

M. B. Patil

mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

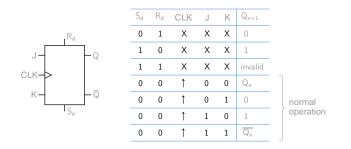
Department of Electrical Engineering Indian Institute of Technology Bombay

・ロト ・日 ・ ・ ヨ ・ ・ ヨ

M. B. Patil, IIT Bombay

S_d	R_d	CLK	J	Κ	Q_{n+1}	
0	1	Х	Х	Х	0	
1	0	Х	Х	Х	1	
1	1	Х	Х	Х	invalid	
0	0	î	0	0	Qn	
0	0	Î	0	1	0	norma
0	0	î	1	0	1	opera
0	0	î	1	1	$\overline{Q_n}$	

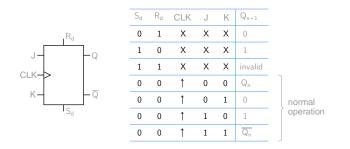
al ation



 Clocked flip-flops are also provided with *asynchronous* or *direct* Set and Reset inputs, S_d and R_d, (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

M. B. Patil, IIT Bombay

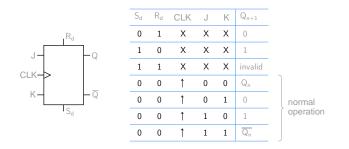
• • • • • • • • • • •



 Clocked flip-flops are also provided with *asynchronous* or *direct* Set and Reset inputs, S_d and R_d, (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

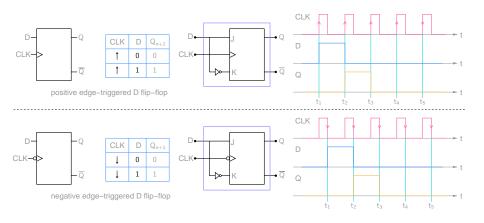
M. B. Patil, IIT Bombay

* The S_d and R_d inputs may be active low; in that case, they are denoted by $\overline{S_d}$ and $\overline{R_d}$.

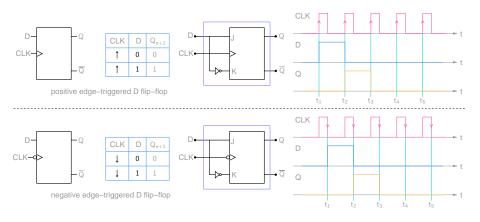


- Clocked flip-flops are also provided with *asynchronous* or *direct* Set and Reset inputs, S_d and R_d, (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).
- * The S_d and R_d inputs may be active low; in that case, they are denoted by $\overline{S_d}$ and $\overline{R_d}$.
- * The asynchronous inputs are convenient for "starting up" a circuit in a known state.

M. B. Patil, IIT Bombay



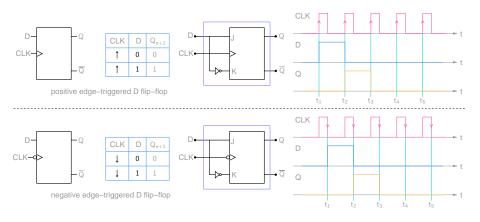
< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q ↔ M. B. Patil, IIT Bombay



* The D flip-flop can be used to *delay* the Data (D) signal by one clock period.

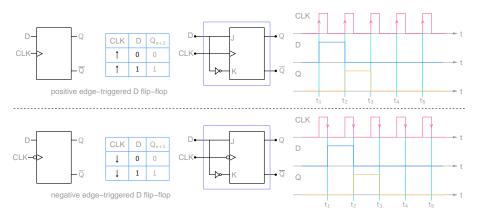
M. B. Patil, IIT Bombay

Image: A image: A



- * The D flip-flop can be used to *delay* the Data (D) signal by one clock period.
- * With J = D, $K = \overline{D}$, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.

M. B. Patil, IIT Bombay

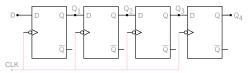


- * The D flip-flop can be used to *delay* the Data (D) signal by one clock period.
- * With J = D, $K = \overline{D}$, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.

M. B. Patil, IIT Bombay

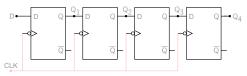
* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with S = D, $R = \overline{D}$.

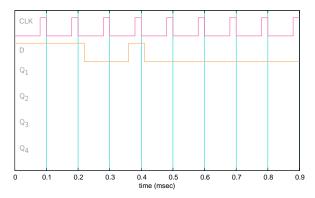
Let $\mathsf{Q}_1 \,{=}\, \mathsf{Q}_2 \,{=}\, \mathsf{Q}_3 \,{=}\, \mathsf{Q}_4 \,{=}\, \mathsf{0}$ initially.



590

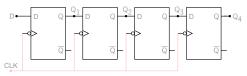
Let $\mathsf{Q}_1 \,{=}\, \mathsf{Q}_2 \,{=}\, \mathsf{Q}_3 \,{=}\, \mathsf{Q}_4 \,{=}\, \mathsf{0}$ initially.

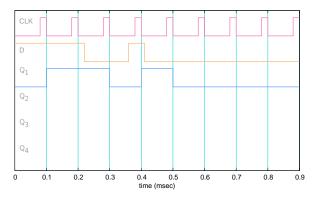




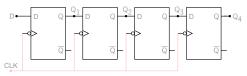
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

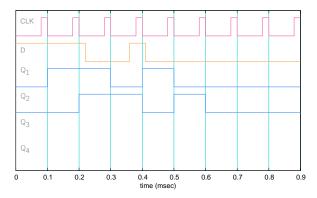
Let $\mathsf{Q}_1 \,{=}\, \mathsf{Q}_2 \,{=}\, \mathsf{Q}_3 \,{=}\, \mathsf{Q}_4 \,{=}\, \mathsf{0}$ initially.



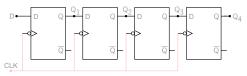


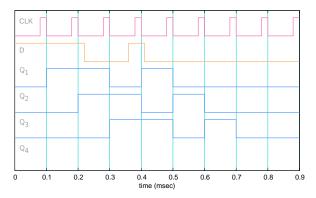
Let $\mathsf{Q}_1 \,{=}\, \mathsf{Q}_2 \,{=}\, \mathsf{Q}_3 \,{=}\, \mathsf{Q}_4 \,{=}\, \mathsf{0}$ initially.



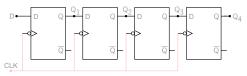


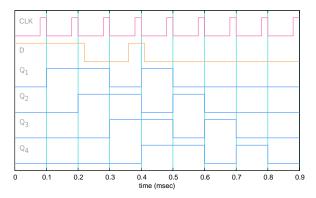
Let $\mathsf{Q}_1 \,{=}\, \mathsf{Q}_2 \,{=}\, \mathsf{Q}_3 \,{=}\, \mathsf{Q}_4 \,{=}\, \mathsf{0}$ initially.

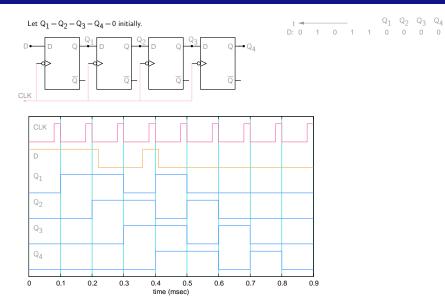




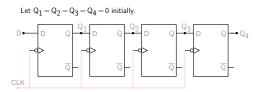
Let $\mathsf{Q}_1 \,{=}\, \mathsf{Q}_2 \,{=}\, \mathsf{Q}_3 \,{=}\, \mathsf{Q}_4 \,{=}\, \mathsf{0}$ initially.

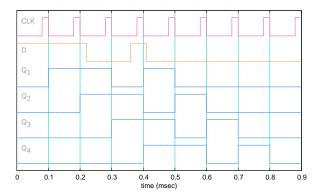




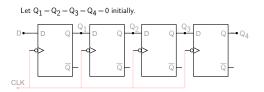


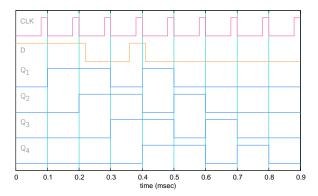
▲ロ → ▲ 団 → ▲ 目 → ▲ 目 → の へ ()・

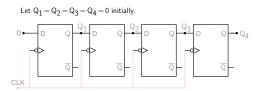


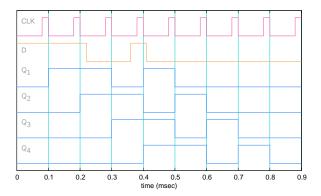


◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

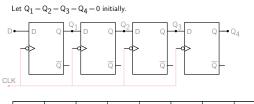


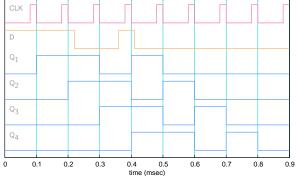


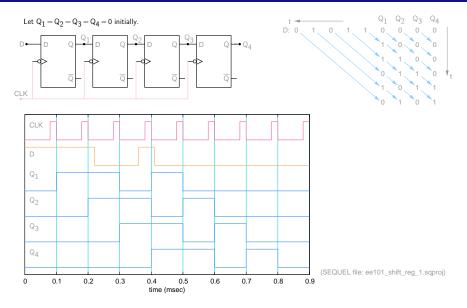


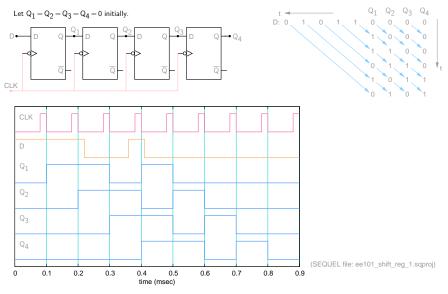


◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○







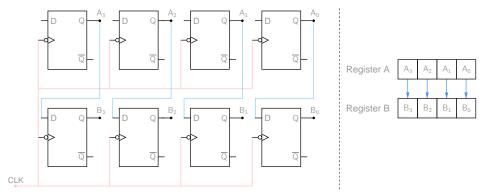


* The data (D) keeps shifting right after each active clock edge.

M. B. Patil, IIT Bombay

< 🗗 🕨

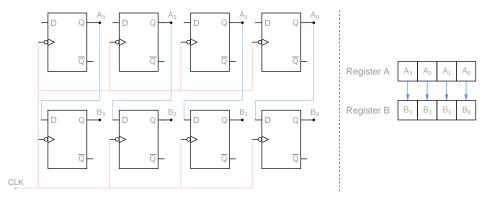
Parallel transfer between shift registers



M. B. Patil, IIT Bombay

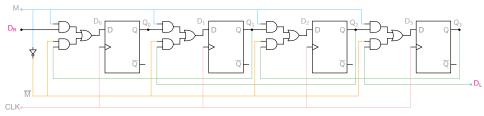
A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Parallel transfer between shift registers



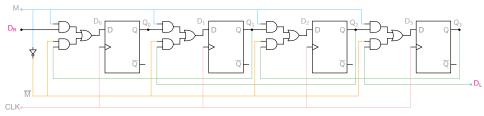
* After the active clock edge, the contents of the A register $(A_3A_2A_1A_0)$ are copied to the B register.

M. B. Patil, IIT Bombay

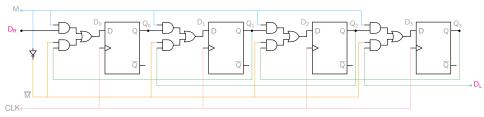


・ロト・日本・日本・日本・日本・日本

M. B. Patil, IIT Bombay



* When the mode input (M) is 1, we have $D_0 = D_R$, $D_1 = Q_0$, $D_2 = Q_1$, $D_3 = Q_2$.

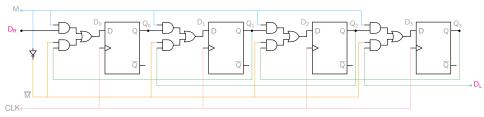


・ロト ・回ト ・ヨト

E

M. B. Patil, IIT Bombay

- * When the mode input (M) is 1, we have $D_0 = D_R$, $D_1 = Q_0$, $D_2 = Q_1$, $D_3 = Q_2$.
- * When the mode input (M) is 0, we have $D_0 = Q_1, D_1 = Q_2, D_2 = Q_3, D_3 = D_L.$



・ロト ・回ト ・ヨト

E

M. B. Patil, IIT Bombay

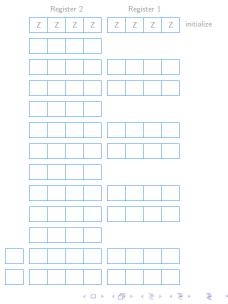
- * When the mode input (M) is 1, we have $D_0 = D_R$, $D_1 = Q_0$, $D_2 = Q_1$, $D_3 = Q_2$.
- * When the mode input (M) is 0, we have $D_0 = Q_1, D_1 = Q_2, D_2 = Q_3, D_3 = D_L.$
- * $M = 1 \rightarrow$ shift right operation. $M = 0 \rightarrow$ shift left operation.

			×					$\begin{array}{l} A_3A_2A_1A_0 \ (\text{decimal 11}) \\ B_3B_2B_1B_0 \ (\text{decimal 13}) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)

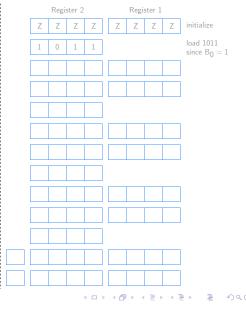
Note that $\mathsf{Z}=\mathsf{0}.$ We use Z to denote 0s which are independent of the numbers being multiplied.

			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3=1$
1	0	0	0	1	1	1	1	addition (decimal 143)

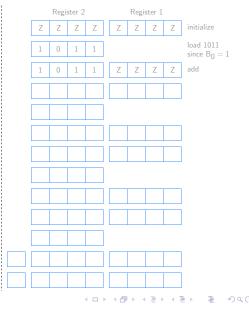
Note that $\mathsf{Z}=\mathsf{0}.$ We use Z to denote 0s which are independent of the numbers being multiplied.



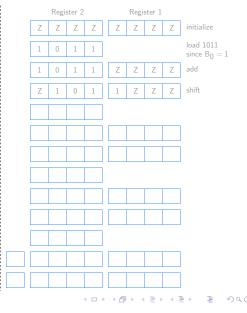
			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)



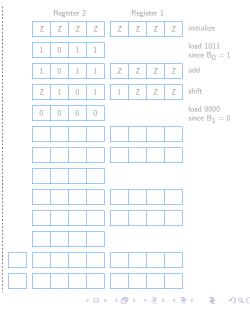
			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)



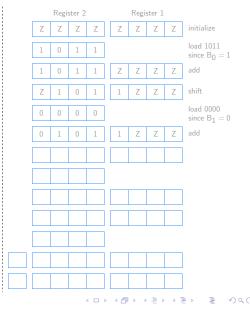
			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)



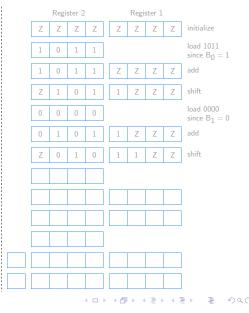
			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)



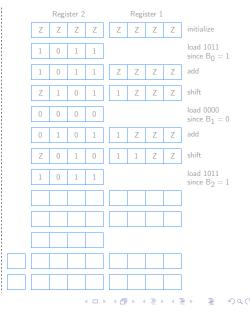
			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)



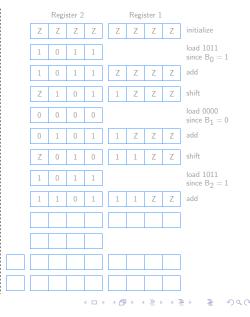
			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)



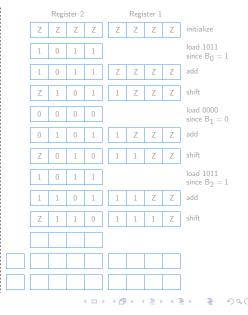
			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)



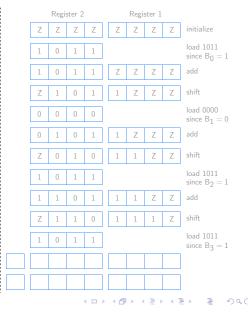
			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)



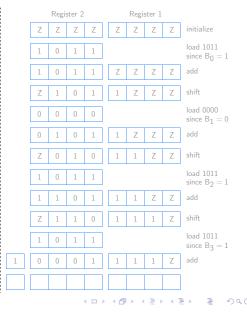
			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)



			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)

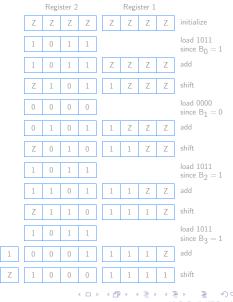


			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)

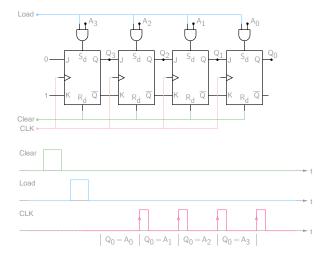


			×					$\begin{array}{l} A_3A_2A_1A_0 \ (decimal\ 11) \\ B_3B_2B_1B_0 \ (decimal\ 13) \end{array}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						addition since $B_2 = 1$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	addition since $B_3 = 1$
1	0	0	0	1	1	1	1	addition (decimal 143)

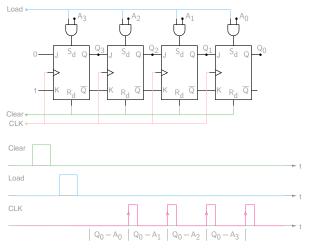
Note that Z = 0. We use Z to denote 0s which are independent of the numbers being multiplied.



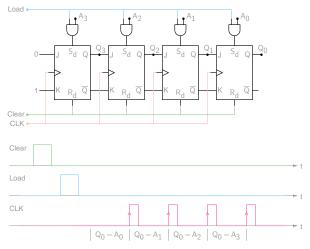
Parallel in-serial out data movement



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

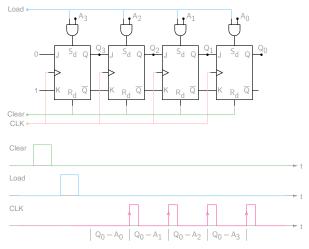


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

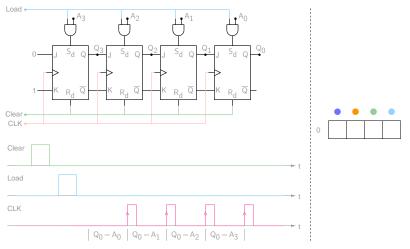


* When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the *i*th flip-flop. (We will assume that CLK has been made 0 in this initial phase.)

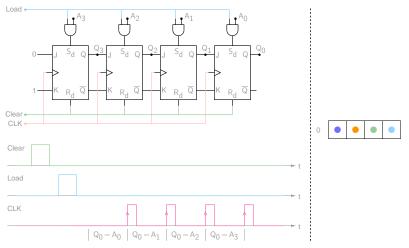
◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで



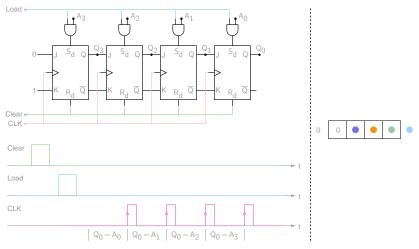
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the *i*th flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 .



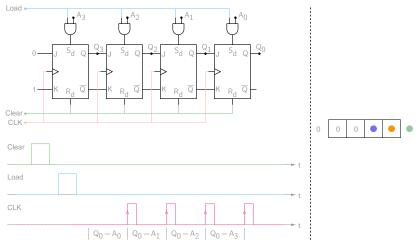
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the *i*th flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 .



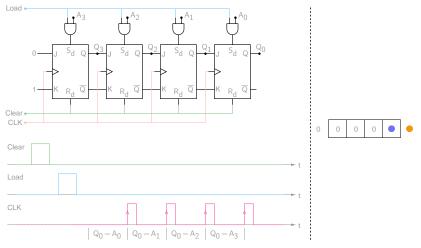
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the *i*th flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 .



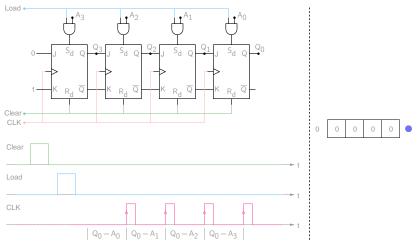
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the *i*th flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 .



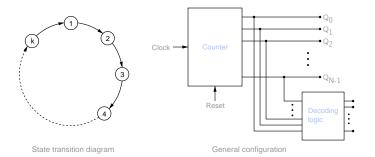
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the *i*th flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 .

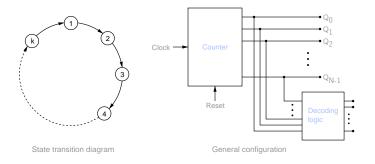


- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the *i*th flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 .



- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the *i*th flip-flop. (We will assume that CLK has been made 0 in this initial phase.)
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 .





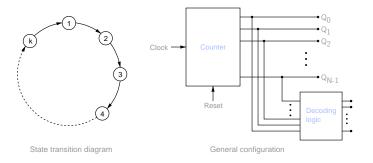
* A counter with k states is called a modulo- $k \pmod{k}$ counter.



- * A counter with k states is called a modulo- $k \pmod{k}$ counter.
- * A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

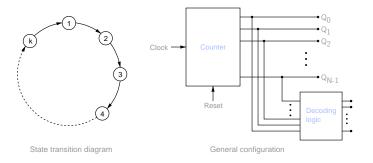
M. B. Patil, IIT Bombay

・ロト ・回ト ・ヨト ・ヨ



- * A counter with k states is called a modulo-k (mod-k) counter.
- * A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).
- If there are N flip-flops in a counter, there are 2^N possible states (since each flip-flop can have Q = 0 or Q = 1). It is possible to exclude some of these states.
 → N flip-flops can be used to make a mod-k counter with k ≤ 2^N.

・ロト ・回ト ・ヨト ・ヨト

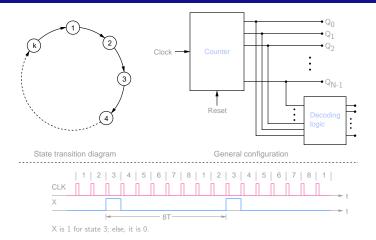


- * A counter with k states is called a modulo-k (mod-k) counter.
- * A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).
- If there are N flip-flops in a counter, there are 2^N possible states (since each flip-flop can have Q = 0 or Q = 1). It is possible to exclude some of these states.
 → N flip-flops can be used to make a mod-k counter with k ≤ 2^N.

・ロト ・回 ト ・ヨト ・ヨト

M. B. Patil, IIT Bombay

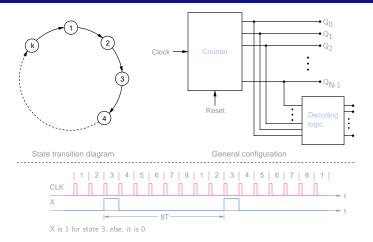
* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the counter.



E M. B. Patil, IIT Bombay

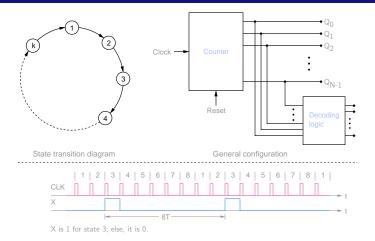
DQC

・ロト ・部ト ・モト ・モト



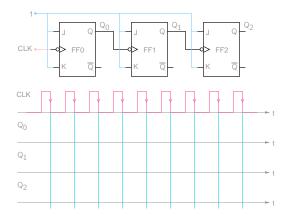
* The counter outputs (i.e., the flip-flop outputs, Q_0, Q_1, \dots, Q_{N-1}) can be decoded using appropriate logic.

◆□▶ ◆□▶ ◆臣▶ ◆臣♪

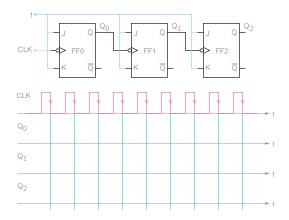


- * The counter outputs (i.e., the flip-flop outputs, Q_0, Q_1, \dots, Q_{N-1}) can be decoded using appropriate logic.
- In particular, it is possible to have a decoder output (say, X) which is 1 only for state i, and 0 otherwise.

 \rightarrow For k clock pulses, we get a single pulse at X, i.e., the clock frequency has been divided by k. For this reason, a mod-k counter is also called a divide-bk counter \Rightarrow $x \in \mathbb{R}$ by $x \in \mathbb{R}$



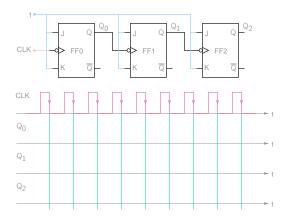
◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで



* J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.

・ロト ・ 同 ト ・ ヨト ・ ヨト … ヨ

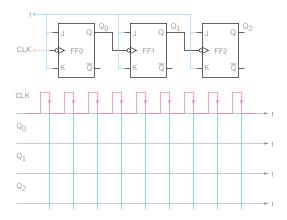
590



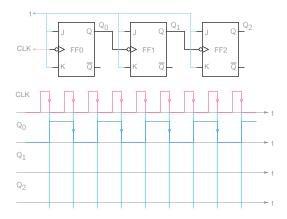
- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

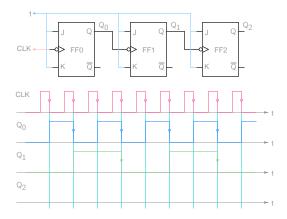
590



- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.



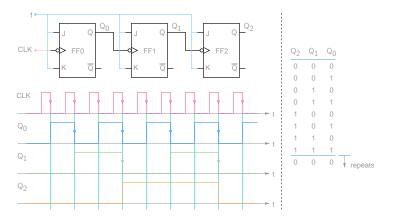
- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.



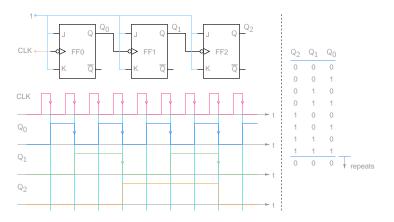
- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.



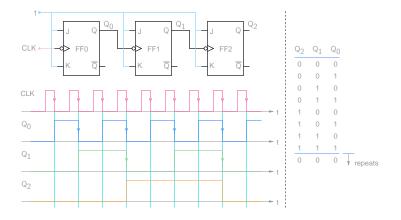
- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.



- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.

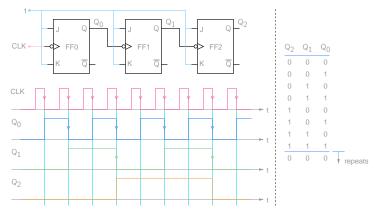


- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.
- * Note that the direct inputs S_d and R_d (not shown) are assumed to be $S_d = R_d = 0$ for all flip-flops, allowing normal flip-flip operation.



M. B. Patil, IIT Bombay

・ロト ・回ト ・ヨト

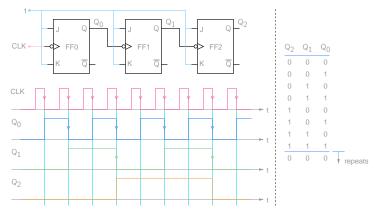


* The counter has 8 states, $Q_2 Q_1 Q_0 = 000, 001, 010, 011, 100, 101, 110, 111.$ \rightarrow it is a mod-8 counter. In particular, it is a *binary, mod-8, up* counter (since it counts *up* from 000 to 111).

M. B. Patil, IIT Bombay

- E →

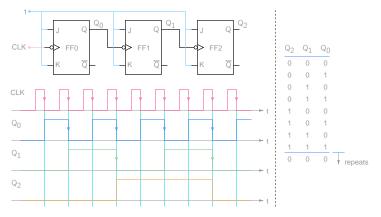
・ロ・・ (日・・) (日・・)



* The counter has 8 states, $Q_2 Q_1 Q_0 = 000, 001, 010, 011, 100, 101, 110, 111.$ \rightarrow it is a mod-8 counter. In particular, it is a *binary, mod-8, up* counter (since it counts *up* from 000 to 111).

* If the clock frequency is f_c , the frequency at the Q_0 , Q_1 , Q_2 outputs is $f_c/2$, $f_c/4$, $f_c/8$, respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

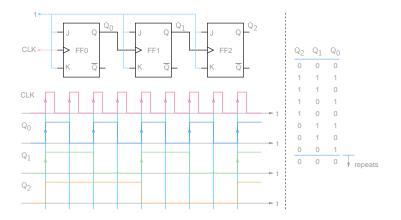
・ロト ・回ト ・モト ・モト



* The counter has 8 states, $Q_2 Q_1 Q_0 = 000, 001, 010, 011, 100, 101, 110, 111.$ \rightarrow it is a mod-8 counter. In particular, it is a *binary, mod-8, up* counter (since it counts *up* from 000 to 111).

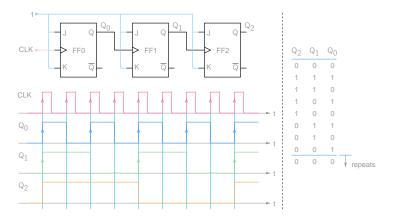
- * If the clock frequency is f_c , the frequency at the Q_0 , Q_1 , Q_2 outputs is $f_c/2$, $f_c/4$, $f_c/8$, respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.
- * This type of counter is called a "ripple" counter since the clock transitions *ripple* through the flip-flops.

M. B. Patil, IIT Bombay



M. B. Patil, IIT Bombay

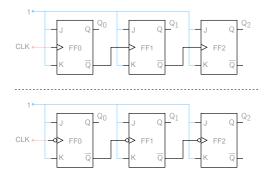
(ロ) (同) (E) (E)



* If positive edge-triggered flip-flops are used, we get a binary *down* counter (counting down from 1111 to 0000).

・ロト ・回ト ・モト ・モト

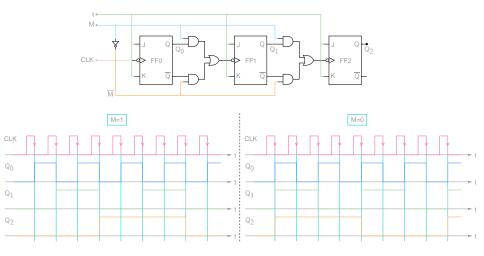
M. B. Patil, IIT Bombay



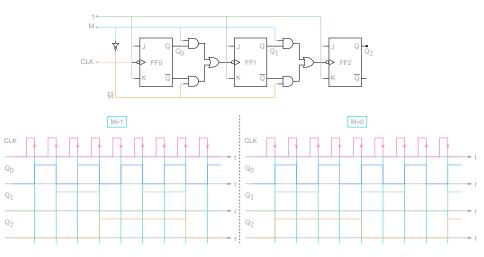
* Home work: Sketch the waveforms (CLK, Q_0 , Q_1 , Q_2), and tabulate the counter states in each case.

▲ロト ▲御ト ▲陸ト ▲陸ト

M. B. Patil, IIT Bombay



・ロト ・日下・ ・ ヨト



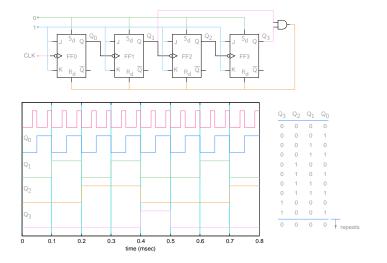
* When Mode (M)=1, the counter counts up; else, it counts down. (SEQUEL file: ee101_counter_3.sqproj)

M. B. Patil, IIT Bombay

Ð,

・ロト ・回 ・ ・ ヨト ・

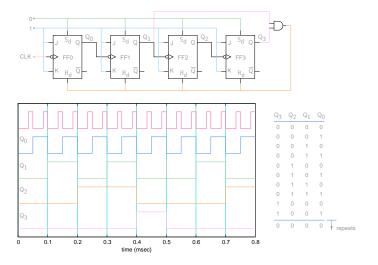
Decade counter using direct inputs



M. B. Patil, IIT Bombay

▲ロト ▲御ト ▲陸ト ▲陸ト

Decade counter using direct inputs

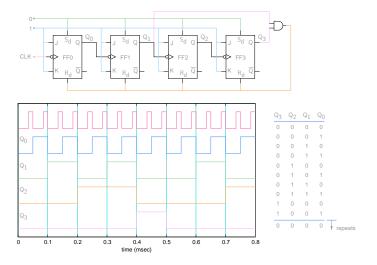


* When the counter reaches $Q_3 Q_2 Q_1 Q_0 = 1010$ (i.e., decmial 10), $Q_3 Q_1 = 1$, and the flip-flops are cleared to $Q_3 Q_2 Q_1 Q_0 = 0000$.

M. B. Patil, IIT Bombay

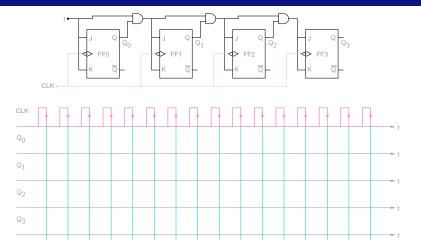
・ロト ・回 ト ・ヨト ・ヨト

Decade counter using direct inputs

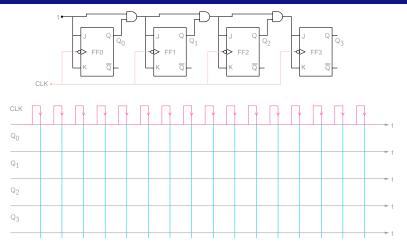


- * When the counter reaches $Q_3 Q_2 Q_1 Q_0 = 1010$ (i.e., decmial 10), $Q_3 Q_1 = 1$, and the flip-flops are cleared to $Q_3 Q_2 Q_1 Q_0 = 0000$.
- * The counter counts from 0000 (decimal 0) to 1001 (decimal 9) \rightarrow "decade counter." (SEQUEL file: ee101_counter_5.sqproj) $\langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle \langle \Xi \rangle$

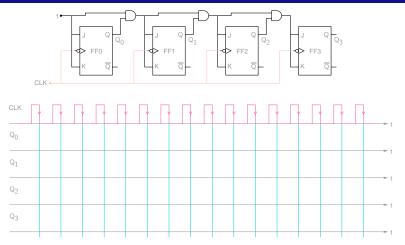
<き> E ののの M. B. Patil, IIT Bombay



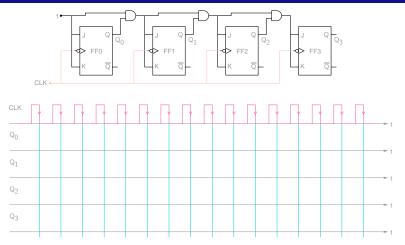
◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで



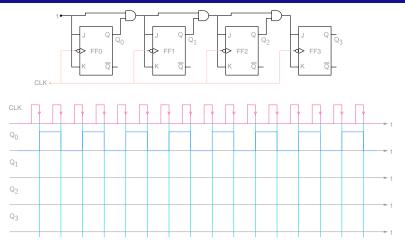
* Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.



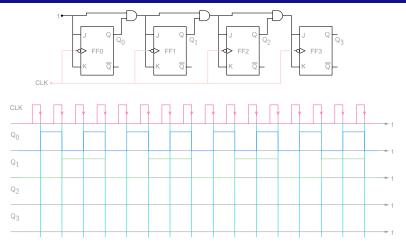
- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.



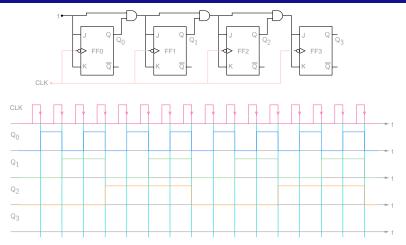
- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles at every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. Similar comments apply to FF2 and FF3.



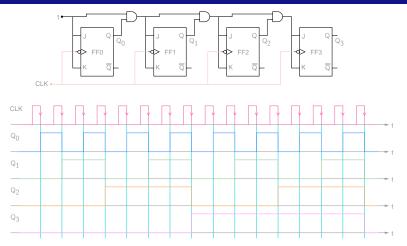
- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles at every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. Similar comments apply to FF2 and FF3.



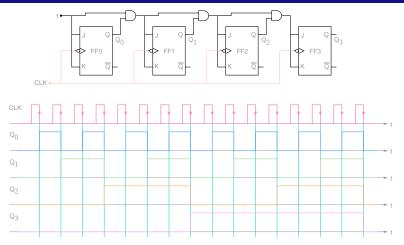
- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles at every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. Similar comments apply to FF2 and FF3.



- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles at every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. Similar comments apply to FF2 and FF3.



- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles at every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. Similar comments apply to FF2 and FF3.



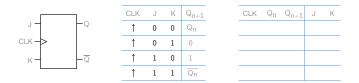
- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles at every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. Similar comments apply to FF2 and FF3.
- * From the waveforms, we see that it is a binary up counter. < □ > < □ > < □ > < ≡ > < ≡ ><<</p>

Design of synchronous counters

CLK	J	Κ	Q_{n+1}
î	0	0	Qn
Ť	0	1	0
Ť	1	0	1
Î	1	1	$\overline{Q_n}$

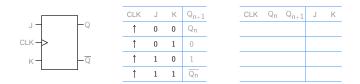
◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Design of synchronous counters



* Consider the *reverse* problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?

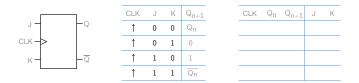
・ロト ・ 同 ト ・ ヨト ・ ヨト … ヨ



- * Consider the *reverse* problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n = 0$ by making J = 0, K = 0.

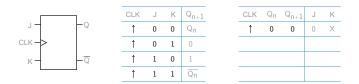
・ロン ・回 と ・ヨン ・ヨン

3



- * Consider the *reverse* problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n = 0$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).

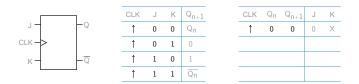
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □



- * Consider the *reverse* problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n = 0$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).

◆□ > ◆□ > ◆臣 > ◆臣 > ○

3

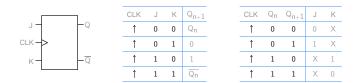


- * Consider the *reverse* problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n = 0$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).

・ロン ・回 と ・ヨン ・ヨン

3

* Similarly, work out the other entries in the table.

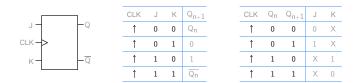


- * Consider the *reverse* problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n = 0$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).

・ロン ・回 と ・ヨン ・ヨン

3

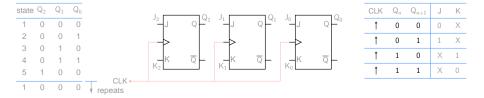
* Similarly, work out the other entries in the table.



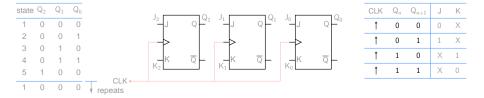
- * Consider the *reverse* problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n = 0$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).
- * Similarly, work out the other entries in the table.
- * The table for a negative edge-triggered flip-flop would be identical excpet for the active edge.

メロト メヨト メヨト メ

M. B. Patil, IIT Bombay

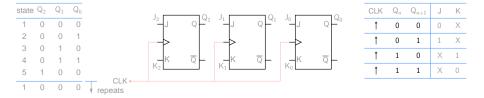


<ロ > < (□ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >)



Outline of method:

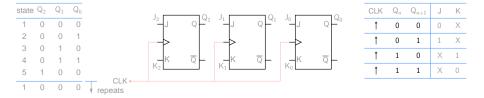
A B > 4
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Outline of method:

- * State 1 \rightarrow State 2 means $Q_2: 0 \rightarrow 0$,
 - $Q_1: 0 \rightarrow 0,$
 - $Q_0: 0 \rightarrow 1.$

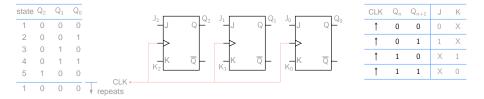
M. B. Patil, IIT Bombay



Outline of method:

- * State 1 \rightarrow State 2 means $Q_2: 0 \rightarrow 0,$ $Q_1: 0 \rightarrow 0,$ $Q_0: 0 \rightarrow 1.$
- * Refer to the right table. For Q_2 : $0 \rightarrow 0$, we must have $J_2 = 0$, $K_2 = X$, and so on.

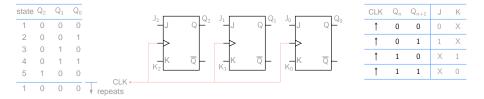
M. B. Patil, IIT Bombay



Outline of method:

- * State 1 \rightarrow State 2 means $Q_2: 0 \rightarrow 0,$ $Q_1: 0 \rightarrow 0,$ $Q_0: 0 \rightarrow 1.$
- * Refer to the right table. For Q_2 : $0 \rightarrow 0$, we must have $J_2 = 0$, $K_2 = X$, and so on.
- * When we cover all transitions in the left table, we have the truth tables for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_1 , Q_2 , Q_3 .

M. B. Patil, IIT Bombay



Outline of method:

- * State 1 \rightarrow State 2 means $Q_2: 0 \rightarrow 0,$ $Q_1: 0 \rightarrow 0,$ $Q_0: 0 \rightarrow 1.$
- * Refer to the right table. For Q_2 : $0 \rightarrow 0$, we must have $J_2 = 0$, $K_2 = X$, and so on.
- * When we cover all transitions in the left table, we have the truth tables for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_1 , Q_2 , Q_3 .
- * The last step is to come up with suitable functions for J₀, K₀, J₁, K₁, J₂, K₂ in terms of Q₁, Q₂, Q₃. This can be done with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

state	Qa	Q1	Qn	Ja	Ka	J1	K1	٦u	Ko					
			-	- 2	2	- 1	1	- 0	0	CLK	Qn	Q_{n+1}	J	ŀ
	0									Î	0	0	0)
2	0	0	1											
3	0	1	0							Î	0	1	1)
4	0	1	1							î	1	0	Х	1
5	1	0	0							1	1	1	Х	(
1	0	0	0							- 1	-	-	~~	

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへぐ

state	Q_2	Q_1	Q ₀	J_2	K_2	J ₁	K ₁	JO	K ₀		_	-		_
	0		-	-	-	-	-	0	0	CLK	Qn	Q_{n+1}	J	
										Ŷ	0	0	0	
2										1	0	1	1	
3	0	1	0								0	1	T	
4	0	1	1							Î	1	0	Х	
5	1	0	0							1	1	1	Х	
1	0	0	0								-	-		

state	Q_2	Q_1	Qn	Ja	K ₂	J_1	K ₁	٦U	KΩ					
						T	T	0	0	CLK	Qn	Q_{n+1}	J	K
	0			0	X					1	0	0	0	Х
2	0	0	1								Ŭ	ů	0	
3	0	1	0							î	0	1	1	Х
4	0	1	1							î	1	0	Х	1
5	1	0	0							Î	1	1	Х	0
1	0	0	0											

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

state	Q2	Q_1	Qn	Ja	K ₂	J_1	K ₁	JU	KΩ					
			-			_	_	0	0	CLK	Qn	Q_{n+1}	J	Κ
				0	Х	0	X			Î	0	0	0	Х
2	0	0	1							-			_	24
3	0	1	0							Î	0	1	1	Х
4	0	1	1							î	1	0	Х	1
5	1	0	0							↑	1	1	Х	0
1	0	0	0								-	-		

state	Q_2	Q_1	Q ₀	J ₂	K ₂	J_1	K_1	JO	K ₀			0	0		
1	0	0	0	0	V	0	V	4	V	-	CLK	Qn	Q_{n+1}	J	K
			$<^{0}$	0	~	0	~	1	~		Î	0	0	0	Х
2	0	0	1								•	_			
3	0	1	0								Î	0	1	1	Х
4	0	1	1								Î	1	0	Х	1
5	1	0	0								1	1	1	Х	0
1	0	0	0									1	1	~	0

state	Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K_1	JO	K ₀	CLK	0	0 .	1	K
1	0	0	0	0	Х	0	Х	1	Х	OLK	Qn	Q_{n+1}	J	IX.
	0			Ŭ		0				Î	0	0	0	Х
\leq_3										Î	0	1	1	Х
	0									1	1	0	Х	1
5	1	0	0											
1	0	0	0							-	1	1	Х	0

state	Q_2	Q_1	Q ₀	J ₂	К2	J_1	K_1	JO	K ₀			0	0		
1	0	0	0	0	V	0	\vee	1	V	-	CLK	Qn	Q_{n+1}	J	K
						0	~	1	~		↑	0	0	0	Х
2	0	0	1	0	Х										
3	0	1	0								î	0	1	1	Х
4	0	1	1								î	1	0	Х	1
5	1	0	0								î	1	1	Х	0
1	0	0	0												-

state	Q_2	Q_1	Q ₀	J ₂	K ₂	J_1	K_1	JO	K ₀		0	0		
1	0	0	0	0	V	0	Х	4	V	CLK	Qn	Q_{n+1}	J	K
								1	~	Î	0	0	0	Х
				0	Х	1	X			↑	0	1	1	V
3	0	1	0								0	1	T	~
4	0	1	1							Î	1	0	Х	1
5	1	0	0							↑	1	1	Х	0
1	0	0	0								1	1	~	0

state	Q_2	Q_1	Q ₀	J ₂	K ₂	J_1	K_1	JO	K ₀		0	0		
1	0	0	0	0	V	0	V	1	V	CLK	Qn	Q_{n+1}	J	K
										Î	0	0	0	Х
			_1	0	X	1	X	X	1	1	0	1	1	V
3	0	1	0								0	1	Ţ	~
4	0	1	1							Î	1	0	Х	1
5	1	0	0							↑	1	1	Х	0
1	0	0	0								1	1	~	0

state	Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K_1	JO	K ₀	CLK	0	Q_{n+1}	1	K
1	0	0	0	0	Х	0	Х	1	Х	OLK	QU	≪n+1	0	IX.
							Х			Î	0	0	0	Х
	0									Î	0	1	1	X
$<_4$	0	1	1							î	1	0	Х	1
5	1	0	0							ŕ		1		
1	0	0	0								1	1	~	0

state	Q_2	Q ₁	Qn	Ja	K ₂	J_1	K1	٦u	Kο
		_	-	_	_	_	_	-	-
	0								
	0					1	Х	Х	1
3	0	1	0	0	Х				
4	0	1	1						
5	1	0	0						
1	0	0	0						

state	Q_2	Q_1	Q ₀	J_2	K_2	J ₁	K ₁	JO	K ₀		_	
	_	_	-	_	_	_	X	÷	-	CLK	Qn	G
							X			î	0	0
					X					î	0	1
	0						-			1	1	0
	1											
	0										1	1

・ロト・(中下・(中下・(日下・(日下)))

state	Q_2	Q_1	Qn	J_2	K_2	J ₁	K ₁	JU	Ko
			-	_	_	_	_	÷	-
					X X				
					Х				
	0			0	~	~	0		~
	1								
1	0	0	0						

tate	Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K_1	JO	K ₀	CLK	\cap	0	
1	0	0	0	0	Х	0	Х	1	Х			Q_{n+1}	
2	0	0	1	0	Х	1	Х	Х	1	Î	0	0	
3	0	1	0	0	Х	Х	0	1	Х	î	0	1	
4	0	1	1							Î	1	0	
5	1	0	0							1	1	1	
1	0	0	0							1	-	1	

state	Q_2	Q_1	Q ₀	J_2	К ₂	J_1	Κ1	1 ⁰	K ₀
	_	_	-	_	_	_	X	÷	-
							X		
							0		
4	0	1	1	1	Х				
5	1	0	0						
1	0	0	0						

	0	0	0		17		17		17		
state	Q2	Q_1	Q0	J2	К2	J ₁	κ1	70	K0	CLK	G
1	0	0	0	0	Х	0	Х	1	Х		-
					Х					Î	C
					Х					î	C
					Х					1	1
5	1	0	0							^	1
1	0	0	0								

CLK	Qn	Q_{n+1}	J	Κ
î	0	0	0	Х
î	0	1	1	Х
î	1	0	Х	1
î	1	1	Х	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

state	Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K_1	JO	K ₀
1	0				Х				
2	0	0	1	0	Х	1	Х	Х	1
3					Х				
4	0	1	1	1	Х	Х	1	Х	1
5	1	0	0						
1	0	0	0						

CLK	Qn	Q_{n+1}	J	К
î	0	0	0	Х
î	0	1	1	Х
î	1	0	Х	1
î	1	1	Х	0

state	Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K_1	JO	K ₀
1					Х				
2	0	0	1	0	Х	1	Х	Х	1
3					Х				
4	0	1	1	1	Х	Х	1	Х	1
5	1	0	0						
1	0	0	0						

CLK	Qn	Q_{n+1}	J	К
î	0	0	0	Х
î	0	1	1	Х
î	1	0	Х	1
î	1	1	Х	0

state	Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K_1	JO	K ₀
1	0	0	0	0	Х	0	Х	1	Х
2	0	0	1	0	Х	1	Х	Х	1
3	0	1	0	0	Х	Х	0	1	Х
4	0	1	1	1	Х	Х	1	Х	1
5	_1	0	0	Х	1				
1	0	0	0						

CLK	Qn	Q_{n+1}	J	К
î	0	0	0	Х
î	0	1	1	Х
î	1	0	Х	1
î	1	1	Х	0

state	Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K_1	JO	K ₀
1	0	0	0	0	X X	0	Х	1	Х
2	0	0	1	0	Х	1	Х	Х	1
3					Х				
4					Х			Х	1
5	1	0	0	Х	1	0	Х		
1	0	0	0						

CLK	Qn	Q_{n+1}	J	К
î	0	0	0	Х
î	0	1	1	Х
î	1	0	Х	1
î	1	1	Х	0

state	Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K_1	JO	K ₀
1	0	0	0 1	0	Х	0	Х	1	Х
2	0	0	1	0	Х	1	Х	Х	1
3	0	1	0	0	Х	Х	0	1	Х
4	0	1	1						
5	1	0	0	Х	1	0	Х	0	Х
1	0	0	0						

CLK	Qn	Q_{n+1}	J	К
î	0	0	0	Х
î	0	1	1	Х
î	1	0	Х	1
î	1	1	Х	0

ototo	\bigcirc	0.	\bigcirc	la	K.	L	K.	la	Ka
state			-					-	-
1	0	0	0	0	Х	0	Х	1	Х
2	0	0	1	0	Х	1	Х	Х	1
3	0	1	0	0	Х	Х	0	1	Х
4	0	1	1	1	Х	Х	1	Х	1
5	1	0	0	Х	1	0	Х	0	Х
1	0	0	0						

* We now have the truth tables for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_0 , Q_1 , Q_2 . The next step is to find logical functions for each of them.

state	0.	01	0.		Ka	4	K1	lo	Ko
			-					-	-
					Х				
					Х				
3	0	1	0	0	Х	Х	0	1	Х
4	0	1	1	1	Х	Х	1	Х	1
5	1	0	0	Х	1	0	Х	0	Х
1	0	0	0						

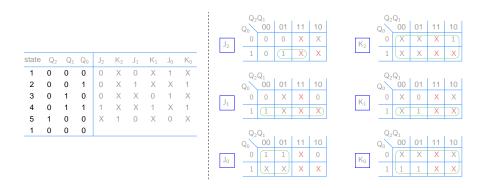
- * We now have the truth tables for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_0 , Q_1 , Q_2 . The next step is to find logical functions for each of them.
- * Note that we have not tabulated the J and K values for those combinations of Q_0 , Q_1 , Q_2 which do not occur in the state transition table (such as $Q_2Q_1Q_0 = 110$). We treat these as don't care conditions (next slide).

イロト イヨト イヨト イヨト

M. B. Patil, IIT Bombay

state	Q ₂	Q1	Q ₀	J_2	К2	J ₁	K1	Jo	K ₀	J ₂ 0 0 0 X X K ₂ 0 X X X	10 1 X
1	0	0	0	0	Х	0	Х	1	Х	Q_2Q_1 Q_2Q_1	
2	0	0	1	0	Х	1	Х	Х	1		10
3	0	1	0	0	Х	Х	0	1	Х		Х
4	0	1	1	1	Х	Х	1	Х	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X)
5	1	0	0	Х	1	0	Х	0	Х		~
1	0	0	0							Q ₂ Q ₁ Q ₂ Q ₁	
											10
											X
										J ₀ 0 1 1 X V X X 1 1 1 1 X	x

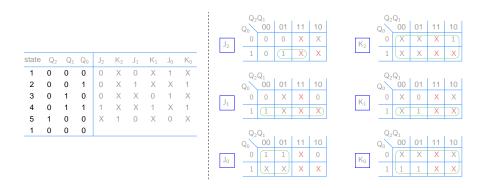
・ロト・(中下・(中下・(日下・(日下)))



* We treat the unused states ($Q_2Q_1Q_0 = 101, 110, 111$) as (additional) don't care conditions. Since these are different from the don't care conditions arising from the state transition table, we mark them with a different colour.

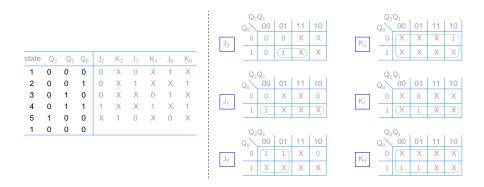
Image: A match the second s

M. B. Patil, IIT Bombay



- * We treat the unused states ($Q_2 Q_1 Q_0 = 101, 110, 111$) as (additional) don't care conditions. Since these are different from the don't care conditions arising from the state transition table, we mark them with a different colour.
- * We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five allowed states (say, $Q_2 Q_1 Q_0 = 000$).

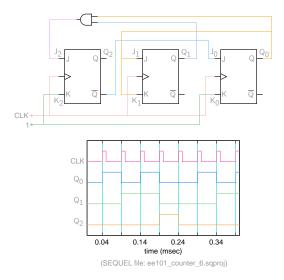
M. B. Patil, IIT Bombay



- * We treat the unused states ($Q_2 Q_1 Q_0 = 101, 110, 111$) as (additional) don't care conditions. Since these are different from the don't care conditions arising from the state transition table, we mark them with a different colour.
- * We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five allowed states (say, $Q_2 Q_1 Q_0 = 000$).
- * From the K-maps, $J_2 = Q_1 Q_0$, $K_2 = 1$, $J_1 = Q_0$, $K_1 = Q_0$, $J_0 = \overline{Q_2}$, $K_0 = 1$.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

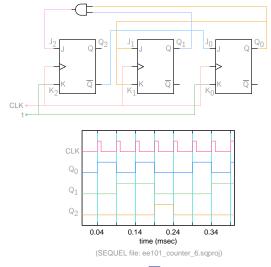


M. B. Patil, IIT Bombay

ъ

・ロト ・回ト ・ヨト

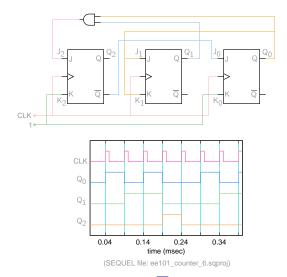
Design of synchronous counters: verification



* $J_2 = Q_1 Q_0, \ K_2 = 1, \ J_1 = Q_0, \ K_1 = Q_0, \ J_0 = \overline{Q_2}, \ K_0 = 1.$

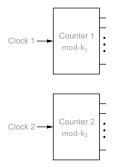
・ロト ・回ト ・ヨト

Design of synchronous counters: verification



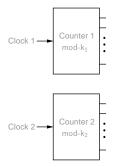
- * $J_2 = Q_1 Q_0, \ K_2 = 1, \ J_1 = Q_0, \ K_1 = Q_0, \ J_0 = \overline{Q_2}, \ K_0 = 1.$
- * Note that the design is independent of whether positive or negative edge-triggered flip-flops are used.
 < □ > < □ > < □ > < □ > < ≥ > < ≥ > < ≥ > < ≥</p>

M. B. Patil, IIT Bombay



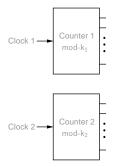
 Consider two counters, Counter 1 (mod-k₁) and Counter 2 (mod-k₂). (Each of them can be ripple or synchronous type.)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

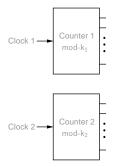


- * Consider two counters, Counter 1 (mod-k₁) and Counter 2 (mod-k₂). (Each of them can be ripple or synchronous type.)
- * Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with k_1k_2 states if appropriate synchronisation is provided between the two clocks.

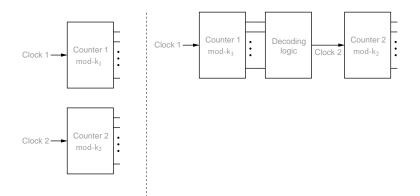
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



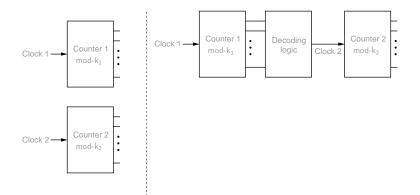
- Consider two counters, Counter 1 (mod-k₁) and Counter 2 (mod-k₂). (Each of them can be ripple or synchronous type.)
- * Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with k_1k_2 states if appropriate synchronisation is provided between the two clocks.
- * There are two ways of providing synchronisation:



- * Consider two counters, Counter 1 (mod-k₁) and Counter 2 (mod-k₂). (Each of them can be ripple or synchronous type.)
- * Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with k_1k_2 states if appropriate synchronisation is provided between the two clocks.
- * There are two ways of providing synchronisation:
 - derive Clock 2 from Clock 1 (using some decoding logic, if necessary)



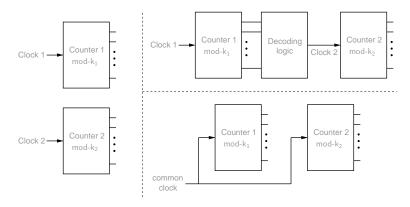
- * Consider two counters, Counter 1 (mod-k₁) and Counter 2 (mod-k₂). (Each of them can be ripple or synchronous type.)
- * Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with k_1k_2 states if appropriate synchronisation is provided between the two clocks.
- * There are two ways of providing synchronisation:
 - derive Clock 2 from Clock 1 (using some decoding logic, if necessary)



- * Consider two counters, Counter 1 (mod-k₁) and Counter 2 (mod-k₂). (Each of them can be ripple or synchronous type.)
- * Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with k_1k_2 states if appropriate synchronisation is provided between the two clocks.

イロト イボト イヨト イヨト 二日

- * There are two ways of providing synchronisation:
 - derive Clock 2 from Clock 1 (using some decoding logic, if necessary)
 - drive the two counters with the same clock



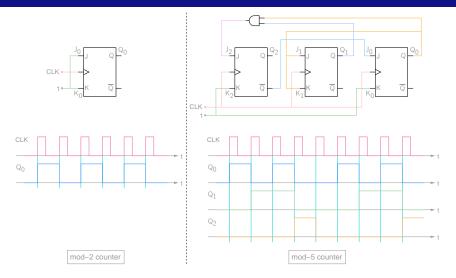
- * Consider two counters, Counter 1 (mod-k₁) and Counter 2 (mod-k₂). (Each of them can be ripple or synchronous type.)
- * Since Counter 1 has k_1 states and Counter 2 has k_2 states, we can get a new counter with k_1k_2 states if appropriate synchronisation is provided between the two clocks.

・ロト ・回 ト ・ヨト ・ヨト

M. B. Patil, IIT Bombay

- * There are two ways of providing synchronisation:
 - derive Clock 2 from Clock 1 (using some decoding logic, if necessary)
 - drive the two counters with the same clock

Combination of counters

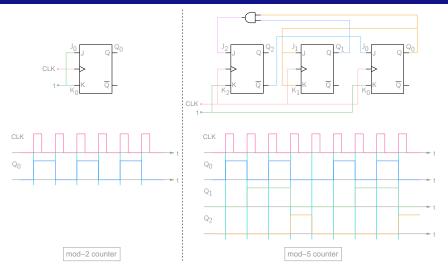


E M. B. Patil, IIT Bombay

DQC

・ロト ・回 ト ・ヨト ・ヨト

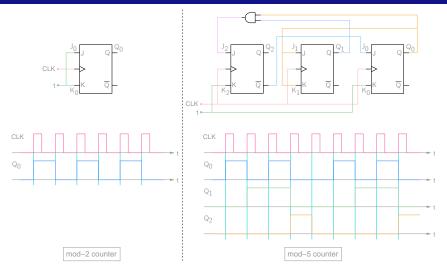
Combination of counters



* Let us combine the mod-2 and mod-5 counters to make a mod-10 counter.

M. B. Patil, IIT Bombay

Combination of counters

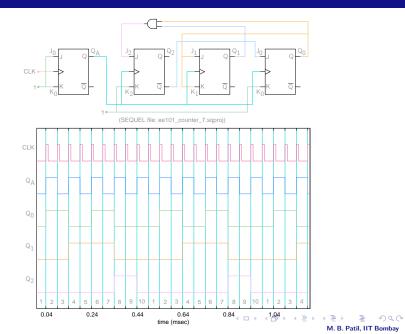


- * Let us combine the mod-2 and mod-5 counters to make a mod-10 counter.
- * We will follow two approaches (as described earlier):
 - A: The clock for the second (mod-5) counter is derived from the first (mod-2) counter.
 - B: A common clock is used to drive the mod-2 and mod-5 counters and the second second

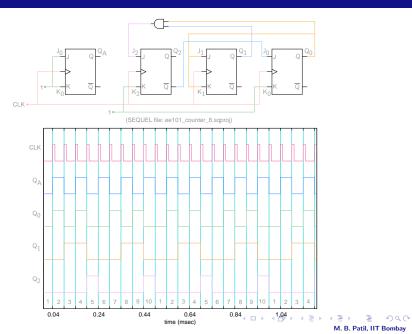
≣ । ≣ • ९ ९ (M. B. Patil, IIT Bombay

用い くほい

Approach A



Approach B



Show that, by connecting the Q output of the mod-2 counter (instead of the Q output) to the clock input of the mod-5 counter in the ripple connection ("Approach A") circuit, we get a decade counter, counting up from 0000 to 1001.

- * Show that, by connecting the Q output of the mod-2 counter (instead of the Q output) to the clock input of the mod-5 counter in the ripple connection ("Approach A") circuit, we get a decade counter, counting up from 0000 to 1001.
- * Derive appropriate decoding logic for each of the ten counters states (i.e., the output should be 1 for only that particular state and 0 otherwise).

- * Show that, by connecting the Q output of the mod-2 counter (instead of the Q output) to the clock input of the mod-5 counter in the ripple connection ("Approach A") circuit, we get a decade counter, counting up from 0000 to 1001.
- * Derive appropriate decoding logic for each of the ten counters states (i.e., the output should be 1 for only that particular state and 0 otherwise).
- * Derive appropriate decoding logic which will give a symmetrical square wave (i.e., a duty cycle of 50 %) with a frequency of $f_c/10$, where f_c is the clock frequency.

・ロト ・回ト ・ヨト ・ヨト

- Show that, by connecting the Q output of the mod-2 counter (instead of the Q output) to the clock input of the mod-5 counter in the ripple connection ("Approach A") circuit, we get a decade counter, counting up from 0000 to 1001.
- * Derive appropriate decoding logic for each of the ten counters states (i.e., the output should be 1 for only that particular state and 0 otherwise).
- * Derive appropriate decoding logic which will give a symmetrical square wave (i.e., a duty cycle of 50 %) with a frequency of $f_c/10$, where f_c is the clock frequency.
- * Verify your design by simulation.

・ロト ・回ト ・ヨト ・ヨト