

M. B. Patil

mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

・ロト ・日 ・ ・ ヨ ・ ・ ヨ

* For an analog signal x(t), the actual value (a real number) at a given time is important.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

- * For an analog signal x(t), the actual value (a real number) at a given time is important.
- * A digital signal, on the other hand, is "binary" in nature, i.e., it takes on only two values: low (0) or high (1).

M. B. Patil, IIT Bombay

- * For an analog signal x(t), the actual value (a real number) at a given time is important.
- * A digital signal, on the other hand, is "binary" in nature, i.e., it takes on only two values: low (0) or high (1).
- * Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low (high) band will be interpreted as 0 (1) by digital circuits.

- * For an analog signal x(t), the actual value (a real number) at a given time is important.
- * A digital signal, on the other hand, is "binary" in nature, i.e., it takes on only two values: low (0) or high (1).
- * Although we have shown 0 and 1 as constant levels, in reality, that is not required. Any value in the low (high) band will be interpreted as 0 (1) by digital circuits.
- * The definition of low and high bands depends on the technology used, such as TTL (Transitor-Transitor Logic), CMOS (Complementary MOS), ECL (Emitter-Coupled Logic), etc.

A simple digital circuit

E M. B. Patil, IIT Bombay

590

æ

・ロト ・日・ ・ヨ・

・ロト ・日下・ ・ ヨト

ъ

M. B. Patil, IIT Bombay

* If V_i is low ("0"), V_o is high ("1"). If V_i is high ("1"), V_o is low ("0").

- * If V_i is low ("0"), V_o is high ("1").
 If V_i is high ("1"), V_o is low ("0").
- * The circuit is called an "inverter" because it inverts the logic level of the input. If the input is 0, it makes the output 1, and vice versa.

▲□▶ ▲□▶ ▲ □▶

- * If V_i is low ("0"), V_o is high ("1").
 If V_i is high ("1"), V_o is low ("0").
- * The circuit is called an "inverter" because it inverts the logic level of the input. If the input is 0, it makes the output 1, and vice versa.
- * Digital circuits are made using a variety of devices. The simple BJT inverter we have shown should only be considered as an illustrative circuit.

・ロト ・回ト ・ヨト ・ヨト

- * If V_i is low ("0"), V_o is high ("1").
 If V_i is high ("1"), V_o is low ("0").
- * The circuit is called an "inverter" because it inverts the logic level of the input. If the input is 0, it makes the output 1, and vice versa.
- * Digital circuits are made using a variety of devices. The simple BJT inverter we have shown should only be considered as an illustrative circuit.
- * Most of the VLSI circuits today employ the MOS technology because of the high packing density and low power consumption it offers.

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

M. B. Patil, IIT Bombay

- * A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.
- * There are several other benefits of using digital representation:

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

- * There are several other benefits of using digital representation:
 - can use computers to process the data.

* A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.

- * There are several other benefits of using digital representation:
 - can use computers to process the data.
 - can store in a variety of storage media.

- * A major advantage of digital systems is that, even if the original data gets distorted (e.g., in transmitting through optical fibre or storing on a CD) due to noise, attenuation, etc., it can be retrieved easily.
- * There are several other benefits of using digital representation:
 - can use computers to process the data.
 - can store in a variety of storage media.
 - can *program* the functionality. For example, the behaviour of a digital filter can be changed simply by changing its coefficients.

Operation NOT AND OR Gate

Truth table

Notation

Notation $Y = \overline{A}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

ヘロン 人間と 人間と 人間と æ M. B. Patil, IIT Bombay

996

Operation	NAND	NOR	XOR
Gate			
Truth table			
Notation			

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

* The AND operation is *commutative*.

 $\rightarrow A \cdot B = B \cdot A.$

- * The AND operation is *commutative*. $\rightarrow A \cdot B = B \cdot A.$
- * The AND operation is associative. $\rightarrow (A \cdot B) \cdot C = A \cdot (B \cdot C).$

- * The AND operation is *commutative*. $\rightarrow A \cdot B = B \cdot A.$
- * The AND operation is associative. $\rightarrow (A \cdot B) \cdot C = A \cdot (B \cdot C).$
- * The OR operation is *commutative*. $\rightarrow A + B = B + A$.

- * The AND operation is *commutative*. $\rightarrow A \cdot B = B \cdot A.$
- * The AND operation is associative. $\rightarrow (A \cdot B) \cdot C = A \cdot (B \cdot C).$
- * The OR operation is *commutative*. $\rightarrow A + B = B + A$.
- * The OR operation is associative. $\rightarrow (A+B) + C = A + (B+C).$

・ロト ・回ト ・ヨト ・ヨト

E ► E ∽ Q C M. B. Patil, IIT Bombay * Theorem: $\overline{\overline{A}} = A$.

* Theorem: $\overline{\overline{A}} = A$.

The theorem can be proved by constructing a truth table:

A	Ā	Ā
0	1	0
1	0	1

* Theorem: $\overline{\overline{A}} = A$.

The theorem can be proved by constructing a truth table:

A	Ā	Ā
0	1	0
1	0	1

Therefore, for all possible values that A can take (i.e., 0 and 1), $\overline{\overline{A}}$ is the same as A.

$$\Rightarrow \overline{\overline{A}} = A.$$

* Theorem: $\overline{\overline{A}} = A$.

The theorem can be proved by constructing a truth table:

A	Ā	Ā
0	1	0
1	0	1

Therefore, for all possible values that A can take (i.e., 0 and 1), $\overline{\overline{A}}$ is the same as A.

$$\Rightarrow \overline{\overline{A}} = A.$$

* Similarly, the following theorems can be proved:

A + 0 = A	$A \cdot 1 = A$
A+1=1	$A \cdot 0 = 0$
A + A = A	$A \cdot A = A$
$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$

M. B. Patil, IIT Bombay

* Theorem: $\overline{\overline{A}} = A$.

The theorem can be proved by constructing a truth table:

A	Ā	Ā
0	1	0
1	0	1

Therefore, for all possible values that A can take (i.e., 0 and 1), $\overline{\overline{A}}$ is the same as A.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

M. B. Patil, IIT Bombav

$$\Rightarrow \overline{\overline{A}} = A.$$

* Similarly, the following theorems can be proved:

$A \cdot 1 = A$
$A \cdot 0 = 0$
$A \cdot A = A$
$A \cdot \overline{A} = 0$

Note the duality: $(+\leftrightarrow \cdot)$ and $(1\leftrightarrow 0)$.

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0								
0	1								
1	0								
1	1								

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0							
0	1	1							
1	0	1							
1	1	1							

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < ○ へ (~ M. B. Patil, IIT Bombay
A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1						
0	1	1	0						
1	0	1	0						
1	1	1	0						

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1					
0	1	1	0	1					
1	0	1	0	0					
1	1	1	0	0					

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1				
0	1	1	0	1	0				
1	0	1	0	0	1				
1	1	1	0	0	0				

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1			
0	1	1	0	1	0	0			
1	0	1	0	0	1	0			
1	1	1	0	0	0	0			

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < ○ へ (~ M. B. Patil, IIT Bombay

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0		
0	1	1	0	1	0	0	0		
1	0	1	0	0	1	0	0		
1	1	1	0	0	0	0	1		

・ロト・合ト・モト・モー ヨー うへで

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	
0	1	1	0	1	0	0	0	1	
1	0	1	0	0	1	0	0	1	
1	1	1	0	0	0	0	1	0	

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < ○ へ (~ M. B. Patil, IIT Bombay

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

・ロト・合ト・モト・モー ヨー うへで

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

* Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B} = \overline{A}\overline{B}$.

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

- * Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B} = \overline{A}\overline{B}$.
- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.

999

▲□ → ▲圖 → ▲ 画 → ▲ 画 →

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

- * Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B} = \overline{A}\overline{B}$.
- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.
- * Similar relations hold for more than two variables, e.g.,

590

▲ロ → ▲圖 → ▲ 臣 → ▲ 臣 → →

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

- * Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B} = \overline{A}\overline{B}$.
- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.
- * Similar relations hold for more than two variables, e.g.,

 $\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C},$

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

* Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B} = \overline{A}\overline{B}$.

< □ > < □ > < □ > < □ > < □ > .

M. B. Patil, IIT Bombay

- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.
- * Similar relations hold for more than two variables, e.g.,

 $\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C},$

 $\overline{A+B+C+D}=\overline{A}\cdot\overline{B}\cdot\overline{C}\cdot\overline{D},$

A	В	A + B	$\overline{A+B}$	Ā	B	$\overline{A} \cdot \overline{B}$	A · B	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	0

- * Comparing the truth tables for $\overline{A+B}$ and $\overline{A}\overline{B}$, we conclude that $\overline{A+B} = \overline{A}\overline{B}$.
- * Similarly, $\overline{A \cdot B} = \overline{A} + \overline{B}$.
- * Similar relations hold for more than two variables, e.g.,

 $\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C},$ $\overline{A + B + C + D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D},$ $\overline{(A + B) \cdot C} = \overline{(A + B)} + \overline{C}.$

M. B. Patil, IIT Bombay

< □ > < □ > < □ > < □ > < □ > .

1. $A \cdot (B + C) = AB + AC$.

1. $A \cdot (B + C) = AB + AC$.

A	В	С	B + C	$A \cdot (B + C)$	AB	AC	AB + AC
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

1. $A \cdot (B + C) = AB + AC$.

A	В	С	B + C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	0				
1	0	1	1				
1	1	0	1				
1	1	1	1				

1. $A \cdot (B + C) = AB + AC$.

Α	В	С	B + C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	1	0			
1	0	0	0	0			
1	0	1	1	1			
1	1	0	1	1			
1	1	1	1	1			

1. $A \cdot (B + C) = AB + AC$.

Α	В	С	B + C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0	0		
0	0	1	1	0	0		
0	1	0	1	0	0		
0	1	1	1	0	0		
1	0	0	0	0	0		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	1	1	1		

1. $A \cdot (B + C) = AB + AC$.

Α	В	С	B + C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0	0	0	
0	0	1	1	0	0	0	
0	1	0	1	0	0	0	
0	1	1	1	0	0	0	
1	0	0	0	0	0	0	
1	0	1	1	1	0	1	
1	1	0	1	1	1	0	
1	1	1	1	1	1	1	

1. $A \cdot (B + C) = AB + AC$.

Α	В	С	B + C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

1. $A \cdot (B + C) = AB + AC$.

Α	В	С	B + C	$A \cdot (B + C)$	AB	A C	AB + AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1
				1			1

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < ○ へ (~ M. B. Patil, IIT Bombay

A	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

M. B. Patil, IIT Bombay

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0				
0	0	1	0				
0	1	0	0				
0	1	1	1				
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	1				

M. B. Patil, IIT Bombay

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0			
0	0	1	0	0			
0	1	0	0	0			
0	1	1	1	1			
1	0	0	0	1			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

M. B. Patil, IIT Bombay

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0	0		
0	0	1	0	0	0		
0	1	0	0	0	1		
0	1	1	1	1	1		
1	0	0	0	1	1		
1	0	1	0	1	1		
1	1	0	0	1	1		
1	1	1	1	1	1		

M. B. Patil, IIT Bombay

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0	0	0	
0	0	1	0	0	0	1	
0	1	0	0	0	1	0	
0	1	1	1	1	1	1	
1	0	0	0	1	1	1	
1	0	1	0	1	1	1	
1	1	0	0	1	1	1	
1	1	1	1	1	1	1	

M. B. Patil, IIT Bombay

Α	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

M. B. Patil, IIT Bombay

A	В	С	ВС	A + B C	A + B	A + C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1
\uparrow						1	

M. B. Patil, IIT Bombay

To prove this theorem, we can follow two approaches:

To prove this theorem, we can follow two approaches:

(a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.

To prove this theorem, we can follow two approaches:

- (a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.
- (b) Use identities and theorems stated earlier to show that LHS=RHS.

To prove this theorem, we can follow two approaches:

- (a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.
- (b) Use identities and theorems stated earlier to show that LHS=RHS.

$$A + AB = A \cdot 1 + A \cdot B$$
$$= A \cdot (1 + B)$$
$$= A \cdot (1)$$
$$= A$$

◆□ → ◆□ → ◆ □ → ◆ □ → ●

To prove this theorem, we can follow two approaches:

- (a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.
- (b) Use identities and theorems stated earlier to show that LHS=RHS.

$$A + AB = A \cdot 1 + A \cdot B$$
$$= A \cdot (1 + B)$$
$$= A \cdot (1)$$
$$= A$$

$$* A \cdot (A + B) = A.$$

・ロン ・雪 と ・ ヨ と

To prove this theorem, we can follow two approaches:

- (a) Construct truth tables for LHS and RHS for all possible input combinations, and show that they are the same.
- (b) Use identities and theorems stated earlier to show that LHS=RHS.

$$A + AB = A \cdot 1 + A \cdot B$$
$$= A \cdot (1 + B)$$
$$= A \cdot (1)$$
$$= A$$

$$* A \cdot (A + B) = A.$$

Proof:
$$A \cdot (A + B) = A \cdot A + A \cdot B$$

= $A + AB$
= A

(Ξ ▶ Ξ ∽) (? M. B. Patil, IIT Bombay

・ロン ・雪 と ・ ヨ と

 $A + AB = A \quad \longleftrightarrow \quad A \cdot (A + B) = A.$

Note the duality between OR and AND.

$A + AB = A \iff A \cdot (A + B) = A.$ Note the duality between OR and AND.

Dual of A + AB (LHS): $AB \rightarrow A + B$ $A + AB \rightarrow A \cdot (A + B)$.

 $A + AB = A \quad \longleftrightarrow \quad A \cdot (A + B) = A.$

Note the duality between OR and AND.

Dual of A + AB (LHS): $AB \rightarrow A + B$ $A + AB \rightarrow A \cdot (A + B)$.

Dual of A (RHS) = A (since there are no operations ivolved).

 $A + AB = A \quad \longleftrightarrow \quad A \cdot (A + B) = A.$

Note the duality between OR and AND.

Dual of A + AB (LHS): $AB \rightarrow A + B$ $A + AB \rightarrow A \cdot (A + B)$. Dual of A (RHS) = A (since there are no operations ivolved). $\Rightarrow A \cdot (A + B) = A$.

 $\begin{array}{ll} A + AB = A & \longleftrightarrow & A \cdot (A + B) = A.\\ \text{Note the duality between OR and AND.}\\ \text{Dual of } A + AB \ (\text{LHS}): AB \rightarrow A + B\\ & A + AB \rightarrow A \cdot (A + B).\\ \text{Dual of } A \ (\text{RHS}) = A \ (\text{since there are no operations ivolved}).\\ \Rightarrow A \cdot (A + B) = A. \end{array}$

Similarly, consider $A + \overline{A} = 1$, with $(+ \leftrightarrow .)$ and $(1 \leftrightarrow 0)$.

 $\begin{array}{ll} A + AB = A & \longleftrightarrow & A \cdot (A + B) = A.\\ \text{Note the duality between OR and AND.}\\ \text{Dual of } A + AB \ (\text{LHS}): \ AB \to A + B\\ & A + AB \to A \cdot (A + B).\\ \text{Dual of } A \ (\text{RHS}) = A \ (\text{since there are no operations ivolved}).\\ \Rightarrow A \cdot (A + B) = A. \end{array}$

Similarly, consider $A + \overline{A} = 1$, with $(+ \leftrightarrow .)$ and $(1 \leftrightarrow 0)$. Dual of LHS = $A \cdot \overline{A}$.

> < ロ > < 回 > < 臣 > < 臣 > < 臣 > 臣 のへの M. B. Patil, IIT Bombay

 $\begin{array}{l} A + AB = A & \longleftrightarrow & A \cdot (A + B) = A.\\ \text{Note the duality between OR and AND.}\\ \text{Dual of } A + AB \ (\text{LHS}): \ AB \to A + B\\ & A + AB \to A \cdot (A + B).\\ \text{Dual of } A \ (\text{RHS}) = A \ (\text{since there are no operations ivolved}).\\ \Rightarrow A \cdot (A + B) = A.\\ \text{Similarly, consider } A + \overline{A} = 1, \ \text{with } (+ \leftrightarrow .) \ \text{and} \ (1 \leftrightarrow 0). \end{array}$

Similarly, consider A + A = 1, with $(+ \leftrightarrow .)$ and $(1 \leftrightarrow 0)$. Dual of LHS = $A \cdot \overline{A}$. Dual of RHS = 0.

> < ロ > < 回 > < 臣 > < 臣 > < 臣 > 臣 のへの M. B. Patil, IIT Bombay

 $\begin{array}{l} A + AB = A & \longleftrightarrow & A \cdot (A + B) = A.\\ \text{Note the duality between OR and AND.}\\ \text{Dual of } A + AB (\text{LHS}): AB \rightarrow A + B\\ & A + AB \rightarrow A \cdot (A + B).\\ \text{Dual of } A (\text{RHS}) = A (\text{since there are no operations ivolved}).\\ \Rightarrow A \cdot (A + B) = A.\\ \text{Similarly, consider } A + \overline{A} = 1, \text{ with } (+ \leftrightarrow .) \text{ and } (1 \leftrightarrow 0).\\ \text{Dual of LHS} = A \cdot \overline{A}.\\ \text{Dual of RHS} = 0.\\ \end{array}$

 $\Rightarrow A \cdot \overline{A} = 0.$

< ロ > < 回 > < 臣 > < 臣 > < 臣 > 臣 のへの M. B. Patil, IIT Bombay

Proof:
$$A + \overline{A}B = (A + \overline{A}) \cdot (A + B)$$
 (by distributive law)
= $1 \cdot (A + B)$
= $A + B$

Dual theorem: $A \cdot (\overline{A} + B) = A B$.

Proof:
$$A + \overline{A}B = (A + \overline{A}) \cdot (A + B)$$
 (by distributive law)
= $1 \cdot (A + B)$
= $A + B$

Dual theorem: $A \cdot (\overline{A} + B) = A B$.

* $AB + A\overline{B} = A$.

Proof:
$$A + \overline{A}B = (A + \overline{A}) \cdot (A + B)$$
 (by distributive law)
= $1 \cdot (A + B)$
= $A + B$

Dual theorem: $A \cdot (\overline{A} + B) = A B$.

* $AB + A\overline{B} = A$.

Proof: $AB + A\overline{B} = A \cdot (B + \overline{B})$ (by distributive law) = $A \cdot 1$ = A

▲ロト ▲圖ト ▲屋ト ▲屋ト

M. B. Patil, IIT Bombay

Dual theorem: $(A + B) \cdot (A + \overline{B}) = A$.

In an India-Australia match, India will win if one or more of the following conditions are met:

(a) Tendulkar scores a century.

- (a) Tendulkar scores a century.
- (b) Tedulkar does not score a century AND Warne fails (to get wickets).

- (a) Tendulkar scores a century.
- (b) Tedulkar does not score a century AND Warne fails (to get wickets).
- (c) Tedulkar does not score a century AND Sehwag scores a century.

- (a) Tendulkar scores a century.
- (b) Tedulkar does not score a century AND Warne fails (to get wickets).
- (c) Tedulkar does not score a century AND Sehwag scores a century.
- Let $T \equiv$ Tendulkar scores a century.
 - $S \equiv$ Sehwag scores a century.
 - $W \equiv$ Warne fails.
 - $I \equiv$ India wins.

In an India-Australia match, India will win if one or more of the following conditions are met:

- (a) Tendulkar scores a century.
- (b) Tedulkar does not score a century AND Warne fails (to get wickets).
- (c) Tedulkar does not score a century AND Sehwag scores a century.
- Let $T \equiv$ Tendulkar scores a century.
 - $S \equiv$ Sehwag scores a century.
 - $W \equiv$ Warne fails.
 - $I \equiv$ India wins.
- $I = T + \overline{T} W + \overline{T} S$

3

イロン イヨン イヨン イヨン

In an India-Australia match, India will win if one or more of the following conditions are met:

イロン イヨン イヨン イヨン

M. B. Patil, IIT Bombay

- (a) Tendulkar scores a century.
- (b) Tedulkar does not score a century AND Warne fails (to get wickets).
- (c) Tedulkar does not score a century AND Sehwag scores a century.
- Let $T \equiv$ Tendulkar scores a century.
 - $S \equiv$ Sehwag scores a century.
 - $W \equiv$ Warne fails.
 - $I \equiv$ India wins.
- $I = T + \overline{T} W + \overline{T} S$ = T + T + $\overline{T} W + \overline{T} S$

In an India-Australia match, India will win if one or more of the following conditions are met:

イロト イヨト イヨト イヨト

M. B. Patil, IIT Bombay

- (a) Tendulkar scores a century.
- (b) Tedulkar does not score a century AND Warne fails (to get wickets).
- (c) Tedulkar does not score a century AND Sehwag scores a century.
- Let $T \equiv$ Tendulkar scores a century.
 - $S \equiv$ Sehwag scores a century.
 - $W \equiv$ Warne fails.
 - $I \equiv$ India wins.
- $I = T + \overline{T} W + \overline{T} S$ = T + T + $\overline{T} W + \overline{T} S$ = (T + $\overline{T} W$) + (T + $\overline{T} S$)

In an India-Australia match, India will win if one or more of the following conditions are met:

イロン イヨン イヨン イヨン

(Ξ ▶ Ξ ∽) ⑦ M. B. Patil, IIT Bombay

- (a) Tendulkar scores a century.
- (b) Tedulkar does not score a century AND Warne fails (to get wickets).
- (c) Tedulkar does not score a century AND Sehwag scores a century.
- Let $T \equiv$ Tendulkar scores a century.
 - $S \equiv$ Sehwag scores a century.
 - $W \equiv$ Warne fails.
 - $I \equiv$ India wins.

$$I = T + \overline{T} W + \overline{T} S$$

= T + T + $\overline{T} W + \overline{T} S$
= $(T + \overline{T} W) + (T + \overline{T} S)$
= $(T + \overline{T}) \cdot (T + W) + (T + \overline{T}) \cdot (T + S)$

In an India-Australia match, India will win if one or more of the following conditions are met:

イロン イヨン イヨン イヨン

(Ξ ▶ Ξ ∽) ⑦ M. B. Patil, IIT Bombay

- (a) Tendulkar scores a century.
- (b) Tedulkar does not score a century AND Warne fails (to get wickets).
- (c) Tedulkar does not score a century AND Sehwag scores a century.
- Let $T \equiv$ Tendulkar scores a century.
 - $S \equiv$ Sehwag scores a century.
 - $W \equiv$ Warne fails.
 - $I \equiv$ India wins.

$$I = T + \overline{T} W + \overline{T} S$$

= T + T + $\overline{T} W + \overline{T} S$
= $(T + \overline{T} W) + (T + \overline{T} S)$
= $(T + \overline{T}) \cdot (T + W) + (T + \overline{T}) \cdot (T + S)$
= T + W + T + S
= T + W + S

In an India-Australia match, India will win if one or more of the following conditions are met:

イロト イヨト イヨト イヨト

M. B. Patil, IIT Bombay

- (a) Tendulkar scores a century.
- (b) Tedulkar does not score a century AND Warne fails (to get wickets).
- (c) Tedulkar does not score a century AND Sehwag scores a century.
- Let $T \equiv$ Tendulkar scores a century.
 - $S \equiv$ Sehwag scores a century.
 - $W \equiv$ Warne fails.
 - $I \equiv$ India wins.

$$I = T + \overline{T} W + \overline{T} S$$

= T + T + $\overline{T} W + \overline{T} S$
= $(T + \overline{T} W) + (T + \overline{T} S)$
= $(T + \overline{T}) \cdot (T + W) + (T + \overline{T}) \cdot (T + S)$
= T + W + T + S
= T + W + S

i.e., India will win if one or more of the following hold:

(a) Tendulkar strikes, (b) Warne fails, (c) Sehwag strikes.

Consider a function X of three variables A, B, C: $X = \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C}$ $\equiv X_1 + X_2 + X_3 + X_4$

・ロト・「聞ト・「聞ト・「聞」 うへの

M. B. Patil, IIT Bombay

- $X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$
 - $\equiv X_1 + X_2 + X_3 + X_4$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

- $X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$
 - $\equiv X_1 + X_2 + X_3 + X_4$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for X in a systematic manner:

- $X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$
 - $\equiv X_1 + X_2 + X_3 + X_4$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for X in a systematic manner:

Enumerate all possible combinations of A, B, C.
 Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.

M. B. Patil, IIT Bombay

イロン イヨン イヨン イヨン

- $X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$
 - $\equiv X_1 + X_2 + X_3 + X_4$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for X in a systematic manner:

- Enumerate all possible combinations of A, B, C.
 Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.
- (2) Tabulate $X_1 = \overline{A}B\overline{C}$, etc. Note that X_1 is 1 only if $\overline{A} = B = \overline{C} = 1$ (i.e., A = 0, B = 1, C = 0), and 0 otherwise.

イロン イヨン イヨン イヨン

M. B. Patil, IIT Bombay

$$X = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C}$$

 $\equiv X_1 + X_2 + X_3 + X_4$

This form is called the "sum of products" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for X in a systematic manner:

- Enumerate all possible combinations of A, B, C.
 Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.
- (2) Tabulate $X_1 = \overline{A}B\overline{C}$, etc. Note that X_1 is 1 only if $\overline{A} = B = \overline{C} = 1$ (i.e., A = 0, B = 1, C = 0), and 0 otherwise.

イロト イヨト イヨト イヨト

M. B. Patil, IIT Bombay

(3) Since $X = X_1 + X_2 + X_3 + X_4$, X is 1 if any of X_1 , X_2 , X_3 , X_4 is 1; else X is 0. \rightarrow tabulate X.

А	В	C	Χ1	X ₂	Χ,	X4	Х
0	0	0		2	5	4	
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0					
0	0	1					
0	1	0	1				
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0				
0	0	1	0				
0	1	0	1				
0	1	1	0				
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	0				

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0				
0	0	1	0				
0	1	0	1				
0	1	1	0	1			
1	0	0	0				
1	0	1	0				
1	1	0	0				
1	1	1	0				

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0	0			
0	0	1	0	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	0	0			
1	0	1	0	0			
1	1	0	0	0			
1	1	1	0	0			

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0	0			
0	0	1	0	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	0	0	1		
1	0	1	0	0			
1	1	0	0	0			
1	1	1	0	0			

$$\mathsf{X}=\mathsf{X}_1+\mathsf{X}_2+\mathsf{X}_3+\mathsf{X}_4=\overline{\mathsf{A}}\,\mathsf{B}\,\overline{\mathsf{C}}+\overline{\mathsf{A}}\,\mathsf{B}\,\mathsf{C}+\mathsf{A}\,\overline{\mathsf{B}}\,\overline{\mathsf{C}}+\mathsf{A}\,\mathsf{B}\,\overline{\mathsf{C}}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0	0	0		
0	0	1	0	0	0		
0	1	0	1	0	0		
0	1	1	0	1	0		
1	0	0	0	0	1		
1	0	1	0	0	0		
1	1	0	0	0	0		
1	1	1	0	0	0		

$$\mathsf{X}=\mathsf{X}_1+\mathsf{X}_2+\mathsf{X}_3+\mathsf{X}_4=\overline{\mathsf{A}}\,\mathsf{B}\,\overline{\mathsf{C}}+\overline{\mathsf{A}}\,\mathsf{B}\,\mathsf{C}+\mathsf{A}\,\overline{\mathsf{B}}\,\overline{\mathsf{C}}+\mathsf{A}\,\mathsf{B}\,\overline{\mathsf{C}}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0	0	0		
0	0	1	0	0	0		
0	1	0	1	0	0		
0	1	1	0	1	0		
1	0	0	0	0	1		
1	0	1	0	0	0		
1	1	0	0	0	0	1	
1	1	1	0	0	0		
$$\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2 + \mathsf{X}_3 + \mathsf{X}_4 = \overline{\mathsf{A}} \, \mathsf{B} \, \overline{\mathsf{C}} + \overline{\mathsf{A}} \, \mathsf{B} \, \mathsf{C} + \mathsf{A} \, \overline{\mathsf{B}} \, \overline{\mathsf{C}} + \mathsf{A} \, \mathsf{B} \, \overline{\mathsf{C}}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0	0	0	0	
0	0	1	0	0	0	0	
0	1	0	1	0	0	0	
0	1	1	0	1	0	0	
1	0	0	0	0	1	0	
1	0	1	0	0	0	0	
1	1	0	0	0	0	1	
1	1	1	0	0	0	0	

$$\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2 + \mathsf{X}_3 + \mathsf{X}_4 = \overline{\mathsf{A}} \, \mathsf{B} \, \overline{\mathsf{C}} + \overline{\mathsf{A}} \, \mathsf{B} \, \mathsf{C} + \mathsf{A} \, \overline{\mathsf{B}} \, \overline{\mathsf{C}} + \mathsf{A} \, \mathsf{B} \, \overline{\mathsf{C}}$$

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0	0	0	0	
0	0	1	0	0	0	0	
0	1	0	1	0	0	0	1
0	1	1	0	1	0	0	1
1	0	0	0	0	1	0	1
1	0	1	0	0	0	0	
1	1	0	0	0	0	1	1
1	1	1	0	0	0	0	

$$\mathsf{X} = \mathsf{X}_1 + \mathsf{X}_2 + \mathsf{X}_3 + \mathsf{X}_4 = \overline{\mathsf{A}} \, \mathsf{B} \, \overline{\mathsf{C}} + \overline{\mathsf{A}} \, \mathsf{B} \, \mathsf{C} + \mathsf{A} \, \overline{\mathsf{B}} \, \overline{\mathsf{C}} + \mathsf{A} \, \mathsf{B} \, \overline{\mathsf{C}}$$

А	В	С	X_1	X_2	X_3	X_4	Х
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	1	0	0	1
1	0	0	0	0	1	0	1
1	0	1	0	0	0	0	0
1	1	0	0	0	0	1	1
1	1	1	0	0	0	0	0

M. B. Patil, IIT Bombay

・ロト・(中下・(中下・(日下・(日下)))

Consider a function Y of three variables A, B, C: $Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$ $\equiv Y_1 \qquad \cdot Y_2 \qquad \cdot Y_3 \qquad \cdot Y_4$

M. B. Patil, IIT Bombay

Consider a function Y of three variables A, B, C: $Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$ $\equiv Y_1 \qquad \cdot Y_2 \qquad \cdot Y_3 \qquad \cdot Y_4$

This form is called the "product of sums" form ("sum" corresponding to OR and "product" corresponding to AND).

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \qquad \cdot Y_2 \qquad \cdot Y_3 \qquad \cdot Y_4$$

This form is called the "product of sums" form ("sum" corresponding to OR and "product" corresponding to AND).

M. B. Patil, IIT Bombay

We can construct the truth table for Y in a systematic manner:

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \qquad \cdot Y_2 \qquad \cdot Y_3 \qquad \cdot Y_4$$

This form is called the "product of sums" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for Y in a systematic manner:

Enumerate all possible combinations of A, B, C.
Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \qquad \cdot Y_2 \qquad \cdot Y_3 \qquad \cdot Y_4$$

This form is called the "product of sums" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for Y in a systematic manner:

Enumerate all possible combinations of A, B, C.
Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.

・ロト ・回ト ・ヨト ・ヨト

M. B. Patil, IIT Bombay

(2) Tabulate $Y_1 = A + B + C$, etc. Note that Y_1 is 0 only if A = B = C = 0; Y_1 is 1 otherwise.

$$Y = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + \overline{B} + \overline{C})$$

$$\equiv Y_1 \qquad \cdot Y_2 \qquad \cdot Y_3 \qquad \cdot Y_4$$

This form is called the "product of sums" form ("sum" corresponding to OR and "product" corresponding to AND).

We can construct the truth table for Y in a systematic manner:

Enumerate all possible combinations of A, B, C.
Since each of A, B, C can take two values (0 or 1), we have 2³ possibilities.

・ロト ・回ト ・ヨト ・ヨト

M. B. Patil, IIT Bombay

- (2) Tabulate $Y_1 = A + B + C$, etc. Note that Y_1 is 0 only if A = B = C = 0; Y_1 is 1 otherwise.
- (3) Since $Y = Y_1 Y_2 Y_3 Y_4$, Y is 0 if any of Y_1, Y_2, Y_3, Y_4 is 0; else Y is 1. \rightarrow tabulate Y.

$$\mathbf{Y} = \mathbf{Y}_1 \, \mathbf{Y}_2 \, \mathbf{Y}_3 \, \mathbf{Y}_4 = (\mathbf{A} + \mathbf{B} + \mathbf{C}) \, (\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{A}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A} + \overline{\mathbf{C}}) \, (\overline{\mathbf$$

А	В	С	Y_1	Y_2	Y_3	Y_4	Y
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C}) (\overline{A} + \overline{C}) (\overline{$$

А	В	С	Y_1	Y_2	Y_3	Y_4	Y
0	0	0	0				
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

$$\mathbf{Y} = \mathbf{Y}_1 \, \mathbf{Y}_2 \, \mathbf{Y}_3 \, \mathbf{Y}_4 = (\mathbf{A} + \mathbf{B} + \mathbf{C}) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}\right) \left(\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}\right) \left(\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}\right)$$

А	В	С	Y_1	Y_2	Y_3	Y_4	Y
0	0	0	0				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	1				

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C}) (\overline{A} + \overline{C}) (\overline{$$

А	В	С	Y_1	Y_2	Y_3	Y_4	Y
0	0	0	0				
0	0	1	1	0			
0	1	0	1				
0	1	1	1				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	1				

$$\mathbf{Y} = \mathbf{Y}_1 \, \mathbf{Y}_2 \, \mathbf{Y}_3 \, \mathbf{Y}_4 = (\mathbf{A} + \mathbf{B} + \mathbf{C}) \, (\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{A}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A} + \overline{\mathbf{C}}) \, (\overline{\mathbf$$

А	В	С	Y_1	Y_2	Y_3	Y_4	Y
0	0	0	0	1			
0	0	1	1	0			
0	1	0	1	1			
0	1	1	1	1			
1	0	0	1	1			
1	0	1	1	1			
1	1	0	1	1			
1	1	1	1	1			

$$\mathbf{Y} = \mathbf{Y}_1 \, \mathbf{Y}_2 \, \mathbf{Y}_3 \, \mathbf{Y}_4 = (\mathbf{A} + \mathbf{B} + \mathbf{C}) \left(\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}\right) \left(\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}\right) \left(\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}\right)$$

А	В	С	Y_1	Y_2	Y_3	Y_4	Y
0	0	0	0	1			
0	0	1	1	0			
0	1	0	1	1			
0	1	1	1	1			
1	0	0	1	1			
1	0	1	1	1	0		
1	1	0	1	1			
1	1	1	1	1			

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

А	В	С	Y_1	Y_2	\mathbf{Y}_{3}	Y_4	Υ
0	0	0	0	1	1		
0	0	1	1	0	1		
0	1	0	1	1	1		
0	1	1	1	1	1		
1	0	0	1	1	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	1	1	1		

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

A B C Y ₁ Y ₂ Y ₃ Y ₄	Υ
0 0 0 0 1 1	
0 0 1 1 0 1	
0 1 0 1 1 1	
0 1 1 1 1 1	
1 0 0 1 1 1	
1 0 1 1 1 0	
1 1 0 1 1 1	
1 1 1 1 1 1 0	

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

А	В	С	Y_1	Y_2	Y_3	Y_4	Y
0	0	0	0	1	1	1	
0	0	1	1	0	1	1	
0	1	0	1	1	1	1	
0	1	1	1	1	1	1	
1	0	0	1	1	1	1	
1	0	1	1	1	0	1	
1	1	0	1	1	1	1	
1	1	1	1	1	1	0	

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

А	В	С	Y_1	Y_2	Y_3	Y_4	Y
0	0	0	0	1	1	1	0
0	0	1	1	0	1	1	0
0	1	0	1	1	1	1	
0	1	1	1	1	1	1	
1	0	0	1	1	1	1	
1	0	1	1	1	0	1	0
1	1	0	1	1	1	1	
1	1	1	1	1	1	0	0

$$Y = Y_1 Y_2 Y_3 Y_4 = (A + B + C) (A + B + \overline{C}) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C})$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

А	В	С	Y_1	Y_2	Y_3	Y_4	Y
0	0	0	0	1	1	1	0
0	0	1	1	0	1	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	1	1	0	1	0
1	1	0	1	1	1	1	1
1	1	1	1	1	1	0	0

$$\mathbf{Y} = \mathbf{Y}_1 \, \mathbf{Y}_2 \, \mathbf{Y}_3 \, \mathbf{Y}_4 = (\mathbf{A} + \mathbf{B} + \mathbf{C}) \, (\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A}} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A} + \overline{\mathbf{C}}) \, (\overline{\mathbf{A$$

А	В	С	Y_1	Y_2	\mathbf{Y}_{3}	Y_4	Y
0	0	0	0	1	1	1	0
0	0	1	1	0	1	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	1	1	0	1	0
1	1	0	1	1	1	1	1
1	1	1	1	1	1	0	0

Note that Y is identical to X (seen two slides back). This is an example of how the same function can be written in two seemingly different forms (in this case, the sum-of-products form and the product-of-sums form).

M. B. Patil, IIT Bombay

590

(中) (종) (종) (종) (종)

M. B. Patil, IIT Bombay

This form is called the *standard* sum-of-products form, and each individual term (consisting of all three variables) is called a "minterm."

This form is called the *standard* sum-of-products form, and each individual term (consisting of all three variables) is called a "minterm."

In the truth table for X, the numbers of 1s is the same as the number of minterms, as we have seen in an example.

This form is called the *standard* sum-of-products form, and each individual term (consisting of all three variables) is called a "minterm."

In the truth table for X, the numbers of 1s is the same as the number of minterms, as we have seen in an example.

X can be rewritten as,

 $X = AB\overline{C} + \overline{A}B(C + \overline{C})$ $= AB\overline{C} + \overline{A}B.$

This form is called the *standard* sum-of-products form, and each individual term (consisting of all three variables) is called a "minterm."

In the truth table for X, the numbers of 1s is the same as the number of minterms, as we have seen in an example.

X can be rewritten as,

 $X = A B \overline{C} + \overline{A} B (C + \overline{C})$ $= A B \overline{C} + \overline{A} B.$

This is also a sum-of-products form, but not the standard one.

M. B. Patil, IIT Bombay

M. B. Patil, IIT Bombay

This form is called the *standard* product-of-sums form, and each individual term (consisting of all three variables) is called a "maxterm."

This form is called the *standard* product-of-sums form, and each individual term (consisting of all three variables) is called a "maxterm."

In the truth table for X, the numbers of 0s is the same as the number of maxterms, as we have seen in an example.

This form is called the *standard* product-of-sums form, and each individual term (consisting of all three variables) is called a "maxterm."

In the truth table for X, the numbers of 0s is the same as the number of maxterms, as we have seen in an example.

X can be rewritten as,

$$X = (A + B + C) (\overline{A} + B + C) (\overline{A} + \overline{B} + C)$$
$$= (A + B + C) (\overline{A} + C + B) (\overline{A} + C + \overline{B})$$
$$= (A + B + C) (\overline{A} + C + B \overline{B})$$
$$= (A + B + C) (\overline{A} + C).$$

M. B. Patil, IIT Bombay

・ロン ・四 と ・ ヨ と ・ モ と

This form is called the *standard* product-of-sums form, and each individual term (consisting of all three variables) is called a "maxterm."

In the truth table for X, the numbers of 0s is the same as the number of maxterms, as we have seen in an example.

X can be rewritten as,

$$X = (A + B + C) (\overline{A} + B + C) (\overline{A} + \overline{B} + C)$$
$$= (A + B + C) (\overline{A} + C + B) (\overline{A} + C + \overline{B})$$
$$= (A + B + C) (\overline{A} + C + B \overline{B})$$
$$= (A + B + C) (\overline{A} + C).$$

This is also a product-of-sums form, but not the standard one.

M. B. Patil, IIT Bombay

イロン イヨン イヨン イヨン

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

- $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.
- $B \equiv$ My favourite player is scheduled to play a match (which I can watch on TV).
- $C \equiv$ The appointment is crucial for my business.
- $S \equiv$ Schedule the appointment.

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

・ロト ・日本 ・ヨト ・ヨト

M. B. Patil, IIT Bombay

- $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.
- $B \equiv$ My favourite player is scheduled to play a match (which I can watch on TV).
- $C \equiv$ The appointment is crucial for my business.
- $S \equiv$ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

A	В	С	S
0	Х	Х	0
1	0	Х	1
1	1	0	0
1	1	1	1

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

- $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.
- $B \equiv$ My favourite player is scheduled to play a match (which I can watch on TV).
- $C \equiv$ The appointment is crucial for my business.
- $S \equiv$ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

Α	В	С	S
0	Х	Х	0
1	0	Х	1
1	1	0	0
1	1	1	1

Note that we have a new entity called X in the truth table.

M. B. Patil, IIT Bombay

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

- $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.
- $B \equiv$ My favourite player is scheduled to play a match (which I can watch on TV).
- $C \equiv$ The appointment is crucial for my business.
- $S \equiv$ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

Α	В	С	S
0	Х	Х	0
1	0	Х	1
1	1	0	0
1	1	1	1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the "don't care" condition.

M. B. Patil, IIT Bombay

I want to design a box (with inputs A, B, C, and output S) which will help in scheduling my appointments.

- $A \equiv I$ am in town, and the time slot being suggested for the appointment is free.
- $B \equiv$ My favourite player is scheduled to play a match (which I can watch on TV).
- $C \equiv$ The appointment is crucial for my business.
- $S \equiv$ Schedule the appointment.

The following truth table summarizes the expected functioning of the box.

Α	В	С	S
0	Х	Х	0
1	0	Х	1
1	1	0	0
1	1	1	1

Note that we have a new entity called X in the truth table.

X can be 0 or 1 (it does not matter) and is therefore called the "don't care" condition.

Don't care conditions can often be used to get a more efficient implementation of a logical function.

M. B. Patil, IIT Bombay