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Bipolar Junction Transistors
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* Bipolar: both electrons and holes contribute to conduction

* Junction: device includes two p-n junctions (as opposed to a “point-contact”
transistor, the first transistor)

* Transistor: “transfer resistor”
When Bell Labs had an informal contest to name their new invention, one engineer pointed
out that it acts like a resistor, but a resistor where the voltage is transferred across the
device to control the resulting current.

(http://amasci.com/amateur/trshort.html)

* invented in 1947 by Shockley, Bardeen, and Brattain at Bell Laboratories.

* “A BJT is two diodes connected back-to-back.”

WRONG! Let us see why.
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Bipolar Junction Transistors

Consider a pnp BJT in the following circuit:

1 k1 k
p n p

B

5 V 10 V

CE

I3

I1 I2R1 R2

If the transistor is replaced with two diodes connected back-to-back, we get,

1 k 1 kB

5 V

E

10 V

D1 D2

C

I3

I2I1R1 R2

Assuming Von = 0.7 V for D1, we get

I1 =
5V − 0.7V

R1
= 4.3 mA,

I2 = 0 (since D2 is reverse biased), and

I3 ≈ I1 = 4.3 mA.
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Bipolar Junction Transistors

Using a more accurate equivalent circuit for the BJT, we obtain,

1 k1 k 1 k 1 kB
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CE

10 V
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E C

10 V
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I1 I2
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We now get,

I1 =
5V − 0.7V

R1
= 4.3 mA (as before),

I2 = αI1 ≈ 4.3 mA (since α ≈ 1 for a typical BJT), and

I3 = I1 − I2 = (1− α) I1 ≈ 0A.

The values of I2 and I3 are dramatically different than the ones obtained earlier.

Conclusion: A BJT is NOT the same as two diodes connected back-to-back (although

it does have two p-n junctions).
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Bipolar Junction Transistors

What is wrong with the two-diode model of a BJT?

* When we replace a BJT with two diodes, we assume that there is no interaction
between the two diodes, which may be expected if they are “far apart.”

p pn

D2D1

Emitter

Emitter

Base

Collector

Collector

Base

* However, in a BJT, exactly the opposite is true. For a higher performance, the
base region is made as short as possible (subject to certain constraints), and the
two diodes therefore cannot be treated as independent devices.

p n
Emitter

Base

Collector
p

* Later, we will look at the “Ebers-Moll model” of a BJT, which is a fairly
accurate representation of the transistor action.
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BJT in active mode

B
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* In the active mode of a BJT, the B-E junction is under forward bias, and the

B-C junction is under reverse bias.

- For a pnp transistor, VEB > 0 V , and VCB < 0 V .

- For an npn transistor, VBE > 0 V , and VBC < 0 V .

* Since the B-E junction is under forward bias, the voltage (magnitude) is typically
0.6 to 0.75 V .

* The B-C voltage can be several Volts (or even hundreds of Volts), and is limited
by the breakdown voltage of the B-C junction.

* The symbol for a BJT includes an arrow for the emitter terminal, its direction
indicating the current direction when the transistor is in active mode.

* Analog circuits, including amplifiers, are generally designed to ensure that the
BJTs are operating in the active mode.
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BJT in active mode
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* In the active mode, IC = α IE , α ≈ 1 (slightly less than 1).

* IB = IE − IC = IE (1− α) .

* The ratio IC/IB is defined as the current gain β of the transistor.

β =
IC

IB
=

α

1− α .

* β is a function of IC and temperature. However, we will generally treat it as a
constant, a useful approximation to simplify things and still get a good insight.
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β =
IC

IB
=

α

1− α

α β

0.9 9

0.95 19

0.99 99

0.995 199

* β is a sensitive function of α.

* Transistors are generally designed to get a high value of β
(typically 100 to 250, but can be as high as 2000 for
“super-β” transistors).

* A large β ⇒ IB � IC or IE when the transistor is in the
active mode.
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A simple BJT circuit
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Assume the BJT to be in the active mode ⇒ VBE = 0.7 V and IC = αIE = β IB .

IB =
VBB − VBE

RB
=

2V − 0.7V

100 k
= 13 µA.

IC = β × IB = 100× 13µA = 1.3 mA.

VC = VCC − ICRC = 10V − 1.3 mA× 1 k = 8.7V .

Let us check whether our assumption of active mode is correct. We need to check
whether the B-C junction is under reverse bias.

VBC = VB − VC = 0.7V − 8.7V = −8.0V ,

i.e., the B-C junction is indeed under reverse bias.
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A simple BJT circuit (continued)
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What happens if RB is changed from 100 k to 10 k?

Assuming the BJT to be in the active mode again, we have VBE ≈ 0.7 V , and
IC = β IB .

IB =
VBB − VBE

RB
=

2V − 0.7V

10 k
= 130 µA.

IC = β × IB = 100× 130µA = 13 mA.

VC = VCC − ICRC = 10V − 13 mA× 1 k = −3V .

VBC = VB − VC = 0.7V − (−3)V = 3.7V ,

VBC is not only positive, it is huge!

The BJT cannot be in the active mode, and we need to take another look at the

circuit.
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Ebers-Moll model for a pnp transistor
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In the reverse active mode, emitter ↔ collector. (However, we continue to refer to the
terminals with their original names.)

The two α’s, αF (“forward” α) and αR (“reverse” α) are generally quite different.

Typically, αF > 0.98, and αR is in the range from 0.02 to 0.5.

The corresponding current gains (βF and βR) differ significantly, since β = α/(1− α).

In amplifiers, the BJT is biased in the forward active mode (simply called the “active

mode”) in order to make use of the higher value of β in that mode.
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Ebers-Moll model for a pnp transistor

The Ebers-Moll model combines the forward and reverse operations of a BJT in a single

comprehensive model.
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The currents I ′E and I ′C are given by the Shockley diode equation:

I ′E = IES

[
exp

(
VEB

VT

)
− 1

]
, I ′C = ICS

[
exp

(
VCB

VT

)
− 1

]
.

Mode B-E B-C

Forward active forward reverse I ′E � I ′C

Reverse active reverse forward I ′C � I ′E

Saturation forward forward I ′E and I ′C are comparable.

Cut-off reverse reverse I ′E and I ′C are negliglbe.
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Cut-off reverse reverse I ′E and I ′C are negliglbe.
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IC -VCE characteristics
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I′C = ICS [exp(VBC/VT)− 1]

αF = 0.99, ISE = 1× 10−14 A

αR = 0.50, ISC = 2× 10−14 A

A BJT is a three-terminal device, and its I -V chatacteristics can therefore be
represented in several different ways. The IC versus VCE characteristics are very useful
in amplifiers.

To start with, we consider a single point, IB = 10µA, VCE = 5V .

There are several ways to assign VBE and VCB so that they satisfy the constraint:

VCB + VBE = (VC − VB) + (VB − VE ) = VCE = 5V .

Let us consider some of these possibilities.
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D1 and D2 are both off, and we cannot satisfy the
condition, IB = 10µA, since all currents are much
smaller than 10µA.

⇒ This possibility (and similarly others with both
junctions reverse biased) is ruled out.
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⇒ This possibility is also ruled out.

M. B. Patil, IIT Bombay



IC -VCE characteristics

B

E C

E C

B

n p n

n

p

nD2

B

E D1 C

I′CαR I
′
C

IC

I′E
αF I

′
E

IE

IB
ICIE

IC

IB

IB

IE
I′E = IES [exp(VBE/VT)− 1]

I′C = ICS [exp(VBC/VT)− 1]

αF = 0.99, ISE = 1× 10−14 A

αR = 0.50, ISC = 2× 10−14 A

Constraints: IB = 10µA, VCE = 5V .

5 V

6 V 1 V

nn

p

E C

B

IE IC

IB

D1 and D2 are both conducting; however, the forward
bias for the B-E junction is impossibly large.

⇒ This possibility is also ruled out.

M. B. Patil, IIT Bombay



IC -VCE characteristics

B

E C

E C

B

n p n

n

p

nD2

B

E D1 C

I′CαR I
′
C

IC

I′E
αF I

′
E

IE

IB
ICIE

IC

IB

IB

IE
I′E = IES [exp(VBE/VT)− 1]

I′C = ICS [exp(VBC/VT)− 1]

αF = 0.99, ISE = 1× 10−14 A

αR = 0.50, ISC = 2× 10−14 A

Constraints: IB = 10µA, VCE = 5V .

5 V

6 V 1 V

nn

p

E C

B

IE IC

IB

D1 and D2 are both conducting; however, the forward
bias for the B-E junction is impossibly large.

⇒ This possibility is also ruled out.

M. B. Patil, IIT Bombay



IC -VCE characteristics

B

E C

E C

B

n p n

n

p

nD2

B

E D1 C

I′CαR I
′
C

IC

I′E
αF I

′
E

IE

IB
ICIE

IC

IB

IB

IE
I′E = IES [exp(VBE/VT)− 1]

I′C = ICS [exp(VBC/VT)− 1]

αF = 0.99, ISE = 1× 10−14 A

αR = 0.50, ISC = 2× 10−14 A

Constraints: IB = 10µA, VCE = 5V .

5 V

6 V 1 V

nn

p

E C

B

IE IC

IB

D1 and D2 are both conducting; however, the forward
bias for the B-E junction is impossibly large.

⇒ This possibility is also ruled out.

M. B. Patil, IIT Bombay



IC -VCE characteristics

B

E C

E C

B

n p n

n

p

nD2

B

E D1 C

I′CαR I
′
C

IC

I′E
αF I

′
E

IE

IB
ICIE

IC

IB

IB

IE
I′E = IES [exp(VBE/VT)− 1]

I′C = ICS [exp(VBC/VT)− 1]

αF = 0.99, ISE = 1× 10−14 A

αR = 0.50, ISC = 2× 10−14 A

Constraints: IB = 10µA, VCE = 5V .

5 V

0.7 V 4.3 V

nn

p

E C

B

IE IC

IB

D1 is on, D2 is off. This is a realistic possibility. Since
the B-C junction is under reverse bias, I ′C and αR I

′
C are

much smaller than I ′E , and therefore the lower branches
in the Ebers-Moll model can be dropped (see next
slide).
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(The actual values for VBE and VCB obtained by solving the Ebers-Moll equations are

VBE = 0.656 V and VCB = 4.344 V .)

The BJT is in the active mode, and therefore

IC = β IB =
αF

1− αF
IB = 99× 10µA = 0.99 mA.

If VCE is reduced to, say, 4 V , and IB kept at 10µA, our previous argument holds, and

once again, we find that IC = β IB = 0.99 mA.

Thus, the plot of IC versus VCE is simply a horizontal line.

However, as VCE → 0 V , things change (see next slide).
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When VCE ≈ 0.7V (and IB kept at 10µA), the B-C drop is about 0V .

As VCE is reduced further, the B-C junction gets forward biased. For example, with
VCE = 0.3V , we may have a voltage distribution shown in the figure.

(The numbers are only representative; the actual VBE and VBC values can be obtained
by solving the E-M equations.)

Now, the component I ′C in the E-M model becomes significant, IC = αF I
′
E − I ′C

reduces, and IC becomes smaller than βIB .

The region where IC < βIB is called the “saturation region.”
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When VCE ≈ 0.7V (and IB kept at 10µA), the B-C drop is about 0V .

As VCE is reduced further, the B-C junction gets forward biased. For example, with
VCE = 0.3V , we may have a voltage distribution shown in the figure.

(The numbers are only representative; the actual VBE and VBC values can be obtained
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If IB is doubled (from 10µA to 20µA), IC = βIB changes by a factor of 2 in the linear
region. Apart from that, there is no qualitative change in the IC − VCE plot.

Clearly, the IC − VCE behaviour of a BJT is not represented by a single curve but by a
family of curves, known as the “IC − VCE characteristics.”

The IE − VCB and IC − VBE characteristics of a BJT are also useful in understanding
BJT circuits.

M. B. Patil, IIT Bombay



IC -VCE characteristics

linear

saturation

0

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0  1  2  3  4  5

 

VCE (V)

I C
(m

A
)

IB = 10µA

IB = 20µA

5

3

2

0

1

4

linear

saturation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0  1  2  3  4  5

 

VCE (V)

I C
(m

A
)

20µA

IB = 10µA

30µA

40µA

50µA

If IB is doubled (from 10µA to 20µA), IC = βIB changes by a factor of 2 in the linear
region. Apart from that, there is no qualitative change in the IC − VCE plot.

Clearly, the IC − VCE behaviour of a BJT is not represented by a single curve but by a
family of curves, known as the “IC − VCE characteristics.”

The IE − VCB and IC − VBE characteristics of a BJT are also useful in understanding
BJT circuits.

M. B. Patil, IIT Bombay



IC -VCE characteristics

linear

saturation

0

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0  1  2  3  4  5

 

VCE (V)

I C
(m

A
)

IB = 10µA

IB = 20µA

5

3

2

0

1

4

linear

saturation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0  1  2  3  4  5

 

VCE (V)

I C
(m

A
)

20µA

IB = 10µA

30µA

40µA

50µA

If IB is doubled (from 10µA to 20µA), IC = βIB changes by a factor of 2 in the linear
region. Apart from that, there is no qualitative change in the IC − VCE plot.

Clearly, the IC − VCE behaviour of a BJT is not represented by a single curve but by a
family of curves, known as the “IC − VCE characteristics.”

The IE − VCB and IC − VBE characteristics of a BJT are also useful in understanding
BJT circuits.

M. B. Patil, IIT Bombay



IC -VCE characteristics

linear

saturation

0

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0  1  2  3  4  5

 

VCE (V)

I C
(m

A
)

IB = 10µA

IB = 20µA

5

3

2

0

1

4

linear

saturation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0  1  2  3  4  5

 

VCE (V)

I C
(m

A
)

20µA

IB = 10µA

30µA

40µA

50µA

If IB is doubled (from 10µA to 20µA), IC = βIB changes by a factor of 2 in the linear
region. Apart from that, there is no qualitative change in the IC − VCE plot.

Clearly, the IC − VCE behaviour of a BJT is not represented by a single curve but by a
family of curves, known as the “IC − VCE characteristics.”

The IE − VCB and IC − VBE characteristics of a BJT are also useful in understanding
BJT circuits.

M. B. Patil, IIT Bombay



A simple BJT circuit (revisited)
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We are now in a position to explain what happens when RB is decreased from 100 k
to 10 k in the above circuit.

Let us plot IC − VCE curves for IB ≈
VBB − 0.7V

RB
for the two values of RB .

In addition to the BJT IC − VCE curve, the circuit variables must also satisfy the
constraint, VCC = VCE + ICRC , a straight line in the IC − VCE plane.

The intersection of the load line and the BJT characteristics gives the solution for the
circuit. For RB = 10 k, note that the BJT operates in the saturation region, leading
to VCE ≈ 0.2V , and IC = 9.8 mA.
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