
EE101: Basics
KCL, KVL, power, Thevenin’s theorem

M. B. Patil
mbpatil@ee.iitb.ac.in

www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay



Kirchhoff’s laws
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* Kirchhoff’s current law (KCL):P
ik = 0 at each node.

e.g., at node B, −i3 + i6 + i4 = 0.
(We have followed the convention that current leaving a node is positive.)

* Kirchhoff’s voltage law (KVL):P
vk = 0 for each loop.

e.g., v3 + v6 − v1 − v2 = 0.
(We have followed the convention that voltage drop across a branch is positive.)
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Circuit elements

Element Symbol Equation

Resistor
v

i
v = R i

Inductor
v

i
v = L

di

dt

Capacitor
v

i
i = C

dv

dt

Diode
v

i
to be discussed

BJT
C

E

B to be discussed
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Sources

Element Symbol Equation

Independent Voltage source
v

i
v(t) = vs(t)

Current source
v

i
i(t) = is(t)

Dependent VCVS
v

i
v(t) = α vc(t)

VCCS
v

i
i(t) = g vc(t)

CCVS
v

i
v(t) = r ic(t)

CCCS
v

i
i(t) = β ic(t)

* α, β: dimensionless, r : Ω, g : Ω−1 or f (“mho”)

* The subscript ‘c’ denotes the controlling voltage or current.
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Instantaneous power absorbed by an element
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P(t) = V1(t) i1(t) + V2(t) i2(t) + · · ·+ VN(t) iN(t) ,

where V1, V2, etc. are “node voltages” (measured
with respect to a reference node).

* two-terminal element:

V1
i1

V2

v

i2

P = V1 i1 + V2 i2

= V1 i1 + V2 (−i1)

= [V1 − V2] i1 = v i1

* three-terminal element:

iB
iE

iC

VB

VC

VE

P = VB iB + VC iC + VE (−iE )

= VB iB + VC iC − VE (iB + iC )

= (VB − VE ) iB + (VC − VE ) iC

= VBE iB + VCE iE
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Instantaneous power

* A resistor can only absorb power (from the circuit) since v and i have the same
sign, making P > 0. The energy “absorbed” by a resistor goes in heating the
resistor and the rest of the world.

* Often, a “heat sink” is provided to dissipate the thermal energy effectively so
that the device temperature does not become too high.

* A source (e.g., a DC voltage source) can absorb or deliver power since the signs
of v and i are independent. For example, when a battery is charged, it absorbs
energy which gets stored within.

* A capacitor can absorb or deliver power. When it is absorbing power, its charge
builds up. Similarly, an inductor can store energy (in the form of magnetic flux).
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Resistors in series

A B A B
R2R1

i RR3

v3v2

i

v1 v

v1 = i R1, v2 = i R2, v3 = i R3, ⇒ v = v1 + v2 + v3 = i (R1 + R2 + R3)

* The equivalent resistance is Req = R1 + R2 + R3.

* The voltage drop across Rk is v ×
Rk

Req
.
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Resistors in parallel

A AB B
R2

R1

i R

R3

v

i1

i2

i3

i

v

i1 = G1 v , i2 = G2 v , i3 = G3 v , where G1 = 1/R1, etc.
⇒ i = i1 + i2 + i3 = (G1 + G2 + G3) v .

* The equivalent conductance is Geq = G1 + G2 + G3, and the equivalent
resistance is Req = 1/Geq .

* The current through Rk is i ×
Gk

Geq
.

* If N = 2, we have

Req =
R1 R2

R1 + R2
, i1 = i ×

R2

R1 + R2
, i2 = i ×

R1

R1 + R2
.

* If Rk = 0, all of the current will go through Rk .
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Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω
i1 =

6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.

M. B. Patil, IIT Bombay



Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω
i1 =

6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.

M. B. Patil, IIT Bombay



Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω
i1 =

6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.

M. B. Patil, IIT Bombay



Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω
i1 =

6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.

M. B. Patil, IIT Bombay



Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω
i1 =

6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.

M. B. Patil, IIT Bombay



Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω
i1 =

6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.

M. B. Patil, IIT Bombay



Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω

i1 =
6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.

M. B. Patil, IIT Bombay



Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω
i1 =

6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.

M. B. Patil, IIT Bombay



Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω
i1 =

6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.

M. B. Patil, IIT Bombay



Example

(a) 3 Ω

i1

4 Ω

3 Ω

2 Ω

2.52.55
6 V

i2

(b)

2 Ω4 Ω i2

i1

3 Ω

3 Ω

1 Ω
6 V

(c)

4 Ω

i1

6 V

i2

3

6

(d)

i1

6 V
2 Ω

4 Ω
i1 =

6 V

4 Ω + 2 Ω
= 1 A .

i2 = i1 × 6 Ω

6 Ω + 3 Ω
=

2

3
A .

Home work:

* Verify that KCL and KVL are satisfied for each node/loop.

* Verify that the total power absorbed by the resistors is equal to the power
supplied by the source.
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Nodal analysis

I
k v3

R2

V2

v30

R1

3R

4R
0

V1

V3

* Take some node as the “reference node” and denote
the node voltages of the remaining nodes by V1, V2,
etc.

* Write KCL at each node in terms of the node
voltages. Follow a fixed convention, e.g., current
leaving a node is positive.

1

R1
(V1 − V2)− I0 − k (V2 − V3) = 0 ,

1

R1
(V2 − V1) +

1

R3
(V2 − V3) +

1

R2
(V2) = 0 ,

k (V2 − V3) +
1

R3
(V3 − V2) +

1

R4
(V3) = 0 .

* Solve for the node voltages → branch voltages and
currents.

* Remark: Nodal analysis needs to be modified if there
are voltage sources.
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Mesh analysis

R3

i2

r1 is

R2R1

Vs

i1
is

* Write KVL for each loop in terms of the “mesh currents” i1 and i2. Use a fixed
convention, e.g., voltage drop is positive. (Note that is = i1 − i2.)

−Vs + i1 R1 + (i1 − i2) R3 = 0 ,

R2 i2 + r1 (i1 − i2) + (i2 − i1) R3 = 0 .

* Solve for i1 and i2 → compute other quantities of interest (branch currents and
branch voltages).
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Linearity and superposition

* A circuit containing independent sources, dependent sources, and resistors is
linear, i.e., the system of equations describing the circuit is linear.

* The dependent sources are assumed to be linear, e.g., if we have a CCVS with
v = a i2

c + b, the resulting system will be no longer linear.

* For a linear system, we can apply the principle of superposition.

* In the context of circuits, superposition enables us to consider the independent
sources one at a time, compute the desired quantity of interest in each case, and
get the net result by adding the individual contributions.

* Caution: Superposition cannot be applied to dependent sources.

M. B. Patil, IIT Bombay



Linearity and superposition

* A circuit containing independent sources, dependent sources, and resistors is
linear, i.e., the system of equations describing the circuit is linear.

* The dependent sources are assumed to be linear, e.g., if we have a CCVS with
v = a i2

c + b, the resulting system will be no longer linear.

* For a linear system, we can apply the principle of superposition.

* In the context of circuits, superposition enables us to consider the independent
sources one at a time, compute the desired quantity of interest in each case, and
get the net result by adding the individual contributions.

* Caution: Superposition cannot be applied to dependent sources.

M. B. Patil, IIT Bombay



Linearity and superposition

* A circuit containing independent sources, dependent sources, and resistors is
linear, i.e., the system of equations describing the circuit is linear.

* The dependent sources are assumed to be linear, e.g., if we have a CCVS with
v = a i2

c + b, the resulting system will be no longer linear.

* For a linear system, we can apply the principle of superposition.

* In the context of circuits, superposition enables us to consider the independent
sources one at a time, compute the desired quantity of interest in each case, and
get the net result by adding the individual contributions.

* Caution: Superposition cannot be applied to dependent sources.

M. B. Patil, IIT Bombay



Linearity and superposition

* A circuit containing independent sources, dependent sources, and resistors is
linear, i.e., the system of equations describing the circuit is linear.

* The dependent sources are assumed to be linear, e.g., if we have a CCVS with
v = a i2

c + b, the resulting system will be no longer linear.

* For a linear system, we can apply the principle of superposition.

* In the context of circuits, superposition enables us to consider the independent
sources one at a time, compute the desired quantity of interest in each case, and
get the net result by adding the individual contributions.

* Caution: Superposition cannot be applied to dependent sources.

M. B. Patil, IIT Bombay



Linearity and superposition

* A circuit containing independent sources, dependent sources, and resistors is
linear, i.e., the system of equations describing the circuit is linear.

* The dependent sources are assumed to be linear, e.g., if we have a CCVS with
v = a i2

c + b, the resulting system will be no longer linear.

* For a linear system, we can apply the principle of superposition.

* In the context of circuits, superposition enables us to consider the independent
sources one at a time, compute the desired quantity of interest in each case, and
get the net result by adding the individual contributions.

* Caution: Superposition cannot be applied to dependent sources.

M. B. Patil, IIT Bombay



Superposition

* Superposition refers to superposition of response due to independent sources.

* We can consider one independent source at a time, deactivate all other
independent sources.

* Deactivating a current source ⇒ is = 0, i.e., replace the current source with an
open circuit.

* Deactivating a voltage source ⇒ vs = 0, i.e., replace the voltage source with a
short circuit.
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Example

i1

18 V

2 Ω

4 Ω
3 A

i1

18 V

2 Ω

4 Ω

Case 1: Keep Vs, deactivate Is.

i
(1)
1 = 3 A

i1

4 Ω
3 A

2 Ω

Case 2: Keep Is, deactivate Vs.

i
(2)
1 = 3 A× 2 Ω

2 Ω + 4 Ω
= 1 A

inet
1 = i

(1)
1 + i

(2)
1 = 3 + 1 = 4 A
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Example

v

2 i

1 Ω

3 Ω
i

6 A

12 V

v

2 i

1 Ω

3 Ω
i 12 V

Case 1: Keep Vs, deactivate Is.

⇒ i = 2 A , v(1) = 6 V .

KVL: − 12 + 3 i + 2 i + i = 0

v

2 i

1 Ω

3 Ω
i

6 A

Case 2: Keep Is, deactivate Vs.

KVL: i + (6 + i) 3 + 2 i = 0

⇒ i = −3 A , v(2) = (−3 + 6)× 3 = 9 V .

vnet = v(1) + v(2) = 6 + 9 = 15 V
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Superposition: Why does it work?

R2

A B

V1 V2

0

R1 R3

Vs Is

KCL at nodes A and B:

1

R1
(V1 − Vs ) +

1

R2
V1 +

1

R3
(V1 − V2) = 0 ,

−Is +
1

R3
(V2 − V1) = 0 .

Writing in a matrix form, we get (using G1 = 1/R1, etc.),

»
G1 + G2 + G3 −G3

−G3 G3

– »
V1

V2

–
=

»
G1Vs

Is

–

i.e., A

»
V1

V2

–
=

»
G1Vs

Is

–
→
»

V1

V2

–
= A−1

»
G1Vs

Is

–
.
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Superposition: Why does it work?

R2

A B

V1 V2

0

R1 R3

Vs Is

»
V1

V2

–
= A−1

»
G1Vs

Is

–
≡
»

m11 m12

m21 m22

– »
G1Vs

Is

–
.

We are now in a position to see why superposition works.

»
V1

V2

–
=

»
m11G1 m12

m21G1 m22

– »
Vs

0

–
+

»
m11G1 m12

m21G1 m22

– »
0
Is

–
≡
"

V
(1)
1

V
(1)
2

#
+

"
V

(2)
1

V
(2)
2

#
.

The first vector is the response due to Vs alone (and Is deactivated).

The second vector is the response due to Is alone (and Vs deactivated).

All other currents and voltages are linearly related to V1 and V2

⇒ Any voltage (node voltage or branch voltage) or current can also be computed using
superposition.
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⇒ Any voltage (node voltage or branch voltage) or current can also be computed using
superposition.
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Thevenin’s theorem

Circuit
(resistors,
voltage sources,
current sources,
CCVS, CCCS,
VCVS, VCCS)

A

B

A

B

RTh

VTh

* VTh is simply VAB when nothing is connected on the other side, i.e., VTh = Voc .

* RTh can be found by different methods.
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Thevenin’s theorem: RTh

Method 1:

Circuit
(resistors,

A

voltage sources,
current sources,
CCVS, CCCS,
VCVS, VCCS) B

A

B

RTh

VTh

Circuit
(resistors,
voltage sources,
current sources,
CCVS, CCCS,
VCVS, VCCS)

A

B

A

B

RTh

A

B

Is

Vs

A

B

IsVs

* Deactivate all independent sources.

* RTh can often be found by inspection.

* RTh may be found by connecting a test source.
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Thevenin’s theorem: RTh

Method 2:

A

B

Voc

A

B

Isc

* Find Voc .

* Find Isc .

* RTh =
Voc

Isc
.

* Note: Sources are not deactivated.
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Thevenin’s theorem: example

A

B

3 Ω

R3

RL

R1

R2
9V

6 Ω 2 Ω

B

A

RL≡ VTh

RTh

A

B

2 Ω

9V
3 Ω

6 Ω

Voc

VTh :

Voc = 9 V× 3Ω

6Ω + 3Ω

= 9V× 1

3
= 3 V

A

B

2 Ω6 Ω

3 Ω

RTh :

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(

1× 2

1 + 2

)
+ 2 = 4 Ω

A

B

3V≡ RL

4Ω
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Maximum power transfer

Circuit
(resistors,

A

B

voltage sources,
current sources,
CCVS, CCCS,
VCVS, VCCS)

RL

iL

A

B

iL

RL

RTh

VTh

PL

Pmax
L

RL

RL = RTh

* Power “transferred” to load is,
PL = i2

L RL .

* For a given black box, what is the
value of RL for which PL is
maximum?

* Replace the black box with its
Thevenin equivalent.

* iL =
VTh

RTh + RL
,

PL = V 2
Th ×

RL

(RTh + RL)2
.

* For
dPL

dRL
= 0 , we need

(RTh + RL)2 − RL × 2 (RTh + RL)

(RTh + RL)4
= 0 ,

i.e., RTh + RL = 2 RL ⇒ RL = RTh .
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Maximum power transfer: example

A

B

Find RL for which PL is maximum.

R3

RL

R2

R1

2 Ω3 Ω

12 V 2 A

6 Ω

A

B

RTh:

R3

R2

R1

2 Ω3 Ω

6 Ω

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(

1× 2

1 + 2

)
+ 2 = 4 Ω

A

B

Voc:

R3

R2

R1

2 Ω3 Ω

12 V 2 A

6 Ω

A

B

A

B

R3R3

R2 R2

R1 R1

2 Ω 2Ω3 Ω

12 V

6 Ω

3Ω

2A

6Ω

Use superposition to find Voc:

V(1)
oc = 12× 6

9
= 8 V V(2)

oc = 4 Ω× 2A = 8V

Voc = V(1)
oc + V(2)

oc = 8 + 8 = 16V

A

B

iL

RL

Pmax
L = 22 × 4 = 16W .

PL is maximum when RL = RTh = 4Ω

⇒ iL = VTh/(2RTh) = 2 A

RTh

VTh
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Thevenin’s theorem: example

A B

2Ω

6A

12Ω

48 V

4Ω

12Ω

4Ω

C

A B

RTh:

2Ω 12Ω

4Ω 4Ω

12Ω

C

A B

≡
4 Ω

3Ω
RTh = 7Ω⇒

A B

C

Voc

Voc:

2 Ω 12Ω

48 V

4 Ω 4 Ω

12Ω

6 A
i

VAB = VA − VB

= 24V + 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7 Ω
60V
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Graphical method for finding VTh and RTh

SEQUEL file: ee101 thevenin 1.sqproj

A B

2Ω

6A

12Ω

48 V

4Ω 4Ω

12Ω

i
v

A B

2Ω

4Ω

48 V6A

12Ω

4Ω

12Ω

Connect a voltage source between A and B.

Plot i versus v.

Voc = intercept on the v-axis.

Isc = intercept on the i-axis.

10

8

6

4

2

0 

 

 

 

 

 

v (Volt)
 0

i (
A

m
p)

 20  40  60

Voc = 60 V, Isc = 8.57 A

RTh = Vsc/Isc = 7 Ω

A B

7Ω
VTh = 60V

RTh = 7 Ω
60V
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Norton equivalent circuit

A

B

RTh

VTh

A

B

RNIN

A

B

A

B

RNVTh Isc IscIN

RTh

* Consider the open circuit case.

Thevenin circuit: VAB = VTh .
Norton circuit: VAB = IN RN .
⇒ VTh = IN RN .

* Consider the short circuit case.

Thevenin circuit: Isc = VTh/RTh .
Norton circuit: Isc = IN .
⇒ RTh = RN .
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Example

20 V

1Ai5 Ω

10Ω

A

B

RN = 5 Ω

IN =
20V

5 Ω
= 4A

A

B

1Ai

10Ω5 Ω

4A

i

10Ω5 Ω

3A

= 1A

i = 3A× 5

5 + 10

Home work:

* Find i by superposition and compare.

* Compute the power absorbed by each element, and verify that
P

Pi = 0 .
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* Find i by superposition and compare.

* Compute the power absorbed by each element, and verify that
P

Pi = 0 .
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