk with a space-variant blur till it approximates the imagelosely

enough which is tracked by a discrepancy measur&he blur parametes is related to the

diffusion coefficient by the eqn(4.12)

s tc
v

wheret is the time variable in the diffusion equationis the diffusion coefficient, and is a

g

(4.12)

proportionality constant relating the blur radius to theesyal ¢) of the blur kernel that can be
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determined. The blur parameteris directly proportional to the depth in the scene[19] . In
order to estimate the depth in the scene one therefore hasinoage the diffusion coefficient
for the evolution equation. In a deterministic case one wablain the following minimization

problem:

¢(z,y) = arg min,, .1~ / / / o(u(z,y,t+ dt), I(x,y))dxdydt. (4.13)

whereg(.) is a discrepancy measure at{d, y) is the diffusion coefficient for the deterministic
diffusion equation. However in the stochastically peradizase, the resultant diffusion coef-
ficient is a combination of deterministic and stochastitudibn. The deterministic diffusion

coefficient is obtained from the contribution from the feiog part of the evolution equation:
duges = (cget®, y)Au)dt (4.14)

which is the deterministic part of eqn(4.2). The stochadifitision coefficient contribu-
tion is obtained by normalizing the stochastic perturbatiomponent in the evolution equation.

We recall that the stochastic perturbation component isrgby

B 1 vu('ruy?t)
dugt = N/t Ny (t) + FoulE Y1) [|Vu(x,y,t)\]

= nodW(t) (4.15)

The stochastic diffusion coefficient is then given by noimag the stochastic contribu-

tion by the corresponding deterministic evolution:

nodW(t)
=—2 4.16
cst(T, y) s (4.16)
wherex is the curvature and is the normal.
Thus the combined diffusion coefficient is given by
d(z,y) = cget y) + nest(w, y) (4.17)

wheren is the weight factor which determines the relative weighthefstochastic perturbation.

The depth in the scene is obtained by solvingdr, ) in a minimization problem of the form

~

d(z,y) = arg miry, . ~o / //¢(u(m, y,t+dt), Iy(z,y))dzdydt. (4.18)

We adopt a Euclidean distance measuresfdfiere the imagé. (x, y) is assumed to be the

more defocused image. However, that may not always be tlee aad one can have sections
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in an image which are more in focus and other sections whiehrare defocused compared
to the corresponding sections in the second image. In tlsatasan initial step the images are
preprocessed and the regions which are more in focus aréfideénThe diffusion always hap-
pens in a forward direction to avoid instabilities that magadue to backward diffusion. The
method used to ensure this is similar the one suggested JnTB2 minimization in eqn.(4.18)
cannot be done using conjugate gradient descent algoritlerialthe stochastic perturbation.
We adopt a simple simulated annealing scheme to performttiobastic optimization. The

various steps for the algorithm for depth estimation arelsws:

STEP 1: Given the initial image$, (z, y), and/y(x, y) divide them into sections such that the

diffusion is always in the forward direction using the pmegassing step discussed eatrlier.
STEP 2: Computeu,,; from u,, using the formula fotlu given in eqn(4.11).
STEP 3: Compute the discrepancy meastire

STEP 4: Acceptu, 1

o if g1 < oy

e otherwise, accept, ., with probability exp(%).

STEP 5: Loop back to STEP 2 till the stopping criterion is satisfied.

HereT'(n) is a time-dependent function that plays the same role asreak#ng temper-
ature. Its choice is crucial. If the temperature decreageddst the process may get stuck
in a local minimum, else if it decreases slowly the convecgeis delayed. Here we adopt
T(n) = Ty/+/n as suggested by Juat al[56]. The stopping criterion is based on the Eu-
clidean distance measure approaching zero.

The depth estimate is then obtained by considering the rdetestic and the stochastic
parts separately. For the deterministic part, we assumestaa diffusion coefficient and relate
the blur to the time of evolution. The blur cannot be relatedally in the stochastic part due
to the non-uniform nature of evolution. Hence, in each tterawe normalize the stochastic
perturbation with the corresponding orthogonal diffuscamponent. We then integrate the
corresponding contributions over time to obtain the cttion of the stochastic perturbation
to the blurring process. The final depth estimate is obtaasethe joint contribution of the

deterministic and stochastic components.
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(a) (b) (c) (d)

Figure 4.2: Here (a,b) show a standard texture with hightspletetails, synthetically blurred
assuming three different layers of depth. (c) shows theltreguecovered structure from the
method of Favareet al]32]. (d) shows the corresponding result obtained by thegsed
method.

The depth obtained in this method has a space-varying deasdic, i.e., the problem
solved is equivalent to space varying point spread fun¢®8F) estimation. Further due to the
stochastic nature, the self occlusion effects and otheeifaptions are implicitly handled by

the method when it does a stochastic perturbation of thenbawtel.

4.3 EXxperiments

The algorithm has been tested with real and simulated oasens. The method works quite

well on all these test data sets.

4.3.1 Simulated Data

Fig.4.2 shows a test data where a standard texture map frofrtdatz texture database has
been blurred to create blocks of varying depths using Gandsur with variances 0.8, 1.6
and 3.8 respectively. Figures 4.2(a,b) show that therehaee tdistinct layers of depth in the
simulated observations. There exists a gap of 3 pixels etlee blurred regions. However,
due to the convex assumption, the depth map obtained by ttiechproposed in [32] results in
the regions being connected as can be seen in Fig. 4.2(c)4 @) shows the corresponding
estimated depth map obtained from the proposed technigeeewthe depth in the different
regions is seen separately. The brighter areas correspargipns that are more defocused.

The accuracy is confirmed against the expected depth map.

41



(@) (b) (€) (d)

Figure 4.3: Here (a,b) are two different blurred observatigenerated using Povray toolkit.
The defocus blur is proportional to actual depth in the scksmeonstrated. (c) shows the result-
ing structure recovered from the deterministic method[3&]) shows the corresponding depth
map from the proposed method.

The fig.4.3 shows a test data generated using the Povrayittodhs is a standard ray
tracing toolkit. It allows one to generate data sets whighldurred using physically correct
depth blur model (pill box blur) based on geometric opticke proposed method is still able
to obtain a reliable estimate for the depth which is showngn #.3(d). Fig. 4.3(c) shows
the depth map obtained by the deterministic method [32] hagtoposed technique compares
very favorably. This is especially indicative of the addyiity of the method for blur models

different from the assumed Gaussian blur model.

4.3.2 Real Data

The experimental setup shown in fig.4.4 is the “dolls” dat§32¢. The images were taken
with varying lens to image plane distances to obtain difieemount of defocus in different
observations. The Fig.4.4(c) shows the depth map estintgtele deterministic method[32]
and Fig.4.4(d) shows the depth map obtained by the propostdoch Once again we can
clearly identify the depth boundaries from the recovergaienap, justifying the usefulness of
the proposed algorithm. The different dolls are clearlyblesto be at different depths.

A challenging data set is the “hair” data set used in [50]. @a& set is of a wig with a
messy hairstyle surrounded by several artificial plantss @iata poses challenging self occlu-
sion and complex structure issues. Fig. 4.5(a,b) shows thput images used. Fig. 4.5(c)
shows the depth map obtained for the deterministic meth2H |8s can be seen, the method
does not handle the self occlusion and non-convex diffusaeificient issues efficiently. Fig.
4.5(d) shows the depth map obtained from the confocal steetbod [50]. However, they have

images from 13 aperture settings each with 61 focal settifgs 4.5(e) shows the depth map
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(@) (b) (€) (d)

Figure 4.4: Here (a,b) are two real data sets showing the glalted at different depths (Images
courtesy Favaro [32]). (c) shows the resultant depth mathiadeterministic method[32]. (d)
shows the corresponding result from the proposed method.

obtained from the proposed method using just two input ireagieich is comparable to the

depth map in [50] obtained from many images.

4.4 Conclusion

In this chapter we have proposed a method based on stocpasticbation of diffusion for
solving the depth from defocus problem. The main contrdoutiere has been in incorporating
a stochastic formulation of the blur model which can effesdi handle variations in the blur
from the standard Gaussian blur model. The variations aridee real world due to aberrations
in the lenses and aperture and are experimentally too elbtir measure. Further the problem
of deformation of the Gaussian kernel due to self occlusgoalso implicitly handled. We
demonstrate that improved results can be obtained usingdpesed technique. The proposed
method also takes into account the non-convex nature ohdejhe scene and the depth map
is obtained reliably for complex scenes.

It may be noted that most researchers in the area of structaozery have pointed out
the need for regularization of the recovered surface. Thegsed method does not impose
any such constraint while recovering the depth. In the neapter we use a Markov random
field representation for regularizing the estimated difncoefficient and obtain a regularized
estimate of depth from defocus using deterministic diffasiThis representation improves the

accuracy of the depth estimated.
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(d) (e)

Figure 4.5: Here (a,b) are two real data sets showing a widlawers (Images courtesy [50]).
(c) shows the resultant depth map for the deterministic ot82]. (d) shows the corresponding
result from [50] (which uses images from 13 aperture, eadh %1 focus settings) and (e)
depicts the result from the proposed method (using only Zj@sn
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Chapter 5

Regularized Depth from Defocus

The problem of depth from defocus is an ill-posed problemabee, in the absence of tex-
ture the depth in the scene cannot be estimated. Thus it e=camill-posed problem in the
Hadamard sense, because in these areas the depth estimadé lva obtained uniquely. A
common approach adopted is to therefore regularize thésoloy considering the solution in
the neighborhood or by adopting some assumption of smosshofethe solution. The earlier
approaches were based on usage of Tikhonov regularizayi@uding a regularization term
to the minimization term, the regularization term would@fethe form of the solution based
on £, smoothness of the result which could then be solved by thmulkee of variation ap-
proach using Euler-Lagrange equations [55]. However thpp@ach results in overly smooth
solutions. An approach made towards solving this problebyisising total variation based
regularization [122]. A more principled approach is by g@senmergy minimization using the
discrete optimization framework of graph-cuts as propdse®oykov et al. [12]. This ap-
proach can be mathematically formulated as an approachrdevexact maximum a posteriori
(MAP) estimation of a Markov random field (MRF) [45].

In the subsequent section we discuss the related work. kioses.2 we consider the
MAP-MRF representation for representing the diffusionfioent which is correlated to the
defocus cue. In section 5.3 the solution of the resultindplemo is discussed. In section 5.4 we

present the experimental results which demonstrate tlwaeyjfiof the method.

45



5.1 Related Work

The earliest works towards the use of graph-cuts in imagegsing has been towards denois-
ing of images where Greigt al. [45] used the Ford-Fulkerson idea of Graph-Cuts towards sol
ing the problem of denoising of images by solving in a MAP-MiREmework proposed earlier
by Besag [7]. The use of MAP-MRF towards solving the probldmstereo was proposed by
Roy and Cox [107]. An important contribution was by Boyketval. [12] who demonstrated a
fast approximate energy minimization technique for sa@\éomputer vision problems by using
the idea of alpha expansion and alpha swap. A theoreticarstahding of the energy functions
that can be minimized using graph cuts was done by KolmogamnovZabih [64]. Further work
done by Kolmogorov and Zabih showed effective use of graph fmr computation of depth
from stereo in the presence of occlusion [63]. While subsaty, graph-cuts has been used in
many computer vision problems, the usual application has based on the disparity in inten-
sity values. In our problem we use graph cuts in order to caenfine amount of defocus blur
at each location in the image and this cannot be directly ecaetpfrom the pixel intensities.
The MAP-MRF framework has been used in depth from defocute cauiccessfully by
Chaudhuri and Rajagopalan [19]. They have used the WigiiereNstribution based represen-
tation for computing the relative blur which is then estigthtising the MAP-MRF framework.
They have also shown that it is possible to simultaneoushypedge depth and restore the im-
age. The main drawback in their method was the use of sintlkateealing for solving the
MAP-MRF framework which is computationally prohibitiveéxpensive. In [32], Favaret al.
consider the estimation of diffusion coefficient using gead descent withC, regularization.
However, as mentioned earliés regularization results in overly smooth results. The greph

allows use of robust regularization like the Huber functaoml total variation seamlessly.

5.2 MAP-MRF representation of defocus cue

We now consider the representation of the diffusion coefficto be estimated.
We recollect that, the defocusing of a scene can be fornmulatéerms of the isotropic
heat equation [62] given by

ou(z,y,t)  (0Pu(z,y,t) N Q*u(z,y,t)
ot - Ox? oy?

U(ZL’,y,O) - IO(xvy) (51)
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Here the solutionu(z,y,t) taken at a specific timé = 7 plays the role of an image
I(z,y) = u(z,y, ) and [y(z,y) corresponds to the initial condition, i.e. the pin-hole iggu
alent observation of the scene. Note that we have u$edy, ¢) to represent the evolution of
heat everywhere in the thesis. The Gaussian PSF evidemtlpe&ormulated in terms of the
heat equation, since the Gaussian function is a fundamsoltation of the heat equation. The
equivalent Gaussian point spread function is given by

h(z,y) = ——s exp (—xQ - yQ) , (5.2)

2o 202

whereo is a blurring parameter that is a function of depth at a giveintpando is related to

the diffusion coefficient
o tc
v
wheret is the time variable in the diffusion equatianis the diffusion coefficient.

g

(5.3)

Here we directly estimate the Letw; denote the label or value of pixeli in an image
w = (wy,...,w,), then a Bayesian formulation specifiesapriori distributionp(w) over all
allowable images. Herg(w) is assumed to be a Markov random field (MRF). uétdenote
the unknown truer labels corresponding to the scene. Here we have(z, ..., z,) denotes
the observed values af*. The observed values are obtained by convolving a partitadation
with a label. The likelihood(z|w) of any imagew is combined withp(w) in accordance with
Bayes’ theorem to form am posterioridistributionp(w|z) « [(z|w)p(w). The maximum a
posteriori (MAP) estimate of* is that imageo that maximizep(w|z)

The values;, . .., z, are assumed to be conditionally independent giveaximizing

p(w|z) is equivalent to minimizing the following the following ergy function £ (w).

E(w)=>" <¢(Z\wz‘) + > d(w;, wj)) (5.4)

i JEN
Here the first term is the data likelihood and the second terthea interaction potential
determined by the prior. The data likelihood is estimatadgia Euclidean distance measure

between the destination image and the source image bluyraddielw;.
o(z|w;) = ||z = I * wi||2 (5.5)
The interaction potential is given by

Y(wi, wy) = M (i, j)wi—, wy]. (5.6)
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Figure 5.1: Illustration of graph-cut in a® Markov random field, courtesy [11].

whereM (i, 7) is a truncation factor used to obtain a robust error term eetwthe two labels
w;, w;. In the experiments the truncated linear term was used efmarimental comparison.
This energy function can be minimized using graph cuts asudged in the next section.
An advantage of this formulation is the symmetric nature moh the value otr can be es-
timated. In the previous chapter and in the approach by Bastaal. [32], preprocessing of
images had to be done to ensure that the diffusion was alveayied out in the forward direc-
tion only. Here, since the label for is being estimated we can equally assume positive and
negative labels, wherein positive labels imply blurring/pfto obtain/, and negative labels
imply vice-versa. This method thus simplifies the problemrezfuiring pre-processing since

the labels are estimated with regularization.

5.3 Graph-Cuts for solving MAP-MRF framework

We minimize eqn.(5.4), thereby maximizing the posteriayaility using graph cuts ([11],[12]).
The graph cut finds the cut with the minimum cost separatimgiteal vertices, called the source
and sink. Here, the terminal vertices are assigned the presand absence of a discrete label
from w;. The graph cut is solved using alpha expansion [12] whiawadlus to consider this
method of using binary labels to minimize the cost over theesetw. The graph cut proce-
dure is depicted in the following figure from [11].

The resulting energy function is a energy function of binaagiables of the form

E(wy, - w,) = ZEi’j(wi,wj). (5.7)

1<j
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Here wq, wo, -, w,, correspond to vertices in the graph and each representsaaybiariable

where they are either connected to the sink or to the sounzaarfenergy function of this form
it has been proved by Kolmogorov and Zabih [64], that the fiamccan be minimized provided
that it is regular, i.e. minimization is possible if and orflygach term of the energy function

satisfies the following condition:

E(0,0) + EY(1,1) < E¥(0,1) + E(1,0) (5.8)

which implies that the energy for two labels taking similalues should be less than the energy
for the two labels taking different values. In this case #izels denote the values and we can
have a metric defined ovet. Hence, it would satisfy the above condition and we can fbeze
minimize the resultant energy functidiw). In the next section we present the results using

the method defined.

5.4 Experimental Results

Since the usefulness of this method was for regularizingiph from defocus estimate ob-
tained by linear diffusion, we have directly evaluated thesthod with real image data sets and
have tried it on some of the challenging image data sets.

The first data set used for evaluation is the “dolls” data 32}.[ The scene depicts a few
dolls situated at various depths. The dolls are focusedftgreint depths in the scene with
the focal plane shifting from foreground to the backgrouftie result obtained by the linear
diffusion method explained in [32] can be seen in 5.2(c).e+be authors have uséd regu-
larization. The result obtained by stochastically perardepth from defocus method is shown
in 5.2(d). Here no regularization has been used. The rebtdtreed by using regularized depth
from defocus using graph-cuts is shown in 5.2(e). Here, ¢igailarization used is truncated
L. It can be seen that the result obtained by the techniquepeahin this chapter is definitely
much more improved as compared to the other techniques. ethearization used definitely
improves the depth-map obtained.

We now test our method on a more challenging real image daweéeh has a few vegeta-
bles. Fig. 5.3(a) shows the image where the near vegetal@lés focus and fig. 5.3(b) shows
the scene where the far vegetables are in focus while thevegatables are defocused. The

result obtained by using the proposed method is shown in f8{ch The resultant depth map
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(d) (e)

Figure 5.2: Here (a,b) are two real data sets showing a felg doldifferent depths(Images
courtesy [32]). (c) shows the resultant depth map for thénoeeby Favaret al[32]. (d) shows
the resultant depth map obtained by the stochastic deptihdiefocus method explained in the
previous chapter and (e) shows the resultant obtained byethdarized depth from defocus
method explained in this chapter.
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(@) (b)

Figure 5.3: Here (a,b) are two real data sets showing a fewtabtes at different depths [pic-
ture: Courtesy Dr. Sunil Hadap]. (c) shows the resultaraioled by the regularized depth from
defocus method explained in this chapter.

in this challenging data set clearly shows the differentetelgles and we are able to correctly

estimate the depth.

5.5 Conclusion

We have seen the need for regularization and have providemh@pled method for regular-
izing the deterministic diffusion coefficient estimatedngsa Markov random field framework
which is solved by an efficient graph-cut based method. Thelt®demonstrate that use of
regularization indeed helps in obtaining a more reliabterege of the depth in the scene.
While the method described in this chapter enables accdegith estimation from two
defocused images, a more challenging problem is estimafidepth from a single defocused
image. Towards solving this problem we consider an apprbaskd on restoring a defocused
image and thereby obtaining the multiple observationsireduor estimating depth in the
scene. We therefore now consider the problem of deblurribigigied observation in the next

chapter.
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Chapter 6

Non-Parametric Image Restoration

Image restoration has been one of the classical problemsage processing. The degradation

of an image is due to noise and blur and the problem is forradlas

Y(z,y) = //U(t,T)h(I,y;t,T)dth+ N(z,y). (6.1)

HereY (x,y) is the observation/(z, y) is the original undegraded image,z, y; ¢, 7) is
the space varying blurring kernel aid z, y) is the noise. The nois¥ (z, y) is often assumed
to be additive white Gaussian noise. No prior knowledge efitbint spread function (PSF) of
the blurring kernel is assumed in this study and hence thielgmo of recovering the original
imageU (z, y) given an observatioll (z, y) is known as space varying blind image restoration.

The specific case of eqn(6.1) where no blurring is assumeigies ¢y
Y(z,y) =U(z,y) + N(z,y). (6.2)

This has been addressed using the mean shift filter by Comamd Meer [23].

A detailed review of the traditional methods for approagttime problem of image restora-
tion has been done in chapter 2. We recall that these metledsaged on regularized least
squares technique [5], harmonic analysis based techn{ffL&ls [116], [6]), statistical meth-
ods [68] and patrtial differential equation (PDE) based rmé#h([4], [87], [90], [15]). These
approaches have had considerable success in dealing witbrobblem of image restoration,
more so when the blur kernel is known. However, here we agprtiee problem of blind image
restoration using the framework of cluster analysis. Sohtleeovery recent work on restoration
include the work by Foet al. [59], Figueiredo and Nowak [36]. Feit al. solve the denoising
problem, but they do not address the deblurring problem.Wdr& by Figueiredo and Nowak
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[36] addresses the problem of image deconvolution. Howéhrey do not consider a spatially
varying point spread function. Our interest in this chajitess in solving the blind restoration
problem when the PSF is spatially varying. The literaturedgsy sparse when one consid-
ers the problem of spatially varying PSF. Rajagopalan anau@huri [101] have solved the
corresponding restoration problem using a Markov randold {MRF) prior. However, their
method is strictly speaking, non-blind as they assume aiitly of multiple observations. In
this chapter we use a single observation and make no assumgiiout the image intensity
function such as being an MRF. Our approach yields a simpknrsaift based technique for
solving the problem of blind image restoration which parisrvery well as compared with the
above mentioned methods. We now discuss and motivate thparametric mean shift based
method.

A basic methodology in solving problems in image processiag been that based on
analysis of the feature space of an image where the featuresther intensity based or other
specific features (for e.g. texture). This approach is cedtaround a mapping of the image(s)
to a multi-dimensional feature space. Lately this pardcuhethodology has become popular
for solving interesting problems in low-level vision. A d¢eal task for feature space analysis is
that of cluster analysis. There have been various parasreeid non-parametric approaches in
literature for cluster analysis [105]. These methods ugaaksume knowledge of the number of
clusters or that the clusters have same shape. There haveesgls methods based on Gaussian
mixture models, however, the mixture models also requieentbhmber of clusters as a param-
eter and, in general, the unstructured feature space cahmays be characterized in terms
of a mixture model. In the analysis of arbitrarily structifeature space the non-parametric
approaches have been more suitable. The non-parametricagbes have been either hier-
archical or based on density estimation. In this chapter se2caumethod introduced in 1975
by Fukunaga and Hostetler [39] where the clustering is dgneetursively shifting each data
point to the average of data points in its neighborhood. Gheij20] developed a more gen-
eral formulation and pointed out applications for the samelustering and Hough transform,
as well as its role in global optimization. Recently Fashamgl Tomasi [28] have improved
the understanding of mean shift as an optimization proeebdyiconsidering its equivalence to
Newton’s method and they have also proved that for all kerttet mean shift procedure is a
quadratic bound maximization. There has lately been censiie interest in applying mean

shift to problems in computer vision, based mainly on thelknaftComaniciu and Meer in areas
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like discontinuity-preserving smoothing and segmentaf#8] and tracking [23]. The idea of
mean shift based tracking has also been extended by acceguiotia variable-bandwidth mean
shift by Comaniciu [22]. Related to this, Collins [21] ha®ked into the problem of tracking
blobs across scale space which accounts for variation isdhke of the kernel. The idea of
mean shift has also become popular for problems like appeaiaased clustering [103].

In low-level vision, non-parametric clustering has beeedumainly in the areas of denois-
ing and segmentation [23]. The non-parametric clusteedriique has been particularly apt
as the problems of low-level vision cannot be parametrizgai@tly. Recently there has been
work done by Wanggt al. in extending this approach for image and video segmentasory
anisotropic kernel mean shift [58] and in interesting aggdions like video tooning [57].

In the next section we discuss the method of gradient basisteclseparation. In section
6.2 we consider the mixed diffusion process which involvesamshift in both forward and
reverse directions. We then use these techniques to sadvprdblem of image restoration
in section 6.3. The experimental results for these methoelpresented in section 6.4. We

conclude in section 6.5.

6.1 Gradient Based Cluster Separation

A technique for clustering a set of points is to explicitly vedhe points in the direction of the
gradient of the kernel density estimates [23], [39]. Sirwtrue probability density function
or even its form is not known, non-parametric techniquesusexl to obtain estimates of the
density gradient [26]. The approach is to obtain a diffaedaté, nonparametric estimate of the
probability density function and then its gradient is corteolu

Let e, €5, ...e, be a set of» independent and identically distributed random vectors in
the d-dimensional feature spad@? and G be a symmetric positive definité x d bandwidth
matrix [23], [26]. Here, in the case of image restoratioemepresents the gray/color intensity.
Howevere in general could denote other vectors like texture. A fublygmetrizeds increases
the complexity of the estimation and, in practice, the badtwmatrix G is chosen to be the
identity matrixG = ¢?I. The bandwidth matrix determines the window width at eada da
point. Therefore taking the bandwidth matrix as identityplies that the window width is

constant at each data point and is determined by the scdlse ya Then the kernel density
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estimator takes the form
e — ej

9

f(e)znigdz_:% ) (6.3)

wherek(e) is a bounded kernel function with compact support satigfyin

| lﬁm le||‘k(e) =0and [ k(e)dx = 1.
€e||—0o0 RrRI

A differentiable kernel function is used and then the dgrgriadient is estimated as gradient of

2) (6.4)

(6.5)

eqgn.(6.3). This gives the estimate of density gradient as

e—e
g

J

Eqgn.(6.4) is the general form of the estimate of the dengiadignt. If one uses the

Gaussian kernel the resulting estimate of the density grads

Vile)= - ( %)ng(m) zn:(e —e;). exp [—(e —e)" <e2_gfﬂ' )} . (6.6)

j=1
In [39], the authors point out how egn.(6.6) is essentiallyegghted measure of the mean
shift of the observations about the poitIn order to move the values, the estimate of mean

shift of the normalized gradient is used. The mean shift efrtbrmalized gradient is

VI _ g e (6.7)

f(e)

This method is termed the mean shift algorithm by Comaniou leer in [23]. In this

chapter we refer to this method as the forward mean shiftihgo, the reason for which will be
clear in a short while. When we relate to the diffusion precéss termed as forward diffusion.
The method for gradient based clustering is a recursiveidihgo to transform each observation

according to the clustering algorithm

et = e +aVin f(e)). (6.8)

Herea is a constant which determines the rate of convergence altiséers.

Figure 6.1 illustrates the process of clustering that cxasra result of eqn.(6.8). The top
part of the figure shows the way the functiotin f helps to move the features to cluster centers.
As can be seen, the features are moved along the gradiergjigithem gradually closer and

finally they all move towards the mean of all clusters.
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Figure 6.1: lllustration of the forward diffusion processterms of image features. (a) At
t = to, (When there is no blurring), the feature clusters are wagbsated. (b) At = ¢, > t,,
due to forward diffusion which introduces blurring, theti@@s move closer to each other and
(c) at sufficient blurring, the feature clusters merge whmytare indistinguishable. In the top
row we showV In f(e) representing the gradient flow and below we show the timautieooi in
feature space.
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This process of clustering is valid when one has a clustetatmng erroneous measure-
ments and it is required to remove them, thus effecting demgiof the signal. An interesting
alternate case could be when the clusters are somehow niowmgithe cluster boundaries and
it is required to separate the clusters, effecting oppaditghat was achieved in the previous
case. In other words, the signal would then get sharpenets CEn be done by moving the
points away along the direction of the gradient estimatg. €i2 illustrates the resultant differ-
ence in the movement of the points. As previously, the uppé#rihdicates the motion of the
estimate of the gradient of kernel and the lower half theaauolution of feature values. This
is a type of inverse diffusion as the cluster separationgg®evhen done for an image results in
sharpening of the line fields. We term this as the reverse slaifirin line with the terminology
used in [23] and [20]. As can be seen from the gradient basedpiine image, when the clus-
ters are mixed, the points along the cluster boundary angeinfled by the neighboring mode
instead of their own cluster mode. Hence, when we move th&tpaway (as can be seen in
the shaded region in Fig. 6.2), the values are moved awaytherimcorrect mode towards the
actual cluster center and then they get associated withattieat mode. Quite naturally, when
the mixing in the feature space is nearly complete, i.e.rélsalting image is nearly homoge-
neous after having lost most of the spectral informatioa,réverse mean shift process would
fail to move the feature points, offering no deblurring. Bus is quite expected as the gradient
would then be nearly zero. It has already been proved in ttenation literature [95] that the
quality of restoration goes down with increase in the bhgrwhich implies that the feature
space becomes more and more inseparable and the reverssmfeprocess would not be of
much help either. The equation for the gradient based clgstgaration algorithm now takes
the form

i1 i Froi
el =ej —aVin f(e]). (6.9)

J

This is however, a divergent process. Hence, it is requioedalve a proper stopping

criterion for terminating this.

6.2 Mixed Diffusion

The generalized mean shift filter is defined to be a processcofporating both forward and

reverse mean shift procedures in a unified manner. This susecthe process of denoising is
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Figure 6.2: lllustration of inverse diffusion in the feadwspace (which has some blurring). As
we do the inverse diffusion, the feature space (bottom repasate out by moving farther away
from each other. The gradient flow is shown in the evolutiotopfrow that explains why the
feature space gradually separate out. This is a divergeneps.
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achieved through forward mean shift and the process of datduis achieved using reverse
mean shift. Both these operations being of contrastingreatbey should be combined very
judiciously.

The forward and reverse mean shift procedures are applitdsichapter in an iterative
though inhomogeneous manner. The basic idea behind suckea whiffusion is to cluster the
points around the “true” modes. This is due to the fact thatdlusters with closely spaced
modes may be mixed together and they would have to be seganatiethe noisy data present
in a cluster may have to be removed. The method then is to &rébqn cluster separation so
as to separate the modes that are mixed. Being an inverssidif it results in deblurring, but
this accentuates the noise as the intra-cluster distaradeasncreased. The forward diffusion
is subsequently carried out to reduce the intra-clusteanice and remove the noisy data. The
process is repeated with either forward or backward mednls#ing done till a stopping cri-
terion is satisfied. This is illustrated in Fig. 6.3. As canseen from the gradient flow field,
initially the mixing of clusters along boundaries get resal as was described in the reverse
mean shift procedure earlier. The points in the clustertaaa thoved along the gradient to the
cluster modes by the forward mean shift. This results innidevidual clusters moving to their
correct or properly accentuated modes.

A pertinent point in forward diffusion for denoising has heeproper stopping criterion.
This is necessitated in order to control the diffusion whiea noise is removed. This has
been addressed by Sporring and Weickert [115], WeickeB][a8d Mrazek and Navara [77].
Sporring and Weickert [115] suggest the use of generalintdgies with intervals of minimal
entropy change indicating stable scales with respect toigwo time. However the entropy may
be stable over the entire interval and hence may not be a gdgedan for stopping. Weickert
in [125] suggests that since the relative variance decseasmotonically from 1 to O, it can
be used to measure the distancd/gf) from the initial statel/(0) and therefore prescribing
a certain value for the variance may serve as a criteriontfippsng. A better criterion has
been proposed by Mrazek and Navara [77] based on signad-derorrelation. They propose

a stopping time& = T such that the correlation given by

_ cov(U(0) = U(t),U(t))
Vwvar(U(0) — U(t)).var(U(t))
is minimum. Herel(¢) is the diffused imagé/(z, y) at timet andU (0) is the initial image,

corr(U(0) = U(t),U(t))

(6.10)

cov is the covariance anghr the variance. The idea here is that the ndvsand the signal/ ()
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Figure 6.3: lllustration of mixed diffusion in the featurpage (which has both blurring and
noise). The inverse diffusion till timg results in the the mixed clusters being pulled apart and
the individual elements of clusters coming closer toge#teimet, due to forward diffusion.
The top row shows the negative of the gradient flow till titne ¢, effecting reverse mean shift,
and subsequently the positive gradient field to effect adodwnean shift.
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are de-correlated and the residdglo) — U(t) would initially be dominated by the nois¥,
and hence as the image is denoised, the correlation crtexioich is basically the normalized
covariance between the residual and the image would be nzieéém\We use the same criterion
for obtaining a stopping criterion for the forward diffusioHere we must mention that in the
initial formulation Comaniciu and Meer [23] had argued ttiagre is no need for proposing a
stopping criterion during forward diffusion as the kernahdwidth decides the convergence to
the mode and due to its convergent nature an explicit stgpgiteria is not required. How-
ever, the use of the above criterion helps to achieve a tiglttend on the stopping criterion
irrespective of the kernel bandwidth.

For the reverse mean shift filter, the stopping criterionvisnemore important as this
being an inverse diffusion process, the procedure coulg s@on diverge unless it is stopped
properly. We formulate a stopping criterion similar to timedor forward mean shift, butinstead
of minimization, one now has to maximize the expression. @fesitler the nois&/ and signal
U(t) to be decorrelated. The residd&0) — U(¢) during the reverse mean shift process would
contain elements of both the noise and the signal. In thesewaean shift process, the residual
would initially be very much correlated to the sigriaft). Beyond a certain point the residual
would mostly be dominated by noisé. Hence, the stopping criterion used for the reverse mean
shift procedure is to do reverse mean shift till the decatieh criterion achieves a maximum,
indicating that the residual at this point is maximally etated to the signdl (t).

The actual procedure that we follow is to first start with teearse mean shift procedure
(see illustration in Fig. 6.3. If the covariance of the resiwith the signalU(¢) increases,
this indicates that the residual is dominated more by theahsignal than the noise, signifying
sharpness of the signal and the reverse mean shift procesdumetinued. Else, if the covariance
actually reduces, this indicates that the noise dominkagesesidual and no further sharpening of
the signal is possible and hence the direction is switchddl@forward mean shift procedure

is carried out until the stopping criterion is met.

6.3 Image Restoration

In this section we first consider the case of deblurring irett&ence of noise using reverse mean
shift and then use the mixed diffusion procedure to perfanage deblurring in the presence of

noise. The noiseless case is initially used to bring out sefuiness of the reverse mean shift
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Figure 6.4: Result of inverse diffusion of the original tesage (a) which has been blurred (b)
using the gradient based cluster separation process isi\shde). (d) depicts a zoomed portion
of the blurred input and (e) depicts the mesh plot for the sdfhdepicts a the corresponding
deblurred image and (g) shows a mesh plot for the same.

procedure.

6.3.1 Deblurring using Reverse Mean Shift

Consider a cluster in the case of image deblurring basedemténsity feature. The neigh-
boring pixels having the same intensity belong to the sanmng@t. The blurring process results
in bringing the clusters closer. Therefore, one can useeerse mean shift procedure to per-
form deblurring or cluster separation. Since, the poinéagrfunction (PSF) is not known, the
kernel density functiork(x) in eqn(6.3) is not known. Hence, the non-parametric approéc
modeling the kernel density estimate is apt for this probldine process of deblurring using
the reverse mean shift procedure is illustrated in the Ei). 6

Fig. 6.4 illustrates how the process of gradient basededssiparation effectively deblurs
a blurred test image. Here Fig. 6.4(a) is the original imagel Fig. 6.4(b) is the blurred

observation. The process of blurring converts the step edga ramp edge. Fig. 6.4(c) shows
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the deblurred image which has been restored using the eeveesn shift method. This is
further illustrated in Fig. 6.4(d) by considering a zoomegbortion of the blurred image. Fig.
6.4(e) displays the corresponding region as a mesh plotisgaWe step edge being replaced
by a ramp edge. Fig. 6.4(f,g) shows the corresponding rstonage and the mesh plot.
The process of restoration does not make any assumptioredortin and variance of the blur
kernel. This substantiates our claim that the process afigmabased cluster separation is able
to reverse the blurring process without any apriori knogkedf the PSF.

Mathematically, a Gaussian kernel used for kernel densitiynation is able to exactly
restore the blur caused by any Gaussian PSF. Since any @abkssnel can be generated from
another Gaussian kernel by appropriately evolving it tgtoa linear diffusion process either
in forward or backward direction. However, the kernel dgnsstimation using the Gaussian
function can approximate other types of PSF quite well alStrictly speaking, a Gaussian
kernel cannot be used to deblur an averaging kernel. Yet,easave found empirically and
Is shown using experimental results, the deblurred appration is quite close to the original
image. Another alternate function which can be used forddetansity estimation is one based
on polynomial functions [113]. However, the Gaussian keleeng a very well behaved one, it

is used for the kernel density estimation in this chapter.

6.3.2 Restoration using Generalized Mean Shift

We now consider solving the complete problem as specifiedniféel). The proposed solution
involves an iterative inhomogeneous application of thersy and forward mean shift filter with
an appropriate switching criterion as described in theiptessection. The cluster, as before,
is based on intensity of pixels. The resultant procedurerwgteserved from the view-point
of cluster analysis works by first separating the mixed elssby increasing the inter-cluster
separation. This however increases the intra-clusteartist as well. This is reduced by the
forward mean-shift which smoothens the noise present iml#t@. An iterative application of
forward mean shift along the cluster interiors and reversamshift filter along the cluster
boundaries result in isolation of the relevant clusters ti@leby one achieves deblurring as
well as denoising. However, a key factor which needs to bedhtitat in the region where the
reverse mean shift filter is applied (mainly along the edgethé image), the denoising is de
emphasized. During the process of reverse mean shift, teasities are moved opposite to

the gradient of kernel density estimate, and hence the maises are also enhanced. This is
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Figure 6.5: Result of generalized mean shift of (a) the aagtest image which has been de-
generated with noise and blur as shown in (b) is obtained)iwifb (d) depicting the switching
criterion showing where the reverse and where forward me#ginhappens. (e) depicts a mesh
plot of a cross-section of the noisy blurred input and (fvesa mesh plot of the corresponding
restored result.

illustrated in Fig. 6.5.

Fig. 6.5(a) shows the initial test image. This image is degatied by blurring it and
adding noise to it and this is shown in Fig. 6.5(b). The blumkéused is Gaussian shaped
and Gaussian noise has a standard deviation of 20. The dagghenage is restored using the
generalized mean shift filter and the resultant image is shawig. 6.5(c). The Fig. 6.5(d)
shows how the reverse mean shift occurs along the edgesg{shalark) and forward mean shift
occurs along the interior regions. This shows how the switglriterion is able to correctly
identify the cluster boundaries and the cluster interiord deblur and denoise appropriately.
Fig. 6.5(e) shows an enlarged portion of the input imagewstits noisy and ramp nature
as a mesh plot. Fig. 6.5(f) shows the corresponding resuéistbration as a mesh plot. It can
be clearly seen that the result is deblurred and denoisedetty, due to the difficult nature of

the problem, one cannot do as much deblurring and denoisimgaa possible in the previous
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case. Hence it is possible to deblur the edges only to a lihretdent since the noise gets
boosted. Thus, using the generalized mean shift proceduseyossible to do both denoising

and deblurring.

6.3.3 Implementation Issues

The formulation presented in the egn.(6.9) is quite geremaligh as various forms of kernel
density functions can be incorporated. One of the commasoreafor the blurring in an ob-
servation is the capturing of real images using a finite apeitens where the object is not in
focus. In such a case the point spread blur function can beoxzippately modeled as Gaus-
sian [19]. Even if the original estimate of the kernel densiinction is not explicitly known,
the non-parametric kernel function generally provides @adgenough approximation to the un-
known underlying model. Another criterion to be consideigethe bandwidth parametegrin
eqn.(6.4). Here the bandwidth parameter is assumed to béamdgpractically we have used
the bandwidth parameter to be 0.8 in this study. Moreoverptbblem of deblurring also makes

an implicit assumption of being spatially correlated. Herbe eqn(6.4) is modified as

. 1 2
Vi) = n—gd%vek< ) (6.11)
(6.12)

e—ej

9

where N, is a small neighborhood over which the computation is retgti to. In our study
we chooseN, to be a 7x7 window making the iterative updates very quick.e Tiffusion
coefficient used in the reverse mean shift procedure is satsasall value of 0.1 for stable
reverse mean shift. This is necessary to prevent any fastsaudiffusion due to spurious noise
that may be present in the data.

A factor which has to be taken into account during the impletaigon is the threshold
value to be used for saturating the inverse diffusion. Theraton threshold is a function of
the amount of blur in an image. If the saturation thresholdus then the reverse mean shift is
stopped before the deblurring is complete. If the satunatioeshold is high, then the reverse
mean shift process starts degenerating. This is becausgglilthe clusters have been separated,
further reverse mean shift diverges the values within thstel as well. This is illustrated in the
fig. 6.6, which is a plot of saturation threshold versus PSHIReved for a constant Gaussian
blur kernel with variances 2.3 and 4.6 respectively apphedhe Lena image. As can be seen,

for a Gaussian blur with PSF 2.3, the optimal cluster sejmarahreshold is 0.4 and for a PSF
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Figure 6.6: Plot of the cluster separation threshold (X Axisrsus the PSNR achieved for
Gaussian PSF with variances 2.3 and 4.6 applied on the Leageim

of 4.6, the optimal saturation threshold is 0.8. Since, thewnt of blur is not known apriori,
we set the threshold to be 0.5 times the current gradieneyalel we sett = 0 in eqn(6.9)
whenever

et —el] > 0.5]el| V. (6.13)

Another aspect that is of concern in the implementation efdeneralized mean shift
filter is the kernels that have to be used for doing forward swtrse mean shift. For the
forward mean shift, we use the Epanechnikov kernel [20] anddverse mean shift we use the
Gaussian kernel. The forward mean shift procedure beifdestéor faster implementation the
accelerated convergence provided by the Epanechnikoekean be used. The reverse mean
shift, being a divergent process, it is required to use a metebehaved kernel like a Gaussian

one.

6.4 Experimental Results

We now present the experimental results for both cases dédeily alone and the simulta-

neous deblurring and denoising problems using the propostdod. Since there are a large
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number of image restoration techniques, we compare therpeahce of the proposed method
with only those handling a similar problem, i.e. blind andspvarying deconvolution. Initially
we demonstrate the performance of the proposed reverse shéaalone. This is tantamount
to deblurring an observation in absence of any noise. Rigsta image has been blurred with
a spatially invariant Gaussian blur with variance 3.0. T&ishown in fig.6.7(a). The fig.6.7(b)
shows the result of the Osher-Rudin filter. The result apptabe an “impressionistic” out-
put of the original. This has been pointed out by the authoesnselves in their paper [87].
Figures 6.7(c) and 6.7(d) show the results obtained fronAthi@rez-Mazorra method [2] and
the Gilboaet al. complex diffusion shock filter [41], respectively. The riswbtained using
these shock filters are not impressive. This is particulbgygause they are primarily designed
to handle both noisy and blurred images. In case there is ise and only de-blurring needs
to be done, then they do not perform well. Fig.6.7(e) showsésult of using a blind decon-
volution algorithm ([10]). One can clearly observe certanying effects in the result which is
very disturbing. Fig.6.7(f) shows the result of the progbseethod. Our method is able to suc-
cessfully restore most of the blurred edges to their origoran. This is primarily because the
density gradient determines a better estimate of the gradieection in which the image has
to be restored compared to the original gradient being céatp he quantitative evaluation of
the various methods based on the peak signal to noise r&MRPmetric is given in table 6.1.
The quantitative metric evidently proves that the propasethod performs significantly better
than the other methods. There is approximately a 6.5dB ivgonent over the classical shock
filter. It can also be observed that the method performs ar@8umdB better than existing blind

deconvolution algorithm [10].

Next we consider the case where a space varying Gaussiamskdpplied to the Lena
image. We have applied a radially varying Gaussian blur withvariance ranging from 1.0
in the center to 2.0 at the boundaries in a radially symmetaaner. The results are shown in
fig. 6.8. Fig. 6.8(a) shows the input image that has beenddumith a space varying blur. Fig.
6.8(b) shows the result of deblurring using Osher-Rudirckliidter, fig. 6.8(c) shows the result
of applying Alvarez-Mazorra shock filter, fig. 6.8(d) showse tresult as obtained by applying
the complex shock filter proposed by Gilbetal. Fig 6.8(e) shows the result obtained by
applying the blind deconvolution algorithm and fig. 6.8(flog's the result obtained by the

proposed method. As can be seen from the results, the pmosthod performs well as
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Figure 6.7: Result of inverse diffusion of the Lena imageahitias been blurred as shown in (a)
using (b) Osher-Rudin shock filter, (c) Alvarez-Mazorradhblter, (d) Gilboaet al. complex
shock filter, (e) blind deconvolution, and (f) the proposestimod.

Table 6.1: Quantitative Evaluation of deblurring resuliséd on the PSNR metric. The values
are in decibels.

Image Input | Osher| Alvarez | Gilboa Blind Reverse
Data Set Rudin | Mazorra| etal. | Deconvolution| Mean Shift
Lena 28.09| 21.51| 20.95 | 21.50 28.96 32.22

(Constant Blur)
Lena 30.03| 21.65| 20.89 | 21.73 26.98 33.31

(Space Varying Blur
Satellite 29.64| 22.18| 22.38 | 22.29 28.99 32.62

(Averaging Blur)
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Figure 6.8: Result of space varying blind deconvolutiorhw@) input image using (b) Osher-
Rudin shock filter, (c) Alvarez-Mazorra shock filter (d) Gibet. al complex shock filter, (e)
blind deconvolution and (f) using the proposed method.

compared to all other existing methods. This shows that tehad can also handle spatially
inhomogeneous blur very well. The quantitative comparisased on PSNR as illustrated in
table 6.1 establishes that the proposed method succgsathileves much higher performance
compared to the shock filter or the blind deconvolution téghe. It may be noted that the PSF
being spatially varying, the blind deconvolution resuttgipoorer restoration compared to what
was achieved in fig. 6.7(f).

The next experiment was done using real data set where audefdémage of a ball was
captured. The result of de-blurring is shown in fig.6.9(ln) tHis case a few disturbances can
be noticed. This is primarily a result of the quantizatioherent when the data set is stored
using 8 bits/pixel. As a result the de-blurring process gaties a few anomalies due to spurious
shocks being generated. We suggest the use of a higher eg@ira6 bits while storing the

real data set to avoid the anomalies. Notwithstanding tbgebt can still be observed that the
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Figure 6.9: Performance of space varying blind deconvatutor a real aperture image where
(a) is the input image and (b) the result using the proposdtade

deblurring by the proposed method does successfully resalbetter and sharper image with
the letters on the ball being more clearly visible and the omatvhich the ball rests also being
more sharpened.

Now we consider a case where the PSF is not Gaussian. A spagi@ging blur model
(rectangular function) is considered for a satellite imaljas is a practical aspect particular to
a kind of satellite imagery. Since a finite duration rectdagtunction can never be obtained
by time evolving a Gaussian kernel either in the forward othia reverse direction, one can
never undo the effect of blurring completely in this case.tviilstanding above, we would
like to show that the proposed method yields a very good aqpation. We can observe in the
fig.6.10 that the method is able to successfully resolve tioketlying details in the picture. Fig.
6.10(a) shows the original satellite image and fig. 6.10(oms the input observation which
is blurred with a rectangular PSF of width 8 in horizontalediion. Fig. 6.10(c) shows the
result of applying Osher-Rudin shock filter, fig. 6.10(d)wkdhe result of applying Alvarez-
Mazorra shock filter. The results demonstrate that theiagisthock filters do not have much
success when the actual PSF is very different from a GaussanFig. 6.10(e) shows result of
deblurring using the blind deconvolution algorithm. Figl&(f) shows the result of deblurring
using the proposed method which is able to resolve the firelsleery well. The PSNR metric
in table 6.1 clearly shows that the performance of the pregaosethod for this case is indeed
significantly much better (around 10 dB improvement ovessilzal shock filter and 7dB over
blind deconvolution).

After having demonstrated the usefulness of the reversen rsleift procedure, we now
present the results for simultaneous deblurring and dempissing the proposed generalized

mean shift filter. We first test our method on the Peppers images image is blurred with a
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Figure 6.10: lllustration with a 1-D blur kernel where (a}he original image which has been
blurred as shown in (b) in the horizontal direction, and thage is de-blurred using (c) Osher-
Rudin shock filter, (d) Alvarez-Mazorra shock filter, (e)rfalideconvolution, and (f) using the
proposed method.
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Gaussian PSF with a variance of 2.0 and corrupted with Ganissiise with a standard devia-
tion of 20. The results are shown in Fig. 6.11. Fig. 6.11(ahis, a very noisy input image.
Figs. 6.11(b), (c) and (d) are the results of image restmmaising Osher-Rudin, Alvarez Ma-
zorra and Gilbo&t al. complex shock filters respectively. Of the three methodsyéisult from
the complex shock filter appears to be better although thtarexs mostly gone. The Osher-
Rudin method just does deblurring but no denoising; hene@atiise gets boosted. Fig. 6.11(e)
shows the result of restoration using the blind deconvoitutnethod [10] which is sharp but
very noisy. The result of restoration by the proposed metbgdven in fig. 6.11(f). As can be
seen the result by the proposed method is better than thitssre$wther methods. The noise
has been smoothened, the texture has been mostly retaidgeaithe edges are quite sharp.
This is also verified by a quantitative comparison based dvRP&lues which is given in table
6.2. We obtain an improvement of about 3.5 dB PSNR over itsas¢aompetitor.

We now consider the case where the standard Mandrill imaglersed with an averaging
(rectangular) blur kernel of width 8 pixels and height 4 fpgx&nd is perturbed with an additive
Gaussian noise having a standard deviation of 10. Purpoeedxperiment, as previously
explained in fig.6.10, is to study the performance when thie BSery different from being a
Gaussian one. The noisy input image is shown in Fig. 6.17¢ag.result using Osher-Rudin’s
shock filter is shown in Fig. 6.12(b). The edges are considgrsharpened in this result,
however, the noise is not removed as expected (see the mgiea)reFig. 6.12(c) shows the
result of Alvarez-Mazorra method. The noise is removed,dw@wrthe resultant image mostly
has a piecewise constant appearance. Some of the whiskelesstihere and the facial hairs
pick up a different texture. Fig. 6.12(d) shows the resufboboa’s complex shock filter which
does a good job of deblurring and denoising, but the fackute is lost. Fig. 6.12(e) shows
the result of deblurring using the blind deconvolution noeth Here, the noise gets boosted
very significantly during the deconvolution process. Figl2f) shows the result using the
proposed method which shows a denoising performance dgaoiva that of Gilboa’s method.
But the edges are much better preserved in this method ceshpatiilboa’s method as can be
seen from the eyes and the whiskers. The PSNR based comparisdle 6.2 shows that the
proposed method indeed does a much better restoration gmoedto the other methods with
a significant 4dB improvement over the next best method. Eleve infer that the proposed

method can also efficiently handle PSF that is not specificéa@hosen kernel.
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Table 6.2: Quantitative Evaluation of simultaneous deblgrand denoising results based on
the PSNR metric. The values are in decibels.

Image Input | Osher| Alvarez | Gilboa Blind Generalized
Data Set Rudin | Mazorra Deconvolution| Mean Shift
Peppers 21.19| 17.75| 19.66 | 20.42 16.10 22.98

Constant blur

Mandrill 19.02| 16.65| 17.95 | 18.54 15.77 20.19

Averaging blur
Barbara 21.69| 18.48| 19.42 | 19.86 18.61 22.76

Space varying blur

The algorithm is then tested on the Barbara test image wisidblurred with a space
varying Gaussian blur kernel where the variance is variethflL..O in the center to 3.5 at the
boundaries. The image is also perturbed by an additive Gaussise with a standard deviation
of 15. Fig. 6.13(a) shows the noisy input image. Fig. 6.13{mws the result of restoration
using Osher-Rudin shock filter, fig. 6.13(c) shows the resfidpplying Alvarez-Mazorra shock
filter, fig. 6.13(d) shows the result of applying the complaeock filter by Gilboaet al. Of
the three methods the result from the complex shock filteetsebin terms of denoising and
deblurring, although the scene texture is badly affected.6FL3(e) shows the result of blind
deconvolution. The noise gets badly boosted in this metthmdigh the image is much sharper.
Fig. 6.13(f) shows the result of deblurring and denoisinggishe proposed method and the
result is much better as compared to the result obtainedéogdimplex shock filter as the noise
is substantially eliminated and the strong edges are baé¢tgurred. However, we do seem to
have lost some texture in the scene in this case. A quaa@tatimparison in terms of PSNR
improvement given in table 6.2. The efficacy of our methodiident from the PSNR measures
given in table 6.2. The proposed method clearly performshetter (at least 3dB) than the
other methods. All these results substantiate our clairtnthigeforward and reverse mean shift

algorithm can be effectively combined to simultaneouslyldeand denoise images.
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Figure 6.11: Denoising and deblurring results of the Peppage shown in (a) using Osher-
Rudin shock filter in (b), using the Alvarez-Mazorra filter(¢), using Gilboa’s complex shock
filter in (d), using blind deconvolution method in (e) and iteposed method in (f).

6.5 Conclusion

In this chapter, we have addressed the problem of blindnasto of images and have shown
that it can be convincingly solved using the proposed idegeokralized mean shift filter which
combines both forward and reverse mean shift filters usingitlsing criterion. The results
presented justify the suitability of the non-parametriprayach towards addressing the blind
and space varying image restoration problem. The propasdthique does not require the
PSF to be of any specific form. It can also handle a PSF thataisadly varying. Since the
PSF is never estimated explicitly, no modeling of the PSFerinage field is required. It is
a very simple yet powerful technique for image restoratiamich is also computationally very
efficient. We rarely required more than 10 iterations of éqrconverge to the quality solution

as per the suggested stopping criterion.
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Figure 6.12: Blind restoration of the Mandrill image shown(a) using Osher-Rudin shock
filter in (b), using the Alvarez-Mazorra filter in (c), usingla’s complex shock filter in (d),
using blind deconvolution method in (e) and the proposedaekin (f).

While the current method handles the problem of deblurrim¢eqwvell, and also handles
deblurring in the presence of noise, the results obtainedjurring do not preserve the cor-
relation of the restored image with depth in the scene. Ehizecause, the depth in the scene
is correlated by the diffusion equation. Hence, in the n&spter we explore a technique for
restoring blurred images by using the reverse heat equstias to also preserve the correlation

of the restored result with depth in the scene.
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Figure 6.13: Space varying restoration results of the Barbbmage shown in (a) using Osher-
Rudin shock filter in (b), using the Alvarez-Mazorra filter(¢), using Gilboa’s complex shock
filter in (d), using blind deconvolution method in (e) and iteposed method in (f).
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Chapter 7

Restoration using Stabilized Reverse Heat

Equation

The problem that is addressed in this chapter is one of deHfduan imageY (z, y) that has
been blurred by a blurring kerng(z, y) representing some physical process. We recollect that

as seen in eqn.(6.1)this problem is modeled by the followomyolution relation:

Y(z,y) ://U(t,T)h(ZL’,y;t,T)dth (7.1)

As is normally assumed the functianz, y) has the properties that it is non-negative, and
the integral of the functioh(x, y) is unity.
As shown by Guichard and Morel [48], the convolution of an gaawith a kernel is

proportional to its Laplacian and can be modeled by the hepadtéon as follows:

du(z,y,t)
ot
Hereu represents the image being diffused using the heat equaimthe diffusion coefficient,

= cAu(x,y,t), u(z,y,0) = Iy(z,y) (7.2)

Awis the Laplacian ofi and/y(z, y) is the initial deblurred image. The use of the heat equation
has also been used by Witkin [129] and Koenderink [62] in thvenation of the notion of scale
space. An important work along these lines has been use sétappic diffusion for edge
preserving denoising by Perona and Malik [90]. While theas been much work done on the
forward aspect of heat diffusion [106], relatively less wbas been done on the reverse aspect
of the heat equation. The reverse heat equation is ill-paseldso its use has been limited.
Osher and Rudin [109] in their work proposed the use of “shdittkers which are hyperbolic

partial differential equations. These are stable and hawel gonvergent properties. However,
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they provide piecewise constant results and do not achieeedeblurring. Another work has
been the use of stabilized inverse diffusion equations §1Pollaket al. They also use an
approximation to the inverse diffusion which has a physmativation. However, they also
do not approach the true reverse heat equation. A very reweri [14], has explored the
use of reverse heat equation with a non-local means baséibadticriterion. They perform
alternating steps of reverse heat and non-local regutaizaThe alternate formulation that
we provide is simpler. Here, we solve the problem of debhgrioy using the reverse heat
equation. Since the reverse heat equation is ill-posedaibdige it by controlling the disruption
of edges. This is achieved by adding a normal component diie¢aé equation in the forward
direction. We also formulate a stopping criterion for tamating the reverse heat equation
process when the deblurring of the image is completed. Imthe section we discuss the

reverse heat equation and its stabilization.

7.1 Stabilized Backward Heat Equation

The reverse heat equation is given as

ou
% cAu
u(z,y,7) = I(r,y) (7.3)

whereAu denotes the Laplacian af I(x,y) is the blurred observation ands the diffusion

coefficient. We have to find the solution

This is achieved by reversing time in the heat equation

W et ulr,,0) = I(r,y). (7.5)

However implementing eqn(8.3) can be done only for a few tte@s and then the resulting
image blows up due to the high pass nature of the resultingabpe. It boosts the noise,
especially along the edges where the Laplacian has higlesakxplicit edge information can

be considered in the heat equation by considering the geimfm@im of the heat equation

ou 0*u O*u
E == 8—7]2 + 8—@ = u,m + u«. (76)

78



Heren refers to the normal angito the tangential direction. The diffusion along the normsal

given by
U U2+ 2 % Uy Uy Uy + Uy U2
o xx Ly T x y
Uy = 2+ (7.7)
and the diffusion along the tangent is given by
Upg D2 — 2 % Uy U Uy + Uy U2
ug =~ Lo (7.8)

ui +u
Since the diffusion along the normal diffuses across thegsa@md diffusion along the tangent
continues along the edges, the blurring in an image is cawsed due to diffusion along the
normal. Therefore in order to stabilize the reverse difinsithe reverse diffusion across the
edges has to be done at a slower rate as compared to revéusgodifalong the tangent. The
diffusion along the normal is a more divergent process asddbe done at a slower rate. Thus
in order to stabilize the reverse diffusion we add a forwaychponent of diffusion along the
normal. The resultant stabilized form of the heat equasayiven by

ou
% —cAu + By, (7.9)

Here we use > (3 in order to ensure the overall reverse nature of the diffuside diffusion is
carried out until a stopping criterion is reached which esponds to the initial required solution
I(z,y,0).

7.2 Relation to Other Techniques

We now consider the analysis of shock filters and Kramer'srélgm as explored by Guichard
and Morel [48]. Osher and Rudin in their “shock filter” formatibn, proposed the following
equation

ou

5 = —sign(Au)|Vul (7.10)

whereVu is the gradient of.. This equation enhances the Marr-Hildreth edges. Kranferete
a filter that sharpens blurred images by replacing the gral imlue at a point by either the
minimum or the maximum of the gray level values in a circulaighborhood. Guichard and
Morel [48] proved that the PDE underlying the Kramer filter is

% = —sign (Vu(Vu, V.u) (7.11)

whereVu is the gradient of; and instead of the Laplacian, the directional second d&reves

used. This filter enhances the Canny edges. While, both tittese perform edge enhancement,
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they are not equivalent to the actual reverse heat equatammpared to the proposed approach
which is based on the reverse heat equation itself.
The non-local reverse heat equation proposed recentlyi$lelpsely comparable to the

proposed technique. The non-local reverse heat equatgven as

ou

5 —Au~+ AN Lyu (7.12)
where
NLyu(z) = ﬁ /exp Co * |u(x)h; uy)l (O)U(y)dy, (7.13)

whereC'(z) is the normalizing factorh acts as a filtering parameter a6} is the Gaussian
kernel with standard deviatian Here N L is the non-local means filter [13] and it means that
u(z) is replaced by a weighted averageugf/). The weights are significant only if a Gaussian
window aroundy looks like the corresponding Gaussian window aroundrhis approach is
certainly interesting. The main difference, as is evidgntbmparing eqns(7.9) and (7.12),
is that in our approach we rely more on the local normal corepbwof the heat equation to
stabilize the equation as compared to the non-local comparsed by Buadest al.. Since the
objective has been to closely approximate the reverse lggeatien, the damping by using a

normal component of the heat equation itself satisfies titisrion in a better way.

7.3 Stopping Criterion

Consider the eqn(7.3) using which we have to estimate thialicondition given in eqn(7.4),
i.e. we have to estimate the valuewdf, y, 0) = Iy(x, y). The eqn(7.5) has to be stopped when
u(z,y,t) = u(z,y,0). However, here we do not know the valuewtf, y, 0). An observation
that can be used is that the eqn(7.3) is valid only till titme 0 and it breaks down if we go
beyond this time. The modified reverse heat equation givesgin(7.9) will not be valid for
the value of time < 0. Hence, beyond this point the solution will degeneratedigpiThis
observation can be used for stopping the reverse heat egqudtiwe consider the image as a
manifold with at least’, continuity, the degeneration of the solution can be detebtethe
divergence of the curvature. In eqn (7.9), since the normiponent is added, the tangential
term is diffused in reverse direction more rapidly. The &migal term corresponds to curvature
driven motion. Since, the curvature driven term is reversted faster rate, the degeneration

in this term happens before degeneration in the normal casmgo Hence, the divergence of
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curvature can be used as an indicator that the image appaesrthe desired initial image. Fur-
ther, when the divergence of the curvature happens, thendegfeon in the normal component
would happen in a few more time steps, based on the differefribe weightage given to them.
And hence, the degeneration of the curvature is a good itadtié@ stopping. The curvature is

given by
o Unp Uy — Qg U Uy + Uy U7
(u2 4 u2)3/?

The egn(7.9) is stopped when the change in curvature exeettuleshold, i.ex, > 6. Com-

(7.14)

paratively, the shock filter formulation [87] is a convergenocedure and does not require a
stopping criterion. In the non-local means based reveraedgpiation [14], the authors suggest
stopping the reverse heat equation when the value of thextiapl exceeds twice the value of
the initial Laplacian. But using this criterion results iertain artifacts being generated due to

the degeneration of the solution.

7.4 Implementation Details

In the implementation of the reverse heat equation, the deyrconditions were assumed to be
Neumann boundary conditions, i.e. the gradient is zerogalba boundary. We now consider
the values of the various constants. In eqn(7.9) the valtiesiod 5 are chosen to be small and

¢ > (. Additionally, they must be small enough to maintain Cotufarnedrichs-Lewy (CFL)
conditions. Here we have chosen values: @s 0.2 ands as 0.02. These values have been
empirically chosen. The value éfused for setting the threshold for change in curvature was

0.3

7.5 Results

We first justify the use of the proposed technique by considehe performance of the reverse
heat equation when used for deblurring without any modificatThe results using the reverse
heat equation are shown in fig. 7.1(c)&(d). Fig. 7.1(a) shtvesoriginal Lena image that is
blurred with a constant Gaussian blur with standard denadi0. Fig. 7.1(b) shows the blurred
input image. Fig. 7.1(c) shows the result of using the revéesat equation for 2 iterations.
As seen in the figure use of reverse heat effectively statiBidéng the input. But as can be

seen in fig. 7.1(d), which shows the resultant image aftelyapgpthe reverse heat equation
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for 10 iterations, this equation is unstable and the vall®s bp quickly. We next evaluate the
proposed technique by experimentally comparing the meththdthe shock filter method [87].
Note that the proposed technique as well as the shock filtdrodelo not use any information
about the nature of the blurring function and both perforinddeconvolution. Fig. 7.1(e)
shows the result of applying the shock filter. As can be sealewe shock filter preserves the
strong edges, the weak texture edges are strongly affactinsimethod. This is because the
shock filter does not approximate the reverse heat equatimmopriately. Fig. 7.1(f) shows the
result using the proposed technique. As can be seen, theaebieves true deblurring as can
be seen from the texture on the hat and hair. Here the metloédi®iterations (as compared
to original reverse heat blowing up in 10 iterations) befitve stopping criterion was satisfied
over the entire image. The result is closely comparable @ootiiginal image. Quantitative
comparison in terms of PSNR values establish around 1.5 gdimvement over the inputimage
and around 10db improvement over the shock filter method.
We next consider an experiment of performing blsghce varyingleblurring. We blur

a sand texture image obtained from the Brodatz texture dagalvith a Gaussian blur function
with the standard deviation being increased from 1.0 torbffleft to right. Fig. 7.2(a) shows
the input image and Fig. 7.2(b) shows the blurred input imaBee input image is restored
using the shock filter and this result is shown in fig. 7.2(ck oan be seen, the shock filter
method results in a piecewise constant resultant imageenhech of the texture information
is lost. This particularly emphasizes the need for the pseddechnique. Fig. 7.2(d) shows the
result of the proposed technique. As can be seen, using tipeged technique one can obtain
deblurring of the input image with very little artifacts bgipresent. The results quantitatively
show around 3db improvement over the input image and aroufdtb3mprovement over the

shock filter method.

7.6 Conclusion

Here we present a technique which addresses the challepgpbtem of blind space varying
deblurring. The problem is modeled using the heat equatiwhdeblurring is framed as a
problem of solving the reverse heat equation. The unstadtiere of the reverse heat equa-
tion is addressed by adding the normal component of theseverat equation in the forward

direction. A curvature based stopping criterion apprdphastops the reverse heat equation
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(@) (b: PSNR=29.1db) (c: PSNR = 29.82db)

(d: PSNR=9.33db) (e: PSNR=21.56db) (- PSNR=30.48db)

Figure 7.1: Deblurring results for a constant Gaussianrétutena image (a) is the original
Lena image which is blurred as seen in (b) using constantsEauslur. (c) shows the result
of using the original reverse heat equation for 2 iteratemd (d) shows the result on using 10
iterations of the reverse heat equation. This shows thabilgy of the reverse heat equation. (e)
shows the result of applying the shock filter [87] and (f) shale result by using the modified

reverse heat equation.
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(c: PSNR=15.94db) (d: PSNR=19.64db)

Figure 7.2: Deblurring of a space varying blurred input imadpere (a) is the input sand texture
image that is blurred with a space varying (ramp) Gaussian {@) is the result of applying the
shock filter [87] and (d) is the result by using the proposethog:

without artifacts being introduced in the solution. Theutessobtained justify the feasibility of

the proposed theory.
We next consider the use of the reverse heat equation tonadepih from a single defo-

cused image in the next chapter.
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Chapter 8

Depth from a Single Defocused Image

Shape from a single imagdés a task which has predominantly continued to elude compixte

sion researchers. While the community has gained consildegapertise to attack this problem
when provided with multiple images, the same cannot be shghjust a single image from an
uncalibrated camera is provided. The task is quite dautingputationally, inspite of the ease

with which the human system is able to achieve the same.

(b)

Figure 8.1: A sample image of a scene captured with a low defdiield and the rendering of
the same scene in 3D based on the depth estimated using gfespcbmethod.

In this paper we present a method to perceive the depth l&pensa single defocused im-

age. The limited depth of field introduces a defocus blur iages captured with conventional

1Shape from shading problem [55] which recovers depth froingles observation is not considered here as it

is a model based approach, the model being a known reflectasge
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lenses based on the range of depth variation in a scene. flifasghas been used in computer
vision for estimating depth in the scene when multiple desec images are provided. Here
we show that using this low-level cue it is still possible &rgeive the scene structure using a
single image to a fairly good extent of accuracy.

The method proposed in this paper uses a single defocuseg iafaa scene taken with
an uncalibrated real aperture camera having a low depthldf fl#e show that a surprisingly
large amount of information of the 3D scene can be inferregd@n just the defocus cue in a
single image. In order to extract this information we faceesal challenges. The conventional
methods for estimating depth from defocus ([19],[35]) hasked on multiple observations.
The differences in blur among various observations are asedcue for estimating the depth.
However, it is more natural for a photographer to take a simglage. There are in general a
lot of beautiful images taken of natural scenes with a shatlepth of field, such as the image
shown in fig.8.1(a). In this paper we explore for the first tiageto what extent the blur can
be estimated even with a single image. From fig.8.1(a), anyamuobserver can infer that the
flowering plant and the adjoining grass is closer to the carttean the waterfall. Can we teach
a computer to infer the same? The rendering of the 3D scemvensindig.8.1(b) demonstrates
that it is indeed now possible to a certain extent using thinateproposed in this paper.

The idea of using low-level cues for extracting%';D sketch was proposed by Marr [75].
This forms a philosophical basis for our work. A successfpgraach for single image based
structure recovery has been that by Crimimsal. [24]. Here the authors have used projec-
tive geometry based techniques for computing the scenetsteubased on the prior knowl-
edge of the vanishing line of a reference plane and a vaggiomt. An interesting work has
been that of obtaining 3D pop-up kind of structure from a Enmage based on learning ap-
pearance based models of geometric classes and usingfthisiation for obtaining cutouts
([53],[54]). Another approach [110] based on similar lineses images of scenes and their
associated ground-truth depth maps. It discriminativelins an MRF using multi-scale local
and global image features and uses it to predict the depthama@pfunction of the image. In
our method we do not need such explicit prior knowledge amieg. There is a related work
[123], where the authors do segmentation of images basedfoous cue by using the statistics

of the wavelet coefficients, but it is highly feature depende
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8.1 Is depth from a single defocused image possible?

In shape from a single image using geometry, as done by denehal, one can use the
vanishing points and obtain distances from the vanishingtp®his would establish a relative
scaling. Hence, it is feasible to obtain shape from a singlege using geometric techniques.
One could also learn the geometric classes using data sttdassify the various geometric
classes as done by Hoiest al. The methods mentioned would not work if one is provided
with a single defocused image. This is because there wouddritéguity in the precise location
of the vanishing point. Moreover, the blur would also afféw classification of the geometric
classes. In such a case depth from a single defocused imade seem impossible.

However, here one could make use of the depth from defoctsitpees which we have
considered so far. The techniques for depth from defocudvased on estimating the blur.
All the methods proposed so far (as reviewed in chapter 2Yheseelative blurring between
two differently defocused images. Given two differentlffaised images one could use the
techniques discussed in chapters 3, 4 and 5 to estimate e aecurately. However, given
a single defocused image one cannot use the relative lduoetween the two images. Here,
the challenge is to estimate the blur from a single defocusade. One approach would be to
restore the image and estimate the relative blur differéeteeen the restored and the original
defocused image. This can however not be used generallg gsdhess of deblurring or blind
deconvolution destroys the depth relationship betweenabdj The resultant depth estimate
would not be coherent. One can estimate the depth from areelstmage only if the process of
deblurring carefully preserves the depth relationship.

In order to understand the depth preserving deblurringge®eve must take into account
the characteristics of the defocus blur. We have seen inteh&pthat the defocus blur can
be modeled using the linear diffusion process. Hence, tpéhdeased blur characteristic can
be preserved if we use the linear diffusion process in thersevdirection. The reverse heat
equation however is unstable. We have seen in the previamehhow we could stabilize the
reverse heat equation for deblurring. We build up on thesdéahe previous chapter to obtain

a method for estimating the relative depth.
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8.2 Reverse Heat Equation

Given a defocused observation of a scene we would like t@mest using the reverse heat

equation. We recall that the reverse heat equation is giwen a

ou  (Ju(x,t)
o ¢ < Ox? )
u(z, 1) = I(x), (8.1)

wherel(z) is the blurred observation ands the diffusion coefficient. Here we are given the
blurred observation and we have to find the pin-hole equitaleage. That is we have to find

the solution such that it satisfies the original image

u(z,0) = f(x). (8.2)

This is achieved by reversing time in the heat equation aaddbultant is

Ou _ (O%u(x,t) _
o5 = ¢ (W) , u(x,0) = I(x). (8.3)

As discussed in the previous chapter, the above equatioendegtes rapidly. However, this
equation has been used for restoring images. The idea df tistnreverse heat equation for
restoring images was first proposed by Gabor in 1965 [70].eRic the use of the reverse
heat equation has been advocated by Buatled. [14]. They propose the use of the reverse
heat equation regularized by using the “non-local meansstaint. In this chapter we use
the reverse heat equation as given in eqn.(8.3). The reasof modifying the reverse heat
equation as done by Buadetsal. is that the relation between depth and diffusion coefficaerut
time is valid only for the heat equation. Hence, for an adeudepth estimation, the reverse
heat equation should be used directly. The main problendfadgle using the reverse heat
equation is its divergent nature. Due to this the reversedopsation remains stable for a short
while and then degenerates very rapidly. The key to usingaherse heat equation is to have
an effective stopping criterion that stops the reverse égaation in its stable region. Note that
here we do not use the geometrically stabilized form of tivense heat equation as proposed
in the previous chapter so as to preserve the depth basedatmnn of the deblurring as closely
as possible. Based on the experience of deblurring in thaque chapter we propose a way of
using the reverse heat equation to get an estimate of depth.

Koenderink [62] had referred to the use of heat equationerr¢lierse direction indirectly

in his work. He had observed that the notion of scale spaceamdverse direction would be

88



stable up to the initial condition and beyond that it wouldule in impulses being generated.
Taking this into account we have devised a stopping criteti@at would effectively stop the
reverse heat equation at an appropriate time.

Consider the eqn.(8.1) where we are given a blurred obsenvafx) and we have to
estimate the observation without blur i.g(z) that was the initial condition. However, we do
not know the value of the time either, i.e. we do not know howiriacime should the reverse
heat equation be carried out. An observation that can beisgbdt the eqn.(8.1) is valid only
tilltime ¢ = 0 and it breaks down if we go beyond this time. The breakdowhehieat equation
is indicated by the degeneration of the gradient. Hencerdbeltant formulation for reverse

heat equation is

ou Ou(z,t)
% —B(x)c (W) ; (8.4)
whereg(x) is given by
Lif [Vu —Vu| <0
Blx) = (8.5)

0 else

HereVu is the gradient ofi andVu is the average gradient in the neighborhood. The function
f(x) detects the degeneration of the gradient since the diveegefithe gradient from the
average gradient is an indicator of the degeneration of thdignt. The stopping time of

the reverse diffusion is then determined by the value of thestantd. In our experiments
we have used a small value éfranging from0.2 to 0.4. The use of egn.(8.4) results in an
inhomogeneous stopping of the reverse heat equation bas#tecamount of defocus at a

location. The relative depth in the scehes then given by

. t(z)
d(z) = /0 c(x,t")dt'. (8.6)

Here,d(x) is the approximate estimate of the depth at the locatioAn estimate ofi(z) for
the scene in fig. 1 is shown in fig. 3. Using the stopping coodiproposed in the previous
chapter results in better deblurring performance, but #pldestimate obtained is quite weak
since the stopping condition proposed in the previous @negibps the reverse heat equation
relatively early so as to prevent any degeneration in thiered image. Here, we need a better
depth estimate and so we use the stopping criterion as giveqn.8.5.

It was demonstrated in [19] that the DFD method does not parfeell in the absence of
any regularization of the estimate. Hence, the depth estimdurther refined by modeling the

depth as a Markov random field.
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Figure 8.2: The integrated diffusion coefficient of the msecheat equation for the scene shown
in fig.8.1. The convention darker is the focused region @ips used throughout this paper.

8.3 DFD Using Graph Cuts

Using the reverse heat equation coefficient we can obtaiparogimate estimate of the depth
in the scene using eqn.(8.6). However, in the regions whichad have texture, this depth esti-
mate is not valid. Hence, we define a Markov random field (MR&Jleded on the relative depth
(or blur) in the scene and solve it using the MAP-MRF framdwdb]. We have discussed the
use of this MAP-MRF framework for estimating the depth uging images in chapter 5. Here,
however, since we are using only a single image, the cursageiof the MAP-MRF framework

is different, since here the likelihood used is different.

The depth estimate obtained using the reverse heat equstomeasure of the disparity
between the observed image and the restored image. Hendeptleestimatei(x) obtained
in egn.(8.6) is taken as an estimate of the observedIblurorresponding to the depth in the
scene, i.eD is now the data term defined for a locationWe define a set af discrete labels
corresponding to different depths in the scene= {/,,---,l,}. These labels are assigned
over the image for the relative depth in the scene givewbgne labeko, at each pixek, that

maximizes the posterior probability given by the Gibbsrilisition

p(w[D) = % = o eP(-E(w)), ©.7)

whereZ,, is the normalizing constant (or partition function). Theergy corresponding to a

configurationw consists of a likelihood and a smoothness term as

E(w)=)_ <¢<D|wz> + ) (s, wy>.> (8.8)

x yeN
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Figure 8.3: The binary valued edge map obtained using Cashapy detector that is included in
the data likelihood for the scene shown in fig.8.1(a).

The likelihood termy(D|w,) is derived from the initial depth estimatieand the smoothness
termy(w,, w,) is based on the prior on the depth in the scene. The neighbdstiparoundz
considered is the eight neighborhood around a pixel.

The prior in the scene(w,, w,) chosen to have the form

(we, wy) = [|(we — wy)|]2 (8.9)

We do not explore the choice of the optimal energy functiat tdan yield the best results in
this paper.

An important issue here has been modeling the data liketitbeon. Here we consider the
depth term from the reverse heat equation around the eddeasider an equal likelihood for

the data term where the edge is absent. Accordingly the dtaténbod is given by

((w, —d(x)) " it M(x) =1
nif M(z) =0

O(D]wsx) = (8.10)

Heren is the default data value which is uniform for all labels andsed in case the edge
indicator functionM (z) indicates the absence of an edge. We use a binary valued @dgey
detector for the indicator functio/ (x) and fig.8.3 shows a scene with its edge m#&pSince
the nearly homogeneous regions do not offer any informatlmout the depth or the associate
diffusion, we give more weight to the edge pixels. Accordiripe value ofy is appropriately
chosen.

We minimize eqgn.(8.8), thereby maximizing the posteriash@ability using graph cuts

([11],[12]). The graph cut finds the cut with the minimum cesparating terminal vertices,
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called the source and sink. Here, the terminal vertices ssmgiaed the presence and absence
of a discrete label fronf. The graph cut is solved using alpha expansion [12] whiawedlus
to consider this method of using binary labels to minimize ¢bst over the entire sét The
resulting energy function is

E(wy, -+ wy) = Y EY (w;,wy). (8.11)

1<J

Here wy, ws, -, w,, correspond to vertices in the graph and each representsagybiariable
where they are either connected to the sink or to the sourbesellabels provide a discrete
approximation ofw and the corresponding minimization is same as minimizatiof(w) in
egn. 8.8. For an energy function of this form it has been mdayeKolmogorov and Zabih [64]
that the function can be minimized provided that it is regula. minimization is possible if

and only if each term of the energy function satisfies thefailhg condition:

E(0,0) + E¥(1,1) < EY(0,1) + E%(1,0) 8.12)

which implies that the energy for two labels taking similalues should be less than the energy
for the two labels taking different values. Since this is ¢hse for the energies defined by us,

we can find the desired configuratignby minimizing eqn.(8.8).

8.4 Results

We now describe the experiments that we have performed asuagiety of images. The first
experiment was performed on a synthetic texture data set We provide a defocused input
image fig. 8.4(a). This shows a texture image from the Bro@atzre database which is blurred
with 3 different blur regions. The corresponding depth msiineated is shown in fig. 8.4(b)
and the ground truth for the data is shown in fig. 8.4(c). Thangtative comparison of the
estimated depth map with the ground truth showed that 95%egbiixels are labeled accurately.

We then tested our method on a general outdoor image of aitutapting scene fig.8.5(a).
This image is captured with a moderated low depth of field withfocus on the flowers in the
foreground. The grass near the flowers is also in the foreghouhereas the waterfall is further
back and the sloping hills towards the left are furthest afkay the camera. All these details

are captured appropriately in the depth map shown in figo.3he result is obtained using 16
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(@) (b) ()

Figure 8.4: A texture map is modified with three blurred regias shown in (a) and the resultant
depth map estimated using the proposed method is shown.inTfi® ground truth for this
synthetic data set is shown in (c). Here we obtain accuratdddor 94% of the pixels.

labels of depth with a gradient degeneration threshofdegn.(8.5) of 0.2. The corresponding
data likelihood term from the reverse heat equation is shavig.8.2 and the edge map for the
scene is shown in fig.8.3. As can be seen from the recoverdd dgp, we are able to obtain a
very good estimate of the relative structure in the scendiomis the single image in fig.8.5(a).
Fig.8.1(b) shows a rendering of the 3D scene.

We next consider an image taken from a sports scene shown8rtfig). As can be seen,
here the playet is in focus and the spectators are out of focus. This imageésdsting due to
the very low amount of texture present in the scene. The ssteneture is estimated using the
proposed technique and the result is shown in fig.8.6(d).plénger is clearly seen in front and
the spectators are seen in the background. Further dekailhe right arm of the player being
in front, the face being a bit behind the body can also be perde

We next consider a data set with complex lighting conditioFise input image fig.8.7(a)
shows a room with various artifacts. The figurines of pumashmvs specular effects and there
are also other diffuse reflectors in the scene. The relagpédmap obtained using the proposed
technique is shown in fig.8.7(b). This shows that the albarits able to estimate the relative

layers of depth even in such challenging situations.

2Darren Gough of England
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@) (b)

Figure 8.5: An outdoor scene shown in (a) and the resultgotihd@ap estimated using the
proposed method. Note that darker regions correspond tséacregions and lighter regions
correspond to defocused regions.

(b)

Figure 8.6: A sports scene shown in (a) with low texture isstdered. Even in this challenging
data set an appropriate depth map is obtained using the ggdpoethod as seen in (b).
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@ (b)

Figure 8.7: A scene with complex lighting conditions is sinow (a) and the resultant depth
map is shown in (b).

8.4.1 Ambiguity in Depth Estimation Using Defocus

When we try to perceive the depth in the scene based on thewdetoe, there is an underlying
assumption that all the objects are to one side of the defomos shown in fig. 8.8. A similar
amount of defocus blur is generated on both sides of the dsfoane as is illustrated in fig.8.8.
The same amount of blur is generated at the planes which ardigt@gnt from the focus point
F. Hence, it cannot be discerned whether the objects thaledoeused are towards the front or
back. This ambiguity is evident from our next experiment.

We consider two images of dolls (courtesy [32]) where thaigas interchanged between
background and foreground objects. In the first case as sd&n8.9(a), the foreground is out
of focus and the background is in focus. The correspondicavered depth map obtained using
the image is shown in fig.8.9(b). Note, that the depth map shadao captures the details like
the rightmost doll has its front portion more in focus thae black part and the depth variation
around the hands is also reflected properly.

When we consider the other image of the dolls where the foregt is in focus and
the background is out of focus as seen in fig.8.10(a), themakdting depth map shown in
fig.8.10(b) will also be in the opposite direction. Here, tepth map shows the foreground
portion in darker shade indicating that this region is irugcNotwithstanding the above differ-
ence, a comparison of figs.8.9(b) and 8.10(b) shows thaetteyered depth maps are mutually
very consistent.

Favaroet al. [32] have used the two images given in figures 8.9(a) and 8)10(compute
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Defocus Cone
indicating amount
of blur on both sides

Figure 8.8: Illustration of image formation in a real apegtiens.

@ (b)

Figure 8.9: The dolls scene (courtesy [32]) with the foregqbdefocused as shown in (a). The
depth map from the proposed method is shown in (b).
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(a) (b)

Figure 8.10: The dolls scene (courtesy [32]) with the backgd defocused as shown in (a).The
depth map from the proposed method is shown in (b).

the depth. In fig.8.11, we compare their results, with theltebtained from the proposed
method. The methods cannot ideally be compared since theraun their method [32] have
used two images while we have used a single image. The rasained by the method pro-
posed by Favaret al. is shown in fig.8.11(a) and those obtained by the proposetodédtor
the foreground defocused case for uniformity in companiseshown in fig.8.11(b). As can
be seen in fig.8.11, the results obtained by the proposedocheaite definitely comparable and
in some cases, as in around the rightmost doll, the depth roapthe proposed method shows
more detail.

In a recent work, Hasinoff and Kutulakos [50] have proposeatkéhod based on confocal
constancy property in which the method of depth from focushmaseen to be a pixel matching
operation. However, as is common in depth from focus tealesgtheir technique requires a
large number of observations (hundreds of images, 13 apeand 61 focal settings) of high
resolution. We have used just one of their images as showg.BI2(a). Using the proposed
technique we obtain the depth map as seen in fig.8.12(b). Ab&aeen, we are able to obtain
consistent results with the most focused region being aveay the center towards the left side
of the box. However, the left most end of the box is also shgi¢focused. This is clearly seen
in our result. The right most end of the box is most defocug®en this fact is seen in the result.
An important point here is the background which is defocusembrrectly identified as being

at the same level. Fig.8.12(c) shows the result obtainedsimguheir confocal stereo method
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(a) (b)

Figure 8.11: Depth map obtained from the dolls scene for thiod proposed by Favaet al.
[32] using two images is shown in (a) and the result obtainethe proposed method is shown
in (b).

which uses hundreds of images. As can be seen, the resuis@ibiare very comparable. In
certain regions like towards the center (near the edge)déipgh map shown in the confocal
stereo method appear to be at variance from the adjoinirag avéhereas, the depth map from
the proposed technique is consistent. A very importanti$atiat the proposed method clearly
identifies the background as being at a same depth which istééfinot the case in the result

using confocal stereo.

eecccccece
eoeccccce

(@) (b)

Figure 8.12: A box image (courtesy [50]) with a slope is shamv(a). The depth map obtained
using the proposed method with a single image is shown inTb result obtained from the
method in [50] using around 100 images

98



8.5 Conclusion

In this chapter we demonstrate that it is indeed possibledover the relative depth layers from
a single image using the defocus cue. The reverse heat equain be used for restoring the
image in an inhomogeneous way based on the amount of defagus'he amount of reverse
heat diffusion serves as a data likelihood and using thidilikod around the edges, a graph cuts
based method is proposed to estimate the depth in the scemrdyhenforcing regularization.
We have demonstrated by experimentation on a variety oféessts of real data that the method

consistently provides a correct perception of the scenetsire.
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Chapter 9

Conclusion

In this thesis we consider in a unified manner the problem pfidestimation and image restora-
tion based on the defocus cue. The heat equation effectiwetiels the defocus cue. In this
thesis we consider various ways in which this model can bd t@wedepth estimation and im-
age restoration. The use of a common underlying diffusiodehbelps us in solving both these
problems by considering various aspects of the diffusiacgss.

The first basic approach adopted by us was using linear @iffusThe linear diffusion
was done using defocus morphing of two defocused obsensiitogenerate the entire defocus
space of the observations. This method also demonstragestjthivalence between depth from
focus and depth from defocus methods as this method soleegprtiblem of depth from defo-
cus using two observations in a manner similar to the deptin focus technique where many
observations are used to estimate the depth in the scereemBtinod used the spectral interpo-
lation property of defocus morphing to generate the defspase. Hence, the characteristics of
local spectral operations of windowing and inverse filtgrimtextureless regions characterized
this method. However, this first effort provided the baseeigploring the use of diffusion for
both depth estimation and image restoration.

The limitations of the spectral method provided the neagssapetus for exploring the
problem in the spatial domain. In the spatial domain the lerolbof depth from defocus was
considered lately by Favart al. However, unfortunately their method had a few shortcom-
ings. One of the important facts was that the linear diffndgdased method suggested did not
adequately handle departures from the Gaussian assunoptimmpoint spread function. These
departures occur specifically around self-occlusion edgdsaperture imperfections. We there-

fore considered the use of stochastically perturbed ddfuéSPD). We have shown that use of
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SPD implicitly handles departure from the Gaussian assiomgutMoreover the stochastic level
sets based evolution also handles the non-convex natuine diftusion.

We then used an MRF framework for representing the diffusmefficient. This frame-
work was necessary in order to incorporate the neighborimdodmation in the estimation of
diffusion coefficient. The MAP estimate of the MRF framewarlis done using the graph cuts
formulation, i.e using the alpha expansion algorithm. Thethod has advantages like sym-
metric handling of diffusion coefficient and generalizednfiework for incorporating robust
regularization functions. These advantages helped ingirayaccurate results.

While the forward diffusion methods are quite stable, theerge diffusion method is un-
stable due to the ill-posed nature of the reverse heat egquate therefore proposed an al-
ternative non-parametric reverse mean shift techniquetlwhmproved deblurring results as
compared to other partial differential equations baselrtiegies like the provably convergent
“shock filters” of Osher and Rudin. We have used a stoppirtgraon based on cluster separa-
tion in order to terminate the reverse mean shift procedline.reverse mean shift was further
extended in terms of a generalized mean shift techniquethdd be used for deblurring in the
presence of noise. An optimal switching criterion was usedktermine the switching between
forward and reverse mean shift.

The non-parametric technique is a non-linear method fotudebg that approximates
the reverse heat equation. A better approximation is obthby stabilizing the linear reverse
heat equation itself. The reverse heat equation is staelilising geometric form of the heat
equation. Since the blur is predominant in the normal forthamathan the tangential form,
the reverse heat equation is stabilized by damping the seuseat using the normal form of
the heat equation. The stopping criterion is selected baisdide degeneration of the tangential
component as compared to the normal component. Using tieitue appropriate blind space
varying deconvolution is achieved.

The use of reverse heat equation enables us to considerdhenghng problem of depth
estimation from a single defocused image. While, depthmegion from multiple defocused
images has been explored, depth estimation from a singtecdstéd image was considered
to be impossible. However, using the reverse heat equateare able to estimate an initial
likelihood estimate of depth in the scene. The likelihoodpled with the edge information
is used in an MRF framework to estimate the dense depth inddwees Thus we are able to

demonstrate depth estimation using a single defocusedsimag
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We have presented all the methods developed in the thesiextgnsive experimentation.
The results are also compared in each case with state ot tieteded techniques. The ideas thus
proposed in the thesis provide an extensive exploratiohefiefocus cue in depth estimation

and image restoration based on the common underlying id& ofse of the diffusion equation.

9.1 Future Work

The focus of the thesis has been on analysis of defocusecesrfag depth estimation and
defocused images. While we have built a coherent body of wotlke thesis, there are several

interesting aspects which can be considered for future work

e The defocus space concept allows one to generate a contioudefocused images and
one can synthesize defocused observations. However, tidowed Fourier transform
used for generating the defocus space resulted in windoavitifigcts being generated.
One would like to explore a corresponding spatial or spegioporal representation of
the defocus space which would result in accurate defocusespaing generated. This

would have important applications in refocusing of images.

e The methods proposed for depth estimation from two defatimages did not assume
an explicit parametric form on the scene. There have beehadsfor structure recovery
that have leveraged the parametric form of structure in te@s. Hence, we would like
to explore in the future whether a corresponding paramstrigcture technique can be

used for depth estimation.

e We would also like to further explore the possibility forpoidepth estimation and image
restoration in a discrete optimization framework. Curnentk in discrete optimization
using graph cuts suggests that it should be possible to #dveroblem in such a frame-

work.

e There has been interesting work done where use of depth fedotuals has been used as
a cue for super-resolution and inpainting. We would likexplere in the future whether
it is possible to use the diffusion framework to simultarggyperform depth estimation

and solve problems like super-resolution and inpainting.
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While exploring the problems of image restoration we haenghat the problem of joint
deblurring and denoising of images is especially hard. WaleMike to consider reaction-
diffusion schemes or stochastic diffusion schemes whicidcadapt better locally to the

image information and appropriately carry out deblurrind denoising.

We would like to further explore the use of priors in diffusifvameworks so as to be able
to perform better depth estimation and image restoratiterd has been recent work that

have used prior information effectively for object segnagioin and structure recovery.

There has been considerable interest in machine learrchgitpies for depth estimation
from a single image using geometric class information [34])]. We would like to
consider using similar techniques for identifying the blurmages. This would help us

in devising better stopping criterion.

We would lastly like to explore use of the techniques proddeedepth estimation from
a single defocused image, image restoration to improve ¢n@mance of other com-
puter vision tasks like content based retrieval, objectregation and computational

photography.
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